Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
   1/*
   2 *  drivers/mtd/nand.c
   3 *
   4 *  Overview:
   5 *   This is the generic MTD driver for NAND flash devices. It should be
   6 *   capable of working with almost all NAND chips currently available.
   7 *   Basic support for AG-AND chips is provided.
   8 *
   9 *	Additional technical information is available on
  10 *	http://www.linux-mtd.infradead.org/doc/nand.html
  11 *
  12 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
  13 *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
  14 *
  15 *  Credits:
  16 *	David Woodhouse for adding multichip support
  17 *
  18 *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
  19 *	rework for 2K page size chips
  20 *
  21 *  TODO:
  22 *	Enable cached programming for 2k page size chips
  23 *	Check, if mtd->ecctype should be set to MTD_ECC_HW
  24 *	if we have HW ecc support.
  25 *	The AG-AND chips have nice features for speed improvement,
  26 *	which are not supported yet. Read / program 4 pages in one go.
  27 *	BBT table is not serialized, has to be fixed
  28 *
  29 * This program is free software; you can redistribute it and/or modify
  30 * it under the terms of the GNU General Public License version 2 as
  31 * published by the Free Software Foundation.
  32 *
  33 */
  34
  35#include <linux/module.h>
  36#include <linux/delay.h>
  37#include <linux/errno.h>
  38#include <linux/err.h>
  39#include <linux/sched.h>
  40#include <linux/slab.h>
  41#include <linux/types.h>
  42#include <linux/mtd/mtd.h>
  43#include <linux/mtd/nand.h>
  44#include <linux/mtd/nand_ecc.h>
  45#include <linux/mtd/nand_bch.h>
  46#include <linux/interrupt.h>
  47#include <linux/bitops.h>
  48#include <linux/leds.h>
  49#include <linux/io.h>
  50#include <linux/mtd/partitions.h>
  51
  52/* Define default oob placement schemes for large and small page devices */
  53static struct nand_ecclayout nand_oob_8 = {
  54	.eccbytes = 3,
  55	.eccpos = {0, 1, 2},
  56	.oobfree = {
  57		{.offset = 3,
  58		 .length = 2},
  59		{.offset = 6,
  60		 .length = 2} }
  61};
  62
  63static struct nand_ecclayout nand_oob_16 = {
  64	.eccbytes = 6,
  65	.eccpos = {0, 1, 2, 3, 6, 7},
  66	.oobfree = {
  67		{.offset = 8,
  68		 . length = 8} }
  69};
  70
  71static struct nand_ecclayout nand_oob_64 = {
  72	.eccbytes = 24,
  73	.eccpos = {
  74		   40, 41, 42, 43, 44, 45, 46, 47,
  75		   48, 49, 50, 51, 52, 53, 54, 55,
  76		   56, 57, 58, 59, 60, 61, 62, 63},
  77	.oobfree = {
  78		{.offset = 2,
  79		 .length = 38} }
  80};
  81
  82static struct nand_ecclayout nand_oob_128 = {
  83	.eccbytes = 48,
  84	.eccpos = {
  85		   80, 81, 82, 83, 84, 85, 86, 87,
  86		   88, 89, 90, 91, 92, 93, 94, 95,
  87		   96, 97, 98, 99, 100, 101, 102, 103,
  88		   104, 105, 106, 107, 108, 109, 110, 111,
  89		   112, 113, 114, 115, 116, 117, 118, 119,
  90		   120, 121, 122, 123, 124, 125, 126, 127},
  91	.oobfree = {
  92		{.offset = 2,
  93		 .length = 78} }
  94};
  95
  96static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
  97			   int new_state);
  98
  99static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
 100			     struct mtd_oob_ops *ops);
 101
 102/*
 103 * For devices which display every fart in the system on a separate LED. Is
 104 * compiled away when LED support is disabled.
 105 */
 106DEFINE_LED_TRIGGER(nand_led_trigger);
 107
 108static int check_offs_len(struct mtd_info *mtd,
 109					loff_t ofs, uint64_t len)
 110{
 111	struct nand_chip *chip = mtd->priv;
 112	int ret = 0;
 113
 114	/* Start address must align on block boundary */
 115	if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
 116		DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__);
 117		ret = -EINVAL;
 118	}
 119
 120	/* Length must align on block boundary */
 121	if (len & ((1 << chip->phys_erase_shift) - 1)) {
 122		DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n",
 123					__func__);
 124		ret = -EINVAL;
 125	}
 126
 127	/* Do not allow past end of device */
 128	if (ofs + len > mtd->size) {
 129		DEBUG(MTD_DEBUG_LEVEL0, "%s: Past end of device\n",
 130					__func__);
 131		ret = -EINVAL;
 132	}
 133
 134	return ret;
 135}
 136
 137/**
 138 * nand_release_device - [GENERIC] release chip
 139 * @mtd:	MTD device structure
 140 *
 141 * Deselect, release chip lock and wake up anyone waiting on the device
 142 */
 143static void nand_release_device(struct mtd_info *mtd)
 144{
 145	struct nand_chip *chip = mtd->priv;
 146
 147	/* De-select the NAND device */
 148	chip->select_chip(mtd, -1);
 149
 150	/* Release the controller and the chip */
 151	spin_lock(&chip->controller->lock);
 152	chip->controller->active = NULL;
 153	chip->state = FL_READY;
 154	wake_up(&chip->controller->wq);
 155	spin_unlock(&chip->controller->lock);
 156}
 157
 158/**
 159 * nand_read_byte - [DEFAULT] read one byte from the chip
 160 * @mtd:	MTD device structure
 161 *
 162 * Default read function for 8bit buswith
 163 */
 164static uint8_t nand_read_byte(struct mtd_info *mtd)
 165{
 166	struct nand_chip *chip = mtd->priv;
 167	return readb(chip->IO_ADDR_R);
 168}
 169
 170/**
 171 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
 172 * @mtd:	MTD device structure
 173 *
 174 * Default read function for 16bit buswith with
 175 * endianess conversion
 176 */
 177static uint8_t nand_read_byte16(struct mtd_info *mtd)
 178{
 179	struct nand_chip *chip = mtd->priv;
 180	return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
 181}
 182
 183/**
 184 * nand_read_word - [DEFAULT] read one word from the chip
 185 * @mtd:	MTD device structure
 186 *
 187 * Default read function for 16bit buswith without
 188 * endianess conversion
 189 */
 190static u16 nand_read_word(struct mtd_info *mtd)
 191{
 192	struct nand_chip *chip = mtd->priv;
 193	return readw(chip->IO_ADDR_R);
 194}
 195
 196/**
 197 * nand_select_chip - [DEFAULT] control CE line
 198 * @mtd:	MTD device structure
 199 * @chipnr:	chipnumber to select, -1 for deselect
 200 *
 201 * Default select function for 1 chip devices.
 202 */
 203static void nand_select_chip(struct mtd_info *mtd, int chipnr)
 204{
 205	struct nand_chip *chip = mtd->priv;
 206
 207	switch (chipnr) {
 208	case -1:
 209		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 210		break;
 211	case 0:
 212		break;
 213
 214	default:
 215		BUG();
 216	}
 217}
 218
 219/**
 220 * nand_write_buf - [DEFAULT] write buffer to chip
 221 * @mtd:	MTD device structure
 222 * @buf:	data buffer
 223 * @len:	number of bytes to write
 224 *
 225 * Default write function for 8bit buswith
 226 */
 227static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 228{
 229	int i;
 230	struct nand_chip *chip = mtd->priv;
 231
 232	for (i = 0; i < len; i++)
 233		writeb(buf[i], chip->IO_ADDR_W);
 234}
 235
 236/**
 237 * nand_read_buf - [DEFAULT] read chip data into buffer
 238 * @mtd:	MTD device structure
 239 * @buf:	buffer to store date
 240 * @len:	number of bytes to read
 241 *
 242 * Default read function for 8bit buswith
 243 */
 244static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 245{
 246	int i;
 247	struct nand_chip *chip = mtd->priv;
 248
 249	for (i = 0; i < len; i++)
 250		buf[i] = readb(chip->IO_ADDR_R);
 251}
 252
 253/**
 254 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
 255 * @mtd:	MTD device structure
 256 * @buf:	buffer containing the data to compare
 257 * @len:	number of bytes to compare
 258 *
 259 * Default verify function for 8bit buswith
 260 */
 261static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 262{
 263	int i;
 264	struct nand_chip *chip = mtd->priv;
 265
 266	for (i = 0; i < len; i++)
 267		if (buf[i] != readb(chip->IO_ADDR_R))
 268			return -EFAULT;
 269	return 0;
 270}
 271
 272/**
 273 * nand_write_buf16 - [DEFAULT] write buffer to chip
 274 * @mtd:	MTD device structure
 275 * @buf:	data buffer
 276 * @len:	number of bytes to write
 277 *
 278 * Default write function for 16bit buswith
 279 */
 280static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 281{
 282	int i;
 283	struct nand_chip *chip = mtd->priv;
 284	u16 *p = (u16 *) buf;
 285	len >>= 1;
 286
 287	for (i = 0; i < len; i++)
 288		writew(p[i], chip->IO_ADDR_W);
 289
 290}
 291
 292/**
 293 * nand_read_buf16 - [DEFAULT] read chip data into buffer
 294 * @mtd:	MTD device structure
 295 * @buf:	buffer to store date
 296 * @len:	number of bytes to read
 297 *
 298 * Default read function for 16bit buswith
 299 */
 300static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
 301{
 302	int i;
 303	struct nand_chip *chip = mtd->priv;
 304	u16 *p = (u16 *) buf;
 305	len >>= 1;
 306
 307	for (i = 0; i < len; i++)
 308		p[i] = readw(chip->IO_ADDR_R);
 309}
 310
 311/**
 312 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
 313 * @mtd:	MTD device structure
 314 * @buf:	buffer containing the data to compare
 315 * @len:	number of bytes to compare
 316 *
 317 * Default verify function for 16bit buswith
 318 */
 319static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 320{
 321	int i;
 322	struct nand_chip *chip = mtd->priv;
 323	u16 *p = (u16 *) buf;
 324	len >>= 1;
 325
 326	for (i = 0; i < len; i++)
 327		if (p[i] != readw(chip->IO_ADDR_R))
 328			return -EFAULT;
 329
 330	return 0;
 331}
 332
 333/**
 334 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
 335 * @mtd:	MTD device structure
 336 * @ofs:	offset from device start
 337 * @getchip:	0, if the chip is already selected
 338 *
 339 * Check, if the block is bad.
 340 */
 341static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
 342{
 343	int page, chipnr, res = 0;
 344	struct nand_chip *chip = mtd->priv;
 345	u16 bad;
 346
 347	if (chip->options & NAND_BBT_SCANLASTPAGE)
 348		ofs += mtd->erasesize - mtd->writesize;
 349
 350	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
 351
 352	if (getchip) {
 353		chipnr = (int)(ofs >> chip->chip_shift);
 354
 355		nand_get_device(chip, mtd, FL_READING);
 356
 357		/* Select the NAND device */
 358		chip->select_chip(mtd, chipnr);
 359	}
 360
 361	if (chip->options & NAND_BUSWIDTH_16) {
 362		chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
 363			      page);
 364		bad = cpu_to_le16(chip->read_word(mtd));
 365		if (chip->badblockpos & 0x1)
 366			bad >>= 8;
 367		else
 368			bad &= 0xFF;
 369	} else {
 370		chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
 371		bad = chip->read_byte(mtd);
 372	}
 373
 374	if (likely(chip->badblockbits == 8))
 375		res = bad != 0xFF;
 376	else
 377		res = hweight8(bad) < chip->badblockbits;
 378
 379	if (getchip)
 380		nand_release_device(mtd);
 381
 382	return res;
 383}
 384
 385/**
 386 * nand_default_block_markbad - [DEFAULT] mark a block bad
 387 * @mtd:	MTD device structure
 388 * @ofs:	offset from device start
 389 *
 390 * This is the default implementation, which can be overridden by
 391 * a hardware specific driver.
 392*/
 393static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
 394{
 395	struct nand_chip *chip = mtd->priv;
 396	uint8_t buf[2] = { 0, 0 };
 397	int block, ret, i = 0;
 398
 399	if (chip->options & NAND_BBT_SCANLASTPAGE)
 400		ofs += mtd->erasesize - mtd->writesize;
 401
 402	/* Get block number */
 403	block = (int)(ofs >> chip->bbt_erase_shift);
 404	if (chip->bbt)
 405		chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
 406
 407	/* Do we have a flash based bad block table ? */
 408	if (chip->options & NAND_USE_FLASH_BBT)
 409		ret = nand_update_bbt(mtd, ofs);
 410	else {
 411		nand_get_device(chip, mtd, FL_WRITING);
 412
 413		/* Write to first two pages and to byte 1 and 6 if necessary.
 414		 * If we write to more than one location, the first error
 415		 * encountered quits the procedure. We write two bytes per
 416		 * location, so we dont have to mess with 16 bit access.
 417		 */
 418		do {
 419			chip->ops.len = chip->ops.ooblen = 2;
 420			chip->ops.datbuf = NULL;
 421			chip->ops.oobbuf = buf;
 422			chip->ops.ooboffs = chip->badblockpos & ~0x01;
 423
 424			ret = nand_do_write_oob(mtd, ofs, &chip->ops);
 425
 426			if (!ret && (chip->options & NAND_BBT_SCANBYTE1AND6)) {
 427				chip->ops.ooboffs = NAND_SMALL_BADBLOCK_POS
 428					& ~0x01;
 429				ret = nand_do_write_oob(mtd, ofs, &chip->ops);
 430			}
 431			i++;
 432			ofs += mtd->writesize;
 433		} while (!ret && (chip->options & NAND_BBT_SCAN2NDPAGE) &&
 434				i < 2);
 435
 436		nand_release_device(mtd);
 437	}
 438	if (!ret)
 439		mtd->ecc_stats.badblocks++;
 440
 441	return ret;
 442}
 443
 444/**
 445 * nand_check_wp - [GENERIC] check if the chip is write protected
 446 * @mtd:	MTD device structure
 447 * Check, if the device is write protected
 448 *
 449 * The function expects, that the device is already selected
 450 */
 451static int nand_check_wp(struct mtd_info *mtd)
 452{
 453	struct nand_chip *chip = mtd->priv;
 454
 455	/* broken xD cards report WP despite being writable */
 456	if (chip->options & NAND_BROKEN_XD)
 457		return 0;
 458
 459	/* Check the WP bit */
 460	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 461	return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
 462}
 463
 464/**
 465 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
 466 * @mtd:	MTD device structure
 467 * @ofs:	offset from device start
 468 * @getchip:	0, if the chip is already selected
 469 * @allowbbt:	1, if its allowed to access the bbt area
 470 *
 471 * Check, if the block is bad. Either by reading the bad block table or
 472 * calling of the scan function.
