Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6 */
7
8/*
9 * UBI wear-leveling sub-system.
10 *
11 * This sub-system is responsible for wear-leveling. It works in terms of
12 * physical eraseblocks and erase counters and knows nothing about logical
13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17 *
18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
20 *
21 * When physical eraseblocks are returned to the WL sub-system by means of the
22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23 * done asynchronously in context of the per-UBI device background thread,
24 * which is also managed by the WL sub-system.
25 *
26 * The wear-leveling is ensured by means of moving the contents of used
27 * physical eraseblocks with low erase counter to free physical eraseblocks
28 * with high erase counter.
29 *
30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31 * bad.
32 *
33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34 * in a physical eraseblock, it has to be moved. Technically this is the same
35 * as moving it for wear-leveling reasons.
36 *
37 * As it was said, for the UBI sub-system all physical eraseblocks are either
38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
41 *
42 * When the WL sub-system returns a physical eraseblock, the physical
43 * eraseblock is protected from being moved for some "time". For this reason,
44 * the physical eraseblock is not directly moved from the @wl->free tree to the
45 * @wl->used tree. There is a protection queue in between where this
46 * physical eraseblock is temporarily stored (@wl->pq).
47 *
48 * All this protection stuff is needed because:
49 * o we don't want to move physical eraseblocks just after we have given them
50 * to the user; instead, we first want to let users fill them up with data;
51 *
52 * o there is a chance that the user will put the physical eraseblock very
53 * soon, so it makes sense not to move it for some time, but wait.
54 *
55 * Physical eraseblocks stay protected only for limited time. But the "time" is
56 * measured in erase cycles in this case. This is implemented with help of the
57 * protection queue. Eraseblocks are put to the tail of this queue when they
58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59 * head of the queue on each erase operation (for any eraseblock). So the
60 * length of the queue defines how may (global) erase cycles PEBs are protected.
61 *
62 * To put it differently, each physical eraseblock has 2 main states: free and
63 * used. The former state corresponds to the @wl->free tree. The latter state
64 * is split up on several sub-states:
65 * o the WL movement is allowed (@wl->used tree);
66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67 * erroneous - e.g., there was a read error;
68 * o the WL movement is temporarily prohibited (@wl->pq queue);
69 * o scrubbing is needed (@wl->scrub tree).
70 *
71 * Depending on the sub-state, wear-leveling entries of the used physical
72 * eraseblocks may be kept in one of those structures.
73 *
74 * Note, in this implementation, we keep a small in-RAM object for each physical
75 * eraseblock. This is surely not a scalable solution. But it appears to be good
76 * enough for moderately large flashes and it is simple. In future, one may
77 * re-work this sub-system and make it more scalable.
78 *
79 * At the moment this sub-system does not utilize the sequence number, which
80 * was introduced relatively recently. But it would be wise to do this because
81 * the sequence number of a logical eraseblock characterizes how old is it. For
82 * example, when we move a PEB with low erase counter, and we need to pick the
83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84 * pick target PEB with an average EC if our PEB is not very "old". This is a
85 * room for future re-works of the WL sub-system.
86 */
87
88#include <linux/slab.h>
89#include <linux/crc32.h>
90#include <linux/freezer.h>
91#include <linux/kthread.h>
92#include "ubi.h"
93#include "wl.h"
94
95/* Number of physical eraseblocks reserved for wear-leveling purposes */
96#define WL_RESERVED_PEBS 1
97
98/*
99 * Maximum difference between two erase counters. If this threshold is
100 * exceeded, the WL sub-system starts moving data from used physical
101 * eraseblocks with low erase counter to free physical eraseblocks with high
102 * erase counter.
103 */
104#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
105
106/*
107 * When a physical eraseblock is moved, the WL sub-system has to pick the target
108 * physical eraseblock to move to. The simplest way would be just to pick the
109 * one with the highest erase counter. But in certain workloads this could lead
110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111 * situation when the picked physical eraseblock is constantly erased after the
112 * data is written to it. So, we have a constant which limits the highest erase
113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114 * does not pick eraseblocks with erase counter greater than the lowest erase
115 * counter plus %WL_FREE_MAX_DIFF.
116 */
117#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
118
119/*
120 * Maximum number of consecutive background thread failures which is enough to
121 * switch to read-only mode.
122 */
123#define WL_MAX_FAILURES 32
124
125static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126static int self_check_in_wl_tree(const struct ubi_device *ubi,
127 struct ubi_wl_entry *e, struct rb_root *root);
128static int self_check_in_pq(const struct ubi_device *ubi,
129 struct ubi_wl_entry *e);
130
131/**
132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133 * @e: the wear-leveling entry to add
134 * @root: the root of the tree
135 *
136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137 * the @ubi->used and @ubi->free RB-trees.
138 */
139static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
140{
141 struct rb_node **p, *parent = NULL;
142
143 p = &root->rb_node;
144 while (*p) {
145 struct ubi_wl_entry *e1;
146
147 parent = *p;
148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
149
150 if (e->ec < e1->ec)
151 p = &(*p)->rb_left;
152 else if (e->ec > e1->ec)
153 p = &(*p)->rb_right;
154 else {
155 ubi_assert(e->pnum != e1->pnum);
156 if (e->pnum < e1->pnum)
157 p = &(*p)->rb_left;
158 else
159 p = &(*p)->rb_right;
160 }
161 }
162
163 rb_link_node(&e->u.rb, parent, p);
164 rb_insert_color(&e->u.rb, root);
165}
166
167/**
168 * wl_tree_destroy - destroy a wear-leveling entry.
169 * @ubi: UBI device description object
170 * @e: the wear-leveling entry to add
171 *
172 * This function destroys a wear leveling entry and removes
173 * the reference from the lookup table.
174 */
175static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
176{
177 ubi->lookuptbl[e->pnum] = NULL;
178 kmem_cache_free(ubi_wl_entry_slab, e);
179}
180
181/**
182 * do_work - do one pending work.
183 * @ubi: UBI device description object
184 *
185 * This function returns zero in case of success and a negative error code in
186 * case of failure.
187 */
188static int do_work(struct ubi_device *ubi)
189{
190 int err;
191 struct ubi_work *wrk;
192
193 cond_resched();
194
195 /*
196 * @ubi->work_sem is used to synchronize with the workers. Workers take
197 * it in read mode, so many of them may be doing works at a time. But
198 * the queue flush code has to be sure the whole queue of works is
199 * done, and it takes the mutex in write mode.
200 */
201 down_read(&ubi->work_sem);
202 spin_lock(&ubi->wl_lock);
203 if (list_empty(&ubi->works)) {
204 spin_unlock(&ubi->wl_lock);
205 up_read(&ubi->work_sem);
206 return 0;
207 }
208
209 wrk = list_entry(ubi->works.next, struct ubi_work, list);
210 list_del(&wrk->list);
211 ubi->works_count -= 1;
212 ubi_assert(ubi->works_count >= 0);
213 spin_unlock(&ubi->wl_lock);
214
215 /*
216 * Call the worker function. Do not touch the work structure
217 * after this call as it will have been freed or reused by that
218 * time by the worker function.
219 */
220 err = wrk->func(ubi, wrk, 0);
221 if (err)
222 ubi_err(ubi, "work failed with error code %d", err);
223 up_read(&ubi->work_sem);
224
225 return err;
226}
227
228/**
229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230 * @e: the wear-leveling entry to check
231 * @root: the root of the tree
232 *
233 * This function returns non-zero if @e is in the @root RB-tree and zero if it
234 * is not.
235 */
236static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
237{
238 struct rb_node *p;
239
240 p = root->rb_node;
241 while (p) {
242 struct ubi_wl_entry *e1;
243
244 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
245
246 if (e->pnum == e1->pnum) {
247 ubi_assert(e == e1);
248 return 1;
249 }
250
251 if (e->ec < e1->ec)
252 p = p->rb_left;
253 else if (e->ec > e1->ec)
254 p = p->rb_right;
255 else {
256 ubi_assert(e->pnum != e1->pnum);
257 if (e->pnum < e1->pnum)
258 p = p->rb_left;
259 else
260 p = p->rb_right;
261 }
262 }
263
264 return 0;
265}
266
267/**
268 * in_pq - check if a wear-leveling entry is present in the protection queue.
269 * @ubi: UBI device description object
270 * @e: the wear-leveling entry to check
271 *
272 * This function returns non-zero if @e is in the protection queue and zero
273 * if it is not.
274 */
275static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
276{
277 struct ubi_wl_entry *p;
278 int i;
279
280 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
281 list_for_each_entry(p, &ubi->pq[i], u.list)
282 if (p == e)
283 return 1;
284
285 return 0;
286}
287
288/**
289 * prot_queue_add - add physical eraseblock to the protection queue.
290 * @ubi: UBI device description object
291 * @e: the physical eraseblock to add
292 *
293 * This function adds @e to the tail of the protection queue @ubi->pq, where
294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
296 * be locked.
297 */
298static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
299{
300 int pq_tail = ubi->pq_head - 1;
301
302 if (pq_tail < 0)
303 pq_tail = UBI_PROT_QUEUE_LEN - 1;
304 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
305 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
306 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
307}
308
309/**
310 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311 * @ubi: UBI device description object
312 * @root: the RB-tree where to look for
313 * @diff: maximum possible difference from the smallest erase counter
314 *
315 * This function looks for a wear leveling entry with erase counter closest to
316 * min + @diff, where min is the smallest erase counter.
317 */
318static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
319 struct rb_root *root, int diff)
320{
321 struct rb_node *p;
322 struct ubi_wl_entry *e;
323 int max;
324
325 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
326 max = e->ec + diff;
327
328 p = root->rb_node;
329 while (p) {
330 struct ubi_wl_entry *e1;
331
332 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
333 if (e1->ec >= max)
334 p = p->rb_left;
335 else {
336 p = p->rb_right;
337 e = e1;
338 }
339 }
340
341 return e;
342}
343
344/**
345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346 * @ubi: UBI device description object
347 * @root: the RB-tree where to look for
348 *
349 * This function looks for a wear leveling entry with medium erase counter,
350 * but not greater or equivalent than the lowest erase counter plus
351 * %WL_FREE_MAX_DIFF/2.
352 */
353static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354 struct rb_root *root)
355{
356 struct ubi_wl_entry *e, *first, *last;
357
358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360
361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363
364 /* If no fastmap has been written and this WL entry can be used
365 * as anchor PEB, hold it back and return the second best
366 * WL entry such that fastmap can use the anchor PEB later. */
367 e = may_reserve_for_fm(ubi, e, root);
368 } else
369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370
371 return e;
372}
373
374/**
375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376 * refill_wl_user_pool().
377 * @ubi: UBI device description object
378 *
379 * This function returns a a wear leveling entry in case of success and
380 * NULL in case of failure.
381 */
382static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383{
384 struct ubi_wl_entry *e;
385
386 e = find_mean_wl_entry(ubi, &ubi->free);
387 if (!e) {
388 ubi_err(ubi, "no free eraseblocks");
389 return NULL;
390 }
391
392 self_check_in_wl_tree(ubi, e, &ubi->free);
393
394 /*
395 * Move the physical eraseblock to the protection queue where it will
396 * be protected from being moved for some time.
397 */
398 rb_erase(&e->u.rb, &ubi->free);
399 ubi->free_count--;
400 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401
402 return e;
403}
404
405/**
406 * prot_queue_del - remove a physical eraseblock from the protection queue.
407 * @ubi: UBI device description object
408 * @pnum: the physical eraseblock to remove
409 *
410 * This function deletes PEB @pnum from the protection queue and returns zero
411 * in case of success and %-ENODEV if the PEB was not found.
412 */
413static int prot_queue_del(struct ubi_device *ubi, int pnum)
414{
415 struct ubi_wl_entry *e;
416
417 e = ubi->lookuptbl[pnum];
418 if (!e)
419 return -ENODEV;
420
421 if (self_check_in_pq(ubi, e))
422 return -ENODEV;
423
424 list_del(&e->u.list);
425 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426 return 0;
427}
428
429/**
430 * sync_erase - synchronously erase a physical eraseblock.
431 * @ubi: UBI device description object
432 * @e: the the physical eraseblock to erase
433 * @torture: if the physical eraseblock has to be tortured
434 *
435 * This function returns zero in case of success and a negative error code in
436 * case of failure.
437 */
438static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439 int torture)
440{
441 int err;
442 struct ubi_ec_hdr *ec_hdr;
443 unsigned long long ec = e->ec;
444
445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446
447 err = self_check_ec(ubi, e->pnum, e->ec);
448 if (err)
449 return -EINVAL;
450
451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452 if (!ec_hdr)
453 return -ENOMEM;
454
455 err = ubi_io_sync_erase(ubi, e->pnum, torture);
456 if (err < 0)
457 goto out_free;
458
459 ec += err;
460 if (ec > UBI_MAX_ERASECOUNTER) {
461 /*
462 * Erase counter overflow. Upgrade UBI and use 64-bit
463 * erase counters internally.
464 */
465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466 e->pnum, ec);
467 err = -EINVAL;
468 goto out_free;
469 }
470
471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472
473 ec_hdr->ec = cpu_to_be64(ec);
474
475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476 if (err)
477 goto out_free;
478
479 e->ec = ec;
480 spin_lock(&ubi->wl_lock);
481 if (e->ec > ubi->max_ec)
482 ubi->max_ec = e->ec;
483 spin_unlock(&ubi->wl_lock);
484
485out_free:
486 kfree(ec_hdr);
487 return err;
488}
489
490/**
491 * serve_prot_queue - check if it is time to stop protecting PEBs.
492 * @ubi: UBI device description object
493 *
494 * This function is called after each erase operation and removes PEBs from the
495 * tail of the protection queue. These PEBs have been protected for long enough
496 * and should be moved to the used tree.
497 */
498static void serve_prot_queue(struct ubi_device *ubi)
499{
500 struct ubi_wl_entry *e, *tmp;
501 int count;
502
503 /*
504 * There may be several protected physical eraseblock to remove,
505 * process them all.
506 */
507repeat:
508 count = 0;
509 spin_lock(&ubi->wl_lock);
510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511 dbg_wl("PEB %d EC %d protection over, move to used tree",
512 e->pnum, e->ec);
513
514 list_del(&e->u.list);
515 wl_tree_add(e, &ubi->used);
516 if (count++ > 32) {
517 /*
518 * Let's be nice and avoid holding the spinlock for
519 * too long.
