Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
   1/*
   2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
   3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version 2
   8 * of the License, or (at your option) any later version.
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
  17 * MA 02110-1301, USA.
  18 */
  19
  20#include <linux/delay.h>
  21#include <linux/slab.h>
  22#include <linux/init.h>
  23#include <linux/module.h>
  24#include <linux/mtd/mtd.h>
  25#include <linux/mtd/nand.h>
  26#include <linux/mtd/partitions.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/platform_device.h>
  30#include <linux/clk.h>
  31#include <linux/err.h>
  32#include <linux/io.h>
  33#include <linux/irq.h>
  34#include <linux/completion.h>
  35
  36#include <asm/mach/flash.h>
  37#include <mach/mxc_nand.h>
  38#include <mach/hardware.h>
  39
  40#define DRIVER_NAME "mxc_nand"
  41
  42#define nfc_is_v21()		(cpu_is_mx25() || cpu_is_mx35())
  43#define nfc_is_v1()		(cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21())
  44#define nfc_is_v3_2()		cpu_is_mx51()
  45#define nfc_is_v3()		nfc_is_v3_2()
  46
  47/* Addresses for NFC registers */
  48#define NFC_V1_V2_BUF_SIZE		(host->regs + 0x00)
  49#define NFC_V1_V2_BUF_ADDR		(host->regs + 0x04)
  50#define NFC_V1_V2_FLASH_ADDR		(host->regs + 0x06)
  51#define NFC_V1_V2_FLASH_CMD		(host->regs + 0x08)
  52#define NFC_V1_V2_CONFIG		(host->regs + 0x0a)
  53#define NFC_V1_V2_ECC_STATUS_RESULT	(host->regs + 0x0c)
  54#define NFC_V1_V2_RSLTMAIN_AREA		(host->regs + 0x0e)
  55#define NFC_V1_V2_RSLTSPARE_AREA	(host->regs + 0x10)
  56#define NFC_V1_V2_WRPROT		(host->regs + 0x12)
  57#define NFC_V1_UNLOCKSTART_BLKADDR	(host->regs + 0x14)
  58#define NFC_V1_UNLOCKEND_BLKADDR	(host->regs + 0x16)
  59#define NFC_V21_UNLOCKSTART_BLKADDR0	(host->regs + 0x20)
  60#define NFC_V21_UNLOCKSTART_BLKADDR1	(host->regs + 0x24)
  61#define NFC_V21_UNLOCKSTART_BLKADDR2	(host->regs + 0x28)
  62#define NFC_V21_UNLOCKSTART_BLKADDR3	(host->regs + 0x2c)
  63#define NFC_V21_UNLOCKEND_BLKADDR0	(host->regs + 0x22)
  64#define NFC_V21_UNLOCKEND_BLKADDR1	(host->regs + 0x26)
  65#define NFC_V21_UNLOCKEND_BLKADDR2	(host->regs + 0x2a)
  66#define NFC_V21_UNLOCKEND_BLKADDR3	(host->regs + 0x2e)
  67#define NFC_V1_V2_NF_WRPRST		(host->regs + 0x18)
  68#define NFC_V1_V2_CONFIG1		(host->regs + 0x1a)
  69#define NFC_V1_V2_CONFIG2		(host->regs + 0x1c)
  70
  71#define NFC_V2_CONFIG1_ECC_MODE_4	(1 << 0)
  72#define NFC_V1_V2_CONFIG1_SP_EN		(1 << 2)
  73#define NFC_V1_V2_CONFIG1_ECC_EN	(1 << 3)
  74#define NFC_V1_V2_CONFIG1_INT_MSK	(1 << 4)
  75#define NFC_V1_V2_CONFIG1_BIG		(1 << 5)
  76#define NFC_V1_V2_CONFIG1_RST		(1 << 6)
  77#define NFC_V1_V2_CONFIG1_CE		(1 << 7)
  78#define NFC_V2_CONFIG1_ONE_CYCLE	(1 << 8)
  79#define NFC_V2_CONFIG1_PPB(x)		(((x) & 0x3) << 9)
  80#define NFC_V2_CONFIG1_FP_INT		(1 << 11)
  81
  82#define NFC_V1_V2_CONFIG2_INT		(1 << 15)
  83
  84/*
  85 * Operation modes for the NFC. Valid for v1, v2 and v3
  86 * type controllers.