 473 */
 474static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
 475			       int allowbbt)
 476{
 477	struct nand_chip *chip = mtd->priv;
 478
 479	if (!chip->bbt)
 480		return chip->block_bad(mtd, ofs, getchip);
 481
 482	/* Return info from the table */
 483	return nand_isbad_bbt(mtd, ofs, allowbbt);
 484}
 485
 486/**
 487 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
 488 * @mtd:	MTD device structure
 489 * @timeo:	Timeout
 490 *
 491 * Helper function for nand_wait_ready used when needing to wait in interrupt
 492 * context.
 493 */
 494static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
 495{
 496	struct nand_chip *chip = mtd->priv;
 497	int i;
 498
 499	/* Wait for the device to get ready */
 500	for (i = 0; i < timeo; i++) {
 501		if (chip->dev_ready(mtd))
 502			break;
 503		touch_softlockup_watchdog();
 504		mdelay(1);
 505	}
 506}
 507
 508/*
 509 * Wait for the ready pin, after a command
 510 * The timeout is catched later.
 511 */
 512void nand_wait_ready(struct mtd_info *mtd)
 513{
 514	struct nand_chip *chip = mtd->priv;
 515	unsigned long timeo = jiffies + 2;
 516
 517	/* 400ms timeout */
 518	if (in_interrupt() || oops_in_progress)
 519		return panic_nand_wait_ready(mtd, 400);
 520
 521	led_trigger_event(nand_led_trigger, LED_FULL);
 522	/* wait until command is processed or timeout occures */
 523	do {
 524		if (chip->dev_ready(mtd))
 525			break;
 526		touch_softlockup_watchdog();
 527	} while (time_before(jiffies, timeo));
 528	led_trigger_event(nand_led_trigger, LED_OFF);
 529}
 530EXPORT_SYMBOL_GPL(nand_wait_ready);
 531
 532/**
 533 * nand_command - [DEFAULT] Send command to NAND device
 534 * @mtd:	MTD device structure
 535 * @command:	the command to be sent
 536 * @column:	the column address for this command, -1 if none
 537 * @page_addr:	the page address for this command, -1 if none
 538 *
 539 * Send command to NAND device. This function is used for small page
 540 * devices (256/512 Bytes per page)
 541 */
 542static void nand_command(struct mtd_info *mtd, unsigned int command,
 543			 int column, int page_addr)
 544{
 545	register struct nand_chip *chip = mtd->priv;
 546	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
 547
 548	/*
 549	 * Write out the command to the device.
 550	 */
 551	if (command == NAND_CMD_SEQIN) {
 552		int readcmd;
 553
 554		if (column >= mtd->writesize) {
 555			/* OOB area */
 556			column -= mtd->writesize;
 557			readcmd = NAND_CMD_READOOB;
 558		} else if (column < 256) {
 559			/* First 256 bytes --> READ0 */
 560			readcmd = NAND_CMD_READ0;
 561		} else {
 562			column -= 256;
 563			readcmd = NAND_CMD_READ1;
 564		}
 565		chip->cmd_ctrl(mtd, readcmd, ctrl);
 566		ctrl &= ~NAND_CTRL_CHANGE;
 567	}
 568	chip->cmd_ctrl(mtd, command, ctrl);
 569
 570	/*
 571	 * Address cycle, when necessary
 572	 */
 573	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
 574	/* Serially input address */
 575	if (column != -1) {
 576		/* Adjust columns for 16 bit buswidth */
 577		if (chip->options & NAND_BUSWIDTH_16)
 578			column >>= 1;
 579		chip->cmd_ctrl(mtd, column, ctrl);
 580		ctrl &= ~NAND_CTRL_CHANGE;
 581	}
 582	if (page_addr != -1) {
 583		chip->cmd_ctrl(mtd, page_addr, ctrl);
 584		ctrl &= ~NAND_CTRL_CHANGE;
 585		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
 586		/* One more address cycle for devices > 32MiB */
 587		if (chip->chipsize > (32 << 20))
 588			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
 589	}
 590	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 591
 592	/*
 593	 * program and erase have their own busy handlers
 594	 * status and sequential in needs no delay
 595	 */
 596	switch (command) {
 597
 598	case NAND_CMD_PAGEPROG:
 599	case NAND_CMD_ERASE1:
 600	case NAND_CMD_ERASE2:
 601	case NAND_CMD_SEQIN:
 602	case NAND_CMD_STATUS:
 603		return;
 604
 605	case NAND_CMD_RESET:
 606		if (chip->dev_ready)
 607			break;
 608		udelay(chip->chip_delay);
 609		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
 610			       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 611		chip->cmd_ctrl(mtd,
 612			       NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 613		while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
 614				;
 615		return;
 616
 617		/* This applies to read commands */
 618	default:
 619		/*
 620		 * If we don't have access to the busy pin, we apply the given
 621		 * command delay
 622		 */
 623		if (!chip->dev_ready) {
 624			udelay(chip->chip_delay);
 625			return;
 626		}
 627	}
 628	/* Apply this short delay always to ensure that we do wait tWB in
 629	 * any case on any machine. */
 630	ndelay(100);
 631
 632	nand_wait_ready(mtd);
 633}
 634
 635/**
 636 * nand_command_lp - [DEFAULT] Send command to NAND large page device
 637 * @mtd:	MTD device structure
 638 * @command:	the command to be sent
 639 * @column:	the column address for this command, -1 if none
 640 * @page_addr:	the page address for this command, -1 if none
 641 *
 642 * Send command to NAND device. This is the version for the new large page
 643 * devices We dont have the separate regions as we have in the small page
 644 * devices.  We must emulate NAND_CMD_READOOB to keep the code compatible.
 645 */
 646static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
 647			    int column, int page_addr)
 648{
 649	register struct nand_chip *chip = mtd->priv;
 650
 651	/* Emulate NAND_CMD_READOOB */
 652	if (command == NAND_CMD_READOOB) {
 653		column += mtd->writesize;
 654		command = NAND_CMD_READ0;
 655	}
 656
 657	/* Command latch cycle */
 658	chip->cmd_ctrl(mtd, command & 0xff,
 659		       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 660
 661	if (column != -1 || page_addr != -1) {
 662		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
 663
 664		/* Serially input address */
 665		if (column != -1) {
 666			/* Adjust columns for 16 bit buswidth */
 667			if (chip->options & NAND_BUSWIDTH_16)
 668				column >>= 1;
 669			chip->cmd_ctrl(mtd, column, ctrl);
 670			ctrl &= ~NAND_CTRL_CHANGE;
 671			chip->cmd_ctrl(mtd, column >> 8, ctrl);
 672		}
 673		if (page_addr != -1) {
 674			chip->cmd_ctrl(mtd, page_addr, ctrl);
 675			chip->cmd_ctrl(mtd, page_addr >> 8,
 676				       NAND_NCE | NAND_ALE);
 677			/* One more address cycle for devices > 128MiB */
 678			if (chip->chipsize > (128 << 20))
 679				chip->cmd_ctrl(mtd, page_addr >> 16,
 680					       NAND_NCE | NAND_ALE);
 681		}
 682	}
 683	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 684
 685	/*
 686	 * program and erase have their own busy handlers
 687	 * status, sequential in, and deplete1 need no delay
 688	 */
 689	switch (command) {
 690
 691	case NAND_CMD_CACHEDPROG:
 692	case NAND_CMD_PAGEPROG:
 693	case NAND_CMD_ERASE1:
 694	case NAND_CMD_ERASE2:
 695	case NAND_CMD_SEQIN:
 696	case NAND_CMD_RNDIN:
 697	case NAND_CMD_STATUS:
 698	case NAND_CMD_DEPLETE1:
 699		return;
 700
 701		/*
 702		 * read error status commands require only a short delay
 703		 */
 704	case NAND_CMD_STATUS_ERROR:
 705	case NAND_CMD_STATUS_ERROR0:
 706	case NAND_CMD_STATUS_ERROR1:
 707	case NAND_CMD_STATUS_ERROR2:
 708	case NAND_CMD_STATUS_ERROR3:
 709		udelay(chip->chip_delay);
 710		return;
 711
 712	case NAND_CMD_RESET:
 713		if (chip->dev_ready)
 714			break;
 715		udelay(chip->chip_delay);
 716		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
 717			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 718		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 719			       NAND_NCE | NAND_CTRL_CHANGE);
 720		while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
 721				;
 722		return;
 723
 724	case NAND_CMD_RNDOUT:
 725		/* No ready / busy check necessary */
 726		chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
 727			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 728		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 729			       NAND_NCE | NAND_CTRL_CHANGE);
 730		return;
 731
 732	case NAND_CMD_READ0:
 733		chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
 734			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 735		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 736			       NAND_NCE | NAND_CTRL_CHANGE);
 737
 738		/* This applies to read commands */
 739	default:
 740		/*
 741		 * If we don't have access to the busy pin, we apply the given
 742		 * command delay
 743		 */
 744		if (!chip->dev_ready) {
 745			udelay(chip->chip_delay);
 746			return;
 747		}
 748	}
 749
 750	/* Apply this short delay always to ensure that we do wait tWB in
 751	 * any case on any machine. */
 752	ndelay(100);
 753
 754	nand_wait_ready(mtd);
 755}
 756
 757/**
 758 * panic_nand_get_device - [GENERIC] Get chip for selected access
 759 * @chip:	the nand chip descriptor
 760 * @mtd:	MTD device structure
 761 * @new_state:	the state which is requested
 762 *
 763 * Used when in panic, no locks are taken.
 764 */
 765static void panic_nand_get_device(struct nand_chip *chip,
 766		      struct mtd_info *mtd, int new_state)
 767{
 768	/* Hardware controller shared among independend devices */
 769	chip->controller->active = chip;
 770	chip->state = new_state;
 771}
 772
 773/**
 774 * nand_get_device - [GENERIC] Get chip for selected access
 775 * @chip:	the nand chip descriptor
 776 * @mtd:	MTD device structure
 777 * @new_state:	the state which is requested
 778 *
 779 * Get the device and lock it for exclusive access
 780 */
 781static int
 782nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
 783{
 784	spinlock_t *lock = &chip->controller->lock;
 785	wait_queue_head_t *wq = &chip->controller->wq;
 786	DECLARE_WAITQUEUE(wait, current);
 787retry:
 788	spin_lock(lock);
 789
 790	/* Hardware controller shared among independent devices */
 791	if (!chip->controller->active)
 792		chip->controller->active = chip;
 793
 794	if (chip->controller->active == chip && chip->state == FL_READY) {
 795		chip->state = new_state;
 796		spin_unlock(lock);
 797		return 0;
 798	}
 799	if (new_state == FL_PM_SUSPENDED) {
 800		if (chip->controller->active->state == FL_PM_SUSPENDED) {
 801			chip->state = FL_PM_SUSPENDED;
 802			spin_unlock(lock);
 803			return 0;
 804		}
 805	}
 806	set_current_state(TASK_UNINTERRUPTIBLE);
 807	add_wait_queue(wq, &wait);
 808	spin_unlock(lock);
 809	schedule();
 810	remove_wait_queue(wq, &wait);
 811	goto retry;
 812}
 813
 814/**
 815 * panic_nand_wait - [GENERIC]  wait until the command is done
 816 * @mtd:	MTD device structure
 817 * @chip:	NAND chip structure
 818 * @timeo:	Timeout
 819 *
 820 * Wait for command done. This is a helper function for nand_wait used when
 821 * we are in interrupt context. May happen when in panic and trying to write
 822 * an oops through mtdoops.
