Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/**
   3 * eCryptfs: Linux filesystem encryption layer
   4 * In-kernel key management code.  Includes functions to parse and
   5 * write authentication token-related packets with the underlying
   6 * file.
   7 *
   8 * Copyright (C) 2004-2006 International Business Machines Corp.
   9 *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
  10 *              Michael C. Thompson <mcthomps@us.ibm.com>
  11 *              Trevor S. Highland <trevor.highland@gmail.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  12 */
  13
  14#include <crypto/hash.h>
  15#include <crypto/skcipher.h>
  16#include <linux/string.h>
 
  17#include <linux/pagemap.h>
  18#include <linux/key.h>
  19#include <linux/random.h>
 
  20#include <linux/scatterlist.h>
  21#include <linux/slab.h>
  22#include "ecryptfs_kernel.h"
  23
  24/**
  25 * request_key returned an error instead of a valid key address;
  26 * determine the type of error, make appropriate log entries, and
  27 * return an error code.
  28 */
  29static int process_request_key_err(long err_code)
  30{
  31	int rc = 0;
  32
  33	switch (err_code) {
  34	case -ENOKEY:
  35		ecryptfs_printk(KERN_WARNING, "No key\n");
  36		rc = -ENOENT;
  37		break;
  38	case -EKEYEXPIRED:
  39		ecryptfs_printk(KERN_WARNING, "Key expired\n");
  40		rc = -ETIME;
  41		break;
  42	case -EKEYREVOKED:
  43		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
  44		rc = -EINVAL;
  45		break;
  46	default:
  47		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
  48				"[0x%.16lx]\n", err_code);
  49		rc = -EINVAL;
  50	}
  51	return rc;
  52}
  53
  54static int process_find_global_auth_tok_for_sig_err(int err_code)
  55{
  56	int rc = err_code;
  57
  58	switch (err_code) {
  59	case -ENOENT:
  60		ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
  61		break;
  62	case -EINVAL:
  63		ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
  64		break;
  65	default:
  66		rc = process_request_key_err(err_code);
  67		break;
  68	}
  69	return rc;
  70}
  71
  72/**
  73 * ecryptfs_parse_packet_length
  74 * @data: Pointer to memory containing length at offset
  75 * @size: This function writes the decoded size to this memory
  76 *        address; zero on error
  77 * @length_size: The number of bytes occupied by the encoded length
  78 *
  79 * Returns zero on success; non-zero on error
  80 */
  81int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
  82				 size_t *length_size)
  83{
  84	int rc = 0;
  85
  86	(*length_size) = 0;
  87	(*size) = 0;
  88	if (data[0] < 192) {
  89		/* One-byte length */
  90		(*size) = data[0];
  91		(*length_size) = 1;
  92	} else if (data[0] < 224) {
  93		/* Two-byte length */
  94		(*size) = (data[0] - 192) * 256;
  95		(*size) += data[1] + 192;
  96		(*length_size) = 2;
  97	} else if (data[0] == 255) {
  98		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
  99		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
 100				"supported\n");
 101		rc = -EINVAL;
 102		goto out;
 103	} else {
 104		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
 105		rc = -EINVAL;
 106		goto out;
 107	}
 108out:
 109	return rc;
 110}
 111
 112/**
 113 * ecryptfs_write_packet_length
 114 * @dest: The byte array target into which to write the length. Must
 115 *        have at least ECRYPTFS_MAX_PKT_LEN_SIZE bytes allocated.
 116 * @size: The length to write.
 117 * @packet_size_length: The number of bytes used to encode the packet
 118 *                      length is written to this address.
 119 *
 120 * Returns zero on success; non-zero on error.
 121 */
 122int ecryptfs_write_packet_length(char *dest, size_t size,
 123				 size_t *packet_size_length)
 124{
 125	int rc = 0;
 126
 127	if (size < 192) {
 128		dest[0] = size;
 129		(*packet_size_length) = 1;
 130	} else if (size < 65536) {
 131		dest[0] = (((size - 192) / 256) + 192);
 132		dest[1] = ((size - 192) % 256);
 133		(*packet_size_length) = 2;
 134	} else {
 135		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
 136		rc = -EINVAL;
 137		ecryptfs_printk(KERN_WARNING,
 138				"Unsupported packet size: [%zd]\n", size);
 139	}
 140	return rc;
 141}
 142
 143static int
 144write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
 145		    char **packet, size_t *packet_len)
 146{
 147	size_t i = 0;
 148	size_t data_len;
 149	size_t packet_size_len;
 150	char *message;
 151	int rc;
 152
 153	/*
 154	 *              ***** TAG 64 Packet Format *****
 155	 *    | Content Type                       | 1 byte       |
 156	 *    | Key Identifier Size                | 1 or 2 bytes |
 157	 *    | Key Identifier                     | arbitrary    |
 158	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
 159	 *    | Encrypted File Encryption Key      | arbitrary    |
 160	 */
 161	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
 162		    + session_key->encrypted_key_size);
 163	*packet = kmalloc(data_len, GFP_KERNEL);
 164	message = *packet;
 165	if (!message) {
 166		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
 167		rc = -ENOMEM;
 168		goto out;
 169	}
 170	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
 171	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
 172					  &packet_size_len);
 173	if (rc) {
 174		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
 175				"header; cannot generate packet length\n");
 176		goto out;
 177	}
 178	i += packet_size_len;
 179	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
 180	i += ECRYPTFS_SIG_SIZE_HEX;
 181	rc = ecryptfs_write_packet_length(&message[i],
 182					  session_key->encrypted_key_size,
 183					  &packet_size_len);
 184	if (rc) {
 185		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
 186				"header; cannot generate packet length\n");
 187		goto out;
 188	}
 189	i += packet_size_len;
 190	memcpy(&message[i], session_key->encrypted_key,
 191	       session_key->encrypted_key_size);
 192	i += session_key->encrypted_key_size;
 193	*packet_len = i;
 194out:
 195	return rc;
 196}
 197
 198static int
 199parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
 200		    struct ecryptfs_message *msg)
 201{
 202	size_t i = 0;
 203	char *data;
 204	size_t data_len;
 205	size_t m_size;
 206	size_t message_len;
 207	u16 checksum = 0;
 208	u16 expected_checksum = 0;
 209	int rc;
 210
 211	/*
 212	 *              ***** TAG 65 Packet Format *****
 213	 *         | Content Type             | 1 byte       |
 214	 *         | Status Indicator         | 1 byte       |
 215	 *         | File Encryption Key Size | 1 or 2 bytes |
 216	 *         | File Encryption Key      | arbitrary    |
 217	 */
 218	message_len = msg->data_len;
 219	data = msg->data;
 220	if (message_len < 4) {
 221		rc = -EIO;
 222		goto out;
 223	}
 224	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
 225		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
 226		rc = -EIO;
 227		goto out;
 228	}
 229	if (data[i++]) {
 230		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
 231				"[%d]\n", data[i-1]);
 232		rc = -EIO;
 233		goto out;
 234	}
 235	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
 236	if (rc) {
 237		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
 238				"rc = [%d]\n", rc);
 239		goto out;
 240	}
 241	i += data_len;
 242	if (message_len < (i + m_size)) {
 243		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
 244				"is shorter than expected\n");
 245		rc = -EIO;
 246		goto out;
 247	}
 248	if (m_size < 3) {
 249		ecryptfs_printk(KERN_ERR,
 250				"The decrypted key is not long enough to "
 251				"include a cipher code and checksum\n");
 252		rc = -EIO;
 253		goto out;
 254	}
 255	*cipher_code = data[i++];
 256	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
 257	session_key->decrypted_key_size = m_size - 3;
 258	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
 259		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
 260				"the maximum key size [%d]\n",
 261				session_key->decrypted_key_size,
 262				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
 263		rc = -EIO;
 264		goto out;
 265	}
 266	memcpy(session_key->decrypted_key, &data[i],
 267	       session_key->decrypted_key_size);
 268	i += session_key->decrypted_key_size;
 269	expected_checksum += (unsigned char)(data[i++]) << 8;
 270	expected_checksum += (unsigned char)(data[i++]);
 271	for (i = 0; i < session_key->decrypted_key_size; i++)
 272		checksum += session_key->decrypted_key[i];
 273	if (expected_checksum != checksum) {
 274		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
 275				"encryption  key; expected [%x]; calculated "
 276				"[%x]\n", expected_checksum, checksum);
 277		rc = -EIO;
 278	}
 279out:
 280	return rc;
 281}
 282
 283
 284static int
 285write_tag_66_packet(char *signature, u8 cipher_code,
 286		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
 287		    size_t *packet_len)
 288{
 289	size_t i = 0;
 290	size_t j;
 291	size_t data_len;
 292	size_t checksum = 0;
 293	size_t packet_size_len;
 294	char *message;
 295	int rc;
 296
 297	/*
 298	 *              ***** TAG 66 Packet Format *****
 299	 *         | Content Type             | 1 byte       |
 300	 *         | Key Identifier Size      | 1 or 2 bytes |
 301	 *         | Key Identifier           | arbitrary    |
 302	 *         | File Encryption Key Size | 1 or 2 bytes |
 303	 *         | File Encryption Key      | arbitrary    |
 304	 */
 305	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
 306	*packet = kmalloc(data_len, GFP_KERNEL);
 307	message = *packet;
 308	if (!message) {
 309		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
 310		rc = -ENOMEM;
 311		goto out;
 312	}
 313	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
 314	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
 315					  &packet_size_len);
 316	if (rc) {
 317		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
 318				"header; cannot generate packet length\n");
 319		goto out;
 320	}
 321	i += packet_size_len;
 322	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
 323	i += ECRYPTFS_SIG_SIZE_HEX;
 324	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
 325	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
 326					  &packet_size_len);
 327	if (rc) {
 328		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
 329				"header; cannot generate packet length\n");
 330		goto out;
 331	}
 332	i += packet_size_len;
 333	message[i++] = cipher_code;
 334	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
 335	i += crypt_stat->key_size;
 336	for (j = 0; j < crypt_stat->key_size; j++)
 337		checksum += crypt_stat->key[j];
 338	message[i++] = (checksum / 256) % 256;
 339	message[i++] = (checksum % 256);
 340	*packet_len = i;
 341out:
 342	return rc;
 343}
 344
 345static int
 346parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
 347		    struct ecryptfs_message *msg)
 348{
 349	size_t i = 0;
 350	char *data;
 351	size_t data_len;
 352	size_t message_len;
 353	int rc;
 354
 355	/*
 356	 *              ***** TAG 65 Packet Format *****
 357	 *    | Content Type                       | 1 byte       |
 358	 *    | Status Indicator                   | 1 byte       |
 359	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
 360	 *    | Encrypted File Encryption Key      | arbitrary    |
 361	 */
 362	message_len = msg->data_len;
 363	data = msg->data;
 364	/* verify that everything through the encrypted FEK size is present */
 365	if (message_len < 4) {
 366		rc = -EIO;
 367		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
 368		       "message length is [%d]\n", __func__, message_len, 4);
 369		goto out;
 370	}
 371	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
 372		rc = -EIO;
 373		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
 374		       __func__);
 375		goto out;
 376	}
 377	if (data[i++]) {
 378		rc = -EIO;
 379		printk(KERN_ERR "%s: Status indicator has non zero "
 380		       "value [%d]\n", __func__, data[i-1]);
 381
 382		goto out;
 383	}
 384	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
 385					  &data_len);
 386	if (rc) {
 387		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
 388				"rc = [%d]\n", rc);
 389		goto out;
 390	}
 391	i += data_len;
 392	if (message_len < (i + key_rec->enc_key_size)) {
 393		rc = -EIO;
 394		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
 395		       __func__, message_len, (i + key_rec->enc_key_size));
 396		goto out;
 397	}
 398	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
 399		rc = -EIO;
 400		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
 401		       "the maximum key size [%d]\n", __func__,
 402		       key_rec->enc_key_size,
 403		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
 404		goto out;
 405	}
 406	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
 407out:
 408	return rc;
 409}
 410
 411/**
 412 * ecryptfs_verify_version
 413 * @version: The version number to confirm
 414 *
 415 * Returns zero on good version; non-zero otherwise
 416 */
 417static int ecryptfs_verify_version(u16 version)
 418{
 419	int rc = 0;
 420	unsigned char major;
 421	unsigned char minor;
 422
 423	major = ((version >> 8) & 0xFF);
 424	minor = (version & 0xFF);
 425	if (major != ECRYPTFS_VERSION_MAJOR) {
 426		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
 427				"Expected [%d]; got [%d]\n",
 428				ECRYPTFS_VERSION_MAJOR, major);
 429		rc = -EINVAL;
 430		goto out;
 431	}
 432	if (minor != ECRYPTFS_VERSION_MINOR) {
 433		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
 434				"Expected [%d]; got [%d]\n",
 435				ECRYPTFS_VERSION_MINOR, minor);
 436		rc = -EINVAL;
 437		goto out;
 438	}
 439out:
 440	return rc;
 441}
 442
 443/**
 444 * ecryptfs_verify_auth_tok_from_key
 445 * @auth_tok_key: key containing the authentication token
 446 * @auth_tok: authentication token
 447 *
 448 * Returns zero on valid auth tok; -EINVAL if the payload is invalid; or
 449 * -EKEYREVOKED if the key was revoked before we acquired its semaphore.
 450 */
 451static int
 452ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
 453				  struct ecryptfs_auth_tok **auth_tok)
 454{
 455	int rc = 0;
 456
 457	(*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
 458	if (IS_ERR(*auth_tok)) {
 459		rc = PTR_ERR(*auth_tok);
 460		*auth_tok = NULL;
 461		goto out;
 462	}
 463
 464	if (ecryptfs_verify_version((*auth_tok)->version)) {
 465		printk(KERN_ERR "Data structure version mismatch. Userspace "
 466		       "tools must match eCryptfs kernel module with major "
 467		       "version [%d] and minor version [%d]\n",
 468		       ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
 469		rc = -EINVAL;
 470		goto out;
 471	}
 472	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
 473	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
 474		printk(KERN_ERR "Invalid auth_tok structure "
 475		       "returned from key query\n");
 476		rc = -EINVAL;
 477		goto out;
 478	}
 479out:
 480	return rc;
 481}
 482
 483static int
 484ecryptfs_find_global_auth_tok_for_sig(
 485	struct key **auth_tok_key,
 486	struct ecryptfs_auth_tok **auth_tok,
 487	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
 488{
 489	struct ecryptfs_global_auth_tok *walker;
 490	int rc = 0;
 491
 492	(*auth_tok_key) = NULL;
 493	(*auth_tok) = NULL;
 494	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 495	list_for_each_entry(walker,
 496			    &mount_crypt_stat->global_auth_tok_list,
 497			    mount_crypt_stat_list) {
 498		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
 499			continue;
 500
 501		if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
 502			rc = -EINVAL;
 503			goto out;
 504		}
 505
 506		rc = key_validate(walker->global_auth_tok_key);
 507		if (rc) {
 508			if (rc == -EKEYEXPIRED)
 509				goto out;
 510			goto out_invalid_auth_tok;
 511		}
 512
 513		down_write(&(walker->global_auth_tok_key->sem));
 514		rc = ecryptfs_verify_auth_tok_from_key(
 515				walker->global_auth_tok_key, auth_tok);
 516		if (rc)
 517			goto out_invalid_auth_tok_unlock;
 518
 519		(*auth_tok_key) = walker->global_auth_tok_key;
 520		key_get(*auth_tok_key);
 521		goto out;
 522	}
 523	rc = -ENOENT;
 524	goto out;
 525out_invalid_auth_tok_unlock:
 526	up_write(&(walker->global_auth_tok_key->sem));
 527out_invalid_auth_tok:
 528	printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
 529	walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
 530	key_put(walker->global_auth_tok_key);
 531	walker->global_auth_tok_key = NULL;
 532out:
 533	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 534	return rc;
 535}
 536
 537/**
 538 * ecryptfs_find_auth_tok_for_sig
 539 * @auth_tok: Set to the matching auth_tok; NULL if not found
 540 * @crypt_stat: inode crypt_stat crypto context
 541 * @sig: Sig of auth_tok to find
 542 *
 543 * For now, this function simply looks at the registered auth_tok's
 544 * linked off the mount_crypt_stat, so all the auth_toks that can be
 545 * used must be registered at mount time. This function could
 546 * potentially try a lot harder to find auth_tok's (e.g., by calling
 547 * out to ecryptfsd to dynamically retrieve an auth_tok object) so
 548 * that static registration of auth_tok's will no longer be necessary.
 549 *
 550 * Returns zero on no error; non-zero on error
 551 */
 552static int
 553ecryptfs_find_auth_tok_for_sig(
 554	struct key **auth_tok_key,
 555	struct ecryptfs_auth_tok **auth_tok,
 556	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
 557	char *sig)
 558{
 559	int rc = 0;
 560
 561	rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
 562						   mount_crypt_stat, sig);
 563	if (rc == -ENOENT) {
 564		/* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
 565		 * mount_crypt_stat structure, we prevent to use auth toks that
 566		 * are not inserted through the ecryptfs_add_global_auth_tok
 567		 * function.
 568		 */
 569		if (mount_crypt_stat->flags
 570				& ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
 571			return -EINVAL;
 572
 573		rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
 574						       sig);
 575	}
 576	return rc;
 577}
 578
 579/**
 580 * write_tag_70_packet can gobble a lot of stack space. We stuff most
 581 * of the function's parameters in a kmalloc'd struct to help reduce
 582 * eCryptfs' overall stack usage.
 583 */
 584struct ecryptfs_write_tag_70_packet_silly_stack {
 585	u8 cipher_code;
 586	size_t max_packet_size;
 587	size_t packet_size_len;
 588	size_t block_aligned_filename_size;
 589	size_t block_size;
 590	size_t i;
 591	size_t j;
 592	size_t num_rand_bytes;
 593	struct mutex *tfm_mutex;
 594	char *block_aligned_filename;
 595	struct ecryptfs_auth_tok *auth_tok;
 596	struct scatterlist src_sg[2];
 597	struct scatterlist dst_sg[2];
 598	struct crypto_skcipher *skcipher_tfm;
 599	struct skcipher_request *skcipher_req;
 600	char iv[ECRYPTFS_MAX_IV_BYTES];
 601	char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
 602	char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
 603	struct crypto_shash *hash_tfm;
 604	struct shash_desc *hash_desc;
 605};
 606
 607/**
 608 * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
 609 * @filename: NULL-terminated filename string
 610 *
 611 * This is the simplest mechanism for achieving filename encryption in
 612 * eCryptfs. It encrypts the given filename with the mount-wide
 613 * filename encryption key (FNEK) and stores it in a packet to @dest,
 614 * which the callee will encode and write directly into the dentry
 615 * name.
 616 */
 617int
 618ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
 619			     size_t *packet_size,
 620			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
 621			     char *filename, size_t filename_size)
 622{
 623	struct ecryptfs_write_tag_70_packet_silly_stack *s;
 624	struct key *auth_tok_key = NULL;
 625	int rc = 0;
 626
 627	s = kzalloc(sizeof(*s), GFP_KERNEL);
 628	if (!s)
 629		return -ENOMEM;
 630
 
 
 
 
 631	(*packet_size) = 0;
 632	rc = ecryptfs_find_auth_tok_for_sig(
 633		&auth_tok_key,
 634		&s->auth_tok, mount_crypt_stat,
 635		mount_crypt_stat->global_default_fnek_sig);
 636	if (rc) {
 637		printk(KERN_ERR "%s: Error attempting to find auth tok for "
 638		       "fnek sig [%s]; rc = [%d]\n", __func__,
 639		       mount_crypt_stat->global_default_fnek_sig, rc);
 640		goto out;
 641	}
 642	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
 643		&s->skcipher_tfm,
 644		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
 645	if (unlikely(rc)) {
 646		printk(KERN_ERR "Internal error whilst attempting to get "
 647		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
 648		       mount_crypt_stat->global_default_fn_cipher_name, rc);
 649		goto out;
 650	}
 651	mutex_lock(s->tfm_mutex);
 652	s->block_size = crypto_skcipher_blocksize(s->skcipher_tfm);
 653	/* Plus one for the \0 separator between the random prefix
 654	 * and the plaintext filename */
 655	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
 656	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
 657	if ((s->block_aligned_filename_size % s->block_size) != 0) {
 658		s->num_rand_bytes += (s->block_size
 659				      - (s->block_aligned_filename_size
 660					 % s->block_size));
 661		s->block_aligned_filename_size = (s->num_rand_bytes
 662						  + filename_size);
 663	}
 664	/* Octet 0: Tag 70 identifier
 665	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
 666	 *              and block-aligned encrypted filename size)
 667	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
 668	 * Octet N2-N3: Cipher identifier (1 octet)
 669	 * Octets N3-N4: Block-aligned encrypted filename
 670	 *  - Consists of a minimum number of random characters, a \0
 671	 *    separator, and then the filename */
 672	s->max_packet_size = (ECRYPTFS_TAG_70_MAX_METADATA_SIZE
 
 
 