520 */
521 spin_unlock(&ubi->wl_lock);
522 cond_resched();
523 goto repeat;
524 }
525 }
526
527 ubi->pq_head += 1;
528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529 ubi->pq_head = 0;
530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531 spin_unlock(&ubi->wl_lock);
532}
533
534/**
535 * __schedule_ubi_work - schedule a work.
536 * @ubi: UBI device description object
537 * @wrk: the work to schedule
538 *
539 * This function adds a work defined by @wrk to the tail of the pending works
540 * list. Can only be used if ubi->work_sem is already held in read mode!
541 */
542static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543{
544 spin_lock(&ubi->wl_lock);
545 list_add_tail(&wrk->list, &ubi->works);
546 ubi_assert(ubi->works_count >= 0);
547 ubi->works_count += 1;
548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549 wake_up_process(ubi->bgt_thread);
550 spin_unlock(&ubi->wl_lock);
551}
552
553/**
554 * schedule_ubi_work - schedule a work.
555 * @ubi: UBI device description object
556 * @wrk: the work to schedule
557 *
558 * This function adds a work defined by @wrk to the tail of the pending works
559 * list.
560 */
561static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562{
563 down_read(&ubi->work_sem);
564 __schedule_ubi_work(ubi, wrk);
565 up_read(&ubi->work_sem);
566}
567
568static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569 int shutdown);
570
571/**
572 * schedule_erase - schedule an erase work.
573 * @ubi: UBI device description object
574 * @e: the WL entry of the physical eraseblock to erase
575 * @vol_id: the volume ID that last used this PEB
576 * @lnum: the last used logical eraseblock number for the PEB
577 * @torture: if the physical eraseblock has to be tortured
578 *
579 * This function returns zero in case of success and a %-ENOMEM in case of
580 * failure.
581 */
582static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
583 int vol_id, int lnum, int torture, bool nested)
584{
585 struct ubi_work *wl_wrk;
586
587 ubi_assert(e);
588
589 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
590 e->pnum, e->ec, torture);
591
592 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
593 if (!wl_wrk)
594 return -ENOMEM;
595
596 wl_wrk->func = &erase_worker;
597 wl_wrk->e = e;
598 wl_wrk->vol_id = vol_id;
599 wl_wrk->lnum = lnum;
600 wl_wrk->torture = torture;
601
602 if (nested)
603 __schedule_ubi_work(ubi, wl_wrk);
604 else
605 schedule_ubi_work(ubi, wl_wrk);
606 return 0;
607}
608
609static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
610/**
611 * do_sync_erase - run the erase worker synchronously.
612 * @ubi: UBI device description object
613 * @e: the WL entry of the physical eraseblock to erase
614 * @vol_id: the volume ID that last used this PEB
615 * @lnum: the last used logical eraseblock number for the PEB
616 * @torture: if the physical eraseblock has to be tortured
617 *
618 */
619static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
620 int vol_id, int lnum, int torture)
621{
622 struct ubi_work wl_wrk;
623
624 dbg_wl("sync erase of PEB %i", e->pnum);
625
626 wl_wrk.e = e;
627 wl_wrk.vol_id = vol_id;
628 wl_wrk.lnum = lnum;
629 wl_wrk.torture = torture;
630
631 return __erase_worker(ubi, &wl_wrk);
632}
633
634static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
635/**
636 * wear_leveling_worker - wear-leveling worker function.
637 * @ubi: UBI device description object
638 * @wrk: the work object
639 * @shutdown: non-zero if the worker has to free memory and exit
640 * because the WL-subsystem is shutting down
641 *
642 * This function copies a more worn out physical eraseblock to a less worn out
643 * one. Returns zero in case of success and a negative error code in case of
644 * failure.
645 */
646static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
647 int shutdown)
648{
649 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
650 int erase = 0, keep = 0, vol_id = -1, lnum = -1;
651 struct ubi_wl_entry *e1, *e2;
652 struct ubi_vid_io_buf *vidb;
653 struct ubi_vid_hdr *vid_hdr;
654 int dst_leb_clean = 0;
655
656 kfree(wrk);
657 if (shutdown)
658 return 0;
659
660 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
661 if (!vidb)
662 return -ENOMEM;
663
664 vid_hdr = ubi_get_vid_hdr(vidb);
665
666 down_read(&ubi->fm_eba_sem);
667 mutex_lock(&ubi->move_mutex);
668 spin_lock(&ubi->wl_lock);
669 ubi_assert(!ubi->move_from && !ubi->move_to);
670 ubi_assert(!ubi->move_to_put);
671
672 if (!ubi->free.rb_node ||
673 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
674 /*
675 * No free physical eraseblocks? Well, they must be waiting in
676 * the queue to be erased. Cancel movement - it will be
677 * triggered again when a free physical eraseblock appears.
678 *
679 * No used physical eraseblocks? They must be temporarily
680 * protected from being moved. They will be moved to the
681 * @ubi->used tree later and the wear-leveling will be
682 * triggered again.
683 */
684 dbg_wl("cancel WL, a list is empty: free %d, used %d",
685 !ubi->free.rb_node, !ubi->used.rb_node);
686 goto out_cancel;
687 }
688
689#ifdef CONFIG_MTD_UBI_FASTMAP
690 e1 = find_anchor_wl_entry(&ubi->used);
691 if (e1 && ubi->fm_next_anchor &&
692 (ubi->fm_next_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
693 ubi->fm_do_produce_anchor = 1;
694 /* fm_next_anchor is no longer considered a good anchor
695 * candidate.
696 * NULL assignment also prevents multiple wear level checks
697 * of this PEB.
698 */
699 wl_tree_add(ubi->fm_next_anchor, &ubi->free);
700 ubi->fm_next_anchor = NULL;
701 ubi->free_count++;
702 }
703
704 if (ubi->fm_do_produce_anchor) {
705 if (!e1)
706 goto out_cancel;
707 e2 = get_peb_for_wl(ubi);
708 if (!e2)
709 goto out_cancel;
710
711 self_check_in_wl_tree(ubi, e1, &ubi->used);
712 rb_erase(&e1->u.rb, &ubi->used);
713 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
714 ubi->fm_do_produce_anchor = 0;
715 } else if (!ubi->scrub.rb_node) {
716#else
717 if (!ubi->scrub.rb_node) {
718#endif
719 /*
720 * Now pick the least worn-out used physical eraseblock and a
721 * highly worn-out free physical eraseblock. If the erase
722 * counters differ much enough, start wear-leveling.
723 */
724 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
725 e2 = get_peb_for_wl(ubi);
726 if (!e2)
727 goto out_cancel;
728
729 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
730 dbg_wl("no WL needed: min used EC %d, max free EC %d",
731 e1->ec, e2->ec);
732
733 /* Give the unused PEB back */
734 wl_tree_add(e2, &ubi->free);
735 ubi->free_count++;
736 goto out_cancel;
737 }
738 self_check_in_wl_tree(ubi, e1, &ubi->used);
739 rb_erase(&e1->u.rb, &ubi->used);
740 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
741 e1->pnum, e1->ec, e2->pnum, e2->ec);
742 } else {
743 /* Perform scrubbing */
744 scrubbing = 1;
745 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
746 e2 = get_peb_for_wl(ubi);
747 if (!e2)
748 goto out_cancel;
749
750 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
751 rb_erase(&e1->u.rb, &ubi->scrub);
752 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
753 }
754
755 ubi->move_from = e1;
756 ubi->move_to = e2;
757 spin_unlock(&ubi->wl_lock);
758
759 /*
760 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
761 * We so far do not know which logical eraseblock our physical
762 * eraseblock (@e1) belongs to. We have to read the volume identifier
763 * header first.
764 *
765 * Note, we are protected from this PEB being unmapped and erased. The
766 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
767 * which is being moved was unmapped.
768 */
769
770 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
771 if (err && err != UBI_IO_BITFLIPS) {
772 dst_leb_clean = 1;
773 if (err == UBI_IO_FF) {
774 /*
775 * We are trying to move PEB without a VID header. UBI
776 * always write VID headers shortly after the PEB was
777 * given, so we have a situation when it has not yet
778 * had a chance to write it, because it was preempted.
779 * So add this PEB to the protection queue so far,
780 * because presumably more data will be written there
781 * (including the missing VID header), and then we'll
782 * move it.
783 */
784 dbg_wl("PEB %d has no VID header", e1->pnum);
785 protect = 1;
786 goto out_not_moved;
787 } else if (err == UBI_IO_FF_BITFLIPS) {
788 /*
789 * The same situation as %UBI_IO_FF, but bit-flips were
790 * detected. It is better to schedule this PEB for
791 * scrubbing.
792 */
793 dbg_wl("PEB %d has no VID header but has bit-flips",
794 e1->pnum);
795 scrubbing = 1;
796 goto out_not_moved;
797 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
798 /*
799 * While a full scan would detect interrupted erasures
800 * at attach time we can face them here when attached from
801 * Fastmap.
802 */
803 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
804 e1->pnum);
805 erase = 1;
806 goto out_not_moved;
807 }
808
809 ubi_err(ubi, "error %d while reading VID header from PEB %d",
810 err, e1->pnum);
811 goto out_error;
812 }
813
814 vol_id = be32_to_cpu(vid_hdr->vol_id);
815 lnum = be32_to_cpu(vid_hdr->lnum);
816
817 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
818 if (err) {
819 if (err == MOVE_CANCEL_RACE) {
820 /*
821 * The LEB has not been moved because the volume is
822 * being deleted or the PEB has been put meanwhile. We
823 * should prevent this PEB from being selected for
824 * wear-leveling movement again, so put it to the
825 * protection queue.
826 */
827 protect = 1;
828 dst_leb_clean = 1;
829 goto out_not_moved;
830 }
831 if (err == MOVE_RETRY) {
832 scrubbing = 1;
833 dst_leb_clean = 1;
834 goto out_not_moved;
835 }
836 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
837 err == MOVE_TARGET_RD_ERR) {
838 /*
839 * Target PEB had bit-flips or write error - torture it.
840 */
841 torture = 1;
842 keep = 1;
843 goto out_not_moved;
844 }
845
846 if (err == MOVE_SOURCE_RD_ERR) {
847 /*
848 * An error happened while reading the source PEB. Do
849 * not switch to R/O mode in this case, and give the
850 * upper layers a possibility to recover from this,
851 * e.g. by unmapping corresponding LEB. Instead, just
852 * put this PEB to the @ubi->erroneous list to prevent
853 * UBI from trying to move it over and over again.
854 */
855 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
856 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
857 ubi->erroneous_peb_count);
858 goto out_error;
859 }
860 dst_leb_clean = 1;
861 erroneous = 1;
862 goto out_not_moved;
863 }
864
865 if (err < 0)
866 goto out_error;
867
868 ubi_assert(0);
869 }
870
871 /* The PEB has been successfully moved */
872 if (scrubbing)
873 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
874 e1->pnum, vol_id, lnum, e2->pnum);
875 ubi_free_vid_buf(vidb);
876
877 spin_lock(&ubi->wl_lock);
878 if (!ubi->move_to_put) {
879 wl_tree_add(e2, &ubi->used);
880 e2 = NULL;
881 }
882 ubi->move_from = ubi->move_to = NULL;
883 ubi->move_to_put = ubi->wl_scheduled = 0;
884 spin_unlock(&ubi->wl_lock);
885
886 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
887 if (err) {
888 if (e2)
889 wl_entry_destroy(ubi, e2);
890 goto out_ro;
891 }
892
893 if (e2) {
894 /*
895 * Well, the target PEB was put meanwhile, schedule it for
896 * erasure.
897 */
898 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
899 e2->pnum, vol_id, lnum);
900 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
901 if (err)
902 goto out_ro;
903 }
904
905 dbg_wl("done");
906 mutex_unlock(&ubi->move_mutex);
907 up_read(&ubi->fm_eba_sem);
908 return 0;
909
910 /*
911 * For some reasons the LEB was not moved, might be an error, might be
912 * something else. @e1 was not changed, so return it back. @e2 might
913 * have been changed, schedule it for erasure.
914 */
915out_not_moved:
916 if (vol_id != -1)
917 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
918 e1->pnum, vol_id, lnum, e2->pnum, err);
919 else
920 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
921 e1->pnum, e2->pnum, err);
922 spin_lock(&ubi->wl_lock);
923 if (protect)
924 prot_queue_add(ubi, e1);
925 else if (erroneous) {
926 wl_tree_add(e1, &ubi->erroneous);
927 ubi->erroneous_peb_count += 1;
928 } else if (scrubbing)
929 wl_tree_add(e1, &ubi->scrub);
930 else if (keep)
931 wl_tree_add(e1, &ubi->used);
932 if (dst_leb_clean) {
933 wl_tree_add(e2, &ubi->free);
934 ubi->free_count++;
935 }
936
937 ubi_assert(!ubi->move_to_put);
938 ubi->move_from = ubi->move_to = NULL;
939 ubi->wl_scheduled = 0;
940 spin_unlock(&ubi->wl_lock);
941
942 ubi_free_vid_buf(vidb);
943 if (dst_leb_clean) {
944 ensure_wear_leveling(ubi, 1);
945 } else {
946 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
947 if (err)
948 goto out_ro;
949 }
950
951 if (erase) {
952 err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
953 if (err)
954 goto out_ro;
955 }
956
957 mutex_unlock(&ubi->move_mutex);
958 up_read(&ubi->fm_eba_sem);
959 return 0;
960
961out_error:
962 if (vol_id != -1)
963 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
964 err, e1->pnum, e2->pnum);
965 else
966 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
967 err, e1->pnum, vol_id, lnum, e2->pnum);
968 spin_lock(&ubi->wl_lock);
969 ubi->move_from = ubi->move_to = NULL;
970 ubi->move_to_put = ubi->wl_scheduled = 0;
971 spin_unlock(&ubi->wl_lock);
972
973 ubi_free_vid_buf(vidb);
974 wl_entry_destroy(ubi, e1);
975 wl_entry_destroy(ubi, e2);
976
977out_ro:
978 ubi_ro_mode(ubi);
979 mutex_unlock(&ubi->move_mutex);
980 up_read(&ubi->fm_eba_sem);
981 ubi_assert(err != 0);
982 return err < 0 ? err : -EIO;
983
984out_cancel:
985 ubi->wl_scheduled = 0;
986 spin_unlock(&ubi->wl_lock);
987 mutex_unlock(&ubi->move_mutex);
988 up_read(&ubi->fm_eba_sem);
989 ubi_free_vid_buf(vidb);
990 return 0;
991}
992
993/**
994 * ensure_wear_leveling - schedule wear-leveling if it is needed.
