Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
   1/*
   2 * drivers/mtd/nand/diskonchip.c
   3 *
   4 * (C) 2003 Red Hat, Inc.
   5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
   6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
   7 *
   8 * Author: David Woodhouse <dwmw2@infradead.org>
   9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
  10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
  11 *
  12 * Error correction code lifted from the old docecc code
  13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
  14 * Copyright (C) 2000 Netgem S.A.
  15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
  16 *
  17 * Interface to generic NAND code for M-Systems DiskOnChip devices
  18 */
  19
  20#include <linux/kernel.h>
  21#include <linux/init.h>
  22#include <linux/sched.h>
  23#include <linux/delay.h>
  24#include <linux/rslib.h>
  25#include <linux/moduleparam.h>
  26#include <linux/slab.h>
  27#include <asm/io.h>
  28
  29#include <linux/mtd/mtd.h>
  30#include <linux/mtd/nand.h>
  31#include <linux/mtd/doc2000.h>
  32#include <linux/mtd/partitions.h>
  33#include <linux/mtd/inftl.h>
  34
  35/* Where to look for the devices? */
  36#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
  37#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
  38#endif
  39
  40static unsigned long __initdata doc_locations[] = {
  41#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
  42#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
  43	0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
  44	0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
  45	0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
  46	0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
  47	0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
  48#else /*  CONFIG_MTD_DOCPROBE_HIGH */
  49	0xc8000, 0xca000, 0xcc000, 0xce000,
  50	0xd0000, 0xd2000, 0xd4000, 0xd6000,
  51	0xd8000, 0xda000, 0xdc000, 0xde000,
  52	0xe0000, 0xe2000, 0xe4000, 0xe6000,
  53	0xe8000, 0xea000, 0xec000, 0xee000,
  54#endif /*  CONFIG_MTD_DOCPROBE_HIGH */
  55#else
  56#warning Unknown architecture for DiskOnChip. No default probe locations defined
  57#endif
  58	0xffffffff };
  59
  60static struct mtd_info *doclist = NULL;
  61
  62struct doc_priv {
  63	void __iomem *virtadr;
  64	unsigned long physadr;
  65	u_char ChipID;
  66	u_char CDSNControl;
  67	int chips_per_floor;	/* The number of chips detected on each floor */
  68	int curfloor;
  69	int curchip;
  70	int mh0_page;
  71	int mh1_page;
  72	struct mtd_info *nextdoc;
  73};
  74
  75/* This is the syndrome computed by the HW ecc generator upon reading an empty
  76   page, one with all 0xff for data and stored ecc code. */
  77static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
  78
  79/* This is the ecc value computed by the HW ecc generator upon writing an empty
  80   page, one with all 0xff for data. */
  81static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
  82
  83#define INFTL_BBT_RESERVED_BLOCKS 4
  84
  85#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
  86#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
  87#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
  88
  89static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
  90			      unsigned int bitmask);
  91static void doc200x_select_chip(struct mtd_info *mtd, int chip);
  92
  93static int debug = 0;
  94module_param(debug, int, 0);
  95
  96static int try_dword = 1;
  97module_param(try_dword, int, 0);
  98
  99static int no_ecc_failures = 0;
 100module_param(no_ecc_failures, int, 0);
 101
 102static int no_autopart = 0;
 103module_param(no_autopart, int, 0);
 104
 105static int show_firmware_partition = 0;
 106module_param(show_firmware_partition, int, 0);
 107
 108#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
 109static int inftl_bbt_write = 1;
 110#else
 111static int inftl_bbt_write = 0;
 112#endif
 113module_param(inftl_bbt_write, int, 0);
 114
 115static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
 116module_param(doc_config_location, ulong, 0);
 117MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
 118
 119/* Sector size for HW ECC */
 120#define SECTOR_SIZE 512
 121/* The sector bytes are packed into NB_DATA 10 bit words */
 122#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
 123/* Number of roots */
 124#define NROOTS 4
 125/* First consective root */
 126#define FCR 510
 127/* Number of symbols */
 128#define NN 1023
 129
 130/* the Reed Solomon control structure */
 131static struct rs_control *rs_decoder;
 132
 133/*
 134 * The HW decoder in the DoC ASIC's provides us a error syndrome,
 135 * which we must convert to a standard syndrom usable by the generic
 136 * Reed-Solomon library code.
