Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2// SPI init/core code
   3//
   4// Copyright (C) 2005 David Brownell
   5// Copyright (C) 2008 Secret Lab Technologies Ltd.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6
   7#include <linux/kernel.h>
   8#include <linux/device.h>
   9#include <linux/init.h>
  10#include <linux/cache.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/mutex.h>
  14#include <linux/of_device.h>
  15#include <linux/of_irq.h>
  16#include <linux/clk/clk-conf.h>
  17#include <linux/slab.h>
  18#include <linux/mod_devicetable.h>
  19#include <linux/spi/spi.h>
  20#include <linux/spi/spi-mem.h>
  21#include <linux/of_gpio.h>
  22#include <linux/gpio/consumer.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/pm_domain.h>
  25#include <linux/property.h>
  26#include <linux/export.h>
  27#include <linux/sched/rt.h>
  28#include <uapi/linux/sched/types.h>
  29#include <linux/delay.h>
  30#include <linux/kthread.h>
  31#include <linux/ioport.h>
  32#include <linux/acpi.h>
  33#include <linux/highmem.h>
  34#include <linux/idr.h>
  35#include <linux/platform_data/x86/apple.h>
  36
  37#define CREATE_TRACE_POINTS
  38#include <trace/events/spi.h>
  39EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
  40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
  41
  42#include "internals.h"
  43
  44static DEFINE_IDR(spi_master_idr);
  45
  46static void spidev_release(struct device *dev)
  47{
  48	struct spi_device	*spi = to_spi_device(dev);
  49
  50	/* spi controllers may cleanup for released devices */
  51	if (spi->controller->cleanup)
  52		spi->controller->cleanup(spi);
  53
  54	spi_controller_put(spi->controller);
  55	kfree(spi->driver_override);
  56	kfree(spi);
  57}
  58
  59static ssize_t
  60modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  61{
  62	const struct spi_device	*spi = to_spi_device(dev);
  63	int len;
  64
  65	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  66	if (len != -ENODEV)
  67		return len;
  68
  69	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  70}
  71static DEVICE_ATTR_RO(modalias);
  72
  73static ssize_t driver_override_store(struct device *dev,
  74				     struct device_attribute *a,
  75				     const char *buf, size_t count)
  76{
  77	struct spi_device *spi = to_spi_device(dev);
  78	const char *end = memchr(buf, '\n', count);
  79	const size_t len = end ? end - buf : count;
  80	const char *driver_override, *old;
  81
  82	/* We need to keep extra room for a newline when displaying value */
  83	if (len >= (PAGE_SIZE - 1))
  84		return -EINVAL;
  85
  86	driver_override = kstrndup(buf, len, GFP_KERNEL);
  87	if (!driver_override)
  88		return -ENOMEM;
  89
  90	device_lock(dev);
  91	old = spi->driver_override;
  92	if (len) {
  93		spi->driver_override = driver_override;
  94	} else {
  95		/* Empty string, disable driver override */
  96		spi->driver_override = NULL;
  97		kfree(driver_override);
  98	}
  99	device_unlock(dev);
 100	kfree(old);
 101
 102	return count;
 103}
 104
 105static ssize_t driver_override_show(struct device *dev,
 106				    struct device_attribute *a, char *buf)
 107{
 108	const struct spi_device *spi = to_spi_device(dev);
 109	ssize_t len;
 110
 111	device_lock(dev);
 112	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
 113	device_unlock(dev);
 114	return len;
 115}
 116static DEVICE_ATTR_RW(driver_override);
 117
 118#define SPI_STATISTICS_ATTRS(field, file)				\
 119static ssize_t spi_controller_##field##_show(struct device *dev,	\
 120					     struct device_attribute *attr, \
 121					     char *buf)			\
 122{									\
 123	struct spi_controller *ctlr = container_of(dev,			\
 124					 struct spi_controller, dev);	\
 125	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
 126}									\
 127static struct device_attribute dev_attr_spi_controller_##field = {	\
 128	.attr = { .name = file, .mode = 0444 },				\
 129	.show = spi_controller_##field##_show,				\
 130};									\
 131static ssize_t spi_device_##field##_show(struct device *dev,		\
 132					 struct device_attribute *attr,	\
 133					char *buf)			\
 134{									\
 135	struct spi_device *spi = to_spi_device(dev);			\
 136	return spi_statistics_##field##_show(&spi->statistics, buf);	\
 137}									\
 138static struct device_attribute dev_attr_spi_device_##field = {		\
 139	.attr = { .name = file, .mode = 0444 },				\
 140	.show = spi_device_##field##_show,				\
 141}
 142
 143#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
 144static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
 145					    char *buf)			\
 146{									\
 147	unsigned long flags;						\
 148	ssize_t len;							\
 149	spin_lock_irqsave(&stat->lock, flags);				\
 150	len = sprintf(buf, format_string, stat->field);			\
 151	spin_unlock_irqrestore(&stat->lock, flags);			\
 152	return len;							\
 153}									\
 154SPI_STATISTICS_ATTRS(name, file)
 155
 156#define SPI_STATISTICS_SHOW(field, format_string)			\
 157	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 158				 field, format_string)
 159
 160SPI_STATISTICS_SHOW(messages, "%lu");
 161SPI_STATISTICS_SHOW(transfers, "%lu");
 162SPI_STATISTICS_SHOW(errors, "%lu");
 163SPI_STATISTICS_SHOW(timedout, "%lu");
 164
 165SPI_STATISTICS_SHOW(spi_sync, "%lu");
 166SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 167SPI_STATISTICS_SHOW(spi_async, "%lu");
 168
 169SPI_STATISTICS_SHOW(bytes, "%llu");
 170SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 171SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 172
 173#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 174	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 175				 "transfer_bytes_histo_" number,	\
 176				 transfer_bytes_histo[index],  "%lu")
 177SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 178SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 179SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 180SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 181SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 182SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 183SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 184SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 185SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 186SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 187SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 188SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 189SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 190SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 191SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 192SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 193SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 194
 195SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 196
 197static struct attribute *spi_dev_attrs[] = {
 198	&dev_attr_modalias.attr,
 199	&dev_attr_driver_override.attr,
 200	NULL,
 201};
 202
 203static const struct attribute_group spi_dev_group = {
 204	.attrs  = spi_dev_attrs,
 205};
 206
 207static struct attribute *spi_device_statistics_attrs[] = {
 208	&dev_attr_spi_device_messages.attr,
 209	&dev_attr_spi_device_transfers.attr,
 210	&dev_attr_spi_device_errors.attr,
 211	&dev_attr_spi_device_timedout.attr,
 212	&dev_attr_spi_device_spi_sync.attr,
 213	&dev_attr_spi_device_spi_sync_immediate.attr,
 214	&dev_attr_spi_device_spi_async.attr,
 215	&dev_attr_spi_device_bytes.attr,
 216	&dev_attr_spi_device_bytes_rx.attr,
 217	&dev_attr_spi_device_bytes_tx.attr,
 218	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 219	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 220	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 221	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 222	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 223	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 224	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 225	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 226	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 227	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 228	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 229	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 230	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 231	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 232	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 233	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 234	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 235	&dev_attr_spi_device_transfers_split_maxsize.attr,
 236	NULL,
 237};
 238
 239static const struct attribute_group spi_device_statistics_group = {
 240	.name  = "statistics",
 241	.attrs  = spi_device_statistics_attrs,
 242};
 243
 244static const struct attribute_group *spi_dev_groups[] = {
 245	&spi_dev_group,
 246	&spi_device_statistics_group,
 247	NULL,
 248};
 249
 250static struct attribute *spi_controller_statistics_attrs[] = {
 251	&dev_attr_spi_controller_messages.attr,
 252	&dev_attr_spi_controller_transfers.attr,
 253	&dev_attr_spi_controller_errors.attr,
 254	&dev_attr_spi_controller_timedout.attr,
 255	&dev_attr_spi_controller_spi_sync.attr,
 256	&dev_attr_spi_controller_spi_sync_immediate.attr,
 257	&dev_attr_spi_controller_spi_async.attr,
 258	&dev_attr_spi_controller_bytes.attr,
 259	&dev_attr_spi_controller_bytes_rx.attr,
 260	&dev_attr_spi_controller_bytes_tx.attr,
 261	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 262	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 263	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 264	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 265	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 266	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 267	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 268	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 269	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 270	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 271	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 272	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 273	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 274	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 275	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 276	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 277	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 278	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 279	NULL,
 280};
 281
 282static const struct attribute_group spi_controller_statistics_group = {
 283	.name  = "statistics",
 284	.attrs  = spi_controller_statistics_attrs,
 285};
 286
 287static const struct attribute_group *spi_master_groups[] = {
 288	&spi_controller_statistics_group,
 289	NULL,
 290};
 291
 292void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 293				       struct spi_transfer *xfer,
 294				       struct spi_controller *ctlr)
 295{
 296	unsigned long flags;
 297	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 298
 299	if (l2len < 0)
 300		l2len = 0;
 301
 302	spin_lock_irqsave(&stats->lock, flags);
 303
 304	stats->transfers++;
 305	stats->transfer_bytes_histo[l2len]++;
 306
 307	stats->bytes += xfer->len;
 308	if ((xfer->tx_buf) &&
 309	    (xfer->tx_buf != ctlr->dummy_tx))
 310		stats->bytes_tx += xfer->len;
 311	if ((xfer->rx_buf) &&
 312	    (xfer->rx_buf != ctlr->dummy_rx))
 313		stats->bytes_rx += xfer->len;
 314
 315	spin_unlock_irqrestore(&stats->lock, flags);
 316}
 317EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 318
 319/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 320 * and the sysfs version makes coldplug work too.
 321 */
 322
 323static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 324						const struct spi_device *sdev)
 325{
 326	while (id->name[0]) {
 327		if (!strcmp(sdev->modalias, id->name))
 328			return id;
 329		id++;
 330	}
 331	return NULL;
 332}
 333
 334const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 335{
 336	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 337
 338	return spi_match_id(sdrv->id_table, sdev);
 339}
 340EXPORT_SYMBOL_GPL(spi_get_device_id);
 341
 342static int spi_match_device(struct device *dev, struct device_driver *drv)
 343{
 344	const struct spi_device	*spi = to_spi_device(dev);
 345	const struct spi_driver	*sdrv = to_spi_driver(drv);
 346
 347	/* Check override first, and if set, only use the named driver */
 348	if (spi->driver_override)
 349		return strcmp(spi->driver_override, drv->name) == 0;
 350
 351	/* Attempt an OF style match */
 352	if (of_driver_match_device(dev, drv))
 353		return 1;
 354
 355	/* Then try ACPI */
 356	if (acpi_driver_match_device(dev, drv))
 357		return 1;
 358
 359	if (sdrv->id_table)
 360		return !!spi_match_id(sdrv->id_table, spi);
 361
 362	return strcmp(spi->modalias, drv->name) == 0;
 363}
 364
 365static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 366{
 367	const struct spi_device		*spi = to_spi_device(dev);
 368	int rc;
 369
 370	rc = acpi_device_uevent_modalias(dev, env);
 371	if (rc != -ENODEV)
 372		return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 373
 374	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 
 
 
 
 
 
 
 
 
 
 
 
 
 375}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376
 377struct bus_type spi_bus_type = {
 378	.name		= "spi",
 379	.dev_groups	= spi_dev_groups,
 380	.match		= spi_match_device,
 381	.uevent		= spi_uevent,
 
 382};
 383EXPORT_SYMBOL_GPL(spi_bus_type);
 384
 385
 386static int spi_drv_probe(struct device *dev)
 387{
 388	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 389	struct spi_device		*spi = to_spi_device(dev);
 390	int ret;
 391
 392	ret = of_clk_set_defaults(dev->of_node, false);
 393	if (ret)
 394		return ret;
 395
 396	if (dev->of_node) {
 397		spi->irq = of_irq_get(dev->of_node, 0);
 398		if (spi->irq == -EPROBE_DEFER)
 399			return -EPROBE_DEFER;
 400		if (spi->irq < 0)
 401			spi->irq = 0;
 402	}
 403
 404	ret = dev_pm_domain_attach(dev, true);
 405	if (ret)
 406		return ret;
 407
 408	ret = sdrv->probe(spi);
 409	if (ret)
 410		dev_pm_domain_detach(dev, true);
 411
 412	return ret;
 413}
 414
 415static int spi_drv_remove(struct device *dev)
 416{
 417	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 418	int ret;
 419
 420	ret = sdrv->remove(to_spi_device(dev));
 421	dev_pm_domain_detach(dev, true);
 422
 423	return ret;
 424}
 425
 426static void spi_drv_shutdown(struct device *dev)
 427{
 428	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 429
 430	sdrv->shutdown(to_spi_device(dev));
 431}
 432
 433/**
 434 * __spi_register_driver - register a SPI driver
 435 * @owner: owner module of the driver to register
 436 * @sdrv: the driver to register
 437 * Context: can sleep
 438 *
 439 * Return: zero on success, else a negative error code.
 440 */
 441int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 442{
 443	sdrv->driver.owner = owner;
 444	sdrv->driver.bus = &spi_bus_type;
 445	if (sdrv->probe)
 446		sdrv->driver.probe = spi_drv_probe;
 447	if (sdrv->remove)
 448		sdrv->driver.remove = spi_drv_remove;
 449	if (sdrv->shutdown)
 450		sdrv->driver.shutdown = spi_drv_shutdown;
 451	return driver_register(&sdrv->driver);
 452}
 453EXPORT_SYMBOL_GPL(__spi_register_driver);
 454
 455/*-------------------------------------------------------------------------*/
 456
 457/* SPI devices should normally not be created by SPI device drivers; that
 458 * would make them board-specific.  Similarly with SPI controller drivers.
 459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 460 * with other readonly (flashable) information about mainboard devices.
 461 */
 462
 463struct boardinfo {
 464	struct list_head	list;
 465	struct spi_board_info	board_info;
 466};
 467
 468static LIST_HEAD(board_list);
 469static LIST_HEAD(spi_controller_list);
 470
 471/*
 472 * Used to protect add/del operation for board_info list and
 473 * spi_controller list, and their matching process
 474 * also used to protect object of type struct idr
 475 */
 476static DEFINE_MUTEX(board_lock);
 477
 478/*
 479 * Prevents addition of devices with same chip select and
 480 * addition of devices below an unregistering controller.
 481 */
 482static DEFINE_MUTEX(spi_add_lock);
 483
 484/**
 485 * spi_alloc_device - Allocate a new SPI device
 486 * @ctlr: Controller to which device is connected
 487 * Context: can sleep
 488 *
 489 * Allows a driver to allocate and initialize a spi_device without
 490 * registering it immediately.  This allows a driver to directly
 491 * fill the spi_device with device parameters before calling
 492 * spi_add_device() on it.
 493 *
 494 * Caller is responsible to call spi_add_device() on the returned
 495 * spi_device structure to add it to the SPI controller.  If the caller
 496 * needs to discard the spi_device without adding it, then it should
 497 * call spi_dev_put() on it.
 498 *
 499 * Return: a pointer to the new device, or NULL.
 500 */
 501struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 502{
 503	struct spi_device	*spi;
 
 504
 505	if (!spi_controller_get(ctlr))
 506		return NULL;
 507
 508	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 509	if (!spi) {
 510		spi_controller_put(ctlr);
 
 511		return NULL;
 512	}
 513
 514	spi->master = spi->controller = ctlr;
 515	spi->dev.parent = &ctlr->dev;
 516	spi->dev.bus = &spi_bus_type;
 517	spi->dev.release = spidev_release;
 518	spi->cs_gpio = -ENOENT;
 519	spi->mode = ctlr->buswidth_override_bits;
 520
 521	spin_lock_init(&spi->statistics.lock);
 522
 523	device_initialize(&spi->dev);
 524	return spi;
 525}
 526EXPORT_SYMBOL_GPL(spi_alloc_device);
 527
 528static void spi_dev_set_name(struct spi_device *spi)
 529{
 530	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 531
 532	if (adev) {
 533		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 534		return;
 535	}
 536
 537	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 538		     spi->chip_select);
 539}
 540
 541static int spi_dev_check(struct device *dev, void *data)
 542{
 543	struct spi_device *spi = to_spi_device(dev);
 544	struct spi_device *new_spi = data;
 545
 546	if (spi->controller == new_spi->controller &&
 547	    spi->chip_select == new_spi->chip_select)
 548		return -EBUSY;
 549	return 0;
 550}
 551
 552/**
 553 * spi_add_device - Add spi_device allocated with spi_alloc_device
 554 * @spi: spi_device to register
 555 *
 556 * Companion function to spi_alloc_device.  Devices allocated with
 557 * spi_alloc_device can be added onto the spi bus with this function.
 558 *
 559 * Return: 0 on success; negative errno on failure
 560 */
 561int spi_add_device(struct spi_device *spi)
 562{
 563	struct spi_controller *ctlr = spi->controller;
 564	struct device *dev = ctlr->dev.parent;
 
 565	int status;
 566
 567	/* Chipselects are numbered 0..max; validate. */
 568	if (spi->chip_select >= ctlr->num_chipselect) {
 569		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 570			ctlr->num_chipselect);
 
 571		return -EINVAL;
 572	}
 573
 574	/* Set the bus ID string */
 575	spi_dev_set_name(spi);
 
 
 576
 577	/* We need to make sure there's no other device with this
 578	 * chipselect **BEFORE** we call setup(), else we'll trash
 579	 * its configuration.  Lock against concurrent add() calls.
 580	 */
 581	mutex_lock(&spi_add_lock);
 582
 583	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 584	if (status) {
 585		dev_err(dev, "chipselect %d already in use\n",
 586				spi->chip_select);
 
 
 587		goto done;
 588	}
 589
 590	/* Controller may unregister concurrently */
 591	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
 592	    !device_is_registered(&ctlr->dev)) {
 593		status = -ENODEV;
 594		goto done;
 595	}
 596
 597	/* Descriptors take precedence */
 598	if (ctlr->cs_gpiods)
 599		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
 600	else if (ctlr->cs_gpios)
 601		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
 602
 603	/* Drivers may modify this initial i/o setup, but will
 604	 * normally rely on the device being setup.  Devices
 605	 * using SPI_CS_HIGH can't coexist well otherwise...
 606	 */
 607	status = spi_setup(spi);
 608	if (status < 0) {
 609		dev_err(dev, "can't setup %s, status %d\n",
 610				dev_name(&spi->dev), status);
 611		goto done;
 612	}
 613
 614	/* Device may be bound to an active driver when this returns */
 615	status = device_add(&spi->dev);
 616	if (status < 0)
 617		dev_err(dev, "can't add %s, status %d\n",
 618				dev_name(&spi->dev), status);
 619	else
 620		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 621
 622done:
 623	mutex_unlock(&spi_add_lock);
 624	return status;
 625}
 626EXPORT_SYMBOL_GPL(spi_add_device);
 627
 628/**
 629 * spi_new_device - instantiate one new SPI device
 630 * @ctlr: Controller to which device is connected
 631 * @chip: Describes the SPI device
 632 * Context: can sleep
 633 *
 634 * On typical mainboards, this is purely internal; and it's not needed
 635 * after board init creates the hard-wired devices.  Some development
 636 * platforms may not be able to use spi_register_board_info though, and
 637 * this is exported so that for example a USB or parport based adapter
 638 * driver could add devices (which it would learn about out-of-band).
 639 *
 640 * Return: the new device, or NULL.
 641 */
 642struct spi_device *spi_new_device(struct spi_controller *ctlr,
 643				  struct spi_board_info *chip)
 644{
 645	struct spi_device	*proxy;
 646	int			status;
 647
 648	/* NOTE:  caller did any chip->bus_num checks necessary.
 649	 *
 650	 * Also, unless we change the return value convention to use
 651	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 652	 * suggests syslogged diagnostics are best here (ugh).
 653	 */
 654
 655	proxy = spi_alloc_device(ctlr);
 656	if (!proxy)
 657		return NULL;
 658
 659	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 660
 661	proxy->chip_select = chip->chip_select;
 662	proxy->max_speed_hz = chip->max_speed_hz;
 663	proxy->mode = chip->mode;
 664	proxy->irq = chip->irq;
 665	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 666	proxy->dev.platform_data = (void *) chip->platform_data;
 667	proxy->controller_data = chip->controller_data;
 668	proxy->controller_state = NULL;
 669
 670	if (chip->properties) {
 671		status = device_add_properties(&proxy->dev, chip->properties);
 672		if (status) {
 673			dev_err(&ctlr->dev,
 674				"failed to add properties to '%s': %d\n",
 675				chip->modalias, status);
 676			goto err_dev_put;
 677		}
 678	}
 679
 680	status = spi_add_device(proxy);
 681	if (status < 0)
 682		goto err_remove_props;
 