 823 */
 824static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
 825			    unsigned long timeo)
 826{
 827	int i;
 828	for (i = 0; i < timeo; i++) {
 829		if (chip->dev_ready) {
 830			if (chip->dev_ready(mtd))
 831				break;
 832		} else {
 833			if (chip->read_byte(mtd) & NAND_STATUS_READY)
 834				break;
 835		}
 836		mdelay(1);
 837	}
 838}
 839
 840/**
 841 * nand_wait - [DEFAULT]  wait until the command is done
 842 * @mtd:	MTD device structure
 843 * @chip:	NAND chip structure
 844 *
 845 * Wait for command done. This applies to erase and program only
 846 * Erase can take up to 400ms and program up to 20ms according to
 847 * general NAND and SmartMedia specs
 848 */
 849static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
 850{
 851
 852	unsigned long timeo = jiffies;
 853	int status, state = chip->state;
 854
 855	if (state == FL_ERASING)
 856		timeo += (HZ * 400) / 1000;
 857	else
 858		timeo += (HZ * 20) / 1000;
 859
 860	led_trigger_event(nand_led_trigger, LED_FULL);
 861
 862	/* Apply this short delay always to ensure that we do wait tWB in
 863	 * any case on any machine. */
 864	ndelay(100);
 865
 866	if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
 867		chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
 868	else
 869		chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 870
 871	if (in_interrupt() || oops_in_progress)
 872		panic_nand_wait(mtd, chip, timeo);
 873	else {
 874		while (time_before(jiffies, timeo)) {
 875			if (chip->dev_ready) {
 876				if (chip->dev_ready(mtd))
 877					break;
 878			} else {
 879				if (chip->read_byte(mtd) & NAND_STATUS_READY)
 880					break;
 881			}
 882			cond_resched();
 883		}
 884	}
 885	led_trigger_event(nand_led_trigger, LED_OFF);
 886
 887	status = (int)chip->read_byte(mtd);
 888	return status;
 889}
 890
 891/**
 892 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 893 *
 894 * @mtd: mtd info
 895 * @ofs: offset to start unlock from
 896 * @len: length to unlock
 897 * @invert:   when = 0, unlock the range of blocks within the lower and
 898 *                      upper boundary address
 899 *            when = 1, unlock the range of blocks outside the boundaries
 900 *                      of the lower and upper boundary address
 901 *
 902 * return - unlock status
 903 */
 904static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
 905					uint64_t len, int invert)
 906{
 907	int ret = 0;
 908	int status, page;
 909	struct nand_chip *chip = mtd->priv;
 910
 911	/* Submit address of first page to unlock */
 912	page = ofs >> chip->page_shift;
 913	chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
 914
 915	/* Submit address of last page to unlock */
 916	page = (ofs + len) >> chip->page_shift;
 917	chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
 918				(page | invert) & chip->pagemask);
 919
 920	/* Call wait ready function */
 921	status = chip->waitfunc(mtd, chip);
 922	udelay(1000);
 923	/* See if device thinks it succeeded */
 924	if (status & 0x01) {
 925		DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
 926					__func__, status);
 927		ret = -EIO;
 928	}
 929
 930	return ret;
 931}
 932
 933/**
 934 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 935 *
 936 * @mtd: mtd info
 937 * @ofs: offset to start unlock from
 938 * @len: length to unlock
 939 *
 940 * return - unlock status
 941 */
 942int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 943{
 944	int ret = 0;
 945	int chipnr;
 946	struct nand_chip *chip = mtd->priv;
 947
 948	DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
 949			__func__, (unsigned long long)ofs, len);
 950
 951	if (check_offs_len(mtd, ofs, len))
 952		ret = -EINVAL;
 953
 954	/* Align to last block address if size addresses end of the device */
 955	if (ofs + len == mtd->size)
 956		len -= mtd->erasesize;
 957
 958	nand_get_device(chip, mtd, FL_UNLOCKING);
 959
 960	/* Shift to get chip number */
 961	chipnr = ofs >> chip->chip_shift;
 962
 963	chip->select_chip(mtd, chipnr);
 964
 965	/* Check, if it is write protected */
 966	if (nand_check_wp(mtd)) {
 967		DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
 968					__func__);
 969		ret = -EIO;
 970		goto out;
 971	}
 972
 973	ret = __nand_unlock(mtd, ofs, len, 0);
 974
 975out:
 976	nand_release_device(mtd);
 977
 978	return ret;
 979}
 980EXPORT_SYMBOL(nand_unlock);
 981
 982/**
 983 * nand_lock - [REPLACEABLE] locks all blocks present in the device
 984 *
 985 * @mtd: mtd info
 986 * @ofs: offset to start unlock from
 987 * @len: length to unlock
 988 *
 989 * return - lock status
 990 *
 991 * This feature is not supported in many NAND parts. 'Micron' NAND parts
 992 * do have this feature, but it allows only to lock all blocks, not for
 993 * specified range for block.
 994 *
 995 * Implementing 'lock' feature by making use of 'unlock', for now.
 996 */
 997int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 998{
 999	int ret = 0;
1000	int chipnr, status, page;
1001	struct nand_chip *chip = mtd->priv;
1002
1003	DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
1004			__func__, (unsigned long long)ofs, len);
1005
1006	if (check_offs_len(mtd, ofs, len))
1007		ret = -EINVAL;
1008
1009	nand_get_device(chip, mtd, FL_LOCKING);
1010
1011	/* Shift to get chip number */
1012	chipnr = ofs >> chip->chip_shift;
1013
1014	chip->select_chip(mtd, chipnr);
1015
1016	/* Check, if it is write protected */
1017	if (nand_check_wp(mtd)) {
1018		DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
1019					__func__);
1020		status = MTD_ERASE_FAILED;
1021		ret = -EIO;
1022		goto out;
1023	}
1024
1025	/* Submit address of first page to lock */
1026	page = ofs >> chip->page_shift;
1027	chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1028
1029	/* Call wait ready function */
1030	status = chip->waitfunc(mtd, chip);
1031	udelay(1000);
1032	/* See if device thinks it succeeded */
1033	if (status & 0x01) {
1034		DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
1035					__func__, status);
1036		ret = -EIO;
1037		goto out;
1038	}
1039
1040	ret = __nand_unlock(mtd, ofs, len, 0x1);
1041
1042out:
1043	nand_release_device(mtd);
1044
1045	return ret;
1046}
1047EXPORT_SYMBOL(nand_lock);
1048
1049/**
1050 * nand_read_page_raw - [Intern] read raw page data without ecc
1051 * @mtd:	mtd info structure
1052 * @chip:	nand chip info structure
1053 * @buf:	buffer to store read data
1054 * @page:	page number to read
1055 *
1056 * Not for syndrome calculating ecc controllers, which use a special oob layout
1057 */
1058static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1059			      uint8_t *buf, int page)
1060{
1061	chip->read_buf(mtd, buf, mtd->writesize);
1062	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1063	return 0;
1064}
1065
1066/**
1067 * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
1068 * @mtd:	mtd info structure
1069 * @chip:	nand chip info structure
1070 * @buf:	buffer to store read data
1071 * @page:	page number to read
1072 *
1073 * We need a special oob layout and handling even when OOB isn't used.
1074 */
1075static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1076					struct nand_chip *chip,
1077					uint8_t *buf, int page)
1078{
1079	int eccsize = chip->ecc.size;
1080	int eccbytes = chip->ecc.bytes;
1081	uint8_t *oob = chip->oob_poi;
1082	int steps, size;
1083
1084	for (steps = chip->ecc.steps; steps > 0; steps--) {
1085		chip->read_buf(mtd, buf, eccsize);
1086		buf += eccsize;
1087
1088		if (chip->ecc.prepad) {
1089			chip->read_buf(mtd, oob, chip->ecc.prepad);
1090			oob += chip->ecc.prepad;
1091		}
1092
1093		chip->read_buf(mtd, oob, eccbytes);
1094		oob += eccbytes;
1095
1096		if (chip->ecc.postpad) {
1097			chip->read_buf(mtd, oob, chip->ecc.postpad);
1098			oob += chip->ecc.postpad;
1099		}
1100	}
1101
1102	size = mtd->oobsize - (oob - chip->oob_poi);
1103	if (size)
1104		chip->read_buf(mtd, oob, size);
1105
1106	return 0;
1107}
1108
1109/**
1110 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
1111 * @mtd:	mtd info structure
1112 * @chip:	nand chip info structure
1113 * @buf:	buffer to store read data
1114 * @page:	page number to read
1115 */
1116static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1117				uint8_t *buf, int page)
1118{
1119	int i, eccsize = chip->ecc.size;
1120	int eccbytes = chip->ecc.bytes;
1121	int eccsteps = chip->ecc.steps;
1122	uint8_t *p = buf;
1123	uint8_t *ecc_calc = chip->buffers->ecccalc;
1124	uint8_t *ecc_code = chip->buffers->ecccode;
1125	uint32_t *eccpos = chip->ecc.layout->eccpos;
1126
1127	chip->ecc.read_page_raw(mtd, chip, buf, page);
1128
1129	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1130		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1131
1132	for (i = 0; i < chip->ecc.total; i++)
1133		ecc_code[i] = chip->oob_poi[eccpos[i]];
1134
1135	eccsteps = chip->ecc.steps;
1136	p = buf;
1137
1138	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1139		int stat;
1140
1141		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1142		if (stat < 0)
1143			mtd->ecc_stats.failed++;
1144		else
1145			mtd->ecc_stats.corrected += stat;
1146	}
1147	return 0;
1148}
1149
1150/**
1151 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
1152 * @mtd:	mtd info structure
1153 * @chip:	nand chip info structure
1154 * @data_offs:	offset of requested data within the page
1155 * @readlen:	data length
1156 * @bufpoi:	buffer to store read data
1157 */
1158static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1159			uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1160{
1161	int start_step, end_step, num_steps;
1162	uint32_t *eccpos = chip->ecc.layout->eccpos;
1163	uint8_t *p;
1164	int data_col_addr, i, gaps = 0;
1165	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1166	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1167	int index = 0;
1168
1169	/* Column address wihin the page aligned to ECC size (256bytes). */
1170	start_step = data_offs / chip->ecc.size;
1171	end_step = (data_offs + readlen - 1) / chip->ecc.size;
1172	num_steps = end_step - start_step + 1;
1173
1174	/* Data size aligned to ECC ecc.size*/
1175	datafrag_len = num_steps * chip->ecc.size;
1176	eccfrag_len = num_steps * chip->ecc.bytes;
1177
1178	data_col_addr = start_step * chip->ecc.size;
1179	/* If we read not a page aligned data */
1180	if (data_col_addr != 0)
1181		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1182
1183	p = bufpoi + data_col_addr;
1184	chip->read_buf(mtd, p, datafrag_len);
1185
1186	/* Calculate  ECC */
1187	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1188		chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1189
1190	/* The performance is faster if to position offsets
1191	   according to ecc.pos. Let make sure here that
1192	   there are no gaps in ecc positions */
1193	for (i = 0; i < eccfrag_len - 1; i++) {
1194		if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1195			eccpos[i + start_step * chip->ecc.bytes + 1]) {
1196			gaps = 1;
1197			break;
1198		}
1199	}
1200	if (gaps) {
1201		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1202		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1203	} else {
1204		/* send the command to read the particular ecc bytes */
1205		/* take care about buswidth alignment in read_buf */
1206		index = start_step * chip->ecc.bytes;
1207
1208		aligned_pos = eccpos[index] & ~(busw - 1);
1209		aligned_len = eccfrag_len;
1210		if (eccpos[index] & (busw - 1))
1211			aligned_len++;
1212		if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1213			aligned_len++;
1214
1215		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1216					mtd->writesize + aligned_pos, -1);
1217		chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1218	}
1219
1220	for (i = 0; i < eccfrag_len; i++)
1221		chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1222
1223	p = bufpoi + data_col_addr;
1224	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1225		int stat;
1226
1227		stat = chip->ecc.correct(mtd, p,
1228			&chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1229		if (stat < 0)
1230			mtd->ecc_stats.failed++;
1231		else
1232			mtd->ecc_stats.corrected += stat;
1233	}
1234	return 0;
1235}
1236
1237/**
1238 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1239 * @mtd:	mtd info structure
1240 * @chip:	nand chip info structure
1241 * @buf:	buffer to store read data
1242 * @page:	page number to read
1243 *
1244 * Not for syndrome calculating ecc controllers which need a special oob layout
1245 */
1246static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1247				uint8_t *buf, int page)
1248{
1249	int i, eccsize = chip->ecc.size;
1250	int eccbytes = chip->ecc.bytes;
1251	int eccsteps = chip->ecc.steps;
1252	uint8_t *p = buf;
1253	uint8_t *ecc_calc = chip->buffers->ecccalc;
1254	uint8_t *ecc_code = chip->buffers->ecccode;
1255	uint32_t *eccpos = chip->ecc.layout->eccpos;
1256
1257	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1258		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1259		chip->read_buf(mtd, p, eccsize);
1260		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1261	}
1262	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1263
1264	for (i = 0; i < chip->ecc.total; i++)
1265		ecc_code[i] = chip->oob_poi[eccpos[i]];
1266
1267	eccsteps = chip->ecc.steps;
1268	p = buf;
1269
1270	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1271		int stat;
1272
1273		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1274		if (stat < 0)
1275			mtd->ecc_stats.failed++;
1276		else
1277			mtd->ecc_stats.corrected += stat;
1278	}
1279	return 0;
1280}
1281
1282/**
1283 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1284 * @mtd:	mtd info structure
1285 * @chip:	nand chip info structure
1286 * @buf:	buffer to store read data
1287 * @page:	page number to read
1288 *
1289 * Hardware ECC for large page chips, require OOB to be read first.
1290 * For this ECC mode, the write_page method is re-used from ECC_HW.
1291 * These methods read/write ECC from the OOB area, unlike the
1292 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1293 * "infix ECC" scheme and reads/writes ECC from the data area, by
1294 * overwriting the NAND manufacturer bad block markings.
1295 */
1296static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1297	struct nand_chip *chip, uint8_t *buf, int page)
1298{
1299	int i, eccsize = chip->ecc.size;
1300	int eccbytes = chip->ecc.bytes;
1301	int eccsteps = chip->ecc.steps;
1302	uint8_t *p = buf;
1303	uint8_t *ecc_code = chip->buffers->ecccode;
1304	uint32_t *eccpos = chip->ecc.layout->eccpos;
1305	uint8_t *ecc_calc = chip->buffers->ecccalc;
1306
1307	/* Read the OOB area first */
1308	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1309	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1310	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1311
1312	for (i = 0; i < chip->ecc.total; i++)
1313		ecc_code[i] = chip->oob_poi[eccpos[i]];
1314
1315	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1316		int stat;
1317
1318		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1319		chip->read_buf(mtd, p, eccsize);
1320		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1321
1322		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1323		if (stat < 0)
1324			mtd->ecc_stats.failed++;
1325		else
1326			mtd->ecc_stats.corrected += stat;
1327	}
1328	return 0;
1329}
1330
1331/**
1332 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1333 * @mtd:	mtd info structure
1334 * @chip:	nand chip info structure
1335 * @buf:	buffer to store read data
1336 * @page:	page number to read
1337 *
1338 * The hw generator calculates the error syndrome automatically. Therefor
1339 * we need a special oob layout and handling.