  87 */
  88#define NFC_CMD				(1 << 0)
  89#define NFC_ADDR			(1 << 1)
  90#define NFC_INPUT			(1 << 2)
  91#define NFC_OUTPUT			(1 << 3)
  92#define NFC_ID				(1 << 4)
  93#define NFC_STATUS			(1 << 5)
  94
  95#define NFC_V3_FLASH_CMD		(host->regs_axi + 0x00)
  96#define NFC_V3_FLASH_ADDR0		(host->regs_axi + 0x04)
  97
  98#define NFC_V3_CONFIG1			(host->regs_axi + 0x34)
  99#define NFC_V3_CONFIG1_SP_EN		(1 << 0)
 100#define NFC_V3_CONFIG1_RBA(x)		(((x) & 0x7 ) << 4)
 101
 102#define NFC_V3_ECC_STATUS_RESULT	(host->regs_axi + 0x38)
 103
 104#define NFC_V3_LAUNCH			(host->regs_axi + 0x40)
 105
 106#define NFC_V3_WRPROT			(host->regs_ip + 0x0)
 107#define NFC_V3_WRPROT_LOCK_TIGHT	(1 << 0)
 108#define NFC_V3_WRPROT_LOCK		(1 << 1)
 109#define NFC_V3_WRPROT_UNLOCK		(1 << 2)
 110#define NFC_V3_WRPROT_BLS_UNLOCK	(2 << 6)
 111
 112#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
 113
 114#define NFC_V3_CONFIG2			(host->regs_ip + 0x24)
 115#define NFC_V3_CONFIG2_PS_512			(0 << 0)
 116#define NFC_V3_CONFIG2_PS_2048			(1 << 0)
 117#define NFC_V3_CONFIG2_PS_4096			(2 << 0)
 118#define NFC_V3_CONFIG2_ONE_CYCLE		(1 << 2)
 119#define NFC_V3_CONFIG2_ECC_EN			(1 << 3)
 120#define NFC_V3_CONFIG2_2CMD_PHASES		(1 << 4)
 121#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0		(1 << 5)
 122#define NFC_V3_CONFIG2_ECC_MODE_8		(1 << 6)
 123#define NFC_V3_CONFIG2_PPB(x)			(((x) & 0x3) << 7)
 124#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)	(((x) & 0x3) << 12)
 125#define NFC_V3_CONFIG2_INT_MSK			(1 << 15)
 126#define NFC_V3_CONFIG2_ST_CMD(x)		(((x) & 0xff) << 24)
 127#define NFC_V3_CONFIG2_SPAS(x)			(((x) & 0xff) << 16)
 128
 129#define NFC_V3_CONFIG3				(host->regs_ip + 0x28)
 130#define NFC_V3_CONFIG3_ADD_OP(x)		(((x) & 0x3) << 0)
 131#define NFC_V3_CONFIG3_FW8			(1 << 3)
 132#define NFC_V3_CONFIG3_SBB(x)			(((x) & 0x7) << 8)
 133#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)	(((x) & 0x7) << 12)
 134#define NFC_V3_CONFIG3_RBB_MODE			(1 << 15)
 135#define NFC_V3_CONFIG3_NO_SDMA			(1 << 20)
 136
 137#define NFC_V3_IPC			(host->regs_ip + 0x2C)
 138#define NFC_V3_IPC_CREQ			(1 << 0)
 139#define NFC_V3_IPC_INT			(1 << 31)
 140
 141#define NFC_V3_DELAY_LINE		(host->regs_ip + 0x34)
 142
 143struct mxc_nand_host {
 144	struct mtd_info		mtd;
 145	struct nand_chip	nand;
 146	struct mtd_partition	*parts;
 147	struct device		*dev;
 148
 149	void			*spare0;
 150	void			*main_area0;
 151
 152	void __iomem		*base;
 153	void __iomem		*regs;
 154	void __iomem		*regs_axi;
 155	void __iomem		*regs_ip;
 156	int			status_request;
 157	struct clk		*clk;
 158	int			clk_act;
 159	int			irq;
 160	int			eccsize;
 161	int			active_cs;
 162
 163	struct completion	op_completion;
 164
 165	uint8_t			*data_buf;
 166	unsigned int		buf_start;
 167	int			spare_len;
 168
 169	void			(*preset)(struct mtd_info *);
 170	void			(*send_cmd)(struct mxc_nand_host *, uint16_t, int);
 171	void			(*send_addr)(struct mxc_nand_host *, uint16_t, int);
 172	void			(*send_page)(struct mtd_info *, unsigned int);
 173	void			(*send_read_id)(struct mxc_nand_host *);
 174	uint16_t		(*get_dev_status)(struct mxc_nand_host *);
 175	int			(*check_int)(struct mxc_nand_host *);
 176	void			(*irq_control)(struct mxc_nand_host *, int);
 177};
 178
 179/* OOB placement block for use with hardware ecc generation */
 180static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
 181	.eccbytes = 5,
 182	.eccpos = {6, 7, 8, 9, 10},
 183	.oobfree = {{0, 5}, {12, 4}, }
 184};
 185
 186static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
 187	.eccbytes = 20,
 188	.eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
 189		   38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
 190	.oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
 191};
 192
 193/* OOB description for 512 byte pages with 16 byte OOB */
 194static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
 195	.eccbytes = 1 * 9,
 196	.eccpos = {
 197		 7,  8,  9, 10, 11, 12, 13, 14, 15
 198	},
 199	.oobfree = {
 200		{.offset = 0, .length = 5}
 201	}
 202};
 203
 204/* OOB description for 2048 byte pages with 64 byte OOB */
 205static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
 206	.eccbytes = 4 * 9,
 207	.eccpos = {
 208		 7,  8,  9, 10, 11, 12, 13, 14, 15,
 209		23, 24, 25, 26, 27, 28, 29, 30, 31,
 210		39, 40, 41, 42, 43, 44, 45, 46, 47,
 211		55, 56, 57, 58, 59, 60, 61, 62, 63
 212	},
 213	.oobfree = {
 214		{.offset = 2, .length = 4},
 215		{.offset = 16, .length = 7},
 216		{.offset = 32, .length = 7},
 217		{.offset = 48, .length = 7}
 218	}
 219};
 220
 221/* OOB description for 4096 byte pages with 128 byte OOB */
 222static struct nand_ecclayout nandv2_hw_eccoob_4k = {
 223	.eccbytes = 8 * 9,
 224	.eccpos = {
 225		7,  8,  9, 10, 11, 12, 13, 14, 15,
 226		23, 24, 25, 26, 27, 28, 29, 30, 31,
 227		39, 40, 41, 42, 43, 44, 45, 46, 47,
 228		55, 56, 57, 58, 59, 60, 61, 62, 63,
 229		71, 72, 73, 74, 75, 76, 77, 78, 79,
 230		87, 88, 89, 90, 91, 92, 93, 94, 95,
 231		103, 104, 105, 106, 107, 108, 109, 110, 111,
 232		119, 120, 121, 122, 123, 124, 125, 126, 127,
 233	},
 234	.oobfree = {
 235		{.offset = 2, .length = 4},
 236		{.offset = 16, .length = 7},
 237		{.offset = 32, .length = 7},
 238		{.offset = 48, .length = 7},
 239		{.offset = 64, .length = 7},
 240		{.offset = 80, .length = 7},
 241		{.offset = 96, .length = 7},
 242		{.offset = 112, .length = 7},
 243	}
 244};
 245
 246static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
 247
 248static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
 249{
 250	struct mxc_nand_host *host = dev_id;
 251
 252	if (!host->check_int(host))
 253		return IRQ_NONE;
 254
 255	host->irq_control(host, 0);
 256
 257	complete(&host->op_completion);
 258
 259	return IRQ_HANDLED;
 260}
 261
 262static int check_int_v3(struct mxc_nand_host *host)
 263{
 264	uint32_t tmp;
 265
 266	tmp = readl(NFC_V3_IPC);
 267	if (!(tmp & NFC_V3_IPC_INT))
 268		return 0;
 269
 270	tmp &= ~NFC_V3_IPC_INT;
 271	writel(tmp, NFC_V3_IPC);
 272
 273	return 1;
 274}
 275
 276static int check_int_v1_v2(struct mxc_nand_host *host)
 277{
 278	uint32_t tmp;
 279
 280	tmp = readw(NFC_V1_V2_CONFIG2);
 281	if (!(tmp & NFC_V1_V2_CONFIG2_INT))
 282		return 0;
 283
 284	if (!cpu_is_mx21())
 285		writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
 286
 287	return 1;
 288}
 289
 290/*
 291 * It has been observed that the i.MX21 cannot read the CONFIG2:INT bit
 292 * if interrupts are masked (CONFIG1:INT_MSK is set). To handle this, the
 293 * driver can enable/disable the irq line rather than simply masking the
 294 * interrupts.