 137 *
 138 * Fabrice Bellard figured this out in the old docecc code. I added
 139 * some comments, improved a minor bit and converted it to make use
 140 * of the generic Reed-Solomon library. tglx
 141 */
 142static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
 143{
 144	int i, j, nerr, errpos[8];
 145	uint8_t parity;
 146	uint16_t ds[4], s[5], tmp, errval[8], syn[4];
 147
 148	memset(syn, 0, sizeof(syn));
 149	/* Convert the ecc bytes into words */
 150	ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
 151	ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
 152	ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
 153	ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
 154	parity = ecc[1];
 155
 156	/* Initialize the syndrom buffer */
 157	for (i = 0; i < NROOTS; i++)
 158		s[i] = ds[0];
 159	/*
 160	 *  Evaluate
 161	 *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
 162	 *  where x = alpha^(FCR + i)
 163	 */
 164	for (j = 1; j < NROOTS; j++) {
 165		if (ds[j] == 0)
 166			continue;
 167		tmp = rs->index_of[ds[j]];
 168		for (i = 0; i < NROOTS; i++)
 169			s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
 170	}
 171
 172	/* Calc syn[i] = s[i] / alpha^(v + i) */
 173	for (i = 0; i < NROOTS; i++) {
 174		if (s[i])
 175			syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
 176	}
 177	/* Call the decoder library */
 178	nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
 179
 180	/* Incorrectable errors ? */
 181	if (nerr < 0)
 182		return nerr;
 183
 184	/*
 185	 * Correct the errors. The bitpositions are a bit of magic,
 186	 * but they are given by the design of the de/encoder circuit
 187	 * in the DoC ASIC's.
 188	 */
 189	for (i = 0; i < nerr; i++) {
 190		int index, bitpos, pos = 1015 - errpos[i];
 191		uint8_t val;
 192		if (pos >= NB_DATA && pos < 1019)
 193			continue;
 194		if (pos < NB_DATA) {
 195			/* extract bit position (MSB first) */
 196			pos = 10 * (NB_DATA - 1 - pos) - 6;
 197			/* now correct the following 10 bits. At most two bytes
 198			   can be modified since pos is even */
 199			index = (pos >> 3) ^ 1;
 200			bitpos = pos & 7;
 201			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
 202				val = (uint8_t) (errval[i] >> (2 + bitpos));
 203				parity ^= val;
 204				if (index < SECTOR_SIZE)
 205					data[index] ^= val;
 206			}
 207			index = ((pos >> 3) + 1) ^ 1;
 208			bitpos = (bitpos + 10) & 7;
 209			if (bitpos == 0)
 210				bitpos = 8;
 211			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
 212				val = (uint8_t) (errval[i] << (8 - bitpos));
 213				parity ^= val;
 214				if (index < SECTOR_SIZE)
 215					data[index] ^= val;
 216			}
 217		}
 218	}
 219	/* If the parity is wrong, no rescue possible */
 220	return parity ? -EBADMSG : nerr;
 221}
 222
 223static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
 224{
 225	volatile char dummy;
 226	int i;
 227
 228	for (i = 0; i < cycles; i++) {
 229		if (DoC_is_Millennium(doc))
 230			dummy = ReadDOC(doc->virtadr, NOP);
 231		else if (DoC_is_MillenniumPlus(doc))
 232			dummy = ReadDOC(doc->virtadr, Mplus_NOP);
 233		else
 234			dummy = ReadDOC(doc->virtadr, DOCStatus);
 235	}
 236
 237}
 238
 239#define CDSN_CTRL_FR_B_MASK	(CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
 240
 241/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
 242static int _DoC_WaitReady(struct doc_priv *doc)
 243{
 244	void __iomem *docptr = doc->virtadr;
 245	unsigned long timeo = jiffies + (HZ * 10);
 246
 247	if (debug)
 248		printk("_DoC_WaitReady...\n");
 249	/* Out-of-line routine to wait for chip response */
 250	if (DoC_is_MillenniumPlus(doc)) {
 251		while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
 252			if (time_after(jiffies, timeo)) {
 253				printk("_DoC_WaitReady timed out.\n");
 254				return -EIO;
 255			}
 256			udelay(1);
 257			cond_resched();
 258		}
 259	} else {
 260		while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
 261			if (time_after(jiffies, timeo)) {
 262				printk("_DoC_WaitReady timed out.\n");
 263				return -EIO;
 264			}
 265			udelay(1);
 266			cond_resched();
 267		}
 268	}
 269
 270	return 0;
 271}
 272
 273static inline int DoC_WaitReady(struct doc_priv *doc)
 274{
 275	void __iomem *docptr = doc->virtadr;
 276	int ret = 0;
 277