995 * @ubi: UBI device description object
996 * @nested: set to non-zero if this function is called from UBI worker
997 *
998 * This function checks if it is time to start wear-leveling and schedules it
999 * if yes. This function returns zero in case of success and a negative error
1000 * code in case of failure.
1001 */
1002static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1003{
1004 int err = 0;
1005 struct ubi_wl_entry *e1;
1006 struct ubi_wl_entry *e2;
1007 struct ubi_work *wrk;
1008
1009 spin_lock(&ubi->wl_lock);
1010 if (ubi->wl_scheduled)
1011 /* Wear-leveling is already in the work queue */
1012 goto out_unlock;
1013
1014 /*
1015 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1016 * the WL worker has to be scheduled anyway.
1017 */
1018 if (!ubi->scrub.rb_node) {
1019 if (!ubi->used.rb_node || !ubi->free.rb_node)
1020 /* No physical eraseblocks - no deal */
1021 goto out_unlock;
1022
1023 /*
1024 * We schedule wear-leveling only if the difference between the
1025 * lowest erase counter of used physical eraseblocks and a high
1026 * erase counter of free physical eraseblocks is greater than
1027 * %UBI_WL_THRESHOLD.
1028 */
1029 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1030 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1031
1032 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1033 goto out_unlock;
1034 dbg_wl("schedule wear-leveling");
1035 } else
1036 dbg_wl("schedule scrubbing");
1037
1038 ubi->wl_scheduled = 1;
1039 spin_unlock(&ubi->wl_lock);
1040
1041 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1042 if (!wrk) {
1043 err = -ENOMEM;
1044 goto out_cancel;
1045 }
1046
1047 wrk->func = &wear_leveling_worker;
1048 if (nested)
1049 __schedule_ubi_work(ubi, wrk);
1050 else
1051 schedule_ubi_work(ubi, wrk);
1052 return err;
1053
1054out_cancel:
1055 spin_lock(&ubi->wl_lock);
1056 ubi->wl_scheduled = 0;
1057out_unlock:
1058 spin_unlock(&ubi->wl_lock);
1059 return err;
1060}
1061
1062/**
1063 * __erase_worker - physical eraseblock erase worker function.
1064 * @ubi: UBI device description object
1065 * @wl_wrk: the work object
1066 * @shutdown: non-zero if the worker has to free memory and exit
1067 * because the WL sub-system is shutting down
1068 *
1069 * This function erases a physical eraseblock and perform torture testing if
1070 * needed. It also takes care about marking the physical eraseblock bad if
1071 * needed. Returns zero in case of success and a negative error code in case of
1072 * failure.
1073 */
1074static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1075{
1076 struct ubi_wl_entry *e = wl_wrk->e;
1077 int pnum = e->pnum;
1078 int vol_id = wl_wrk->vol_id;
1079 int lnum = wl_wrk->lnum;
1080 int err, available_consumed = 0;
1081
1082 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1083 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1084
1085 err = sync_erase(ubi, e, wl_wrk->torture);
1086 if (!err) {
1087 spin_lock(&ubi->wl_lock);
1088
1089 if (!ubi->fm_disabled && !ubi->fm_next_anchor &&
1090 e->pnum < UBI_FM_MAX_START) {
1091 /* Abort anchor production, if needed it will be
1092 * enabled again in the wear leveling started below.
1093 */
1094 ubi->fm_next_anchor = e;
1095 ubi->fm_do_produce_anchor = 0;
1096 } else {
1097 wl_tree_add(e, &ubi->free);
1098 ubi->free_count++;
1099 }
1100
1101 spin_unlock(&ubi->wl_lock);
1102
1103 /*
1104 * One more erase operation has happened, take care about
1105 * protected physical eraseblocks.
1106 */
1107 serve_prot_queue(ubi);
1108
1109 /* And take care about wear-leveling */
1110 err = ensure_wear_leveling(ubi, 1);
1111 return err;
1112 }
1113
1114 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1115
1116 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1117 err == -EBUSY) {
1118 int err1;
1119
1120 /* Re-schedule the LEB for erasure */
1121 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
1122 if (err1) {
1123 wl_entry_destroy(ubi, e);
1124 err = err1;
1125 goto out_ro;
1126 }
1127 return err;
1128 }
1129
1130 wl_entry_destroy(ubi, e);
1131 if (err != -EIO)
1132 /*
1133 * If this is not %-EIO, we have no idea what to do. Scheduling
1134 * this physical eraseblock for erasure again would cause
1135 * errors again and again. Well, lets switch to R/O mode.
1136 */
1137 goto out_ro;
1138
1139 /* It is %-EIO, the PEB went bad */
1140
1141 if (!ubi->bad_allowed) {
1142 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1143 goto out_ro;
1144 }
1145
1146 spin_lock(&ubi->volumes_lock);
1147 if (ubi->beb_rsvd_pebs == 0) {
1148 if (ubi->avail_pebs == 0) {
1149 spin_unlock(&ubi->volumes_lock);
1150 ubi_err(ubi, "no reserved/available physical eraseblocks");
1151 goto out_ro;
1152 }
1153 ubi->avail_pebs -= 1;
1154 available_consumed = 1;
1155 }
1156 spin_unlock(&ubi->volumes_lock);
1157
1158 ubi_msg(ubi, "mark PEB %d as bad", pnum);
1159 err = ubi_io_mark_bad(ubi, pnum);
1160 if (err)
1161 goto out_ro;
1162
1163 spin_lock(&ubi->volumes_lock);
1164 if (ubi->beb_rsvd_pebs > 0) {
1165 if (available_consumed) {
1166 /*
1167 * The amount of reserved PEBs increased since we last
1168 * checked.
1169 */
1170 ubi->avail_pebs += 1;
1171 available_consumed = 0;
1172 }
1173 ubi->beb_rsvd_pebs -= 1;
1174 }
1175 ubi->bad_peb_count += 1;
1176 ubi->good_peb_count -= 1;
1177 ubi_calculate_reserved(ubi);
1178 if (available_consumed)
1179 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1180 else if (ubi->beb_rsvd_pebs)
1181 ubi_msg(ubi, "%d PEBs left in the reserve",
1182 ubi->beb_rsvd_pebs);
1183 else
1184 ubi_warn(ubi, "last PEB from the reserve was used");
1185 spin_unlock(&ubi->volumes_lock);
1186
1187 return err;
1188
1189out_ro:
1190 if (available_consumed) {
1191 spin_lock(&ubi->volumes_lock);
1192 ubi->avail_pebs += 1;
1193 spin_unlock(&ubi->volumes_lock);
1194 }
1195 ubi_ro_mode(ubi);
1196 return err;
1197}
1198
1199static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1200 int shutdown)
1201{
1202 int ret;
1203
1204 if (shutdown) {
1205 struct ubi_wl_entry *e = wl_wrk->e;
1206
1207 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1208 kfree(wl_wrk);
1209 wl_entry_destroy(ubi, e);
1210 return 0;
1211 }
1212
1213 ret = __erase_worker(ubi, wl_wrk);
1214 kfree(wl_wrk);
1215 return ret;
1216}
1217
1218/**
1219 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1220 * @ubi: UBI device description object
1221 * @vol_id: the volume ID that last used this PEB
1222 * @lnum: the last used logical eraseblock number for the PEB
1223 * @pnum: physical eraseblock to return
1224 * @torture: if this physical eraseblock has to be tortured
1225 *
1226 * This function is called to return physical eraseblock @pnum to the pool of
1227 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1228 * occurred to this @pnum and it has to be tested. This function returns zero
1229 * in case of success, and a negative error code in case of failure.
1230 */
1231int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1232 int pnum, int torture)
1233{
1234 int err;
1235 struct ubi_wl_entry *e;
1236
1237 dbg_wl("PEB %d", pnum);
1238 ubi_assert(pnum >= 0);
1239 ubi_assert(pnum < ubi->peb_count);
1240
1241 down_read(&ubi->fm_protect);
1242
1243retry:
1244 spin_lock(&ubi->wl_lock);
1245 e = ubi->lookuptbl[pnum];
1246 if (e == ubi->move_from) {
1247 /*
1248 * User is putting the physical eraseblock which was selected to
1249 * be moved. It will be scheduled for erasure in the
1250 * wear-leveling worker.
1251 */
1252 dbg_wl("PEB %d is being moved, wait", pnum);
1253 spin_unlock(&ubi->wl_lock);
1254
1255 /* Wait for the WL worker by taking the @ubi->move_mutex */
1256 mutex_lock(&ubi->move_mutex);
1257 mutex_unlock(&ubi->move_mutex);
1258 goto retry;
1259 } else if (e == ubi->move_to) {
1260 /*
1261 * User is putting the physical eraseblock which was selected
1262 * as the target the data is moved to. It may happen if the EBA
1263 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1264 * but the WL sub-system has not put the PEB to the "used" tree
1265 * yet, but it is about to do this. So we just set a flag which
1266 * will tell the WL worker that the PEB is not needed anymore
1267 * and should be scheduled for erasure.
1268 */
1269 dbg_wl("PEB %d is the target of data moving", pnum);
1270 ubi_assert(!ubi->move_to_put);
1271 ubi->move_to_put = 1;
1272 spin_unlock(&ubi->wl_lock);
1273 up_read(&ubi->fm_protect);
1274 return 0;
1275 } else {
1276 if (in_wl_tree(e, &ubi->used)) {
1277 self_check_in_wl_tree(ubi, e, &ubi->used);
1278 rb_erase(&e->u.rb, &ubi->used);
1279 } else if (in_wl_tree(e, &ubi->scrub)) {
1280 self_check_in_wl_tree(ubi, e, &ubi->scrub);
1281 rb_erase(&e->u.rb, &ubi->scrub);
1282 } else if (in_wl_tree(e, &ubi->erroneous)) {
1283 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1284 rb_erase(&e->u.rb, &ubi->erroneous);
1285 ubi->erroneous_peb_count -= 1;
1286 ubi_assert(ubi->erroneous_peb_count >= 0);
1287 /* Erroneous PEBs should be tortured */
1288 torture = 1;
1289 } else {
1290 err = prot_queue_del(ubi, e->pnum);
1291 if (err) {
1292 ubi_err(ubi, "PEB %d not found", pnum);
1293 ubi_ro_mode(ubi);
1294 spin_unlock(&ubi->wl_lock);
1295 up_read(&ubi->fm_protect);
1296 return err;
1297 }
1298 }
1299 }
1300 spin_unlock(&ubi->wl_lock);
1301
1302 err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1303 if (err) {
1304 spin_lock(&ubi->wl_lock);
1305 wl_tree_add(e, &ubi->used);
1306 spin_unlock(&ubi->wl_lock);
1307 }
1308
1309 up_read(&ubi->fm_protect);
1310 return err;
1311}
1312
1313/**
1314 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1315 * @ubi: UBI device description object
1316 * @pnum: the physical eraseblock to schedule
1317 *
1318 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1319 * needs scrubbing. This function schedules a physical eraseblock for
1320 * scrubbing which is done in background. This function returns zero in case of
1321 * success and a negative error code in case of failure.
1322 */
1323int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1324{
1325 struct ubi_wl_entry *e;
1326
1327 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1328
1329retry:
1330 spin_lock(&ubi->wl_lock);
1331 e = ubi->lookuptbl[pnum];
1332 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1333 in_wl_tree(e, &ubi->erroneous)) {
1334 spin_unlock(&ubi->wl_lock);
1335 return 0;
1336 }
1337
1338 if (e == ubi->move_to) {
1339 /*
1340 * This physical eraseblock was used to move data to. The data
1341 * was moved but the PEB was not yet inserted to the proper
1342 * tree. We should just wait a little and let the WL worker
1343 * proceed.
1344 */
1345 spin_unlock(&ubi->wl_lock);
1346 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1347 yield();
1348 goto retry;
1349 }
1350
1351 if (in_wl_tree(e, &ubi->used)) {
1352 self_check_in_wl_tree(ubi, e, &ubi->used);
1353 rb_erase(&e->u.rb, &ubi->used);
1354 } else {
1355 int err;
1356
1357 err = prot_queue_del(ubi, e->pnum);
1358 if (err) {
1359 ubi_err(ubi, "PEB %d not found", pnum);
1360 ubi_ro_mode(ubi);
1361 spin_unlock(&ubi->wl_lock);
1362 return err;
1363 }
1364 }
1365
1366 wl_tree_add(e, &ubi->scrub);
1367 spin_unlock(&ubi->wl_lock);
1368
1369 /*
1370 * Technically scrubbing is the same as wear-leveling, so it is done
1371 * by the WL worker.
1372 */
1373 return ensure_wear_leveling(ubi, 0);
1374}
1375
1376/**
1377 * ubi_wl_flush - flush all pending works.
1378 * @ubi: UBI device description object
1379 * @vol_id: the volume id to flush for
1380 * @lnum: the logical eraseblock number to flush for
1381 *
1382 * This function executes all pending works for a particular volume id /
1383 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1384 * acts as a wildcard for all of the corresponding volume numbers or logical
1385 * eraseblock numbers. It returns zero in case of success and a negative error
1386 * code in case of failure.
1387 */
1388int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1389{
1390 int err = 0;
1391 int found = 1;
1392
1393 /*
1394 * Erase while the pending works queue is not empty, but not more than
1395 * the number of currently pending works.
1396 */
1397 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1398 vol_id, lnum, ubi->works_count);
1399
1400 while (found) {
1401 struct ubi_work *wrk, *tmp;
1402 found = 0;
1403
1404 down_read(&ubi->work_sem);
1405 spin_lock(&ubi->wl_lock);
1406 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1407 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1408 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1409 list_del(&wrk->list);
1410 ubi->works_count -= 1;
1411 ubi_assert(ubi->works_count >= 0);
1412 spin_unlock(&ubi->wl_lock);
1413
1414 err = wrk->func(ubi, wrk, 0);
1415 if (err) {
1416 up_read(&ubi->work_sem);
1417 return err;
1418 }
1419
1420 spin_lock(&ubi->wl_lock);
1421 found = 1;
1422 break;
1423 }
1424 }
1425 spin_unlock(&ubi->wl_lock);
1426 up_read(&ubi->work_sem);
1427 }
1428
1429 /*
1430 * Make sure all the works which have been done in parallel are
1431 * finished.