 
 683
 684	return proxy;
 685
 686err_remove_props:
 687	if (chip->properties)
 688		device_remove_properties(&proxy->dev);
 689err_dev_put:
 690	spi_dev_put(proxy);
 691	return NULL;
 692}
 693EXPORT_SYMBOL_GPL(spi_new_device);
 694
 695/**
 696 * spi_unregister_device - unregister a single SPI device
 697 * @spi: spi_device to unregister
 698 *
 699 * Start making the passed SPI device vanish. Normally this would be handled
 700 * by spi_unregister_controller().
 701 */
 702void spi_unregister_device(struct spi_device *spi)
 703{
 704	if (!spi)
 705		return;
 706
 707	if (spi->dev.of_node) {
 708		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 709		of_node_put(spi->dev.of_node);
 710	}
 711	if (ACPI_COMPANION(&spi->dev))
 712		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 713	device_unregister(&spi->dev);
 714}
 715EXPORT_SYMBOL_GPL(spi_unregister_device);
 716
 717static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 718					      struct spi_board_info *bi)
 719{
 720	struct spi_device *dev;
 721
 722	if (ctlr->bus_num != bi->bus_num)
 723		return;
 724
 725	dev = spi_new_device(ctlr, bi);
 726	if (!dev)
 727		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 728			bi->modalias);
 729}
 730
 731/**
 732 * spi_register_board_info - register SPI devices for a given board
 733 * @info: array of chip descriptors
 734 * @n: how many descriptors are provided
 735 * Context: can sleep
 736 *
 737 * Board-specific early init code calls this (probably during arch_initcall)
 738 * with segments of the SPI device table.  Any device nodes are created later,
 739 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 740 * this table of devices forever, so that reloading a controller driver will
 741 * not make Linux forget about these hard-wired devices.
 742 *
 743 * Other code can also call this, e.g. a particular add-on board might provide
 744 * SPI devices through its expansion connector, so code initializing that board
 745 * would naturally declare its SPI devices.
 746 *
 747 * The board info passed can safely be __initdata ... but be careful of
 748 * any embedded pointers (platform_data, etc), they're copied as-is.
 749 * Device properties are deep-copied though.
 750 *
 751 * Return: zero on success, else a negative error code.
 752 */
 753int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 
 754{
 755	struct boardinfo *bi;
 756	int i;
 757
 758	if (!n)
 759		return 0;
 760
 761	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 762	if (!bi)
 763		return -ENOMEM;
 764
 765	for (i = 0; i < n; i++, bi++, info++) {
 766		struct spi_controller *ctlr;
 767
 768		memcpy(&bi->board_info, info, sizeof(*info));
 769		if (info->properties) {
 770			bi->board_info.properties =
 771					property_entries_dup(info->properties);
 772			if (IS_ERR(bi->board_info.properties))
 773				return PTR_ERR(bi->board_info.properties);
 774		}
 775
 776		mutex_lock(&board_lock);
 777		list_add_tail(&bi->list, &board_list);
 778		list_for_each_entry(ctlr, &spi_controller_list, list)
 779			spi_match_controller_to_boardinfo(ctlr,
 780							  &bi->board_info);
 781		mutex_unlock(&board_lock);
 782	}
 783
 784	return 0;
 785}
 786
 787/*-------------------------------------------------------------------------*/
 788
 789static void spi_set_cs(struct spi_device *spi, bool enable)
 790{
 791	bool enable1 = enable;
 792
 793	/*
 794	 * Avoid calling into the driver (or doing delays) if the chip select
 795	 * isn't actually changing from the last time this was called.
 796	 */
 797	if ((spi->controller->last_cs_enable == enable) &&
 798	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
 799		return;
 800
 801	spi->controller->last_cs_enable = enable;
 802	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
 803
 804	if (!spi->controller->set_cs_timing) {
 805		if (enable1)
 806			spi_delay_exec(&spi->controller->cs_setup, NULL);
 807		else
 808			spi_delay_exec(&spi->controller->cs_hold, NULL);
 809	}
 810
 811	if (spi->mode & SPI_CS_HIGH)
 812		enable = !enable;
 813
 814	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
 815		/*
 816		 * Honour the SPI_NO_CS flag and invert the enable line, as
 817		 * active low is default for SPI. Execution paths that handle
 818		 * polarity inversion in gpiolib (such as device tree) will
 819		 * enforce active high using the SPI_CS_HIGH resulting in a
 820		 * double inversion through the code above.
 821		 */
 822		if (!(spi->mode & SPI_NO_CS)) {
 823			if (spi->cs_gpiod)
 824				gpiod_set_value_cansleep(spi->cs_gpiod,
 825							 !enable);
 826			else
 827				gpio_set_value_cansleep(spi->cs_gpio, !enable);
 828		}
 829		/* Some SPI masters need both GPIO CS & slave_select */
 830		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
 831		    spi->controller->set_cs)
 832			spi->controller->set_cs(spi, !enable);
 833	} else if (spi->controller->set_cs) {
 834		spi->controller->set_cs(spi, !enable);
 835	}
 836
 837	if (!spi->controller->set_cs_timing) {
 838		if (!enable1)
 839			spi_delay_exec(&spi->controller->cs_inactive, NULL);
 840	}
 841}
 842
 843#ifdef CONFIG_HAS_DMA
 844int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 845		struct sg_table *sgt, void *buf, size_t len,
 846		enum dma_data_direction dir)
 847{
 848	const bool vmalloced_buf = is_vmalloc_addr(buf);
 849	unsigned int max_seg_size = dma_get_max_seg_size(dev);
 850#ifdef CONFIG_HIGHMEM
 851	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
 852				(unsigned long)buf < (PKMAP_BASE +
 853					(LAST_PKMAP * PAGE_SIZE)));
 854#else
 855	const bool kmap_buf = false;
 856#endif
 857	int desc_len;
 858	int sgs;
 859	struct page *vm_page;
 860	struct scatterlist *sg;
 861	void *sg_buf;
 862	size_t min;
 863	int i, ret;
 864
 865	if (vmalloced_buf || kmap_buf) {
 866		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 867		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 868	} else if (virt_addr_valid(buf)) {
 869		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
 870		sgs = DIV_ROUND_UP(len, desc_len);
 871	} else {
 872		return -EINVAL;
 873	}
 874
 875	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 876	if (ret != 0)
 877		return ret;
 878
 879	sg = &sgt->sgl[0];
 880	for (i = 0; i < sgs; i++) {
 881
 882		if (vmalloced_buf || kmap_buf) {
 883			/*
 884			 * Next scatterlist entry size is the minimum between
 885			 * the desc_len and the remaining buffer length that
 886			 * fits in a page.
 887			 */
 888			min = min_t(size_t, desc_len,
 889				    min_t(size_t, len,
 890					  PAGE_SIZE - offset_in_page(buf)));
 891			if (vmalloced_buf)
 892				vm_page = vmalloc_to_page(buf);
 893			else
 894				vm_page = kmap_to_page(buf);
 895			if (!vm_page) {
 896				sg_free_table(sgt);
 897				return -ENOMEM;
 898			}
 899			sg_set_page(sg, vm_page,
 900				    min, offset_in_page(buf));
 901		} else {
 902			min = min_t(size_t, len, desc_len);
 903			sg_buf = buf;
 904			sg_set_buf(sg, sg_buf, min);
 905		}
 906
 907		buf += min;
 908		len -= min;
 909		sg = sg_next(sg);
 910	}
 911
 912	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 913	if (!ret)
 914		ret = -ENOMEM;
 915	if (ret < 0) {
 916		sg_free_table(sgt);
 917		return ret;
 918	}
 919
 920	sgt->nents = ret;
 921
 922	return 0;
 923}
 924
 925void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
 926		   struct sg_table *sgt, enum dma_data_direction dir)
 927{
 928	if (sgt->orig_nents) {
 929		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 930		sg_free_table(sgt);
 931	}
 932}
 933
 934static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 935{
 936	struct device *tx_dev, *rx_dev;
 937	struct spi_transfer *xfer;
 938	int ret;
 939
 940	if (!ctlr->can_dma)
 941		return 0;
 942
 943	if (ctlr->dma_tx)
 944		tx_dev = ctlr->dma_tx->device->dev;
 945	else
 946		tx_dev = ctlr->dev.parent;
 947
 948	if (ctlr->dma_rx)
 949		rx_dev = ctlr->dma_rx->device->dev;
 950	else
 951		rx_dev = ctlr->dev.parent;
 952
 953	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 954		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 955			continue;
 956
 957		if (xfer->tx_buf != NULL) {
 958			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
 959					  (void *)xfer->tx_buf, xfer->len,
 960					  DMA_TO_DEVICE);
 961			if (ret != 0)
 962				return ret;
 963		}
 964
 965		if (xfer->rx_buf != NULL) {
 966			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
 967					  xfer->rx_buf, xfer->len,
 968					  DMA_FROM_DEVICE);
 969			if (ret != 0) {
 970				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
 971					      DMA_TO_DEVICE);
 972				return ret;
 973			}
 974		}
 975	}
 976
 977	ctlr->cur_msg_mapped = true;
 978
 979	return 0;
 980}
 981
 982static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
 983{
 984	struct spi_transfer *xfer;
 985	struct device *tx_dev, *rx_dev;
 986
 987	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
 988		return 0;
 989
 990	if (ctlr->dma_tx)
 991		tx_dev = ctlr->dma_tx->device->dev;
 992	else
 993		tx_dev = ctlr->dev.parent;
 994
 995	if (ctlr->dma_rx)
 996		rx_dev = ctlr->dma_rx->device->dev;
 997	else
 998		rx_dev = ctlr->dev.parent;
 999
1000	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1001		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1002			continue;
1003
1004		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1005		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1006	}
1007
1008	ctlr->cur_msg_mapped = false;
1009
1010	return 0;
1011}
1012#else /* !CONFIG_HAS_DMA */
1013static inline int __spi_map_msg(struct spi_controller *ctlr,
1014				struct spi_message *msg)
1015{
1016	return 0;
1017}
1018
1019static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1020				  struct spi_message *msg)
1021{
1022	return 0;
1023}
1024#endif /* !CONFIG_HAS_DMA */
1025
1026static inline int spi_unmap_msg(struct spi_controller *ctlr,
1027				struct spi_message *msg)
1028{
1029	struct spi_transfer *xfer;
1030
1031	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1032		/*
1033		 * Restore the original value of tx_buf or rx_buf if they are
1034		 * NULL.
1035		 */
1036		if (xfer->tx_buf == ctlr->dummy_tx)
1037			xfer->tx_buf = NULL;
1038		if (xfer->rx_buf == ctlr->dummy_rx)
1039			xfer->rx_buf = NULL;
1040	}
1041
1042	return __spi_unmap_msg(ctlr, msg);
1043}
1044
1045static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1046{
1047	struct spi_transfer *xfer;
1048	void *tmp;
1049	unsigned int max_tx, max_rx;
1050
1051	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1052		&& !(msg->spi->mode & SPI_3WIRE)) {
1053		max_tx = 0;
1054		max_rx = 0;
1055
1056		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1057			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1058			    !xfer->tx_buf)
1059				max_tx = max(xfer->len, max_tx);
1060			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1061			    !xfer->rx_buf)
1062				max_rx = max(xfer->len, max_rx);
1063		}
1064
1065		if (max_tx) {
1066			tmp = krealloc(ctlr->dummy_tx, max_tx,
1067				       GFP_KERNEL | GFP_DMA);
1068			if (!tmp)
1069				return -ENOMEM;
1070			ctlr->dummy_tx = tmp;
1071			memset(tmp, 0, max_tx);
1072		}
1073
1074		if (max_rx) {
1075			tmp = krealloc(ctlr->dummy_rx, max_rx,
1076				       GFP_KERNEL | GFP_DMA);
1077			if (!tmp)
1078				return -ENOMEM;
1079			ctlr->dummy_rx = tmp;
1080		}
1081
1082		if (max_tx || max_rx) {
1083			list_for_each_entry(xfer, &msg->transfers,
1084					    transfer_list) {
1085				if (!xfer->len)
1086					continue;
1087				if (!xfer->tx_buf)
1088					xfer->tx_buf = ctlr->dummy_tx;
1089				if (!xfer->rx_buf)
1090					xfer->rx_buf = ctlr->dummy_rx;
1091			}
1092		}
1093	}
1094
1095	return __spi_map_msg(ctlr, msg);
1096}
1097
1098static int spi_transfer_wait(struct spi_controller *ctlr,
1099			     struct spi_message *msg,
1100			     struct spi_transfer *xfer)
1101{
1102	struct spi_statistics *statm = &ctlr->statistics;
1103	struct spi_statistics *stats = &msg->spi->statistics;
1104	unsigned long long ms;
1105
1106	if (spi_controller_is_slave(ctlr)) {
1107		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1108			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1109			return -EINTR;
1110		}
1111	} else {
1112		ms = 8LL * 1000LL * xfer->len;
1113		do_div(ms, xfer->speed_hz);
1114		ms += ms + 200; /* some tolerance */
1115
1116		if (ms > UINT_MAX)
1117			ms = UINT_MAX;
1118
1119		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1120						 msecs_to_jiffies(ms));
1121
1122		if (ms == 0) {
1123			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1124			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1125			dev_err(&msg->spi->dev,
1126				"SPI transfer timed out\n");
1127			return -ETIMEDOUT;
1128		}
1129	}
1130
1131	return 0;
1132}
1133
1134static void _spi_transfer_delay_ns(u32 ns)
1135{
1136	if (!ns)
1137		return;
1138	if (ns <= 1000) {
1139		ndelay(ns);
1140	} else {
1141		u32 us = DIV_ROUND_UP(ns, 1000);
1142
1143		if (us <= 10)
1144			udelay(us);
1145		else
1146			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1147	}
1148}
1149
1150int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1151{
1152	u32 delay = _delay->value;
1153	u32 unit = _delay->unit;
1154	u32 hz;
1155
1156	if (!delay)
1157		return 0;
1158
1159	switch (unit) {
1160	case SPI_DELAY_UNIT_USECS:
1161		delay *= 1000;
1162		break;
1163	case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1164		break;
1165	case SPI_DELAY_UNIT_SCK:
1166		/* clock cycles need to be obtained from spi_transfer */
1167		if (!xfer)
1168			return -EINVAL;
1169		/* if there is no effective speed know, then approximate
1170		 * by underestimating with half the requested hz
1171		 */
1172		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1173		if (!hz)
1174			return -EINVAL;
1175		delay *= DIV_ROUND_UP(1000000000, hz);
1176		break;
1177	default:
1178		return -EINVAL;
1179	}
1180
1181	return delay;
1182}
1183EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1184
1185int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1186{
1187	int delay;
1188
1189	might_sleep();
1190
1191	if (!_delay)
1192		return -EINVAL;
1193
1194	delay = spi_delay_to_ns(_delay, xfer);
1195	if (delay < 0)
1196		return delay;
1197
1198	_spi_transfer_delay_ns(delay);
1199
1200	return 0;
1201}
1202EXPORT_SYMBOL_GPL(spi_delay_exec);
1203
1204static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1205					  struct spi_transfer *xfer)
1206{
1207	u32 delay = xfer->cs_change_delay.value;
1208	u32 unit = xfer->cs_change_delay.unit;
1209	int ret;
1210
1211	/* return early on "fast" mode - for everything but USECS */
1212	if (!delay) {
1213		if (unit == SPI_DELAY_UNIT_USECS)
1214			_spi_transfer_delay_ns(10000);
1215		return;
1216	}
1217
1218	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1219	if (ret) {
1220		dev_err_once(&msg->spi->dev,
1221			     "Use of unsupported delay unit %i, using default of 10us\n",
1222			     unit);
1223		_spi_transfer_delay_ns(10000);
1224	}
1225}
1226
1227/*
1228 * spi_transfer_one_message - Default implementation of transfer_one_message()
1229 *
1230 * This is a standard implementation of transfer_one_message() for
1231 * drivers which implement a transfer_one() operation.  It provides
1232 * standard handling of delays and chip select management.
1233 */
1234static int spi_transfer_one_message(struct spi_controller *ctlr,
1235				    struct spi_message *msg)
1236{
1237	struct spi_transfer *xfer;
1238	bool keep_cs = false;
1239	int ret = 0;
1240	struct spi_statistics *statm = &ctlr->statistics;
1241	struct spi_statistics *stats = &msg->spi->statistics;
1242
1243	spi_set_cs(msg->spi, true);
1244
1245	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1246	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1247
1248	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1249		trace_spi_transfer_start(msg, xfer);
1250
1251		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1252		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1253
1254		if (!ctlr->ptp_sts_supported) {
1255			xfer->ptp_sts_word_pre = 0;
1256			ptp_read_system_prets(xfer->ptp_sts);
1257		}
1258
1259		if (xfer->tx_buf || xfer->rx_buf) {
1260			reinit_completion(&ctlr->xfer_completion);
1261
1262fallback_pio:
1263			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1264			if (ret < 0) {
1265				if (ctlr->cur_msg_mapped &&
1266				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1267					__spi_unmap_msg(ctlr, msg);
1268					ctlr->fallback = true;
1269					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1270					goto fallback_pio;
1271				}
1272
1273				SPI_STATISTICS_INCREMENT_FIELD(statm,
1274							       errors);
1275				SPI_STATISTICS_INCREMENT_FIELD(stats,
1276							       errors);
1277				dev_err(&msg->spi->dev,
1278					"SPI transfer failed: %d\n", ret);
1279				goto out;
1280			}
1281
1282			if (ret > 0) {
1283				ret = spi_transfer_wait(ctlr, msg, xfer);
1284				if (ret < 0)
1285					msg->status = ret;
1286			}
1287		} else {
1288			if (xfer->len)
1289				dev_err(&msg->spi->dev,
1290					"Bufferless transfer has length %u\n",
1291					xfer->len);
1292		}
1293
1294		if (!ctlr->ptp_sts_supported) {
1295			ptp_read_system_postts(xfer->ptp_sts);
1296			xfer->ptp_sts_word_post = xfer->len;
1297		}
1298
1299		trace_spi_transfer_stop(msg, xfer);
1300
1301		if (msg->status != -EINPROGRESS)
1302			goto out;
1303
1304		spi_transfer_delay_exec(xfer);
1305
1306		if (xfer->cs_change) {
1307			if (list_is_last(&xfer->transfer_list,
1308					 &msg->transfers)) {
1309				keep_cs = true;
1310			} else {
1311				spi_set_cs(msg->spi, false);
1312				_spi_transfer_cs_change_delay(msg, xfer);
1313				spi_set_cs(msg->spi, true);
1314			}
1315		}
1316
1317		msg->actual_length += xfer->len;
1318	}
1319
1320out:
1321	if (ret != 0 || !keep_cs)
1322		spi_set_cs(msg->spi, false);
1323
1324	if (msg->status == -EINPROGRESS)
1325		msg->status = ret;
1326
1327	if (msg->status && ctlr->handle_err)
1328		ctlr->handle_err(ctlr, msg);
1329
1330	spi_finalize_current_message(ctlr);
1331
1332	return ret;
1333}
1334
1335/**
1336 * spi_finalize_current_transfer - report completion of a transfer
1337 * @ctlr: the controller reporting completion
1338 *
1339 * Called by SPI drivers using the core transfer_one_message()
1340 * implementation to notify it that the current interrupt driven
1341 * transfer has finished and the next one may be scheduled.
1342 */
1343void spi_finalize_current_transfer(struct spi_controller *ctlr)
1344{
1345	complete(&ctlr->xfer_completion);
1346}
1347EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1348
1349static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1350{
1351	if (ctlr->auto_runtime_pm) {
1352		pm_runtime_mark_last_busy(ctlr->dev.parent);
1353		pm_runtime_put_autosuspend(ctlr->dev.parent);
1354	}
1355}
1356
1357/**
1358 * __spi_pump_messages - function which processes spi message queue
1359 * @ctlr: controller to process queue for
1360 * @in_kthread: true if we are in the context of the message pump thread
1361 *
1362 * This function checks if there is any spi message in the queue that
1363 * needs processing and if so call out to the driver to initialize hardware
1364 * and transfer each message.
1365 *
1366 * Note that it is called both from the kthread itself and also from
1367 * inside spi_sync(); the queue extraction handling at the top of the
1368 * function should deal with this safely.
1369 */
1370static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1371{
1372	struct spi_transfer *xfer;
1373	struct spi_message *msg;
1374	bool was_busy = false;
1375	unsigned long flags;
1376	int ret;
1377
1378	/* Lock queue */
1379	spin_lock_irqsave(&ctlr->queue_lock, flags);
1380
1381	/* Make sure we are not already running a message */
1382	if (ctlr->cur_msg) {
1383		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1384		return;
1385	}
1386
1387	/* If another context is idling the device then defer */
1388	if (ctlr->idling) {
1389		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1390		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1391		return;
1392	}
1393
1394	/* Check if the queue is idle */
1395	if (list_empty(&ctlr->queue) || !ctlr->running) {
1396		if (!ctlr->busy) {
1397			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1398			return;
1399		}
1400
1401		/* Defer any non-atomic teardown to the thread */
1402		if (!in_kthread) {
1403			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1404			    !ctlr->unprepare_transfer_hardware) {
1405				spi_idle_runtime_pm(ctlr);
1406				ctlr->busy = false;
1407				trace_spi_controller_idle(ctlr);
1408			} else {
1409				kthread_queue_work(ctlr->kworker,
1410						   &ctlr->pump_messages);
1411			}
1412			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1413			return;
1414		}
1415
1416		ctlr->busy = false;
1417		ctlr->idling = true;
1418		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1419
1420		kfree(ctlr->dummy_rx);
1421		ctlr->dummy_rx = NULL;
1422		kfree(ctlr->dummy_tx);
1423		ctlr->dummy_tx = NULL;
1424		if (ctlr->unprepare_transfer_hardware &&
1425		    ctlr->unprepare_transfer_hardware(ctlr))
1426			dev_err(&ctlr->dev,
1427				"failed to unprepare transfer hardware\n");
1428		spi_idle_runtime_pm(ctlr);
1429		trace_spi_controller_idle(ctlr);
1430
1431		spin_lock_irqsave(&ctlr->queue_lock, flags);
1432		ctlr->idling = false;
1433		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1434		return;
1435	}
1436
1437	/* Extract head of queue */
1438	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1439	ctlr->cur_msg = msg;
1440
1441	list_del_init(&msg->queue);
1442	if (ctlr->busy)
1443		was_busy = true;
1444	else
1445		ctlr->busy = true;
1446	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1447
1448	mutex_lock(&ctlr->io_mutex);
1449
1450	if (!was_busy && ctlr->auto_runtime_pm) {
1451		ret = pm_runtime_get_sync(ctlr->dev.parent);
1452		if (ret < 0) {
1453			pm_runtime_put_noidle(ctlr->dev.parent);
1454			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1455				ret);
1456			mutex_unlock(&ctlr->io_mutex);
1457			return;
1458		}
1459	}
1460
1461	if (!was_busy)
1462		trace_spi_controller_busy(ctlr);
1463
1464	if (!was_busy && ctlr->prepare_transfer_hardware) {
1465		ret = ctlr->prepare_transfer_hardware(ctlr);
1466		if (ret) {
1467			dev_err(&ctlr->dev,
1468				"failed to prepare transfer hardware: %d\n",
1469				ret);
1470
1471			if (ctlr->auto_runtime_pm)
1472				pm_runtime_put(ctlr->dev.parent);
1473
1474			msg->status = ret;
1475			spi_finalize_current_message(ctlr);
1476
1477			mutex_unlock(&ctlr->io_mutex);
1478			return;
1479		}
1480	}
1481
1482	trace_spi_message_start(msg);
1483
1484	if (ctlr->prepare_message) {
1485		ret = ctlr->prepare_message(ctlr, msg);
1486		if (ret) {
1487			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1488				ret);
1489			msg->status = ret;
1490			spi_finalize_current_message(ctlr);
1491			goto out;
1492		}
1493		ctlr->cur_msg_prepared = true;
1494	}
1495
1496	ret = spi_map_msg(ctlr, msg);
1497	if (ret) {
1498		msg->status = ret;
1499		spi_finalize_current_message(ctlr);
1500		goto out;
1501	}
1502
1503	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1504		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1505			xfer->ptp_sts_word_pre = 0;
1506			ptp_read_system_prets(xfer->ptp_sts);
1507		}
1508	}
1509
1510	ret = ctlr->transfer_one_message(ctlr, msg);
1511	if (ret) {
1512		dev_err(&ctlr->dev,
1513			"failed to transfer one message from queue\n");
1514		goto out;
1515	}
1516
1517out:
1518	mutex_unlock(&ctlr->io_mutex);
1519
1520	/* Prod the scheduler in case transfer_one() was busy waiting */
1521	if (!ret)
1522		cond_resched();
1523}
1524
1525/**
1526 * spi_pump_messages - kthread work function which processes spi message queue
1527 * @work: pointer to kthread work struct contained in the controller struct
1528 */
1529static void spi_pump_messages(struct kthread_work *work)
1530{
1531	struct spi_controller *ctlr =
1532		container_of(work, struct spi_controller, pump_messages);
1533
1534	__spi_pump_messages(ctlr, true);
1535}
1536
1537/**
1538 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1539 *			    TX timestamp for the requested byte from the SPI
1540 *			    transfer. The frequency with which this function
1541 *			    must be called (once per word, once for the whole
1542 *			    transfer, once per batch of words etc) is arbitrary
1543 *			    as long as the @tx buffer offset is greater than or
1544 *			    equal to the requested byte at the time of the
1545 *			    call. The timestamp is only taken once, at the
1546 *			    first such call. It is assumed that the driver
1547 *			    advances its @tx buffer pointer monotonically.
1548 * @ctlr: Pointer to the spi_controller structure of the driver
1549 * @xfer: Pointer to the transfer being timestamped
1550 * @progress: How many words (not bytes) have been transferred so far
1551 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1552 *	      transfer, for less jitter in time measurement. Only compatible
1553 *	      with PIO drivers. If true, must follow up with
1554 *	      spi_take_timestamp_post or otherwise system will crash.
1555 *	      WARNING: for fully predictable results, the CPU frequency must
1556 *	      also be under control (governor).
1557 */
1558void spi_take_timestamp_pre(struct spi_controller *ctlr,
1559			    struct spi_transfer *xfer,
1560			    size_t progress, bool irqs_off)
1561{
1562	if (!xfer->ptp_sts)
1563		return;
1564
1565	if (xfer->timestamped)
1566		return;
1567
1568	if (progress > xfer->ptp_sts_word_pre)
1569		return;
1570
1571	/* Capture the resolution of the timestamp */
1572	xfer->ptp_sts_word_pre = progress;
1573
1574	if (irqs_off) {
1575		local_irq_save(ctlr->irq_flags);
1576		preempt_disable();
1577	}
1578
1579	ptp_read_system_prets(xfer->ptp_sts);
1580}
1581EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1582
1583/**
1584 * spi_take_timestamp_post - helper for drivers to collect the end of the
1585 *			     TX timestamp for the requested byte from the SPI
1586 *			     transfer. Can be called with an arbitrary
1587 *			     frequency: only the first call where @tx exceeds
1588 *			     or is equal to the requested word will be
1589 *			     timestamped.
1590 * @ctlr: Pointer to the spi_controller structure of the driver
1591 * @xfer: Pointer to the transfer being timestamped
1592 * @progress: How many words (not bytes) have been transferred so far
1593 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1594 */
1595void spi_take_timestamp_post(struct spi_controller *ctlr,
1596			     struct spi_transfer *xfer,
1597			     size_t progress, bool irqs_off)
1598{
1599	if (!xfer->ptp_sts)
1600		return;
1601
1602	if (xfer->timestamped)
1603		return;
1604
1605	if (progress < xfer->ptp_sts_word_post)
1606		return;
1607
1608	ptp_read_system_postts(xfer->ptp_sts);
1609
1610	if (irqs_off) {
1611		local_irq_restore(ctlr->irq_flags);
1612		preempt_enable();
1613	}
1614
1615	/* Capture the resolution of the timestamp */
1616	xfer->ptp_sts_word_post = progress;
1617
1618	xfer->timestamped = true;
1619}
1620EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1621
1622/**
1623 * spi_set_thread_rt - set the controller to pump at realtime priority
1624 * @ctlr: controller to boost priority of
1625 *
1626 * This can be called because the controller requested realtime priority
1627 * (by setting the ->rt value before calling spi_register_controller()) or
1628 * because a device on the bus said that its transfers needed realtime
1629 * priority.
1630 *
1631 * NOTE: at the moment if any device on a bus says it needs realtime then
1632 * the thread will be at realtime priority for all transfers on that
1633 * controller.  If this eventually becomes a problem we may see if we can
1634 * find a way to boost the priority only temporarily during relevant
1635 * transfers.
1636 */
1637static void spi_set_thread_rt(struct spi_controller *ctlr)
1638{
1639	dev_info(&ctlr->dev,
1640		"will run message pump with realtime priority\n");
1641	sched_set_fifo(ctlr->kworker->task);
1642}
1643
1644static int spi_init_queue(struct spi_controller *ctlr)
1645{
1646	ctlr->running = false;
1647	ctlr->busy = false;
1648
1649	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1650	if (IS_ERR(ctlr->kworker)) {
1651		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1652		return PTR_ERR(ctlr->kworker);
1653	}
1654
1655	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1656
1657	/*
1658	 * Controller config will indicate if this controller should run the
1659	 * message pump with high (realtime) priority to reduce the transfer
1660	 * latency on the bus by minimising the delay between a transfer
1661	 * request and the scheduling of the message pump thread. Without this
1662	 * setting the message pump thread will remain at default priority.
1663	 */
1664	if (ctlr->rt)
1665		spi_set_thread_rt(ctlr);
1666
1667	return 0;
1668}
1669
1670/**
1671 * spi_get_next_queued_message() - called by driver to check for queued
1672 * messages
1673 * @ctlr: the controller to check for queued messages
1674 *
1675 * If there are more messages in the queue, the next message is returned from
1676 * this call.
1677 *
1678 * Return: the next message in the queue, else NULL if the queue is empty.
1679 */
1680struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1681{
1682	struct spi_message *next;
1683	unsigned long flags;
1684
1685	/* get a pointer to the next message, if any */
1686	spin_lock_irqsave(&ctlr->queue_lock, flags);
1687	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1688					queue);
1689	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1690
1691	return next;
1692}
1693EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1694
1695/**
1696 * spi_finalize_current_message() - the current message is complete
1697 * @ctlr: the controller to return the message to
1698 *
1699 * Called by the driver to notify the core that the message in the front of the
1700 * queue is complete and can be removed from the queue.
1701 */
1702void spi_finalize_current_message(struct spi_controller *ctlr)
1703{
1704	struct spi_transfer *xfer;
1705	struct spi_message *mesg;
1706	unsigned long flags;
1707	int ret;
1708
1709	spin_lock_irqsave(&ctlr->queue_lock, flags);
1710	mesg = ctlr->cur_msg;
1711	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1712
1713	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1714		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1715			ptp_read_system_postts(xfer->ptp_sts);
1716			xfer->ptp_sts_word_post = xfer->len;
1717		}
1718	}
1719
1720	if (unlikely(ctlr->ptp_sts_supported))
1721		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1722			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1723
1724	spi_unmap_msg(ctlr, mesg);
1725
1726	/* In the prepare_messages callback the spi bus has the opportunity to
1727	 * split a transfer to smaller chunks.
1728	 * Release splited transfers here since spi_map_msg is done on the
1729	 * splited transfers.
1730	 */
1731	spi_res_release(ctlr, mesg);
1732
1733	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1734		ret = ctlr->unprepare_message(ctlr, mesg);
1735		if (ret) {
1736			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1737				ret);
1738		}
1739	}
1740
1741	spin_lock_irqsave(&ctlr->queue_lock, flags);
1742	ctlr->cur_msg = NULL;
1743	ctlr->cur_msg_prepared = false;
1744	ctlr->fallback = false;
1745	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1746	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1747
1748	trace_spi_message_done(mesg);
1749
1750	mesg->state = NULL;
1751	if (mesg->complete)
1752		mesg->complete(mesg->context);
1753}
1754EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1755
1756static int spi_start_queue(struct spi_controller *ctlr)
1757{
1758	unsigned long flags;
1759
1760	spin_lock_irqsave(&ctlr->queue_lock, flags);
1761
1762	if (ctlr->running || ctlr->busy) {
1763		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1764		return -EBUSY;
1765	}
1766
1767	ctlr->running = true;
1768	ctlr->cur_msg = NULL;
1769	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1770
1771	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1772
1773	return 0;
1774}
1775
1776static int spi_stop_queue(struct spi_controller *ctlr)
1777{
1778	unsigned long flags;
1779	unsigned limit = 500;
1780	int ret = 0;
1781
1782	spin_lock_irqsave(&ctlr->queue_lock, flags);
1783
1784	/*
1785	 * This is a bit lame, but is optimized for the common execution path.
1786	 * A wait_queue on the ctlr->busy could be used, but then the common
1787	 * execution path (pump_messages) would be required to call wake_up or
1788	 * friends on every SPI message. Do this instead.
1789	 */
1790	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1791		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1792		usleep_range(10000, 11000);
1793		spin_lock_irqsave(&ctlr->queue_lock, flags);
1794	}
1795
1796	if (!list_empty(&ctlr->queue) || ctlr->busy)
1797		ret = -EBUSY;
1798	else
1799		ctlr->running = false;
1800
1801	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1802
1803	if (ret) {
1804		dev_warn(&ctlr->dev, "could not stop message queue\n");
1805		return ret;
1806	}
1807	return ret;
1808}
1809
1810static int spi_destroy_queue(struct spi_controller *ctlr)
1811{
1812	int ret;
1813
1814	ret = spi_stop_queue(ctlr);
1815
1816	/*
1817	 * kthread_flush_worker will block until all work is done.
1818	 * If the reason that stop_queue timed out is that the work will never
1819	 * finish, then it does no good to call flush/stop thread, so
1820	 * return anyway.
1821	 */
1822	if (ret) {
1823		dev_err(&ctlr->dev, "problem destroying queue\n");
1824		return ret;
1825	}
1826
1827	kthread_destroy_worker(ctlr->kworker);
1828
1829	return 0;
1830}
1831
1832static int __spi_queued_transfer(struct spi_device *spi,
1833				 struct spi_message *msg,
1834				 bool need_pump)
1835{
1836	struct spi_controller *ctlr = spi->controller;
1837	unsigned long flags;
1838
1839	spin_lock_irqsave(&ctlr->queue_lock, flags);
1840
1841	if (!ctlr->running) {
1842		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1843		return -ESHUTDOWN;
1844	}
1845	msg->actual_length = 0;
1846	msg->status = -EINPROGRESS;
1847
1848	list_add_tail(&msg->queue, &ctlr->queue);
1849	if (!ctlr->busy && need_pump)
1850		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1851
1852	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1853	return 0;
1854}
1855
1856/**
1857 * spi_queued_transfer - transfer function for queued transfers
1858 * @spi: spi device which is requesting transfer
1859 * @msg: spi message which is to handled is queued to driver queue
1860 *
1861 * Return: zero on success, else a negative error code.
1862 */
1863static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1864{
1865	return __spi_queued_transfer(spi, msg, true);
1866}
1867
1868static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1869{
1870	int ret;
1871
1872	ctlr->transfer = spi_queued_transfer;
1873	if (!ctlr->transfer_one_message)
1874		ctlr->transfer_one_message = spi_transfer_one_message;
1875
1876	/* Initialize and start queue */
1877	ret = spi_init_queue(ctlr);
1878	if (ret) {
1879		dev_err(&ctlr->dev, "problem initializing queue\n");
1880		goto err_init_queue;
1881	}
1882	ctlr->queued = true;
1883	ret = spi_start_queue(ctlr);
1884	if (ret) {
1885		dev_err(&ctlr->dev, "problem starting queue\n");
1886		goto err_start_queue;
1887	}
1888
1889	return 0;
1890
1891err_start_queue:
1892	spi_destroy_queue(ctlr);
1893err_init_queue:
1894	return ret;
1895}
1896
1897/**
1898 * spi_flush_queue - Send all pending messages in the queue from the callers'
1899 *		     context
1900 * @ctlr: controller to process queue for
1901 *
1902 * This should be used when one wants to ensure all pending messages have been
1903 * sent before doing something. Is used by the spi-mem code to make sure SPI
1904 * memory operations do not preempt regular SPI transfers that have been queued
1905 * before the spi-mem operation.
1906 */
1907void spi_flush_queue(struct spi_controller *ctlr)
1908{
1909	if (ctlr->transfer == spi_queued_transfer)
1910		__spi_pump_messages(ctlr, false);
1911}
1912
1913/*-------------------------------------------------------------------------*/
1914
1915#if defined(CONFIG_OF)
1916static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1917			   struct device_node *nc)
1918{
1919	u32 value;
1920	int rc;
1921
1922	/* Mode (clock phase/polarity/etc.) */
1923	if (of_property_read_bool(nc, "spi-cpha"))
1924		spi->mode |= SPI_CPHA;
1925	if (of_property_read_bool(nc, "spi-cpol"))
1926		spi->mode |= SPI_CPOL;
1927	if (of_property_read_bool(nc, "spi-3wire"))
1928		spi->mode |= SPI_3WIRE;
1929	if (of_property_read_bool(nc, "spi-lsb-first"))
1930		spi->mode |= SPI_LSB_FIRST;
1931	if (of_property_read_bool(nc, "spi-cs-high"))
1932		spi->mode |= SPI_CS_HIGH;
1933
1934	/* Device DUAL/QUAD mode */
1935	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1936		switch (value) {
1937		case 1:
1938			break;
1939		case 2:
1940			spi->mode |= SPI_TX_DUAL;
1941			break;
1942		case 4:
1943			spi->mode |= SPI_TX_QUAD;
1944			break;
1945		case 8:
1946			spi->mode |= SPI_TX_OCTAL;
1947			break;
1948		default:
1949			dev_warn(&ctlr->dev,
1950				"spi-tx-bus-width %d not supported\n",
1951				value);
1952			break;
1953		}
1954	}
1955
1956	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1957		switch (value) {
1958		case 1:
1959			break;
1960		case 2:
1961			spi->mode |= SPI_RX_DUAL;
1962			break;
1963		case 4:
1964			spi->mode |= SPI_RX_QUAD;
1965			break;
1966		case 8:
1967			spi->mode |= SPI_RX_OCTAL;
1968			break;
1969		default:
1970			dev_warn(&ctlr->dev,
1971				"spi-rx-bus-width %d not supported\n",
1972				value);
1973			break;
1974		}
1975	}
1976
1977	if (spi_controller_is_slave(ctlr)) {
1978		if (!of_node_name_eq(nc, "slave")) {
1979			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1980				nc);
1981			return -EINVAL;
1982		}
1983		return 0;
1984	}
1985
1986	/* Device address */
1987	rc = of_property_read_u32(nc, "reg", &value);
1988	if (rc) {
1989		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1990			nc, rc);
1991		return rc;
1992	}
1993	spi->chip_select = value;
1994
1995	/*
1996	 * For descriptors associated with the device, polarity inversion is
1997	 * handled in the gpiolib, so all gpio chip selects are "active high"
1998	 * in the logical sense, the gpiolib will invert the line if need be.
1999	 */
2000	if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods &&
2001	    ctlr->cs_gpiods[spi->chip_select])
2002		spi->mode |= SPI_CS_HIGH;
2003
2004	/* Device speed */
2005	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2006		spi->max_speed_hz = value;
2007
2008	return 0;
2009}
2010
2011static struct spi_device *
2012of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2013{
2014	struct spi_device *spi;
2015	int rc;
2016
2017	/* Alloc an spi_device */
2018	spi = spi_alloc_device(ctlr);
2019	if (!spi) {
2020		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2021		rc = -ENOMEM;
2022		goto err_out;
2023	}
2024
2025	/* Select device driver */
2026	rc = of_modalias_node(nc, spi->modalias,
2027				sizeof(spi->modalias));
2028	if (rc < 0) {
2029		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2030		goto err_out;
2031	}
2032
2033	rc = of_spi_parse_dt(ctlr, spi, nc);
2034	if (rc)
2035		goto err_out;
2036
2037	/* Store a pointer to the node in the device structure */
2038	of_node_get(nc);
2039	spi->dev.of_node = nc;
2040
2041	/* Register the new device */
2042	rc = spi_add_device(spi);
2043	if (rc) {
2044		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2045		goto err_of_node_put;
2046	}
2047
2048	return spi;
2049
2050err_of_node_put:
2051	of_node_put(nc);
2052err_out:
2053	spi_dev_put(spi);
2054	return ERR_PTR(rc);
2055}
2056
2057/**
2058 * of_register_spi_devices() - Register child devices onto the SPI bus
2059 * @ctlr:	Pointer to spi_controller device
2060 *
2061 * Registers an spi_device for each child node of controller node which
2062 * represents a valid SPI slave.
2063 */
2064static void of_register_spi_devices(struct spi_controller *ctlr)
2065{
2066	struct spi_device *spi;
2067	struct device_node *nc;
2068
2069	if (!ctlr->dev.of_node)
2070		return;
2071
2072	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2073		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2074			continue;
2075		spi = of_register_spi_device(ctlr, nc);
2076		if (IS_ERR(spi)) {
2077			dev_warn(&ctlr->dev,
2078				 "Failed to create SPI device for %pOF\n", nc);
2079			of_node_clear_flag(nc, OF_POPULATED);
2080		}
2081	}
2082}
2083#else
2084static void of_register_spi_devices(struct spi_controller *ctlr) { }
2085#endif
2086
2087#ifdef CONFIG_ACPI
2088struct acpi_spi_lookup {
2089	struct spi_controller 	*ctlr;
2090	u32			max_speed_hz;
2091	u32			mode;
2092	int			irq;
2093	u8			bits_per_word;
2094	u8			chip_select;
2095};
2096
2097static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2098					    struct acpi_spi_lookup *lookup)
2099{
2100	const union acpi_object *obj;
2101
2102	if (!x86_apple_machine)
2103		return;
2104
2105	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2106	    && obj->buffer.length >= 4)
2107		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2108
2109	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2110	    && obj->buffer.length == 8)
2111		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2112
2113	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2114	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2115		lookup->mode |= SPI_LSB_FIRST;
2116
2117	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2118	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2119		lookup->mode |= SPI_CPOL;
2120
2121	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2122	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2123		lookup->mode |= SPI_CPHA;
2124}
2125
2126static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2127{
2128	struct acpi_spi_lookup *lookup = data;
2129	struct spi_controller *ctlr = lookup->ctlr;
2130
2131	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2132		struct acpi_resource_spi_serialbus *sb;
2133		acpi_handle parent_handle;
2134		acpi_status status;
2135
2136		sb = &ares->data.spi_serial_bus;
2137		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2138
2139			status = acpi_get_handle(NULL,
2140						 sb->resource_source.string_ptr,
2141						 &parent_handle);
2142
2143			if (ACPI_FAILURE(status) ||
2144			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2145				return -ENODEV;
2146
2147			/*
2148			 * ACPI DeviceSelection numbering is handled by the
2149			 * host controller driver in Windows and can vary
2150			 * from driver to driver. In Linux we always expect
2151			 * 0 .. max - 1 so we need to ask the driver to
2152			 * translate between the two schemes.
2153			 */
2154			if (ctlr->fw_translate_cs) {
2155				int cs = ctlr->fw_translate_cs(ctlr,
2156						sb->device_selection);
2157				if (cs < 0)
2158					return cs;
2159				lookup->chip_select = cs;
2160			} else {
2161				lookup->chip_select = sb->device_selection;
2162			}
2163
2164			lookup->max_speed_hz = sb->connection_speed;
2165			lookup->bits_per_word = sb->data_bit_length;
2166
2167			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2168				lookup->mode |= SPI_CPHA;
2169			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2170				lookup->mode |= SPI_CPOL;
2171			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2172				lookup->mode |= SPI_CS_HIGH;
2173		}
2174	} else if (lookup->irq < 0) {
2175		struct resource r;
2176
2177		if (acpi_dev_resource_interrupt(ares, 0, &r))
2178			lookup->irq = r.start;
2179	}
2180
2181	/* Always tell the ACPI core to skip this resource */
2182	return 1;
2183}
2184
2185static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2186					    struct acpi_device *adev)
2187{
2188	acpi_handle parent_handle = NULL;
2189	struct list_head resource_list;
2190	struct acpi_spi_lookup lookup = {};
2191	struct spi_device *spi;
2192	int ret;
2193
2194	if (acpi_bus_get_status(adev) || !adev->status.present ||
2195	    acpi_device_enumerated(adev))
2196		return AE_OK;
2197
2198	lookup.ctlr		= ctlr;
2199	lookup.irq		= -1;
2200
2201	INIT_LIST_HEAD(&resource_list);
2202	ret = acpi_dev_get_resources(adev, &resource_list,
2203				     acpi_spi_add_resource, &lookup);
2204	acpi_dev_free_resource_list(&resource_list);
2205
2206	if (ret < 0)
2207		/* found SPI in _CRS but it points to another controller */
2208		return AE_OK;
2209
2210	if (!lookup.max_speed_hz &&
2211	    !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2212	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2213		/* Apple does not use _CRS but nested devices for SPI slaves */
2214		acpi_spi_parse_apple_properties(adev, &lookup);
2215	}
2216
2217	if (!lookup.max_speed_hz)
2218		return AE_OK;
2219
2220	spi = spi_alloc_device(ctlr);
2221	if (!spi) {
2222		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2223			dev_name(&adev->dev));
2224		return AE_NO_MEMORY;
2225	}
2226
2227
2228	ACPI_COMPANION_SET(&spi->dev, adev);
2229	spi->max_speed_hz	= lookup.max_speed_hz;
2230	spi->mode		|= lookup.mode;
2231	spi->irq		= lookup.irq;
2232	spi->bits_per_word	= lookup.bits_per_word;
2233	spi->chip_select	= lookup.chip_select;
2234
2235	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2236			  sizeof(spi->modalias));
2237
2238	if (spi->irq < 0)
2239		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2240
2241	acpi_device_set_enumerated(adev);
2242
2243	adev->power.flags.ignore_parent = true;
2244	if (spi_add_device(spi)) {
2245		adev->power.flags.ignore_parent = false;
2246		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2247			dev_name(&adev->dev));
2248		spi_dev_put(spi);
2249	}
2250
2251	return AE_OK;
2252}
2253
2254static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2255				       void *data, void **return_value)
2256{
2257	struct spi_controller *ctlr = data;
2258	struct acpi_device *adev;
2259
2260	if (acpi_bus_get_device(handle, &adev))
2261		return AE_OK;
2262
2263	return acpi_register_spi_device(ctlr, adev);
2264}
2265
2266#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2267
2268static void acpi_register_spi_devices(struct spi_controller *ctlr)
2269{
2270	acpi_status status;
2271	acpi_handle handle;
2272
2273	handle = ACPI_HANDLE(ctlr->dev.parent);
2274	if (!handle)
2275		return;
2276
2277	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2278				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2279				     acpi_spi_add_device, NULL, ctlr, NULL);
2280	if (ACPI_FAILURE(status))
2281		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2282}
2283#else
2284static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2285#endif /* CONFIG_ACPI */
2286
2287static void spi_controller_release(struct device *dev)
2288{
2289	struct spi_controller *ctlr;
2290
2291	ctlr = container_of(dev, struct spi_controller, dev);
2292	kfree(ctlr);
2293}
2294
2295static struct class spi_master_class = {
2296	.name		= "spi_master",
2297	.owner		= THIS_MODULE,
2298	.dev_release	= spi_controller_release,
2299	.dev_groups	= spi_master_groups,
2300};
2301
2302#ifdef CONFIG_SPI_SLAVE
2303/**
2304 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2305 *		     controller
2306 * @spi: device used for the current transfer
2307 */
2308int spi_slave_abort(struct spi_device *spi)
2309{
2310	struct spi_controller *ctlr = spi->controller;
2311
2312	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2313		return ctlr->slave_abort(ctlr);
2314
2315	return -ENOTSUPP;
2316}
2317EXPORT_SYMBOL_GPL(spi_slave_abort);
2318
2319static int match_true(struct device *dev, void *data)
2320{
2321	return 1;
2322}
2323
2324static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2325			  char *buf)
2326{
2327	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2328						   dev);
2329	struct device *child;
2330
2331	child = device_find_child(&ctlr->dev, NULL, match_true);
2332	return sprintf(buf, "%s\n",
2333		       child ? to_spi_device(child)->modalias : NULL);
2334}
2335
2336static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2337			   const char *buf, size_t count)
2338{
2339	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2340						   dev);
2341	struct spi_device *spi;
2342	struct device *child;
2343	char name[32];
2344	int rc;
2345
2346	rc = sscanf(buf, "%31s", name);
2347	if (rc != 1 || !name[0])
2348		return -EINVAL;
2349
2350	child = device_find_child(&ctlr->dev, NULL, match_true);
2351	if (child) {
2352		/* Remove registered slave */
2353		device_unregister(child);
2354		put_device(child);
2355	}
2356
2357	if (strcmp(name, "(null)")) {
2358		/* Register new slave */
2359		spi = spi_alloc_device(ctlr);
2360		if (!spi)
2361			return -ENOMEM;
2362
2363		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2364
2365		rc = spi_add_device(spi);
2366		if (rc) {
2367			spi_dev_put(spi);
2368			return rc;
2369		}
2370	}
2371
2372	return count;
2373}
2374
2375static DEVICE_ATTR_RW(slave);
2376
2377static struct attribute *spi_slave_attrs[] = {
2378	&dev_attr_slave.attr,
2379	NULL,
2380};
2381
2382static const struct attribute_group spi_slave_group = {
2383	.attrs = spi_slave_attrs,
2384};
2385
2386static const struct attribute_group *spi_slave_groups[] = {
2387	&spi_controller_statistics_group,
2388	&spi_slave_group,
2389	NULL,
2390};
2391
2392static struct class spi_slave_class = {
2393	.name		= "spi_slave",
2394	.owner		= THIS_MODULE,
2395	.dev_release	= spi_controller_release,
2396	.dev_groups	= spi_slave_groups,
2397};
2398#else
2399extern struct class spi_slave_class;	/* dummy */
2400#endif
2401
2402/**
2403 * __spi_alloc_controller - allocate an SPI master or slave controller
2404 * @dev: the controller, possibly using the platform_bus
2405 * @size: how much zeroed driver-private data to allocate; the pointer to this
2406 *	memory is in the driver_data field of the returned device, accessible
2407 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2408 *	drivers granting DMA access to portions of their private data need to
2409 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2410 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2411 *	slave (true) controller
2412 * Context: can sleep
2413 *
2414 * This call is used only by SPI controller drivers, which are the
2415 * only ones directly touching chip registers.  It's how they allocate
2416 * an spi_controller structure, prior to calling spi_register_controller().
2417 *
2418 * This must be called from context that can sleep.
2419 *
2420 * The caller is responsible for assigning the bus number and initializing the
2421 * controller's methods before calling spi_register_controller(); and (after
2422 * errors adding the device) calling spi_controller_put() to prevent a memory
2423 * leak.
2424 *
2425 * Return: the SPI controller structure on success, else NULL.
 