 278	if (DoC_is_MillenniumPlus(doc)) {
 279		DoC_Delay(doc, 4);
 280
 281		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
 282			/* Call the out-of-line routine to wait */
 283			ret = _DoC_WaitReady(doc);
 284	} else {
 285		DoC_Delay(doc, 4);
 286
 287		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
 288			/* Call the out-of-line routine to wait */
 289			ret = _DoC_WaitReady(doc);
 290		DoC_Delay(doc, 2);
 291	}
 292
 293	if (debug)
 294		printk("DoC_WaitReady OK\n");
 295	return ret;
 296}
 297
 298static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
 299{
 300	struct nand_chip *this = mtd->priv;
 301	struct doc_priv *doc = this->priv;
 302	void __iomem *docptr = doc->virtadr;
 303
 304	if (debug)
 305		printk("write_byte %02x\n", datum);
 306	WriteDOC(datum, docptr, CDSNSlowIO);
 307	WriteDOC(datum, docptr, 2k_CDSN_IO);
 308}
 309
 310static u_char doc2000_read_byte(struct mtd_info *mtd)
 311{
 312	struct nand_chip *this = mtd->priv;
 313	struct doc_priv *doc = this->priv;
 314	void __iomem *docptr = doc->virtadr;
 315	u_char ret;
 316
 317	ReadDOC(docptr, CDSNSlowIO);
 318	DoC_Delay(doc, 2);
 319	ret = ReadDOC(docptr, 2k_CDSN_IO);
 320	if (debug)
 321		printk("read_byte returns %02x\n", ret);
 322	return ret;
 323}
 324
 325static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 326{
 327	struct nand_chip *this = mtd->priv;
 328	struct doc_priv *doc = this->priv;
 329	void __iomem *docptr = doc->virtadr;
 330	int i;
 331	if (debug)
 332		printk("writebuf of %d bytes: ", len);
 333	for (i = 0; i < len; i++) {
 334		WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
 335		if (debug && i < 16)
 336			printk("%02x ", buf[i]);
 337	}
 338	if (debug)
 339		printk("\n");
 340}
 341
 342static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 343{
 344	struct nand_chip *this = mtd->priv;
 345	struct doc_priv *doc = this->priv;
 346	void __iomem *docptr = doc->virtadr;
 347	int i;
 348
 349	if (debug)
 350		printk("readbuf of %d bytes: ", len);
 351
 352	for (i = 0; i < len; i++) {
 353		buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
 354	}
 355}
 356
 357static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
 358{
 359	struct nand_chip *this = mtd->priv;
 360	struct doc_priv *doc = this->priv;
 361	void __iomem *docptr = doc->virtadr;
 362	int i;
 363
 364	if (debug)
 365		printk("readbuf_dword of %d bytes: ", len);
 366
 367	if (unlikely((((unsigned long)buf) | len) & 3)) {
 368		for (i = 0; i < len; i++) {
 369			*(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
 370		}
 371	} else {
 372		for (i = 0; i < len; i += 4) {
 373			*(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
 374		}
 375	}
 376}
 377
 378static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
 379{
 380	struct nand_chip *this = mtd->priv;
 381	struct doc_priv *doc = this->priv;
 382	void __iomem *docptr = doc->virtadr;
 383	int i;
 384
 385	for (i = 0; i < len; i++)
 386		if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
 387			return -EFAULT;
 388	return 0;
 389}
 390
 391static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
 392{
 393	struct nand_chip *this = mtd->priv;
 394	struct doc_priv *doc = this->priv;
 395	uint16_t ret;
 396
 397	doc200x_select_chip(mtd, nr);
 398	doc200x_hwcontrol(mtd, NAND_CMD_READID,
 399			  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 400	doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
 401	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 402
 403	/* We can't use dev_ready here, but at least we wait for the
 404	 * command to complete
 405	 */
 406	udelay(50);
 407
 408	ret = this->read_byte(mtd) << 8;
 409	ret |= this->read_byte(mtd);
 410
 411	if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
 412		/* First chip probe. See if we get same results by 32-bit access */
 413		union {
 414			uint32_t dword;
 415			uint8_t byte[4];
 416		} ident;
 417		void __iomem *docptr = doc->virtadr;
 418
 419		doc200x_hwcontrol(mtd, NAND_CMD_READID,
 420				  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 421		doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
 422		doc200x_hwcontrol(mtd, NAND_CMD_NONE,
 423				  NAND_NCE | NAND_CTRL_CHANGE);
 424
 425		udelay(50);
 426
 427		ident.dword = readl(docptr + DoC_2k_CDSN_IO);