1432 */
1433 down_write(&ubi->work_sem);
1434 up_write(&ubi->work_sem);
1435
1436 return err;
1437}
1438
1439static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1440{
1441 if (in_wl_tree(e, &ubi->scrub))
1442 return false;
1443 else if (in_wl_tree(e, &ubi->erroneous))
1444 return false;
1445 else if (ubi->move_from == e)
1446 return false;
1447 else if (ubi->move_to == e)
1448 return false;
1449
1450 return true;
1451}
1452
1453/**
1454 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1455 * @ubi: UBI device description object
1456 * @pnum: the physical eraseblock to schedule
1457 * @force: dont't read the block, assume bitflips happened and take action.
1458 *
1459 * This function reads the given eraseblock and checks if bitflips occured.
1460 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1461 * If scrubbing is forced with @force, the eraseblock is not read,
1462 * but scheduled for scrubbing right away.
1463 *
1464 * Returns:
1465 * %EINVAL, PEB is out of range
1466 * %ENOENT, PEB is no longer used by UBI
1467 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1468 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1469 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1470 * %0, no bit flips detected
1471 */
1472int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1473{
1474 int err = 0;
1475 struct ubi_wl_entry *e;
1476
1477 if (pnum < 0 || pnum >= ubi->peb_count) {
1478 err = -EINVAL;
1479 goto out;
1480 }
1481
1482 /*
1483 * Pause all parallel work, otherwise it can happen that the
1484 * erase worker frees a wl entry under us.
1485 */
1486 down_write(&ubi->work_sem);
1487
1488 /*
1489 * Make sure that the wl entry does not change state while
1490 * inspecting it.
1491 */
1492 spin_lock(&ubi->wl_lock);
1493 e = ubi->lookuptbl[pnum];
1494 if (!e) {
1495 spin_unlock(&ubi->wl_lock);
1496 err = -ENOENT;
1497 goto out_resume;
1498 }
1499
1500 /*
1501 * Does it make sense to check this PEB?
1502 */
1503 if (!scrub_possible(ubi, e)) {
1504 spin_unlock(&ubi->wl_lock);
1505 err = -EBUSY;
1506 goto out_resume;
1507 }
1508 spin_unlock(&ubi->wl_lock);
1509
1510 if (!force) {
1511 mutex_lock(&ubi->buf_mutex);
1512 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1513 mutex_unlock(&ubi->buf_mutex);
1514 }
1515
1516 if (force || err == UBI_IO_BITFLIPS) {
1517 /*
1518 * Okay, bit flip happened, let's figure out what we can do.
1519 */
1520 spin_lock(&ubi->wl_lock);
1521
1522 /*
1523 * Recheck. We released wl_lock, UBI might have killed the
1524 * wl entry under us.
1525 */
1526 e = ubi->lookuptbl[pnum];
1527 if (!e) {
1528 spin_unlock(&ubi->wl_lock);
1529 err = -ENOENT;
1530 goto out_resume;
1531 }
1532
1533 /*
1534 * Need to re-check state
1535 */
1536 if (!scrub_possible(ubi, e)) {
1537 spin_unlock(&ubi->wl_lock);
1538 err = -EBUSY;
1539 goto out_resume;
1540 }
1541
1542 if (in_pq(ubi, e)) {
1543 prot_queue_del(ubi, e->pnum);
1544 wl_tree_add(e, &ubi->scrub);
1545 spin_unlock(&ubi->wl_lock);
1546
1547 err = ensure_wear_leveling(ubi, 1);
1548 } else if (in_wl_tree(e, &ubi->used)) {
1549 rb_erase(&e->u.rb, &ubi->used);
1550 wl_tree_add(e, &ubi->scrub);
1551 spin_unlock(&ubi->wl_lock);
1552
1553 err = ensure_wear_leveling(ubi, 1);
1554 } else if (in_wl_tree(e, &ubi->free)) {
1555 rb_erase(&e->u.rb, &ubi->free);
1556 ubi->free_count--;
1557 spin_unlock(&ubi->wl_lock);
1558
1559 /*
1560 * This PEB is empty we can schedule it for
1561 * erasure right away. No wear leveling needed.
1562 */
1563 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1564 force ? 0 : 1, true);
1565 } else {
1566 spin_unlock(&ubi->wl_lock);
1567 err = -EAGAIN;
1568 }
1569
1570 if (!err && !force)
1571 err = -EUCLEAN;
1572 } else {
1573 err = 0;
1574 }
1575
1576out_resume:
1577 up_write(&ubi->work_sem);
1578out:
1579
1580 return err;
1581}
1582
1583/**
1584 * tree_destroy - destroy an RB-tree.
1585 * @ubi: UBI device description object
1586 * @root: the root of the tree to destroy
1587 */
1588static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1589{
1590 struct rb_node *rb;
1591 struct ubi_wl_entry *e;
1592
1593 rb = root->rb_node;
1594 while (rb) {
1595 if (rb->rb_left)
1596 rb = rb->rb_left;
1597 else if (rb->rb_right)
1598 rb = rb->rb_right;
1599 else {
1600 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1601
1602 rb = rb_parent(rb);
1603 if (rb) {
1604 if (rb->rb_left == &e->u.rb)
1605 rb->rb_left = NULL;
1606 else
1607 rb->rb_right = NULL;
1608 }
1609
1610 wl_entry_destroy(ubi, e);
1611 }
1612 }
1613}
1614
1615/**
1616 * ubi_thread - UBI background thread.
1617 * @u: the UBI device description object pointer
1618 */
1619int ubi_thread(void *u)
1620{
1621 int failures = 0;
1622 struct ubi_device *ubi = u;
1623
1624 ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1625 ubi->bgt_name, task_pid_nr(current));
1626
1627 set_freezable();
1628 for (;;) {
1629 int err;
1630
1631 if (kthread_should_stop())
1632 break;
1633
1634 if (try_to_freeze())
1635 continue;
1636
1637 spin_lock(&ubi->wl_lock);
1638 if (list_empty(&ubi->works) || ubi->ro_mode ||
1639 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1640 set_current_state(TASK_INTERRUPTIBLE);
1641 spin_unlock(&ubi->wl_lock);
1642 schedule();
1643 continue;
1644 }
1645 spin_unlock(&ubi->wl_lock);
1646
1647 err = do_work(ubi);
1648 if (err) {
1649 ubi_err(ubi, "%s: work failed with error code %d",
1650 ubi->bgt_name, err);
1651 if (failures++ > WL_MAX_FAILURES) {
1652 /*
1653 * Too many failures, disable the thread and
1654 * switch to read-only mode.
1655 */
1656 ubi_msg(ubi, "%s: %d consecutive failures",
1657 ubi->bgt_name, WL_MAX_FAILURES);
1658 ubi_ro_mode(ubi);
1659 ubi->thread_enabled = 0;
1660 continue;
1661 }
1662 } else
1663 failures = 0;
1664
1665 cond_resched();
1666 }
1667
1668 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1669 ubi->thread_enabled = 0;
1670 return 0;
1671}
1672
1673/**
1674 * shutdown_work - shutdown all pending works.
1675 * @ubi: UBI device description object
1676 */
1677static void shutdown_work(struct ubi_device *ubi)
1678{
1679 while (!list_empty(&ubi->works)) {
1680 struct ubi_work *wrk;
1681
1682 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1683 list_del(&wrk->list);
1684 wrk->func(ubi, wrk, 1);
1685 ubi->works_count -= 1;
1686 ubi_assert(ubi->works_count >= 0);
1687 }
1688}
1689
1690/**
1691 * erase_aeb - erase a PEB given in UBI attach info PEB
1692 * @ubi: UBI device description object
1693 * @aeb: UBI attach info PEB
1694 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1695 */
1696static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1697{
1698 struct ubi_wl_entry *e;
1699 int err;
1700
1701 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1702 if (!e)
1703 return -ENOMEM;
1704
1705 e->pnum = aeb->pnum;
1706 e->ec = aeb->ec;
1707 ubi->lookuptbl[e->pnum] = e;
1708
1709 if (sync) {
1710 err = sync_erase(ubi, e, false);
1711 if (err)
1712 goto out_free;
1713
1714 wl_tree_add(e, &ubi->free);
1715 ubi->free_count++;
1716 } else {
1717 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1718 if (err)
1719 goto out_free;
1720 }
1721
1722 return 0;
1723
1724out_free:
1725 wl_entry_destroy(ubi, e);
1726
1727 return err;
1728}
1729
1730/**
1731 * ubi_wl_init - initialize the WL sub-system using attaching information.
1732 * @ubi: UBI device description object
1733 * @ai: attaching information
1734 *
1735 * This function returns zero in case of success, and a negative error code in
1736 * case of failure.
1737 */
1738int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1739{
1740 int err, i, reserved_pebs, found_pebs = 0;
1741 struct rb_node *rb1, *rb2;
1742 struct ubi_ainf_volume *av;
1743 struct ubi_ainf_peb *aeb, *tmp;
1744 struct ubi_wl_entry *e;
1745
1746 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1747 spin_lock_init(&ubi->wl_lock);
1748 mutex_init(&ubi->move_mutex);
1749 init_rwsem(&ubi->work_sem);
1750 ubi->max_ec = ai->max_ec;
1751 INIT_LIST_HEAD(&ubi->works);
1752
1753 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1754
1755 err = -ENOMEM;
1756 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1757 if (!ubi->lookuptbl)
1758 return err;
1759
1760 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1761 INIT_LIST_HEAD(&ubi->pq[i]);
1762 ubi->pq_head = 0;
1763
1764 ubi->free_count = 0;
1765 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1766 cond_resched();
1767
1768 err = erase_aeb(ubi, aeb, false);
1769 if (err)
1770 goto out_free;
1771
1772 found_pebs++;
1773 }
1774
1775 list_for_each_entry(aeb, &ai->free, u.list) {
1776 cond_resched();
1777
1778 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1779 if (!e) {
1780 err = -ENOMEM;
1781 goto out_free;
1782 }
1783
1784 e->pnum = aeb->pnum;
1785 e->ec = aeb->ec;
1786 ubi_assert(e->ec >= 0);
1787
1788 wl_tree_add(e, &ubi->free);
1789 ubi->free_count++;
1790
1791 ubi->lookuptbl[e->pnum] = e;
1792
1793 found_pebs++;
1794 }
1795
1796 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1797 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1798 cond_resched();
1799
1800 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1801 if (!e) {
1802 err = -ENOMEM;
1803 goto out_free;
1804 }
1805
1806 e->pnum = aeb->pnum;
1807 e->ec = aeb->ec;
1808 ubi->lookuptbl[e->pnum] = e;
1809
1810 if (!aeb->scrub) {
1811 dbg_wl("add PEB %d EC %d to the used tree",
1812 e->pnum, e->ec);
1813 wl_tree_add(e, &ubi->used);
1814 } else {
1815 dbg_wl("add PEB %d EC %d to the scrub tree",
1816 e->pnum, e->ec);
1817 wl_tree_add(e, &ubi->scrub);
1818 }
1819
1820 found_pebs++;
1821 }
1822 }
1823
1824 list_for_each_entry(aeb, &ai->fastmap, u.list) {
1825 cond_resched();
1826
1827 e = ubi_find_fm_block(ubi, aeb->pnum);
1828
1829 if (e) {
1830 ubi_assert(!ubi->lookuptbl[e->pnum]);
1831 ubi->lookuptbl[e->pnum] = e;
1832 } else {
1833 bool sync = false;
1834
1835 /*
1836 * Usually old Fastmap PEBs are scheduled for erasure
1837 * and we don't have to care about them but if we face
1838 * an power cut before scheduling them we need to
1839 * take care of them here.
1840 */
1841 if (ubi->lookuptbl[aeb->pnum])
1842 continue;
1843
1844 /*
1845 * The fastmap update code might not find a free PEB for
1846 * writing the fastmap anchor to and then reuses the
1847 * current fastmap anchor PEB. When this PEB gets erased
1848 * and a power cut happens before it is written again we
1849 * must make sure that the fastmap attach code doesn't
1850 * find any outdated fastmap anchors, hence we erase the
1851 * outdated fastmap anchor PEBs synchronously here.
1852 */
1853 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1854 sync = true;
1855
1856 err = erase_aeb(ubi, aeb, sync);
1857 if (err)
1858 goto out_free;
1859 }
1860
1861 found_pebs++;
1862 }
1863
1864 dbg_wl("found %i PEBs", found_pebs);
1865
1866 ubi_assert(ubi->good_peb_count == found_pebs);
1867
1868 reserved_pebs = WL_RESERVED_PEBS;
1869 ubi_fastmap_init(ubi, &reserved_pebs);
1870
1871 if (ubi->avail_pebs < reserved_pebs) {
1872 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1873 ubi->avail_pebs, reserved_pebs);
1874 if (ubi->corr_peb_count)
1875 ubi_err(ubi, "%d PEBs are corrupted and not used",
1876 ubi->corr_peb_count);
1877 err = -ENOSPC;
1878 goto out_free;
1879 }
1880 ubi->avail_pebs -= reserved_pebs;
1881 ubi->rsvd_pebs += reserved_pebs;
1882
1883 /* Schedule wear-leveling if needed */
1884 err = ensure_wear_leveling(ubi, 0);
1885 if (err)
1886 goto out_free;
1887
1888#ifdef CONFIG_MTD_UBI_FASTMAP
1889 if (!ubi->ro_mode && !ubi->fm_disabled)
1890 ubi_ensure_anchor_pebs(ubi);
1891#endif
1892 return 0;
1893
1894out_free:
1895 shutdown_work(ubi);
1896 tree_destroy(ubi, &ubi->used);
1897 tree_destroy(ubi, &ubi->free);
1898 tree_destroy(ubi, &ubi->scrub);
1899 kfree(ubi->lookuptbl);
1900 return err;
1901}
1902
1903/**
1904 * protection_queue_destroy - destroy the protection queue.