 
2426 */
2427struct spi_controller *__spi_alloc_controller(struct device *dev,
2428					      unsigned int size, bool slave)
2429{
2430	struct spi_controller	*ctlr;
2431	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2432
2433	if (!dev)
2434		return NULL;
2435
2436	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2437	if (!ctlr)
2438		return NULL;
2439
2440	device_initialize(&ctlr->dev);
2441	ctlr->bus_num = -1;
2442	ctlr->num_chipselect = 1;
2443	ctlr->slave = slave;
2444	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2445		ctlr->dev.class = &spi_slave_class;
2446	else
2447		ctlr->dev.class = &spi_master_class;
2448	ctlr->dev.parent = dev;
2449	pm_suspend_ignore_children(&ctlr->dev, true);
2450	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2451
2452	return ctlr;
2453}
2454EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2455
2456#ifdef CONFIG_OF
2457static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2458{
2459	int nb, i, *cs;
2460	struct device_node *np = ctlr->dev.of_node;
2461
2462	if (!np)
2463		return 0;
2464
2465	nb = of_gpio_named_count(np, "cs-gpios");
2466	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2467
2468	/* Return error only for an incorrectly formed cs-gpios property */
2469	if (nb == 0 || nb == -ENOENT)
2470		return 0;
2471	else if (nb < 0)
2472		return nb;
2473
2474	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2475			  GFP_KERNEL);
2476	ctlr->cs_gpios = cs;
2477
2478	if (!ctlr->cs_gpios)
2479		return -ENOMEM;
2480
2481	for (i = 0; i < ctlr->num_chipselect; i++)
2482		cs[i] = -ENOENT;
2483
2484	for (i = 0; i < nb; i++)
2485		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2486
2487	return 0;
2488}
2489#else
2490static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2491{
2492	return 0;
2493}
2494#endif
2495
2496/**
2497 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2498 * @ctlr: The SPI master to grab GPIO descriptors for
2499 */
2500static int spi_get_gpio_descs(struct spi_controller *ctlr)
2501{
2502	int nb, i;
2503	struct gpio_desc **cs;
2504	struct device *dev = &ctlr->dev;
2505	unsigned long native_cs_mask = 0;
2506	unsigned int num_cs_gpios = 0;
2507
2508	nb = gpiod_count(dev, "cs");
2509	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2510
2511	/* No GPIOs at all is fine, else return the error */
2512	if (nb == 0 || nb == -ENOENT)
2513		return 0;
2514	else if (nb < 0)
2515		return nb;
2516
2517	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2518			  GFP_KERNEL);
2519	if (!cs)
2520		return -ENOMEM;
2521	ctlr->cs_gpiods = cs;
2522
2523	for (i = 0; i < nb; i++) {
2524		/*
2525		 * Most chipselects are active low, the inverted
2526		 * semantics are handled by special quirks in gpiolib,
2527		 * so initializing them GPIOD_OUT_LOW here means
2528		 * "unasserted", in most cases this will drive the physical
2529		 * line high.
2530		 */
2531		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2532						      GPIOD_OUT_LOW);
2533		if (IS_ERR(cs[i]))
2534			return PTR_ERR(cs[i]);
2535
2536		if (cs[i]) {
2537			/*
2538			 * If we find a CS GPIO, name it after the device and
2539			 * chip select line.
2540			 */
2541			char *gpioname;
2542
2543			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2544						  dev_name(dev), i);
2545			if (!gpioname)
2546				return -ENOMEM;
2547			gpiod_set_consumer_name(cs[i], gpioname);
2548			num_cs_gpios++;
2549			continue;
2550		}
2551
2552		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2553			dev_err(dev, "Invalid native chip select %d\n", i);
2554			return -EINVAL;
2555		}
2556		native_cs_mask |= BIT(i);
2557	}
2558
2559	ctlr->unused_native_cs = ffz(native_cs_mask);
2560	if (num_cs_gpios && ctlr->max_native_cs &&
2561	    ctlr->unused_native_cs >= ctlr->max_native_cs) {
2562		dev_err(dev, "No unused native chip select available\n");
2563		return -EINVAL;
2564	}
2565
2566	return 0;
2567}
2568
2569static int spi_controller_check_ops(struct spi_controller *ctlr)
2570{
2571	/*
2572	 * The controller may implement only the high-level SPI-memory like
2573	 * operations if it does not support regular SPI transfers, and this is
2574	 * valid use case.
2575	 * If ->mem_ops is NULL, we request that at least one of the
2576	 * ->transfer_xxx() method be implemented.
2577	 */
2578	if (ctlr->mem_ops) {
2579		if (!ctlr->mem_ops->exec_op)
2580			return -EINVAL;
2581	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2582		   !ctlr->transfer_one_message) {
2583		return -EINVAL;
2584	}
2585
2586	return 0;
2587}
 