 428		if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
 429			printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
 430			this->read_buf = &doc2000_readbuf_dword;
 431		}
 432	}
 433
 434	return ret;
 435}
 436
 437static void __init doc2000_count_chips(struct mtd_info *mtd)
 438{
 439	struct nand_chip *this = mtd->priv;
 440	struct doc_priv *doc = this->priv;
 441	uint16_t mfrid;
 442	int i;
 443
 444	/* Max 4 chips per floor on DiskOnChip 2000 */
 445	doc->chips_per_floor = 4;
 446
 447	/* Find out what the first chip is */
 448	mfrid = doc200x_ident_chip(mtd, 0);
 449
 450	/* Find how many chips in each floor. */
 451	for (i = 1; i < 4; i++) {
 452		if (doc200x_ident_chip(mtd, i) != mfrid)
 453			break;
 454	}
 455	doc->chips_per_floor = i;
 456	printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
 457}
 458
 459static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
 460{
 461	struct doc_priv *doc = this->priv;
 462
 463	int status;
 464
 465	DoC_WaitReady(doc);
 466	this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 467	DoC_WaitReady(doc);
 468	status = (int)this->read_byte(mtd);
 469
 470	return status;
 471}
 472
 473static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
 474{
 475	struct nand_chip *this = mtd->priv;
 476	struct doc_priv *doc = this->priv;
 477	void __iomem *docptr = doc->virtadr;
 478
 479	WriteDOC(datum, docptr, CDSNSlowIO);
 480	WriteDOC(datum, docptr, Mil_CDSN_IO);
 481	WriteDOC(datum, docptr, WritePipeTerm);
 482}
 483
 484static u_char doc2001_read_byte(struct mtd_info *mtd)
 485{
 486	struct nand_chip *this = mtd->priv;
 487	struct doc_priv *doc = this->priv;
 488	void __iomem *docptr = doc->virtadr;
 489
 490	//ReadDOC(docptr, CDSNSlowIO);
 491	/* 11.4.5 -- delay twice to allow extended length cycle */
 492	DoC_Delay(doc, 2);
 493	ReadDOC(docptr, ReadPipeInit);
 494	//return ReadDOC(docptr, Mil_CDSN_IO);
 495	return ReadDOC(docptr, LastDataRead);
 496}
 497
 498static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 499{
 500	struct nand_chip *this = mtd->priv;
 501	struct doc_priv *doc = this->priv;
 502	void __iomem *docptr = doc->virtadr;
 503	int i;
 504
 505	for (i = 0; i < len; i++)
 506		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
 507	/* Terminate write pipeline */
 508	WriteDOC(0x00, docptr, WritePipeTerm);
 509}
 510
 511static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 512{
 513	struct nand_chip *this = mtd->priv;
 514	struct doc_priv *doc = this->priv;
 515	void __iomem *docptr = doc->virtadr;
 516	int i;
 517
 518	/* Start read pipeline */
 519	ReadDOC(docptr, ReadPipeInit);
 520
 521	for (i = 0; i < len - 1; i++)
 522		buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
 523
 524	/* Terminate read pipeline */
 525	buf[i] = ReadDOC(docptr, LastDataRead);
 526}
 527
 528static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
 529{
 530	struct nand_chip *this = mtd->priv;
 531	struct doc_priv *doc = this->priv;
 532	void __iomem *docptr = doc->virtadr;
 533	int i;
 534
 535	/* Start read pipeline */
 536	ReadDOC(docptr, ReadPipeInit);
 537
 538	for (i = 0; i < len - 1; i++)
 539		if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
 540			ReadDOC(docptr, LastDataRead);
 541			return i;
 542		}
 543	if (buf[i] != ReadDOC(docptr, LastDataRead))
 544		return i;
 545	return 0;
 546}
 547
 548static u_char doc2001plus_read_byte(struct mtd_info *mtd)
 549{
 550	struct nand_chip *this = mtd->priv;
 551	struct doc_priv *doc = this->priv;
 552	void __iomem *docptr = doc->virtadr;
 553	u_char ret;
 554
 555	ReadDOC(docptr, Mplus_ReadPipeInit);
 556	ReadDOC(docptr, Mplus_ReadPipeInit);
 557	ret = ReadDOC(docptr, Mplus_LastDataRead);
 558	if (debug)
 559		printk("read_byte returns %02x\n", ret);
 560	return ret;
 561}
 562
 563static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 564{
 565	struct nand_chip *this = mtd->priv;
 566	struct doc_priv *doc = this->priv;
 567	void __iomem *docptr = doc->virtadr;
 568	int i;
 569
 570	if (debug)
 571		printk("writebuf of %d bytes: ", len);
 572	for (i = 0; i < len; i++) {
 573		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
 574		if (debug && i < 16)
 575			printk("%02x ", buf[i]);
 576	}
 577	if (debug)
 578		printk("\n");
 579}
 580
 581static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 582{