1905 * @ubi: UBI device description object
1906 */
1907static void protection_queue_destroy(struct ubi_device *ubi)
1908{
1909 int i;
1910 struct ubi_wl_entry *e, *tmp;
1911
1912 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1913 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1914 list_del(&e->u.list);
1915 wl_entry_destroy(ubi, e);
1916 }
1917 }
1918}
1919
1920/**
1921 * ubi_wl_close - close the wear-leveling sub-system.
1922 * @ubi: UBI device description object
1923 */
1924void ubi_wl_close(struct ubi_device *ubi)
1925{
1926 dbg_wl("close the WL sub-system");
1927 ubi_fastmap_close(ubi);
1928 shutdown_work(ubi);
1929 protection_queue_destroy(ubi);
1930 tree_destroy(ubi, &ubi->used);
1931 tree_destroy(ubi, &ubi->erroneous);
1932 tree_destroy(ubi, &ubi->free);
1933 tree_destroy(ubi, &ubi->scrub);
1934 kfree(ubi->lookuptbl);
1935}
1936
1937/**
1938 * self_check_ec - make sure that the erase counter of a PEB is correct.
1939 * @ubi: UBI device description object
1940 * @pnum: the physical eraseblock number to check
1941 * @ec: the erase counter to check
1942 *
1943 * This function returns zero if the erase counter of physical eraseblock @pnum
1944 * is equivalent to @ec, and a negative error code if not or if an error
1945 * occurred.
1946 */
1947static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1948{
1949 int err;
1950 long long read_ec;
1951 struct ubi_ec_hdr *ec_hdr;
1952
1953 if (!ubi_dbg_chk_gen(ubi))
1954 return 0;
1955
1956 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1957 if (!ec_hdr)
1958 return -ENOMEM;
1959
1960 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1961 if (err && err != UBI_IO_BITFLIPS) {
1962 /* The header does not have to exist */
1963 err = 0;
1964 goto out_free;
1965 }
1966
1967 read_ec = be64_to_cpu(ec_hdr->ec);
1968 if (ec != read_ec && read_ec - ec > 1) {
1969 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1970 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1971 dump_stack();
1972 err = 1;
1973 } else
1974 err = 0;
1975
1976out_free:
1977 kfree(ec_hdr);
1978 return err;
1979}
1980
1981/**
1982 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1983 * @ubi: UBI device description object
1984 * @e: the wear-leveling entry to check
1985 * @root: the root of the tree
1986 *
1987 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1988 * is not.
1989 */
1990static int self_check_in_wl_tree(const struct ubi_device *ubi,
1991 struct ubi_wl_entry *e, struct rb_root *root)
1992{
1993 if (!ubi_dbg_chk_gen(ubi))
1994 return 0;
1995
1996 if (in_wl_tree(e, root))
1997 return 0;
1998
1999 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2000 e->pnum, e->ec, root);
2001 dump_stack();
2002 return -EINVAL;
2003}
2004
2005/**
2006 * self_check_in_pq - check if wear-leveling entry is in the protection
2007 * queue.
2008 * @ubi: UBI device description object
2009 * @e: the wear-leveling entry to check
2010 *
2011 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2012 */
2013static int self_check_in_pq(const struct ubi_device *ubi,
2014 struct ubi_wl_entry *e)
2015{
2016 if (!ubi_dbg_chk_gen(ubi))
2017 return 0;
2018
2019 if (in_pq(ubi, e))
2020 return 0;
2021
2022 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2023 e->pnum, e->ec);
2024 dump_stack();
2025 return -EINVAL;
2026}
2027#ifndef CONFIG_MTD_UBI_FASTMAP
2028static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2029{
2030 struct ubi_wl_entry *e;
2031
2032 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2033 self_check_in_wl_tree(ubi, e, &ubi->free);
2034 ubi->free_count--;
2035 ubi_assert(ubi->free_count >= 0);
2036 rb_erase(&e->u.rb, &ubi->free);
2037
2038 return e;
2039}
2040
2041/**
2042 * produce_free_peb - produce a free physical eraseblock.
2043 * @ubi: UBI device description object
2044 *
2045 * This function tries to make a free PEB by means of synchronous execution of
2046 * pending works. This may be needed if, for example the background thread is
2047 * disabled. Returns zero in case of success and a negative error code in case
2048 * of failure.
2049 */
2050static int produce_free_peb(struct ubi_device *ubi)
2051{
2052 int err;
2053
2054 while (!ubi->free.rb_node && ubi->works_count) {
2055 spin_unlock(&ubi->wl_lock);
2056
2057 dbg_wl("do one work synchronously");
2058 err = do_work(ubi);
2059
2060 spin_lock(&ubi->wl_lock);
2061 if (err)
2062 return err;
2063 }
2064
2065 return 0;
2066}
2067
2068/**
2069 * ubi_wl_get_peb - get a physical eraseblock.
2070 * @ubi: UBI device description object
2071 *
2072 * This function returns a physical eraseblock in case of success and a
2073 * negative error code in case of failure.
2074 * Returns with ubi->fm_eba_sem held in read mode!
2075 */
2076int ubi_wl_get_peb(struct ubi_device *ubi)
2077{
2078 int err;
2079 struct ubi_wl_entry *e;
2080
2081retry:
2082 down_read(&ubi->fm_eba_sem);
2083 spin_lock(&ubi->wl_lock);
2084 if (!ubi->free.rb_node) {
2085 if (ubi->works_count == 0) {
2086 ubi_err(ubi, "no free eraseblocks");
2087 ubi_assert(list_empty(&ubi->works));
2088 spin_unlock(&ubi->wl_lock);
2089 return -ENOSPC;
2090 }
2091
2092 err = produce_free_peb(ubi);
2093 if (err < 0) {
2094 spin_unlock(&ubi->wl_lock);
2095 return err;
2096 }
2097 spin_unlock(&ubi->wl_lock);
2098 up_read(&ubi->fm_eba_sem);
2099 goto retry;
2100
2101 }
2102 e = wl_get_wle(ubi);
2103 prot_queue_add(ubi, e);
2104 spin_unlock(&ubi->wl_lock);
2105
2106 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2107 ubi->peb_size - ubi->vid_hdr_aloffset);
2108 if (err) {
2109 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2110 return err;
2111 }
2112
2113 return e->pnum;
2114}
2115#else
2116#include "fastmap-wl.c"
2117#endif
1/*
2 * @ubi: UBI device description object
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
20 */
21
22/*
23 * UBI wear-leveling sub-system.
24 *
25 * This sub-system is responsible for wear-leveling. It works in terms of
26 * physical eraseblocks and erase counters and knows nothing about logical
27 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
28 * eraseblocks are of two types - used and free. Used physical eraseblocks are
29 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
30 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
31 *
32 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
33 * header. The rest of the physical eraseblock contains only %0xFF bytes.
34 *
35 * When physical eraseblocks are returned to the WL sub-system by means of the
36 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
37 * done asynchronously in context of the per-UBI device background thread,
38 * which is also managed by the WL sub-system.
39 *
40 * The wear-leveling is ensured by means of moving the contents of used
41 * physical eraseblocks with low erase counter to free physical eraseblocks
42 * with high erase counter.
43 *
44 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
45 * an "optimal" physical eraseblock. For example, when it is known that the
46 * physical eraseblock will be "put" soon because it contains short-term data,
47 * the WL sub-system may pick a free physical eraseblock with low erase
48 * counter, and so forth.
49 *
50 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
51 * bad.
52 *
53 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
54 * in a physical eraseblock, it has to be moved. Technically this is the same
55 * as moving it for wear-leveling reasons.
56 *
57 * As it was said, for the UBI sub-system all physical eraseblocks are either
58 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
59 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
60 * RB-trees, as well as (temporarily) in the @wl->pq queue.
61 *
62 * When the WL sub-system returns a physical eraseblock, the physical
63 * eraseblock is protected from being moved for some "time". For this reason,
64 * the physical eraseblock is not directly moved from the @wl->free tree to the
65 * @wl->used tree. There is a protection queue in between where this
66 * physical eraseblock is temporarily stored (@wl->pq).
67 *
68 * All this protection stuff is needed because:
69 * o we don't want to move physical eraseblocks just after we have given them
70 * to the user; instead, we first want to let users fill them up with data;
71 *
72 * o there is a chance that the user will put the physical eraseblock very
73 * soon, so it makes sense not to move it for some time, but wait; this is
74 * especially important in case of "short term" physical eraseblocks.
75 *
76 * Physical eraseblocks stay protected only for limited time. But the "time" is
77 * measured in erase cycles in this case. This is implemented with help of the
78 * protection queue. Eraseblocks are put to the tail of this queue when they
79 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
80 * head of the queue on each erase operation (for any eraseblock). So the
81 * length of the queue defines how may (global) erase cycles PEBs are protected.
82 *
83 * To put it differently, each physical eraseblock has 2 main states: free and
84 * used. The former state corresponds to the @wl->free tree. The latter state
85 * is split up on several sub-states:
86 * o the WL movement is allowed (@wl->used tree);
87 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
88 * erroneous - e.g., there was a read error;
89 * o the WL movement is temporarily prohibited (@wl->pq queue);
90 * o scrubbing is needed (@wl->scrub tree).
91 *
92 * Depending on the sub-state, wear-leveling entries of the used physical
93 * eraseblocks may be kept in one of those structures.
94 *
95 * Note, in this implementation, we keep a small in-RAM object for each physical
96 * eraseblock. This is surely not a scalable solution. But it appears to be good
97 * enough for moderately large flashes and it is simple. In future, one may
98 * re-work this sub-system and make it more scalable.
99 *
100 * At the moment this sub-system does not utilize the sequence number, which
101 * was introduced relatively recently. But it would be wise to do this because
102 * the sequence number of a logical eraseblock characterizes how old is it. For
103 * example, when we move a PEB with low erase counter, and we need to pick the
104 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
105 * pick target PEB with an average EC if our PEB is not very "old". This is a
106 * room for future re-works of the WL sub-system.
107 */
108
109#include <linux/slab.h>
110#include <linux/crc32.h>
111#include <linux/freezer.h>
112#include <linux/kthread.h>
113#include "ubi.h"
114
115/* Number of physical eraseblocks reserved for wear-leveling purposes */
116#define WL_RESERVED_PEBS 1
117
118/*
119 * Maximum difference between two erase counters. If this threshold is
120 * exceeded, the WL sub-system starts moving data from used physical
121 * eraseblocks with low erase counter to free physical eraseblocks with high
122 * erase counter.
123 */
124#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
125
126/*
127 * When a physical eraseblock is moved, the WL sub-system has to pick the target
128 * physical eraseblock to move to. The simplest way would be just to pick the
129 * one with the highest erase counter. But in certain workloads this could lead
130 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
131 * situation when the picked physical eraseblock is constantly erased after the
132 * data is written to it. So, we have a constant which limits the highest erase
133 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
134 * does not pick eraseblocks with erase counter greater than the lowest erase
135 * counter plus %WL_FREE_MAX_DIFF.
136 */
137#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
138
139/*
140 * Maximum number of consecutive background thread failures which is enough to
141 * switch to read-only mode.
142 */
143#define WL_MAX_FAILURES 32
144
145/**
146 * struct ubi_work - UBI work description data structure.
147 * @list: a link in the list of pending works
148 * @func: worker function
149 * @e: physical eraseblock to erase
150 * @torture: if the physical eraseblock has to be tortured
151 *
152 * The @func pointer points to the worker function. If the @cancel argument is
153 * not zero, the worker has to free the resources and exit immediately. The
154 * worker has to return zero in case of success and a negative error code in
155 * case of failure.
156 */
157struct ubi_work {
158 struct list_head list;
159 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
160 /* The below fields are only relevant to erasure works */
161 struct ubi_wl_entry *e;
162 int torture;
163};
164
165#ifdef CONFIG_MTD_UBI_DEBUG
166static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
167static int paranoid_check_in_wl_tree(const struct ubi_device *ubi,
168 struct ubi_wl_entry *e,
169 struct rb_root *root);
170static int paranoid_check_in_pq(const struct ubi_device *ubi,
171 struct ubi_wl_entry *e);
172#else
173#define paranoid_check_ec(ubi, pnum, ec) 0
174#define paranoid_check_in_wl_tree(ubi, e, root)
175#define paranoid_check_in_pq(ubi, e) 0
176#endif
177
178/**
179 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
180 * @e: the wear-leveling entry to add
181 * @root: the root of the tree
182 *
183 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
184 * the @ubi->used and @ubi->free RB-trees.
185 */
186static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
187{
188 struct rb_node **p, *parent = NULL;
189
190 p = &root->rb_node;
191 while (*p) {
192 struct ubi_wl_entry *e1;
193
194 parent = *p;
195 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
196
197 if (e->ec < e1->ec)
198 p = &(*p)->rb_left;
199 else if (e->ec > e1->ec)
200 p = &(*p)->rb_right;
201 else {
202 ubi_assert(e->pnum != e1->pnum);
203 if (e->pnum < e1->pnum)
204 p = &(*p)->rb_left;
205 else
206 p = &(*p)->rb_right;
207 }
208 }
209
210 rb_link_node(&e->u.rb, parent, p);
211 rb_insert_color(&e->u.rb, root);
212}
213
214/**
215 * do_work - do one pending work.
216 * @ubi: UBI device description object
217 *
218 * This function returns zero in case of success and a negative error code in
219 * case of failure.
220 */
221static int do_work(struct ubi_device *ubi)
222{
223 int err;
224 struct ubi_work *wrk;
225
226 cond_resched();
227
228 /*
229 * @ubi->work_sem is used to synchronize with the workers. Workers take
230 * it in read mode, so many of them may be doing works at a time. But
231 * the queue flush code has to be sure the whole queue of works is
232 * done, and it takes the mutex in write mode.
233 */
234 down_read(&ubi->work_sem);
235 spin_lock(&ubi->wl_lock);
236 if (list_empty(&ubi->works)) {
237 spin_unlock(&ubi->wl_lock);
238 up_read(&ubi->work_sem);
239 return 0;
240 }
241
242 wrk = list_entry(ubi->works.next, struct ubi_work, list);
243 list_del(&wrk->list);
244 ubi->works_count -= 1;
245 ubi_assert(ubi->works_count >= 0);
246 spin_unlock(&ubi->wl_lock);
247
248 /*
249 * Call the worker function. Do not touch the work structure
250 * after this call as it will have been freed or reused by that
251 * time by the worker function.