 673			      + s->block_aligned_filename_size);
 674	if (!dest) {
 675		(*packet_size) = s->max_packet_size;
 676		goto out_unlock;
 677	}
 678	if (s->max_packet_size > (*remaining_bytes)) {
 679		printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
 680		       "[%zd] available\n", __func__, s->max_packet_size,
 681		       (*remaining_bytes));
 682		rc = -EINVAL;
 683		goto out_unlock;
 684	}
 685
 686	s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
 687	if (!s->skcipher_req) {
 688		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
 689		       "skcipher_request_alloc for %s\n", __func__,
 690		       crypto_skcipher_driver_name(s->skcipher_tfm));
 691		rc = -ENOMEM;
 692		goto out_unlock;
 693	}
 694
 695	skcipher_request_set_callback(s->skcipher_req,
 696				      CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 697
 698	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
 699					    GFP_KERNEL);
 700	if (!s->block_aligned_filename) {
 
 
 
 701		rc = -ENOMEM;
 702		goto out_unlock;
 703	}
 
 704	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
 705	rc = ecryptfs_write_packet_length(&dest[s->i],
 706					  (ECRYPTFS_SIG_SIZE
 707					   + 1 /* Cipher code */
 708					   + s->block_aligned_filename_size),
 709					  &s->packet_size_len);
 710	if (rc) {
 711		printk(KERN_ERR "%s: Error generating tag 70 packet "
 712		       "header; cannot generate packet length; rc = [%d]\n",
 713		       __func__, rc);
 714		goto out_free_unlock;
 715	}
 716	s->i += s->packet_size_len;
 717	ecryptfs_from_hex(&dest[s->i],
 718			  mount_crypt_stat->global_default_fnek_sig,
 719			  ECRYPTFS_SIG_SIZE);
 720	s->i += ECRYPTFS_SIG_SIZE;
 721	s->cipher_code = ecryptfs_code_for_cipher_string(
 722		mount_crypt_stat->global_default_fn_cipher_name,
 723		mount_crypt_stat->global_default_fn_cipher_key_bytes);
 724	if (s->cipher_code == 0) {
 725		printk(KERN_WARNING "%s: Unable to generate code for "
 726		       "cipher [%s] with key bytes [%zd]\n", __func__,
 727		       mount_crypt_stat->global_default_fn_cipher_name,
 728		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
 729		rc = -EINVAL;
 730		goto out_free_unlock;
 731	}
 732	dest[s->i++] = s->cipher_code;
 733	/* TODO: Support other key modules than passphrase for
 734	 * filename encryption */
 735	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
 736		rc = -EOPNOTSUPP;
 737		printk(KERN_INFO "%s: Filename encryption only supports "
 738		       "password tokens\n", __func__);
 739		goto out_free_unlock;
 740	}
 741	s->hash_tfm = crypto_alloc_shash(ECRYPTFS_TAG_70_DIGEST, 0, 0);
 742	if (IS_ERR(s->hash_tfm)) {
 743			rc = PTR_ERR(s->hash_tfm);
 
 
 
 
 
 
 744			printk(KERN_ERR "%s: Error attempting to "
 745			       "allocate hash crypto context; rc = [%d]\n",
 746			       __func__, rc);
 747			goto out_free_unlock;
 748	}
 749
 750	s->hash_desc = kmalloc(sizeof(*s->hash_desc) +
 751			       crypto_shash_descsize(s->hash_tfm), GFP_KERNEL);
 752	if (!s->hash_desc) {
 753		rc = -ENOMEM;
 754		goto out_release_free_unlock;
 755	}
 756
 757	s->hash_desc->tfm = s->hash_tfm;
 758
 759	rc = crypto_shash_digest(s->hash_desc,
 760				 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
 761				 s->auth_tok->token.password.session_key_encryption_key_bytes,
 762				 s->hash);
 763	if (rc) {
 764		printk(KERN_ERR
 765		       "%s: Error computing crypto hash; rc = [%d]\n",
 
 
 
 
 
 
 
 766		       __func__, rc);
 767		goto out_release_free_unlock;
 768	}
 769	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
 770		s->block_aligned_filename[s->j] =
 771			s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
 772		if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
 773		    == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
 774			rc = crypto_shash_digest(s->hash_desc, (u8 *)s->hash,
 775						ECRYPTFS_TAG_70_DIGEST_SIZE,
 776						s->tmp_hash);
 
 
 
 
 
 
 
 
 777			if (rc) {
 778				printk(KERN_ERR
 779				       "%s: Error computing crypto hash; "
 
 
 
 
 
 
 
 780				       "rc = [%d]\n", __func__, rc);
 781				goto out_release_free_unlock;
 782			}
 783			memcpy(s->hash, s->tmp_hash,
 784			       ECRYPTFS_TAG_70_DIGEST_SIZE);
 785		}
 786		if (s->block_aligned_filename[s->j] == '\0')
 787			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
 788	}
 789	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
 790	       filename_size);
 791	rc = virt_to_scatterlist(s->block_aligned_filename,
 792				 s->block_aligned_filename_size, s->src_sg, 2);
 793	if (rc < 1) {
 794		printk(KERN_ERR "%s: Internal error whilst attempting to "
 795		       "convert filename memory to scatterlist; rc = [%d]. "
 796		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
 797		       s->block_aligned_filename_size);
 798		goto out_release_free_unlock;
 799	}
 800	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
 801				 s->dst_sg, 2);
 802	if (rc < 1) {
 803		printk(KERN_ERR "%s: Internal error whilst attempting to "
 804		       "convert encrypted filename memory to scatterlist; "
 805		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
 806		       __func__, rc, s->block_aligned_filename_size);
 807		goto out_release_free_unlock;
 808	}
 809	/* The characters in the first block effectively do the job
 810	 * of the IV here, so we just use 0's for the IV. Note the
 811	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
 812	 * >= ECRYPTFS_MAX_IV_BYTES. */
 813	rc = crypto_skcipher_setkey(
 814		s->skcipher_tfm,
 
 
 815		s->auth_tok->token.password.session_key_encryption_key,
 816		mount_crypt_stat->global_default_fn_cipher_key_bytes);
 817	if (rc < 0) {
 818		printk(KERN_ERR "%s: Error setting key for crypto context; "
 819		       "rc = [%d]. s->auth_tok->token.password.session_key_"
 820		       "encryption_key = [0x%p]; mount_crypt_stat->"
 821		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
 822		       rc,
 823		       s->auth_tok->token.password.session_key_encryption_key,
 824		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
 825		goto out_release_free_unlock;
 826	}
 827	skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
 828				   s->block_aligned_filename_size, s->iv);
 829	rc = crypto_skcipher_encrypt(s->skcipher_req);
 830	if (rc) {
 831		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
 832		       "rc = [%d]\n", __func__, rc);
 833		goto out_release_free_unlock;
 834	}
 835	s->i += s->block_aligned_filename_size;
 836	(*packet_size) = s->i;
 837	(*remaining_bytes) -= (*packet_size);
 838out_release_free_unlock:
 839	crypto_free_shash(s->hash_tfm);
 840out_free_unlock:
 841	kfree_sensitive(s->block_aligned_filename);
 842out_unlock:
 843	mutex_unlock(s->tfm_mutex);
 844out:
 845	if (auth_tok_key) {
 846		up_write(&(auth_tok_key->sem));
 847		key_put(auth_tok_key);
 848	}
 849	skcipher_request_free(s->skcipher_req);
 850	kfree_sensitive(s->hash_desc);
 851	kfree(s);
 852	return rc;
 853}
 854
 855struct ecryptfs_parse_tag_70_packet_silly_stack {
 856	u8 cipher_code;
 857	size_t max_packet_size;
 858	size_t packet_size_len;
 859	size_t parsed_tag_70_packet_size;
 860	size_t block_aligned_filename_size;
 861	size_t block_size;
 862	size_t i;
 863	struct mutex *tfm_mutex;
 864	char *decrypted_filename;
 865	struct ecryptfs_auth_tok *auth_tok;
 866	struct scatterlist src_sg[2];
 867	struct scatterlist dst_sg[2];
 868	struct crypto_skcipher *skcipher_tfm;
 869	struct skcipher_request *skcipher_req;
 870	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
 871	char iv[ECRYPTFS_MAX_IV_BYTES];
 872	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE + 1];
 873};
 874
 875/**
 876 * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
 877 * @filename: This function kmalloc's the memory for the filename
 878 * @filename_size: This function sets this to the amount of memory
 879 *                 kmalloc'd for the filename
 880 * @packet_size: This function sets this to the the number of octets
 881 *               in the packet parsed
 882 * @mount_crypt_stat: The mount-wide cryptographic context
 883 * @data: The memory location containing the start of the tag 70
 884 *        packet
 885 * @max_packet_size: The maximum legal size of the packet to be parsed
 886 *                   from @data
 887 *
 888 * Returns zero on success; non-zero otherwise
 889 */
 890int
 891ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
 892			     size_t *packet_size,
 893			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
 894			     char *data, size_t max_packet_size)
 895{
 896	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
 897	struct key *auth_tok_key = NULL;
 898	int rc = 0;
 899
 900	(*packet_size) = 0;
 901	(*filename_size) = 0;
 902	(*filename) = NULL;
 903	s = kzalloc(sizeof(*s), GFP_KERNEL);
 904	if (!s)
 905		return -ENOMEM;
 906
 907	if (max_packet_size < ECRYPTFS_TAG_70_MIN_METADATA_SIZE) {
 
 
 
 
 908		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
 909		       "at least [%d]\n", __func__, max_packet_size,
 910		       ECRYPTFS_TAG_70_MIN_METADATA_SIZE);
 911		rc = -EINVAL;
 912		goto out;
 913	}
 914	/* Octet 0: Tag 70 identifier
 915	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
 916	 *              and block-aligned encrypted filename size)
 917	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
 918	 * Octet N2-N3: Cipher identifier (1 octet)
 919	 * Octets N3-N4: Block-aligned encrypted filename
 920	 *  - Consists of a minimum number of random numbers, a \0
 921	 *    separator, and then the filename */
 922	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
 923		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
 924		       "tag [0x%.2x]\n", __func__,
 925		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
 926		rc = -EINVAL;
 927		goto out;
 928	}
 929	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
 930					  &s->parsed_tag_70_packet_size,
 931					  &s->packet_size_len);
 932	if (rc) {
 933		printk(KERN_WARNING "%s: Error parsing packet length; "
 934		       "rc = [%d]\n", __func__, rc);
 935		goto out;
 936	}
 937	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
 938					  - ECRYPTFS_SIG_SIZE - 1);
 939	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
 940	    > max_packet_size) {
 941		printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
 942		       "size is [%zd]\n", __func__, max_packet_size,
 943		       (1 + s->packet_size_len + 1
 944			+ s->block_aligned_filename_size));
 945		rc = -EINVAL;
 946		goto out;
 947	}
 948	(*packet_size) += s->packet_size_len;
 949	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
 950			ECRYPTFS_SIG_SIZE);
 951	s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
 952	(*packet_size) += ECRYPTFS_SIG_SIZE;
 953	s->cipher_code = data[(*packet_size)++];
 954	rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
 955	if (rc) {
 956		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
 957		       __func__, s->cipher_code);
 958		goto out;
 959	}
 960	rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
 961					    &s->auth_tok, mount_crypt_stat,
 962					    s->fnek_sig_hex);
 963	if (rc) {
 964		printk(KERN_ERR "%s: Error attempting to find auth tok for "
 965		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
 966		       rc);
 967		goto out;
 968	}
 969	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->skcipher_tfm,
 970							&s->tfm_mutex,
 971							s->cipher_string);
 972	if (unlikely(rc)) {
 973		printk(KERN_ERR "Internal error whilst attempting to get "
 974		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
 975		       s->cipher_string, rc);
 976		goto out;
 977	}
 978	mutex_lock(s->tfm_mutex);
 979	rc = virt_to_scatterlist(&data[(*packet_size)],
 980				 s->block_aligned_filename_size, s->src_sg, 2);
 981	if (rc < 1) {
 982		printk(KERN_ERR "%s: Internal error whilst attempting to "
 983		       "convert encrypted filename memory to scatterlist; "
 984		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
 985		       __func__, rc, s->block_aligned_filename_size);
 986		goto out_unlock;
 987	}
 988	(*packet_size) += s->block_aligned_filename_size;
 989	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
 990					GFP_KERNEL);
 991	if (!s->decrypted_filename) {
 
 
 
 992		rc = -ENOMEM;
 993		goto out_unlock;
 994	}
 995	rc = virt_to_scatterlist(s->decrypted_filename,
 996				 s->block_aligned_filename_size, s->dst_sg, 2);
 997	if (rc < 1) {
 998		printk(KERN_ERR "%s: Internal error whilst attempting to "
 999		       "convert decrypted filename memory to scatterlist; "
1000		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1001		       __func__, rc, s->block_aligned_filename_size);
1002		goto out_free_unlock;
1003	}
1004
1005	s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
1006	if (!s->skcipher_req) {
1007		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1008		       "skcipher_request_alloc for %s\n", __func__,
1009		       crypto_skcipher_driver_name(s->skcipher_tfm));
1010		rc = -ENOMEM;
1011		goto out_free_unlock;
1012	}
1013
1014	skcipher_request_set_callback(s->skcipher_req,
1015				      CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
1016
1017	/* The characters in the first block effectively do the job of
1018	 * the IV here, so we just use 0's for the IV. Note the
1019	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1020	 * >= ECRYPTFS_MAX_IV_BYTES. */
 
 
1021	/* TODO: Support other key modules than passphrase for
1022	 * filename encryption */
1023	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1024		rc = -EOPNOTSUPP;
1025		printk(KERN_INFO "%s: Filename encryption only supports "
1026		       "password tokens\n", __func__);
1027		goto out_free_unlock;
1028	}
1029	rc = crypto_skcipher_setkey(
1030		s->skcipher_tfm,
1031		s->auth_tok->token.password.session_key_encryption_key,
1032		mount_crypt_stat->global_default_fn_cipher_key_bytes);
1033	if (rc < 0) {
1034		printk(KERN_ERR "%s: Error setting key for crypto context; "
1035		       "rc = [%d]. s->auth_tok->token.password.session_key_"
1036		       "encryption_key = [0x%p]; mount_crypt_stat->"
1037		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1038		       rc,
1039		       s->auth_tok->token.password.session_key_encryption_key,
1040		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
1041		goto out_free_unlock;
1042	}
1043	skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
1044				   s->block_aligned_filename_size, s->iv);
1045	rc = crypto_skcipher_decrypt(s->skcipher_req);
1046	if (rc) {
1047		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1048		       "rc = [%d]\n", __func__, rc);
1049		goto out_free_unlock;
1050	}
1051
1052	while (s->i < s->block_aligned_filename_size &&
1053	       s->decrypted_filename[s->i] != '\0')
1054		s->i++;
1055	if (s->i == s->block_aligned_filename_size) {
1056		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1057		       "find valid separator between random characters and "
1058		       "the filename\n", __func__);
1059		rc = -EINVAL;
1060		goto out_free_unlock;
1061	}
1062	s->i++;
1063	(*filename_size) = (s->block_aligned_filename_size - s->i);
1064	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1065		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1066		       "invalid\n", __func__, (*filename_size));
1067		rc = -EINVAL;
1068		goto out_free_unlock;
1069	}
1070	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1071	if (!(*filename)) {
 
 
 