 583	struct nand_chip *this = mtd->priv;
 584	struct doc_priv *doc = this->priv;
 585	void __iomem *docptr = doc->virtadr;
 586	int i;
 587
 588	if (debug)
 589		printk("readbuf of %d bytes: ", len);
 590
 591	/* Start read pipeline */
 592	ReadDOC(docptr, Mplus_ReadPipeInit);
 593	ReadDOC(docptr, Mplus_ReadPipeInit);
 594
 595	for (i = 0; i < len - 2; i++) {
 596		buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
 597		if (debug && i < 16)
 598			printk("%02x ", buf[i]);
 599	}
 600
 601	/* Terminate read pipeline */
 602	buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
 603	if (debug && i < 16)
 604		printk("%02x ", buf[len - 2]);
 605	buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
 606	if (debug && i < 16)
 607		printk("%02x ", buf[len - 1]);
 608	if (debug)
 609		printk("\n");
 610}
 611
 612static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
 613{
 614	struct nand_chip *this = mtd->priv;
 615	struct doc_priv *doc = this->priv;
 616	void __iomem *docptr = doc->virtadr;
 617	int i;
 618
 619	if (debug)
 620		printk("verifybuf of %d bytes: ", len);
 621
 622	/* Start read pipeline */
 623	ReadDOC(docptr, Mplus_ReadPipeInit);
 624	ReadDOC(docptr, Mplus_ReadPipeInit);
 625
 626	for (i = 0; i < len - 2; i++)
 627		if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
 628			ReadDOC(docptr, Mplus_LastDataRead);
 629			ReadDOC(docptr, Mplus_LastDataRead);
 630			return i;
 631		}
 632	if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead))
 633		return len - 2;
 634	if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead))
 635		return len - 1;
 636	return 0;
 637}
 638
 639static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
 640{
 641	struct nand_chip *this = mtd->priv;
 642	struct doc_priv *doc = this->priv;
 643	void __iomem *docptr = doc->virtadr;
 644	int floor = 0;
 645
 646	if (debug)
 647		printk("select chip (%d)\n", chip);
 648
 649	if (chip == -1) {
 650		/* Disable flash internally */
 651		WriteDOC(0, docptr, Mplus_FlashSelect);
 652		return;
 653	}
 654
 655	floor = chip / doc->chips_per_floor;
 656	chip -= (floor * doc->chips_per_floor);
 657
 658	/* Assert ChipEnable and deassert WriteProtect */
 659	WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
 660	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
 661
 662	doc->curchip = chip;
 663	doc->curfloor = floor;
 664}
 665
 666static void doc200x_select_chip(struct mtd_info *mtd, int chip)
 667{
 668	struct nand_chip *this = mtd->priv;
 669	struct doc_priv *doc = this->priv;
 670	void __iomem *docptr = doc->virtadr;
 671	int floor = 0;
 672
 673	if (debug)
 674		printk("select chip (%d)\n", chip);
 675
 676	if (chip == -1)
 677		return;
 678
 679	floor = chip / doc->chips_per_floor;
 680	chip -= (floor * doc->chips_per_floor);
 681
 682	/* 11.4.4 -- deassert CE before changing chip */
 683	doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 684
 685	WriteDOC(floor, docptr, FloorSelect);
 686	WriteDOC(chip, docptr, CDSNDeviceSelect);
 687
 688	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 689
 690	doc->curchip = chip;
 691	doc->curfloor = floor;
 692}
 693
 694#define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
 695
 696static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
 697			      unsigned int ctrl)
 698{
 699	struct nand_chip *this = mtd->priv;
 700	struct doc_priv *doc = this->priv;
 701	void __iomem *docptr = doc->virtadr;
 702
 703	if (ctrl & NAND_CTRL_CHANGE) {
 704		doc->CDSNControl &= ~CDSN_CTRL_MSK;
 705		doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
 706		if (debug)
 707			printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
 708		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
 709		/* 11.4.3 -- 4 NOPs after CSDNControl write */
 710		DoC_Delay(doc, 4);
 711	}
 712	if (cmd != NAND_CMD_NONE) {
 713		if (DoC_is_2000(doc))
 714			doc2000_write_byte(mtd, cmd);
 715		else
 716			doc2001_write_byte(mtd, cmd);
 717	}
 718}
 719
 720static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
 721{
 722	struct nand_chip *this = mtd->priv;
 723	struct doc_priv *doc = this->priv;
 724	void __iomem *docptr = doc->virtadr;
 725
 726	/*
 727	 * Must terminate write pipeline before sending any commands
 728	 * to the device.