252 */
253 err = wrk->func(ubi, wrk, 0);
254 if (err)
255 ubi_err("work failed with error code %d", err);
256 up_read(&ubi->work_sem);
257
258 return err;
259}
260
261/**
262 * produce_free_peb - produce a free physical eraseblock.
263 * @ubi: UBI device description object
264 *
265 * This function tries to make a free PEB by means of synchronous execution of
266 * pending works. This may be needed if, for example the background thread is
267 * disabled. Returns zero in case of success and a negative error code in case
268 * of failure.
269 */
270static int produce_free_peb(struct ubi_device *ubi)
271{
272 int err;
273
274 spin_lock(&ubi->wl_lock);
275 while (!ubi->free.rb_node) {
276 spin_unlock(&ubi->wl_lock);
277
278 dbg_wl("do one work synchronously");
279 err = do_work(ubi);
280 if (err)
281 return err;
282
283 spin_lock(&ubi->wl_lock);
284 }
285 spin_unlock(&ubi->wl_lock);
286
287 return 0;
288}
289
290/**
291 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
292 * @e: the wear-leveling entry to check
293 * @root: the root of the tree
294 *
295 * This function returns non-zero if @e is in the @root RB-tree and zero if it
296 * is not.
297 */
298static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
299{
300 struct rb_node *p;
301
302 p = root->rb_node;
303 while (p) {
304 struct ubi_wl_entry *e1;
305
306 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
307
308 if (e->pnum == e1->pnum) {
309 ubi_assert(e == e1);
310 return 1;
311 }
312
313 if (e->ec < e1->ec)
314 p = p->rb_left;
315 else if (e->ec > e1->ec)
316 p = p->rb_right;
317 else {
318 ubi_assert(e->pnum != e1->pnum);
319 if (e->pnum < e1->pnum)
320 p = p->rb_left;
321 else
322 p = p->rb_right;
323 }
324 }
325
326 return 0;
327}
328
329/**
330 * prot_queue_add - add physical eraseblock to the protection queue.
331 * @ubi: UBI device description object
332 * @e: the physical eraseblock to add
333 *
334 * This function adds @e to the tail of the protection queue @ubi->pq, where
335 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
336 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
337 * be locked.
338 */
339static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
340{
341 int pq_tail = ubi->pq_head - 1;
342
343 if (pq_tail < 0)
344 pq_tail = UBI_PROT_QUEUE_LEN - 1;
345 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
346 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
347 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
348}
349
350/**
351 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
352 * @root: the RB-tree where to look for
353 * @max: highest possible erase counter
354 *
355 * This function looks for a wear leveling entry with erase counter closest to
356 * @max and less than @max.
357 */
358static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
359{
360 struct rb_node *p;
361 struct ubi_wl_entry *e;
362
363 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
364 max += e->ec;
365
366 p = root->rb_node;
367 while (p) {
368 struct ubi_wl_entry *e1;
369
370 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
371 if (e1->ec >= max)
372 p = p->rb_left;
373 else {
374 p = p->rb_right;
375 e = e1;
376 }
377 }
378
379 return e;
380}
381
382/**
383 * ubi_wl_get_peb - get a physical eraseblock.
384 * @ubi: UBI device description object
385 * @dtype: type of data which will be stored in this physical eraseblock
386 *
387 * This function returns a physical eraseblock in case of success and a
388 * negative error code in case of failure. Might sleep.
389 */
390int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
391{
392 int err, medium_ec;
393 struct ubi_wl_entry *e, *first, *last;
394
395 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
396 dtype == UBI_UNKNOWN);
397
398retry:
399 spin_lock(&ubi->wl_lock);
400 if (!ubi->free.rb_node) {
401 if (ubi->works_count == 0) {
402 ubi_assert(list_empty(&ubi->works));
403 ubi_err("no free eraseblocks");
404 spin_unlock(&ubi->wl_lock);
405 return -ENOSPC;
406 }
407 spin_unlock(&ubi->wl_lock);
408
409 err = produce_free_peb(ubi);
410 if (err < 0)
411 return err;
412 goto retry;
413 }
414
415 switch (dtype) {
416 case UBI_LONGTERM:
417 /*
418 * For long term data we pick a physical eraseblock with high
419 * erase counter. But the highest erase counter we can pick is
420 * bounded by the the lowest erase counter plus
421 * %WL_FREE_MAX_DIFF.
422 */
423 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
424 break;
425 case UBI_UNKNOWN:
426 /*
427 * For unknown data we pick a physical eraseblock with medium
428 * erase counter. But we by no means can pick a physical
429 * eraseblock with erase counter greater or equivalent than the
430 * lowest erase counter plus %WL_FREE_MAX_DIFF.
431 */
432 first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry,
433 u.rb);
434 last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb);
435
436 if (last->ec - first->ec < WL_FREE_MAX_DIFF)
437 e = rb_entry(ubi->free.rb_node,
438 struct ubi_wl_entry, u.rb);
439 else {
440 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
441 e = find_wl_entry(&ubi->free, medium_ec);
442 }
443 break;
444 case UBI_SHORTTERM:
445 /*
446 * For short term data we pick a physical eraseblock with the
447 * lowest erase counter as we expect it will be erased soon.
448 */
449 e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb);
450 break;
451 default:
452 BUG();
453 }
454
455 paranoid_check_in_wl_tree(ubi, e, &ubi->free);
456
457 /*
458 * Move the physical eraseblock to the protection queue where it will
459 * be protected from being moved for some time.
460 */
461 rb_erase(&e->u.rb, &ubi->free);
462 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
463 prot_queue_add(ubi, e);
464 spin_unlock(&ubi->wl_lock);
465
466 err = ubi_dbg_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
467 ubi->peb_size - ubi->vid_hdr_aloffset);
468 if (err) {
469 ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum);
470 return err;
471 }
472
473 return e->pnum;
474}
475
476/**
477 * prot_queue_del - remove a physical eraseblock from the protection queue.
478 * @ubi: UBI device description object
479 * @pnum: the physical eraseblock to remove
480 *
481 * This function deletes PEB @pnum from the protection queue and returns zero
482 * in case of success and %-ENODEV if the PEB was not found.
483 */
484static int prot_queue_del(struct ubi_device *ubi, int pnum)
485{
486 struct ubi_wl_entry *e;
487
488 e = ubi->lookuptbl[pnum];
489 if (!e)
490 return -ENODEV;
491
492 if (paranoid_check_in_pq(ubi, e))
493 return -ENODEV;
494
495 list_del(&e->u.list);
496 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
497 return 0;
498}
499
500/**
501 * sync_erase - synchronously erase a physical eraseblock.
502 * @ubi: UBI device description object
503 * @e: the the physical eraseblock to erase
504 * @torture: if the physical eraseblock has to be tortured
505 *
506 * This function returns zero in case of success and a negative error code in
507 * case of failure.
508 */
509static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
510 int torture)
511{
512 int err;
513 struct ubi_ec_hdr *ec_hdr;
514 unsigned long long ec = e->ec;
515
516 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
517
518 err = paranoid_check_ec(ubi, e->pnum, e->ec);
519 if (err)
520 return -EINVAL;
521
522 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
523 if (!ec_hdr)
524 return -ENOMEM;
525
526 err = ubi_io_sync_erase(ubi, e->pnum, torture);
527 if (err < 0)
528 goto out_free;
529
530 ec += err;
531 if (ec > UBI_MAX_ERASECOUNTER) {
532 /*
533 * Erase counter overflow. Upgrade UBI and use 64-bit
534 * erase counters internally.
535 */
536 ubi_err("erase counter overflow at PEB %d, EC %llu",
537 e->pnum, ec);
538 err = -EINVAL;
539 goto out_free;
540 }
541
542 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
543
544 ec_hdr->ec = cpu_to_be64(ec);
545
546 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
547 if (err)
548 goto out_free;
549
550 e->ec = ec;
551 spin_lock(&ubi->wl_lock);
552 if (e->ec > ubi->max_ec)
553 ubi->max_ec = e->ec;
554 spin_unlock(&ubi->wl_lock);
555
556out_free:
557 kfree(ec_hdr);
558 return err;
559}
560
561/**
562 * serve_prot_queue - check if it is time to stop protecting PEBs.
563 * @ubi: UBI device description object
564 *
565 * This function is called after each erase operation and removes PEBs from the
566 * tail of the protection queue. These PEBs have been protected for long enough
567 * and should be moved to the used tree.
568 */
569static void serve_prot_queue(struct ubi_device *ubi)
570{
571 struct ubi_wl_entry *e, *tmp;
572 int count;
573
574 /*
575 * There may be several protected physical eraseblock to remove,
576 * process them all.
577 */
578repeat:
579 count = 0;
580 spin_lock(&ubi->wl_lock);
581 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
582 dbg_wl("PEB %d EC %d protection over, move to used tree",
583 e->pnum, e->ec);
584
585 list_del(&e->u.list);
586 wl_tree_add(e, &ubi->used);
587 if (count++ > 32) {
588 /*
589 * Let's be nice and avoid holding the spinlock for
590 * too long.
591 */
592 spin_unlock(&ubi->wl_lock);
593 cond_resched();
594 goto repeat;
595 }
596 }
597
598 ubi->pq_head += 1;
599 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
600 ubi->pq_head = 0;
601 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
602 spin_unlock(&ubi->wl_lock);
603}
604
605/**
606 * schedule_ubi_work - schedule a work.
607 * @ubi: UBI device description object
608 * @wrk: the work to schedule
609 *
610 * This function adds a work defined by @wrk to the tail of the pending works
611 * list.
612 */
613static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
614{
615 spin_lock(&ubi->wl_lock);
616 list_add_tail(&wrk->list, &ubi->works);
617 ubi_assert(ubi->works_count >= 0);
618 ubi->works_count += 1;
619 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
620 wake_up_process(ubi->bgt_thread);
621 spin_unlock(&ubi->wl_lock);
622}
623
624static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
625 int cancel);
626
627/**
628 * schedule_erase - schedule an erase work.
629 * @ubi: UBI device description object
630 * @e: the WL entry of the physical eraseblock to erase
631 * @torture: if the physical eraseblock has to be tortured
632 *
633 * This function returns zero in case of success and a %-ENOMEM in case of
634 * failure.
635 */
636static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
637 int torture)
638{
639 struct ubi_work *wl_wrk;
640
641 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
642 e->pnum, e->ec, torture);
643
644 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
645 if (!wl_wrk)
646 return -ENOMEM;
647
648 wl_wrk->func = &erase_worker;
649 wl_wrk->e = e;
650 wl_wrk->torture = torture;
651
652 schedule_ubi_work(ubi, wl_wrk);
653 return 0;
654}
655
656/**
657 * wear_leveling_worker - wear-leveling worker function.
658 * @ubi: UBI device description object
659 * @wrk: the work object
660 * @cancel: non-zero if the worker has to free memory and exit
661 *
662 * This function copies a more worn out physical eraseblock to a less worn out
663 * one. Returns zero in case of success and a negative error code in case of
664 * failure.
665 */
666static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
667 int cancel)
668{
669 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
670 int vol_id = -1, uninitialized_var(lnum);
671 struct ubi_wl_entry *e1, *e2;
672 struct ubi_vid_hdr *vid_hdr;
673
674 kfree(wrk);
675 if (cancel)
676 return 0;
677
678 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
679 if (!vid_hdr)
680 return -ENOMEM;
681
682 mutex_lock(&ubi->move_mutex);
683 spin_lock(&ubi->wl_lock);
684 ubi_assert(!ubi->move_from && !ubi->move_to);
685 ubi_assert(!ubi->move_to_put);
686
687 if (!ubi->free.rb_node ||
688 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
689 /*
690 * No free physical eraseblocks? Well, they must be waiting in
691 * the queue to be erased. Cancel movement - it will be
692 * triggered again when a free physical eraseblock appears.
693 *
694 * No used physical eraseblocks? They must be temporarily
695 * protected from being moved. They will be moved to the
696 * @ubi->used tree later and the wear-leveling will be
697 * triggered again.
698 */
699 dbg_wl("cancel WL, a list is empty: free %d, used %d",
700 !ubi->free.rb_node, !ubi->used.rb_node);
701 goto out_cancel;
702 }
703
704 if (!ubi->scrub.rb_node) {
705 /*
706 * Now pick the least worn-out used physical eraseblock and a
707 * highly worn-out free physical eraseblock. If the erase
708 * counters differ much enough, start wear-leveling.
709 */
710 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
711 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
712
713 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
714 dbg_wl("no WL needed: min used EC %d, max free EC %d",
715 e1->ec, e2->ec);
716 goto out_cancel;
717 }
718 paranoid_check_in_wl_tree(ubi, e1, &ubi->used);
719 rb_erase(&e1->u.rb, &ubi->used);
720 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
721 e1->pnum, e1->ec, e2->pnum, e2->ec);
722 } else {
723 /* Perform scrubbing */
724 scrubbing = 1;
725 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
726 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
727 paranoid_check_in_wl_tree(ubi, e1, &ubi->scrub);
728 rb_erase(&e1->u.rb, &ubi->scrub);
729 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
730 }
731
732 paranoid_check_in_wl_tree(ubi, e2, &ubi->free);
733 rb_erase(&e2->u.rb, &ubi->free);
734 ubi->move_from = e1;
735 ubi->move_to = e2;
736 spin_unlock(&ubi->wl_lock);
737
738 /*
739 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
740 * We so far do not know which logical eraseblock our physical
741 * eraseblock (@e1) belongs to. We have to read the volume identifier
742 * header first.
743 *
744 * Note, we are protected from this PEB being unmapped and erased. The
745 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
746 * which is being moved was unmapped.
747 */
748
749 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
750 if (err && err != UBI_IO_BITFLIPS) {
751 if (err == UBI_IO_FF) {
752 /*
753 * We are trying to move PEB without a VID header. UBI
754 * always write VID headers shortly after the PEB was
755 * given, so we have a situation when it has not yet
756 * had a chance to write it, because it was preempted.
757 * So add this PEB to the protection queue so far,
758 * because presumably more data will be written there
759 * (including the missing VID header), and then we'll
760 * move it.