 295 */
 296static void irq_control_mx21(struct mxc_nand_host *host, int activate)
 297{
 298	if (activate)
 299		enable_irq(host->irq);
 300	else
 301		disable_irq_nosync(host->irq);
 302}
 303
 304static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
 305{
 306	uint16_t tmp;
 307
 308	tmp = readw(NFC_V1_V2_CONFIG1);
 309
 310	if (activate)
 311		tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
 312	else
 313		tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
 314
 315	writew(tmp, NFC_V1_V2_CONFIG1);
 316}
 317
 318static void irq_control_v3(struct mxc_nand_host *host, int activate)
 319{
 320	uint32_t tmp;
 321
 322	tmp = readl(NFC_V3_CONFIG2);
 323
 324	if (activate)
 325		tmp &= ~NFC_V3_CONFIG2_INT_MSK;
 326	else
 327		tmp |= NFC_V3_CONFIG2_INT_MSK;
 328
 329	writel(tmp, NFC_V3_CONFIG2);
 330}
 331
 332/* This function polls the NANDFC to wait for the basic operation to
 333 * complete by checking the INT bit of config2 register.
 334 */
 335static void wait_op_done(struct mxc_nand_host *host, int useirq)
 336{
 337	int max_retries = 8000;
 338
 339	if (useirq) {
 340		if (!host->check_int(host)) {
 341			INIT_COMPLETION(host->op_completion);
 342			host->irq_control(host, 1);
 343			wait_for_completion(&host->op_completion);
 344		}
 345	} else {
 346		while (max_retries-- > 0) {
 347			if (host->check_int(host))
 348				break;
 349
 350			udelay(1);
 351		}
 352		if (max_retries < 0)
 353			DEBUG(MTD_DEBUG_LEVEL0, "%s: INT not set\n",
 354			      __func__);
 355	}
 356}
 357
 358static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
 359{
 360	/* fill command */
 361	writel(cmd, NFC_V3_FLASH_CMD);
 362
 363	/* send out command */
 364	writel(NFC_CMD, NFC_V3_LAUNCH);
 365
 366	/* Wait for operation to complete */
 367	wait_op_done(host, useirq);
 368}
 369
 370/* This function issues the specified command to the NAND device and
 371 * waits for completion. */
 372static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
 373{
 374	DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
 375
 376	writew(cmd, NFC_V1_V2_FLASH_CMD);
 377	writew(NFC_CMD, NFC_V1_V2_CONFIG2);
 378
 379	if (cpu_is_mx21() && (cmd == NAND_CMD_RESET)) {
 380		int max_retries = 100;
 381		/* Reset completion is indicated by NFC_CONFIG2 */
 382		/* being set to 0 */
 383		while (max_retries-- > 0) {
 384			if (readw(NFC_V1_V2_CONFIG2) == 0) {
 385				break;
 386			}
 387			udelay(1);
 388		}
 389		if (max_retries < 0)
 390			DEBUG(MTD_DEBUG_LEVEL0, "%s: RESET failed\n",
 391			      __func__);
 392	} else {
 393		/* Wait for operation to complete */
 394		wait_op_done(host, useirq);
 395	}
 396}
 397
 398static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
 399{
 400	/* fill address */
 401	writel(addr, NFC_V3_FLASH_ADDR0);
 402
 403	/* send out address */
 404	writel(NFC_ADDR, NFC_V3_LAUNCH);
 405
 406	wait_op_done(host, 0);
 407}
 408
 409/* This function sends an address (or partial address) to the
 410 * NAND device. The address is used to select the source/destination for
 411 * a NAND command. */
 412static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
 413{
 414	DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast);
 415
 416	writew(addr, NFC_V1_V2_FLASH_ADDR);
 417	writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
 418
 419	/* Wait for operation to complete */
 420	wait_op_done(host, islast);
 421}
 422
 423static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
 424{
 425	struct nand_chip *nand_chip = mtd->priv;
 426	struct mxc_nand_host *host = nand_chip->priv;
 427	uint32_t tmp;
 428
 429	tmp = readl(NFC_V3_CONFIG1);
 430	tmp &= ~(7 << 4);
 431	writel(tmp, NFC_V3_CONFIG1);
 432
 433	/* transfer data from NFC ram to nand */
 434	writel(ops, NFC_V3_LAUNCH);
 435
 436	wait_op_done(host, false);
 437}
 438
 439static void send_page_v1_v2(struct mtd_info *mtd, unsigned int ops)
 440{
 441	struct nand_chip *nand_chip = mtd->priv;
 442	struct mxc_nand_host *host = nand_chip->priv;
 443	int bufs, i;
 444
 445	if (nfc_is_v1() && mtd->writesize > 512)
 446		bufs = 4;
 447	else
 448		bufs = 1;
 449
 450	for (i = 0; i < bufs; i++) {
 451
 452		/* NANDFC buffer 0 is used for page read/write */
 453		writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
 454
 455		writew(ops, NFC_V1_V2_CONFIG2);
 456
 457		/* Wait for operation to complete */
 458		wait_op_done(host, true);
 459	}
 460}
 461
 462static void send_read_id_v3(struct mxc_nand_host *host)
 463{
 464	/* Read ID into main buffer */
 465	writel(NFC_ID, NFC_V3_LAUNCH);
 466
 467	wait_op_done(host, true);
 468
 469	memcpy(host->data_buf, host->main_area0, 16);
 470}
 471
 472/* Request the NANDFC to perform a read of the NAND device ID. */