2588
2589/**
2590 * spi_register_controller - register SPI master or slave controller
2591 * @ctlr: initialized master, originally from spi_alloc_master() or
2592 *	spi_alloc_slave()
2593 * Context: can sleep
2594 *
2595 * SPI controllers connect to their drivers using some non-SPI bus,
2596 * such as the platform bus.  The final stage of probe() in that code
2597 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2598 *
2599 * SPI controllers use board specific (often SOC specific) bus numbers,
2600 * and board-specific addressing for SPI devices combines those numbers
2601 * with chip select numbers.  Since SPI does not directly support dynamic
2602 * device identification, boards need configuration tables telling which
2603 * chip is at which address.
2604 *
2605 * This must be called from context that can sleep.  It returns zero on
2606 * success, else a negative error code (dropping the controller's refcount).
2607 * After a successful return, the caller is responsible for calling
2608 * spi_unregister_controller().
2609 *
2610 * Return: zero on success, else a negative error code.
2611 */
2612int spi_register_controller(struct spi_controller *ctlr)
2613{
2614	struct device		*dev = ctlr->dev.parent;
 
2615	struct boardinfo	*bi;
2616	int			status;
2617	int			id, first_dynamic;
2618
2619	if (!dev)
2620		return -ENODEV;
2621
2622	/*
2623	 * Make sure all necessary hooks are implemented before registering
2624	 * the SPI controller.
2625	 */
2626	status = spi_controller_check_ops(ctlr);
2627	if (status)
2628		return status;
2629
2630	if (ctlr->bus_num >= 0) {
2631		/* devices with a fixed bus num must check-in with the num */
2632		mutex_lock(&board_lock);
2633		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2634			ctlr->bus_num + 1, GFP_KERNEL);
2635		mutex_unlock(&board_lock);
2636		if (WARN(id < 0, "couldn't get idr"))
2637			return id == -ENOSPC ? -EBUSY : id;
2638		ctlr->bus_num = id;
2639	} else if (ctlr->dev.of_node) {
2640		/* allocate dynamic bus number using Linux idr */
2641		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2642		if (id >= 0) {
2643			ctlr->bus_num = id;
2644			mutex_lock(&board_lock);
2645			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2646				       ctlr->bus_num + 1, GFP_KERNEL);
2647			mutex_unlock(&board_lock);
2648			if (WARN(id < 0, "couldn't get idr"))
2649				return id == -ENOSPC ? -EBUSY : id;
2650		}
2651	}
2652	if (ctlr->bus_num < 0) {
2653		first_dynamic = of_alias_get_highest_id("spi");
2654		if (first_dynamic < 0)
2655			first_dynamic = 0;
2656		else
2657			first_dynamic++;
2658
2659		mutex_lock(&board_lock);
2660		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2661			       0, GFP_KERNEL);
2662		mutex_unlock(&board_lock);
2663		if (WARN(id < 0, "couldn't get idr"))
2664			return id;
2665		ctlr->bus_num = id;
2666	}
2667	INIT_LIST_HEAD(&ctlr->queue);
2668	spin_lock_init(&ctlr->queue_lock);
2669	spin_lock_init(&ctlr->bus_lock_spinlock);
2670	mutex_init(&ctlr->bus_lock_mutex);
2671	mutex_init(&ctlr->io_mutex);
2672	ctlr->bus_lock_flag = 0;
2673	init_completion(&ctlr->xfer_completion);
2674	if (!ctlr->max_dma_len)
2675		ctlr->max_dma_len = INT_MAX;
2676
2677	/* register the device, then userspace will see it.
2678	 * registration fails if the bus ID is in use.
2679	 */
2680	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2681
2682	if (!spi_controller_is_slave(ctlr)) {
2683		if (ctlr->use_gpio_descriptors) {
2684			status = spi_get_gpio_descs(ctlr);
2685			if (status)
2686				goto free_bus_id;
2687			/*
2688			 * A controller using GPIO descriptors always
2689			 * supports SPI_CS_HIGH if need be.
2690			 */
2691			ctlr->mode_bits |= SPI_CS_HIGH;
2692		} else {
2693			/* Legacy code path for GPIOs from DT */
2694			status = of_spi_get_gpio_numbers(ctlr);
2695			if (status)
2696				goto free_bus_id;
2697		}
2698	}
2699
2700	/*
2701	 * Even if it's just one always-selected device, there must
2702	 * be at least one chipselect.
2703	 */
2704	if (!ctlr->num_chipselect) {
2705		status = -EINVAL;
2706		goto free_bus_id;
2707	}
2708
2709	status = device_add(&ctlr->dev);
2710	if (status < 0)
2711		goto free_bus_id;
2712	dev_dbg(dev, "registered %s %s\n",
2713			spi_controller_is_slave(ctlr) ? "slave" : "master",
2714			dev_name(&ctlr->dev));
2715
2716	/*
2717	 * If we're using a queued driver, start the queue. Note that we don't
2718	 * need the queueing logic if the driver is only supporting high-level
2719	 * memory operations.
2720	 */
2721	if (ctlr->transfer) {
2722		dev_info(dev, "controller is unqueued, this is deprecated\n");
2723	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2724		status = spi_controller_initialize_queue(ctlr);
2725		if (status) {
2726			device_del(&ctlr->dev);
2727			goto free_bus_id;
2728		}
2729	}
2730	/* add statistics */
2731	spin_lock_init(&ctlr->statistics.lock);
2732
2733	mutex_lock(&board_lock);
2734	list_add_tail(&ctlr->list, &spi_controller_list);
2735	list_for_each_entry(bi, &board_list, list)
2736		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2737	mutex_unlock(&board_lock);
2738
2739	/* Register devices from the device tree and ACPI */
2740	of_register_spi_devices(ctlr);
2741	acpi_register_spi_devices(ctlr);
2742	return status;
2743
2744free_bus_id:
2745	mutex_lock(&board_lock);
2746	idr_remove(&spi_master_idr, ctlr->bus_num);
2747	mutex_unlock(&board_lock);
2748	return status;
2749}
2750EXPORT_SYMBOL_GPL(spi_register_controller);
2751
2752static void devm_spi_unregister(struct device *dev, void *res)
2753{
2754	spi_unregister_controller(*(struct spi_controller **)res);
2755}
2756
2757/**
2758 * devm_spi_register_controller - register managed SPI master or slave
2759 *	controller
2760 * @dev:    device managing SPI controller
2761 * @ctlr: initialized controller, originally from spi_alloc_master() or
2762 *	spi_alloc_slave()
2763 * Context: can sleep
2764 *
2765 * Register a SPI device as with spi_register_controller() which will
2766 * automatically be unregistered and freed.
2767 *
2768 * Return: zero on success, else a negative error code.
2769 */
2770int devm_spi_register_controller(struct device *dev,
2771				 struct spi_controller *ctlr)
2772{
2773	struct spi_controller **ptr;
2774	int ret;
2775
2776	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2777	if (!ptr)
2778		return -ENOMEM;
2779
2780	ret = spi_register_controller(ctlr);
2781	if (!ret) {
2782		*ptr = ctlr;
2783		devres_add(dev, ptr);
2784	} else {
2785		devres_free(ptr);
2786	}
2787
2788	return ret;
2789}
2790EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2791
2792static int __unregister(struct device *dev, void *null)
2793{
2794	spi_unregister_device(to_spi_device(dev));
2795	return 0;
2796}
2797
2798/**
2799 * spi_unregister_controller - unregister SPI master or slave controller
2800 * @ctlr: the controller being unregistered
2801 * Context: can sleep
2802 *
2803 * This call is used only by SPI controller drivers, which are the
2804 * only ones directly touching chip registers.
2805 *
2806 * This must be called from context that can sleep.
2807 *
2808 * Note that this function also drops a reference to the controller.
2809 */
2810void spi_unregister_controller(struct spi_controller *ctlr)
2811{
2812	struct spi_controller *found;
2813	int id = ctlr->bus_num;
2814
2815	/* Prevent addition of new devices, unregister existing ones */
2816	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2817		mutex_lock(&spi_add_lock);
2818
2819	device_for_each_child(&ctlr->dev, NULL, __unregister);
2820
2821	/* First make sure that this controller was ever added */
2822	mutex_lock(&board_lock);
2823	found = idr_find(&spi_master_idr, id);
2824	mutex_unlock(&board_lock);
2825	if (ctlr->queued) {
2826		if (spi_destroy_queue(ctlr))
2827			dev_err(&ctlr->dev, "queue remove failed\n");
2828	}
2829	mutex_lock(&board_lock);
2830	list_del(&ctlr->list);
2831	mutex_unlock(&board_lock);
2832
2833	device_unregister(&ctlr->dev);
2834	/* free bus id */
2835	mutex_lock(&board_lock);
2836	if (found == ctlr)
2837		idr_remove(&spi_master_idr, id);
2838	mutex_unlock(&board_lock);
2839
2840	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2841		mutex_unlock(&spi_add_lock);
2842}
2843EXPORT_SYMBOL_GPL(spi_unregister_controller);
2844
2845int spi_controller_suspend(struct spi_controller *ctlr)
2846{
2847	int ret;
 