1340 */
1341static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1342				   uint8_t *buf, int page)
1343{
1344	int i, eccsize = chip->ecc.size;
1345	int eccbytes = chip->ecc.bytes;
1346	int eccsteps = chip->ecc.steps;
1347	uint8_t *p = buf;
1348	uint8_t *oob = chip->oob_poi;
1349
1350	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1351		int stat;
1352
1353		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1354		chip->read_buf(mtd, p, eccsize);
1355
1356		if (chip->ecc.prepad) {
1357			chip->read_buf(mtd, oob, chip->ecc.prepad);
1358			oob += chip->ecc.prepad;
1359		}
1360
1361		chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1362		chip->read_buf(mtd, oob, eccbytes);
1363		stat = chip->ecc.correct(mtd, p, oob, NULL);
1364
1365		if (stat < 0)
1366			mtd->ecc_stats.failed++;
1367		else
1368			mtd->ecc_stats.corrected += stat;
1369
1370		oob += eccbytes;
1371
1372		if (chip->ecc.postpad) {
1373			chip->read_buf(mtd, oob, chip->ecc.postpad);
1374			oob += chip->ecc.postpad;
1375		}
1376	}
1377
1378	/* Calculate remaining oob bytes */
1379	i = mtd->oobsize - (oob - chip->oob_poi);
1380	if (i)
1381		chip->read_buf(mtd, oob, i);
1382
1383	return 0;
1384}
1385
1386/**
1387 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1388 * @chip:	nand chip structure
1389 * @oob:	oob destination address
1390 * @ops:	oob ops structure
1391 * @len:	size of oob to transfer
1392 */
1393static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1394				  struct mtd_oob_ops *ops, size_t len)
1395{
1396	switch (ops->mode) {
1397
1398	case MTD_OOB_PLACE:
1399	case MTD_OOB_RAW:
1400		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1401		return oob + len;
1402
1403	case MTD_OOB_AUTO: {
1404		struct nand_oobfree *free = chip->ecc.layout->oobfree;
1405		uint32_t boffs = 0, roffs = ops->ooboffs;
1406		size_t bytes = 0;
1407
1408		for (; free->length && len; free++, len -= bytes) {
1409			/* Read request not from offset 0 ? */
1410			if (unlikely(roffs)) {
1411				if (roffs >= free->length) {
1412					roffs -= free->length;
1413					continue;
1414				}
1415				boffs = free->offset + roffs;
1416				bytes = min_t(size_t, len,
1417					      (free->length - roffs));
1418				roffs = 0;
1419			} else {
1420				bytes = min_t(size_t, len, free->length);
1421				boffs = free->offset;
1422			}
1423			memcpy(oob, chip->oob_poi + boffs, bytes);
1424			oob += bytes;
1425		}
1426		return oob;
1427	}
1428	default:
1429		BUG();
1430	}
1431	return NULL;
1432}
1433
1434/**
1435 * nand_do_read_ops - [Internal] Read data with ECC
1436 *
1437 * @mtd:	MTD device structure
1438 * @from:	offset to read from
1439 * @ops:	oob ops structure
1440 *
1441 * Internal function. Called with chip held.
1442 */
1443static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1444			    struct mtd_oob_ops *ops)
1445{
1446	int chipnr, page, realpage, col, bytes, aligned;
1447	struct nand_chip *chip = mtd->priv;
1448	struct mtd_ecc_stats stats;
1449	int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1450	int sndcmd = 1;
1451	int ret = 0;
1452	uint32_t readlen = ops->len;
1453	uint32_t oobreadlen = ops->ooblen;
1454	uint32_t max_oobsize = ops->mode == MTD_OOB_AUTO ?
1455		mtd->oobavail : mtd->oobsize;
1456
1457	uint8_t *bufpoi, *oob, *buf;
1458
1459	stats = mtd->ecc_stats;
1460
1461	chipnr = (int)(from >> chip->chip_shift);
1462	chip->select_chip(mtd, chipnr);
1463
1464	realpage = (int)(from >> chip->page_shift);
1465	page = realpage & chip->pagemask;
1466
1467	col = (int)(from & (mtd->writesize - 1));
1468
1469	buf = ops->datbuf;
1470	oob = ops->oobbuf;
1471
1472	while (1) {
1473		bytes = min(mtd->writesize - col, readlen);
1474		aligned = (bytes == mtd->writesize);
1475
1476		/* Is the current page in the buffer ? */
1477		if (realpage != chip->pagebuf || oob) {
1478			bufpoi = aligned ? buf : chip->buffers->databuf;
1479
1480			if (likely(sndcmd)) {
1481				chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1482				sndcmd = 0;
1483			}
1484
1485			/* Now read the page into the buffer */
1486			if (unlikely(ops->mode == MTD_OOB_RAW))
1487				ret = chip->ecc.read_page_raw(mtd, chip,
1488							      bufpoi, page);
1489			else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1490				ret = chip->ecc.read_subpage(mtd, chip,
1491							col, bytes, bufpoi);
1492			else
1493				ret = chip->ecc.read_page(mtd, chip, bufpoi,
1494							  page);
1495			if (ret < 0)
1496				break;
1497
1498			/* Transfer not aligned data */
1499			if (!aligned) {
1500				if (!NAND_SUBPAGE_READ(chip) && !oob &&
1501				    !(mtd->ecc_stats.failed - stats.failed))
1502					chip->pagebuf = realpage;
1503				memcpy(buf, chip->buffers->databuf + col, bytes);
1504			}
1505
1506			buf += bytes;
1507
1508			if (unlikely(oob)) {
1509
1510				int toread = min(oobreadlen, max_oobsize);
1511
1512				if (toread) {
1513					oob = nand_transfer_oob(chip,
1514						oob, ops, toread);
1515					oobreadlen -= toread;
1516				}
1517			}
1518
1519			if (!(chip->options & NAND_NO_READRDY)) {
1520				/*
1521				 * Apply delay or wait for ready/busy pin. Do
1522				 * this before the AUTOINCR check, so no
1523				 * problems arise if a chip which does auto
1524				 * increment is marked as NOAUTOINCR by the
1525				 * board driver.
1526				 */
1527				if (!chip->dev_ready)
1528					udelay(chip->chip_delay);
1529				else
1530					nand_wait_ready(mtd);
1531			}
1532		} else {
1533			memcpy(buf, chip->buffers->databuf + col, bytes);
1534			buf += bytes;
1535		}
1536
1537		readlen -= bytes;
1538
1539		if (!readlen)
1540			break;
1541
1542		/* For subsequent reads align to page boundary. */
1543		col = 0;
1544		/* Increment page address */
1545		realpage++;
1546
1547		page = realpage & chip->pagemask;
1548		/* Check, if we cross a chip boundary */
1549		if (!page) {
1550			chipnr++;
1551			chip->select_chip(mtd, -1);
1552			chip->select_chip(mtd, chipnr);
1553		}
1554
1555		/* Check, if the chip supports auto page increment
1556		 * or if we have hit a block boundary.
1557		 */
1558		if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1559			sndcmd = 1;
1560	}
1561
1562	ops->retlen = ops->len - (size_t) readlen;
1563	if (oob)
1564		ops->oobretlen = ops->ooblen - oobreadlen;
1565
1566	if (ret)
1567		return ret;
1568
1569	if (mtd->ecc_stats.failed - stats.failed)
1570		return -EBADMSG;
1571
1572	return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1573}
1574
1575/**
1576 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1577 * @mtd:	MTD device structure
1578 * @from:	offset to read from
1579 * @len:	number of bytes to read
1580 * @retlen:	pointer to variable to store the number of read bytes
1581 * @buf:	the databuffer to put data
1582 *
1583 * Get hold of the chip and call nand_do_read
1584 */
1585static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1586		     size_t *retlen, uint8_t *buf)
1587{
1588	struct nand_chip *chip = mtd->priv;
1589	int ret;
1590
1591	/* Do not allow reads past end of device */
1592	if ((from + len) > mtd->size)
1593		return -EINVAL;
1594	if (!len)
1595		return 0;
1596
1597	nand_get_device(chip, mtd, FL_READING);
1598
1599	chip->ops.len = len;
1600	chip->ops.datbuf = buf;
1601	chip->ops.oobbuf = NULL;
1602
1603	ret = nand_do_read_ops(mtd, from, &chip->ops);
1604
1605	*retlen = chip->ops.retlen;
1606
1607	nand_release_device(mtd);
1608
1609	return ret;
1610}
1611
1612/**
1613 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1614 * @mtd:	mtd info structure
1615 * @chip:	nand chip info structure
1616 * @page:	page number to read
1617 * @sndcmd:	flag whether to issue read command or not
1618 */
1619static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1620			     int page, int sndcmd)
1621{
1622	if (sndcmd) {
1623		chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1624		sndcmd = 0;
1625	}
1626	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1627	return sndcmd;
1628}
1629
1630/**
1631 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1632 *			    with syndromes
1633 * @mtd:	mtd info structure
1634 * @chip:	nand chip info structure
1635 * @page:	page number to read
1636 * @sndcmd:	flag whether to issue read command or not
1637 */
1638static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1639				  int page, int sndcmd)
1640{
1641	uint8_t *buf = chip->oob_poi;
1642	int length = mtd->oobsize;
1643	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1644	int eccsize = chip->ecc.size;
1645	uint8_t *bufpoi = buf;
1646	int i, toread, sndrnd = 0, pos;
1647
1648	chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1649	for (i = 0; i < chip->ecc.steps; i++) {
1650		if (sndrnd) {
1651			pos = eccsize + i * (eccsize + chunk);
1652			if (mtd->writesize > 512)
1653				chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1654			else
1655				chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1656		} else
1657			sndrnd = 1;
1658		toread = min_t(int, length, chunk);
1659		chip->read_buf(mtd, bufpoi, toread);
1660		bufpoi += toread;
1661		length -= toread;
1662	}
1663	if (length > 0)
1664		chip->read_buf(mtd, bufpoi, length);
1665
1666	return 1;
1667}
1668
1669/**
1670 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1671 * @mtd:	mtd info structure
1672 * @chip:	nand chip info structure
1673 * @page:	page number to write
1674 */
1675static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1676			      int page)
1677{
1678	int status = 0;
1679	const uint8_t *buf = chip->oob_poi;
1680	int length = mtd->oobsize;
1681
1682	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1683	chip->write_buf(mtd, buf, length);
1684	/* Send command to program the OOB data */
1685	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1686
1687	status = chip->waitfunc(mtd, chip);
1688
1689	return status & NAND_STATUS_FAIL ? -EIO : 0;
1690}
1691
1692/**
1693 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1694 *			     with syndrome - only for large page flash !
1695 * @mtd:	mtd info structure
1696 * @chip:	nand chip info structure
1697 * @page:	page number to write
1698 */
1699static int nand_write_oob_syndrome(struct mtd_info *mtd,
1700				   struct nand_chip *chip, int page)
1701{
1702	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1703	int eccsize = chip->ecc.size, length = mtd->oobsize;
1704	int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1705	const uint8_t *bufpoi = chip->oob_poi;
1706
1707	/*
1708	 * data-ecc-data-ecc ... ecc-oob
1709	 * or
1710	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1711	 */
1712	if (!chip->ecc.prepad && !chip->ecc.postpad) {
1713		pos = steps * (eccsize + chunk);
1714		steps = 0;
1715	} else
1716		pos = eccsize;
1717
1718	chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1719	for (i = 0; i < steps; i++) {
1720		if (sndcmd) {
1721			if (mtd->writesize <= 512) {
1722				uint32_t fill = 0xFFFFFFFF;
1723
1724				len = eccsize;
1725				while (len > 0) {
1726					int num = min_t(int, len, 4);
1727					chip->write_buf(mtd, (uint8_t *)&fill,
1728							num);
1729					len -= num;
1730				}
1731			} else {
1732				pos = eccsize + i * (eccsize + chunk);
1733				chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1734			}
1735		} else
1736			sndcmd = 1;
1737		len = min_t(int, length, chunk);
1738		chip->write_buf(mtd, bufpoi, len);
1739		bufpoi += len;
1740		length -= len;
1741	}
1742	if (length > 0)
1743		chip->write_buf(mtd, bufpoi, length);
1744
1745	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1746	status = chip->waitfunc(mtd, chip);
1747
1748	return status & NAND_STATUS_FAIL ? -EIO : 0;
1749}
1750
1751/**
1752 * nand_do_read_oob - [Intern] NAND read out-of-band
1753 * @mtd:	MTD device structure
1754 * @from:	offset to read from
1755 * @ops:	oob operations description structure
1756 *
1757 * NAND read out-of-band data from the spare area
1758 */
1759static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1760			    struct mtd_oob_ops *ops)
1761{
1762	int page, realpage, chipnr, sndcmd = 1;
1763	struct nand_chip *chip = mtd->priv;
1764	int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1765	int readlen = ops->ooblen;
1766	int len;
1767	uint8_t *buf = ops->oobbuf;
1768
1769	DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n",
1770			__func__, (unsigned long long)from, readlen);
1771
1772	if (ops->mode == MTD_OOB_AUTO)
1773		len = chip->ecc.layout->oobavail;
1774	else
1775		len = mtd->oobsize;
1776
1777	if (unlikely(ops->ooboffs >= len)) {
1778		DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read "
1779					"outside oob\n", __func__);
1780		return -EINVAL;
1781	}
1782
1783	/* Do not allow reads past end of device */
1784	if (unlikely(from >= mtd->size ||
1785		     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1786					(from >> chip->page_shift)) * len)) {
1787		DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end "
1788					"of device\n", __func__);
1789		return -EINVAL;
1790	}
1791
1792	chipnr = (int)(from >> chip->chip_shift);
1793	chip->select_chip(mtd, chipnr);
1794
1795	/* Shift to get page */
1796	realpage = (int)(from >> chip->page_shift);
1797	page = realpage & chip->pagemask;
1798
1799	while (1) {
1800		sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1801
1802		len = min(len, readlen);
1803		buf = nand_transfer_oob(chip, buf, ops, len);
1804
1805		if (!(chip->options & NAND_NO_READRDY)) {
1806			/*
1807			 * Apply delay or wait for ready/busy pin. Do this
1808			 * before the AUTOINCR check, so no problems arise if a
1809			 * chip which does auto increment is marked as
1810			 * NOAUTOINCR by the board driver.
1811			 */
1812			if (!chip->dev_ready)
1813				udelay(chip->chip_delay);
1814			else
1815				nand_wait_ready(mtd);
1816		}
1817
1818		readlen -= len;
1819		if (!readlen)
1820			break;
1821
1822		/* Increment page address */
1823		realpage++;
1824
1825		page = realpage & chip->pagemask;
1826		/* Check, if we cross a chip boundary */
1827		if (!page) {
1828			chipnr++;
1829			chip->select_chip(mtd, -1);
1830			chip->select_chip(mtd, chipnr);
1831		}
1832
1833		/* Check, if the chip supports auto page increment
1834		 * or if we have hit a block boundary.