 729	 */
 730	if (command == NAND_CMD_PAGEPROG) {
 731		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
 732		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
 733	}
 734
 735	/*
 736	 * Write out the command to the device.
 737	 */
 738	if (command == NAND_CMD_SEQIN) {
 739		int readcmd;
 740
 741		if (column >= mtd->writesize) {
 742			/* OOB area */
 743			column -= mtd->writesize;
 744			readcmd = NAND_CMD_READOOB;
 745		} else if (column < 256) {
 746			/* First 256 bytes --> READ0 */
 747			readcmd = NAND_CMD_READ0;
 748		} else {
 749			column -= 256;
 750			readcmd = NAND_CMD_READ1;
 751		}
 752		WriteDOC(readcmd, docptr, Mplus_FlashCmd);
 753	}
 754	WriteDOC(command, docptr, Mplus_FlashCmd);
 755	WriteDOC(0, docptr, Mplus_WritePipeTerm);
 756	WriteDOC(0, docptr, Mplus_WritePipeTerm);
 757
 758	if (column != -1 || page_addr != -1) {
 759		/* Serially input address */
 760		if (column != -1) {
 761			/* Adjust columns for 16 bit buswidth */
 762			if (this->options & NAND_BUSWIDTH_16)
 763				column >>= 1;
 764			WriteDOC(column, docptr, Mplus_FlashAddress);
 765		}
 766		if (page_addr != -1) {
 767			WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
 768			WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
 769			/* One more address cycle for higher density devices */
 770			if (this->chipsize & 0x0c000000) {
 771				WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
 772				printk("high density\n");
 773			}
 774		}
 775		WriteDOC(0, docptr, Mplus_WritePipeTerm);
 776		WriteDOC(0, docptr, Mplus_WritePipeTerm);
 777		/* deassert ALE */
 778		if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
 779		    command == NAND_CMD_READOOB || command == NAND_CMD_READID)
 780			WriteDOC(0, docptr, Mplus_FlashControl);
 781	}
 782
 783	/*
 784	 * program and erase have their own busy handlers
 785	 * status and sequential in needs no delay
 786	 */
 787	switch (command) {
 788
 789	case NAND_CMD_PAGEPROG:
 790	case NAND_CMD_ERASE1:
 791	case NAND_CMD_ERASE2:
 792	case NAND_CMD_SEQIN:
 793	case NAND_CMD_STATUS:
 794		return;
 795
 796	case NAND_CMD_RESET:
 797		if (this->dev_ready)
 798			break;
 799		udelay(this->chip_delay);
 800		WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
 801		WriteDOC(0, docptr, Mplus_WritePipeTerm);
 802		WriteDOC(0, docptr, Mplus_WritePipeTerm);
 803		while (!(this->read_byte(mtd) & 0x40)) ;
 804		return;
 805
 806		/* This applies to read commands */
 807	default:
 808		/*
 809		 * If we don't have access to the busy pin, we apply the given
 810		 * command delay
 811		 */
 812		if (!this->dev_ready) {
 813			udelay(this->chip_delay);
 814			return;
 815		}
 816	}
 817
 818	/* Apply this short delay always to ensure that we do wait tWB in
 819	 * any case on any machine. */
 820	ndelay(100);
 821	/* wait until command is processed */
 822	while (!this->dev_ready(mtd)) ;
 823}
 824
 825static int doc200x_dev_ready(struct mtd_info *mtd)
 826{
 827	struct nand_chip *this = mtd->priv;
 828	struct doc_priv *doc = this->priv;
 829	void __iomem *docptr = doc->virtadr;
 830
 831	if (DoC_is_MillenniumPlus(doc)) {
 832		/* 11.4.2 -- must NOP four times before checking FR/B# */
 833		DoC_Delay(doc, 4);
 834		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
 835			if (debug)
 836				printk("not ready\n");
 837			return 0;
 838		}
 839		if (debug)
 840			printk("was ready\n");
 841		return 1;
 842	} else {
 843		/* 11.4.2 -- must NOP four times before checking FR/B# */