2848
2849	/* Basically no-ops for non-queued controllers */
2850	if (!ctlr->queued)
2851		return 0;
2852
2853	ret = spi_stop_queue(ctlr);
2854	if (ret)
2855		dev_err(&ctlr->dev, "queue stop failed\n");
2856
2857	return ret;
2858}
2859EXPORT_SYMBOL_GPL(spi_controller_suspend);
2860
2861int spi_controller_resume(struct spi_controller *ctlr)
2862{
2863	int ret;
2864
2865	if (!ctlr->queued)
2866		return 0;
2867
2868	ret = spi_start_queue(ctlr);
2869	if (ret)
2870		dev_err(&ctlr->dev, "queue restart failed\n");
2871
2872	return ret;
2873}
2874EXPORT_SYMBOL_GPL(spi_controller_resume);
2875
2876static int __spi_controller_match(struct device *dev, const void *data)
2877{
2878	struct spi_controller *ctlr;
2879	const u16 *bus_num = data;
2880
2881	ctlr = container_of(dev, struct spi_controller, dev);
2882	return ctlr->bus_num == *bus_num;
2883}
2884
2885/**
2886 * spi_busnum_to_master - look up master associated with bus_num
2887 * @bus_num: the master's bus number
2888 * Context: can sleep
2889 *
2890 * This call may be used with devices that are registered after
2891 * arch init time.  It returns a refcounted pointer to the relevant
2892 * spi_controller (which the caller must release), or NULL if there is
2893 * no such master registered.
2894 *
2895 * Return: the SPI master structure on success, else NULL.
2896 */
2897struct spi_controller *spi_busnum_to_master(u16 bus_num)
2898{
2899	struct device		*dev;
2900	struct spi_controller	*ctlr = NULL;
2901
2902	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2903				__spi_controller_match);
2904	if (dev)
2905		ctlr = container_of(dev, struct spi_controller, dev);
2906	/* reference got in class_find_device */
2907	return ctlr;
2908}
2909EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2910
2911/*-------------------------------------------------------------------------*/
2912
2913/* Core methods for SPI resource management */
2914
2915/**
2916 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2917 *                 during the processing of a spi_message while using
2918 *                 spi_transfer_one
2919 * @spi:     the spi device for which we allocate memory
2920 * @release: the release code to execute for this resource
2921 * @size:    size to alloc and return
2922 * @gfp:     GFP allocation flags
2923 *
2924 * Return: the pointer to the allocated data
2925 *
2926 * This may get enhanced in the future to allocate from a memory pool
2927 * of the @spi_device or @spi_controller to avoid repeated allocations.
2928 */
2929void *spi_res_alloc(struct spi_device *spi,
2930		    spi_res_release_t release,
2931		    size_t size, gfp_t gfp)
2932{
2933	struct spi_res *sres;
2934
2935	sres = kzalloc(sizeof(*sres) + size, gfp);
2936	if (!sres)
2937		return NULL;
2938
2939	INIT_LIST_HEAD(&sres->entry);
2940	sres->release = release;
2941
2942	return sres->data;
2943}
2944EXPORT_SYMBOL_GPL(spi_res_alloc);
2945
2946/**
2947 * spi_res_free - free an spi resource
2948 * @res: pointer to the custom data of a resource
2949 *
2950 */
2951void spi_res_free(void *res)
2952{
2953	struct spi_res *sres = container_of(res, struct spi_res, data);
2954
2955	if (!res)
2956		return;
2957
2958	WARN_ON(!list_empty(&sres->entry));
2959	kfree(sres);
2960}
2961EXPORT_SYMBOL_GPL(spi_res_free);
2962
2963/**
2964 * spi_res_add - add a spi_res to the spi_message
2965 * @message: the spi message
2966 * @res:     the spi_resource
2967 */
2968void spi_res_add(struct spi_message *message, void *res)
2969{
2970	struct spi_res *sres = container_of(res, struct spi_res, data);
2971
2972	WARN_ON(!list_empty(&sres->entry));
2973	list_add_tail(&sres->entry, &message->resources);
2974}
2975EXPORT_SYMBOL_GPL(spi_res_add);
2976
2977/**
2978 * spi_res_release - release all spi resources for this message
2979 * @ctlr:  the @spi_controller
2980 * @message: the @spi_message
2981 */
2982void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2983{
2984	struct spi_res *res, *tmp;
2985
2986	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2987		if (res->release)
2988			res->release(ctlr, message, res->data);
2989
2990		list_del(&res->entry);
2991
2992		kfree(res);
2993	}
2994}
2995EXPORT_SYMBOL_GPL(spi_res_release);
2996
2997/*-------------------------------------------------------------------------*/
2998
2999/* Core methods for spi_message alterations */
3000
3001static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3002					    struct spi_message *msg,
3003					    void *res)
3004{
3005	struct spi_replaced_transfers *rxfer = res;
3006	size_t i;
3007
3008	/* call extra callback if requested */
3009	if (rxfer->release)
3010		rxfer->release(ctlr, msg, res);
3011
3012	/* insert replaced transfers back into the message */
3013	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3014
3015	/* remove the formerly inserted entries */
3016	for (i = 0; i < rxfer->inserted; i++)
3017		list_del(&rxfer->inserted_transfers[i].transfer_list);
3018}
3019
3020/**
3021 * spi_replace_transfers - replace transfers with several transfers
3022 *                         and register change with spi_message.resources
3023 * @msg:           the spi_message we work upon
3024 * @xfer_first:    the first spi_transfer we want to replace
3025 * @remove:        number of transfers to remove
3026 * @insert:        the number of transfers we want to insert instead
3027 * @release:       extra release code necessary in some circumstances
3028 * @extradatasize: extra data to allocate (with alignment guarantees
3029 *                 of struct @spi_transfer)
3030 * @gfp:           gfp flags
3031 *
3032 * Returns: pointer to @spi_replaced_transfers,
3033 *          PTR_ERR(...) in case of errors.
3034 */
3035struct spi_replaced_transfers *spi_replace_transfers(
3036	struct spi_message *msg,
3037	struct spi_transfer *xfer_first,
3038	size_t remove,
3039	size_t insert,
3040	spi_replaced_release_t release,
3041	size_t extradatasize,
3042	gfp_t gfp)
3043{
3044	struct spi_replaced_transfers *rxfer;
3045	struct spi_transfer *xfer;
3046	size_t i;
3047
3048	/* allocate the structure using spi_res */
3049	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3050			      struct_size(rxfer, inserted_transfers, insert)
3051			      + extradatasize,
3052			      gfp);
3053	if (!rxfer)
3054		return ERR_PTR(-ENOMEM);
3055
3056	/* the release code to invoke before running the generic release */
3057	rxfer->release = release;
3058
3059	/* assign extradata */
3060	if (extradatasize)
3061		rxfer->extradata =
3062			&rxfer->inserted_transfers[insert];
3063
3064	/* init the replaced_transfers list */
3065	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3066
3067	/* assign the list_entry after which we should reinsert
3068	 * the @replaced_transfers - it may be spi_message.messages!
3069	 */
3070	rxfer->replaced_after = xfer_first->transfer_list.prev;
3071
3072	/* remove the requested number of transfers */
3073	for (i = 0; i < remove; i++) {
3074		/* if the entry after replaced_after it is msg->transfers
3075		 * then we have been requested to remove more transfers
3076		 * than are in the list
3077		 */
3078		if (rxfer->replaced_after->next == &msg->transfers) {
3079			dev_err(&msg->spi->dev,
3080				"requested to remove more spi_transfers than are available\n");
3081			/* insert replaced transfers back into the message */
3082			list_splice(&rxfer->replaced_transfers,
3083				    rxfer->replaced_after);
3084
3085			/* free the spi_replace_transfer structure */
3086			spi_res_free(rxfer);
3087
3088			/* and return with an error */
3089			return ERR_PTR(-EINVAL);
3090		}
3091
3092		/* remove the entry after replaced_after from list of
3093		 * transfers and add it to list of replaced_transfers
3094		 */
3095		list_move_tail(rxfer->replaced_after->next,
3096			       &rxfer->replaced_transfers);
3097	}
3098
3099	/* create copy of the given xfer with identical settings
3100	 * based on the first transfer to get removed
3101	 */
3102	for (i = 0; i < insert; i++) {
3103		/* we need to run in reverse order */
3104		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3105
3106		/* copy all spi_transfer data */
3107		memcpy(xfer, xfer_first, sizeof(*xfer));
3108
3109		/* add to list */
3110		list_add(&xfer->transfer_list, rxfer->replaced_after);
3111
3112		/* clear cs_change and delay for all but the last */
3113		if (i) {
3114			xfer->cs_change = false;
3115			xfer->delay_usecs = 0;
3116			xfer->delay.value = 0;
3117		}
3118	}
3119
3120	/* set up inserted */
3121	rxfer->inserted = insert;
3122
3123	/* and register it with spi_res/spi_message */
3124	spi_res_add(msg, rxfer);
3125
3126	return rxfer;
3127}
3128EXPORT_SYMBOL_GPL(spi_replace_transfers);
3129
3130static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3131					struct spi_message *msg,
3132					struct spi_transfer **xferp,
3133					size_t maxsize,
3134					gfp_t gfp)
3135{
3136	struct spi_transfer *xfer = *xferp, *xfers;
3137	struct spi_replaced_transfers *srt;
3138	size_t offset;
3139	size_t count, i;
3140
3141	/* calculate how many we have to replace */
3142	count = DIV_ROUND_UP(xfer->len, maxsize);
3143
3144	/* create replacement */
3145	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3146	if (IS_ERR(srt))
3147		return PTR_ERR(srt);
3148	xfers = srt->inserted_transfers;
3149
3150	/* now handle each of those newly inserted spi_transfers
3151	 * note that the replacements spi_transfers all are preset
3152	 * to the same values as *xferp, so tx_buf, rx_buf and len
3153	 * are all identical (as well as most others)
3154	 * so we just have to fix up len and the pointers.
3155	 *
3156	 * this also includes support for the depreciated
3157	 * spi_message.is_dma_mapped interface
3158	 */
3159
3160	/* the first transfer just needs the length modified, so we
3161	 * run it outside the loop
3162	 */
3163	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3164
3165	/* all the others need rx_buf/tx_buf also set */
3166	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3167		/* update rx_buf, tx_buf and dma */
3168		if (xfers[i].rx_buf)
3169			xfers[i].rx_buf += offset;
3170		if (xfers[i].rx_dma)
3171			xfers[i].rx_dma += offset;
3172		if (xfers[i].tx_buf)
3173			xfers[i].tx_buf += offset;
3174		if (xfers[i].tx_dma)
3175			xfers[i].tx_dma += offset;
3176
3177		/* update length */
3178		xfers[i].len = min(maxsize, xfers[i].len - offset);
3179	}
3180
3181	/* we set up xferp to the last entry we have inserted,
3182	 * so that we skip those already split transfers
3183	 */
3184	*xferp = &xfers[count - 1];
3185
3186	/* increment statistics counters */
3187	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3188				       transfers_split_maxsize);
3189	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3190				       transfers_split_maxsize);
3191
3192	return 0;
3193}
3194
3195/**
3196 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3197 *                              when an individual transfer exceeds a
3198 *                              certain size
3199 * @ctlr:    the @spi_controller for this transfer
3200 * @msg:   the @spi_message to transform
3201 * @maxsize:  the maximum when to apply this
3202 * @gfp: GFP allocation flags
3203 *
3204 * Return: status of transformation
3205 */
3206int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3207				struct spi_message *msg,
3208				size_t maxsize,
3209				gfp_t gfp)
3210{
3211	struct spi_transfer *xfer;
3212	int ret;
3213
3214	/* iterate over the transfer_list,
3215	 * but note that xfer is advanced to the last transfer inserted
3216	 * to avoid checking sizes again unnecessarily (also xfer does
3217	 * potentiall belong to a different list by the time the
3218	 * replacement has happened
3219	 */
3220	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3221		if (xfer->len > maxsize) {
3222			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3223							   maxsize, gfp);
3224			if (ret)
3225				return ret;
3226		}
3227	}
3228
3229	return 0;
3230}
3231EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3232
3233/*-------------------------------------------------------------------------*/
3234
3235/* Core methods for SPI controller protocol drivers.  Some of the
3236 * other core methods are currently defined as inline functions.
3237 */
3238
3239static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3240					u8 bits_per_word)
3241{
3242	if (ctlr->bits_per_word_mask) {
3243		/* Only 32 bits fit in the mask */
3244		if (bits_per_word > 32)
3245			return -EINVAL;
3246		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3247			return -EINVAL;
3248	}
3249
3250	return 0;
3251}
3252
3253/**
3254 * spi_setup - setup SPI mode and clock rate
3255 * @spi: the device whose settings are being modified
3256 * Context: can sleep, and no requests are queued to the device
3257 *
3258 * SPI protocol drivers may need to update the transfer mode if the
3259 * device doesn't work with its default.  They may likewise need
3260 * to update clock rates or word sizes from initial values.  This function
3261 * changes those settings, and must be called from a context that can sleep.
3262 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3263 * effect the next time the device is selected and data is transferred to
3264 * or from it.  When this function returns, the spi device is deselected.
3265 *
3266 * Note that this call will fail if the protocol driver specifies an option
3267 * that the underlying controller or its driver does not support.  For
3268 * example, not all hardware supports wire transfers using nine bit words,
3269 * LSB-first wire encoding, or active-high chipselects.
3270 *
3271 * Return: zero on success, else a negative error code.
3272 */
3273int spi_setup(struct spi_device *spi)
3274{
3275	unsigned	bad_bits, ugly_bits;
3276	int		status;
3277
3278	/* check mode to prevent that DUAL and QUAD set at the same time
3279	 */
3280	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3281		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3282		dev_err(&spi->dev,
3283		"setup: can not select dual and quad at the same time\n");
3284		return -EINVAL;
3285	}
3286	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3287	 */
3288	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3289		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3290		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3291		return -EINVAL;
3292	/* help drivers fail *cleanly* when they need options
3293	 * that aren't supported with their current controller
3294	 * SPI_CS_WORD has a fallback software implementation,
3295	 * so it is ignored here.
3296	 */
3297	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3298	/* nothing prevents from working with active-high CS in case if it
3299	 * is driven by GPIO.
3300	 */
3301	if (gpio_is_valid(spi->cs_gpio))
3302		bad_bits &= ~SPI_CS_HIGH;
3303	ugly_bits = bad_bits &
3304		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3305		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3306	if (ugly_bits) {
3307		dev_warn(&spi->dev,
3308			 "setup: ignoring unsupported mode bits %x\n",
3309			 ugly_bits);
3310		spi->mode &= ~ugly_bits;
3311		bad_bits &= ~ugly_bits;
3312	}
3313	if (bad_bits) {
3314		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3315			bad_bits);
3316		return -EINVAL;
3317	}
3318
3319	if (!spi->bits_per_word)
3320		spi->bits_per_word = 8;
3321
3322	status = __spi_validate_bits_per_word(spi->controller,
3323					      spi->bits_per_word);
3324	if (status)
3325		return status;
3326
3327	if (!spi->max_speed_hz)
3328		spi->max_speed_hz = spi->controller->max_speed_hz;
3329
3330	if (spi->controller->setup)
3331		status = spi->controller->setup(spi);
3332
3333	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3334		status = pm_runtime_get_sync(spi->controller->dev.parent);
3335		if (status < 0) {
3336			pm_runtime_put_noidle(spi->controller->dev.parent);
3337			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3338				status);
3339			return status;
3340		}
3341
3342		/*
3343		 * We do not want to return positive value from pm_runtime_get,
3344		 * there are many instances of devices calling spi_setup() and
3345		 * checking for a non-zero return value instead of a negative
3346		 * return value.
3347		 */
3348		status = 0;
3349
3350		spi_set_cs(spi, false);
3351		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3352		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3353	} else {
3354		spi_set_cs(spi, false);
3355	}
3356
3357	if (spi->rt && !spi->controller->rt) {
3358		spi->controller->rt = true;
3359		spi_set_thread_rt(spi->controller);
3360	}
3361
3362	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
 