1835		 */
1836		if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1837			sndcmd = 1;
1838	}
1839
1840	ops->oobretlen = ops->ooblen;
1841	return 0;
1842}
1843
1844/**
1845 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1846 * @mtd:	MTD device structure
1847 * @from:	offset to read from
1848 * @ops:	oob operation description structure
1849 *
1850 * NAND read data and/or out-of-band data
1851 */
1852static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1853			 struct mtd_oob_ops *ops)
1854{
1855	struct nand_chip *chip = mtd->priv;
1856	int ret = -ENOTSUPP;
1857
1858	ops->retlen = 0;
1859
1860	/* Do not allow reads past end of device */
1861	if (ops->datbuf && (from + ops->len) > mtd->size) {
1862		DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read "
1863				"beyond end of device\n", __func__);
1864		return -EINVAL;
1865	}
1866
1867	nand_get_device(chip, mtd, FL_READING);
1868
1869	switch (ops->mode) {
1870	case MTD_OOB_PLACE:
1871	case MTD_OOB_AUTO:
1872	case MTD_OOB_RAW:
1873		break;
1874
1875	default:
1876		goto out;
1877	}
1878
1879	if (!ops->datbuf)
1880		ret = nand_do_read_oob(mtd, from, ops);
1881	else
1882		ret = nand_do_read_ops(mtd, from, ops);
1883
1884out:
1885	nand_release_device(mtd);
1886	return ret;
1887}
1888
1889
1890/**
1891 * nand_write_page_raw - [Intern] raw page write function
1892 * @mtd:	mtd info structure
1893 * @chip:	nand chip info structure
1894 * @buf:	data buffer
1895 *
1896 * Not for syndrome calculating ecc controllers, which use a special oob layout
1897 */
1898static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1899				const uint8_t *buf)
1900{
1901	chip->write_buf(mtd, buf, mtd->writesize);
1902	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1903}
1904
1905/**
1906 * nand_write_page_raw_syndrome - [Intern] raw page write function
1907 * @mtd:	mtd info structure
1908 * @chip:	nand chip info structure
1909 * @buf:	data buffer
1910 *
1911 * We need a special oob layout and handling even when ECC isn't checked.
1912 */
1913static void nand_write_page_raw_syndrome(struct mtd_info *mtd,
1914					struct nand_chip *chip,
1915					const uint8_t *buf)
1916{
1917	int eccsize = chip->ecc.size;
1918	int eccbytes = chip->ecc.bytes;
1919	uint8_t *oob = chip->oob_poi;
1920	int steps, size;
1921
1922	for (steps = chip->ecc.steps; steps > 0; steps--) {
1923		chip->write_buf(mtd, buf, eccsize);
1924		buf += eccsize;
1925
1926		if (chip->ecc.prepad) {
1927			chip->write_buf(mtd, oob, chip->ecc.prepad);
1928			oob += chip->ecc.prepad;
1929		}
1930
1931		chip->read_buf(mtd, oob, eccbytes);
1932		oob += eccbytes;
1933
1934		if (chip->ecc.postpad) {
1935			chip->write_buf(mtd, oob, chip->ecc.postpad);
1936			oob += chip->ecc.postpad;
1937		}
1938	}
1939
1940	size = mtd->oobsize - (oob - chip->oob_poi);
1941	if (size)
1942		chip->write_buf(mtd, oob, size);
1943}
1944/**
1945 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1946 * @mtd:	mtd info structure
1947 * @chip:	nand chip info structure
1948 * @buf:	data buffer
1949 */
1950static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1951				  const uint8_t *buf)
1952{
1953	int i, eccsize = chip->ecc.size;
1954	int eccbytes = chip->ecc.bytes;
1955	int eccsteps = chip->ecc.steps;
1956	uint8_t *ecc_calc = chip->buffers->ecccalc;
1957	const uint8_t *p = buf;
1958	uint32_t *eccpos = chip->ecc.layout->eccpos;
1959
1960	/* Software ecc calculation */
1961	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1962		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1963
1964	for (i = 0; i < chip->ecc.total; i++)
1965		chip->oob_poi[eccpos[i]] = ecc_calc[i];
1966
1967	chip->ecc.write_page_raw(mtd, chip, buf);
1968}
1969
1970/**
1971 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1972 * @mtd:	mtd info structure
1973 * @chip:	nand chip info structure
1974 * @buf:	data buffer
1975 */
1976static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1977				  const uint8_t *buf)
1978{
1979	int i, eccsize = chip->ecc.size;
1980	int eccbytes = chip->ecc.bytes;
1981	int eccsteps = chip->ecc.steps;
1982	uint8_t *ecc_calc = chip->buffers->ecccalc;
1983	const uint8_t *p = buf;
1984	uint32_t *eccpos = chip->ecc.layout->eccpos;
1985
1986	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1987		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1988		chip->write_buf(mtd, p, eccsize);
1989		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1990	}
1991
1992	for (i = 0; i < chip->ecc.total; i++)
1993		chip->oob_poi[eccpos[i]] = ecc_calc[i];
1994
1995	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1996}
1997
1998/**
1999 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
2000 * @mtd:	mtd info structure
2001 * @chip:	nand chip info structure
2002 * @buf:	data buffer
2003 *
2004 * The hw generator calculates the error syndrome automatically. Therefor
2005 * we need a special oob layout and handling.
2006 */
2007static void nand_write_page_syndrome(struct mtd_info *mtd,
2008				    struct nand_chip *chip, const uint8_t *buf)
2009{
2010	int i, eccsize = chip->ecc.size;
2011	int eccbytes = chip->ecc.bytes;
2012	int eccsteps = chip->ecc.steps;
2013	const uint8_t *p = buf;
2014	uint8_t *oob = chip->oob_poi;
2015
2016	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2017
2018		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2019		chip->write_buf(mtd, p, eccsize);
2020
2021		if (chip->ecc.prepad) {
2022			chip->write_buf(mtd, oob, chip->ecc.prepad);
2023			oob += chip->ecc.prepad;
2024		}
2025
2026		chip->ecc.calculate(mtd, p, oob);
2027		chip->write_buf(mtd, oob, eccbytes);
2028		oob += eccbytes;
2029
2030		if (chip->ecc.postpad) {
2031			chip->write_buf(mtd, oob, chip->ecc.postpad);
2032			oob += chip->ecc.postpad;
2033		}
2034	}
2035
2036	/* Calculate remaining oob bytes */
2037	i = mtd->oobsize - (oob - chip->oob_poi);
2038	if (i)
2039		chip->write_buf(mtd, oob, i);
2040}
2041
2042/**
2043 * nand_write_page - [REPLACEABLE] write one page
2044 * @mtd:	MTD device structure
2045 * @chip:	NAND chip descriptor
2046 * @buf:	the data to write
2047 * @page:	page number to write
2048 * @cached:	cached programming
2049 * @raw:	use _raw version of write_page
2050 */
2051static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2052			   const uint8_t *buf, int page, int cached, int raw)
2053{
2054	int status;
2055
2056	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2057
2058	if (unlikely(raw))
2059		chip->ecc.write_page_raw(mtd, chip, buf);
2060	else
2061		chip->ecc.write_page(mtd, chip, buf);
2062
2063	/*
2064	 * Cached progamming disabled for now, Not sure if its worth the
2065	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
2066	 */
2067	cached = 0;
2068
2069	if (!cached || !(chip->options & NAND_CACHEPRG)) {
2070
2071		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2072		status = chip->waitfunc(mtd, chip);
2073		/*
2074		 * See if operation failed and additional status checks are
2075		 * available
2076		 */
2077		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2078			status = chip->errstat(mtd, chip, FL_WRITING, status,
2079					       page);
2080
2081		if (status & NAND_STATUS_FAIL)
2082			return -EIO;
2083	} else {
2084		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2085		status = chip->waitfunc(mtd, chip);
2086	}
2087
2088#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2089	/* Send command to read back the data */
2090	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2091
2092	if (chip->verify_buf(mtd, buf, mtd->writesize))
2093		return -EIO;
2094#endif
2095	return 0;
2096}
2097
2098/**
2099 * nand_fill_oob - [Internal] Transfer client buffer to oob
2100 * @chip:	nand chip structure
2101 * @oob:	oob data buffer
2102 * @len:	oob data write length
2103 * @ops:	oob ops structure
2104 */
2105static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
2106						struct mtd_oob_ops *ops)
2107{
2108	switch (ops->mode) {
2109
2110	case MTD_OOB_PLACE:
2111	case MTD_OOB_RAW:
2112		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2113		return oob + len;
2114
2115	case MTD_OOB_AUTO: {
2116		struct nand_oobfree *free = chip->ecc.layout->oobfree;
2117		uint32_t boffs = 0, woffs = ops->ooboffs;
2118		size_t bytes = 0;
2119
2120		for (; free->length && len; free++, len -= bytes) {
2121			/* Write request not from offset 0 ? */
2122			if (unlikely(woffs)) {
2123				if (woffs >= free->length) {
2124					woffs -= free->length;
2125					continue;
2126				}
2127				boffs = free->offset + woffs;
2128				bytes = min_t(size_t, len,
2129					      (free->length - woffs));
2130				woffs = 0;
2131			} else {
2132				bytes = min_t(size_t, len, free->length);
2133				boffs = free->offset;
2134			}
2135			memcpy(chip->oob_poi + boffs, oob, bytes);
2136			oob += bytes;
2137		}
2138		return oob;
2139	}
2140	default:
2141		BUG();
2142	}
2143	return NULL;
2144}
2145
2146#define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
2147
2148/**
2149 * nand_do_write_ops - [Internal] NAND write with ECC
2150 * @mtd:	MTD device structure
2151 * @to:		offset to write to
2152 * @ops:	oob operations description structure
2153 *
2154 * NAND write with ECC
2155 */
2156static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2157			     struct mtd_oob_ops *ops)
2158{
2159	int chipnr, realpage, page, blockmask, column;
2160	struct nand_chip *chip = mtd->priv;
2161	uint32_t writelen = ops->len;
2162
2163	uint32_t oobwritelen = ops->ooblen;
2164	uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ?
2165				mtd->oobavail : mtd->oobsize;
2166
2167	uint8_t *oob = ops->oobbuf;
2168	uint8_t *buf = ops->datbuf;
2169	int ret, subpage;
2170
2171	ops->retlen = 0;
2172	if (!writelen)
2173		return 0;
2174
2175	/* reject writes, which are not page aligned */
2176	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2177		printk(KERN_NOTICE "%s: Attempt to write not "
2178				"page aligned data\n", __func__);
2179		return -EINVAL;
2180	}
2181
2182	column = to & (mtd->writesize - 1);
2183	subpage = column || (writelen & (mtd->writesize - 1));
2184
2185	if (subpage && oob)
2186		return -EINVAL;
2187
2188	chipnr = (int)(to >> chip->chip_shift);
2189	chip->select_chip(mtd, chipnr);
2190
2191	/* Check, if it is write protected */
2192	if (nand_check_wp(mtd))
2193		return -EIO;
2194
2195	realpage = (int)(to >> chip->page_shift);
2196	page = realpage & chip->pagemask;
2197	blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2198
2199	/* Invalidate the page cache, when we write to the cached page */
2200	if (to <= (chip->pagebuf << chip->page_shift) &&
2201	    (chip->pagebuf << chip->page_shift) < (to + ops->len))
2202		chip->pagebuf = -1;
2203
2204	/* If we're not given explicit OOB data, let it be 0xFF */
2205	if (likely(!oob))
2206		memset(chip->oob_poi, 0xff, mtd->oobsize);
2207
2208	/* Don't allow multipage oob writes with offset */
2209	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2210		return -EINVAL;
2211
2212	while (1) {
2213		int bytes = mtd->writesize;
2214		int cached = writelen > bytes && page != blockmask;
2215		uint8_t *wbuf = buf;
2216
2217		/* Partial page write ? */
2218		if (unlikely(column || writelen < (mtd->writesize - 1))) {
2219			cached = 0;
2220			bytes = min_t(int, bytes - column, (int) writelen);
2221			chip->pagebuf = -1;
2222			memset(chip->buffers->databuf, 0xff, mtd->writesize);
2223			memcpy(&chip->buffers->databuf[column], buf, bytes);
2224			wbuf = chip->buffers->databuf;
2225		}
2226
2227		if (unlikely(oob)) {
2228			size_t len = min(oobwritelen, oobmaxlen);
2229			oob = nand_fill_oob(chip, oob, len, ops);
2230			oobwritelen -= len;
2231		}
2232
2233		ret = chip->write_page(mtd, chip, wbuf, page, cached,
2234				       (ops->mode == MTD_OOB_RAW));
2235		if (ret)
2236			break;
2237
2238		writelen -= bytes;
2239		if (!writelen)
2240			break;
2241
2242		column = 0;
2243		buf += bytes;
2244		realpage++;
2245
2246		page = realpage & chip->pagemask;
2247		/* Check, if we cross a chip boundary */
2248		if (!page) {
2249			chipnr++;
2250			chip->select_chip(mtd, -1);
2251			chip->select_chip(mtd, chipnr);
2252		}
2253	}
2254
2255	ops->retlen = ops->len - writelen;
2256	if (unlikely(oob))
2257		ops->oobretlen = ops->ooblen;
2258	return ret;
2259}
2260
2261/**
2262 * panic_nand_write - [MTD Interface] NAND write with ECC
2263 * @mtd:	MTD device structure
2264 * @to:		offset to write to
2265 * @len:	number of bytes to write
2266 * @retlen:	pointer to variable to store the number of written bytes
2267 * @buf:	the data to write
2268 *
2269 * NAND write with ECC. Used when performing writes in interrupt context, this
2270 * may for example be called by mtdoops when writing an oops while in panic.