1072		rc = -ENOMEM;
1073		goto out_free_unlock;
1074	}
1075	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1076	(*filename)[(*filename_size)] = '\0';
1077out_free_unlock:
1078	kfree(s->decrypted_filename);
1079out_unlock:
1080	mutex_unlock(s->tfm_mutex);
1081out:
1082	if (rc) {
1083		(*packet_size) = 0;
1084		(*filename_size) = 0;
1085		(*filename) = NULL;
1086	}
1087	if (auth_tok_key) {
1088		up_write(&(auth_tok_key->sem));
1089		key_put(auth_tok_key);
1090	}
1091	skcipher_request_free(s->skcipher_req);
1092	kfree(s);
1093	return rc;
1094}
1095
1096static int
1097ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1098{
1099	int rc = 0;
1100
1101	(*sig) = NULL;
1102	switch (auth_tok->token_type) {
1103	case ECRYPTFS_PASSWORD:
1104		(*sig) = auth_tok->token.password.signature;
1105		break;
1106	case ECRYPTFS_PRIVATE_KEY:
1107		(*sig) = auth_tok->token.private_key.signature;
1108		break;
1109	default:
1110		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1111		       auth_tok->token_type);
1112		rc = -EINVAL;
1113	}
1114	return rc;
1115}
1116
1117/**
1118 * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1119 * @auth_tok: The key authentication token used to decrypt the session key
1120 * @crypt_stat: The cryptographic context
1121 *
1122 * Returns zero on success; non-zero error otherwise.
1123 */
1124static int
1125decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1126				  struct ecryptfs_crypt_stat *crypt_stat)
1127{
1128	u8 cipher_code = 0;
1129	struct ecryptfs_msg_ctx *msg_ctx;
1130	struct ecryptfs_message *msg = NULL;
1131	char *auth_tok_sig;
1132	char *payload = NULL;
1133	size_t payload_len = 0;
1134	int rc;
1135
1136	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1137	if (rc) {
1138		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1139		       auth_tok->token_type);
1140		goto out;
1141	}
1142	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1143				 &payload, &payload_len);
1144	if (rc) {
1145		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1146		goto out;
1147	}
1148	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1149	if (rc) {
1150		ecryptfs_printk(KERN_ERR, "Error sending message to "
1151				"ecryptfsd: %d\n", rc);
1152		goto out;
1153	}
1154	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1155	if (rc) {
1156		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1157				"from the user space daemon\n");
1158		rc = -EIO;
1159		goto out;
1160	}
1161	rc = parse_tag_65_packet(&(auth_tok->session_key),
1162				 &cipher_code, msg);
1163	if (rc) {
1164		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1165		       rc);
1166		goto out;
1167	}
1168	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1169	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1170	       auth_tok->session_key.decrypted_key_size);
1171	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1172	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1173	if (rc) {
1174		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1175				cipher_code)
1176		goto out;
1177	}
1178	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1179	if (ecryptfs_verbosity > 0) {
1180		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1181		ecryptfs_dump_hex(crypt_stat->key,
1182				  crypt_stat->key_size);
1183	}
1184out:
1185	kfree(msg);
1186	kfree(payload);
1187	return rc;
1188}
1189
1190static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1191{
1192	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1193	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1194
1195	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1196				 auth_tok_list_head, list) {
1197		list_del(&auth_tok_list_item->list);
1198		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1199				auth_tok_list_item);
1200	}
1201}
1202
1203struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1204
1205/**
1206 * parse_tag_1_packet
1207 * @crypt_stat: The cryptographic context to modify based on packet contents
1208 * @data: The raw bytes of the packet.
1209 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1210 *                 a new authentication token will be placed at the
1211 *                 end of this list for this packet.
1212 * @new_auth_tok: Pointer to a pointer to memory that this function
1213 *                allocates; sets the memory address of the pointer to
1214 *                NULL on error. This object is added to the
1215 *                auth_tok_list.
1216 * @packet_size: This function writes the size of the parsed packet
1217 *               into this memory location; zero on error.
1218 * @max_packet_size: The maximum allowable packet size
1219 *
1220 * Returns zero on success; non-zero on error.
1221 */
1222static int
1223parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1224		   unsigned char *data, struct list_head *auth_tok_list,
1225		   struct ecryptfs_auth_tok **new_auth_tok,
1226		   size_t *packet_size, size_t max_packet_size)
1227{
1228	size_t body_size;
1229	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1230	size_t length_size;
1231	int rc = 0;
1232
1233	(*packet_size) = 0;
1234	(*new_auth_tok) = NULL;
1235	/**
1236	 * This format is inspired by OpenPGP; see RFC 2440
1237	 * packet tag 1
1238	 *
1239	 * Tag 1 identifier (1 byte)
1240	 * Max Tag 1 packet size (max 3 bytes)
1241	 * Version (1 byte)
1242	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1243	 * Cipher identifier (1 byte)
1244	 * Encrypted key size (arbitrary)
1245	 *
1246	 * 12 bytes minimum packet size
1247	 */
1248	if (unlikely(max_packet_size < 12)) {
1249		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1250		rc = -EINVAL;
1251		goto out;
1252	}
1253	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1254		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1255		       ECRYPTFS_TAG_1_PACKET_TYPE);
1256		rc = -EINVAL;
1257		goto out;
1258	}
1259	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1260	 * at end of function upon failure */
1261	auth_tok_list_item =
1262		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1263				  GFP_KERNEL);
1264	if (!auth_tok_list_item) {
1265		printk(KERN_ERR "Unable to allocate memory\n");
1266		rc = -ENOMEM;
1267		goto out;
1268	}
1269	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1270	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1271					  &length_size);
1272	if (rc) {
1273		printk(KERN_WARNING "Error parsing packet length; "
1274		       "rc = [%d]\n", rc);
1275		goto out_free;
1276	}
1277	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1278		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1279		rc = -EINVAL;
1280		goto out_free;
1281	}
1282	(*packet_size) += length_size;
1283	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1284		printk(KERN_WARNING "Packet size exceeds max\n");
1285		rc = -EINVAL;
1286		goto out_free;
1287	}
1288	if (unlikely(data[(*packet_size)++] != 0x03)) {
1289		printk(KERN_WARNING "Unknown version number [%d]\n",
1290		       data[(*packet_size) - 1]);
1291		rc = -EINVAL;
1292		goto out_free;
1293	}
1294	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1295			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1296	*packet_size += ECRYPTFS_SIG_SIZE;
1297	/* This byte is skipped because the kernel does not need to
1298	 * know which public key encryption algorithm was used */
1299	(*packet_size)++;
1300	(*new_auth_tok)->session_key.encrypted_key_size =
1301		body_size - (ECRYPTFS_SIG_SIZE + 2);
1302	if ((*new_auth_tok)->session_key.encrypted_key_size
1303	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1304		printk(KERN_WARNING "Tag 1 packet contains key larger "
1305		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1306		rc = -EINVAL;
1307		goto out_free;
1308	}
1309	memcpy((*new_auth_tok)->session_key.encrypted_key,
1310	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1311	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1312	(*new_auth_tok)->session_key.flags &=
1313		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1314	(*new_auth_tok)->session_key.flags |=
1315		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1316	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1317	(*new_auth_tok)->flags = 0;
1318	(*new_auth_tok)->session_key.flags &=
1319		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1320	(*new_auth_tok)->session_key.flags &=
1321		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1322	list_add(&auth_tok_list_item->list, auth_tok_list);
1323	goto out;
1324out_free:
1325	(*new_auth_tok) = NULL;
1326	memset(auth_tok_list_item, 0,
1327	       sizeof(struct ecryptfs_auth_tok_list_item));
1328	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1329			auth_tok_list_item);
1330out:
1331	if (rc)
1332		(*packet_size) = 0;
1333	return rc;
1334}
1335
1336/**
1337 * parse_tag_3_packet
1338 * @crypt_stat: The cryptographic context to modify based on packet
1339 *              contents.
1340 * @data: The raw bytes of the packet.
1341 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1342 *                 a new authentication token will be placed at the end
1343 *                 of this list for this packet.
1344 * @new_auth_tok: Pointer to a pointer to memory that this function
1345 *                allocates; sets the memory address of the pointer to
1346 *                NULL on error. This object is added to the
1347 *                auth_tok_list.
1348 * @packet_size: This function writes the size of the parsed packet
1349 *               into this memory location; zero on error.
1350 * @max_packet_size: maximum number of bytes to parse
1351 *
1352 * Returns zero on success; non-zero on error.
1353 */
1354static int
1355parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1356		   unsigned char *data, struct list_head *auth_tok_list,
1357		   struct ecryptfs_auth_tok **new_auth_tok,
1358		   size_t *packet_size, size_t max_packet_size)
1359{
1360	size_t body_size;
1361	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1362	size_t length_size;
1363	int rc = 0;
1364
1365	(*packet_size) = 0;
1366	(*new_auth_tok) = NULL;
1367	/**
1368	 *This format is inspired by OpenPGP; see RFC 2440
1369	 * packet tag 3
1370	 *
1371	 * Tag 3 identifier (1 byte)
1372	 * Max Tag 3 packet size (max 3 bytes)
1373	 * Version (1 byte)
1374	 * Cipher code (1 byte)
1375	 * S2K specifier (1 byte)
1376	 * Hash identifier (1 byte)
1377	 * Salt (ECRYPTFS_SALT_SIZE)
1378	 * Hash iterations (1 byte)
1379	 * Encrypted key (arbitrary)
1380	 *
1381	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1382	 */
1383	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1384		printk(KERN_ERR "Max packet size too large\n");
1385		rc = -EINVAL;
1386		goto out;
1387	}
1388	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1389		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1390		       ECRYPTFS_TAG_3_PACKET_TYPE);
1391		rc = -EINVAL;
1392		goto out;
1393	}
1394	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1395	 * at end of function upon failure */
1396	auth_tok_list_item =
1397	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1398	if (!auth_tok_list_item) {
1399		printk(KERN_ERR "Unable to allocate memory\n");
1400		rc = -ENOMEM;
1401		goto out;
1402	}
1403	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1404	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1405					  &length_size);
1406	if (rc) {
1407		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1408		       rc);
1409		goto out_free;
1410	}
1411	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1412		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1413		rc = -EINVAL;
1414		goto out_free;
1415	}
1416	(*packet_size) += length_size;
1417	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1418		printk(KERN_ERR "Packet size exceeds max\n");
1419		rc = -EINVAL;
1420		goto out_free;
1421	}
1422	(*new_auth_tok)->session_key.encrypted_key_size =
1423		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1424	if ((*new_auth_tok)->session_key.encrypted_key_size
1425	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1426		printk(KERN_WARNING "Tag 3 packet contains key larger "
1427		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1428		rc = -EINVAL;
1429		goto out_free;
1430	}
1431	if (unlikely(data[(*packet_size)++] != 0x04)) {
1432		printk(KERN_WARNING "Unknown version number [%d]\n",
1433		       data[(*packet_size) - 1]);
1434		rc = -EINVAL;
1435		goto out_free;
1436	}
1437	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1438					    (u16)data[(*packet_size)]);
1439	if (rc)
1440		goto out_free;
1441	/* A little extra work to differentiate among the AES key
1442	 * sizes; see RFC2440 */
1443	switch(data[(*packet_size)++]) {
1444	case RFC2440_CIPHER_AES_192:
1445		crypt_stat->key_size = 24;
1446		break;
1447	default:
1448		crypt_stat->key_size =
1449			(*new_auth_tok)->session_key.encrypted_key_size;
1450	}
1451	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1452	if (rc)
1453		goto out_free;
1454	if (unlikely(data[(*packet_size)++] != 0x03)) {
1455		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1456		rc = -ENOSYS;
1457		goto out_free;
1458	}
1459	/* TODO: finish the hash mapping */
1460	switch (data[(*packet_size)++]) {
1461	case 0x01: /* See RFC2440 for these numbers and their mappings */
1462		/* Choose MD5 */
1463		memcpy((*new_auth_tok)->token.password.salt,
1464		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1465		(*packet_size) += ECRYPTFS_SALT_SIZE;
1466		/* This conversion was taken straight from RFC2440 */
1467		(*new_auth_tok)->token.password.hash_iterations =
1468			((u32) 16 + (data[(*packet_size)] & 15))
1469				<< ((data[(*packet_size)] >> 4) + 6);
1470		(*packet_size)++;
1471		/* Friendly reminder:
1472		 * (*new_auth_tok)->session_key.encrypted_key_size =
1473		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1474		memcpy((*new_auth_tok)->session_key.encrypted_key,
1475		       &data[(*packet_size)],
1476		       (*new_auth_tok)->session_key.encrypted_key_size);
1477		(*packet_size) +=
1478			(*new_auth_tok)->session_key.encrypted_key_size;
1479		(*new_auth_tok)->session_key.flags &=
1480			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1481		(*new_auth_tok)->session_key.flags |=
1482			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1483		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1484		break;
1485	default:
1486		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1487				"[%d]\n", data[(*packet_size) - 1]);
1488		rc = -ENOSYS;
1489		goto out_free;
1490	}
1491	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1492	/* TODO: Parametarize; we might actually want userspace to
1493	 * decrypt the session key. */
1494	(*new_auth_tok)->session_key.flags &=
1495			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1496	(*new_auth_tok)->session_key.flags &=
1497			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1498	list_add(&auth_tok_list_item->list, auth_tok_list);
1499	goto out;
1500out_free:
1501	(*new_auth_tok) = NULL;
1502	memset(auth_tok_list_item, 0,
1503	       sizeof(struct ecryptfs_auth_tok_list_item));
1504	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1505			auth_tok_list_item);
1506out:
1507	if (rc)
1508		(*packet_size) = 0;
1509	return rc;
1510}
1511
1512/**
1513 * parse_tag_11_packet
1514 * @data: The raw bytes of the packet
1515 * @contents: This function writes the data contents of the literal
1516 *            packet into this memory location
1517 * @max_contents_bytes: The maximum number of bytes that this function
1518 *                      is allowed to write into contents
1519 * @tag_11_contents_size: This function writes the size of the parsed
1520 *                        contents into this memory location; zero on
1521 *                        error
1522 * @packet_size: This function writes the size of the parsed packet
1523 *               into this memory location; zero on error
1524 * @max_packet_size: maximum number of bytes to parse
1525 *
1526 * Returns zero on success; non-zero on error.
1527 */
1528static int
1529parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1530		    size_t max_contents_bytes, size_t *tag_11_contents_size,
1531		    size_t *packet_size, size_t max_packet_size)
1532{
1533	size_t body_size;
1534	size_t length_size;
1535	int rc = 0;
1536
1537	(*packet_size) = 0;
1538	(*tag_11_contents_size) = 0;
1539	/* This format is inspired by OpenPGP; see RFC 2440
1540	 * packet tag 11
1541	 *
1542	 * Tag 11 identifier (1 byte)
1543	 * Max Tag 11 packet size (max 3 bytes)
1544	 * Binary format specifier (1 byte)
1545	 * Filename length (1 byte)
1546	 * Filename ("_CONSOLE") (8 bytes)
1547	 * Modification date (4 bytes)
1548	 * Literal data (arbitrary)
1549	 *
1550	 * We need at least 16 bytes of data for the packet to even be
1551	 * valid.
1552	 */
1553	if (max_packet_size < 16) {
1554		printk(KERN_ERR "Maximum packet size too small\n");
1555		rc = -EINVAL;
1556		goto out;
1557	}
1558	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1559		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1560		rc = -EINVAL;
1561		goto out;
1562	}
1563	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1564					  &length_size);
1565	if (rc) {
1566		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1567		goto out;
1568	}
1569	if (body_size < 14) {
1570		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1571		rc = -EINVAL;
1572		goto out;
1573	}
1574	(*packet_size) += length_size;
1575	(*tag_11_contents_size) = (body_size - 14);
1576	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1577		printk(KERN_ERR "Packet size exceeds max\n");
1578		rc = -EINVAL;
1579		goto out;
1580	}
1581	if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1582		printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1583		       "expected size\n");
1584		rc = -EINVAL;
1585		goto out;
1586	}
1587	if (data[(*packet_size)++] != 0x62) {
1588		printk(KERN_WARNING "Unrecognizable packet\n");
1589		rc = -EINVAL;
1590		goto out;
1591	}
1592	if (data[(*packet_size)++] != 0x08) {
1593		printk(KERN_WARNING "Unrecognizable packet\n");
1594		rc = -EINVAL;
1595		goto out;
1596	}
1597	(*packet_size) += 12; /* Ignore filename and modification date */
1598	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1599	(*packet_size) += (*tag_11_contents_size);
1600out:
1601	if (rc) {
1602		(*packet_size) = 0;
1603		(*tag_11_contents_size) = 0;
1604	}
1605	return rc;
1606}
1607
1608int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1609				      struct ecryptfs_auth_tok **auth_tok,
1610				      char *sig)
1611{
1612	int rc = 0;
1613
1614	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1615	if (IS_ERR(*auth_tok_key)) {
1616		(*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1617		if (IS_ERR(*auth_tok_key)) {
1618			printk(KERN_ERR "Could not find key with description: [%s]\n",
1619			      sig);
1620			rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1621			(*auth_tok_key) = NULL;
1622			goto out;
1623		}
1624	}
1625	down_write(&(*auth_tok_key)->sem);
1626	rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1627	if (rc) {
1628		up_write(&(*auth_tok_key)->sem);
1629		key_put(*auth_tok_key);
1630		(*auth_tok_key) = NULL;
1631		goto out;
1632	}
1633out:
1634	return rc;
1635}
1636
1637/**
1638 * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1639 * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1640 * @crypt_stat: The cryptographic context
1641 *
1642 * Returns zero on success; non-zero error otherwise
1643 */
1644static int
1645decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1646					 struct ecryptfs_crypt_stat *crypt_stat)
1647{
1648	struct scatterlist dst_sg[2];
1649	struct scatterlist src_sg[2];
1650	struct mutex *tfm_mutex;
1651	struct crypto_skcipher *tfm;
1652	struct skcipher_request *req = NULL;
 
1653	int rc = 0;
1654
1655	if (unlikely(ecryptfs_verbosity > 0)) {
1656		ecryptfs_printk(
1657			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1658			auth_tok->token.password.session_key_encryption_key_bytes);
1659		ecryptfs_dump_hex(
1660			auth_tok->token.password.session_key_encryption_key,
1661			auth_tok->token.password.session_key_encryption_key_bytes);
1662	}
1663	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
1664							crypt_stat->cipher);
1665	if (unlikely(rc)) {
1666		printk(KERN_ERR "Internal error whilst attempting to get "
1667		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1668		       crypt_stat->cipher, rc);
1669		goto out;
1670	}
1671	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1672				 auth_tok->session_key.encrypted_key_size,
1673				 src_sg, 2);
1674	if (rc < 1 || rc > 2) {
1675		printk(KERN_ERR "Internal error whilst attempting to convert "
1676			"auth_tok->session_key.encrypted_key to scatterlist; "
1677			"expected rc = 1; got rc = [%d]. "
1678		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1679			auth_tok->session_key.encrypted_key_size);
1680		goto out;
1681	}
1682	auth_tok->session_key.decrypted_key_size =
1683		auth_tok->session_key.encrypted_key_size;
1684	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1685				 auth_tok->session_key.decrypted_key_size,
1686				 dst_sg, 2);
1687	if (rc < 1 || rc > 2) {
1688		printk(KERN_ERR "Internal error whilst attempting to convert "
1689			"auth_tok->session_key.decrypted_key to scatterlist; "
1690			"expected rc = 1; got rc = [%d]\n", rc);
1691		goto out;
1692	}
1693	mutex_lock(tfm_mutex);
1694	req = skcipher_request_alloc(tfm, GFP_KERNEL);
1695	if (!req) {
1696		mutex_unlock(tfm_mutex);
1697		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1698		       "skcipher_request_alloc for %s\n", __func__,
1699		       crypto_skcipher_driver_name(tfm));
1700		rc = -ENOMEM;
1701		goto out;
1702	}
1703
1704	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
1705				      NULL, NULL);
1706	rc = crypto_skcipher_setkey(
1707		tfm, auth_tok->token.password.session_key_encryption_key,
1708		crypt_stat->key_size);
1709	if (unlikely(rc < 0)) {
1710		mutex_unlock(tfm_mutex);
1711		printk(KERN_ERR "Error setting key for crypto context\n");
1712		rc = -EINVAL;
1713		goto out;
1714	}
1715	skcipher_request_set_crypt(req, src_sg, dst_sg,
1716				   auth_tok->session_key.encrypted_key_size,
1717				   NULL);
1718	rc = crypto_skcipher_decrypt(req);
1719	mutex_unlock(tfm_mutex);
1720	if (unlikely(rc)) {
1721		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1722		goto out;
1723	}
1724	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1725	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1726	       auth_tok->session_key.decrypted_key_size);
1727	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1728	if (unlikely(ecryptfs_verbosity > 0)) {
1729		ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1730				crypt_stat->key_size);
1731		ecryptfs_dump_hex(crypt_stat->key,
1732				  crypt_stat->key_size);
1733	}
1734out:
1735	skcipher_request_free(req);
1736	return rc;
1737}
1738
1739/**
1740 * ecryptfs_parse_packet_set
1741 * @crypt_stat: The cryptographic context
1742 * @src: Virtual address of region of memory containing the packets
1743 * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1744 *
1745 * Get crypt_stat to have the file's session key if the requisite key
1746 * is available to decrypt the session key.
1747 *
1748 * Returns Zero if a valid authentication token was retrieved and
1749 * processed; negative value for file not encrypted or for error
1750 * conditions.
1751 */
1752int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1753			      unsigned char *src,
1754			      struct dentry *ecryptfs_dentry)
1755{
1756	size_t i = 0;
1757	size_t found_auth_tok;
1758	size_t next_packet_is_auth_tok_packet;
1759	struct list_head auth_tok_list;
1760	struct ecryptfs_auth_tok *matching_auth_tok;
1761	struct ecryptfs_auth_tok *candidate_auth_tok;
1762	char *candidate_auth_tok_sig;
1763	size_t packet_size;
1764	struct ecryptfs_auth_tok *new_auth_tok;
1765	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1766	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1767	size_t tag_11_contents_size;
1768	size_t tag_11_packet_size;
1769	struct key *auth_tok_key = NULL;
1770	int rc = 0;
1771
1772	INIT_LIST_HEAD(&auth_tok_list);
1773	/* Parse the header to find as many packets as we can; these will be
1774	 * added the our &auth_tok_list */
1775	next_packet_is_auth_tok_packet = 1;
1776	while (next_packet_is_auth_tok_packet) {
1777		size_t max_packet_size = ((PAGE_SIZE - 8) - i);
1778
1779		switch (src[i]) {
1780		case ECRYPTFS_TAG_3_PACKET_TYPE:
1781			rc = parse_tag_3_packet(crypt_stat,
1782						(unsigned char *)&src[i],
1783						&auth_tok_list, &new_auth_tok,
1784						&packet_size, max_packet_size);
1785			if (rc) {
1786				ecryptfs_printk(KERN_ERR, "Error parsing "
1787						"tag 3 packet\n");
1788				rc = -EIO;
1789				goto out_wipe_list;
1790			}
1791			i += packet_size;
1792			rc = parse_tag_11_packet((unsigned char *)&src[i],
1793						 sig_tmp_space,
1794						 ECRYPTFS_SIG_SIZE,
1795						 &tag_11_contents_size,
1796						 &tag_11_packet_size,
1797						 max_packet_size);
1798			if (rc) {
1799				ecryptfs_printk(KERN_ERR, "No valid "
1800						"(ecryptfs-specific) literal "
1801						"packet containing "
1802						"authentication token "
1803						"signature found after "
1804						"tag 3 packet\n");
1805				rc = -EIO;
1806				goto out_wipe_list;
1807			}
1808			i += tag_11_packet_size;
1809			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1810				ecryptfs_printk(KERN_ERR, "Expected "
1811						"signature of size [%d]; "
1812						"read size [%zd]\n",
1813						ECRYPTFS_SIG_SIZE,
1814						tag_11_contents_size);
1815				rc = -EIO;
1816				goto out_wipe_list;
1817			}
1818			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1819					sig_tmp_space, tag_11_contents_size);
1820			new_auth_tok->token.password.signature[
1821				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1822			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1823			break;
1824		case ECRYPTFS_TAG_1_PACKET_TYPE:
1825			rc = parse_tag_1_packet(crypt_stat,
1826						(unsigned char *)&src[i],
1827						&auth_tok_list, &new_auth_tok,
1828						&packet_size, max_packet_size);
1829			if (rc) {
1830				ecryptfs_printk(KERN_ERR, "Error parsing "
1831						"tag 1 packet\n");
1832				rc = -EIO;
1833				goto out_wipe_list;
1834			}
1835			i += packet_size;
1836			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1837			break;
1838		case ECRYPTFS_TAG_11_PACKET_TYPE:
1839			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1840					"(Tag 11 not allowed by itself)\n");
1841			rc = -EIO;
1842			goto out_wipe_list;
 