761 */
762 dbg_wl("PEB %d has no VID header", e1->pnum);
763 protect = 1;
764 goto out_not_moved;
765 } else if (err == UBI_IO_FF_BITFLIPS) {
766 /*
767 * The same situation as %UBI_IO_FF, but bit-flips were
768 * detected. It is better to schedule this PEB for
769 * scrubbing.
770 */
771 dbg_wl("PEB %d has no VID header but has bit-flips",
772 e1->pnum);
773 scrubbing = 1;
774 goto out_not_moved;
775 }
776
777 ubi_err("error %d while reading VID header from PEB %d",
778 err, e1->pnum);
779 goto out_error;
780 }
781
782 vol_id = be32_to_cpu(vid_hdr->vol_id);
783 lnum = be32_to_cpu(vid_hdr->lnum);
784
785 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
786 if (err) {
787 if (err == MOVE_CANCEL_RACE) {
788 /*
789 * The LEB has not been moved because the volume is
790 * being deleted or the PEB has been put meanwhile. We
791 * should prevent this PEB from being selected for
792 * wear-leveling movement again, so put it to the
793 * protection queue.
794 */
795 protect = 1;
796 goto out_not_moved;
797 }
798
799 if (err == MOVE_CANCEL_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
800 err == MOVE_TARGET_RD_ERR) {
801 /*
802 * Target PEB had bit-flips or write error - torture it.
803 */
804 torture = 1;
805 goto out_not_moved;
806 }
807
808 if (err == MOVE_SOURCE_RD_ERR) {
809 /*
810 * An error happened while reading the source PEB. Do
811 * not switch to R/O mode in this case, and give the
812 * upper layers a possibility to recover from this,
813 * e.g. by unmapping corresponding LEB. Instead, just
814 * put this PEB to the @ubi->erroneous list to prevent
815 * UBI from trying to move it over and over again.
816 */
817 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
818 ubi_err("too many erroneous eraseblocks (%d)",
819 ubi->erroneous_peb_count);
820 goto out_error;
821 }
822 erroneous = 1;
823 goto out_not_moved;
824 }
825
826 if (err < 0)
827 goto out_error;
828
829 ubi_assert(0);
830 }
831
832 /* The PEB has been successfully moved */
833 if (scrubbing)
834 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
835 e1->pnum, vol_id, lnum, e2->pnum);
836 ubi_free_vid_hdr(ubi, vid_hdr);
837
838 spin_lock(&ubi->wl_lock);
839 if (!ubi->move_to_put) {
840 wl_tree_add(e2, &ubi->used);
841 e2 = NULL;
842 }
843 ubi->move_from = ubi->move_to = NULL;
844 ubi->move_to_put = ubi->wl_scheduled = 0;
845 spin_unlock(&ubi->wl_lock);
846
847 err = schedule_erase(ubi, e1, 0);
848 if (err) {
849 kmem_cache_free(ubi_wl_entry_slab, e1);
850 if (e2)
851 kmem_cache_free(ubi_wl_entry_slab, e2);
852 goto out_ro;
853 }
854
855 if (e2) {
856 /*
857 * Well, the target PEB was put meanwhile, schedule it for
858 * erasure.
859 */
860 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
861 e2->pnum, vol_id, lnum);
862 err = schedule_erase(ubi, e2, 0);
863 if (err) {
864 kmem_cache_free(ubi_wl_entry_slab, e2);
865 goto out_ro;
866 }
867 }
868
869 dbg_wl("done");
870 mutex_unlock(&ubi->move_mutex);
871 return 0;
872
873 /*
874 * For some reasons the LEB was not moved, might be an error, might be
875 * something else. @e1 was not changed, so return it back. @e2 might
876 * have been changed, schedule it for erasure.
877 */
878out_not_moved:
879 if (vol_id != -1)
880 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
881 e1->pnum, vol_id, lnum, e2->pnum, err);
882 else
883 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
884 e1->pnum, e2->pnum, err);
885 spin_lock(&ubi->wl_lock);
886 if (protect)
887 prot_queue_add(ubi, e1);
888 else if (erroneous) {
889 wl_tree_add(e1, &ubi->erroneous);
890 ubi->erroneous_peb_count += 1;
891 } else if (scrubbing)
892 wl_tree_add(e1, &ubi->scrub);
893 else
894 wl_tree_add(e1, &ubi->used);
895 ubi_assert(!ubi->move_to_put);
896 ubi->move_from = ubi->move_to = NULL;
897 ubi->wl_scheduled = 0;
898 spin_unlock(&ubi->wl_lock);
899
900 ubi_free_vid_hdr(ubi, vid_hdr);
901 err = schedule_erase(ubi, e2, torture);
902 if (err) {
903 kmem_cache_free(ubi_wl_entry_slab, e2);
904 goto out_ro;
905 }
906 mutex_unlock(&ubi->move_mutex);
907 return 0;
908
909out_error:
910 if (vol_id != -1)
911 ubi_err("error %d while moving PEB %d to PEB %d",
912 err, e1->pnum, e2->pnum);
913 else
914 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
915 err, e1->pnum, vol_id, lnum, e2->pnum);
916 spin_lock(&ubi->wl_lock);
917 ubi->move_from = ubi->move_to = NULL;
918 ubi->move_to_put = ubi->wl_scheduled = 0;
919 spin_unlock(&ubi->wl_lock);
920
921 ubi_free_vid_hdr(ubi, vid_hdr);
922 kmem_cache_free(ubi_wl_entry_slab, e1);
923 kmem_cache_free(ubi_wl_entry_slab, e2);
924
925out_ro:
926 ubi_ro_mode(ubi);
927 mutex_unlock(&ubi->move_mutex);
928 ubi_assert(err != 0);
929 return err < 0 ? err : -EIO;
930
931out_cancel:
932 ubi->wl_scheduled = 0;
933 spin_unlock(&ubi->wl_lock);
934 mutex_unlock(&ubi->move_mutex);
935 ubi_free_vid_hdr(ubi, vid_hdr);
936 return 0;
937}
938
939/**
940 * ensure_wear_leveling - schedule wear-leveling if it is needed.
941 * @ubi: UBI device description object
942 *
943 * This function checks if it is time to start wear-leveling and schedules it
944 * if yes. This function returns zero in case of success and a negative error
945 * code in case of failure.
946 */
947static int ensure_wear_leveling(struct ubi_device *ubi)
948{
949 int err = 0;
950 struct ubi_wl_entry *e1;
951 struct ubi_wl_entry *e2;
952 struct ubi_work *wrk;
953
954 spin_lock(&ubi->wl_lock);
955 if (ubi->wl_scheduled)
956 /* Wear-leveling is already in the work queue */
957 goto out_unlock;
958
959 /*
960 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
961 * the WL worker has to be scheduled anyway.
962 */
963 if (!ubi->scrub.rb_node) {
964 if (!ubi->used.rb_node || !ubi->free.rb_node)
965 /* No physical eraseblocks - no deal */
966 goto out_unlock;
967
968 /*
969 * We schedule wear-leveling only if the difference between the
970 * lowest erase counter of used physical eraseblocks and a high
971 * erase counter of free physical eraseblocks is greater than
972 * %UBI_WL_THRESHOLD.
973 */
974 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
975 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
976
977 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
978 goto out_unlock;
979 dbg_wl("schedule wear-leveling");
980 } else
981 dbg_wl("schedule scrubbing");
982
983 ubi->wl_scheduled = 1;
984 spin_unlock(&ubi->wl_lock);
985
986 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
987 if (!wrk) {
988 err = -ENOMEM;
989 goto out_cancel;
990 }
991
992 wrk->func = &wear_leveling_worker;
993 schedule_ubi_work(ubi, wrk);
994 return err;
995
996out_cancel:
997 spin_lock(&ubi->wl_lock);
998 ubi->wl_scheduled = 0;
999out_unlock:
1000 spin_unlock(&ubi->wl_lock);
1001 return err;
1002}
1003
1004/**
1005 * erase_worker - physical eraseblock erase worker function.
1006 * @ubi: UBI device description object
1007 * @wl_wrk: the work object
1008 * @cancel: non-zero if the worker has to free memory and exit
1009 *
1010 * This function erases a physical eraseblock and perform torture testing if
1011 * needed. It also takes care about marking the physical eraseblock bad if
1012 * needed. Returns zero in case of success and a negative error code in case of
1013 * failure.
1014 */
1015static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1016 int cancel)
1017{
1018 struct ubi_wl_entry *e = wl_wrk->e;
1019 int pnum = e->pnum, err, need;
1020
1021 if (cancel) {
1022 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1023 kfree(wl_wrk);
1024 kmem_cache_free(ubi_wl_entry_slab, e);
1025 return 0;
1026 }
1027
1028 dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1029
1030 err = sync_erase(ubi, e, wl_wrk->torture);
1031 if (!err) {
1032 /* Fine, we've erased it successfully */
1033 kfree(wl_wrk);
1034
1035 spin_lock(&ubi->wl_lock);
1036 wl_tree_add(e, &ubi->free);
1037 spin_unlock(&ubi->wl_lock);
1038
1039 /*
1040 * One more erase operation has happened, take care about
1041 * protected physical eraseblocks.
1042 */
1043 serve_prot_queue(ubi);
1044
1045 /* And take care about wear-leveling */
1046 err = ensure_wear_leveling(ubi);
1047 return err;
1048 }
1049
1050 ubi_err("failed to erase PEB %d, error %d", pnum, err);
1051 kfree(wl_wrk);
1052 kmem_cache_free(ubi_wl_entry_slab, e);
1053
1054 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1055 err == -EBUSY) {
1056 int err1;
1057
1058 /* Re-schedule the LEB for erasure */
1059 err1 = schedule_erase(ubi, e, 0);
1060 if (err1) {
1061 err = err1;
1062 goto out_ro;
1063 }
1064 return err;
1065 } else if (err != -EIO) {
1066 /*
1067 * If this is not %-EIO, we have no idea what to do. Scheduling
1068 * this physical eraseblock for erasure again would cause
1069 * errors again and again. Well, lets switch to R/O mode.
1070 */
1071 goto out_ro;
1072 }
1073
1074 /* It is %-EIO, the PEB went bad */
1075
1076 if (!ubi->bad_allowed) {
1077 ubi_err("bad physical eraseblock %d detected", pnum);
1078 goto out_ro;
1079 }
1080
1081 spin_lock(&ubi->volumes_lock);
1082 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1083 if (need > 0) {
1084 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1085 ubi->avail_pebs -= need;
1086 ubi->rsvd_pebs += need;
1087 ubi->beb_rsvd_pebs += need;
1088 if (need > 0)
1089 ubi_msg("reserve more %d PEBs", need);
1090 }
1091
1092 if (ubi->beb_rsvd_pebs == 0) {
1093 spin_unlock(&ubi->volumes_lock);
1094 ubi_err("no reserved physical eraseblocks");
1095 goto out_ro;
1096 }
1097 spin_unlock(&ubi->volumes_lock);
1098
1099 ubi_msg("mark PEB %d as bad", pnum);
1100 err = ubi_io_mark_bad(ubi, pnum);
1101 if (err)
1102 goto out_ro;
1103
1104 spin_lock(&ubi->volumes_lock);
1105 ubi->beb_rsvd_pebs -= 1;
1106 ubi->bad_peb_count += 1;
1107 ubi->good_peb_count -= 1;
1108 ubi_calculate_reserved(ubi);
1109 if (ubi->beb_rsvd_pebs)
1110 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1111 else
1112 ubi_warn("last PEB from the reserved pool was used");
1113 spin_unlock(&ubi->volumes_lock);
1114
1115 return err;
1116
1117out_ro:
1118 ubi_ro_mode(ubi);
1119 return err;
1120}
1121
1122/**
1123 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1124 * @ubi: UBI device description object
1125 * @pnum: physical eraseblock to return
1126 * @torture: if this physical eraseblock has to be tortured
1127 *
1128 * This function is called to return physical eraseblock @pnum to the pool of
1129 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1130 * occurred to this @pnum and it has to be tested. This function returns zero
1131 * in case of success, and a negative error code in case of failure.
1132 */
1133int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1134{
1135 int err;
1136 struct ubi_wl_entry *e;
1137
1138 dbg_wl("PEB %d", pnum);
1139 ubi_assert(pnum >= 0);
1140 ubi_assert(pnum < ubi->peb_count);
1141
1142retry:
1143 spin_lock(&ubi->wl_lock);
1144 e = ubi->lookuptbl[pnum];
1145 if (e == ubi->move_from) {
1146 /*
1147 * User is putting the physical eraseblock which was selected to
1148 * be moved. It will be scheduled for erasure in the
1149 * wear-leveling worker.
1150 */
1151 dbg_wl("PEB %d is being moved, wait", pnum);
1152 spin_unlock(&ubi->wl_lock);
1153
1154 /* Wait for the WL worker by taking the @ubi->move_mutex */
1155 mutex_lock(&ubi->move_mutex);
1156 mutex_unlock(&ubi->move_mutex);
1157 goto retry;
1158 } else if (e == ubi->move_to) {
1159 /*
1160 * User is putting the physical eraseblock which was selected
1161 * as the target the data is moved to. It may happen if the EBA
1162 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1163 * but the WL sub-system has not put the PEB to the "used" tree
1164 * yet, but it is about to do this. So we just set a flag which
1165 * will tell the WL worker that the PEB is not needed anymore
1166 * and should be scheduled for erasure.