2271 */
2272static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2273			    size_t *retlen, const uint8_t *buf)
2274{
2275	struct nand_chip *chip = mtd->priv;
2276	int ret;
2277
2278	/* Do not allow reads past end of device */
2279	if ((to + len) > mtd->size)
2280		return -EINVAL;
2281	if (!len)
2282		return 0;
2283
2284	/* Wait for the device to get ready.  */
2285	panic_nand_wait(mtd, chip, 400);
2286
2287	/* Grab the device.  */
2288	panic_nand_get_device(chip, mtd, FL_WRITING);
2289
2290	chip->ops.len = len;
2291	chip->ops.datbuf = (uint8_t *)buf;
2292	chip->ops.oobbuf = NULL;
2293
2294	ret = nand_do_write_ops(mtd, to, &chip->ops);
2295
2296	*retlen = chip->ops.retlen;
2297	return ret;
2298}
2299
2300/**
2301 * nand_write - [MTD Interface] NAND write with ECC
2302 * @mtd:	MTD device structure
2303 * @to:		offset to write to
2304 * @len:	number of bytes to write
2305 * @retlen:	pointer to variable to store the number of written bytes
2306 * @buf:	the data to write
2307 *
2308 * NAND write with ECC
2309 */
2310static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2311			  size_t *retlen, const uint8_t *buf)
2312{
2313	struct nand_chip *chip = mtd->priv;
2314	int ret;
2315
2316	/* Do not allow reads past end of device */
2317	if ((to + len) > mtd->size)
2318		return -EINVAL;
2319	if (!len)
2320		return 0;
2321
2322	nand_get_device(chip, mtd, FL_WRITING);
2323
2324	chip->ops.len = len;
2325	chip->ops.datbuf = (uint8_t *)buf;
2326	chip->ops.oobbuf = NULL;
2327
2328	ret = nand_do_write_ops(mtd, to, &chip->ops);
2329
2330	*retlen = chip->ops.retlen;
2331
2332	nand_release_device(mtd);
2333
2334	return ret;
2335}
2336
2337/**
2338 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2339 * @mtd:	MTD device structure
2340 * @to:		offset to write to
2341 * @ops:	oob operation description structure
2342 *
2343 * NAND write out-of-band
2344 */
2345static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2346			     struct mtd_oob_ops *ops)
2347{
2348	int chipnr, page, status, len;
2349	struct nand_chip *chip = mtd->priv;
2350
2351	DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2352			 __func__, (unsigned int)to, (int)ops->ooblen);
2353
2354	if (ops->mode == MTD_OOB_AUTO)
2355		len = chip->ecc.layout->oobavail;
2356	else
2357		len = mtd->oobsize;
2358
2359	/* Do not allow write past end of page */
2360	if ((ops->ooboffs + ops->ooblen) > len) {
2361		DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write "
2362				"past end of page\n", __func__);
2363		return -EINVAL;
2364	}
2365
2366	if (unlikely(ops->ooboffs >= len)) {
2367		DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start "
2368				"write outside oob\n", __func__);
2369		return -EINVAL;
2370	}
2371
2372	/* Do not allow write past end of device */
2373	if (unlikely(to >= mtd->size ||
2374		     ops->ooboffs + ops->ooblen >
2375			((mtd->size >> chip->page_shift) -
2376			 (to >> chip->page_shift)) * len)) {
2377		DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2378				"end of device\n", __func__);
2379		return -EINVAL;
2380	}
2381
2382	chipnr = (int)(to >> chip->chip_shift);
2383	chip->select_chip(mtd, chipnr);
2384
2385	/* Shift to get page */
2386	page = (int)(to >> chip->page_shift);
2387
2388	/*
2389	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2390	 * of my DiskOnChip 2000 test units) will clear the whole data page too
2391	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2392	 * it in the doc2000 driver in August 1999.  dwmw2.
2393	 */
2394	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2395
2396	/* Check, if it is write protected */
2397	if (nand_check_wp(mtd))
2398		return -EROFS;
2399
2400	/* Invalidate the page cache, if we write to the cached page */
2401	if (page == chip->pagebuf)
2402		chip->pagebuf = -1;
2403
2404	memset(chip->oob_poi, 0xff, mtd->oobsize);
2405	nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
2406	status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2407	memset(chip->oob_poi, 0xff, mtd->oobsize);
2408
2409	if (status)
2410		return status;
2411
2412	ops->oobretlen = ops->ooblen;
2413
2414	return 0;
2415}
2416
2417/**
2418 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2419 * @mtd:	MTD device structure
2420 * @to:		offset to write to
2421 * @ops:	oob operation description structure
2422 */
2423static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2424			  struct mtd_oob_ops *ops)
2425{
2426	struct nand_chip *chip = mtd->priv;
2427	int ret = -ENOTSUPP;
2428
2429	ops->retlen = 0;
2430
2431	/* Do not allow writes past end of device */
2432	if (ops->datbuf && (to + ops->len) > mtd->size) {
2433		DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2434				"end of device\n", __func__);
2435		return -EINVAL;
2436	}
2437
2438	nand_get_device(chip, mtd, FL_WRITING);
2439
2440	switch (ops->mode) {
2441	case MTD_OOB_PLACE:
2442	case MTD_OOB_AUTO:
2443	case MTD_OOB_RAW:
2444		break;
2445
2446	default:
2447		goto out;
2448	}
2449
2450	if (!ops->datbuf)
2451		ret = nand_do_write_oob(mtd, to, ops);
2452	else
2453		ret = nand_do_write_ops(mtd, to, ops);
2454
2455out:
2456	nand_release_device(mtd);
2457	return ret;
2458}
2459
2460/**
2461 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2462 * @mtd:	MTD device structure
2463 * @page:	the page address of the block which will be erased
2464 *
2465 * Standard erase command for NAND chips
2466 */
2467static void single_erase_cmd(struct mtd_info *mtd, int page)
2468{
2469	struct nand_chip *chip = mtd->priv;
2470	/* Send commands to erase a block */
2471	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2472	chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2473}
2474
2475/**
2476 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2477 * @mtd:	MTD device structure
2478 * @page:	the page address of the block which will be erased
2479 *
2480 * AND multi block erase command function
2481 * Erase 4 consecutive blocks
2482 */
2483static void multi_erase_cmd(struct mtd_info *mtd, int page)
2484{
2485	struct nand_chip *chip = mtd->priv;
2486	/* Send commands to erase a block */
2487	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2488	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2489	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2490	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2491	chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2492}
2493
2494/**
2495 * nand_erase - [MTD Interface] erase block(s)
2496 * @mtd:	MTD device structure
2497 * @instr:	erase instruction
2498 *
2499 * Erase one ore more blocks
2500 */
2501static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2502{
2503	return nand_erase_nand(mtd, instr, 0);
2504}
2505
2506#define BBT_PAGE_MASK	0xffffff3f
2507/**
2508 * nand_erase_nand - [Internal] erase block(s)
2509 * @mtd:	MTD device structure
2510 * @instr:	erase instruction
2511 * @allowbbt:	allow erasing the bbt area
2512 *
2513 * Erase one ore more blocks
2514 */
2515int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2516		    int allowbbt)
2517{
2518	int page, status, pages_per_block, ret, chipnr;
2519	struct nand_chip *chip = mtd->priv;
2520	loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
2521	unsigned int bbt_masked_page = 0xffffffff;
2522	loff_t len;
2523
2524	DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
2525				__func__, (unsigned long long)instr->addr,
2526				(unsigned long long)instr->len);
2527
2528	if (check_offs_len(mtd, instr->addr, instr->len))
2529		return -EINVAL;
2530
2531	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2532
2533	/* Grab the lock and see if the device is available */
2534	nand_get_device(chip, mtd, FL_ERASING);
2535
2536	/* Shift to get first page */
2537	page = (int)(instr->addr >> chip->page_shift);
2538	chipnr = (int)(instr->addr >> chip->chip_shift);
2539
2540	/* Calculate pages in each block */
2541	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2542
2543	/* Select the NAND device */
2544	chip->select_chip(mtd, chipnr);
2545
2546	/* Check, if it is write protected */
2547	if (nand_check_wp(mtd)) {
2548		DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
2549					__func__);
2550		instr->state = MTD_ERASE_FAILED;
2551		goto erase_exit;
2552	}
2553
2554	/*
2555	 * If BBT requires refresh, set the BBT page mask to see if the BBT
2556	 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2557	 * can not be matched. This is also done when the bbt is actually
2558	 * erased to avoid recusrsive updates
2559	 */
2560	if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2561		bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2562
2563	/* Loop through the pages */
2564	len = instr->len;
2565
2566	instr->state = MTD_ERASING;
2567
2568	while (len) {
2569		/*
2570		 * heck if we have a bad block, we do not erase bad blocks !
2571		 */
2572		if (nand_block_checkbad(mtd, ((loff_t) page) <<
2573					chip->page_shift, 0, allowbbt)) {
2574			printk(KERN_WARNING "%s: attempt to erase a bad block "
2575					"at page 0x%08x\n", __func__, page);
2576			instr->state = MTD_ERASE_FAILED;
2577			goto erase_exit;
2578		}
2579
2580		/*
2581		 * Invalidate the page cache, if we erase the block which
2582		 * contains the current cached page
2583		 */
2584		if (page <= chip->pagebuf && chip->pagebuf <
2585		    (page + pages_per_block))
2586			chip->pagebuf = -1;
2587
2588		chip->erase_cmd(mtd, page & chip->pagemask);
2589
2590		status = chip->waitfunc(mtd, chip);
2591
2592		/*
2593		 * See if operation failed and additional status checks are
2594		 * available
2595		 */
2596		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2597			status = chip->errstat(mtd, chip, FL_ERASING,
2598					       status, page);
2599
2600		/* See if block erase succeeded */
2601		if (status & NAND_STATUS_FAIL) {
2602			DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, "
2603					"page 0x%08x\n", __func__, page);
2604			instr->state = MTD_ERASE_FAILED;
2605			instr->fail_addr =
2606				((loff_t)page << chip->page_shift);
2607			goto erase_exit;
2608		}
2609
2610		/*
2611		 * If BBT requires refresh, set the BBT rewrite flag to the
2612		 * page being erased
2613		 */
2614		if (bbt_masked_page != 0xffffffff &&
2615		    (page & BBT_PAGE_MASK) == bbt_masked_page)
2616			    rewrite_bbt[chipnr] =
2617					((loff_t)page << chip->page_shift);
2618
2619		/* Increment page address and decrement length */
2620		len -= (1 << chip->phys_erase_shift);
2621		page += pages_per_block;
2622
2623		/* Check, if we cross a chip boundary */
2624		if (len && !(page & chip->pagemask)) {
2625			chipnr++;
2626			chip->select_chip(mtd, -1);
2627			chip->select_chip(mtd, chipnr);
2628
2629			/*
2630			 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2631			 * page mask to see if this BBT should be rewritten
2632			 */
2633			if (bbt_masked_page != 0xffffffff &&
2634			    (chip->bbt_td->options & NAND_BBT_PERCHIP))
2635				bbt_masked_page = chip->bbt_td->pages[chipnr] &
2636					BBT_PAGE_MASK;
2637		}
2638	}
2639	instr->state = MTD_ERASE_DONE;
2640
2641erase_exit:
2642
2643	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2644
2645	/* Deselect and wake up anyone waiting on the device */
2646	nand_release_device(mtd);
2647
2648	/* Do call back function */
2649	if (!ret)
2650		mtd_erase_callback(instr);
2651
2652	/*
2653	 * If BBT requires refresh and erase was successful, rewrite any
2654	 * selected bad block tables
2655	 */
2656	if (bbt_masked_page == 0xffffffff || ret)
2657		return ret;
2658
2659	for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2660		if (!rewrite_bbt[chipnr])
2661			continue;
2662		/* update the BBT for chip */
2663		DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt "
2664			"(%d:0x%0llx 0x%0x)\n", __func__, chipnr,
2665			rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]);
2666		nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2667	}
2668
2669	/* Return more or less happy */
2670	return ret;
2671}
2672
2673/**
2674 * nand_sync - [MTD Interface] sync
2675 * @mtd:	MTD device structure
2676 *
2677 * Sync is actually a wait for chip ready function
2678 */
2679static void nand_sync(struct mtd_info *mtd)
2680{
2681	struct nand_chip *chip = mtd->priv;
2682
2683	DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2684
2685	/* Grab the lock and see if the device is available */
2686	nand_get_device(chip, mtd, FL_SYNCING);
2687	/* Release it and go back */
2688	nand_release_device(mtd);
2689}
2690
2691/**
2692 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2693 * @mtd:	MTD device structure
2694 * @offs:	offset relative to mtd start
2695 */
2696static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2697{
2698	/* Check for invalid offset */
2699	if (offs > mtd->size)
2700		return -EINVAL;
2701
2702	return nand_block_checkbad(mtd, offs, 1, 0);
2703}
2704
2705/**
2706 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2707 * @mtd:	MTD device structure
2708 * @ofs:	offset relative to mtd start
2709 */
2710static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2711{
2712	struct nand_chip *chip = mtd->priv;
2713	int ret;
2714
2715	ret = nand_block_isbad(mtd, ofs);
2716	if (ret) {
2717		/* If it was bad already, return success and do nothing. */
2718		if (ret > 0)
2719			return 0;
2720		return ret;
2721	}
2722
2723	return chip->block_markbad(mtd, ofs);
2724}
2725
2726/**
2727 * nand_suspend - [MTD Interface] Suspend the NAND flash
2728 * @mtd:	MTD device structure
2729 */
2730static int nand_suspend(struct mtd_info *mtd)
2731{
2732	struct nand_chip *chip = mtd->priv;
2733
2734	return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2735}
2736
2737/**
2738 * nand_resume - [MTD Interface] Resume the NAND flash
2739 * @mtd:	MTD device structure
2740 */