1843		default:
1844			ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1845					"of the file header; hex value of "
1846					"character is [0x%.2x]\n", i, src[i]);
1847			next_packet_is_auth_tok_packet = 0;
1848		}
1849	}
1850	if (list_empty(&auth_tok_list)) {
1851		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1852		       "eCryptfs file; this is not supported in this version "
1853		       "of the eCryptfs kernel module\n");
1854		rc = -EINVAL;
1855		goto out;
1856	}
1857	/* auth_tok_list contains the set of authentication tokens
1858	 * parsed from the metadata. We need to find a matching
1859	 * authentication token that has the secret component(s)
1860	 * necessary to decrypt the EFEK in the auth_tok parsed from
1861	 * the metadata. There may be several potential matches, but
1862	 * just one will be sufficient to decrypt to get the FEK. */
1863find_next_matching_auth_tok:
1864	found_auth_tok = 0;
1865	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1866		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1867		if (unlikely(ecryptfs_verbosity > 0)) {
1868			ecryptfs_printk(KERN_DEBUG,
1869					"Considering candidate auth tok:\n");
1870			ecryptfs_dump_auth_tok(candidate_auth_tok);
1871		}
1872		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1873					       candidate_auth_tok);
1874		if (rc) {
1875			printk(KERN_ERR
1876			       "Unrecognized candidate auth tok type: [%d]\n",
1877			       candidate_auth_tok->token_type);
1878			rc = -EINVAL;
1879			goto out_wipe_list;
1880		}
1881		rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1882					       &matching_auth_tok,
1883					       crypt_stat->mount_crypt_stat,
1884					       candidate_auth_tok_sig);
1885		if (!rc) {
1886			found_auth_tok = 1;
1887			goto found_matching_auth_tok;
1888		}
1889	}
1890	if (!found_auth_tok) {
1891		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1892				"authentication token\n");
1893		rc = -EIO;
1894		goto out_wipe_list;
1895	}
1896found_matching_auth_tok:
1897	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1898		memcpy(&(candidate_auth_tok->token.private_key),
1899		       &(matching_auth_tok->token.private_key),
1900		       sizeof(struct ecryptfs_private_key));
1901		up_write(&(auth_tok_key->sem));
1902		key_put(auth_tok_key);
1903		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1904						       crypt_stat);
1905	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1906		memcpy(&(candidate_auth_tok->token.password),
1907		       &(matching_auth_tok->token.password),
1908		       sizeof(struct ecryptfs_password));
1909		up_write(&(auth_tok_key->sem));
1910		key_put(auth_tok_key);
1911		rc = decrypt_passphrase_encrypted_session_key(
1912			candidate_auth_tok, crypt_stat);
1913	} else {
1914		up_write(&(auth_tok_key->sem));
1915		key_put(auth_tok_key);
1916		rc = -EINVAL;
1917	}
1918	if (rc) {
1919		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1920
1921		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1922				"session key for authentication token with sig "
1923				"[%.*s]; rc = [%d]. Removing auth tok "
1924				"candidate from the list and searching for "
1925				"the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1926				candidate_auth_tok_sig,	rc);
1927		list_for_each_entry_safe(auth_tok_list_item,
1928					 auth_tok_list_item_tmp,
1929					 &auth_tok_list, list) {
1930			if (candidate_auth_tok
1931			    == &auth_tok_list_item->auth_tok) {
1932				list_del(&auth_tok_list_item->list);
1933				kmem_cache_free(
1934					ecryptfs_auth_tok_list_item_cache,
1935					auth_tok_list_item);
1936				goto find_next_matching_auth_tok;
1937			}
1938		}
1939		BUG();
1940	}
1941	rc = ecryptfs_compute_root_iv(crypt_stat);
1942	if (rc) {
1943		ecryptfs_printk(KERN_ERR, "Error computing "
1944				"the root IV\n");
1945		goto out_wipe_list;
1946	}
1947	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1948	if (rc) {
1949		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1950				"context for cipher [%s]; rc = [%d]\n",
1951				crypt_stat->cipher, rc);
1952	}
1953out_wipe_list:
1954	wipe_auth_tok_list(&auth_tok_list);
1955out:
1956	return rc;
1957}
1958
1959static int
1960pki_encrypt_session_key(struct key *auth_tok_key,
1961			struct ecryptfs_auth_tok *auth_tok,
1962			struct ecryptfs_crypt_stat *crypt_stat,
1963			struct ecryptfs_key_record *key_rec)
1964{
1965	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1966	char *payload = NULL;
1967	size_t payload_len = 0;
1968	struct ecryptfs_message *msg;
1969	int rc;
1970
1971	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1972				 ecryptfs_code_for_cipher_string(
1973					 crypt_stat->cipher,
1974					 crypt_stat->key_size),
1975				 crypt_stat, &payload, &payload_len);
1976	up_write(&(auth_tok_key->sem));
1977	key_put(auth_tok_key);
1978	if (rc) {
1979		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1980		goto out;
1981	}
1982	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1983	if (rc) {
1984		ecryptfs_printk(KERN_ERR, "Error sending message to "
1985				"ecryptfsd: %d\n", rc);
1986		goto out;
1987	}
1988	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1989	if (rc) {
1990		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1991				"from the user space daemon\n");
1992		rc = -EIO;
1993		goto out;
1994	}
1995	rc = parse_tag_67_packet(key_rec, msg);
1996	if (rc)
1997		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1998	kfree(msg);
1999out:
2000	kfree(payload);
2001	return rc;
2002}
2003/**
2004 * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2005 * @dest: Buffer into which to write the packet
2006 * @remaining_bytes: Maximum number of bytes that can be writtn
2007 * @auth_tok_key: The authentication token key to unlock and put when done with
2008 *                @auth_tok
2009 * @auth_tok: The authentication token used for generating the tag 1 packet
2010 * @crypt_stat: The cryptographic context
2011 * @key_rec: The key record struct for the tag 1 packet
2012 * @packet_size: This function will write the number of bytes that end
2013 *               up constituting the packet; set to zero on error
2014 *
2015 * Returns zero on success; non-zero on error.
2016 */
2017static int
2018write_tag_1_packet(char *dest, size_t *remaining_bytes,
2019		   struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
2020		   struct ecryptfs_crypt_stat *crypt_stat,
2021		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2022{
2023	size_t i;
2024	size_t encrypted_session_key_valid = 0;
2025	size_t packet_size_length;
2026	size_t max_packet_size;
2027	int rc = 0;
2028
2029	(*packet_size) = 0;
2030	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2031			  ECRYPTFS_SIG_SIZE);
2032	encrypted_session_key_valid = 0;
2033	for (i = 0; i < crypt_stat->key_size; i++)
2034		encrypted_session_key_valid |=
2035			auth_tok->session_key.encrypted_key[i];
2036	if (encrypted_session_key_valid) {
2037		memcpy(key_rec->enc_key,
2038		       auth_tok->session_key.encrypted_key,
2039		       auth_tok->session_key.encrypted_key_size);
2040		up_write(&(auth_tok_key->sem));
2041		key_put(auth_tok_key);
2042		goto encrypted_session_key_set;
2043	}
2044	if (auth_tok->session_key.encrypted_key_size == 0)
2045		auth_tok->session_key.encrypted_key_size =
2046			auth_tok->token.private_key.key_size;
2047	rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2048				     key_rec);
2049	if (rc) {
2050		printk(KERN_ERR "Failed to encrypt session key via a key "
2051		       "module; rc = [%d]\n", rc);
2052		goto out;
2053	}
2054	if (ecryptfs_verbosity > 0) {
2055		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2056		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2057	}
2058encrypted_session_key_set:
2059	/* This format is inspired by OpenPGP; see RFC 2440
2060	 * packet tag 1 */
2061	max_packet_size = (1                         /* Tag 1 identifier */
2062			   + 3                       /* Max Tag 1 packet size */
2063			   + 1                       /* Version */
2064			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
2065			   + 1                       /* Cipher identifier */
2066			   + key_rec->enc_key_size); /* Encrypted key size */
2067	if (max_packet_size > (*remaining_bytes)) {
2068		printk(KERN_ERR "Packet length larger than maximum allowable; "
2069		       "need up to [%td] bytes, but there are only [%td] "
2070		       "available\n", max_packet_size, (*remaining_bytes));
2071		rc = -EINVAL;
2072		goto out;
2073	}
2074	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2075	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2076					  (max_packet_size - 4),
2077					  &packet_size_length);
2078	if (rc) {
2079		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2080				"header; cannot generate packet length\n");
2081		goto out;
2082	}
2083	(*packet_size) += packet_size_length;
2084	dest[(*packet_size)++] = 0x03; /* version 3 */
2085	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2086	(*packet_size) += ECRYPTFS_SIG_SIZE;
2087	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2088	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2089	       key_rec->enc_key_size);
2090	(*packet_size) += key_rec->enc_key_size;
2091out:
2092	if (rc)
2093		(*packet_size) = 0;
2094	else
2095		(*remaining_bytes) -= (*packet_size);
2096	return rc;
2097}
2098
2099/**
2100 * write_tag_11_packet
2101 * @dest: Target into which Tag 11 packet is to be written
2102 * @remaining_bytes: Maximum packet length
2103 * @contents: Byte array of contents to copy in
2104 * @contents_length: Number of bytes in contents
2105 * @packet_length: Length of the Tag 11 packet written; zero on error
2106 *
2107 * Returns zero on success; non-zero on error.
2108 */
2109static int
2110write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2111		    size_t contents_length, size_t *packet_length)
2112{
2113	size_t packet_size_length;
2114	size_t max_packet_size;
2115	int rc = 0;
2116
2117	(*packet_length) = 0;
2118	/* This format is inspired by OpenPGP; see RFC 2440
2119	 * packet tag 11 */
2120	max_packet_size = (1                   /* Tag 11 identifier */
2121			   + 3                 /* Max Tag 11 packet size */
2122			   + 1                 /* Binary format specifier */
2123			   + 1                 /* Filename length */
2124			   + 8                 /* Filename ("_CONSOLE") */
2125			   + 4                 /* Modification date */
2126			   + contents_length); /* Literal data */
2127	if (max_packet_size > (*remaining_bytes)) {
2128		printk(KERN_ERR "Packet length larger than maximum allowable; "
2129		       "need up to [%td] bytes, but there are only [%td] "
2130		       "available\n", max_packet_size, (*remaining_bytes));
2131		rc = -EINVAL;
2132		goto out;
2133	}
2134	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2135	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2136					  (max_packet_size - 4),
2137					  &packet_size_length);
2138	if (rc) {
2139		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2140		       "generate packet length. rc = [%d]\n", rc);
2141		goto out;
2142	}
2143	(*packet_length) += packet_size_length;
2144	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2145	dest[(*packet_length)++] = 8;
2146	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2147	(*packet_length) += 8;
2148	memset(&dest[(*packet_length)], 0x00, 4);
2149	(*packet_length) += 4;
2150	memcpy(&dest[(*packet_length)], contents, contents_length);
2151	(*packet_length) += contents_length;
2152 out:
2153	if (rc)
2154		(*packet_length) = 0;
2155	else
2156		(*remaining_bytes) -= (*packet_length);
2157	return rc;
2158}
2159
2160/**
2161 * write_tag_3_packet
2162 * @dest: Buffer into which to write the packet
2163 * @remaining_bytes: Maximum number of bytes that can be written
2164 * @auth_tok: Authentication token
2165 * @crypt_stat: The cryptographic context
2166 * @key_rec: encrypted key
2167 * @packet_size: This function will write the number of bytes that end
2168 *               up constituting the packet; set to zero on error
2169 *
2170 * Returns zero on success; non-zero on error.
2171 */
2172static int
2173write_tag_3_packet(char *dest, size_t *remaining_bytes,
2174		   struct ecryptfs_auth_tok *auth_tok,
2175		   struct ecryptfs_crypt_stat *crypt_stat,
2176		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2177{
2178	size_t i;
2179	size_t encrypted_session_key_valid = 0;
2180	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2181	struct scatterlist dst_sg[2];
2182	struct scatterlist src_sg[2];
2183	struct mutex *tfm_mutex = NULL;
2184	u8 cipher_code;
2185	size_t packet_size_length;
2186	size_t max_packet_size;
2187	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2188		crypt_stat->mount_crypt_stat;
2189	struct crypto_skcipher *tfm;
2190	struct skcipher_request *req;
 
 
2191	int rc = 0;
2192
2193	(*packet_size) = 0;
2194	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2195			  ECRYPTFS_SIG_SIZE);
2196	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2197							crypt_stat->cipher);
2198	if (unlikely(rc)) {
2199		printk(KERN_ERR "Internal error whilst attempting to get "
2200		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2201		       crypt_stat->cipher, rc);
2202		goto out;
2203	}
2204	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
 
 
2205		printk(KERN_WARNING "No key size specified at mount; "
2206		       "defaulting to [%d]\n",
2207		       crypto_skcipher_max_keysize(tfm));
2208		mount_crypt_stat->global_default_cipher_key_size =
2209			crypto_skcipher_max_keysize(tfm);
2210	}
2211	if (crypt_stat->key_size == 0)
2212		crypt_stat->key_size =
2213			mount_crypt_stat->global_default_cipher_key_size;
2214	if (auth_tok->session_key.encrypted_key_size == 0)
2215		auth_tok->session_key.encrypted_key_size =
2216			crypt_stat->key_size;
2217	if (crypt_stat->key_size == 24
2218	    && strcmp("aes", crypt_stat->cipher) == 0) {
2219		memset((crypt_stat->key + 24), 0, 8);
2220		auth_tok->session_key.encrypted_key_size = 32;
2221	} else
2222		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2223	key_rec->enc_key_size =
2224		auth_tok->session_key.encrypted_key_size;
2225	encrypted_session_key_valid = 0;
2226	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2227		encrypted_session_key_valid |=
2228			auth_tok->session_key.encrypted_key[i];
2229	if (encrypted_session_key_valid) {
2230		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2231				"using auth_tok->session_key.encrypted_key, "
2232				"where key_rec->enc_key_size = [%zd]\n",
2233				key_rec->enc_key_size);
2234		memcpy(key_rec->enc_key,
2235		       auth_tok->session_key.encrypted_key,
2236		       key_rec->enc_key_size);
2237		goto encrypted_session_key_set;
2238	}
2239	if (auth_tok->token.password.flags &
2240	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2241		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2242				"session key encryption key of size [%d]\n",
2243				auth_tok->token.password.
2244				session_key_encryption_key_bytes);
2245		memcpy(session_key_encryption_key,
2246		       auth_tok->token.password.session_key_encryption_key,
2247		       crypt_stat->key_size);
2248		ecryptfs_printk(KERN_DEBUG,
2249				"Cached session key encryption key:\n");
2250		if (ecryptfs_verbosity > 0)
2251			ecryptfs_dump_hex(session_key_encryption_key, 16);
2252	}
2253	if (unlikely(ecryptfs_verbosity > 0)) {
2254		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2255		ecryptfs_dump_hex(session_key_encryption_key, 16);
2256	}
2257	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2258				 src_sg, 2);
2259	if (rc < 1 || rc > 2) {
2260		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2261				"for crypt_stat session key; expected rc = 1; "
2262				"got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2263				rc, key_rec->enc_key_size);
2264		rc = -ENOMEM;
2265		goto out;
2266	}
2267	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2268				 dst_sg, 2);
2269	if (rc < 1 || rc > 2) {
2270		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2271				"for crypt_stat encrypted session key; "
2272				"expected rc = 1; got rc = [%d]. "
2273				"key_rec->enc_key_size = [%zd]\n", rc,
2274				key_rec->enc_key_size);
2275		rc = -ENOMEM;
2276		goto out;
2277	}
2278	mutex_lock(tfm_mutex);
2279	rc = crypto_skcipher_setkey(tfm, session_key_encryption_key,
2280				    crypt_stat->key_size);
2281	if (rc < 0) {
2282		mutex_unlock(tfm_mutex);
2283		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2284				"context; rc = [%d]\n", rc);
2285		goto out;
2286	}
2287
2288	req = skcipher_request_alloc(tfm, GFP_KERNEL);
2289	if (!req) {
2290		mutex_unlock(tfm_mutex);
2291		ecryptfs_printk(KERN_ERR, "Out of kernel memory whilst "
2292				"attempting to skcipher_request_alloc for "
2293				"%s\n", crypto_skcipher_driver_name(tfm));
2294		rc = -ENOMEM;
2295		goto out;
2296	}
2297
2298	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
2299				      NULL, NULL);
2300
2301	rc = 0;
2302	ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2303			crypt_stat->key_size);
2304	skcipher_request_set_crypt(req, src_sg, dst_sg,
2305				   (*key_rec).enc_key_size, NULL);
2306	rc = crypto_skcipher_encrypt(req);
2307	mutex_unlock(tfm_mutex);
2308	skcipher_request_free(req);
2309	if (rc) {
2310		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2311		goto out;
2312	}
2313	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2314	if (ecryptfs_verbosity > 0) {
2315		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2316				key_rec->enc_key_size);
2317		ecryptfs_dump_hex(key_rec->enc_key,
2318				  key_rec->enc_key_size);
2319	}
2320encrypted_session_key_set:
2321	/* This format is inspired by OpenPGP; see RFC 2440
2322	 * packet tag 3 */
2323	max_packet_size = (1                         /* Tag 3 identifier */
2324			   + 3                       /* Max Tag 3 packet size */
2325			   + 1                       /* Version */
2326			   + 1                       /* Cipher code */
2327			   + 1                       /* S2K specifier */
2328			   + 1                       /* Hash identifier */
2329			   + ECRYPTFS_SALT_SIZE      /* Salt */
2330			   + 1                       /* Hash iterations */
2331			   + key_rec->enc_key_size); /* Encrypted key size */
2332	if (max_packet_size > (*remaining_bytes)) {
2333		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2334		       "there are only [%td] available\n", max_packet_size,
2335		       (*remaining_bytes));
2336		rc = -EINVAL;
2337		goto out;
2338	}
2339	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2340	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2341	 * to get the number of octets in the actual Tag 3 packet */
2342	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2343					  (max_packet_size - 4),
2344					  &packet_size_length);
2345	if (rc) {
2346		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2347		       "generate packet length. rc = [%d]\n", rc);
2348		goto out;
2349	}
2350	(*packet_size) += packet_size_length;
2351	dest[(*packet_size)++] = 0x04; /* version 4 */
2352	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2353	 * specified with strings */
2354	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2355						      crypt_stat->key_size);
2356	if (cipher_code == 0) {
2357		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2358				"cipher [%s]\n", crypt_stat->cipher);
2359		rc = -EINVAL;
2360		goto out;
2361	}
2362	dest[(*packet_size)++] = cipher_code;
2363	dest[(*packet_size)++] = 0x03;	/* S2K */
2364	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
2365	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2366	       ECRYPTFS_SALT_SIZE);
2367	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
2368	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2369	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2370	       key_rec->enc_key_size);
2371	(*packet_size) += key_rec->enc_key_size;
2372out:
2373	if (rc)
2374		(*packet_size) = 0;
2375	else
2376		(*remaining_bytes) -= (*packet_size);
2377	return rc;
2378}
2379
2380struct kmem_cache *ecryptfs_key_record_cache;
2381
2382/**
2383 * ecryptfs_generate_key_packet_set
2384 * @dest_base: Virtual address from which to write the key record set
2385 * @crypt_stat: The cryptographic context from which the
2386 *              authentication tokens will be retrieved
2387 * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2388 *                   for the global parameters
2389 * @len: The amount written
2390 * @max: The maximum amount of data allowed to be written
2391 *
2392 * Generates a key packet set and writes it to the virtual address
2393 * passed in.
2394 *
2395 * Returns zero on success; non-zero on error.
2396 */
2397int
2398ecryptfs_generate_key_packet_set(char *dest_base,
2399				 struct ecryptfs_crypt_stat *crypt_stat,
2400				 struct dentry *ecryptfs_dentry, size_t *len,
2401				 size_t max)
2402{
2403	struct ecryptfs_auth_tok *auth_tok;
2404	struct key *auth_tok_key = NULL;
2405	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2406		&ecryptfs_superblock_to_private(
2407			ecryptfs_dentry->d_sb)->mount_crypt_stat;
2408	size_t written;
2409	struct ecryptfs_key_record *key_rec;
2410	struct ecryptfs_key_sig *key_sig;
2411	int rc = 0;
2412
2413	(*len) = 0;
2414	mutex_lock(&crypt_stat->keysig_list_mutex);
2415	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2416	if (!key_rec) {
2417		rc = -ENOMEM;
2418		goto out;
2419	}
2420	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2421			    crypt_stat_list) {
2422		memset(key_rec, 0, sizeof(*key_rec));
2423		rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2424							   &auth_tok,
2425							   mount_crypt_stat,
2426							   key_sig->keysig);
2427		if (rc) {
2428			printk(KERN_WARNING "Unable to retrieve auth tok with "
2429			       "sig = [%s]\n", key_sig->keysig);
2430			rc = process_find_global_auth_tok_for_sig_err(rc);
2431			goto out_free;
2432		}
2433		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2434			rc = write_tag_3_packet((dest_base + (*len)),
2435						&max, auth_tok,
2436						crypt_stat, key_rec,
2437						&written);
2438			up_write(&(auth_tok_key->sem));
2439			key_put(auth_tok_key);
2440			if (rc) {
2441				ecryptfs_printk(KERN_WARNING, "Error "
2442						"writing tag 3 packet\n");
2443				goto out_free;
2444			}
2445			(*len) += written;
2446			/* Write auth tok signature packet */
2447			rc = write_tag_11_packet((dest_base + (*len)), &max,
2448						 key_rec->sig,
2449						 ECRYPTFS_SIG_SIZE, &written);
2450			if (rc) {
2451				ecryptfs_printk(KERN_ERR, "Error writing "
2452						"auth tok signature packet\n");
2453				goto out_free;
2454			}
2455			(*len) += written;
2456		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2457			rc = write_tag_1_packet(dest_base + (*len), &max,
2458						auth_tok_key, auth_tok,
2459						crypt_stat, key_rec, &written);
2460			if (rc) {
2461				ecryptfs_printk(KERN_WARNING, "Error "
2462						"writing tag 1 packet\n");
2463				goto out_free;
2464			}
2465			(*len) += written;
2466		} else {
2467			up_write(&(auth_tok_key->sem));
2468			key_put(auth_tok_key);
2469			ecryptfs_printk(KERN_WARNING, "Unsupported "
2470					"authentication token type\n");
2471			rc = -EINVAL;
2472			goto out_free;
2473		}
2474	}
2475	if (likely(max > 0)) {
2476		dest_base[(*len)] = 0x00;
2477	} else {
2478		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2479		rc = -EIO;
2480	}
2481out_free:
2482	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2483out:
2484	if (rc)
2485		(*len) = 0;
2486	mutex_unlock(&crypt_stat->keysig_list_mutex);
2487	return rc;
2488}
2489
2490struct kmem_cache *ecryptfs_key_sig_cache;
2491
2492int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2493{
2494	struct ecryptfs_key_sig *new_key_sig;
2495
2496	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2497	if (!new_key_sig)
 
 
2498		return -ENOMEM;
2499
2500	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2501	new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2502	/* Caller must hold keysig_list_mutex */
2503	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2504
2505	return 0;
2506}
2507
2508struct kmem_cache *ecryptfs_global_auth_tok_cache;
2509
2510int
2511ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2512			     char *sig, u32 global_auth_tok_flags)
2513{
2514	struct ecryptfs_global_auth_tok *new_auth_tok;
 
2515
2516	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2517					GFP_KERNEL);
2518	if (!new_auth_tok)
2519		return -ENOMEM;
2520
 