3363			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3364			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3365			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3366			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3367			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3368			spi->bits_per_word, spi->max_speed_hz,
3369			status);
3370
3371	return status;
3372}
3373EXPORT_SYMBOL_GPL(spi_setup);
3374
3375/**
3376 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3377 * @spi: the device that requires specific CS timing configuration
3378 * @setup: CS setup time specified via @spi_delay
3379 * @hold: CS hold time specified via @spi_delay
3380 * @inactive: CS inactive delay between transfers specified via @spi_delay
3381 *
3382 * Return: zero on success, else a negative error code.
3383 */
3384int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3385		      struct spi_delay *hold, struct spi_delay *inactive)
3386{
3387	size_t len;
3388
3389	if (spi->controller->set_cs_timing)
3390		return spi->controller->set_cs_timing(spi, setup, hold,
3391						      inactive);
3392
3393	if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3394	    (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3395	    (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3396		dev_err(&spi->dev,
3397			"Clock-cycle delays for CS not supported in SW mode\n");
3398		return -ENOTSUPP;
3399	}
3400
3401	len = sizeof(struct spi_delay);
3402
3403	/* copy delays to controller */
3404	if (setup)
3405		memcpy(&spi->controller->cs_setup, setup, len);
3406	else
3407		memset(&spi->controller->cs_setup, 0, len);
3408
3409	if (hold)
3410		memcpy(&spi->controller->cs_hold, hold, len);
3411	else
3412		memset(&spi->controller->cs_hold, 0, len);
3413
3414	if (inactive)
3415		memcpy(&spi->controller->cs_inactive, inactive, len);
3416	else
3417		memset(&spi->controller->cs_inactive, 0, len);
3418
3419	return 0;
3420}
3421EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3422
3423static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3424				       struct spi_device *spi)
3425{
3426	int delay1, delay2;
3427
3428	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3429	if (delay1 < 0)
3430		return delay1;
3431
3432	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3433	if (delay2 < 0)
3434		return delay2;
3435
3436	if (delay1 < delay2)
3437		memcpy(&xfer->word_delay, &spi->word_delay,
3438		       sizeof(xfer->word_delay));
3439
3440	return 0;
3441}
3442
3443static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3444{
3445	struct spi_controller *ctlr = spi->controller;
3446	struct spi_transfer *xfer;
3447	int w_size;
3448
3449	if (list_empty(&message->transfers))
3450		return -EINVAL;
3451
3452	/* If an SPI controller does not support toggling the CS line on each
3453	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3454	 * for the CS line, we can emulate the CS-per-word hardware function by
3455	 * splitting transfers into one-word transfers and ensuring that
3456	 * cs_change is set for each transfer.
3457	 */
3458	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3459					  spi->cs_gpiod ||
3460					  gpio_is_valid(spi->cs_gpio))) {
3461		size_t maxsize;
3462		int ret;
3463
3464		maxsize = (spi->bits_per_word + 7) / 8;
3465
3466		/* spi_split_transfers_maxsize() requires message->spi */
3467		message->spi = spi;
3468
3469		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3470						  GFP_KERNEL);
3471		if (ret)
3472			return ret;
3473
3474		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3475			/* don't change cs_change on the last entry in the list */
3476			if (list_is_last(&xfer->transfer_list, &message->transfers))
3477				break;
3478			xfer->cs_change = 1;
3479		}
3480	}
3481
3482	/* Half-duplex links include original MicroWire, and ones with
3483	 * only one data pin like SPI_3WIRE (switches direction) or where
3484	 * either MOSI or MISO is missing.  They can also be caused by
3485	 * software limitations.
3486	 */
3487	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3488	    (spi->mode & SPI_3WIRE)) {
3489		unsigned flags = ctlr->flags;
 
3490
3491		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3492			if (xfer->rx_buf && xfer->tx_buf)
3493				return -EINVAL;
3494			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3495				return -EINVAL;
3496			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3497				return -EINVAL;
3498		}
3499	}
3500
3501	/**
3502	 * Set transfer bits_per_word and max speed as spi device default if
3503	 * it is not set for this transfer.
3504	 * Set transfer tx_nbits and rx_nbits as single transfer default
3505	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3506	 * Ensure transfer word_delay is at least as long as that required by
3507	 * device itself.
3508	 */
3509	message->frame_length = 0;
3510	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3511		xfer->effective_speed_hz = 0;
3512		message->frame_length += xfer->len;
3513		if (!xfer->bits_per_word)
3514			xfer->bits_per_word = spi->bits_per_word;
3515
3516		if (!xfer->speed_hz)
3517			xfer->speed_hz = spi->max_speed_hz;
3518
3519		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3520			xfer->speed_hz = ctlr->max_speed_hz;
3521
3522		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3523			return -EINVAL;
3524
3525		/*
3526		 * SPI transfer length should be multiple of SPI word size
3527		 * where SPI word size should be power-of-two multiple
3528		 */
3529		if (xfer->bits_per_word <= 8)
3530			w_size = 1;
3531		else if (xfer->bits_per_word <= 16)
3532			w_size = 2;
3533		else
3534			w_size = 4;
3535
3536		/* No partial transfers accepted */
3537		if (xfer->len % w_size)
3538			return -EINVAL;
3539
3540		if (xfer->speed_hz && ctlr->min_speed_hz &&
3541		    xfer->speed_hz < ctlr->min_speed_hz)
3542			return -EINVAL;
3543
3544		if (xfer->tx_buf && !xfer->tx_nbits)
3545			xfer->tx_nbits = SPI_NBITS_SINGLE;
3546		if (xfer->rx_buf && !xfer->rx_nbits)
3547			xfer->rx_nbits = SPI_NBITS_SINGLE;
3548		/* check transfer tx/rx_nbits:
3549		 * 1. check the value matches one of single, dual and quad
3550		 * 2. check tx/rx_nbits match the mode in spi_device
3551		 */
3552		if (xfer->tx_buf) {
3553			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3554				xfer->tx_nbits != SPI_NBITS_DUAL &&
3555				xfer->tx_nbits != SPI_NBITS_QUAD)
3556				return -EINVAL;
3557			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3558				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3559				return -EINVAL;
3560			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3561				!(spi->mode & SPI_TX_QUAD))
3562				return -EINVAL;
3563		}
3564		/* check transfer rx_nbits */
3565		if (xfer->rx_buf) {
3566			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3567				xfer->rx_nbits != SPI_NBITS_DUAL &&
3568				xfer->rx_nbits != SPI_NBITS_QUAD)
3569				return -EINVAL;
3570			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3571				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3572				return -EINVAL;
3573			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3574				!(spi->mode & SPI_RX_QUAD))
3575				return -EINVAL;
3576		}
3577
3578		if (_spi_xfer_word_delay_update(xfer, spi))
3579			return -EINVAL;
3580	}
3581
3582	message->status = -EINPROGRESS;
3583
3584	return 0;
3585}
3586
3587static int __spi_async(struct spi_device *spi, struct spi_message *message)
3588{
3589	struct spi_controller *ctlr = spi->controller;
3590	struct spi_transfer *xfer;
3591
3592	/*
3593	 * Some controllers do not support doing regular SPI transfers. Return
3594	 * ENOTSUPP when this is the case.
3595	 */
3596	if (!ctlr->transfer)
3597		return -ENOTSUPP;
3598
3599	message->spi = spi;
3600
3601	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3602	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3603
3604	trace_spi_message_submit(message);
3605
3606	if (!ctlr->ptp_sts_supported) {
3607		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3608			xfer->ptp_sts_word_pre = 0;
3609			ptp_read_system_prets(xfer->ptp_sts);
3610		}
3611	}
3612
3613	return ctlr->transfer(spi, message);
3614}
3615
3616/**
3617 * spi_async - asynchronous SPI transfer
3618 * @spi: device with which data will be exchanged
3619 * @message: describes the data transfers, including completion callback
3620 * Context: any (irqs may be blocked, etc)
3621 *
3622 * This call may be used in_irq and other contexts which can't sleep,
3623 * as well as from task contexts which can sleep.
3624 *
3625 * The completion callback is invoked in a context which can't sleep.
3626 * Before that invocation, the value of message->status is undefined.
3627 * When the callback is issued, message->status holds either zero (to
3628 * indicate complete success) or a negative error code.  After that
3629 * callback returns, the driver which issued the transfer request may
3630 * deallocate the associated memory; it's no longer in use by any SPI
3631 * core or controller driver code.
3632 *
3633 * Note that although all messages to a spi_device are handled in
3634 * FIFO order, messages may go to different devices in other orders.
3635 * Some device might be higher priority, or have various "hard" access
3636 * time requirements, for example.
3637 *
3638 * On detection of any fault during the transfer, processing of
3639 * the entire message is aborted, and the device is deselected.
3640 * Until returning from the associated message completion callback,
3641 * no other spi_message queued to that device will be processed.
3642 * (This rule applies equally to all the synchronous transfer calls,
3643 * which are wrappers around this core asynchronous primitive.)
3644 *
3645 * Return: zero on success, else a negative error code.
3646 */
3647int spi_async(struct spi_device *spi, struct spi_message *message)
3648{
3649	struct spi_controller *ctlr = spi->controller;
3650	int ret;
3651	unsigned long flags;
3652
3653	ret = __spi_validate(spi, message);
3654	if (ret != 0)
3655		return ret;
3656
3657	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3658
3659	if (ctlr->bus_lock_flag)
3660		ret = -EBUSY;
3661	else
3662		ret = __spi_async(spi, message);
3663
3664	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3665
3666	return ret;
3667}
3668EXPORT_SYMBOL_GPL(spi_async);
3669
3670/**
3671 * spi_async_locked - version of spi_async with exclusive bus usage
3672 * @spi: device with which data will be exchanged
3673 * @message: describes the data transfers, including completion callback
3674 * Context: any (irqs may be blocked, etc)
3675 *
3676 * This call may be used in_irq and other contexts which can't sleep,
3677 * as well as from task contexts which can sleep.
3678 *
3679 * The completion callback is invoked in a context which can't sleep.
3680 * Before that invocation, the value of message->status is undefined.
3681 * When the callback is issued, message->status holds either zero (to
3682 * indicate complete success) or a negative error code.  After that
3683 * callback returns, the driver which issued the transfer request may
3684 * deallocate the associated memory; it's no longer in use by any SPI
3685 * core or controller driver code.
3686 *
3687 * Note that although all messages to a spi_device are handled in
3688 * FIFO order, messages may go to different devices in other orders.
3689 * Some device might be higher priority, or have various "hard" access
3690 * time requirements, for example.
3691 *
3692 * On detection of any fault during the transfer, processing of
3693 * the entire message is aborted, and the device is deselected.
3694 * Until returning from the associated message completion callback,
3695 * no other spi_message queued to that device will be processed.
3696 * (This rule applies equally to all the synchronous transfer calls,
3697 * which are wrappers around this core asynchronous primitive.)
3698 *
3699 * Return: zero on success, else a negative error code.
3700 */
3701int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3702{
3703	struct spi_controller *ctlr = spi->controller;
3704	int ret;
3705	unsigned long flags;
3706
3707	ret = __spi_validate(spi, message);
3708	if (ret != 0)
3709		return ret;
3710
3711	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3712
3713	ret = __spi_async(spi, message);
3714
3715	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3716
3717	return ret;
3718
3719}
3720EXPORT_SYMBOL_GPL(spi_async_locked);
3721
 
3722/*-------------------------------------------------------------------------*/
3723
3724/* Utility methods for SPI protocol drivers, layered on
3725 * top of the core.  Some other utility methods are defined as
3726 * inline functions.
3727 */
3728
3729static void spi_complete(void *arg)
3730{
3731	complete(arg);
3732}
3733
3734static int __spi_sync(struct spi_device *spi, struct spi_message *message)
 
3735{
3736	DECLARE_COMPLETION_ONSTACK(done);
3737	int status;
3738	struct spi_controller *ctlr = spi->controller;
3739	unsigned long flags;
3740
3741	status = __spi_validate(spi, message);
3742	if (status != 0)
3743		return status;
3744
3745	message->complete = spi_complete;
3746	message->context = &done;
3747	message->spi = spi;
3748
3749	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3750	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3751
3752	/* If we're not using the legacy transfer method then we will
3753	 * try to transfer in the calling context so special case.
3754	 * This code would be less tricky if we could remove the
3755	 * support for driver implemented message queues.
3756	 */
3757	if (ctlr->transfer == spi_queued_transfer) {
3758		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3759
3760		trace_spi_message_submit(message);
3761
3762		status = __spi_queued_transfer(spi, message, false);
3763
3764		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3765	} else {
3766		status = spi_async_locked(spi, message);
3767	}
3768
3769	if (status == 0) {
3770		/* Push out the messages in the calling context if we
3771		 * can.
3772		 */
3773		if (ctlr->transfer == spi_queued_transfer) {
3774			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3775						       spi_sync_immediate);
3776			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3777						       spi_sync_immediate);
3778			__spi_pump_messages(ctlr, false);
3779		}
3780
3781		wait_for_completion(&done);
3782		status = message->status;
3783	}
3784	message->context = NULL;
3785	return status;
3786}
3787
3788/**
3789 * spi_sync - blocking/synchronous SPI data transfers
3790 * @spi: device with which data will be exchanged
3791 * @message: describes the data transfers
3792 * Context: can sleep
3793 *
3794 * This call may only be used from a context that may sleep.  The sleep
3795 * is non-interruptible, and has no timeout.  Low-overhead controller
3796 * drivers may DMA directly into and out of the message buffers.
3797 *
3798 * Note that the SPI device's chip select is active during the message,
3799 * and then is normally disabled between messages.  Drivers for some
3800 * frequently-used devices may want to minimize costs of selecting a chip,
3801 * by leaving it selected in anticipation that the next message will go
3802 * to the same chip.  (That may increase power usage.)
3803 *
3804 * Also, the caller is guaranteeing that the memory associated with the
3805 * message will not be freed before this call returns.
3806 *
3807 * Return: zero on success, else a negative error code.
3808 */
3809int spi_sync(struct spi_device *spi, struct spi_message *message)
3810{
3811	int ret;
3812
3813	mutex_lock(&spi->controller->bus_lock_mutex);
3814	ret = __spi_sync(spi, message);
3815	mutex_unlock(&spi->controller->bus_lock_mutex);
3816
3817	return ret;
3818}
3819EXPORT_SYMBOL_GPL(spi_sync);
3820
3821/**
3822 * spi_sync_locked - version of spi_sync with exclusive bus usage
3823 * @spi: device with which data will be exchanged
3824 * @message: describes the data transfers
3825 * Context: can sleep
3826 *
3827 * This call may only be used from a context that may sleep.  The sleep
3828 * is non-interruptible, and has no timeout.  Low-overhead controller
3829 * drivers may DMA directly into and out of the message buffers.
3830 *
3831 * This call should be used by drivers that require exclusive access to the
3832 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3833 * be released by a spi_bus_unlock call when the exclusive access is over.
3834 *
3835 * Return: zero on success, else a negative error code.
3836 */
3837int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3838{
3839	return __spi_sync(spi, message);
3840}
3841EXPORT_SYMBOL_GPL(spi_sync_locked);
3842
3843/**
3844 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3845 * @ctlr: SPI bus master that should be locked for exclusive bus access
3846 * Context: can sleep
3847 *
3848 * This call may only be used from a context that may sleep.  The sleep
3849 * is non-interruptible, and has no timeout.
3850 *
3851 * This call should be used by drivers that require exclusive access to the
3852 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3853 * exclusive access is over. Data transfer must be done by spi_sync_locked
3854 * and spi_async_locked calls when the SPI bus lock is held.
3855 *
3856 * Return: always zero.
3857 */
3858int spi_bus_lock(struct spi_controller *ctlr)
3859{
3860	unsigned long flags;
3861
3862	mutex_lock(&ctlr->bus_lock_mutex);
3863
3864	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3865	ctlr->bus_lock_flag = 1;
3866	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3867
3868	/* mutex remains locked until spi_bus_unlock is called */
3869
3870	return 0;
3871}
3872EXPORT_SYMBOL_GPL(spi_bus_lock);
3873
3874/**
3875 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3876 * @ctlr: SPI bus master that was locked for exclusive bus access
3877 * Context: can sleep
3878 *
3879 * This call may only be used from a context that may sleep.  The sleep
3880 * is non-interruptible, and has no timeout.
3881 *
3882 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3883 * call.
3884 *
3885 * Return: always zero.
3886 */
3887int spi_bus_unlock(struct spi_controller *ctlr)
3888{
3889	ctlr->bus_lock_flag = 0;
3890
3891	mutex_unlock(&ctlr->bus_lock_mutex);
3892
3893	return 0;
3894}
3895EXPORT_SYMBOL_GPL(spi_bus_unlock);
3896
3897/* portable code must never pass more than 32 bytes */
3898#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3899
3900static u8	*buf;
3901
3902/**
3903 * spi_write_then_read - SPI synchronous write followed by read
3904 * @spi: device with which data will be exchanged
3905 * @txbuf: data to be written (need not be dma-safe)
3906 * @n_tx: size of txbuf, in bytes
3907 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3908 * @n_rx: size of rxbuf, in bytes
3909 * Context: can sleep
3910 *
3911 * This performs a half duplex MicroWire style transaction with the
3912 * device, sending txbuf and then reading rxbuf.  The return value
3913 * is zero for success, else a negative errno status code.
3914 * This call may only be used from a context that may sleep.
3915 *
3916 * Parameters to this routine are always copied using a small buffer.
 
3917 * Performance-sensitive or bulk transfer code should instead use
3918 * spi_{async,sync}() calls with dma-safe buffers.
3919 *
3920 * Return: zero on success, else a negative error code.
3921 */
3922int spi_write_then_read(struct spi_device *spi,
3923		const void *txbuf, unsigned n_tx,
3924		void *rxbuf, unsigned n_rx)
3925{
3926	static DEFINE_MUTEX(lock);
3927
3928	int			status;
3929	struct spi_message	message;
3930	struct spi_transfer	x[2];
3931	u8			*local_buf;
3932
3933	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3934	 * copying here, (as a pure convenience thing), but we can
3935	 * keep heap costs out of the hot path unless someone else is
3936	 * using the pre-allocated buffer or the transfer is too large.
3937	 */
3938	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3939		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3940				    GFP_KERNEL | GFP_DMA);
3941		if (!local_buf)
3942			return -ENOMEM;
3943	} else {
3944		local_buf = buf;
3945	}
3946
3947	spi_message_init(&message);
3948	memset(x, 0, sizeof(x));
3949	if (n_tx) {
3950		x[0].len = n_tx;
3951		spi_message_add_tail(&x[0], &message);
3952	}
3953	if (n_rx) {
3954		x[1].len = n_rx;
3955		spi_message_add_tail(&x[1], &message);
3956	}
3957
 
 
 
 
 
 
 