2741static void nand_resume(struct mtd_info *mtd)
2742{
2743	struct nand_chip *chip = mtd->priv;
2744
2745	if (chip->state == FL_PM_SUSPENDED)
2746		nand_release_device(mtd);
2747	else
2748		printk(KERN_ERR "%s called for a chip which is not "
2749		       "in suspended state\n", __func__);
2750}
2751
2752/*
2753 * Set default functions
2754 */
2755static void nand_set_defaults(struct nand_chip *chip, int busw)
2756{
2757	/* check for proper chip_delay setup, set 20us if not */
2758	if (!chip->chip_delay)
2759		chip->chip_delay = 20;
2760
2761	/* check, if a user supplied command function given */
2762	if (chip->cmdfunc == NULL)
2763		chip->cmdfunc = nand_command;
2764
2765	/* check, if a user supplied wait function given */
2766	if (chip->waitfunc == NULL)
2767		chip->waitfunc = nand_wait;
2768
2769	if (!chip->select_chip)
2770		chip->select_chip = nand_select_chip;
2771	if (!chip->read_byte)
2772		chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2773	if (!chip->read_word)
2774		chip->read_word = nand_read_word;
2775	if (!chip->block_bad)
2776		chip->block_bad = nand_block_bad;
2777	if (!chip->block_markbad)
2778		chip->block_markbad = nand_default_block_markbad;
2779	if (!chip->write_buf)
2780		chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2781	if (!chip->read_buf)
2782		chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2783	if (!chip->verify_buf)
2784		chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2785	if (!chip->scan_bbt)
2786		chip->scan_bbt = nand_default_bbt;
2787
2788	if (!chip->controller) {
2789		chip->controller = &chip->hwcontrol;
2790		spin_lock_init(&chip->controller->lock);
2791		init_waitqueue_head(&chip->controller->wq);
2792	}
2793
2794}
2795
2796/*
2797 * sanitize ONFI strings so we can safely print them
2798 */
2799static void sanitize_string(uint8_t *s, size_t len)
2800{
2801	ssize_t i;
2802
2803	/* null terminate */
2804	s[len - 1] = 0;
2805
2806	/* remove non printable chars */
2807	for (i = 0; i < len - 1; i++) {
2808		if (s[i] < ' ' || s[i] > 127)
2809			s[i] = '?';
2810	}
2811
2812	/* remove trailing spaces */
2813	strim(s);
2814}
2815
2816static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2817{
2818	int i;
2819	while (len--) {
2820		crc ^= *p++ << 8;
2821		for (i = 0; i < 8; i++)
2822			crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2823	}
2824
2825	return crc;
2826}
2827
2828/*
2829 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise
2830 */
2831static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2832					int busw)
2833{
2834	struct nand_onfi_params *p = &chip->onfi_params;
2835	int i;
2836	int val;
2837
2838	/* try ONFI for unknow chip or LP */
2839	chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2840	if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2841		chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2842		return 0;
2843
2844	printk(KERN_INFO "ONFI flash detected\n");
2845	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2846	for (i = 0; i < 3; i++) {
2847		chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2848		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2849				le16_to_cpu(p->crc)) {
2850			printk(KERN_INFO "ONFI param page %d valid\n", i);
2851			break;
2852		}
2853	}
2854
2855	if (i == 3)
2856		return 0;
2857
2858	/* check version */
2859	val = le16_to_cpu(p->revision);
2860	if (val & (1 << 5))
2861		chip->onfi_version = 23;
2862	else if (val & (1 << 4))
2863		chip->onfi_version = 22;
2864	else if (val & (1 << 3))
2865		chip->onfi_version = 21;
2866	else if (val & (1 << 2))
2867		chip->onfi_version = 20;
2868	else if (val & (1 << 1))
2869		chip->onfi_version = 10;
2870	else
2871		chip->onfi_version = 0;
2872
2873	if (!chip->onfi_version) {
2874		printk(KERN_INFO "%s: unsupported ONFI version: %d\n",
2875								__func__, val);
2876		return 0;
2877	}
2878
2879	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2880	sanitize_string(p->model, sizeof(p->model));
2881	if (!mtd->name)
2882		mtd->name = p->model;
2883	mtd->writesize = le32_to_cpu(p->byte_per_page);
2884	mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2885	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2886	chip->chipsize = (uint64_t)le32_to_cpu(p->blocks_per_lun) * mtd->erasesize;
2887	busw = 0;
2888	if (le16_to_cpu(p->features) & 1)
2889		busw = NAND_BUSWIDTH_16;
2890
2891	chip->options &= ~NAND_CHIPOPTIONS_MSK;
2892	chip->options |= (NAND_NO_READRDY |
2893			NAND_NO_AUTOINCR) & NAND_CHIPOPTIONS_MSK;
2894
2895	return 1;
2896}
2897
2898/*
2899 * Get the flash and manufacturer id and lookup if the type is supported
2900 */
2901static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2902						  struct nand_chip *chip,
2903						  int busw,
2904						  int *maf_id, int *dev_id,
2905						  struct nand_flash_dev *type)
2906{
2907	int i, maf_idx;
2908	u8 id_data[8];
2909	int ret;
2910
2911	/* Select the device */
2912	chip->select_chip(mtd, 0);
2913
2914	/*
2915	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2916	 * after power-up
2917	 */
2918	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2919
2920	/* Send the command for reading device ID */
2921	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2922
2923	/* Read manufacturer and device IDs */
2924	*maf_id = chip->read_byte(mtd);
2925	*dev_id = chip->read_byte(mtd);
2926
2927	/* Try again to make sure, as some systems the bus-hold or other
2928	 * interface concerns can cause random data which looks like a
2929	 * possibly credible NAND flash to appear. If the two results do
2930	 * not match, ignore the device completely.
2931	 */
2932
2933	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2934
2935	for (i = 0; i < 2; i++)
2936		id_data[i] = chip->read_byte(mtd);
2937
2938	if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
2939		printk(KERN_INFO "%s: second ID read did not match "
2940		       "%02x,%02x against %02x,%02x\n", __func__,
2941		       *maf_id, *dev_id, id_data[0], id_data[1]);
2942		return ERR_PTR(-ENODEV);
2943	}
2944
2945	if (!type)
2946		type = nand_flash_ids;
2947
2948	for (; type->name != NULL; type++)
2949		if (*dev_id == type->id)
2950			break;
2951
2952	chip->onfi_version = 0;
2953	if (!type->name || !type->pagesize) {
2954		/* Check is chip is ONFI compliant */
2955		ret = nand_flash_detect_onfi(mtd, chip, busw);
2956		if (ret)
2957			goto ident_done;
2958	}
2959
2960	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2961
2962	/* Read entire ID string */
2963
2964	for (i = 0; i < 8; i++)
2965		id_data[i] = chip->read_byte(mtd);
2966
2967	if (!type->name)
2968		return ERR_PTR(-ENODEV);
2969
2970	if (!mtd->name)
2971		mtd->name = type->name;
2972
2973	chip->chipsize = (uint64_t)type->chipsize << 20;
2974
2975	if (!type->pagesize && chip->init_size) {
2976		/* set the pagesize, oobsize, erasesize by the driver*/
2977		busw = chip->init_size(mtd, chip, id_data);
2978	} else if (!type->pagesize) {
2979		int extid;
2980		/* The 3rd id byte holds MLC / multichip data */
2981		chip->cellinfo = id_data[2];
2982		/* The 4th id byte is the important one */
2983		extid = id_data[3];
2984
2985		/*
2986		 * Field definitions are in the following datasheets:
2987		 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2988		 * New style   (6 byte ID): Samsung K9GBG08U0M (p.40)
2989		 *
2990		 * Check for wraparound + Samsung ID + nonzero 6th byte
2991		 * to decide what to do.
2992		 */
2993		if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
2994				id_data[0] == NAND_MFR_SAMSUNG &&
2995				(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
2996				id_data[5] != 0x00) {
2997			/* Calc pagesize */
2998			mtd->writesize = 2048 << (extid & 0x03);
2999			extid >>= 2;
3000			/* Calc oobsize */
3001			switch (extid & 0x03) {
3002			case 1:
3003				mtd->oobsize = 128;
3004				break;
3005			case 2:
3006				mtd->oobsize = 218;
3007				break;
3008			case 3:
3009				mtd->oobsize = 400;
3010				break;
3011			default:
3012				mtd->oobsize = 436;
3013				break;
3014			}
3015			extid >>= 2;
3016			/* Calc blocksize */
3017			mtd->erasesize = (128 * 1024) <<
3018				(((extid >> 1) & 0x04) | (extid & 0x03));
3019			busw = 0;
3020		} else {
3021			/* Calc pagesize */
3022			mtd->writesize = 1024 << (extid & 0x03);
3023			extid >>= 2;
3024			/* Calc oobsize */
3025			mtd->oobsize = (8 << (extid & 0x01)) *
3026				(mtd->writesize >> 9);
3027			extid >>= 2;
3028			/* Calc blocksize. Blocksize is multiples of 64KiB */
3029			mtd->erasesize = (64 * 1024) << (extid & 0x03);
3030			extid >>= 2;
3031			/* Get buswidth information */
3032			busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3033		}
3034	} else {
3035		/*
3036		 * Old devices have chip data hardcoded in the device id table
3037		 */
3038		mtd->erasesize = type->erasesize;
3039		mtd->writesize = type->pagesize;
3040		mtd->oobsize = mtd->writesize / 32;
3041		busw = type->options & NAND_BUSWIDTH_16;
3042
3043		/*
3044		 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3045		 * some Spansion chips have erasesize that conflicts with size
3046		 * listed in nand_ids table
3047		 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3048		 */
3049		if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 &&
3050				id_data[5] == 0x00 && id_data[6] == 0x00 &&
3051				id_data[7] == 0x00 && mtd->writesize == 512) {
3052			mtd->erasesize = 128 * 1024;
3053			mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3054		}
3055	}
3056	/* Get chip options, preserve non chip based options */
3057	chip->options &= ~NAND_CHIPOPTIONS_MSK;
3058	chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
3059
3060	/* Check if chip is a not a samsung device. Do not clear the
3061	 * options for chips which are not having an extended id.
3062	 */
3063	if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3064		chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3065ident_done:
3066
3067	/*
3068	 * Set chip as a default. Board drivers can override it, if necessary
3069	 */
3070	chip->options |= NAND_NO_AUTOINCR;
3071
3072	/* Try to identify manufacturer */
3073	for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3074		if (nand_manuf_ids[maf_idx].id == *maf_id)
3075			break;
3076	}
3077
3078	/*
3079	 * Check, if buswidth is correct. Hardware drivers should set
3080	 * chip correct !
3081	 */
3082	if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3083		printk(KERN_INFO "NAND device: Manufacturer ID:"
3084		       " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3085		       *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3086		printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
3087		       (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3088		       busw ? 16 : 8);
3089		return ERR_PTR(-EINVAL);
3090	}
3091
3092	/* Calculate the address shift from the page size */
3093	chip->page_shift = ffs(mtd->writesize) - 1;
3094	/* Convert chipsize to number of pages per chip -1. */
3095	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3096
3097	chip->bbt_erase_shift = chip->phys_erase_shift =
3098		ffs(mtd->erasesize) - 1;
3099	if (chip->chipsize & 0xffffffff)
3100		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3101	else {
3102		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3103		chip->chip_shift += 32 - 1;
3104	}
3105
3106	chip->badblockbits = 8;
3107
3108	/* Set the bad block position */
3109	if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
3110		chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3111	else
3112		chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3113
3114	/*
3115	 * Bad block marker is stored in the last page of each block
3116	 * on Samsung and Hynix MLC devices; stored in first two pages
3117	 * of each block on Micron devices with 2KiB pages and on
3118	 * SLC Samsung, Hynix, Toshiba and AMD/Spansion. All others scan
3119	 * only the first page.
3120	 */
3121	if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3122			(*maf_id == NAND_MFR_SAMSUNG ||
3123			 *maf_id == NAND_MFR_HYNIX))
3124		chip->options |= NAND_BBT_SCANLASTPAGE;
3125	else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3126				(*maf_id == NAND_MFR_SAMSUNG ||
3127				 *maf_id == NAND_MFR_HYNIX ||
3128				 *maf_id == NAND_MFR_TOSHIBA ||
3129				 *maf_id == NAND_MFR_AMD)) ||
3130			(mtd->writesize == 2048 &&
3131			 *maf_id == NAND_MFR_MICRON))
3132		chip->options |= NAND_BBT_SCAN2NDPAGE;
3133
3134	/*
3135	 * Numonyx/ST 2K pages, x8 bus use BOTH byte 1 and 6
3136	 */
3137	if (!(busw & NAND_BUSWIDTH_16) &&
3138			*maf_id == NAND_MFR_STMICRO &&
3139			mtd->writesize == 2048) {
3140		chip->options |= NAND_BBT_SCANBYTE1AND6;
3141		chip->badblockpos = 0;
3142	}
3143
3144	/* Check for AND chips with 4 page planes */
3145	if (chip->options & NAND_4PAGE_ARRAY)
3146		chip->erase_cmd = multi_erase_cmd;
3147	else
3148		chip->erase_cmd = single_erase_cmd;
3149
3150	/* Do not replace user supplied command function ! */
3151	if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3152		chip->cmdfunc = nand_command_lp;
3153
3154	/* TODO onfi flash name */
3155	printk(KERN_INFO "NAND device: Manufacturer ID:"
3156		" 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, *dev_id,
3157		nand_manuf_ids[maf_idx].name,
3158		chip->onfi_version ? chip->onfi_params.model : type->name);
3159
3160	return type;
3161}
3162
3163/**
3164 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3165 * @mtd:	     MTD device structure
3166 * @maxchips:	     Number of chips to scan for
3167 * @table:	     Alternative NAND ID table
3168 *
3169 * This is the first phase of the normal nand_scan() function. It
3170 * reads the flash ID and sets up MTD fields accordingly.
3171 *
3172 * The mtd->owner field must be set to the module of the caller.