 844		DoC_Delay(doc, 4);
 845		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
 846			if (debug)
 847				printk("not ready\n");
 848			return 0;
 849		}
 850		/* 11.4.2 -- Must NOP twice if it's ready */
 851		DoC_Delay(doc, 2);
 852		if (debug)
 853			printk("was ready\n");
 854		return 1;
 855	}
 856}
 857
 858static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
 859{
 860	/* This is our last resort if we couldn't find or create a BBT.  Just
 861	   pretend all blocks are good. */
 862	return 0;
 863}
 864
 865static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
 866{
 867	struct nand_chip *this = mtd->priv;
 868	struct doc_priv *doc = this->priv;
 869	void __iomem *docptr = doc->virtadr;
 870
 871	/* Prime the ECC engine */
 872	switch (mode) {
 873	case NAND_ECC_READ:
 874		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 875		WriteDOC(DOC_ECC_EN, docptr, ECCConf);
 876		break;
 877	case NAND_ECC_WRITE:
 878		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 879		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
 880		break;
 881	}
 882}
 883
 884static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
 885{
 886	struct nand_chip *this = mtd->priv;
 887	struct doc_priv *doc = this->priv;
 888	void __iomem *docptr = doc->virtadr;
 889
 890	/* Prime the ECC engine */
 891	switch (mode) {
 892	case NAND_ECC_READ:
 893		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
 894		WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
 895		break;
 896	case NAND_ECC_WRITE:
 897		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
 898		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
 899		break;
 900	}
 901}
 902
 903/* This code is only called on write */
 904static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
 905{
 906	struct nand_chip *this = mtd->priv;
 907	struct doc_priv *doc = this->priv;
 908	void __iomem *docptr = doc->virtadr;
 909	int i;
 910	int emptymatch = 1;
 911
 912	/* flush the pipeline */
 913	if (DoC_is_2000(doc)) {
 914		WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
 915		WriteDOC(0, docptr, 2k_CDSN_IO);
 916		WriteDOC(0, docptr, 2k_CDSN_IO);
 917		WriteDOC(0, docptr, 2k_CDSN_IO);
 918		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
 919	} else if (DoC_is_MillenniumPlus(doc)) {
 920		WriteDOC(0, docptr, Mplus_NOP);
 921		WriteDOC(0, docptr, Mplus_NOP);
 922		WriteDOC(0, docptr, Mplus_NOP);
 923	} else {
 924		WriteDOC(0, docptr, NOP);
 925		WriteDOC(0, docptr, NOP);
 926		WriteDOC(0, docptr, NOP);
 927	}
 928
 929	for (i = 0; i < 6; i++) {
 930		if (DoC_is_MillenniumPlus(doc))
 931			ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
 932		else
 933			ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
 934		if (ecc_code[i] != empty_write_ecc[i])
 935			emptymatch = 0;
 936	}
 937	if (DoC_is_MillenniumPlus(doc))
 938		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
 939	else
 940		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
 941#if 0
 942	/* If emptymatch=1, we might have an all-0xff data buffer.  Check. */
 943	if (emptymatch) {
 944		/* Note: this somewhat expensive test should not be triggered
 945		   often.  It could be optimized away by examining the data in
 946		   the writebuf routine, and remembering the result. */
 947		for (i = 0; i < 512; i++) {
 948			if (dat[i] == 0xff)
 949				continue;
 950			emptymatch = 0;
 951			break;
 952		}
 953	}
 954	/* If emptymatch still =1, we do have an all-0xff data buffer.