 
3958	memcpy(local_buf, txbuf, n_tx);
3959	x[0].tx_buf = local_buf;
3960	x[1].rx_buf = local_buf + n_tx;
3961
3962	/* do the i/o */
3963	status = spi_sync(spi, &message);
3964	if (status == 0)
3965		memcpy(rxbuf, x[1].rx_buf, n_rx);
3966
3967	if (x[0].tx_buf == buf)
3968		mutex_unlock(&lock);
3969	else
3970		kfree(local_buf);
3971
3972	return status;
3973}
3974EXPORT_SYMBOL_GPL(spi_write_then_read);
3975
3976/*-------------------------------------------------------------------------*/
3977
3978#if IS_ENABLED(CONFIG_OF)
3979/* must call put_device() when done with returned spi_device device */
3980struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3981{
3982	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3983
3984	return dev ? to_spi_device(dev) : NULL;
3985}
3986EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3987#endif /* IS_ENABLED(CONFIG_OF) */
3988
3989#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3990/* the spi controllers are not using spi_bus, so we find it with another way */
3991static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3992{
3993	struct device *dev;
3994
3995	dev = class_find_device_by_of_node(&spi_master_class, node);
3996	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3997		dev = class_find_device_by_of_node(&spi_slave_class, node);
3998	if (!dev)
3999		return NULL;
4000
4001	/* reference got in class_find_device */
4002	return container_of(dev, struct spi_controller, dev);
4003}
4004
4005static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4006			 void *arg)
4007{
4008	struct of_reconfig_data *rd = arg;
4009	struct spi_controller *ctlr;
4010	struct spi_device *spi;
4011
4012	switch (of_reconfig_get_state_change(action, arg)) {
4013	case OF_RECONFIG_CHANGE_ADD:
4014		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4015		if (ctlr == NULL)
4016			return NOTIFY_OK;	/* not for us */
4017
4018		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4019			put_device(&ctlr->dev);
4020			return NOTIFY_OK;
4021		}
4022
4023		spi = of_register_spi_device(ctlr, rd->dn);
4024		put_device(&ctlr->dev);
4025
4026		if (IS_ERR(spi)) {
4027			pr_err("%s: failed to create for '%pOF'\n",
4028					__func__, rd->dn);
4029			of_node_clear_flag(rd->dn, OF_POPULATED);
4030			return notifier_from_errno(PTR_ERR(spi));
4031		}
4032		break;
4033
4034	case OF_RECONFIG_CHANGE_REMOVE:
4035		/* already depopulated? */
4036		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4037			return NOTIFY_OK;
4038
4039		/* find our device by node */
4040		spi = of_find_spi_device_by_node(rd->dn);
4041		if (spi == NULL)
4042			return NOTIFY_OK;	/* no? not meant for us */
4043
4044		/* unregister takes one ref away */
4045		spi_unregister_device(spi);
4046
4047		/* and put the reference of the find */
4048		put_device(&spi->dev);
4049		break;
4050	}
4051
4052	return NOTIFY_OK;
4053}
4054
4055static struct notifier_block spi_of_notifier = {
4056	.notifier_call = of_spi_notify,
4057};
4058#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4059extern struct notifier_block spi_of_notifier;
4060#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4061
4062#if IS_ENABLED(CONFIG_ACPI)
4063static int spi_acpi_controller_match(struct device *dev, const void *data)
4064{
4065	return ACPI_COMPANION(dev->parent) == data;
4066}
4067
4068static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4069{
4070	struct device *dev;
4071
4072	dev = class_find_device(&spi_master_class, NULL, adev,
4073				spi_acpi_controller_match);
4074	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4075		dev = class_find_device(&spi_slave_class, NULL, adev,
4076					spi_acpi_controller_match);
4077	if (!dev)
4078		return NULL;
4079
4080	return container_of(dev, struct spi_controller, dev);
4081}
4082
4083static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4084{
4085	struct device *dev;
4086
4087	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4088	return to_spi_device(dev);
4089}
4090
4091static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4092			   void *arg)
4093{
4094	struct acpi_device *adev = arg;
4095	struct spi_controller *ctlr;
4096	struct spi_device *spi;
4097
4098	switch (value) {
4099	case ACPI_RECONFIG_DEVICE_ADD:
4100		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4101		if (!ctlr)
4102			break;
4103
4104		acpi_register_spi_device(ctlr, adev);
4105		put_device(&ctlr->dev);
4106		break;
4107	case ACPI_RECONFIG_DEVICE_REMOVE:
4108		if (!acpi_device_enumerated(adev))
4109			break;
4110
4111		spi = acpi_spi_find_device_by_adev(adev);
4112		if (!spi)
4113			break;
4114
4115		spi_unregister_device(spi);
4116		put_device(&spi->dev);
4117		break;
4118	}
4119
4120	return NOTIFY_OK;
4121}
4122
4123static struct notifier_block spi_acpi_notifier = {
4124	.notifier_call = acpi_spi_notify,
4125};
4126#else
4127extern struct notifier_block spi_acpi_notifier;
4128#endif
4129
4130static int __init spi_init(void)
4131{
4132	int	status;
4133
4134	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4135	if (!buf) {
4136		status = -ENOMEM;
4137		goto err0;
4138	}
4139
4140	status = bus_register(&spi_bus_type);
4141	if (status < 0)
4142		goto err1;
4143
4144	status = class_register(&spi_master_class);
4145	if (status < 0)
4146		goto err2;
4147
4148	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4149		status = class_register(&spi_slave_class);
4150		if (status < 0)
4151			goto err3;
4152	}
4153
4154	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4155		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4156	if (IS_ENABLED(CONFIG_ACPI))
4157		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4158
4159	return 0;
4160
4161err3:
4162	class_unregister(&spi_master_class);
4163err2:
4164	bus_unregister(&spi_bus_type);
4165err1:
4166	kfree(buf);
4167	buf = NULL;
4168err0:
4169	return status;
4170}
4171
4172/* board_info is normally registered in arch_initcall(),
4173 * but even essential drivers wait till later
4174 *
4175 * REVISIT only boardinfo really needs static linking. the rest (device and
4176 * driver registration) _could_ be dynamically linked (modular) ... costs
4177 * include needing to have boardinfo data structures be much more public.
4178 */
4179postcore_initcall(spi_init);
v3.1
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/kernel.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/cache.h>
 
 
  25#include <linux/mutex.h>
  26#include <linux/of_device.h>
 
 
  27#include <linux/slab.h>
  28#include <linux/mod_devicetable.h>
  29#include <linux/spi/spi.h>
  30#include <linux/of_spi.h>
 
 
  31#include <linux/pm_runtime.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  32
  33static void spidev_release(struct device *dev)
  34{
  35	struct spi_device	*spi = to_spi_device(dev);
  36
  37	/* spi masters may cleanup for released devices */
  38	if (spi->master->cleanup)
  39		spi->master->cleanup(spi);
  40
  41	spi_master_put(spi->master);
 
  42	kfree(spi);
  43}
  44
  45static ssize_t
  46modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  47{
  48	const struct spi_device	*spi = to_spi_device(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  49
  50	return sprintf(buf, "%s\n", spi->modalias);
  51}
  52
  53static struct device_attribute spi_dev_attrs[] = {
  54	__ATTR_RO(modalias),
  55	__ATTR_NULL,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56};
  57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  59 * and the sysfs version makes coldplug work too.
  60 */
  61
  62static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
  63						const struct spi_device *sdev)
  64{
  65	while (id->name[0]) {
  66		if (!strcmp(sdev->modalias, id->name))
  67			return id;
  68		id++;
  69	}
  70	return NULL;
  71}
  72
  73const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
  74{
  75	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
  76
  77	return spi_match_id(sdrv->id_table, sdev);
  78}
  79EXPORT_SYMBOL_GPL(spi_get_device_id);
  80
  81static int spi_match_device(struct device *dev, struct device_driver *drv)
  82{
  83	const struct spi_device	*spi = to_spi_device(dev);
  84	const struct spi_driver	*sdrv = to_spi_driver(drv);
  85
 
 
 
 
  86	/* Attempt an OF style match */
  87	if (of_driver_match_device(dev, drv))
  88		return 1;
  89
 
 
 
 
  90	if (sdrv->id_table)
  91		return !!spi_match_id(sdrv->id_table, spi);
  92
  93	return strcmp(spi->modalias, drv->name) == 0;
  94}
  95
  96static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
  97{
  98	const struct spi_device		*spi = to_spi_device(dev);
 
  99
 100	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 101	return 0;
 102}
 103
 104#ifdef CONFIG_PM_SLEEP
 105static int spi_legacy_suspend(struct device *dev, pm_message_t message)
 106{
 107	int			value = 0;
 108	struct spi_driver	*drv = to_spi_driver(dev->driver);
 109
 110	/* suspend will stop irqs and dma; no more i/o */
 111	if (drv) {
 112		if (drv->suspend)
 113			value = drv->suspend(to_spi_device(dev), message);
 114		else
 115			dev_dbg(dev, "... can't suspend\n");
 116	}
 117	return value;
 118}
 119
 120static int spi_legacy_resume(struct device *dev)
 121{
 122	int			value = 0;
 123	struct spi_driver	*drv = to_spi_driver(dev->driver);
 124
 125	/* resume may restart the i/o queue */
 126	if (drv) {
 127		if (drv->resume)
 128			value = drv->resume(to_spi_device(dev));
 129		else
 130			dev_dbg(dev, "... can't resume\n");
 131	}
 132	return value;
 133}
 134
 135static int spi_pm_suspend(struct device *dev)
 136{
 137	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 138
 139	if (pm)
 140		return pm_generic_suspend(dev);
 141	else
 142		return spi_legacy_suspend(dev, PMSG_SUSPEND);
 143}
 144
 145static int spi_pm_resume(struct device *dev)
 146{
 147	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 148
 149	if (pm)
 150		return pm_generic_resume(dev);
 151	else
 152		return spi_legacy_resume(dev);
 153}
 154
 155static int spi_pm_freeze(struct device *dev)
 156{
 157	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 158
 159	if (pm)
 160		return pm_generic_freeze(dev);
 161	else
 162		return spi_legacy_suspend(dev, PMSG_FREEZE);
 163}
 164
 165static int spi_pm_thaw(struct device *dev)
 166{
 167	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 168
 169	if (pm)
 170		return pm_generic_thaw(dev);
 171	else
 172		return spi_legacy_resume(dev);
 173}
 174
 175static int spi_pm_poweroff(struct device *dev)
 176{
 177	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 178
 179	if (pm)
 180		return pm_generic_poweroff(dev);
 181	else
 182		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
 183}
 184
 185static int spi_pm_restore(struct device *dev)
 186{
 187	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 188
 189	if (pm)
 190		return pm_generic_restore(dev);
 191	else
 192		return spi_legacy_resume(dev);
 193}
 194#else
 195#define spi_pm_suspend	NULL
 196#define spi_pm_resume	NULL
 197#define spi_pm_freeze	NULL
 198#define spi_pm_thaw	NULL
 199#define spi_pm_poweroff	NULL
 200#define spi_pm_restore	NULL
 201#endif
 202
 203static const struct dev_pm_ops spi_pm = {
 204	.suspend = spi_pm_suspend,
 205	.resume = spi_pm_resume,
 206	.freeze = spi_pm_freeze,
 207	.thaw = spi_pm_thaw,
 208	.poweroff = spi_pm_poweroff,
 209	.restore = spi_pm_restore,
 210	SET_RUNTIME_PM_OPS(
 211		pm_generic_runtime_suspend,
 212		pm_generic_runtime_resume,
 213		pm_generic_runtime_idle
 214	)
 215};
 216
 217struct bus_type spi_bus_type = {
 218	.name		= "spi",
 219	.dev_attrs	= spi_dev_attrs,
 220	.match		= spi_match_device,
 221	.uevent		= spi_uevent,
 222	.pm		= &spi_pm,
 223};
 224EXPORT_SYMBOL_GPL(spi_bus_type);
 225
 226
 227static int spi_drv_probe(struct device *dev)
 228{
 229	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230
 231	return sdrv->probe(to_spi_device(dev));
 232}
 233
 234static int spi_drv_remove(struct device *dev)
 235{
 236	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 
 237
 238	return sdrv->remove(to_spi_device(dev));
 
 
 
 239}
 240
 241static void spi_drv_shutdown(struct device *dev)
 242{
 243	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 244
 245	sdrv->shutdown(to_spi_device(dev));
 246}
 247
 248/**
 249 * spi_register_driver - register a SPI driver
 
 250 * @sdrv: the driver to register
 251 * Context: can sleep
 
 
 252 */
 253int spi_register_driver(struct spi_driver *sdrv)
 254{
 
 255	sdrv->driver.bus = &spi_bus_type;
 256	if (sdrv->probe)
 257		sdrv->driver.probe = spi_drv_probe;
 258	if (sdrv->remove)
 259		sdrv->driver.remove = spi_drv_remove;
 260	if (sdrv->shutdown)
 261		sdrv->driver.shutdown = spi_drv_shutdown;
 262	return driver_register(&sdrv->driver);
 263}
 264EXPORT_SYMBOL_GPL(spi_register_driver);
 265
 266/*-------------------------------------------------------------------------*/
 267
 268/* SPI devices should normally not be created by SPI device drivers; that
 269 * would make them board-specific.  Similarly with SPI master drivers.
 270 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 271 * with other readonly (flashable) information about mainboard devices.
 272 */
 273
 274struct boardinfo {
 275	struct list_head	list;
 276	struct spi_board_info	board_info;
 277};
 278
 279static LIST_HEAD(board_list);
 280static LIST_HEAD(spi_master_list);
 281
 282/*
 283 * Used to protect add/del opertion for board_info list and
 284 * spi_master list, and their matching process
 
 285 */
 286static DEFINE_MUTEX(board_lock);
 287
 
 
 
 
 
 
 288/**
 289 * spi_alloc_device - Allocate a new SPI device
 290 * @master: Controller to which device is connected
 291 * Context: can sleep
 292 *
 293 * Allows a driver to allocate and initialize a spi_device without
 294 * registering it immediately.  This allows a driver to directly
 295 * fill the spi_device with device parameters before calling
 296 * spi_add_device() on it.
 297 *
 298 * Caller is responsible to call spi_add_device() on the returned
 299 * spi_device structure to add it to the SPI master.  If the caller
 300 * needs to discard the spi_device without adding it, then it should
 301 * call spi_dev_put() on it.
 302 *
 303 * Returns a pointer to the new device, or NULL.
 304 */
 305struct spi_device *spi_alloc_device(struct spi_master *master)
 306{
 307	struct spi_device	*spi;
 308	struct device		*dev = master->dev.parent;
 309
 310	if (!spi_master_get(master))
 311		return NULL;
 312
 313	spi = kzalloc(sizeof *spi, GFP_KERNEL);
 314	if (!spi) {
 315		dev_err(dev, "cannot alloc spi_device\n");
 316		spi_master_put(master);
 317		return NULL;
 318	}
 319
 320	spi->master = master;
 321	spi->dev.parent = dev;
 322	spi->dev.bus = &spi_bus_type;
 323	spi->dev.release = spidev_release;
 
 
 
 
 
 324	device_initialize(&spi->dev);
 325	return spi;
 326}
 327EXPORT_SYMBOL_GPL(spi_alloc_device);
 328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 329/**
 330 * spi_add_device - Add spi_device allocated with spi_alloc_device
 331 * @spi: spi_device to register
 332 *
 333 * Companion function to spi_alloc_device.  Devices allocated with
 334 * spi_alloc_device can be added onto the spi bus with this function.
 335 *
 336 * Returns 0 on success; negative errno on failure
 337 */
 338int spi_add_device(struct spi_device *spi)
 339{
 340	static DEFINE_MUTEX(spi_add_lock);
 341	struct device *dev = spi->master->dev.parent;
 342	struct device *d;
 343	int status;
 344
 345	/* Chipselects are numbered 0..max; validate. */
 346	if (spi->chip_select >= spi->master->num_chipselect) {
 347		dev_err(dev, "cs%d >= max %d\n",
 348			spi->chip_select,
 349			spi->master->num_chipselect);
 350		return -EINVAL;
 351	}
 352
 353	/* Set the bus ID string */
 354	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
 355			spi->chip_select);
 356
 357
 358	/* We need to make sure there's no other device with this
 359	 * chipselect **BEFORE** we call setup(), else we'll trash
 360	 * its configuration.  Lock against concurrent add() calls.
 361	 */
 362	mutex_lock(&spi_add_lock);
 363
 364	d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
 365	if (d != NULL) {
 366		dev_err(dev, "chipselect %d already in use\n",
 367				spi->chip_select);
 368		put_device(d);
 369		status = -EBUSY;
 370		goto done;
 371	}
 372
 
 
 
 
 
 
 
 
 
 
 
 
 
 373	/* Drivers may modify this initial i/o setup, but will
 374	 * normally rely on the device being setup.  Devices
 375	 * using SPI_CS_HIGH can't coexist well otherwise...
 376	 */
 377	status = spi_setup(spi);
 378	if (status < 0) {
 379		dev_err(dev, "can't setup %s, status %d\n",
 380				dev_name(&spi->dev), status);
 381		goto done;
 382	}
 383
 384	/* Device may be bound to an active driver when this returns */
 385	status = device_add(&spi->dev);
 386	if (status < 0)
 387		dev_err(dev, "can't add %s, status %d\n",
 388				dev_name(&spi->dev), status);
 389	else
 390		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 391
 392done:
 393	mutex_unlock(&spi_add_lock);
 394	return status;
 395}
 396EXPORT_SYMBOL_GPL(spi_add_device);
 397
 398/**
 399 * spi_new_device - instantiate one new SPI device
 400 * @master: Controller to which device is connected
 401 * @chip: Describes the SPI device
 402 * Context: can sleep
 403 *
 404 * On typical mainboards, this is purely internal; and it's not needed
 405 * after board init creates the hard-wired devices.  Some development
 406 * platforms may not be able to use spi_register_board_info though, and
 407 * this is exported so that for example a USB or parport based adapter
 408 * driver could add devices (which it would learn about out-of-band).
 409 *
 410 * Returns the new device, or NULL.
 411 */
 412struct spi_device *spi_new_device(struct spi_master *master,
 413				  struct spi_board_info *chip)
 414{
 415	struct spi_device	*proxy;
 416	int			status;
 417
 418	/* NOTE:  caller did any chip->bus_num checks necessary.
 419	 *
 420	 * Also, unless we change the return value convention to use
 421	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 422	 * suggests syslogged diagnostics are best here (ugh).
 423	 */
 424
 425	proxy = spi_alloc_device(master);
 426	if (!proxy)
 427		return NULL;
 428
 429	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 430
 431	proxy->chip_select = chip->chip_select;
 432	proxy->max_speed_hz = chip->max_speed_hz;
 433	proxy->mode = chip->mode;
 434	proxy->irq = chip->irq;
 435	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 436	proxy->dev.platform_data = (void *) chip->platform_data;
 437	proxy->controller_data = chip->controller_data;
 438	proxy->controller_state = NULL;
 439
 
 
 
 
 
 
 
 
 
 
 440	status = spi_add_device(proxy);
 441	if (status < 0) {
 442		spi_dev_put(proxy);
 443		return NULL;
 444	}
 445
 446	return proxy;
 
 
 
 
 
 
 
 447}
 448EXPORT_SYMBOL_GPL(spi_new_device);
 449
 450static void spi_match_master_to_boardinfo(struct spi_master *master,
 451				struct spi_board_info *bi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452{
 453	struct spi_device *dev;
 454
 455	if (master->bus_num != bi->bus_num)
 456		return;
 457
 458	dev = spi_new_device(master, bi);
 459	if (!dev)
 460		dev_err(master->dev.parent, "can't create new device for %s\n",
 461			bi->modalias);
 462}
 463
 464/**
 465 * spi_register_board_info - register SPI devices for a given board
 466 * @info: array of chip descriptors
 467 * @n: how many descriptors are provided
 468 * Context: can sleep
 469 *
 470 * Board-specific early init code calls this (probably during arch_initcall)
 471 * with segments of the SPI device table.  Any device nodes are created later,
 472 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 473 * this table of devices forever, so that reloading a controller driver will
 474 * not make Linux forget about these hard-wired devices.
 475 *
 476 * Other code can also call this, e.g. a particular add-on board might provide
 477 * SPI devices through its expansion connector, so code initializing that board
 478 * would naturally declare its SPI devices.
 479 *
 480 * The board info passed can safely be __initdata ... but be careful of
 481 * any embedded pointers (platform_data, etc), they're copied as-is.
 
 
 
 482 */
 483int __init
 484spi_register_board_info(struct spi_board_info const *info, unsigned n)
 485{
 486	struct boardinfo *bi;
 487	int i;
 488
 489	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
 
 
 
 490	if (!bi)
 491		return -ENOMEM;
 492
 493	for (i = 0; i < n; i++, bi++, info++) {
 494		struct spi_master *master;
 495
 496		memcpy(&bi->board_info, info, sizeof(*info));
 
 
 
 
 
 
 
 497		mutex_lock(&board_lock);
 498		list_add_tail(&bi->list, &board_list);
 499		list_for_each_entry(master, &spi_master_list, list)
 500			spi_match_master_to_boardinfo(master, &bi->board_info);
 
 501		mutex_unlock(&board_lock);
 502	}
 503
 504	return 0;
 505}
 506
 507/*-------------------------------------------------------------------------*/
 508
 509static void spi_master_release(struct device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 510{
 511	struct spi_master *master;
 512
 513	master = container_of(dev, struct spi_master, dev);
 514	kfree(master);
 515}
 516
 517static struct class spi_master_class = {
 518	.name		= "spi_master",
 519	.owner		= THIS_MODULE,
 520	.dev_release	= spi_master_release,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 521};
 522
 
 
 
 
 
 
 
 
 
 523
 524/**
 525 * spi_alloc_master - allocate SPI master controller
 526 * @dev: the controller, possibly using the platform_bus
 527 * @size: how much zeroed driver-private data to allocate; the pointer to this
 528 *	memory is in the driver_data field of the returned device,
 529 *	accessible with spi_master_get_devdata().
 
 
 
 
 530 * Context: can sleep
 531 *
 532 * This call is used only by SPI master controller drivers, which are the
 533 * only ones directly touching chip registers.  It's how they allocate
 534 * an spi_master structure, prior to calling spi_register_master().
 535 *
 536 * This must be called from context that can sleep.  It returns the SPI
 537 * master structure on success, else NULL.
 