 
 
2521	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2522	new_auth_tok->flags = global_auth_tok_flags;
2523	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2524	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2525	list_add(&new_auth_tok->mount_crypt_stat_list,
2526		 &mount_crypt_stat->global_auth_tok_list);
2527	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2528	return 0;
 
2529}
2530
v3.1
 
   1/**
   2 * eCryptfs: Linux filesystem encryption layer
   3 * In-kernel key management code.  Includes functions to parse and
   4 * write authentication token-related packets with the underlying
   5 * file.
   6 *
   7 * Copyright (C) 2004-2006 International Business Machines Corp.
   8 *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
   9 *              Michael C. Thompson <mcthomps@us.ibm.com>
  10 *              Trevor S. Highland <trevor.highland@gmail.com>
  11 *
  12 * This program is free software; you can redistribute it and/or
  13 * modify it under the terms of the GNU General Public License as
  14 * published by the Free Software Foundation; either version 2 of the
  15 * License, or (at your option) any later version.
  16 *
  17 * This program is distributed in the hope that it will be useful, but
  18 * WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  20 * General Public License for more details.
  21 *
  22 * You should have received a copy of the GNU General Public License
  23 * along with this program; if not, write to the Free Software
  24 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
  25 * 02111-1307, USA.
  26 */
  27
 
 
  28#include <linux/string.h>
  29#include <linux/syscalls.h>
  30#include <linux/pagemap.h>
  31#include <linux/key.h>
  32#include <linux/random.h>
  33#include <linux/crypto.h>
  34#include <linux/scatterlist.h>
  35#include <linux/slab.h>
  36#include "ecryptfs_kernel.h"
  37
  38/**
  39 * request_key returned an error instead of a valid key address;
  40 * determine the type of error, make appropriate log entries, and
  41 * return an error code.
  42 */
  43static int process_request_key_err(long err_code)
  44{
  45	int rc = 0;
  46
  47	switch (err_code) {
  48	case -ENOKEY:
  49		ecryptfs_printk(KERN_WARNING, "No key\n");
  50		rc = -ENOENT;
  51		break;
  52	case -EKEYEXPIRED:
  53		ecryptfs_printk(KERN_WARNING, "Key expired\n");
  54		rc = -ETIME;
  55		break;
  56	case -EKEYREVOKED:
  57		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
  58		rc = -EINVAL;
  59		break;
  60	default:
  61		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
  62				"[0x%.16lx]\n", err_code);
  63		rc = -EINVAL;
  64	}
  65	return rc;
  66}
  67
  68static int process_find_global_auth_tok_for_sig_err(int err_code)
  69{
  70	int rc = err_code;
  71
  72	switch (err_code) {
  73	case -ENOENT:
  74		ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
  75		break;
  76	case -EINVAL:
  77		ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
  78		break;
  79	default:
  80		rc = process_request_key_err(err_code);
  81		break;
  82	}
  83	return rc;
  84}
  85
  86/**
  87 * ecryptfs_parse_packet_length
  88 * @data: Pointer to memory containing length at offset
  89 * @size: This function writes the decoded size to this memory
  90 *        address; zero on error
  91 * @length_size: The number of bytes occupied by the encoded length
  92 *
  93 * Returns zero on success; non-zero on error
  94 */
  95int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
  96				 size_t *length_size)
  97{
  98	int rc = 0;
  99
 100	(*length_size) = 0;
 101	(*size) = 0;
 102	if (data[0] < 192) {
 103		/* One-byte length */
 104		(*size) = (unsigned char)data[0];
 105		(*length_size) = 1;
 106	} else if (data[0] < 224) {
 107		/* Two-byte length */
 108		(*size) = (((unsigned char)(data[0]) - 192) * 256);
 109		(*size) += ((unsigned char)(data[1]) + 192);
 110		(*length_size) = 2;
 111	} else if (data[0] == 255) {
 112		/* Five-byte length; we're not supposed to see this */
 113		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
 114				"supported\n");
 115		rc = -EINVAL;
 116		goto out;
 117	} else {
 118		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
 119		rc = -EINVAL;
 120		goto out;
 121	}
 122out:
 123	return rc;
 124}
 125
 126/**
 127 * ecryptfs_write_packet_length
 128 * @dest: The byte array target into which to write the length. Must
 129 *        have at least 5 bytes allocated.
 130 * @size: The length to write.
 131 * @packet_size_length: The number of bytes used to encode the packet
 132 *                      length is written to this address.
 133 *
 134 * Returns zero on success; non-zero on error.
 135 */
 136int ecryptfs_write_packet_length(char *dest, size_t size,
 137				 size_t *packet_size_length)
 138{
 139	int rc = 0;
 140
 141	if (size < 192) {
 142		dest[0] = size;
 143		(*packet_size_length) = 1;
 144	} else if (size < 65536) {
 145		dest[0] = (((size - 192) / 256) + 192);
 146		dest[1] = ((size - 192) % 256);
 147		(*packet_size_length) = 2;
 148	} else {
 
 149		rc = -EINVAL;
 150		ecryptfs_printk(KERN_WARNING,
 151				"Unsupported packet size: [%zd]\n", size);
 152	}
 153	return rc;
 154}
 155
 156static int
 157write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
 158		    char **packet, size_t *packet_len)
 159{
 160	size_t i = 0;
 161	size_t data_len;
 162	size_t packet_size_len;
 163	char *message;
 164	int rc;
 165
 166	/*
 167	 *              ***** TAG 64 Packet Format *****
 168	 *    | Content Type                       | 1 byte       |
 169	 *    | Key Identifier Size                | 1 or 2 bytes |
 170	 *    | Key Identifier                     | arbitrary    |
 171	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
 172	 *    | Encrypted File Encryption Key      | arbitrary    |
 173	 */
 174	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
 175		    + session_key->encrypted_key_size);
 176	*packet = kmalloc(data_len, GFP_KERNEL);
 177	message = *packet;
 178	if (!message) {
 179		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
 180		rc = -ENOMEM;
 181		goto out;
 182	}
 183	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
 184	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
 185					  &packet_size_len);
 186	if (rc) {
 187		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
 188				"header; cannot generate packet length\n");
 189		goto out;
 190	}
 191	i += packet_size_len;
 192	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
 193	i += ECRYPTFS_SIG_SIZE_HEX;
 194	rc = ecryptfs_write_packet_length(&message[i],
 195					  session_key->encrypted_key_size,
 196					  &packet_size_len);
 197	if (rc) {
 198		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
 199				"header; cannot generate packet length\n");
 200		goto out;
 201	}
 202	i += packet_size_len;
 203	memcpy(&message[i], session_key->encrypted_key,
 204	       session_key->encrypted_key_size);
 205	i += session_key->encrypted_key_size;
 206	*packet_len = i;
 207out:
 208	return rc;
 209}
 210
 211static int
 212parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
 213		    struct ecryptfs_message *msg)
 214{
 215	size_t i = 0;
 216	char *data;
 217	size_t data_len;
 218	size_t m_size;
 219	size_t message_len;
 220	u16 checksum = 0;
 221	u16 expected_checksum = 0;
 222	int rc;
 223
 224	/*
 225	 *              ***** TAG 65 Packet Format *****
 226	 *         | Content Type             | 1 byte       |
 227	 *         | Status Indicator         | 1 byte       |
 228	 *         | File Encryption Key Size | 1 or 2 bytes |
 229	 *         | File Encryption Key      | arbitrary    |
 230	 */
 231	message_len = msg->data_len;
 232	data = msg->data;
 233	if (message_len < 4) {
 234		rc = -EIO;
 235		goto out;
 236	}
 237	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
 238		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
 239		rc = -EIO;
 240		goto out;
 241	}
 242	if (data[i++]) {
 243		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
 244				"[%d]\n", data[i-1]);
 245		rc = -EIO;
 246		goto out;
 247	}
 248	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
 249	if (rc) {
 250		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
 251				"rc = [%d]\n", rc);
 252		goto out;
 253	}
 254	i += data_len;
 255	if (message_len < (i + m_size)) {
 256		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
 257				"is shorter than expected\n");
 258		rc = -EIO;
 259		goto out;
 260	}
 261	if (m_size < 3) {
 262		ecryptfs_printk(KERN_ERR,
 263				"The decrypted key is not long enough to "
 264				"include a cipher code and checksum\n");
 265		rc = -EIO;
 266		goto out;
 267	}
 268	*cipher_code = data[i++];
 269	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
 270	session_key->decrypted_key_size = m_size - 3;
 271	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
 272		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
 273				"the maximum key size [%d]\n",
 274				session_key->decrypted_key_size,
 275				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
 276		rc = -EIO;
 277		goto out;
 278	}
 279	memcpy(session_key->decrypted_key, &data[i],
 280	       session_key->decrypted_key_size);
 281	i += session_key->decrypted_key_size;
 282	expected_checksum += (unsigned char)(data[i++]) << 8;
 283	expected_checksum += (unsigned char)(data[i++]);
 284	for (i = 0; i < session_key->decrypted_key_size; i++)
 285		checksum += session_key->decrypted_key[i];
 286	if (expected_checksum != checksum) {
 287		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
 288				"encryption  key; expected [%x]; calculated "
 289				"[%x]\n", expected_checksum, checksum);
 290		rc = -EIO;
 291	}
 292out:
 293	return rc;
 294}
 295
 296
 297static int
 298write_tag_66_packet(char *signature, u8 cipher_code,
 299		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
 300		    size_t *packet_len)
 301{
 302	size_t i = 0;
 303	size_t j;
 304	size_t data_len;
 305	size_t checksum = 0;
 306	size_t packet_size_len;
 307	char *message;
 308	int rc;
 309
 310	/*
 311	 *              ***** TAG 66 Packet Format *****
 312	 *         | Content Type             | 1 byte       |
 313	 *         | Key Identifier Size      | 1 or 2 bytes |
 314	 *         | Key Identifier           | arbitrary    |
 315	 *         | File Encryption Key Size | 1 or 2 bytes |
 316	 *         | File Encryption Key      | arbitrary    |
 317	 */
 318	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
 319	*packet = kmalloc(data_len, GFP_KERNEL);
 320	message = *packet;
 321	if (!message) {
 322		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
 323		rc = -ENOMEM;
 324		goto out;
 325	}
 326	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
 327	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
 328					  &packet_size_len);
 329	if (rc) {
 330		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
 331				"header; cannot generate packet length\n");
 332		goto out;
 333	}
 334	i += packet_size_len;
 335	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
 336	i += ECRYPTFS_SIG_SIZE_HEX;
 337	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
 338	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
 339					  &packet_size_len);
 340	if (rc) {
 341		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
 342				"header; cannot generate packet length\n");
 343		goto out;
 344	}
 345	i += packet_size_len;
 346	message[i++] = cipher_code;
 347	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
 348	i += crypt_stat->key_size;
 349	for (j = 0; j < crypt_stat->key_size; j++)
 350		checksum += crypt_stat->key[j];
 351	message[i++] = (checksum / 256) % 256;
 352	message[i++] = (checksum % 256);
 353	*packet_len = i;
 354out:
 355	return rc;
 356}
 357
 358static int
 359parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
 360		    struct ecryptfs_message *msg)
 361{
 362	size_t i = 0;
 363	char *data;
 364	size_t data_len;
 365	size_t message_len;
 366	int rc;
 367
 368	/*
 369	 *              ***** TAG 65 Packet Format *****
 370	 *    | Content Type                       | 1 byte       |
 371	 *    | Status Indicator                   | 1 byte       |
 372	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
 373	 *    | Encrypted File Encryption Key      | arbitrary    |
 374	 */
 375	message_len = msg->data_len;
 376	data = msg->data;
 377	/* verify that everything through the encrypted FEK size is present */
 378	if (message_len < 4) {
 379		rc = -EIO;
 380		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
 381		       "message length is [%d]\n", __func__, message_len, 4);
 382		goto out;
 383	}
 384	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
 385		rc = -EIO;
 386		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
 387		       __func__);
 388		goto out;
 389	}
 390	if (data[i++]) {
 391		rc = -EIO;
 392		printk(KERN_ERR "%s: Status indicator has non zero "
 393		       "value [%d]\n", __func__, data[i-1]);
 394
 395		goto out;
 396	}
 397	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
 398					  &data_len);
 399	if (rc) {
 400		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
 401				"rc = [%d]\n", rc);
 402		goto out;
 403	}
 404	i += data_len;
 405	if (message_len < (i + key_rec->enc_key_size)) {
 406		rc = -EIO;
 407		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
 408		       __func__, message_len, (i + key_rec->enc_key_size));
 409		goto out;
 410	}
 411	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
 412		rc = -EIO;
 413		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
 414		       "the maximum key size [%d]\n", __func__,
 415		       key_rec->enc_key_size,
 416		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
 417		goto out;
 418	}
 419	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
 420out:
 421	return rc;
 422}
 423
 424/**
 425 * ecryptfs_verify_version
 426 * @version: The version number to confirm
 427 *
 428 * Returns zero on good version; non-zero otherwise
 429 */
 430static int ecryptfs_verify_version(u16 version)
 431{
 432	int rc = 0;
 433	unsigned char major;
 434	unsigned char minor;
 435
 436	major = ((version >> 8) & 0xFF);
 437	minor = (version & 0xFF);
 438	if (major != ECRYPTFS_VERSION_MAJOR) {
 439		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
 440				"Expected [%d]; got [%d]\n",
 441				ECRYPTFS_VERSION_MAJOR, major);
 442		rc = -EINVAL;
 443		goto out;
 444	}
 445	if (minor != ECRYPTFS_VERSION_MINOR) {
 446		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
 447				"Expected [%d]; got [%d]\n",
 448				ECRYPTFS_VERSION_MINOR, minor);
 449		rc = -EINVAL;
 450		goto out;
 451	}
 452out:
 453	return rc;
 454}
 455
 456/**
 457 * ecryptfs_verify_auth_tok_from_key
 458 * @auth_tok_key: key containing the authentication token
 459 * @auth_tok: authentication token
 460 *
 461 * Returns zero on valid auth tok; -EINVAL otherwise
 
 462 */
 463static int
 464ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
 465				  struct ecryptfs_auth_tok **auth_tok)
 466{
 467	int rc = 0;
 468
 469	(*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
 
 
 
 
 
 
 470	if (ecryptfs_verify_version((*auth_tok)->version)) {
 471		printk(KERN_ERR "Data structure version mismatch. Userspace "
 472		       "tools must match eCryptfs kernel module with major "
 473		       "version [%d] and minor version [%d]\n",
 474		       ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
 475		rc = -EINVAL;
 476		goto out;
 477	}
 478	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
 479	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
 480		printk(KERN_ERR "Invalid auth_tok structure "
 481		       "returned from key query\n");
 482		rc = -EINVAL;
 483		goto out;
 484	}
 485out:
 486	return rc;
 487}
 488
 489static int
 490ecryptfs_find_global_auth_tok_for_sig(
 491	struct key **auth_tok_key,
 492	struct ecryptfs_auth_tok **auth_tok,
 493	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
 494{
 495	struct ecryptfs_global_auth_tok *walker;
 496	int rc = 0;
 497
 498	(*auth_tok_key) = NULL;
 499	(*auth_tok) = NULL;
 500	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 501	list_for_each_entry(walker,
 502			    &mount_crypt_stat->global_auth_tok_list,
 503			    mount_crypt_stat_list) {
 504		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
 505			continue;
 506
 507		if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
 508			rc = -EINVAL;
 509			goto out;
 510		}
 511
 512		rc = key_validate(walker->global_auth_tok_key);
 513		if (rc) {
 514			if (rc == -EKEYEXPIRED)
 515				goto out;
 516			goto out_invalid_auth_tok;
 517		}
 518
 519		down_write(&(walker->global_auth_tok_key->sem));
 520		rc = ecryptfs_verify_auth_tok_from_key(
 521				walker->global_auth_tok_key, auth_tok);
 522		if (rc)
 523			goto out_invalid_auth_tok_unlock;
 524
 525		(*auth_tok_key) = walker->global_auth_tok_key;
 526		key_get(*auth_tok_key);
 527		goto out;
 528	}
 529	rc = -ENOENT;
 530	goto out;
 531out_invalid_auth_tok_unlock:
 532	up_write(&(walker->global_auth_tok_key->sem));
 533out_invalid_auth_tok:
 534	printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
 535	walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
 536	key_put(walker->global_auth_tok_key);
 537	walker->global_auth_tok_key = NULL;
 538out:
 539	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 540	return rc;
 541}
 542
 543/**
 544 * ecryptfs_find_auth_tok_for_sig
 545 * @auth_tok: Set to the matching auth_tok; NULL if not found
 546 * @crypt_stat: inode crypt_stat crypto context
 547 * @sig: Sig of auth_tok to find
 548 *
 549 * For now, this function simply looks at the registered auth_tok's
 550 * linked off the mount_crypt_stat, so all the auth_toks that can be
 551 * used must be registered at mount time. This function could
 552 * potentially try a lot harder to find auth_tok's (e.g., by calling
 553 * out to ecryptfsd to dynamically retrieve an auth_tok object) so
 554 * that static registration of auth_tok's will no longer be necessary.
 555 *
 556 * Returns zero on no error; non-zero on error
 557 */
 558static int
 559ecryptfs_find_auth_tok_for_sig(
 560	struct key **auth_tok_key,
 561	struct ecryptfs_auth_tok **auth_tok,
 562	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
 563	char *sig)
 564{
 565	int rc = 0;
 566
 567	rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
 568						   mount_crypt_stat, sig);
 569	if (rc == -ENOENT) {
 570		/* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
 571		 * mount_crypt_stat structure, we prevent to use auth toks that
 572		 * are not inserted through the ecryptfs_add_global_auth_tok
 573		 * function.
 574		 */
 575		if (mount_crypt_stat->flags
 576				& ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
 577			return -EINVAL;
 578
 579		rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
 580						       sig);
 581	}
 582	return rc;
 583}
 584
 585/**
 586 * write_tag_70_packet can gobble a lot of stack space. We stuff most
 587 * of the function's parameters in a kmalloc'd struct to help reduce
 588 * eCryptfs' overall stack usage.
 589 */
 590struct ecryptfs_write_tag_70_packet_silly_stack {
 591	u8 cipher_code;
 592	size_t max_packet_size;
 593	size_t packet_size_len;
 594	size_t block_aligned_filename_size;
 595	size_t block_size;
 596	size_t i;
 597	size_t j;
 598	size_t num_rand_bytes;
 599	struct mutex *tfm_mutex;
 600	char *block_aligned_filename;
 601	struct ecryptfs_auth_tok *auth_tok;
 602	struct scatterlist src_sg[2];
 603	struct scatterlist dst_sg[2];
 604	struct blkcipher_desc desc;
 