 473static void send_read_id_v1_v2(struct mxc_nand_host *host)
 474{
 475	struct nand_chip *this = &host->nand;
 476
 477	/* NANDFC buffer 0 is used for device ID output */
 478	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 479
 480	writew(NFC_ID, NFC_V1_V2_CONFIG2);
 481
 482	/* Wait for operation to complete */
 483	wait_op_done(host, true);
 484
 485	memcpy(host->data_buf, host->main_area0, 16);
 486
 487	if (this->options & NAND_BUSWIDTH_16) {
 488		/* compress the ID info */
 489		host->data_buf[1] = host->data_buf[2];
 490		host->data_buf[2] = host->data_buf[4];
 491		host->data_buf[3] = host->data_buf[6];
 492		host->data_buf[4] = host->data_buf[8];
 493		host->data_buf[5] = host->data_buf[10];
 494	}
 495}
 496
 497static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
 498{
 499	writew(NFC_STATUS, NFC_V3_LAUNCH);
 500	wait_op_done(host, true);
 501
 502	return readl(NFC_V3_CONFIG1) >> 16;
 503}
 504
 505/* This function requests the NANDFC to perform a read of the
 506 * NAND device status and returns the current status. */
 507static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
 508{
 509	void __iomem *main_buf = host->main_area0;
 510	uint32_t store;
 511	uint16_t ret;
 512
 513	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 514
 515	/*
 516	 * The device status is stored in main_area0. To
 517	 * prevent corruption of the buffer save the value
 518	 * and restore it afterwards.
 519	 */
 520	store = readl(main_buf);
 521
 522	writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
 523	wait_op_done(host, true);
 524
 525	ret = readw(main_buf);
 526
 527	writel(store, main_buf);
 528
 529	return ret;
 530}
 531
 532/* This functions is used by upper layer to checks if device is ready */
 533static int mxc_nand_dev_ready(struct mtd_info *mtd)
 534{
 535	/*
 536	 * NFC handles R/B internally. Therefore, this function
 537	 * always returns status as ready.
 538	 */
 539	return 1;
 540}
 541
 542static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
 543{
 544	/*
 545	 * If HW ECC is enabled, we turn it on during init. There is
 546	 * no need to enable again here.
 547	 */
 548}
 549
 550static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
 551				 u_char *read_ecc, u_char *calc_ecc)
 552{
 553	struct nand_chip *nand_chip = mtd->priv;
 554	struct mxc_nand_host *host = nand_chip->priv;
 555
 556	/*
 557	 * 1-Bit errors are automatically corrected in HW.  No need for
 558	 * additional correction.  2-Bit errors cannot be corrected by
 559	 * HW ECC, so we need to return failure
 560	 */
 561	uint16_t ecc_status = readw(NFC_V1_V2_ECC_STATUS_RESULT);
 562
 563	if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
 564		DEBUG(MTD_DEBUG_LEVEL0,
 565		      "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
 566		return -1;
 567	}
 568
 569	return 0;
 570}
 571
 572static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
 573				 u_char *read_ecc, u_char *calc_ecc)
 574{
 575	struct nand_chip *nand_chip = mtd->priv;
 576	struct mxc_nand_host *host = nand_chip->priv;
 577	u32 ecc_stat, err;
 578	int no_subpages = 1;
 579	int ret = 0;
 580	u8 ecc_bit_mask, err_limit;
 581
 582	ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
 583	err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
 584
 585	no_subpages = mtd->writesize >> 9;
 586
 587	if (nfc_is_v21())
 588		ecc_stat = readl(NFC_V1_V2_ECC_STATUS_RESULT);
 589	else
 590		ecc_stat = readl(NFC_V3_ECC_STATUS_RESULT);
 591
 592	do {
 593		err = ecc_stat & ecc_bit_mask;
 594		if (err > err_limit) {
 595			printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
 596			return -1;
 597		} else {
 598			ret += err;
 599		}
 600		ecc_stat >>= 4;
 601	} while (--no_subpages);
 602
 603	mtd->ecc_stats.corrected += ret;
 604	pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
 605
 606	return ret;
 607}
 608
 609static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 610				  u_char *ecc_code)
 611{
 612	return 0;
 613}
 614
 615static u_char mxc_nand_read_byte(struct mtd_info *mtd)
 616{
 617	struct nand_chip *nand_chip = mtd->priv;
 618	struct mxc_nand_host *host = nand_chip->priv;
 619	uint8_t ret;
 620
 621	/* Check for status request */
 622	if (host->status_request)
 623		return host->get_dev_status(host) & 0xFF;
 624
 625	ret = *(uint8_t *)(host->data_buf + host->buf_start);
 626	host->buf_start++;
 627
 628	return ret;
 629}
 630
 631static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
 632{
 633	struct nand_chip *nand_chip = mtd->priv;
 634	struct mxc_nand_host *host = nand_chip->priv;
 635	uint16_t ret;
 636
 637	ret = *(uint16_t *)(host->data_buf + host->buf_start);
 638	host->buf_start += 2;
 639