3173 */
3174int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3175		    struct nand_flash_dev *table)
3176{
3177	int i, busw, nand_maf_id, nand_dev_id;
3178	struct nand_chip *chip = mtd->priv;
3179	struct nand_flash_dev *type;
3180
3181	/* Get buswidth to select the correct functions */
3182	busw = chip->options & NAND_BUSWIDTH_16;
3183	/* Set the default functions */
3184	nand_set_defaults(chip, busw);
3185
3186	/* Read the flash type */
3187	type = nand_get_flash_type(mtd, chip, busw,
3188				&nand_maf_id, &nand_dev_id, table);
3189
3190	if (IS_ERR(type)) {
3191		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3192			printk(KERN_WARNING "No NAND device found.\n");
3193		chip->select_chip(mtd, -1);
3194		return PTR_ERR(type);
3195	}
3196
3197	/* Check for a chip array */
3198	for (i = 1; i < maxchips; i++) {
3199		chip->select_chip(mtd, i);
3200		/* See comment in nand_get_flash_type for reset */
3201		chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3202		/* Send the command for reading device ID */
3203		chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3204		/* Read manufacturer and device IDs */
3205		if (nand_maf_id != chip->read_byte(mtd) ||
3206		    nand_dev_id != chip->read_byte(mtd))
3207			break;
3208	}
3209	if (i > 1)
3210		printk(KERN_INFO "%d NAND chips detected\n", i);
3211
3212	/* Store the number of chips and calc total size for mtd */
3213	chip->numchips = i;
3214	mtd->size = i * chip->chipsize;
3215
3216	return 0;
3217}
3218EXPORT_SYMBOL(nand_scan_ident);
3219
3220
3221/**
3222 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3223 * @mtd:	    MTD device structure
3224 *
3225 * This is the second phase of the normal nand_scan() function. It
3226 * fills out all the uninitialized function pointers with the defaults
3227 * and scans for a bad block table if appropriate.
3228 */
3229int nand_scan_tail(struct mtd_info *mtd)
3230{
3231	int i;
3232	struct nand_chip *chip = mtd->priv;
3233
3234	if (!(chip->options & NAND_OWN_BUFFERS))
3235		chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3236	if (!chip->buffers)
3237		return -ENOMEM;
3238
3239	/* Set the internal oob buffer location, just after the page data */
3240	chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3241
3242	/*
3243	 * If no default placement scheme is given, select an appropriate one
3244	 */
3245	if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
3246		switch (mtd->oobsize) {
3247		case 8:
3248			chip->ecc.layout = &nand_oob_8;
3249			break;
3250		case 16:
3251			chip->ecc.layout = &nand_oob_16;
3252			break;
3253		case 64:
3254			chip->ecc.layout = &nand_oob_64;
3255			break;
3256		case 128:
3257			chip->ecc.layout = &nand_oob_128;
3258			break;
3259		default:
3260			printk(KERN_WARNING "No oob scheme defined for "
3261			       "oobsize %d\n", mtd->oobsize);
3262			BUG();
3263		}
3264	}
3265
3266	if (!chip->write_page)
3267		chip->write_page = nand_write_page;
3268
3269	/*
3270	 * check ECC mode, default to software if 3byte/512byte hardware ECC is
3271	 * selected and we have 256 byte pagesize fallback to software ECC
3272	 */
3273
3274	switch (chip->ecc.mode) {
3275	case NAND_ECC_HW_OOB_FIRST:
3276		/* Similar to NAND_ECC_HW, but a separate read_page handle */
3277		if (!chip->ecc.calculate || !chip->ecc.correct ||
3278		     !chip->ecc.hwctl) {
3279			printk(KERN_WARNING "No ECC functions supplied; "
3280			       "Hardware ECC not possible\n");
3281			BUG();
3282		}
3283		if (!chip->ecc.read_page)
3284			chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3285
3286	case NAND_ECC_HW:
3287		/* Use standard hwecc read page function ? */
3288		if (!chip->ecc.read_page)
3289			chip->ecc.read_page = nand_read_page_hwecc;
3290		if (!chip->ecc.write_page)
3291			chip->ecc.write_page = nand_write_page_hwecc;
3292		if (!chip->ecc.read_page_raw)
3293			chip->ecc.read_page_raw = nand_read_page_raw;
3294		if (!chip->ecc.write_page_raw)
3295			chip->ecc.write_page_raw = nand_write_page_raw;
3296		if (!chip->ecc.read_oob)
3297			chip->ecc.read_oob = nand_read_oob_std;
3298		if (!chip->ecc.write_oob)
3299			chip->ecc.write_oob = nand_write_oob_std;
3300
3301	case NAND_ECC_HW_SYNDROME:
3302		if ((!chip->ecc.calculate || !chip->ecc.correct ||
3303		     !chip->ecc.hwctl) &&
3304		    (!chip->ecc.read_page ||
3305		     chip->ecc.read_page == nand_read_page_hwecc ||
3306		     !chip->ecc.write_page ||
3307		     chip->ecc.write_page == nand_write_page_hwecc)) {
3308			printk(KERN_WARNING "No ECC functions supplied; "
3309			       "Hardware ECC not possible\n");
3310			BUG();
3311		}
3312		/* Use standard syndrome read/write page function ? */
3313		if (!chip->ecc.read_page)
3314			chip->ecc.read_page = nand_read_page_syndrome;
3315		if (!chip->ecc.write_page)
3316			chip->ecc.write_page = nand_write_page_syndrome;
3317		if (!chip->ecc.read_page_raw)
3318			chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3319		if (!chip->ecc.write_page_raw)
3320			chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3321		if (!chip->ecc.read_oob)
3322			chip->ecc.read_oob = nand_read_oob_syndrome;
3323		if (!chip->ecc.write_oob)
3324			chip->ecc.write_oob = nand_write_oob_syndrome;
3325
3326		if (mtd->writesize >= chip->ecc.size)
3327			break;
3328		printk(KERN_WARNING "%d byte HW ECC not possible on "
3329		       "%d byte page size, fallback to SW ECC\n",
3330		       chip->ecc.size, mtd->writesize);
3331		chip->ecc.mode = NAND_ECC_SOFT;
3332
3333	case NAND_ECC_SOFT:
3334		chip->ecc.calculate = nand_calculate_ecc;
3335		chip->ecc.correct = nand_correct_data;
3336		chip->ecc.read_page = nand_read_page_swecc;
3337		chip->ecc.read_subpage = nand_read_subpage;
3338		chip->ecc.write_page = nand_write_page_swecc;
3339		chip->ecc.read_page_raw = nand_read_page_raw;
3340		chip->ecc.write_page_raw = nand_write_page_raw;
3341		chip->ecc.read_oob = nand_read_oob_std;
3342		chip->ecc.write_oob = nand_write_oob_std;
3343		if (!chip->ecc.size)
3344			chip->ecc.size = 256;
3345		chip->ecc.bytes = 3;
3346		break;
3347
3348	case NAND_ECC_SOFT_BCH:
3349		if (!mtd_nand_has_bch()) {
3350			printk(KERN_WARNING "CONFIG_MTD_ECC_BCH not enabled\n");
3351			BUG();
3352		}
3353		chip->ecc.calculate = nand_bch_calculate_ecc;
3354		chip->ecc.correct = nand_bch_correct_data;
3355		chip->ecc.read_page = nand_read_page_swecc;
3356		chip->ecc.read_subpage = nand_read_subpage;
3357		chip->ecc.write_page = nand_write_page_swecc;
3358		chip->ecc.read_page_raw = nand_read_page_raw;
3359		chip->ecc.write_page_raw = nand_write_page_raw;
3360		chip->ecc.read_oob = nand_read_oob_std;
3361		chip->ecc.write_oob = nand_write_oob_std;
3362		/*
3363		 * Board driver should supply ecc.size and ecc.bytes values to
3364		 * select how many bits are correctable; see nand_bch_init()
3365		 * for details.
3366		 * Otherwise, default to 4 bits for large page devices
3367		 */
3368		if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3369			chip->ecc.size = 512;
3370			chip->ecc.bytes = 7;
3371		}
3372		chip->ecc.priv = nand_bch_init(mtd,
3373					       chip->ecc.size,
3374					       chip->ecc.bytes,
3375					       &chip->ecc.layout);
3376		if (!chip->ecc.priv) {
3377			printk(KERN_WARNING "BCH ECC initialization failed!\n");
3378			BUG();
3379		}
3380		break;
3381
3382	case NAND_ECC_NONE:
3383		printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
3384		       "This is not recommended !!\n");
3385		chip->ecc.read_page = nand_read_page_raw;
3386		chip->ecc.write_page = nand_write_page_raw;
3387		chip->ecc.read_oob = nand_read_oob_std;
3388		chip->ecc.read_page_raw = nand_read_page_raw;
3389		chip->ecc.write_page_raw = nand_write_page_raw;
3390		chip->ecc.write_oob = nand_write_oob_std;
3391		chip->ecc.size = mtd->writesize;
3392		chip->ecc.bytes = 0;
3393		break;
3394
3395	default:
3396		printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
3397		       chip->ecc.mode);
3398		BUG();
3399	}
3400
3401	/*
3402	 * The number of bytes available for a client to place data into
3403	 * the out of band area
3404	 */
3405	chip->ecc.layout->oobavail = 0;
3406	for (i = 0; chip->ecc.layout->oobfree[i].length
3407			&& i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3408		chip->ecc.layout->oobavail +=
3409			chip->ecc.layout->oobfree[i].length;
3410	mtd->oobavail = chip->ecc.layout->oobavail;
3411
3412	/*
3413	 * Set the number of read / write steps for one page depending on ECC
3414	 * mode
3415	 */
3416	chip->ecc.steps = mtd->writesize / chip->ecc.size;
3417	if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3418		printk(KERN_WARNING "Invalid ecc parameters\n");
3419		BUG();
3420	}
3421	chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3422
3423	/*
3424	 * Allow subpage writes up to ecc.steps. Not possible for MLC
3425	 * FLASH.
3426	 */
3427	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3428	    !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3429		switch (chip->ecc.steps) {
3430		case 2:
3431			mtd->subpage_sft = 1;
3432			break;
3433		case 4:
3434		case 8:
3435		case 16:
3436			mtd->subpage_sft = 2;
3437			break;
3438		}
3439	}
3440	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3441
3442	/* Initialize state */
3443	chip->state = FL_READY;
3444
3445	/* De-select the device */
3446	chip->select_chip(mtd, -1);
3447
3448	/* Invalidate the pagebuffer reference */
3449	chip->pagebuf = -1;
3450
3451	/* Fill in remaining MTD driver data */
3452	mtd->type = MTD_NANDFLASH;
3453	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3454						MTD_CAP_NANDFLASH;
3455	mtd->erase = nand_erase;
3456	mtd->point = NULL;
3457	mtd->unpoint = NULL;
3458	mtd->read = nand_read;
3459	mtd->write = nand_write;
3460	mtd->panic_write = panic_nand_write;
3461	mtd->read_oob = nand_read_oob;
3462	mtd->write_oob = nand_write_oob;
3463	mtd->sync = nand_sync;
3464	mtd->lock = NULL;
3465	mtd->unlock = NULL;
3466	mtd->suspend = nand_suspend;
3467	mtd->resume = nand_resume;
3468	mtd->block_isbad = nand_block_isbad;
3469	mtd->block_markbad = nand_block_markbad;
3470	mtd->writebufsize = mtd->writesize;
3471
3472	/* propagate ecc.layout to mtd_info */
3473	mtd->ecclayout = chip->ecc.layout;
3474
3475	/* Check, if we should skip the bad block table scan */
3476	if (chip->options & NAND_SKIP_BBTSCAN)
3477		return 0;
3478
3479	/* Build bad block table */
3480	return chip->scan_bbt(mtd);
3481}
3482EXPORT_SYMBOL(nand_scan_tail);
3483
3484/* is_module_text_address() isn't exported, and it's mostly a pointless
3485 * test if this is a module _anyway_ -- they'd have to try _really_ hard
3486 * to call us from in-kernel code if the core NAND support is modular. */
3487#ifdef MODULE
3488#define caller_is_module() (1)
3489#else
3490#define caller_is_module() \
3491	is_module_text_address((unsigned long)__builtin_return_address(0))
3492#endif
3493
3494/**
3495 * nand_scan - [NAND Interface] Scan for the NAND device
3496 * @mtd:	MTD device structure
3497 * @maxchips:	Number of chips to scan for
3498 *
3499 * This fills out all the uninitialized function pointers
3500 * with the defaults.
3501 * The flash ID is read and the mtd/chip structures are
3502 * filled with the appropriate values.
3503 * The mtd->owner field must be set to the module of the caller
3504 *
3505 */
3506int nand_scan(struct mtd_info *mtd, int maxchips)
3507{
3508	int ret;
3509
3510	/* Many callers got this wrong, so check for it for a while... */
3511	if (!mtd->owner && caller_is_module()) {
3512		printk(KERN_CRIT "%s called with NULL mtd->owner!\n",
3513				__func__);
3514		BUG();
3515	}
3516
3517	ret = nand_scan_ident(mtd, maxchips, NULL);
3518	if (!ret)
3519		ret = nand_scan_tail(mtd);
3520	return ret;
3521}
3522EXPORT_SYMBOL(nand_scan);
3523
3524/**
3525 * nand_release - [NAND Interface] Free resources held by the NAND device
3526 * @mtd:	MTD device structure
3527*/
3528void nand_release(struct mtd_info *mtd)
3529{
3530	struct nand_chip *chip = mtd->priv;
3531
3532	if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3533		nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3534
3535	mtd_device_unregister(mtd);
3536
3537	/* Free bad block table memory */
3538	kfree(chip->bbt);
3539	if (!(chip->options & NAND_OWN_BUFFERS))
3540		kfree(chip->buffers);
3541
3542	/* Free bad block descriptor memory */
3543	if (chip->badblock_pattern && chip->badblock_pattern->options
3544			& NAND_BBT_DYNAMICSTRUCT)
3545		kfree(chip->badblock_pattern);
3546}
3547EXPORT_SYMBOL_GPL(nand_release);
3548
3549static int __init nand_base_init(void)
3550{
3551	led_trigger_register_simple("nand-disk", &nand_led_trigger);
3552	return 0;
3553}
3554
3555static void __exit nand_base_exit(void)
3556{
3557	led_trigger_unregister_simple(nand_led_trigger);
3558}
3559
3560module_init(nand_base_init);
3561module_exit(nand_base_exit);
3562
3563MODULE_LICENSE("GPL");
3564MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3565MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3566MODULE_DESCRIPTION("Generic NAND flash driver code");