 605	char iv[ECRYPTFS_MAX_IV_BYTES];
 606	char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
 607	char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
 608	struct hash_desc hash_desc;
 609	struct scatterlist hash_sg;
 610};
 611
 612/**
 613 * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
 614 * @filename: NULL-terminated filename string
 615 *
 616 * This is the simplest mechanism for achieving filename encryption in
 617 * eCryptfs. It encrypts the given filename with the mount-wide
 618 * filename encryption key (FNEK) and stores it in a packet to @dest,
 619 * which the callee will encode and write directly into the dentry
 620 * name.
 621 */
 622int
 623ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
 624			     size_t *packet_size,
 625			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
 626			     char *filename, size_t filename_size)
 627{
 628	struct ecryptfs_write_tag_70_packet_silly_stack *s;
 629	struct key *auth_tok_key = NULL;
 630	int rc = 0;
 631
 632	s = kmalloc(sizeof(*s), GFP_KERNEL);
 633	if (!s) {
 634		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
 635		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
 636		rc = -ENOMEM;
 637		goto out;
 638	}
 639	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 640	(*packet_size) = 0;
 641	rc = ecryptfs_find_auth_tok_for_sig(
 642		&auth_tok_key,
 643		&s->auth_tok, mount_crypt_stat,
 644		mount_crypt_stat->global_default_fnek_sig);
 645	if (rc) {
 646		printk(KERN_ERR "%s: Error attempting to find auth tok for "
 647		       "fnek sig [%s]; rc = [%d]\n", __func__,
 648		       mount_crypt_stat->global_default_fnek_sig, rc);
 649		goto out;
 650	}
 651	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
 652		&s->desc.tfm,
 653		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
 654	if (unlikely(rc)) {
 655		printk(KERN_ERR "Internal error whilst attempting to get "
 656		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
 657		       mount_crypt_stat->global_default_fn_cipher_name, rc);
 658		goto out;
 659	}
 660	mutex_lock(s->tfm_mutex);
 661	s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
 662	/* Plus one for the \0 separator between the random prefix
 663	 * and the plaintext filename */
 664	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
 665	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
 666	if ((s->block_aligned_filename_size % s->block_size) != 0) {
 667		s->num_rand_bytes += (s->block_size
 668				      - (s->block_aligned_filename_size
 669					 % s->block_size));
 670		s->block_aligned_filename_size = (s->num_rand_bytes
 671						  + filename_size);
 672	}
 673	/* Octet 0: Tag 70 identifier
 674	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
 675	 *              and block-aligned encrypted filename size)
 676	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
 677	 * Octet N2-N3: Cipher identifier (1 octet)
 678	 * Octets N3-N4: Block-aligned encrypted filename
 679	 *  - Consists of a minimum number of random characters, a \0
 680	 *    separator, and then the filename */
 681	s->max_packet_size = (1                   /* Tag 70 identifier */
 682			      + 3                 /* Max Tag 70 packet size */
 683			      + ECRYPTFS_SIG_SIZE /* FNEK sig */
 684			      + 1                 /* Cipher identifier */
 685			      + s->block_aligned_filename_size);
 686	if (dest == NULL) {
 687		(*packet_size) = s->max_packet_size;
 688		goto out_unlock;
 689	}
 690	if (s->max_packet_size > (*remaining_bytes)) {
 691		printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
 692		       "[%zd] available\n", __func__, s->max_packet_size,
 693		       (*remaining_bytes));
 694		rc = -EINVAL;
 695		goto out_unlock;
 696	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 697	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
 698					    GFP_KERNEL);
 699	if (!s->block_aligned_filename) {
 700		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
 701		       "kzalloc [%zd] bytes\n", __func__,
 702		       s->block_aligned_filename_size);
 703		rc = -ENOMEM;
 704		goto out_unlock;
 705	}
 706	s->i = 0;
 707	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
 708	rc = ecryptfs_write_packet_length(&dest[s->i],
 709					  (ECRYPTFS_SIG_SIZE
 710					   + 1 /* Cipher code */
 711					   + s->block_aligned_filename_size),
 712					  &s->packet_size_len);
 713	if (rc) {
 714		printk(KERN_ERR "%s: Error generating tag 70 packet "
 715		       "header; cannot generate packet length; rc = [%d]\n",
 716		       __func__, rc);
 717		goto out_free_unlock;
 718	}
 719	s->i += s->packet_size_len;
 720	ecryptfs_from_hex(&dest[s->i],
 721			  mount_crypt_stat->global_default_fnek_sig,
 722			  ECRYPTFS_SIG_SIZE);
 723	s->i += ECRYPTFS_SIG_SIZE;
 724	s->cipher_code = ecryptfs_code_for_cipher_string(
 725		mount_crypt_stat->global_default_fn_cipher_name,
 726		mount_crypt_stat->global_default_fn_cipher_key_bytes);
 727	if (s->cipher_code == 0) {
 728		printk(KERN_WARNING "%s: Unable to generate code for "
 729		       "cipher [%s] with key bytes [%zd]\n", __func__,
 730		       mount_crypt_stat->global_default_fn_cipher_name,
 731		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
 732		rc = -EINVAL;
 733		goto out_free_unlock;
 734	}
 735	dest[s->i++] = s->cipher_code;
 736	/* TODO: Support other key modules than passphrase for
 737	 * filename encryption */
 738	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
 739		rc = -EOPNOTSUPP;
 740		printk(KERN_INFO "%s: Filename encryption only supports "
 741		       "password tokens\n", __func__);
 742		goto out_free_unlock;
 743	}
 744	sg_init_one(
 745		&s->hash_sg,
 746		(u8 *)s->auth_tok->token.password.session_key_encryption_key,
 747		s->auth_tok->token.password.session_key_encryption_key_bytes);
 748	s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 749	s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
 750					     CRYPTO_ALG_ASYNC);
 751	if (IS_ERR(s->hash_desc.tfm)) {
 752			rc = PTR_ERR(s->hash_desc.tfm);
 753			printk(KERN_ERR "%s: Error attempting to "
 754			       "allocate hash crypto context; rc = [%d]\n",
 755			       __func__, rc);
 756			goto out_free_unlock;
 757	}
 758	rc = crypto_hash_init(&s->hash_desc);
 759	if (rc) {
 760		printk(KERN_ERR
 761		       "%s: Error initializing crypto hash; rc = [%d]\n",
 762		       __func__, rc);
 763		goto out_release_free_unlock;
 764	}
 765	rc = crypto_hash_update(
 766		&s->hash_desc, &s->hash_sg,
 767		s->auth_tok->token.password.session_key_encryption_key_bytes);
 
 
 
 
 768	if (rc) {
 769		printk(KERN_ERR
 770		       "%s: Error updating crypto hash; rc = [%d]\n",
 771		       __func__, rc);
 772		goto out_release_free_unlock;
 773	}
 774	rc = crypto_hash_final(&s->hash_desc, s->hash);
 775	if (rc) {
 776		printk(KERN_ERR
 777		       "%s: Error finalizing crypto hash; rc = [%d]\n",
 778		       __func__, rc);
 779		goto out_release_free_unlock;
 780	}
 781	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
 782		s->block_aligned_filename[s->j] =
 783			s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
 784		if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
 785		    == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
 786			sg_init_one(&s->hash_sg, (u8 *)s->hash,
 787				    ECRYPTFS_TAG_70_DIGEST_SIZE);
 788			rc = crypto_hash_init(&s->hash_desc);
 789			if (rc) {
 790				printk(KERN_ERR
 791				       "%s: Error initializing crypto hash; "
 792				       "rc = [%d]\n", __func__, rc);
 793				goto out_release_free_unlock;
 794			}
 795			rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
 796						ECRYPTFS_TAG_70_DIGEST_SIZE);
 797			if (rc) {
 798				printk(KERN_ERR
 799				       "%s: Error updating crypto hash; "
 800				       "rc = [%d]\n", __func__, rc);
 801				goto out_release_free_unlock;
 802			}
 803			rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
 804			if (rc) {
 805				printk(KERN_ERR
 806				       "%s: Error finalizing crypto hash; "
 807				       "rc = [%d]\n", __func__, rc);
 808				goto out_release_free_unlock;
 809			}
 810			memcpy(s->hash, s->tmp_hash,
 811			       ECRYPTFS_TAG_70_DIGEST_SIZE);
 812		}
 813		if (s->block_aligned_filename[s->j] == '\0')
 814			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
 815	}
 816	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
 817	       filename_size);
 818	rc = virt_to_scatterlist(s->block_aligned_filename,
 819				 s->block_aligned_filename_size, s->src_sg, 2);
 820	if (rc < 1) {
 821		printk(KERN_ERR "%s: Internal error whilst attempting to "
 822		       "convert filename memory to scatterlist; rc = [%d]. "
 823		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
 824		       s->block_aligned_filename_size);
 825		goto out_release_free_unlock;
 826	}
 827	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
 828				 s->dst_sg, 2);
 829	if (rc < 1) {
 830		printk(KERN_ERR "%s: Internal error whilst attempting to "
 831		       "convert encrypted filename memory to scatterlist; "
 832		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
 833		       __func__, rc, s->block_aligned_filename_size);
 834		goto out_release_free_unlock;
 835	}
 836	/* The characters in the first block effectively do the job
 837	 * of the IV here, so we just use 0's for the IV. Note the
 838	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
 839	 * >= ECRYPTFS_MAX_IV_BYTES. */
 840	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
 841	s->desc.info = s->iv;
 842	rc = crypto_blkcipher_setkey(
 843		s->desc.tfm,
 844		s->auth_tok->token.password.session_key_encryption_key,
 845		mount_crypt_stat->global_default_fn_cipher_key_bytes);
 846	if (rc < 0) {
 847		printk(KERN_ERR "%s: Error setting key for crypto context; "
 848		       "rc = [%d]. s->auth_tok->token.password.session_key_"
 849		       "encryption_key = [0x%p]; mount_crypt_stat->"
 850		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
 851		       rc,
 852		       s->auth_tok->token.password.session_key_encryption_key,
 853		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
 854		goto out_release_free_unlock;
 855	}
 856	rc = crypto_blkcipher_encrypt_iv(&s->desc, s->dst_sg, s->src_sg,
 857					 s->block_aligned_filename_size);
 
 858	if (rc) {
 859		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
 860		       "rc = [%d]\n", __func__, rc);
 861		goto out_release_free_unlock;
 862	}
 863	s->i += s->block_aligned_filename_size;
 864	(*packet_size) = s->i;
 865	(*remaining_bytes) -= (*packet_size);
 866out_release_free_unlock:
 867	crypto_free_hash(s->hash_desc.tfm);
 868out_free_unlock:
 869	kzfree(s->block_aligned_filename);
 870out_unlock:
 871	mutex_unlock(s->tfm_mutex);
 872out:
 873	if (auth_tok_key) {
 874		up_write(&(auth_tok_key->sem));
 875		key_put(auth_tok_key);
 876	}
 
 
 877	kfree(s);
 878	return rc;
 879}
 880
 881struct ecryptfs_parse_tag_70_packet_silly_stack {
 882	u8 cipher_code;
 883	size_t max_packet_size;
 884	size_t packet_size_len;
 885	size_t parsed_tag_70_packet_size;
 886	size_t block_aligned_filename_size;
 887	size_t block_size;
 888	size_t i;
 889	struct mutex *tfm_mutex;
 890	char *decrypted_filename;
 891	struct ecryptfs_auth_tok *auth_tok;
 892	struct scatterlist src_sg[2];
 893	struct scatterlist dst_sg[2];
 894	struct blkcipher_desc desc;
 
 895	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
 896	char iv[ECRYPTFS_MAX_IV_BYTES];
 897	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
 898};
 899
 900/**
 901 * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
 902 * @filename: This function kmalloc's the memory for the filename
 903 * @filename_size: This function sets this to the amount of memory
 904 *                 kmalloc'd for the filename
 905 * @packet_size: This function sets this to the the number of octets
 906 *               in the packet parsed
 907 * @mount_crypt_stat: The mount-wide cryptographic context
 908 * @data: The memory location containing the start of the tag 70
 909 *        packet
 910 * @max_packet_size: The maximum legal size of the packet to be parsed
 911 *                   from @data
 912 *
 913 * Returns zero on success; non-zero otherwise
 914 */
 915int
 916ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
 917			     size_t *packet_size,
 918			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
 919			     char *data, size_t max_packet_size)
 920{
 921	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
 922	struct key *auth_tok_key = NULL;
 923	int rc = 0;
 924
 925	(*packet_size) = 0;
 926	(*filename_size) = 0;
 927	(*filename) = NULL;
 928	s = kmalloc(sizeof(*s), GFP_KERNEL);
 929	if (!s) {
 930		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
 931		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
 932		rc = -ENOMEM;
 933		goto out;
 934	}
 935	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 936	if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
 937		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
 938		       "at least [%d]\n", __func__, max_packet_size,
 939			(1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
 940		rc = -EINVAL;
 941		goto out;
 942	}
 943	/* Octet 0: Tag 70 identifier
 944	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
 945	 *              and block-aligned encrypted filename size)
 946	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
 947	 * Octet N2-N3: Cipher identifier (1 octet)
 948	 * Octets N3-N4: Block-aligned encrypted filename
 949	 *  - Consists of a minimum number of random numbers, a \0
 950	 *    separator, and then the filename */
 951	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
 952		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
 953		       "tag [0x%.2x]\n", __func__,
 954		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
 955		rc = -EINVAL;
 956		goto out;
 957	}
 958	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
 959					  &s->parsed_tag_70_packet_size,
 960					  &s->packet_size_len);
 961	if (rc) {
 962		printk(KERN_WARNING "%s: Error parsing packet length; "
 963		       "rc = [%d]\n", __func__, rc);
 964		goto out;
 965	}
 966	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
 967					  - ECRYPTFS_SIG_SIZE - 1);
 968	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
 969	    > max_packet_size) {
 970		printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
 971		       "size is [%zd]\n", __func__, max_packet_size,
 972		       (1 + s->packet_size_len + 1
 973			+ s->block_aligned_filename_size));
 974		rc = -EINVAL;
 975		goto out;
 976	}
 977	(*packet_size) += s->packet_size_len;
 978	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
 979			ECRYPTFS_SIG_SIZE);
 980	s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
 981	(*packet_size) += ECRYPTFS_SIG_SIZE;
 982	s->cipher_code = data[(*packet_size)++];
 983	rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
 984	if (rc) {
 985		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
 986		       __func__, s->cipher_code);
 987		goto out;
 988	}
 989	rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
 990					    &s->auth_tok, mount_crypt_stat,
 991					    s->fnek_sig_hex);
 992	if (rc) {
 993		printk(KERN_ERR "%s: Error attempting to find auth tok for "
 994		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
 995		       rc);
 996		goto out;
 997	}
 998	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
 999							&s->tfm_mutex,
1000							s->cipher_string);
1001	if (unlikely(rc)) {
1002		printk(KERN_ERR "Internal error whilst attempting to get "
1003		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1004		       s->cipher_string, rc);
1005		goto out;
1006	}
1007	mutex_lock(s->tfm_mutex);
1008	rc = virt_to_scatterlist(&data[(*packet_size)],
1009				 s->block_aligned_filename_size, s->src_sg, 2);
1010	if (rc < 1) {
1011		printk(KERN_ERR "%s: Internal error whilst attempting to "
1012		       "convert encrypted filename memory to scatterlist; "
1013		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1014		       __func__, rc, s->block_aligned_filename_size);
1015		goto out_unlock;
1016	}
1017	(*packet_size) += s->block_aligned_filename_size;
1018	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
1019					GFP_KERNEL);
1020	if (!s->decrypted_filename) {
1021		printk(KERN_ERR "%s: Out of memory whilst attempting to "
1022		       "kmalloc [%zd] bytes\n", __func__,
1023		       s->block_aligned_filename_size);
1024		rc = -ENOMEM;
1025		goto out_unlock;
1026	}
1027	rc = virt_to_scatterlist(s->decrypted_filename,
1028				 s->block_aligned_filename_size, s->dst_sg, 2);
1029	if (rc < 1) {
1030		printk(KERN_ERR "%s: Internal error whilst attempting to "
1031		       "convert decrypted filename memory to scatterlist; "
1032		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1033		       __func__, rc, s->block_aligned_filename_size);
1034		goto out_free_unlock;
1035	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1036	/* The characters in the first block effectively do the job of
1037	 * the IV here, so we just use 0's for the IV. Note the
1038	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1039	 * >= ECRYPTFS_MAX_IV_BYTES. */
1040	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
1041	s->desc.info = s->iv;
1042	/* TODO: Support other key modules than passphrase for
1043	 * filename encryption */
1044	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1045		rc = -EOPNOTSUPP;
1046		printk(KERN_INFO "%s: Filename encryption only supports "
1047		       "password tokens\n", __func__);
1048		goto out_free_unlock;
1049	}
1050	rc = crypto_blkcipher_setkey(
1051		s->desc.tfm,
1052		s->auth_tok->token.password.session_key_encryption_key,
1053		mount_crypt_stat->global_default_fn_cipher_key_bytes);
1054	if (rc < 0) {
1055		printk(KERN_ERR "%s: Error setting key for crypto context; "
1056		       "rc = [%d]. s->auth_tok->token.password.session_key_"
1057		       "encryption_key = [0x%p]; mount_crypt_stat->"
1058		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1059		       rc,
1060		       s->auth_tok->token.password.session_key_encryption_key,
1061		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
1062		goto out_free_unlock;
1063	}
1064	rc = crypto_blkcipher_decrypt_iv(&s->desc, s->dst_sg, s->src_sg,
1065					 s->block_aligned_filename_size);
 
1066	if (rc) {
1067		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1068		       "rc = [%d]\n", __func__, rc);
1069		goto out_free_unlock;
1070	}
1071	s->i = 0;
1072	while (s->decrypted_filename[s->i] != '\0'
1073	       && s->i < s->block_aligned_filename_size)
1074		s->i++;
1075	if (s->i == s->block_aligned_filename_size) {
1076		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1077		       "find valid separator between random characters and "
1078		       "the filename\n", __func__);
1079		rc = -EINVAL;
1080		goto out_free_unlock;
1081	}
1082	s->i++;
1083	(*filename_size) = (s->block_aligned_filename_size - s->i);
1084	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1085		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1086		       "invalid\n", __func__, (*filename_size));
1087		rc = -EINVAL;
1088		goto out_free_unlock;
1089	}
1090	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1091	if (!(*filename)) {
1092		printk(KERN_ERR "%s: Out of memory whilst attempting to "
1093		       "kmalloc [%zd] bytes\n", __func__,
1094		       ((*filename_size) + 1));
1095		rc = -ENOMEM;
1096		goto out_free_unlock;
1097	}
1098	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1099	(*filename)[(*filename_size)] = '\0';
1100out_free_unlock:
1101	kfree(s->decrypted_filename);
1102out_unlock:
1103	mutex_unlock(s->tfm_mutex);
1104out:
1105	if (rc) {
1106		(*packet_size) = 0;
1107		(*filename_size) = 0;
1108		(*filename) = NULL;
1109	}
1110	if (auth_tok_key) {
1111		up_write(&(auth_tok_key->sem));
1112		key_put(auth_tok_key);
1113	}
 