 
 
 
 538 *
 539 * The caller is responsible for assigning the bus number and initializing
 540 * the master's methods before calling spi_register_master(); and (after errors
 541 * adding the device) calling spi_master_put() to prevent a memory leak.
 542 */
 543struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
 
 544{
 545	struct spi_master	*master;
 
 546
 547	if (!dev)
 548		return NULL;
 549
 550	master = kzalloc(size + sizeof *master, GFP_KERNEL);
 551	if (!master)
 552		return NULL;
 553
 554	device_initialize(&master->dev);
 555	master->dev.class = &spi_master_class;
 556	master->dev.parent = get_device(dev);
 557	spi_master_set_devdata(master, &master[1]);
 
 
 
 
 
 
 
 558
 559	return master;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 560}
 561EXPORT_SYMBOL_GPL(spi_alloc_master);
 562
 563/**
 564 * spi_register_master - register SPI master controller
 565 * @master: initialized master, originally from spi_alloc_master()
 
 566 * Context: can sleep
 567 *
 568 * SPI master controllers connect to their drivers using some non-SPI bus,
 569 * such as the platform bus.  The final stage of probe() in that code
 570 * includes calling spi_register_master() to hook up to this SPI bus glue.
 571 *
 572 * SPI controllers use board specific (often SOC specific) bus numbers,
 573 * and board-specific addressing for SPI devices combines those numbers
 574 * with chip select numbers.  Since SPI does not directly support dynamic
 575 * device identification, boards need configuration tables telling which
 576 * chip is at which address.
 577 *
 578 * This must be called from context that can sleep.  It returns zero on
 579 * success, else a negative error code (dropping the master's refcount).
 580 * After a successful return, the caller is responsible for calling
 581 * spi_unregister_master().
 
 
 582 */
 583int spi_register_master(struct spi_master *master)
 584{
 585	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
 586	struct device		*dev = master->dev.parent;
 587	struct boardinfo	*bi;
 588	int			status = -ENODEV;
 589	int			dynamic = 0;
 590
 591	if (!dev)
 592		return -ENODEV;
 593
 594	/* even if it's just one always-selected device, there must
 595	 * be at least one chipselect
 
 596	 */
 597	if (master->num_chipselect == 0)
 598		return -EINVAL;
 
 599
 600	/* convention:  dynamically assigned bus IDs count down from the max */
 601	if (master->bus_num < 0) {
 602		/* FIXME switch to an IDR based scheme, something like
 603		 * I2C now uses, so we can't run out of "dynamic" IDs
 604		 */
 605		master->bus_num = atomic_dec_return(&dyn_bus_id);
 606		dynamic = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607	}
 
 
 
 
 
 
 608
 609	spin_lock_init(&master->bus_lock_spinlock);
 610	mutex_init(&master->bus_lock_mutex);
 611	master->bus_lock_flag = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 612
 613	/* register the device, then userspace will see it.
 614	 * registration fails if the bus ID is in use.
 615	 */
 616	dev_set_name(&master->dev, "spi%u", master->bus_num);
 617	status = device_add(&master->dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 618	if (status < 0)
 619		goto done;
 620	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
 621			dynamic ? " (dynamic)" : "");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 622
 623	mutex_lock(&board_lock);
 624	list_add_tail(&master->list, &spi_master_list);
 625	list_for_each_entry(bi, &board_list, list)
 626		spi_match_master_to_boardinfo(master, &bi->board_info);
 627	mutex_unlock(&board_lock);
 628
 629	status = 0;
 
 
 
 630
 631	/* Register devices from the device tree */
 632	of_register_spi_devices(master);
 633done:
 
 634	return status;
 635}
 636EXPORT_SYMBOL_GPL(spi_register_master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 638
 639static int __unregister(struct device *dev, void *null)
 640{
 641	spi_unregister_device(to_spi_device(dev));
 642	return 0;
 643}
 644
 645/**
 646 * spi_unregister_master - unregister SPI master controller
 647 * @master: the master being unregistered
 648 * Context: can sleep
 649 *
 650 * This call is used only by SPI master controller drivers, which are the
 651 * only ones directly touching chip registers.
 652 *
 653 * This must be called from context that can sleep.
 
 
 654 */
 655void spi_unregister_master(struct spi_master *master)
 656{
 657	int dummy;
 
 
 
 
 
 658
 
 
 
 
 
 
 
 
 
 
 659	mutex_lock(&board_lock);
 660	list_del(&master->list);
 661	mutex_unlock(&board_lock);
 662
 663	dummy = device_for_each_child(&master->dev, NULL, __unregister);
 664	device_unregister(&master->dev);
 
 
 
 
 
 
 
 665}
 666EXPORT_SYMBOL_GPL(spi_unregister_master);
 667
 668static int __spi_master_match(struct device *dev, void *data)
 669{
 670	struct spi_master *m;
 671	u16 *bus_num = data;
 672
 673	m = container_of(dev, struct spi_master, dev);
 674	return m->bus_num == *bus_num;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 675}
 676
 677/**
 678 * spi_busnum_to_master - look up master associated with bus_num
 679 * @bus_num: the master's bus number
 680 * Context: can sleep
 681 *
 682 * This call may be used with devices that are registered after
 683 * arch init time.  It returns a refcounted pointer to the relevant
 684 * spi_master (which the caller must release), or NULL if there is
 685 * no such master registered.
 
 
 686 */
 687struct spi_master *spi_busnum_to_master(u16 bus_num)
 688{
 689	struct device		*dev;
 690	struct spi_master	*master = NULL;
 691
 692	dev = class_find_device(&spi_master_class, NULL, &bus_num,
 693				__spi_master_match);
 694	if (dev)
 695		master = container_of(dev, struct spi_master, dev);
 696	/* reference got in class_find_device */
 697	return master;
 698}
 699EXPORT_SYMBOL_GPL(spi_busnum_to_master);
 700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 701
 702/*-------------------------------------------------------------------------*/
 703
 704/* Core methods for SPI master protocol drivers.  Some of the
 705 * other core methods are currently defined as inline functions.
 706 */
 707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 708/**
 709 * spi_setup - setup SPI mode and clock rate
 710 * @spi: the device whose settings are being modified
 711 * Context: can sleep, and no requests are queued to the device
 712 *
 713 * SPI protocol drivers may need to update the transfer mode if the
 714 * device doesn't work with its default.  They may likewise need
 715 * to update clock rates or word sizes from initial values.  This function
 716 * changes those settings, and must be called from a context that can sleep.
 717 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 718 * effect the next time the device is selected and data is transferred to
 719 * or from it.  When this function returns, the spi device is deselected.
 720 *
 721 * Note that this call will fail if the protocol driver specifies an option
 722 * that the underlying controller or its driver does not support.  For
 723 * example, not all hardware supports wire transfers using nine bit words,
 724 * LSB-first wire encoding, or active-high chipselects.
 
 
 725 */
 726int spi_setup(struct spi_device *spi)
 727{
 728	unsigned	bad_bits;
 729	int		status;
 730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731	/* help drivers fail *cleanly* when they need options
 732	 * that aren't supported with their current master
 
 
 
 
 
 
 733	 */
 734	bad_bits = spi->mode & ~spi->master->mode_bits;
 
 
 
 
 
 
 
 
 
 
 
 735	if (bad_bits) {
 736		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
 737			bad_bits);
 738		return -EINVAL;
 739	}
 740
 741	if (!spi->bits_per_word)
 742		spi->bits_per_word = 8;
 743
 744	status = spi->master->setup(spi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 745
 746	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
 747				"%u bits/w, %u Hz max --> %d\n",
 748			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
 749			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
 750			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
 751			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
 752			(spi->mode & SPI_LOOP) ? "loopback, " : "",
 753			spi->bits_per_word, spi->max_speed_hz,
 754			status);
 755
 756	return status;
 757}
 758EXPORT_SYMBOL_GPL(spi_setup);
 759
 760static int __spi_async(struct spi_device *spi, struct spi_message *message)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761{
 762	struct spi_master *master = spi->master;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763
 764	/* Half-duplex links include original MicroWire, and ones with
 765	 * only one data pin like SPI_3WIRE (switches direction) or where
 766	 * either MOSI or MISO is missing.  They can also be caused by
 767	 * software limitations.
 768	 */
 769	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
 770			|| (spi->mode & SPI_3WIRE)) {
 771		struct spi_transfer *xfer;
 772		unsigned flags = master->flags;
 773
 774		list_for_each_entry(xfer, &message->transfers, transfer_list) {
 775			if (xfer->rx_buf && xfer->tx_buf)
 776				return -EINVAL;
 777			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778				return -EINVAL;
 779			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
 
 780				return -EINVAL;
 781		}
 
 
 
 782	}
 783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784	message->spi = spi;
 785	message->status = -EINPROGRESS;
 786	return master->transfer(spi, message);
 
 
 
 
 
 
 
 
 
 
 
 
 787}
 788
 789/**
 790 * spi_async - asynchronous SPI transfer
 791 * @spi: device with which data will be exchanged
 792 * @message: describes the data transfers, including completion callback
 793 * Context: any (irqs may be blocked, etc)
 794 *
 795 * This call may be used in_irq and other contexts which can't sleep,
 796 * as well as from task contexts which can sleep.
 797 *
 798 * The completion callback is invoked in a context which can't sleep.
 799 * Before that invocation, the value of message->status is undefined.
 800 * When the callback is issued, message->status holds either zero (to
 801 * indicate complete success) or a negative error code.  After that
 802 * callback returns, the driver which issued the transfer request may
 803 * deallocate the associated memory; it's no longer in use by any SPI
 804 * core or controller driver code.
 805 *
 806 * Note that although all messages to a spi_device are handled in
 807 * FIFO order, messages may go to different devices in other orders.
 808 * Some device might be higher priority, or have various "hard" access
 809 * time requirements, for example.
 810 *
 811 * On detection of any fault during the transfer, processing of
 812 * the entire message is aborted, and the device is deselected.
 813 * Until returning from the associated message completion callback,
 814 * no other spi_message queued to that device will be processed.
 815 * (This rule applies equally to all the synchronous transfer calls,
 816 * which are wrappers around this core asynchronous primitive.)
 
 
 817 */
 818int spi_async(struct spi_device *spi, struct spi_message *message)
 819{
 820	struct spi_master *master = spi->master;
 821	int ret;
 822	unsigned long flags;
 823
 824	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
 
 
 
 
 825
 826	if (master->bus_lock_flag)
 827		ret = -EBUSY;
 828	else
 829		ret = __spi_async(spi, message);
 830
 831	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
 832
 833	return ret;
 834}
 835EXPORT_SYMBOL_GPL(spi_async);
 836
 837/**
 838 * spi_async_locked - version of spi_async with exclusive bus usage
 839 * @spi: device with which data will be exchanged
 840 * @message: describes the data transfers, including completion callback
 841 * Context: any (irqs may be blocked, etc)
 842 *
 843 * This call may be used in_irq and other contexts which can't sleep,
 844 * as well as from task contexts which can sleep.
 845 *
 846 * The completion callback is invoked in a context which can't sleep.
 847 * Before that invocation, the value of message->status is undefined.
 848 * When the callback is issued, message->status holds either zero (to
 849 * indicate complete success) or a negative error code.  After that
 850 * callback returns, the driver which issued the transfer request may
 851 * deallocate the associated memory; it's no longer in use by any SPI
 852 * core or controller driver code.
 853 *
 854 * Note that although all messages to a spi_device are handled in
 855 * FIFO order, messages may go to different devices in other orders.
 856 * Some device might be higher priority, or have various "hard" access
 857 * time requirements, for example.
 858 *
 859 * On detection of any fault during the transfer, processing of
 860 * the entire message is aborted, and the device is deselected.
 861 * Until returning from the associated message completion callback,
 862 * no other spi_message queued to that device will be processed.
 863 * (This rule applies equally to all the synchronous transfer calls,
 864 * which are wrappers around this core asynchronous primitive.)
 
 
 865 */
 866int spi_async_locked(struct spi_device *spi, struct spi_message *message)
 867{
 868	struct spi_master *master = spi->master;
 869	int ret;
 870	unsigned long flags;
 871
 872	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
 
 
 
 
 873
 874	ret = __spi_async(spi, message);
 875
 876	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
 877
 878	return ret;
 879
 880}
 881EXPORT_SYMBOL_GPL(spi_async_locked);
 882
 883
 884/*-------------------------------------------------------------------------*/
 885
 886/* Utility methods for SPI master protocol drivers, layered on
 887 * top of the core.  Some other utility methods are defined as
 888 * inline functions.
 889 */
 890
 891static void spi_complete(void *arg)
 892{
 893	complete(arg);
 894}
 895
 896static int __spi_sync(struct spi_device *spi, struct spi_message *message,
 897		      int bus_locked)
 898{
 899	DECLARE_COMPLETION_ONSTACK(done);
 900	int status;
 901	struct spi_master *master = spi->master;
 
 
 
 
 
 902
 903	message->complete = spi_complete;
 904	message->context = &done;
 
 905
 906	if (!bus_locked)
 907		mutex_lock(&master->bus_lock_mutex);
 908
 909	status = spi_async_locked(spi, message);
 
 
 
 
 
 
 
 
 910
 911	if (!bus_locked)
 912		mutex_unlock(&master->bus_lock_mutex);
 
 
 
 
 913
 914	if (status == 0) {
 
 
 
 
 
 
 
 
 
 
 
 915		wait_for_completion(&done);
 916		status = message->status;
 917	}
 918	message->context = NULL;
 919	return status;
 920}
 921
 922/**
 923 * spi_sync - blocking/synchronous SPI data transfers
 924 * @spi: device with which data will be exchanged
 925 * @message: describes the data transfers
 926 * Context: can sleep
 927 *
 928 * This call may only be used from a context that may sleep.  The sleep
 929 * is non-interruptible, and has no timeout.  Low-overhead controller
 930 * drivers may DMA directly into and out of the message buffers.
 931 *
 932 * Note that the SPI device's chip select is active during the message,
 933 * and then is normally disabled between messages.  Drivers for some
 934 * frequently-used devices may want to minimize costs of selecting a chip,
 935 * by leaving it selected in anticipation that the next message will go
 936 * to the same chip.  (That may increase power usage.)
 937 *
 938 * Also, the caller is guaranteeing that the memory associated with the
 939 * message will not be freed before this call returns.
 940 *
 941 * It returns zero on success, else a negative error code.
 942 */
 943int spi_sync(struct spi_device *spi, struct spi_message *message)
 944{
 945	return __spi_sync(spi, message, 0);
 
 
 
 
 
 
 946}
 947EXPORT_SYMBOL_GPL(spi_sync);
 948
 949/**
 950 * spi_sync_locked - version of spi_sync with exclusive bus usage
 951 * @spi: device with which data will be exchanged
 952 * @message: describes the data transfers
 953 * Context: can sleep
 954 *
 955 * This call may only be used from a context that may sleep.  The sleep
 956 * is non-interruptible, and has no timeout.  Low-overhead controller
 957 * drivers may DMA directly into and out of the message buffers.
 958 *
 959 * This call should be used by drivers that require exclusive access to the
 960 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
 961 * be released by a spi_bus_unlock call when the exclusive access is over.
 962 *
 963 * It returns zero on success, else a negative error code.
 964 */
 965int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
 966{
 967	return __spi_sync(spi, message, 1);
 968}
 969EXPORT_SYMBOL_GPL(spi_sync_locked);
 970
 971/**
 972 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 973 * @master: SPI bus master that should be locked for exclusive bus access
 974 * Context: can sleep
 975 *
 976 * This call may only be used from a context that may sleep.  The sleep
 977 * is non-interruptible, and has no timeout.
 978 *
 979 * This call should be used by drivers that require exclusive access to the
 980 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 981 * exclusive access is over. Data transfer must be done by spi_sync_locked
 982 * and spi_async_locked calls when the SPI bus lock is held.
 983 *
 984 * It returns zero on success, else a negative error code.
 985 */
 986int spi_bus_lock(struct spi_master *master)
 987{
 988	unsigned long flags;
 989
 990	mutex_lock(&master->bus_lock_mutex);
 991
 992	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
 993	master->bus_lock_flag = 1;
 994	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
 995
 996	/* mutex remains locked until spi_bus_unlock is called */
 997
 998	return 0;
 999}
1000EXPORT_SYMBOL_GPL(spi_bus_lock);
1001
1002/**
1003 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1004 * @master: SPI bus master that was locked for exclusive bus access
1005 * Context: can sleep
1006 *
1007 * This call may only be used from a context that may sleep.  The sleep
1008 * is non-interruptible, and has no timeout.
1009 *
1010 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1011 * call.
1012 *
1013 * It returns zero on success, else a negative error code.
1014 */
1015int spi_bus_unlock(struct spi_master *master)
1016{
1017	master->bus_lock_flag = 0;
1018
1019	mutex_unlock(&master->bus_lock_mutex);
1020
1021	return 0;
1022}
1023EXPORT_SYMBOL_GPL(spi_bus_unlock);
1024
1025/* portable code must never pass more than 32 bytes */
1026#define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
1027
1028static u8	*buf;
1029
1030/**
1031 * spi_write_then_read - SPI synchronous write followed by read
1032 * @spi: device with which data will be exchanged
1033 * @txbuf: data to be written (need not be dma-safe)
1034 * @n_tx: size of txbuf, in bytes
1035 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1036 * @n_rx: size of rxbuf, in bytes
1037 * Context: can sleep
1038 *
1039 * This performs a half duplex MicroWire style transaction with the
1040 * device, sending txbuf and then reading rxbuf.  The return value
1041 * is zero for success, else a negative errno status code.
1042 * This call may only be used from a context that may sleep.
1043 *
1044 * Parameters to this routine are always copied using a small buffer;
1045 * portable code should never use this for more than 32 bytes.
1046 * Performance-sensitive or bulk transfer code should instead use
1047 * spi_{async,sync}() calls with dma-safe buffers.
 
 
1048 */
1049int spi_write_then_read(struct spi_device *spi,
1050		const void *txbuf, unsigned n_tx,
1051		void *rxbuf, unsigned n_rx)
1052{
1053	static DEFINE_MUTEX(lock);
1054
1055	int			status;
1056	struct spi_message	message;
1057	struct spi_transfer	x[2];
1058	u8			*local_buf;
1059
1060	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
1061	 * (as a pure convenience thing), but we can keep heap costs
1062	 * out of the hot path ...
 
1063	 */
1064	if ((n_tx + n_rx) > SPI_BUFSIZ)
1065		return -EINVAL;
 
 
 
 
 
 
1066
1067	spi_message_init(&message);
1068	memset(x, 0, sizeof x);
1069	if (n_tx) {
1070		x[0].len = n_tx;
1071		spi_message_add_tail(&x[0], &message);
1072	}
1073	if (n_rx) {
1074		x[1].len = n_rx;
1075		spi_message_add_tail(&x[1], &message);
1076	}
1077
1078	/* ... unless someone else is using the pre-allocated buffer */
1079	if (!mutex_trylock(&lock)) {
1080		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1081		if (!local_buf)
1082			return -ENOMEM;
1083	} else
1084		local_buf = buf;
1085
1086	memcpy(local_buf, txbuf, n_tx);
1087	x[0].tx_buf = local_buf;
1088	x[1].rx_buf = local_buf + n_tx;
1089
1090	/* do the i/o */
1091	status = spi_sync(spi, &message);
1092	if (status == 0)
1093		memcpy(rxbuf, x[1].rx_buf, n_rx);
1094
1095	if (x[0].tx_buf == buf)
1096		mutex_unlock(&lock);
1097	else
1098		kfree(local_buf);
1099
1100	return status;
1101}
1102EXPORT_SYMBOL_GPL(spi_write_then_read);
1103
1104/*-------------------------------------------------------------------------*/
1105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106static int __init spi_init(void)
1107{
1108	int	status;
1109
1110	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1111	if (!buf) {
1112		status = -ENOMEM;
1113		goto err0;
1114	}
1115
1116	status = bus_register(&spi_bus_type);
1117	if (status < 0)
1118		goto err1;
1119
1120	status = class_register(&spi_master_class);
1121	if (status < 0)
1122		goto err2;
 
 
 
 
 
 
 
 
 
 
 
 
1123	return 0;
1124
 
 
1125err2:
1126	bus_unregister(&spi_bus_type);
1127err1:
1128	kfree(buf);
1129	buf = NULL;
1130err0:
1131	return status;
1132}
1133
1134/* board_info is normally registered in arch_initcall(),
1135 * but even essential drivers wait till later
1136 *
1137 * REVISIT only boardinfo really needs static linking. the rest (device and
1138 * driver registration) _could_ be dynamically linked (modular) ... costs
1139 * include needing to have boardinfo data structures be much more public.
1140 */
1141postcore_initcall(spi_init);
1142