 640	return ret;
 641}
 642
 643/* Write data of length len to buffer buf. The data to be
 644 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
 645 * Operation by the NFC, the data is written to NAND Flash */
 646static void mxc_nand_write_buf(struct mtd_info *mtd,
 647				const u_char *buf, int len)
 648{
 649	struct nand_chip *nand_chip = mtd->priv;
 650	struct mxc_nand_host *host = nand_chip->priv;
 651	u16 col = host->buf_start;
 652	int n = mtd->oobsize + mtd->writesize - col;
 653
 654	n = min(n, len);
 655
 656	memcpy(host->data_buf + col, buf, n);
 657
 658	host->buf_start += n;
 659}
 660
 661/* Read the data buffer from the NAND Flash. To read the data from NAND
 662 * Flash first the data output cycle is initiated by the NFC, which copies
 663 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
 664 */
 665static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
 666{
 667	struct nand_chip *nand_chip = mtd->priv;
 668	struct mxc_nand_host *host = nand_chip->priv;
 669	u16 col = host->buf_start;
 670	int n = mtd->oobsize + mtd->writesize - col;
 671
 672	n = min(n, len);
 673
 674	memcpy(buf, host->data_buf + col, n);
 675
 676	host->buf_start += n;
 677}
 678
 679/* Used by the upper layer to verify the data in NAND Flash
 680 * with the data in the buf. */
 681static int mxc_nand_verify_buf(struct mtd_info *mtd,
 682				const u_char *buf, int len)
 683{
 684	return -EFAULT;
 685}
 686
 687/* This function is used by upper layer for select and
 688 * deselect of the NAND chip */
 689static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
 690{
 691	struct nand_chip *nand_chip = mtd->priv;
 692	struct mxc_nand_host *host = nand_chip->priv;
 693
 694	if (chip == -1) {
 695		/* Disable the NFC clock */
 696		if (host->clk_act) {
 697			clk_disable(host->clk);
 698			host->clk_act = 0;
 699		}
 700		return;
 701	}
 702
 703	if (!host->clk_act) {
 704		/* Enable the NFC clock */
 705		clk_enable(host->clk);
 706		host->clk_act = 1;
 707	}
 708
 709	if (nfc_is_v21()) {
 710		host->active_cs = chip;
 711		writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 712	}
 713}
 714
 715/*
 716 * Function to transfer data to/from spare area.
 717 */
 718static void copy_spare(struct mtd_info *mtd, bool bfrom)
 719{
 720	struct nand_chip *this = mtd->priv;
 721	struct mxc_nand_host *host = this->priv;
 722	u16 i, j;
 723	u16 n = mtd->writesize >> 9;
 724	u8 *d = host->data_buf + mtd->writesize;
 725	u8 *s = host->spare0;
 726	u16 t = host->spare_len;
 727
 728	j = (mtd->oobsize / n >> 1) << 1;
 729
 730	if (bfrom) {
 731		for (i = 0; i < n - 1; i++)
 732			memcpy(d + i * j, s + i * t, j);
 733
 734		/* the last section */
 735		memcpy(d + i * j, s + i * t, mtd->oobsize - i * j);
 736	} else {
 737		for (i = 0; i < n - 1; i++)
 738			memcpy(&s[i * t], &d[i * j], j);
 739
 740		/* the last section */
 741		memcpy(&s[i * t], &d[i * j], mtd->oobsize - i * j);
 742	}
 743}
 744
 745static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
 746{
 747	struct nand_chip *nand_chip = mtd->priv;
 748	struct mxc_nand_host *host = nand_chip->priv;
 749
 750	/* Write out column address, if necessary */
 751	if (column != -1) {
 752		/*
 753		 * MXC NANDFC can only perform full page+spare or
 754		 * spare-only read/write.  When the upper layers
 755		 * perform a read/write buf operation, the saved column
 756		  * address is used to index into the full page.
 757		 */
 758		host->send_addr(host, 0, page_addr == -1);
 759		if (mtd->writesize > 512)
 760			/* another col addr cycle for 2k page */
 761			host->send_addr(host, 0, false);
 762	}
 763
 764	/* Write out page address, if necessary */
 765	if (page_addr != -1) {
 766		/* paddr_0 - p_addr_7 */
 767		host->send_addr(host, (page_addr & 0xff), false);
 768
 769		if (mtd->writesize > 512) {
 770			if (mtd->size >= 0x10000000) {
 771				/* paddr_8 - paddr_15 */
 772				host->send_addr(host, (page_addr >> 8) & 0xff, false);
 773				host->send_addr(host, (page_addr >> 16) & 0xff, true);
 774			} else
 775				/* paddr_8 - paddr_15 */
 776				host->send_addr(host, (page_addr >> 8) & 0xff, true);
 777		} else {
 778			/* One more address cycle for higher density devices */
 779			if (mtd->size >= 0x4000000) {
 780				/* paddr_8 - paddr_15 */
 781				host->send_addr(host, (page_addr >> 8) & 0xff, false);
 782				host->send_addr(host, (page_addr >> 16) & 0xff, true);
 783			} else
 784				/* paddr_8 - paddr_15 */
 785				host->send_addr(host, (page_addr >> 8) & 0xff, true);
 786		}
 787	}
 788}
 789
 790/*
 791 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
 792 * on how much oob the nand chip has. For 8bit ecc we need at least
 793 * 26 bytes of oob data per 512 byte block.