1114	kfree(s);
1115	return rc;
1116}
1117
1118static int
1119ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1120{
1121	int rc = 0;
1122
1123	(*sig) = NULL;
1124	switch (auth_tok->token_type) {
1125	case ECRYPTFS_PASSWORD:
1126		(*sig) = auth_tok->token.password.signature;
1127		break;
1128	case ECRYPTFS_PRIVATE_KEY:
1129		(*sig) = auth_tok->token.private_key.signature;
1130		break;
1131	default:
1132		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1133		       auth_tok->token_type);
1134		rc = -EINVAL;
1135	}
1136	return rc;
1137}
1138
1139/**
1140 * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1141 * @auth_tok: The key authentication token used to decrypt the session key
1142 * @crypt_stat: The cryptographic context
1143 *
1144 * Returns zero on success; non-zero error otherwise.
1145 */
1146static int
1147decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1148				  struct ecryptfs_crypt_stat *crypt_stat)
1149{
1150	u8 cipher_code = 0;
1151	struct ecryptfs_msg_ctx *msg_ctx;
1152	struct ecryptfs_message *msg = NULL;
1153	char *auth_tok_sig;
1154	char *payload;
1155	size_t payload_len;
1156	int rc;
1157
1158	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1159	if (rc) {
1160		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1161		       auth_tok->token_type);
1162		goto out;
1163	}
1164	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1165				 &payload, &payload_len);
1166	if (rc) {
1167		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1168		goto out;
1169	}
1170	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1171	if (rc) {
1172		ecryptfs_printk(KERN_ERR, "Error sending message to "
1173				"ecryptfsd\n");
1174		goto out;
1175	}
1176	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1177	if (rc) {
1178		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1179				"from the user space daemon\n");
1180		rc = -EIO;
1181		goto out;
1182	}
1183	rc = parse_tag_65_packet(&(auth_tok->session_key),
1184				 &cipher_code, msg);
1185	if (rc) {
1186		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1187		       rc);
1188		goto out;
1189	}
1190	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1191	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1192	       auth_tok->session_key.decrypted_key_size);
1193	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1194	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1195	if (rc) {
1196		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1197				cipher_code)
1198		goto out;
1199	}
1200	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1201	if (ecryptfs_verbosity > 0) {
1202		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1203		ecryptfs_dump_hex(crypt_stat->key,
1204				  crypt_stat->key_size);
1205	}
1206out:
1207	if (msg)
1208		kfree(msg);
1209	return rc;
1210}
1211
1212static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1213{
1214	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1215	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1216
1217	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1218				 auth_tok_list_head, list) {
1219		list_del(&auth_tok_list_item->list);
1220		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1221				auth_tok_list_item);
1222	}
1223}
1224
1225struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1226
1227/**
1228 * parse_tag_1_packet
1229 * @crypt_stat: The cryptographic context to modify based on packet contents
1230 * @data: The raw bytes of the packet.
1231 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1232 *                 a new authentication token will be placed at the
1233 *                 end of this list for this packet.
1234 * @new_auth_tok: Pointer to a pointer to memory that this function
1235 *                allocates; sets the memory address of the pointer to
1236 *                NULL on error. This object is added to the
1237 *                auth_tok_list.
1238 * @packet_size: This function writes the size of the parsed packet
1239 *               into this memory location; zero on error.
1240 * @max_packet_size: The maximum allowable packet size
1241 *
1242 * Returns zero on success; non-zero on error.
1243 */
1244static int
1245parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1246		   unsigned char *data, struct list_head *auth_tok_list,
1247		   struct ecryptfs_auth_tok **new_auth_tok,
1248		   size_t *packet_size, size_t max_packet_size)
1249{
1250	size_t body_size;
1251	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1252	size_t length_size;
1253	int rc = 0;
1254
1255	(*packet_size) = 0;
1256	(*new_auth_tok) = NULL;
1257	/**
1258	 * This format is inspired by OpenPGP; see RFC 2440
1259	 * packet tag 1
1260	 *
1261	 * Tag 1 identifier (1 byte)
1262	 * Max Tag 1 packet size (max 3 bytes)
1263	 * Version (1 byte)
1264	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1265	 * Cipher identifier (1 byte)
1266	 * Encrypted key size (arbitrary)
1267	 *
1268	 * 12 bytes minimum packet size
1269	 */
1270	if (unlikely(max_packet_size < 12)) {
1271		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1272		rc = -EINVAL;
1273		goto out;
1274	}
1275	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1276		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1277		       ECRYPTFS_TAG_1_PACKET_TYPE);
1278		rc = -EINVAL;
1279		goto out;
1280	}
1281	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1282	 * at end of function upon failure */
1283	auth_tok_list_item =
1284		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1285				  GFP_KERNEL);
1286	if (!auth_tok_list_item) {
1287		printk(KERN_ERR "Unable to allocate memory\n");
1288		rc = -ENOMEM;
1289		goto out;
1290	}
1291	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1292	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1293					  &length_size);
1294	if (rc) {
1295		printk(KERN_WARNING "Error parsing packet length; "
1296		       "rc = [%d]\n", rc);
1297		goto out_free;
1298	}
1299	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1300		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1301		rc = -EINVAL;
1302		goto out_free;
1303	}
1304	(*packet_size) += length_size;
1305	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1306		printk(KERN_WARNING "Packet size exceeds max\n");
1307		rc = -EINVAL;
1308		goto out_free;
1309	}
1310	if (unlikely(data[(*packet_size)++] != 0x03)) {
1311		printk(KERN_WARNING "Unknown version number [%d]\n",
1312		       data[(*packet_size) - 1]);
1313		rc = -EINVAL;
1314		goto out_free;
1315	}
1316	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1317			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1318	*packet_size += ECRYPTFS_SIG_SIZE;
1319	/* This byte is skipped because the kernel does not need to
1320	 * know which public key encryption algorithm was used */
1321	(*packet_size)++;
1322	(*new_auth_tok)->session_key.encrypted_key_size =
1323		body_size - (ECRYPTFS_SIG_SIZE + 2);
1324	if ((*new_auth_tok)->session_key.encrypted_key_size
1325	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1326		printk(KERN_WARNING "Tag 1 packet contains key larger "
1327		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1328		rc = -EINVAL;
1329		goto out;
1330	}
1331	memcpy((*new_auth_tok)->session_key.encrypted_key,
1332	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1333	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1334	(*new_auth_tok)->session_key.flags &=
1335		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1336	(*new_auth_tok)->session_key.flags |=
1337		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1338	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1339	(*new_auth_tok)->flags = 0;
1340	(*new_auth_tok)->session_key.flags &=
1341		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1342	(*new_auth_tok)->session_key.flags &=
1343		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1344	list_add(&auth_tok_list_item->list, auth_tok_list);
1345	goto out;
1346out_free:
1347	(*new_auth_tok) = NULL;
1348	memset(auth_tok_list_item, 0,
1349	       sizeof(struct ecryptfs_auth_tok_list_item));
1350	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1351			auth_tok_list_item);
1352out:
1353	if (rc)
1354		(*packet_size) = 0;
1355	return rc;
1356}
1357
1358/**
1359 * parse_tag_3_packet
1360 * @crypt_stat: The cryptographic context to modify based on packet
1361 *              contents.
1362 * @data: The raw bytes of the packet.
1363 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1364 *                 a new authentication token will be placed at the end
1365 *                 of this list for this packet.
1366 * @new_auth_tok: Pointer to a pointer to memory that this function
1367 *                allocates; sets the memory address of the pointer to
1368 *                NULL on error. This object is added to the
1369 *                auth_tok_list.
1370 * @packet_size: This function writes the size of the parsed packet
1371 *               into this memory location; zero on error.
1372 * @max_packet_size: maximum number of bytes to parse
1373 *
1374 * Returns zero on success; non-zero on error.
1375 */
1376static int
1377parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1378		   unsigned char *data, struct list_head *auth_tok_list,
1379		   struct ecryptfs_auth_tok **new_auth_tok,
1380		   size_t *packet_size, size_t max_packet_size)
1381{
1382	size_t body_size;
1383	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1384	size_t length_size;
1385	int rc = 0;
1386
1387	(*packet_size) = 0;
1388	(*new_auth_tok) = NULL;
1389	/**
1390	 *This format is inspired by OpenPGP; see RFC 2440
1391	 * packet tag 3
1392	 *
1393	 * Tag 3 identifier (1 byte)
1394	 * Max Tag 3 packet size (max 3 bytes)
1395	 * Version (1 byte)
1396	 * Cipher code (1 byte)
1397	 * S2K specifier (1 byte)
1398	 * Hash identifier (1 byte)
1399	 * Salt (ECRYPTFS_SALT_SIZE)
1400	 * Hash iterations (1 byte)
1401	 * Encrypted key (arbitrary)
1402	 *
1403	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1404	 */
1405	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1406		printk(KERN_ERR "Max packet size too large\n");
1407		rc = -EINVAL;
1408		goto out;
1409	}
1410	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1411		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1412		       ECRYPTFS_TAG_3_PACKET_TYPE);
1413		rc = -EINVAL;
1414		goto out;
1415	}
1416	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1417	 * at end of function upon failure */
1418	auth_tok_list_item =
1419	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1420	if (!auth_tok_list_item) {
1421		printk(KERN_ERR "Unable to allocate memory\n");
1422		rc = -ENOMEM;
1423		goto out;
1424	}
1425	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1426	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1427					  &length_size);
1428	if (rc) {
1429		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1430		       rc);
1431		goto out_free;
1432	}
1433	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1434		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1435		rc = -EINVAL;
1436		goto out_free;
1437	}
1438	(*packet_size) += length_size;
1439	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1440		printk(KERN_ERR "Packet size exceeds max\n");
1441		rc = -EINVAL;
1442		goto out_free;
1443	}
1444	(*new_auth_tok)->session_key.encrypted_key_size =
1445		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1446	if ((*new_auth_tok)->session_key.encrypted_key_size
1447	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1448		printk(KERN_WARNING "Tag 3 packet contains key larger "
1449		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1450		rc = -EINVAL;
1451		goto out_free;
1452	}
1453	if (unlikely(data[(*packet_size)++] != 0x04)) {
1454		printk(KERN_WARNING "Unknown version number [%d]\n",
1455		       data[(*packet_size) - 1]);
1456		rc = -EINVAL;
1457		goto out_free;
1458	}
1459	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1460					    (u16)data[(*packet_size)]);
1461	if (rc)
1462		goto out_free;
1463	/* A little extra work to differentiate among the AES key
1464	 * sizes; see RFC2440 */
1465	switch(data[(*packet_size)++]) {
1466	case RFC2440_CIPHER_AES_192:
1467		crypt_stat->key_size = 24;
1468		break;
1469	default:
1470		crypt_stat->key_size =
1471			(*new_auth_tok)->session_key.encrypted_key_size;
1472	}
1473	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1474	if (rc)
1475		goto out_free;
1476	if (unlikely(data[(*packet_size)++] != 0x03)) {
1477		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1478		rc = -ENOSYS;
1479		goto out_free;
1480	}
1481	/* TODO: finish the hash mapping */
1482	switch (data[(*packet_size)++]) {
1483	case 0x01: /* See RFC2440 for these numbers and their mappings */
1484		/* Choose MD5 */
1485		memcpy((*new_auth_tok)->token.password.salt,
1486		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1487		(*packet_size) += ECRYPTFS_SALT_SIZE;
1488		/* This conversion was taken straight from RFC2440 */
1489		(*new_auth_tok)->token.password.hash_iterations =
1490			((u32) 16 + (data[(*packet_size)] & 15))
1491				<< ((data[(*packet_size)] >> 4) + 6);
1492		(*packet_size)++;
1493		/* Friendly reminder:
1494		 * (*new_auth_tok)->session_key.encrypted_key_size =
1495		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1496		memcpy((*new_auth_tok)->session_key.encrypted_key,
1497		       &data[(*packet_size)],
1498		       (*new_auth_tok)->session_key.encrypted_key_size);
1499		(*packet_size) +=
1500			(*new_auth_tok)->session_key.encrypted_key_size;
1501		(*new_auth_tok)->session_key.flags &=
1502			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1503		(*new_auth_tok)->session_key.flags |=
1504			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1505		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1506		break;
1507	default:
1508		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1509				"[%d]\n", data[(*packet_size) - 1]);
1510		rc = -ENOSYS;
1511		goto out_free;
1512	}
1513	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1514	/* TODO: Parametarize; we might actually want userspace to
1515	 * decrypt the session key. */
1516	(*new_auth_tok)->session_key.flags &=
1517			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1518	(*new_auth_tok)->session_key.flags &=
1519			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1520	list_add(&auth_tok_list_item->list, auth_tok_list);
1521	goto out;
1522out_free:
1523	(*new_auth_tok) = NULL;
1524	memset(auth_tok_list_item, 0,
1525	       sizeof(struct ecryptfs_auth_tok_list_item));
1526	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1527			auth_tok_list_item);
1528out:
1529	if (rc)
1530		(*packet_size) = 0;
1531	return rc;
1532}
1533
1534/**
1535 * parse_tag_11_packet
1536 * @data: The raw bytes of the packet
1537 * @contents: This function writes the data contents of the literal
1538 *            packet into this memory location
1539 * @max_contents_bytes: The maximum number of bytes that this function
1540 *                      is allowed to write into contents
1541 * @tag_11_contents_size: This function writes the size of the parsed
1542 *                        contents into this memory location; zero on
1543 *                        error
1544 * @packet_size: This function writes the size of the parsed packet
1545 *               into this memory location; zero on error
1546 * @max_packet_size: maximum number of bytes to parse
1547 *
1548 * Returns zero on success; non-zero on error.
1549 */
1550static int
1551parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1552		    size_t max_contents_bytes, size_t *tag_11_contents_size,
1553		    size_t *packet_size, size_t max_packet_size)
1554{
1555	size_t body_size;
1556	size_t length_size;
1557	int rc = 0;
1558
1559	(*packet_size) = 0;
1560	(*tag_11_contents_size) = 0;
1561	/* This format is inspired by OpenPGP; see RFC 2440
1562	 * packet tag 11
1563	 *
1564	 * Tag 11 identifier (1 byte)
1565	 * Max Tag 11 packet size (max 3 bytes)
1566	 * Binary format specifier (1 byte)
1567	 * Filename length (1 byte)
1568	 * Filename ("_CONSOLE") (8 bytes)
1569	 * Modification date (4 bytes)
1570	 * Literal data (arbitrary)
1571	 *
1572	 * We need at least 16 bytes of data for the packet to even be
1573	 * valid.
1574	 */
1575	if (max_packet_size < 16) {
1576		printk(KERN_ERR "Maximum packet size too small\n");
1577		rc = -EINVAL;
1578		goto out;
1579	}
1580	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1581		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1582		rc = -EINVAL;
1583		goto out;
1584	}
1585	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1586					  &length_size);
1587	if (rc) {
1588		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1589		goto out;
1590	}
1591	if (body_size < 14) {
1592		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1593		rc = -EINVAL;
1594		goto out;
1595	}
1596	(*packet_size) += length_size;
1597	(*tag_11_contents_size) = (body_size - 14);
1598	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1599		printk(KERN_ERR "Packet size exceeds max\n");
1600		rc = -EINVAL;
1601		goto out;
1602	}
1603	if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1604		printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1605		       "expected size\n");
1606		rc = -EINVAL;
1607		goto out;
1608	}
1609	if (data[(*packet_size)++] != 0x62) {
1610		printk(KERN_WARNING "Unrecognizable packet\n");
1611		rc = -EINVAL;
1612		goto out;
1613	}
1614	if (data[(*packet_size)++] != 0x08) {
1615		printk(KERN_WARNING "Unrecognizable packet\n");
1616		rc = -EINVAL;
1617		goto out;
1618	}
1619	(*packet_size) += 12; /* Ignore filename and modification date */
1620	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1621	(*packet_size) += (*tag_11_contents_size);
1622out:
1623	if (rc) {
1624		(*packet_size) = 0;
1625		(*tag_11_contents_size) = 0;
1626	}
1627	return rc;
1628}
1629
1630int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1631				      struct ecryptfs_auth_tok **auth_tok,
1632				      char *sig)
1633{
1634	int rc = 0;
1635
1636	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1637	if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1638		(*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1639		if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1640			printk(KERN_ERR "Could not find key with description: [%s]\n",
1641			      sig);
1642			rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1643			(*auth_tok_key) = NULL;
1644			goto out;
1645		}
1646	}
1647	down_write(&(*auth_tok_key)->sem);
1648	rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1649	if (rc) {
1650		up_write(&(*auth_tok_key)->sem);
1651		key_put(*auth_tok_key);
1652		(*auth_tok_key) = NULL;
1653		goto out;
1654	}
1655out:
1656	return rc;
1657}
1658
1659/**
1660 * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1661 * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1662 * @crypt_stat: The cryptographic context
1663 *
1664 * Returns zero on success; non-zero error otherwise
1665 */
1666static int
1667decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1668					 struct ecryptfs_crypt_stat *crypt_stat)
1669{
1670	struct scatterlist dst_sg[2];
1671	struct scatterlist src_sg[2];
1672	struct mutex *tfm_mutex;
1673	struct blkcipher_desc desc = {
1674		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
1675	};
1676	int rc = 0;
1677
1678	if (unlikely(ecryptfs_verbosity > 0)) {
1679		ecryptfs_printk(
1680			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1681			auth_tok->token.password.session_key_encryption_key_bytes);
1682		ecryptfs_dump_hex(
1683			auth_tok->token.password.session_key_encryption_key,
1684			auth_tok->token.password.session_key_encryption_key_bytes);
1685	}
1686	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1687							crypt_stat->cipher);
1688	if (unlikely(rc)) {
1689		printk(KERN_ERR "Internal error whilst attempting to get "
1690		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1691		       crypt_stat->cipher, rc);
1692		goto out;
1693	}
1694	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1695				 auth_tok->session_key.encrypted_key_size,
1696				 src_sg, 2);
1697	if (rc < 1 || rc > 2) {
1698		printk(KERN_ERR "Internal error whilst attempting to convert "
1699			"auth_tok->session_key.encrypted_key to scatterlist; "
1700			"expected rc = 1; got rc = [%d]. "
1701		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1702			auth_tok->session_key.encrypted_key_size);
1703		goto out;
1704	}
1705	auth_tok->session_key.decrypted_key_size =
1706		auth_tok->session_key.encrypted_key_size;
1707	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1708				 auth_tok->session_key.decrypted_key_size,
1709				 dst_sg, 2);
1710	if (rc < 1 || rc > 2) {
1711		printk(KERN_ERR "Internal error whilst attempting to convert "
1712			"auth_tok->session_key.decrypted_key to scatterlist; "
1713			"expected rc = 1; got rc = [%d]\n", rc);
1714		goto out;
1715	}
1716	mutex_lock(tfm_mutex);
1717	rc = crypto_blkcipher_setkey(
1718		desc.tfm, auth_tok->token.password.session_key_encryption_key,
 
 
 
 
 
 
 
 
 
 
 
 
1719		crypt_stat->key_size);
1720	if (unlikely(rc < 0)) {
1721		mutex_unlock(tfm_mutex);
1722		printk(KERN_ERR "Error setting key for crypto context\n");
1723		rc = -EINVAL;
1724		goto out;
1725	}
1726	rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1727				      auth_tok->session_key.encrypted_key_size);
 
 
1728	mutex_unlock(tfm_mutex);
1729	if (unlikely(rc)) {
1730		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1731		goto out;
1732	}
1733	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1734	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1735	       auth_tok->session_key.decrypted_key_size);
1736	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1737	if (unlikely(ecryptfs_verbosity > 0)) {
1738		ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1739				crypt_stat->key_size);
1740		ecryptfs_dump_hex(crypt_stat->key,
1741				  crypt_stat->key_size);
1742	}
1743out:
 