1167 */
1168 dbg_wl("PEB %d is the target of data moving", pnum);
1169 ubi_assert(!ubi->move_to_put);
1170 ubi->move_to_put = 1;
1171 spin_unlock(&ubi->wl_lock);
1172 return 0;
1173 } else {
1174 if (in_wl_tree(e, &ubi->used)) {
1175 paranoid_check_in_wl_tree(ubi, e, &ubi->used);
1176 rb_erase(&e->u.rb, &ubi->used);
1177 } else if (in_wl_tree(e, &ubi->scrub)) {
1178 paranoid_check_in_wl_tree(ubi, e, &ubi->scrub);
1179 rb_erase(&e->u.rb, &ubi->scrub);
1180 } else if (in_wl_tree(e, &ubi->erroneous)) {
1181 paranoid_check_in_wl_tree(ubi, e, &ubi->erroneous);
1182 rb_erase(&e->u.rb, &ubi->erroneous);
1183 ubi->erroneous_peb_count -= 1;
1184 ubi_assert(ubi->erroneous_peb_count >= 0);
1185 /* Erroneous PEBs should be tortured */
1186 torture = 1;
1187 } else {
1188 err = prot_queue_del(ubi, e->pnum);
1189 if (err) {
1190 ubi_err("PEB %d not found", pnum);
1191 ubi_ro_mode(ubi);
1192 spin_unlock(&ubi->wl_lock);
1193 return err;
1194 }
1195 }
1196 }
1197 spin_unlock(&ubi->wl_lock);
1198
1199 err = schedule_erase(ubi, e, torture);
1200 if (err) {
1201 spin_lock(&ubi->wl_lock);
1202 wl_tree_add(e, &ubi->used);
1203 spin_unlock(&ubi->wl_lock);
1204 }
1205
1206 return err;
1207}
1208
1209/**
1210 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1211 * @ubi: UBI device description object
1212 * @pnum: the physical eraseblock to schedule
1213 *
1214 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1215 * needs scrubbing. This function schedules a physical eraseblock for
1216 * scrubbing which is done in background. This function returns zero in case of
1217 * success and a negative error code in case of failure.
1218 */
1219int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1220{
1221 struct ubi_wl_entry *e;
1222
1223 dbg_msg("schedule PEB %d for scrubbing", pnum);
1224
1225retry:
1226 spin_lock(&ubi->wl_lock);
1227 e = ubi->lookuptbl[pnum];
1228 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1229 in_wl_tree(e, &ubi->erroneous)) {
1230 spin_unlock(&ubi->wl_lock);
1231 return 0;
1232 }
1233
1234 if (e == ubi->move_to) {
1235 /*
1236 * This physical eraseblock was used to move data to. The data
1237 * was moved but the PEB was not yet inserted to the proper
1238 * tree. We should just wait a little and let the WL worker
1239 * proceed.
1240 */
1241 spin_unlock(&ubi->wl_lock);
1242 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1243 yield();
1244 goto retry;
1245 }
1246
1247 if (in_wl_tree(e, &ubi->used)) {
1248 paranoid_check_in_wl_tree(ubi, e, &ubi->used);
1249 rb_erase(&e->u.rb, &ubi->used);
1250 } else {
1251 int err;
1252
1253 err = prot_queue_del(ubi, e->pnum);
1254 if (err) {
1255 ubi_err("PEB %d not found", pnum);
1256 ubi_ro_mode(ubi);
1257 spin_unlock(&ubi->wl_lock);
1258 return err;
1259 }
1260 }
1261
1262 wl_tree_add(e, &ubi->scrub);
1263 spin_unlock(&ubi->wl_lock);
1264
1265 /*
1266 * Technically scrubbing is the same as wear-leveling, so it is done
1267 * by the WL worker.
1268 */
1269 return ensure_wear_leveling(ubi);
1270}
1271
1272/**
1273 * ubi_wl_flush - flush all pending works.
1274 * @ubi: UBI device description object
1275 *
1276 * This function returns zero in case of success and a negative error code in
1277 * case of failure.
1278 */
1279int ubi_wl_flush(struct ubi_device *ubi)
1280{
1281 int err;
1282
1283 /*
1284 * Erase while the pending works queue is not empty, but not more than
1285 * the number of currently pending works.
1286 */
1287 dbg_wl("flush (%d pending works)", ubi->works_count);
1288 while (ubi->works_count) {
1289 err = do_work(ubi);
1290 if (err)
1291 return err;
1292 }
1293
1294 /*
1295 * Make sure all the works which have been done in parallel are
1296 * finished.
1297 */
1298 down_write(&ubi->work_sem);
1299 up_write(&ubi->work_sem);
1300
1301 /*
1302 * And in case last was the WL worker and it canceled the LEB
1303 * movement, flush again.
1304 */
1305 while (ubi->works_count) {
1306 dbg_wl("flush more (%d pending works)", ubi->works_count);
1307 err = do_work(ubi);
1308 if (err)
1309 return err;
1310 }
1311
1312 return 0;
1313}
1314
1315/**
1316 * tree_destroy - destroy an RB-tree.
1317 * @root: the root of the tree to destroy
1318 */
1319static void tree_destroy(struct rb_root *root)
1320{
1321 struct rb_node *rb;
1322 struct ubi_wl_entry *e;
1323
1324 rb = root->rb_node;
1325 while (rb) {
1326 if (rb->rb_left)
1327 rb = rb->rb_left;
1328 else if (rb->rb_right)
1329 rb = rb->rb_right;
1330 else {
1331 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1332
1333 rb = rb_parent(rb);
1334 if (rb) {
1335 if (rb->rb_left == &e->u.rb)
1336 rb->rb_left = NULL;
1337 else
1338 rb->rb_right = NULL;
1339 }
1340
1341 kmem_cache_free(ubi_wl_entry_slab, e);
1342 }
1343 }
1344}
1345
1346/**
1347 * ubi_thread - UBI background thread.
1348 * @u: the UBI device description object pointer
1349 */
1350int ubi_thread(void *u)
1351{
1352 int failures = 0;
1353 struct ubi_device *ubi = u;
1354
1355 ubi_msg("background thread \"%s\" started, PID %d",
1356 ubi->bgt_name, task_pid_nr(current));
1357
1358 set_freezable();
1359 for (;;) {
1360 int err;
1361
1362 if (kthread_should_stop())
1363 break;
1364
1365 if (try_to_freeze())
1366 continue;
1367
1368 spin_lock(&ubi->wl_lock);
1369 if (list_empty(&ubi->works) || ubi->ro_mode ||
1370 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1371 set_current_state(TASK_INTERRUPTIBLE);
1372 spin_unlock(&ubi->wl_lock);
1373 schedule();
1374 continue;
1375 }
1376 spin_unlock(&ubi->wl_lock);
1377
1378 err = do_work(ubi);
1379 if (err) {
1380 ubi_err("%s: work failed with error code %d",
1381 ubi->bgt_name, err);
1382 if (failures++ > WL_MAX_FAILURES) {
1383 /*
1384 * Too many failures, disable the thread and
1385 * switch to read-only mode.
1386 */
1387 ubi_msg("%s: %d consecutive failures",
1388 ubi->bgt_name, WL_MAX_FAILURES);
1389 ubi_ro_mode(ubi);
1390 ubi->thread_enabled = 0;
1391 continue;
1392 }
1393 } else
1394 failures = 0;
1395
1396 cond_resched();
1397 }
1398
1399 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1400 return 0;
1401}
1402
1403/**
1404 * cancel_pending - cancel all pending works.
1405 * @ubi: UBI device description object
1406 */
1407static void cancel_pending(struct ubi_device *ubi)
1408{
1409 while (!list_empty(&ubi->works)) {
1410 struct ubi_work *wrk;
1411
1412 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1413 list_del(&wrk->list);
1414 wrk->func(ubi, wrk, 1);
1415 ubi->works_count -= 1;
1416 ubi_assert(ubi->works_count >= 0);
1417 }
1418}
1419
1420/**
1421 * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
1422 * @ubi: UBI device description object
1423 * @si: scanning information
1424 *
1425 * This function returns zero in case of success, and a negative error code in
1426 * case of failure.
1427 */
1428int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1429{
1430 int err, i;
1431 struct rb_node *rb1, *rb2;
1432 struct ubi_scan_volume *sv;
1433 struct ubi_scan_leb *seb, *tmp;
1434 struct ubi_wl_entry *e;
1435
1436 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1437 spin_lock_init(&ubi->wl_lock);
1438 mutex_init(&ubi->move_mutex);
1439 init_rwsem(&ubi->work_sem);
1440 ubi->max_ec = si->max_ec;
1441 INIT_LIST_HEAD(&ubi->works);
1442
1443 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1444
1445 err = -ENOMEM;
1446 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1447 if (!ubi->lookuptbl)
1448 return err;
1449
1450 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1451 INIT_LIST_HEAD(&ubi->pq[i]);
1452 ubi->pq_head = 0;
1453
1454 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1455 cond_resched();
1456
1457 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1458 if (!e)
1459 goto out_free;
1460
1461 e->pnum = seb->pnum;
1462 e->ec = seb->ec;
1463 ubi->lookuptbl[e->pnum] = e;
1464 if (schedule_erase(ubi, e, 0)) {
1465 kmem_cache_free(ubi_wl_entry_slab, e);
1466 goto out_free;
1467 }
1468 }
1469
1470 list_for_each_entry(seb, &si->free, u.list) {
1471 cond_resched();
1472
1473 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1474 if (!e)
1475 goto out_free;
1476
1477 e->pnum = seb->pnum;
1478 e->ec = seb->ec;
1479 ubi_assert(e->ec >= 0);
1480 wl_tree_add(e, &ubi->free);
1481 ubi->lookuptbl[e->pnum] = e;
1482 }
1483
1484 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1485 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1486 cond_resched();
1487
1488 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1489 if (!e)
1490 goto out_free;
1491
1492 e->pnum = seb->pnum;
1493 e->ec = seb->ec;
1494 ubi->lookuptbl[e->pnum] = e;
1495 if (!seb->scrub) {
1496 dbg_wl("add PEB %d EC %d to the used tree",
1497 e->pnum, e->ec);
1498 wl_tree_add(e, &ubi->used);
1499 } else {
1500 dbg_wl("add PEB %d EC %d to the scrub tree",
1501 e->pnum, e->ec);
1502 wl_tree_add(e, &ubi->scrub);
1503 }
1504 }
1505 }
1506
1507 if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1508 ubi_err("no enough physical eraseblocks (%d, need %d)",
1509 ubi->avail_pebs, WL_RESERVED_PEBS);
1510 if (ubi->corr_peb_count)
1511 ubi_err("%d PEBs are corrupted and not used",
1512 ubi->corr_peb_count);
1513 goto out_free;
1514 }
1515 ubi->avail_pebs -= WL_RESERVED_PEBS;
1516 ubi->rsvd_pebs += WL_RESERVED_PEBS;
1517
1518 /* Schedule wear-leveling if needed */
1519 err = ensure_wear_leveling(ubi);
1520 if (err)
1521 goto out_free;
1522
1523 return 0;
1524
1525out_free:
1526 cancel_pending(ubi);
1527 tree_destroy(&ubi->used);
1528 tree_destroy(&ubi->free);
1529 tree_destroy(&ubi->scrub);
1530 kfree(ubi->lookuptbl);
1531 return err;
1532}
1533
1534/**
1535 * protection_queue_destroy - destroy the protection queue.
1536 * @ubi: UBI device description object
1537 */
1538static void protection_queue_destroy(struct ubi_device *ubi)
1539{
1540 int i;
1541 struct ubi_wl_entry *e, *tmp;
1542
1543 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1544 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1545 list_del(&e->u.list);
1546 kmem_cache_free(ubi_wl_entry_slab, e);
1547 }
1548 }
1549}
1550
1551/**
1552 * ubi_wl_close - close the wear-leveling sub-system.
1553 * @ubi: UBI device description object
1554 */
1555void ubi_wl_close(struct ubi_device *ubi)
1556{
1557 dbg_wl("close the WL sub-system");
1558 cancel_pending(ubi);
1559 protection_queue_destroy(ubi);
1560 tree_destroy(&ubi->used);
1561 tree_destroy(&ubi->erroneous);
1562 tree_destroy(&ubi->free);
1563 tree_destroy(&ubi->scrub);
1564 kfree(ubi->lookuptbl);
1565}
1566
1567#ifdef CONFIG_MTD_UBI_DEBUG
1568
1569/**
1570 * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
1571 * @ubi: UBI device description object
1572 * @pnum: the physical eraseblock number to check
1573 * @ec: the erase counter to check
1574 *
1575 * This function returns zero if the erase counter of physical eraseblock @pnum
1576 * is equivalent to @ec, and a negative error code if not or if an error
1577 * occurred.
1578 */
1579static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1580{
1581 int err;
1582 long long read_ec;
1583 struct ubi_ec_hdr *ec_hdr;
1584
1585 if (!ubi->dbg->chk_gen)
1586 return 0;
1587
1588 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1589 if (!ec_hdr)
1590 return -ENOMEM;
1591
1592 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1593 if (err && err != UBI_IO_BITFLIPS) {
1594 /* The header does not have to exist */
1595 err = 0;
1596 goto out_free;
1597 }
1598
1599 read_ec = be64_to_cpu(ec_hdr->ec);
1600 if (ec != read_ec) {
1601 ubi_err("paranoid check failed for PEB %d", pnum);
1602 ubi_err("read EC is %lld, should be %d", read_ec, ec);
1603 ubi_dbg_dump_stack();
1604 err = 1;
1605 } else
1606 err = 0;
1607
1608out_free:
1609 kfree(ec_hdr);
1610 return err;
1611}
1612
1613/**
1614 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1615 * @ubi: UBI device description object
1616 * @e: the wear-leveling entry to check
1617 * @root: the root of the tree
1618 *
1619 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1620 * is not.
1621 */
1622static int paranoid_check_in_wl_tree(const struct ubi_device *ubi,
1623 struct ubi_wl_entry *e,
1624 struct rb_root *root)
1625{
1626 if (!ubi->dbg->chk_gen)
1627 return 0;
1628
1629 if (in_wl_tree(e, root))
1630 return 0;
1631
1632 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1633 e->pnum, e->ec, root);
1634 ubi_dbg_dump_stack();
1635 return -EINVAL;
1636}
1637
1638/**
1639 * paranoid_check_in_pq - check if wear-leveling entry is in the protection
1640 * queue.
1641 * @ubi: UBI device description object
1642 * @e: the wear-leveling entry to check
1643 *
1644 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1645 */
1646static int paranoid_check_in_pq(const struct ubi_device *ubi,
1647 struct ubi_wl_entry *e)
1648{
1649 struct ubi_wl_entry *p;
1650 int i;
1651
1652 if (!ubi->dbg->chk_gen)
1653 return 0;
1654
1655 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1656 list_for_each_entry(p, &ubi->pq[i], u.list)
1657 if (p == e)
1658 return 0;
1659
1660 ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue",
1661 e->pnum, e->ec);
1662 ubi_dbg_dump_stack();
1663 return -EINVAL;
1664}
1665
1666#endif /* CONFIG_MTD_UBI_DEBUG */