 794 */
 795static int get_eccsize(struct mtd_info *mtd)
 796{
 797	int oobbytes_per_512 = 0;
 798
 799	oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
 800
 801	if (oobbytes_per_512 < 26)
 802		return 4;
 803	else
 804		return 8;
 805}
 806
 807static void preset_v1_v2(struct mtd_info *mtd)
 808{
 809	struct nand_chip *nand_chip = mtd->priv;
 810	struct mxc_nand_host *host = nand_chip->priv;
 811	uint16_t config1 = 0;
 812
 813	if (nand_chip->ecc.mode == NAND_ECC_HW)
 814		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
 815
 816	if (nfc_is_v21())
 817		config1 |= NFC_V2_CONFIG1_FP_INT;
 818
 819	if (!cpu_is_mx21())
 820		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
 821
 822	if (nfc_is_v21() && mtd->writesize) {
 823		uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
 824
 825		host->eccsize = get_eccsize(mtd);
 826		if (host->eccsize == 4)
 827			config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
 828
 829		config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
 830	} else {
 831		host->eccsize = 1;
 832	}
 833
 834	writew(config1, NFC_V1_V2_CONFIG1);
 835	/* preset operation */
 836
 837	/* Unlock the internal RAM Buffer */
 838	writew(0x2, NFC_V1_V2_CONFIG);
 839
 840	/* Blocks to be unlocked */
 841	if (nfc_is_v21()) {
 842		writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
 843		writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
 844		writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
 845		writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
 846		writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
 847		writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
 848		writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
 849		writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
 850	} else if (nfc_is_v1()) {
 851		writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
 852		writew(0x4000, NFC_V1_UNLOCKEND_BLKADDR);
 853	} else
 854		BUG();
 855
 856	/* Unlock Block Command for given address range */
 857	writew(0x4, NFC_V1_V2_WRPROT);
 858}
 859
 860static void preset_v3(struct mtd_info *mtd)
 861{
 862	struct nand_chip *chip = mtd->priv;
 863	struct mxc_nand_host *host = chip->priv;
 864	uint32_t config2, config3;
 865	int i, addr_phases;
 866
 867	writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
 868	writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
 869
 870	/* Unlock the internal RAM Buffer */
 871	writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
 872			NFC_V3_WRPROT);
 873
 874	/* Blocks to be unlocked */
 875	for (i = 0; i < NAND_MAX_CHIPS; i++)
 876		writel(0x0 |	(0xffff << 16),
 877				NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
 878
 879	writel(0, NFC_V3_IPC);
 880
 881	config2 = NFC_V3_CONFIG2_ONE_CYCLE |
 882		NFC_V3_CONFIG2_2CMD_PHASES |
 883		NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
 884		NFC_V3_CONFIG2_ST_CMD(0x70) |
 885		NFC_V3_CONFIG2_INT_MSK |
 886		NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
 887
 888	if (chip->ecc.mode == NAND_ECC_HW)
 889		config2 |= NFC_V3_CONFIG2_ECC_EN;
 890
 891	addr_phases = fls(chip->pagemask) >> 3;
 892
 893	if (mtd->writesize == 2048) {
 894		config2 |= NFC_V3_CONFIG2_PS_2048;
 895		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
 896	} else if (mtd->writesize == 4096) {
 897		config2 |= NFC_V3_CONFIG2_PS_4096;
 898		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
 899	} else {
 900		config2 |= NFC_V3_CONFIG2_PS_512;
 901		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
 902	}
 903
 904	if (mtd->writesize) {
 905		config2 |= NFC_V3_CONFIG2_PPB(ffs(mtd->erasesize / mtd->writesize) - 6);
 906		host->eccsize = get_eccsize(mtd);
 907		if (host->eccsize == 8)
 908			config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
 909	}
 910
 911	writel(config2, NFC_V3_CONFIG2);
 912
 913	config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
 914			NFC_V3_CONFIG3_NO_SDMA |
 915			NFC_V3_CONFIG3_RBB_MODE |
 916			NFC_V3_CONFIG3_SBB(6) | /* Reset default */
 917			NFC_V3_CONFIG3_ADD_OP(0);
 918
 919	if (!(chip->options & NAND_BUSWIDTH_16))
 920		config3 |= NFC_V3_CONFIG3_FW8;
 921
 922	writel(config3, NFC_V3_CONFIG3);
 923
 924	writel(0, NFC_V3_DELAY_LINE);
 925}
 926
 927/* Used by the upper layer to write command to NAND Flash for
 928 * different operations to be carried out on NAND Flash */
 929static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
 930				int column, int page_addr)
 931{
 932	struct nand_chip *nand_chip = mtd->priv;
 933	struct mxc_nand_host *host = nand_chip->priv;
 934
 935	DEBUG(MTD_DEBUG_LEVEL3,
 936	      "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
 937	      command, column, page_addr);
 938
 939	/* Reset command state information */
 940	host->status_request = false;
 941
 942	/* Command pre-processing step */
 943	switch (command) {
 944	case NAND_CMD_RESET:
 945		host->preset(mtd);
 946		host->send_cmd(host, command, false);
 947		break;
 948
 949	case NAND_CMD_STATUS:
 950		host->buf_start = 0;
 951		host->status_request = true;
 952
 953		host->send_cmd(host, command, true);
 954		mxc_do_addr_cycle(mtd, column, page_addr);
 955		break;
 956
 957	case NAND_CMD_READ0:
 958	case NAND_CMD_READOOB:
 959		if (command == NAND_CMD_READ0)
 960			host->buf_start = column;
 961		else
 962			host->buf_start = column + mtd->writesize;
 963
 964		command = NAND_CMD_READ0; /* only READ0 is valid */
 965
 966		host->send_cmd(host, command, false);
 967		mxc_do_addr_cycle(mtd, column, page_addr);
 968
 969		if (mtd->writesize > 512)
 970			host->send_cmd(host, NAND_CMD_READSTART, true);
 971
 972		host->send_page(mtd, NFC_OUTPUT);
 973
 974		memcpy(host->data_buf, host->main_area0, mtd->writesize);
 975		copy_spare(mtd, true);
 976		break;
 977
 978	case NAND_CMD_SEQIN:
 979		if (column >= mtd->writesize)
 980			/* call ourself to read a page */
 981			mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
 982
 983		host->buf_start = column;
 984
 985		host->send_cmd(host, command, false);
 986		mxc_do_addr_cycle(mtd, column, page_addr);
 987		break;
 988
 989	case NAND_CMD_PAGEPROG:
 990		memcpy(host->main_area0, host->data_buf, mtd->writesize);
 991		copy_spare(mtd, false);
 992		host->send_page(mtd, NFC_INPUT);
 993		host->send_cmd(host, command, true);
 994		mxc_do_addr_cycle(mtd, column, page_addr);
 995		break;
 996
 997	case NAND_CMD_READID:
 998		host->send_cmd(host, command, true);
 999		mxc_do_addr_cycle(mtd, column, page_addr);
1000		host->send_read_id(host);
1001		host->buf_start = column;
1002		break;
1003
1004	case NAND_CMD_ERASE1:
1005	case NAND_CMD_ERASE2:
1006		host->send_cmd(host, command, false);
1007		mxc_do_addr_cycle(mtd, column, page_addr);
1008
1009		break;
1010	}
1011}
1012
1013/*
1014 * The generic flash bbt decriptors overlap with our ecc
1015 * hardware, so define some i.MX specific ones.