1744	return rc;
1745}
1746
1747/**
1748 * ecryptfs_parse_packet_set
1749 * @crypt_stat: The cryptographic context
1750 * @src: Virtual address of region of memory containing the packets
1751 * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1752 *
1753 * Get crypt_stat to have the file's session key if the requisite key
1754 * is available to decrypt the session key.
1755 *
1756 * Returns Zero if a valid authentication token was retrieved and
1757 * processed; negative value for file not encrypted or for error
1758 * conditions.
1759 */
1760int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1761			      unsigned char *src,
1762			      struct dentry *ecryptfs_dentry)
1763{
1764	size_t i = 0;
1765	size_t found_auth_tok;
1766	size_t next_packet_is_auth_tok_packet;
1767	struct list_head auth_tok_list;
1768	struct ecryptfs_auth_tok *matching_auth_tok;
1769	struct ecryptfs_auth_tok *candidate_auth_tok;
1770	char *candidate_auth_tok_sig;
1771	size_t packet_size;
1772	struct ecryptfs_auth_tok *new_auth_tok;
1773	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1774	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1775	size_t tag_11_contents_size;
1776	size_t tag_11_packet_size;
1777	struct key *auth_tok_key = NULL;
1778	int rc = 0;
1779
1780	INIT_LIST_HEAD(&auth_tok_list);
1781	/* Parse the header to find as many packets as we can; these will be
1782	 * added the our &auth_tok_list */
1783	next_packet_is_auth_tok_packet = 1;
1784	while (next_packet_is_auth_tok_packet) {
1785		size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1786
1787		switch (src[i]) {
1788		case ECRYPTFS_TAG_3_PACKET_TYPE:
1789			rc = parse_tag_3_packet(crypt_stat,
1790						(unsigned char *)&src[i],
1791						&auth_tok_list, &new_auth_tok,
1792						&packet_size, max_packet_size);
1793			if (rc) {
1794				ecryptfs_printk(KERN_ERR, "Error parsing "
1795						"tag 3 packet\n");
1796				rc = -EIO;
1797				goto out_wipe_list;
1798			}
1799			i += packet_size;
1800			rc = parse_tag_11_packet((unsigned char *)&src[i],
1801						 sig_tmp_space,
1802						 ECRYPTFS_SIG_SIZE,
1803						 &tag_11_contents_size,
1804						 &tag_11_packet_size,
1805						 max_packet_size);
1806			if (rc) {
1807				ecryptfs_printk(KERN_ERR, "No valid "
1808						"(ecryptfs-specific) literal "
1809						"packet containing "
1810						"authentication token "
1811						"signature found after "
1812						"tag 3 packet\n");
1813				rc = -EIO;
1814				goto out_wipe_list;
1815			}
1816			i += tag_11_packet_size;
1817			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1818				ecryptfs_printk(KERN_ERR, "Expected "
1819						"signature of size [%d]; "
1820						"read size [%zd]\n",
1821						ECRYPTFS_SIG_SIZE,
1822						tag_11_contents_size);
1823				rc = -EIO;
1824				goto out_wipe_list;
1825			}
1826			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1827					sig_tmp_space, tag_11_contents_size);
1828			new_auth_tok->token.password.signature[
1829				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1830			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1831			break;
1832		case ECRYPTFS_TAG_1_PACKET_TYPE:
1833			rc = parse_tag_1_packet(crypt_stat,
1834						(unsigned char *)&src[i],
1835						&auth_tok_list, &new_auth_tok,
1836						&packet_size, max_packet_size);
1837			if (rc) {
1838				ecryptfs_printk(KERN_ERR, "Error parsing "
1839						"tag 1 packet\n");
1840				rc = -EIO;
1841				goto out_wipe_list;
1842			}
1843			i += packet_size;
1844			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1845			break;
1846		case ECRYPTFS_TAG_11_PACKET_TYPE:
1847			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1848					"(Tag 11 not allowed by itself)\n");
1849			rc = -EIO;
1850			goto out_wipe_list;
1851			break;
1852		default:
1853			ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1854					"of the file header; hex value of "
1855					"character is [0x%.2x]\n", i, src[i]);
1856			next_packet_is_auth_tok_packet = 0;
1857		}
1858	}
1859	if (list_empty(&auth_tok_list)) {
1860		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1861		       "eCryptfs file; this is not supported in this version "
1862		       "of the eCryptfs kernel module\n");
1863		rc = -EINVAL;
1864		goto out;
1865	}
1866	/* auth_tok_list contains the set of authentication tokens
1867	 * parsed from the metadata. We need to find a matching
1868	 * authentication token that has the secret component(s)
1869	 * necessary to decrypt the EFEK in the auth_tok parsed from
1870	 * the metadata. There may be several potential matches, but
1871	 * just one will be sufficient to decrypt to get the FEK. */
1872find_next_matching_auth_tok:
1873	found_auth_tok = 0;
1874	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1875		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1876		if (unlikely(ecryptfs_verbosity > 0)) {
1877			ecryptfs_printk(KERN_DEBUG,
1878					"Considering cadidate auth tok:\n");
1879			ecryptfs_dump_auth_tok(candidate_auth_tok);
1880		}
1881		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1882					       candidate_auth_tok);
1883		if (rc) {
1884			printk(KERN_ERR
1885			       "Unrecognized candidate auth tok type: [%d]\n",
1886			       candidate_auth_tok->token_type);
1887			rc = -EINVAL;
1888			goto out_wipe_list;
1889		}
1890		rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1891					       &matching_auth_tok,
1892					       crypt_stat->mount_crypt_stat,
1893					       candidate_auth_tok_sig);
1894		if (!rc) {
1895			found_auth_tok = 1;
1896			goto found_matching_auth_tok;
1897		}
1898	}
1899	if (!found_auth_tok) {
1900		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1901				"authentication token\n");
1902		rc = -EIO;
1903		goto out_wipe_list;
1904	}
1905found_matching_auth_tok:
1906	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1907		memcpy(&(candidate_auth_tok->token.private_key),
1908		       &(matching_auth_tok->token.private_key),
1909		       sizeof(struct ecryptfs_private_key));
1910		up_write(&(auth_tok_key->sem));
1911		key_put(auth_tok_key);
1912		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1913						       crypt_stat);
1914	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1915		memcpy(&(candidate_auth_tok->token.password),
1916		       &(matching_auth_tok->token.password),
1917		       sizeof(struct ecryptfs_password));
1918		up_write(&(auth_tok_key->sem));
1919		key_put(auth_tok_key);
1920		rc = decrypt_passphrase_encrypted_session_key(
1921			candidate_auth_tok, crypt_stat);
1922	} else {
1923		up_write(&(auth_tok_key->sem));
1924		key_put(auth_tok_key);
1925		rc = -EINVAL;
1926	}
1927	if (rc) {
1928		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1929
1930		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1931				"session key for authentication token with sig "
1932				"[%.*s]; rc = [%d]. Removing auth tok "
1933				"candidate from the list and searching for "
1934				"the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1935				candidate_auth_tok_sig,	rc);
1936		list_for_each_entry_safe(auth_tok_list_item,
1937					 auth_tok_list_item_tmp,
1938					 &auth_tok_list, list) {
1939			if (candidate_auth_tok
1940			    == &auth_tok_list_item->auth_tok) {
1941				list_del(&auth_tok_list_item->list);
1942				kmem_cache_free(
1943					ecryptfs_auth_tok_list_item_cache,
1944					auth_tok_list_item);
1945				goto find_next_matching_auth_tok;
1946			}
1947		}
1948		BUG();
1949	}
1950	rc = ecryptfs_compute_root_iv(crypt_stat);
1951	if (rc) {
1952		ecryptfs_printk(KERN_ERR, "Error computing "
1953				"the root IV\n");
1954		goto out_wipe_list;
1955	}
1956	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1957	if (rc) {
1958		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1959				"context for cipher [%s]; rc = [%d]\n",
1960				crypt_stat->cipher, rc);
1961	}
1962out_wipe_list:
1963	wipe_auth_tok_list(&auth_tok_list);
1964out:
1965	return rc;
1966}
1967
1968static int
1969pki_encrypt_session_key(struct key *auth_tok_key,
1970			struct ecryptfs_auth_tok *auth_tok,
1971			struct ecryptfs_crypt_stat *crypt_stat,
1972			struct ecryptfs_key_record *key_rec)
1973{
1974	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1975	char *payload = NULL;
1976	size_t payload_len = 0;
1977	struct ecryptfs_message *msg;
1978	int rc;
1979
1980	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1981				 ecryptfs_code_for_cipher_string(
1982					 crypt_stat->cipher,
1983					 crypt_stat->key_size),
1984				 crypt_stat, &payload, &payload_len);
1985	up_write(&(auth_tok_key->sem));
1986	key_put(auth_tok_key);
1987	if (rc) {
1988		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1989		goto out;
1990	}
1991	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1992	if (rc) {
1993		ecryptfs_printk(KERN_ERR, "Error sending message to "
1994				"ecryptfsd\n");
1995		goto out;
1996	}
1997	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1998	if (rc) {
1999		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
2000				"from the user space daemon\n");
2001		rc = -EIO;
2002		goto out;
2003	}
2004	rc = parse_tag_67_packet(key_rec, msg);
2005	if (rc)
2006		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
2007	kfree(msg);
2008out:
2009	kfree(payload);
2010	return rc;
2011}
2012/**
2013 * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2014 * @dest: Buffer into which to write the packet
2015 * @remaining_bytes: Maximum number of bytes that can be writtn
2016 * @auth_tok_key: The authentication token key to unlock and put when done with
2017 *                @auth_tok
2018 * @auth_tok: The authentication token used for generating the tag 1 packet
2019 * @crypt_stat: The cryptographic context
2020 * @key_rec: The key record struct for the tag 1 packet
2021 * @packet_size: This function will write the number of bytes that end
2022 *               up constituting the packet; set to zero on error
2023 *
2024 * Returns zero on success; non-zero on error.
2025 */
2026static int
2027write_tag_1_packet(char *dest, size_t *remaining_bytes,
2028		   struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
2029		   struct ecryptfs_crypt_stat *crypt_stat,
2030		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2031{
2032	size_t i;
2033	size_t encrypted_session_key_valid = 0;
2034	size_t packet_size_length;
2035	size_t max_packet_size;
2036	int rc = 0;
2037
2038	(*packet_size) = 0;
2039	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2040			  ECRYPTFS_SIG_SIZE);
2041	encrypted_session_key_valid = 0;
2042	for (i = 0; i < crypt_stat->key_size; i++)
2043		encrypted_session_key_valid |=
2044			auth_tok->session_key.encrypted_key[i];
2045	if (encrypted_session_key_valid) {
2046		memcpy(key_rec->enc_key,
2047		       auth_tok->session_key.encrypted_key,
2048		       auth_tok->session_key.encrypted_key_size);
2049		up_write(&(auth_tok_key->sem));
2050		key_put(auth_tok_key);
2051		goto encrypted_session_key_set;
2052	}
2053	if (auth_tok->session_key.encrypted_key_size == 0)
2054		auth_tok->session_key.encrypted_key_size =
2055			auth_tok->token.private_key.key_size;
2056	rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2057				     key_rec);
2058	if (rc) {
2059		printk(KERN_ERR "Failed to encrypt session key via a key "
2060		       "module; rc = [%d]\n", rc);
2061		goto out;
2062	}
2063	if (ecryptfs_verbosity > 0) {
2064		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2065		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2066	}
2067encrypted_session_key_set:
2068	/* This format is inspired by OpenPGP; see RFC 2440
2069	 * packet tag 1 */
2070	max_packet_size = (1                         /* Tag 1 identifier */
2071			   + 3                       /* Max Tag 1 packet size */
2072			   + 1                       /* Version */
2073			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
2074			   + 1                       /* Cipher identifier */
2075			   + key_rec->enc_key_size); /* Encrypted key size */
2076	if (max_packet_size > (*remaining_bytes)) {
2077		printk(KERN_ERR "Packet length larger than maximum allowable; "
2078		       "need up to [%td] bytes, but there are only [%td] "
2079		       "available\n", max_packet_size, (*remaining_bytes));
2080		rc = -EINVAL;
2081		goto out;
2082	}
2083	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2084	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2085					  (max_packet_size - 4),
2086					  &packet_size_length);
2087	if (rc) {
2088		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2089				"header; cannot generate packet length\n");
2090		goto out;
2091	}
2092	(*packet_size) += packet_size_length;
2093	dest[(*packet_size)++] = 0x03; /* version 3 */
2094	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2095	(*packet_size) += ECRYPTFS_SIG_SIZE;
2096	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2097	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2098	       key_rec->enc_key_size);
2099	(*packet_size) += key_rec->enc_key_size;
2100out:
2101	if (rc)
2102		(*packet_size) = 0;
2103	else
2104		(*remaining_bytes) -= (*packet_size);
2105	return rc;
2106}
2107
2108/**
2109 * write_tag_11_packet
2110 * @dest: Target into which Tag 11 packet is to be written
2111 * @remaining_bytes: Maximum packet length
2112 * @contents: Byte array of contents to copy in
2113 * @contents_length: Number of bytes in contents
2114 * @packet_length: Length of the Tag 11 packet written; zero on error
2115 *
2116 * Returns zero on success; non-zero on error.
2117 */
2118static int
2119write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2120		    size_t contents_length, size_t *packet_length)
2121{
2122	size_t packet_size_length;
2123	size_t max_packet_size;
2124	int rc = 0;
2125
2126	(*packet_length) = 0;
2127	/* This format is inspired by OpenPGP; see RFC 2440
2128	 * packet tag 11 */
2129	max_packet_size = (1                   /* Tag 11 identifier */
2130			   + 3                 /* Max Tag 11 packet size */
2131			   + 1                 /* Binary format specifier */
2132			   + 1                 /* Filename length */
2133			   + 8                 /* Filename ("_CONSOLE") */
2134			   + 4                 /* Modification date */
2135			   + contents_length); /* Literal data */
2136	if (max_packet_size > (*remaining_bytes)) {
2137		printk(KERN_ERR "Packet length larger than maximum allowable; "
2138		       "need up to [%td] bytes, but there are only [%td] "
2139		       "available\n", max_packet_size, (*remaining_bytes));
2140		rc = -EINVAL;
2141		goto out;
2142	}
2143	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2144	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2145					  (max_packet_size - 4),
2146					  &packet_size_length);
2147	if (rc) {
2148		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2149		       "generate packet length. rc = [%d]\n", rc);
2150		goto out;
2151	}
2152	(*packet_length) += packet_size_length;
2153	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2154	dest[(*packet_length)++] = 8;
2155	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2156	(*packet_length) += 8;
2157	memset(&dest[(*packet_length)], 0x00, 4);
2158	(*packet_length) += 4;
2159	memcpy(&dest[(*packet_length)], contents, contents_length);
2160	(*packet_length) += contents_length;
2161 out:
2162	if (rc)
2163		(*packet_length) = 0;
2164	else
2165		(*remaining_bytes) -= (*packet_length);
2166	return rc;
2167}
2168
2169/**
2170 * write_tag_3_packet
2171 * @dest: Buffer into which to write the packet
2172 * @remaining_bytes: Maximum number of bytes that can be written
2173 * @auth_tok: Authentication token
2174 * @crypt_stat: The cryptographic context
2175 * @key_rec: encrypted key
2176 * @packet_size: This function will write the number of bytes that end
2177 *               up constituting the packet; set to zero on error
2178 *
2179 * Returns zero on success; non-zero on error.
2180 */
2181static int
2182write_tag_3_packet(char *dest, size_t *remaining_bytes,
2183		   struct ecryptfs_auth_tok *auth_tok,
2184		   struct ecryptfs_crypt_stat *crypt_stat,
2185		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2186{
2187	size_t i;
2188	size_t encrypted_session_key_valid = 0;
2189	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2190	struct scatterlist dst_sg[2];
2191	struct scatterlist src_sg[2];
2192	struct mutex *tfm_mutex = NULL;
2193	u8 cipher_code;
2194	size_t packet_size_length;
2195	size_t max_packet_size;
2196	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2197		crypt_stat->mount_crypt_stat;
2198	struct blkcipher_desc desc = {
2199		.tfm = NULL,
2200		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
2201	};
2202	int rc = 0;
2203
2204	(*packet_size) = 0;
2205	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2206			  ECRYPTFS_SIG_SIZE);
2207	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2208							crypt_stat->cipher);
2209	if (unlikely(rc)) {
2210		printk(KERN_ERR "Internal error whilst attempting to get "
2211		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2212		       crypt_stat->cipher, rc);
2213		goto out;
2214	}
2215	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2216		struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2217
2218		printk(KERN_WARNING "No key size specified at mount; "
2219		       "defaulting to [%d]\n", alg->max_keysize);
 
2220		mount_crypt_stat->global_default_cipher_key_size =
2221			alg->max_keysize;
2222	}
2223	if (crypt_stat->key_size == 0)
2224		crypt_stat->key_size =
2225			mount_crypt_stat->global_default_cipher_key_size;
2226	if (auth_tok->session_key.encrypted_key_size == 0)
2227		auth_tok->session_key.encrypted_key_size =
2228			crypt_stat->key_size;
2229	if (crypt_stat->key_size == 24
2230	    && strcmp("aes", crypt_stat->cipher) == 0) {
2231		memset((crypt_stat->key + 24), 0, 8);
2232		auth_tok->session_key.encrypted_key_size = 32;
2233	} else
2234		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2235	key_rec->enc_key_size =
2236		auth_tok->session_key.encrypted_key_size;
2237	encrypted_session_key_valid = 0;
2238	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2239		encrypted_session_key_valid |=
2240			auth_tok->session_key.encrypted_key[i];
2241	if (encrypted_session_key_valid) {
2242		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2243				"using auth_tok->session_key.encrypted_key, "
2244				"where key_rec->enc_key_size = [%zd]\n",
2245				key_rec->enc_key_size);
2246		memcpy(key_rec->enc_key,
2247		       auth_tok->session_key.encrypted_key,
2248		       key_rec->enc_key_size);
2249		goto encrypted_session_key_set;
2250	}
2251	if (auth_tok->token.password.flags &
2252	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2253		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2254				"session key encryption key of size [%d]\n",
2255				auth_tok->token.password.
2256				session_key_encryption_key_bytes);
2257		memcpy(session_key_encryption_key,
2258		       auth_tok->token.password.session_key_encryption_key,
2259		       crypt_stat->key_size);
2260		ecryptfs_printk(KERN_DEBUG,
2261				"Cached session key encryption key:\n");
2262		if (ecryptfs_verbosity > 0)
2263			ecryptfs_dump_hex(session_key_encryption_key, 16);
2264	}
2265	if (unlikely(ecryptfs_verbosity > 0)) {
2266		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2267		ecryptfs_dump_hex(session_key_encryption_key, 16);
2268	}
2269	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2270				 src_sg, 2);
2271	if (rc < 1 || rc > 2) {
2272		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2273				"for crypt_stat session key; expected rc = 1; "
2274				"got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2275				rc, key_rec->enc_key_size);
2276		rc = -ENOMEM;
2277		goto out;
2278	}
2279	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2280				 dst_sg, 2);
2281	if (rc < 1 || rc > 2) {
2282		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2283				"for crypt_stat encrypted session key; "
2284				"expected rc = 1; got rc = [%d]. "
2285				"key_rec->enc_key_size = [%zd]\n", rc,
2286				key_rec->enc_key_size);
2287		rc = -ENOMEM;
2288		goto out;
2289	}
2290	mutex_lock(tfm_mutex);
2291	rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2292				     crypt_stat->key_size);
2293	if (rc < 0) {
2294		mutex_unlock(tfm_mutex);
2295		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2296				"context; rc = [%d]\n", rc);
2297		goto out;
2298	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2299	rc = 0;
2300	ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2301			crypt_stat->key_size);
2302	rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2303				      (*key_rec).enc_key_size);
 
2304	mutex_unlock(tfm_mutex);
 
2305	if (rc) {
2306		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2307		goto out;
2308	}
2309	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2310	if (ecryptfs_verbosity > 0) {
2311		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2312				key_rec->enc_key_size);
2313		ecryptfs_dump_hex(key_rec->enc_key,
2314				  key_rec->enc_key_size);
2315	}
2316encrypted_session_key_set:
2317	/* This format is inspired by OpenPGP; see RFC 2440
2318	 * packet tag 3 */
2319	max_packet_size = (1                         /* Tag 3 identifier */
2320			   + 3                       /* Max Tag 3 packet size */
2321			   + 1                       /* Version */
2322			   + 1                       /* Cipher code */
2323			   + 1                       /* S2K specifier */
2324			   + 1                       /* Hash identifier */
2325			   + ECRYPTFS_SALT_SIZE      /* Salt */
2326			   + 1                       /* Hash iterations */
2327			   + key_rec->enc_key_size); /* Encrypted key size */
2328	if (max_packet_size > (*remaining_bytes)) {
2329		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2330		       "there are only [%td] available\n", max_packet_size,
2331		       (*remaining_bytes));
2332		rc = -EINVAL;
2333		goto out;
2334	}
2335	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2336	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2337	 * to get the number of octets in the actual Tag 3 packet */
2338	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2339					  (max_packet_size - 4),
2340					  &packet_size_length);
2341	if (rc) {
2342		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2343		       "generate packet length. rc = [%d]\n", rc);
2344		goto out;
2345	}
2346	(*packet_size) += packet_size_length;
2347	dest[(*packet_size)++] = 0x04; /* version 4 */
2348	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2349	 * specified with strings */
2350	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2351						      crypt_stat->key_size);
2352	if (cipher_code == 0) {
2353		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2354				"cipher [%s]\n", crypt_stat->cipher);
2355		rc = -EINVAL;
2356		goto out;
2357	}
2358	dest[(*packet_size)++] = cipher_code;
2359	dest[(*packet_size)++] = 0x03;	/* S2K */
2360	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
2361	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2362	       ECRYPTFS_SALT_SIZE);
2363	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
2364	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2365	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2366	       key_rec->enc_key_size);
2367	(*packet_size) += key_rec->enc_key_size;
2368out:
2369	if (rc)
2370		(*packet_size) = 0;
2371	else
2372		(*remaining_bytes) -= (*packet_size);
2373	return rc;
2374}
2375
2376struct kmem_cache *ecryptfs_key_record_cache;
2377
2378/**
2379 * ecryptfs_generate_key_packet_set
2380 * @dest_base: Virtual address from which to write the key record set
2381 * @crypt_stat: The cryptographic context from which the
2382 *              authentication tokens will be retrieved
2383 * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2384 *                   for the global parameters
2385 * @len: The amount written
2386 * @max: The maximum amount of data allowed to be written
2387 *
2388 * Generates a key packet set and writes it to the virtual address
2389 * passed in.
2390 *
2391 * Returns zero on success; non-zero on error.
2392 */
2393int
2394ecryptfs_generate_key_packet_set(char *dest_base,
2395				 struct ecryptfs_crypt_stat *crypt_stat,
2396				 struct dentry *ecryptfs_dentry, size_t *len,
2397				 size_t max)
2398{
2399	struct ecryptfs_auth_tok *auth_tok;
2400	struct key *auth_tok_key = NULL;
2401	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2402		&ecryptfs_superblock_to_private(
2403			ecryptfs_dentry->d_sb)->mount_crypt_stat;
2404	size_t written;
2405	struct ecryptfs_key_record *key_rec;
2406	struct ecryptfs_key_sig *key_sig;
2407	int rc = 0;
2408
2409	(*len) = 0;
2410	mutex_lock(&crypt_stat->keysig_list_mutex);
2411	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2412	if (!key_rec) {
2413		rc = -ENOMEM;
2414		goto out;
2415	}
2416	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2417			    crypt_stat_list) {
2418		memset(key_rec, 0, sizeof(*key_rec));
2419		rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2420							   &auth_tok,
2421							   mount_crypt_stat,
2422							   key_sig->keysig);
2423		if (rc) {
2424			printk(KERN_WARNING "Unable to retrieve auth tok with "
2425			       "sig = [%s]\n", key_sig->keysig);
2426			rc = process_find_global_auth_tok_for_sig_err(rc);
2427			goto out_free;
2428		}
2429		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2430			rc = write_tag_3_packet((dest_base + (*len)),
2431						&max, auth_tok,
2432						crypt_stat, key_rec,
2433						&written);
2434			up_write(&(auth_tok_key->sem));
2435			key_put(auth_tok_key);
2436			if (rc) {
2437				ecryptfs_printk(KERN_WARNING, "Error "
2438						"writing tag 3 packet\n");
2439				goto out_free;
2440			}
2441			(*len) += written;
2442			/* Write auth tok signature packet */
2443			rc = write_tag_11_packet((dest_base + (*len)), &max,
2444						 key_rec->sig,
2445						 ECRYPTFS_SIG_SIZE, &written);
2446			if (rc) {
2447				ecryptfs_printk(KERN_ERR, "Error writing "
2448						"auth tok signature packet\n");
2449				goto out_free;
2450			}
2451			(*len) += written;
2452		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2453			rc = write_tag_1_packet(dest_base + (*len), &max,
2454						auth_tok_key, auth_tok,
2455						crypt_stat, key_rec, &written);
2456			if (rc) {
2457				ecryptfs_printk(KERN_WARNING, "Error "
2458						"writing tag 1 packet\n");
2459				goto out_free;
2460			}
2461			(*len) += written;
2462		} else {
2463			up_write(&(auth_tok_key->sem));
2464			key_put(auth_tok_key);
2465			ecryptfs_printk(KERN_WARNING, "Unsupported "
2466					"authentication token type\n");
2467			rc = -EINVAL;
2468			goto out_free;
2469		}
2470	}
2471	if (likely(max > 0)) {
2472		dest_base[(*len)] = 0x00;
2473	} else {
2474		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2475		rc = -EIO;
2476	}
2477out_free:
2478	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2479out:
2480	if (rc)
2481		(*len) = 0;
2482	mutex_unlock(&crypt_stat->keysig_list_mutex);
2483	return rc;
2484}
2485
2486struct kmem_cache *ecryptfs_key_sig_cache;
2487
2488int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2489{
2490	struct ecryptfs_key_sig *new_key_sig;
2491
2492	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2493	if (!new_key_sig) {
2494		printk(KERN_ERR
2495		       "Error allocating from ecryptfs_key_sig_cache\n");
2496		return -ENOMEM;
2497	}
2498	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2499	new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2500	/* Caller must hold keysig_list_mutex */
2501	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2502
2503	return 0;
2504}
2505
2506struct kmem_cache *ecryptfs_global_auth_tok_cache;
2507
2508int
2509ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2510			     char *sig, u32 global_auth_tok_flags)
2511{
2512	struct ecryptfs_global_auth_tok *new_auth_tok;
2513	int rc = 0;
2514
2515	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2516					GFP_KERNEL);
2517	if (!new_auth_tok) {
2518		rc = -ENOMEM;
2519		printk(KERN_ERR "Error allocating from "
2520		       "ecryptfs_global_auth_tok_cache\n");
2521		goto out;
2522	}
2523	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2524	new_auth_tok->flags = global_auth_tok_flags;
2525	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2526	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2527	list_add(&new_auth_tok->mount_crypt_stat_list,
2528		 &mount_crypt_stat->global_auth_tok_list);
2529	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2530out:
2531	return rc;
2532}
2533