1016 */
1017static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1018static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1019
1020static struct nand_bbt_descr bbt_main_descr = {
1021	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1022	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1023	.offs = 0,
1024	.len = 4,
1025	.veroffs = 4,
1026	.maxblocks = 4,
1027	.pattern = bbt_pattern,
1028};
1029
1030static struct nand_bbt_descr bbt_mirror_descr = {
1031	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1032	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1033	.offs = 0,
1034	.len = 4,
1035	.veroffs = 4,
1036	.maxblocks = 4,
1037	.pattern = mirror_pattern,
1038};
1039
1040static int __init mxcnd_probe(struct platform_device *pdev)
1041{
1042	struct nand_chip *this;
1043	struct mtd_info *mtd;
1044	struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
1045	struct mxc_nand_host *host;
1046	struct resource *res;
1047	int err = 0, __maybe_unused nr_parts = 0;
1048	struct nand_ecclayout *oob_smallpage, *oob_largepage;
1049
1050	/* Allocate memory for MTD device structure and private data */
1051	host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE +
1052			NAND_MAX_OOBSIZE, GFP_KERNEL);
1053	if (!host)
1054		return -ENOMEM;
1055
1056	host->data_buf = (uint8_t *)(host + 1);
1057
1058	host->dev = &pdev->dev;
1059	/* structures must be linked */
1060	this = &host->nand;
1061	mtd = &host->mtd;
1062	mtd->priv = this;
1063	mtd->owner = THIS_MODULE;
1064	mtd->dev.parent = &pdev->dev;
1065	mtd->name = DRIVER_NAME;
1066
1067	/* 50 us command delay time */
1068	this->chip_delay = 5;
1069
1070	this->priv = host;
1071	this->dev_ready = mxc_nand_dev_ready;
1072	this->cmdfunc = mxc_nand_command;
1073	this->select_chip = mxc_nand_select_chip;
1074	this->read_byte = mxc_nand_read_byte;
1075	this->read_word = mxc_nand_read_word;
1076	this->write_buf = mxc_nand_write_buf;
1077	this->read_buf = mxc_nand_read_buf;
1078	this->verify_buf = mxc_nand_verify_buf;
1079
1080	host->clk = clk_get(&pdev->dev, "nfc");
1081	if (IS_ERR(host->clk)) {
1082		err = PTR_ERR(host->clk);
1083		goto eclk;
1084	}
1085
1086	clk_enable(host->clk);
1087	host->clk_act = 1;
1088
1089	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1090	if (!res) {
1091		err = -ENODEV;
1092		goto eres;
1093	}
1094
1095	host->base = ioremap(res->start, resource_size(res));
1096	if (!host->base) {
1097		err = -ENOMEM;
1098		goto eres;
1099	}
1100
1101	host->main_area0 = host->base;
1102
1103	if (nfc_is_v1() || nfc_is_v21()) {
1104		host->preset = preset_v1_v2;
1105		host->send_cmd = send_cmd_v1_v2;
1106		host->send_addr = send_addr_v1_v2;
1107		host->send_page = send_page_v1_v2;
1108		host->send_read_id = send_read_id_v1_v2;
1109		host->get_dev_status = get_dev_status_v1_v2;
1110		host->check_int = check_int_v1_v2;
1111		if (cpu_is_mx21())
1112			host->irq_control = irq_control_mx21;
1113		else
1114			host->irq_control = irq_control_v1_v2;
1115	}
1116
1117	if (nfc_is_v21()) {
1118		host->regs = host->base + 0x1e00;
1119		host->spare0 = host->base + 0x1000;
1120		host->spare_len = 64;
1121		oob_smallpage = &nandv2_hw_eccoob_smallpage;
1122		oob_largepage = &nandv2_hw_eccoob_largepage;
1123		this->ecc.bytes = 9;
1124	} else if (nfc_is_v1()) {
1125		host->regs = host->base + 0xe00;
1126		host->spare0 = host->base + 0x800;
1127		host->spare_len = 16;
1128		oob_smallpage = &nandv1_hw_eccoob_smallpage;
1129		oob_largepage = &nandv1_hw_eccoob_largepage;
1130		this->ecc.bytes = 3;
1131		host->eccsize = 1;
1132	} else if (nfc_is_v3_2()) {
1133		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1134		if (!res) {
1135			err = -ENODEV;
1136			goto eirq;
1137		}
1138		host->regs_ip = ioremap(res->start, resource_size(res));
1139		if (!host->regs_ip) {
1140			err = -ENOMEM;
1141			goto eirq;
1142		}
1143		host->regs_axi = host->base + 0x1e00;
1144		host->spare0 = host->base + 0x1000;
1145		host->spare_len = 64;
1146		host->preset = preset_v3;
1147		host->send_cmd = send_cmd_v3;
1148		host->send_addr = send_addr_v3;
1149		host->send_page = send_page_v3;
1150		host->send_read_id = send_read_id_v3;
1151		host->check_int = check_int_v3;
1152		host->get_dev_status = get_dev_status_v3;
1153		host->irq_control = irq_control_v3;
1154		oob_smallpage = &nandv2_hw_eccoob_smallpage;
1155		oob_largepage = &nandv2_hw_eccoob_largepage;
1156	} else
1157		BUG();
1158
1159	this->ecc.size = 512;
1160	this->ecc.layout = oob_smallpage;
1161
1162	if (pdata->hw_ecc) {
1163		this->ecc.calculate = mxc_nand_calculate_ecc;
1164		this->ecc.hwctl = mxc_nand_enable_hwecc;
1165		if (nfc_is_v1())
1166			this->ecc.correct = mxc_nand_correct_data_v1;
1167		else
1168			this->ecc.correct = mxc_nand_correct_data_v2_v3;
1169		this->ecc.mode = NAND_ECC_HW;
1170	} else {
1171		this->ecc.mode = NAND_ECC_SOFT;
1172	}
1173
1174	/* NAND bus width determines access funtions used by upper layer */
1175	if (pdata->width == 2)
1176		this->options |= NAND_BUSWIDTH_16;
1177
1178	if (pdata->flash_bbt) {
1179		this->bbt_td = &bbt_main_descr;
1180		this->bbt_md = &bbt_mirror_descr;
1181		/* update flash based bbt */
1182		this->options |= NAND_USE_FLASH_BBT;
1183	}
1184
1185	init_completion(&host->op_completion);
1186
1187	host->irq = platform_get_irq(pdev, 0);
1188
1189	/*
1190	 * mask the interrupt. For i.MX21 explicitely call
1191	 * irq_control_v1_v2 to use the mask bit. We can't call
1192	 * disable_irq_nosync() for an interrupt we do not own yet.
1193	 */
1194	if (cpu_is_mx21())
1195		irq_control_v1_v2(host, 0);
1196	else
1197		host->irq_control(host, 0);
1198
1199	err = request_irq(host->irq, mxc_nfc_irq, IRQF_DISABLED, DRIVER_NAME, host);
1200	if (err)
1201		goto eirq;
1202
1203	host->irq_control(host, 0);
1204
1205	/*
1206	 * Now that the interrupt is disabled make sure the interrupt
1207	 * mask bit is cleared on i.MX21. Otherwise we can't read
1208	 * the interrupt status bit on this machine.
1209	 */
1210	if (cpu_is_mx21())
1211		irq_control_v1_v2(host, 1);
1212
1213	/* first scan to find the device and get the page size */
1214	if (nand_scan_ident(mtd, nfc_is_v21() ? 4 : 1, NULL)) {
1215		err = -ENXIO;
1216		goto escan;
1217	}
1218
1219	/* Call preset again, with correct writesize this time */
1220	host->preset(mtd);
1221
1222	if (mtd->writesize == 2048)
1223		this->ecc.layout = oob_largepage;
1224	if (nfc_is_v21() && mtd->writesize == 4096)
1225		this->ecc.layout = &nandv2_hw_eccoob_4k;
1226
1227	/* second phase scan */
1228	if (nand_scan_tail(mtd)) {
1229		err = -ENXIO;
1230		goto escan;
1231	}
1232
1233	/* Register the partitions */
1234	nr_parts =
1235	    parse_mtd_partitions(mtd, part_probes, &host->parts, 0);
1236	if (nr_parts > 0)
1237		mtd_device_register(mtd, host->parts, nr_parts);
1238	else if (pdata->parts)
1239		mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
1240	else {
1241		pr_info("Registering %s as whole device\n", mtd->name);
1242		mtd_device_register(mtd, NULL, 0);
1243	}
1244
1245	platform_set_drvdata(pdev, host);
1246
1247	return 0;
1248
1249escan:
1250	free_irq(host->irq, host);
1251eirq:
1252	if (host->regs_ip)
1253		iounmap(host->regs_ip);
1254	iounmap(host->base);
1255eres:
1256	clk_put(host->clk);
1257eclk:
1258	kfree(host);
1259
1260	return err;
1261}
1262
1263static int __devexit mxcnd_remove(struct platform_device *pdev)
1264{
1265	struct mxc_nand_host *host = platform_get_drvdata(pdev);
1266
1267	clk_put(host->clk);
1268
1269	platform_set_drvdata(pdev, NULL);
1270
1271	nand_release(&host->mtd);
1272	free_irq(host->irq, host);
1273	if (host->regs_ip)
1274		iounmap(host->regs_ip);
1275	iounmap(host->base);
1276	kfree(host);
1277
1278	return 0;
1279}
1280
1281static struct platform_driver mxcnd_driver = {
1282	.driver = {
1283		   .name = DRIVER_NAME,
1284	},
1285	.remove = __devexit_p(mxcnd_remove),
1286};
1287
1288static int __init mxc_nd_init(void)
1289{
1290	return platform_driver_probe(&mxcnd_driver, mxcnd_probe);
1291}
1292
1293static void __exit mxc_nd_cleanup(void)
1294{
1295	/* Unregister the device structure */
1296	platform_driver_unregister(&mxcnd_driver);
1297}
1298
1299module_init(mxc_nd_init);
1300module_exit(mxc_nd_cleanup);
1301
1302MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1303MODULE_DESCRIPTION("MXC NAND MTD driver");
1304MODULE_LICENSE("GPL");