 955	   Return all-0xff ecc value instead of the computed one, so
 956	   it'll look just like a freshly-erased page. */
 957	if (emptymatch)
 958		memset(ecc_code, 0xff, 6);
 959#endif
 960	return 0;
 961}
 962
 963static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
 964				u_char *read_ecc, u_char *isnull)
 965{
 966	int i, ret = 0;
 967	struct nand_chip *this = mtd->priv;
 968	struct doc_priv *doc = this->priv;
 969	void __iomem *docptr = doc->virtadr;
 970	uint8_t calc_ecc[6];
 971	volatile u_char dummy;
 972	int emptymatch = 1;
 973
 974	/* flush the pipeline */
 975	if (DoC_is_2000(doc)) {
 976		dummy = ReadDOC(docptr, 2k_ECCStatus);
 977		dummy = ReadDOC(docptr, 2k_ECCStatus);
 978		dummy = ReadDOC(docptr, 2k_ECCStatus);
 979	} else if (DoC_is_MillenniumPlus(doc)) {
 980		dummy = ReadDOC(docptr, Mplus_ECCConf);
 981		dummy = ReadDOC(docptr, Mplus_ECCConf);
 982		dummy = ReadDOC(docptr, Mplus_ECCConf);
 983	} else {
 984		dummy = ReadDOC(docptr, ECCConf);
 985		dummy = ReadDOC(docptr, ECCConf);
 986		dummy = ReadDOC(docptr, ECCConf);
 987	}
 988
 989	/* Error occurred ? */
 990	if (dummy & 0x80) {
 991		for (i = 0; i < 6; i++) {
 992			if (DoC_is_MillenniumPlus(doc))
 993				calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
 994			else
 995				calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
 996			if (calc_ecc[i] != empty_read_syndrome[i])
 997				emptymatch = 0;
 998		}
 999		/* If emptymatch=1, the read syndrome is consistent with an
1000		   all-0xff data and stored ecc block.  Check the stored ecc. */
1001		if (emptymatch) {
1002			for (i = 0; i < 6; i++) {
1003				if (read_ecc[i] == 0xff)
1004					continue;
1005				emptymatch = 0;
1006				break;
1007			}
1008		}
1009		/* If emptymatch still =1, check the data block. */
1010		if (emptymatch) {
1011			/* Note: this somewhat expensive test should not be triggered
1012			   often.  It could be optimized away by examining the data in
1013			   the readbuf routine, and remembering the result. */
1014			for (i = 0; i < 512; i++) {
1015				if (dat[i] == 0xff)
1016					continue;
1017				emptymatch = 0;
1018				break;
1019			}
1020		}
1021		/* If emptymatch still =1, this is almost certainly a freshly-
1022		   erased block, in which case the ECC will not come out right.
1023		   We'll suppress the error and tell the caller everything's
1024		   OK.  Because it is. */
1025		if (!emptymatch)
1026			ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
1027		if (ret > 0)
1028			printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
1029	}
1030	if (DoC_is_MillenniumPlus(doc))
1031		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
1032	else
1033		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1034	if (no_ecc_failures && (ret == -EBADMSG)) {
1035		printk(KERN_ERR "suppressing ECC failure\n");
1036		ret = 0;
1037	}
1038	return ret;
1039}
1040
1041//u_char mydatabuf[528];
1042
1043/* The strange out-of-order .oobfree list below is a (possibly unneeded)
1044 * attempt to retain compatibility.  It used to read:
1045 * 	.oobfree = { {8, 8} }
1046 * Since that leaves two bytes unusable, it was changed.  But the following
1047 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1048 * 	.oobfree = { {6, 10} }
1049 * jffs2 seems to handle the above gracefully, but the current scheme seems
1050 * safer.  The only problem with it is that any code that parses oobfree must
1051 * be able to handle out-of-order segments.
1052 */
1053static struct nand_ecclayout doc200x_oobinfo = {
1054	.eccbytes = 6,
1055	.eccpos = {0, 1, 2, 3, 4, 5},
1056	.oobfree = {{8, 8}, {6, 2}}
1057};
1058
1059/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1060   On successful return, buf will contain a copy of the media header for
1061   further processing.  id is the string to scan for, and will presumably be
1062   either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
1063   header.  The page #s of the found media headers are placed in mh0_page and
1064   mh1_page in the DOC private structure. */
1065static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1066{
1067	struct nand_chip *this = mtd->priv;
1068	struct doc_priv *doc = this->priv;
1069	unsigned offs;
1070	int ret;
1071	size_t retlen;
1072
1073	for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1074		ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1075		if (retlen != mtd->writesize)
1076			continue;
1077		if (ret) {
1078			printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1079		}
1080		if (memcmp(buf, id, 6))
1081			continue;
1082		printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1083		if (doc->mh0_page == -1) {
1084			doc->mh0_page = offs >> this->page_shift;
1085			if (!findmirror)
1086				return 1;
1087			continue;
1088		}
1089		doc->mh1_page = offs >> this->page_shift;
1090		return 2;
1091	}
1092	if (doc->mh0_page == -1) {
1093		printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1094		return 0;
1095	}
1096	/* Only one mediaheader was found.  We want buf to contain a
1097	   mediaheader on return, so we'll have to re-read the one we found. */
1098	offs = doc->mh0_page << this->page_shift;
1099	ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1100	if (retlen != mtd->writesize) {
1101		/* Insanity.  Give up. */
1102		printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1103		return 0;
1104	}
1105	return 1;
1106}
1107
1108static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1109{
1110	struct nand_chip *this = mtd->priv;
1111	struct doc_priv *doc = this->priv;
1112	int ret = 0;
1113	u_char *buf;
1114	struct NFTLMediaHeader *mh;
1115	const unsigned psize = 1 << this->page_shift;
1116	int numparts = 0;
1117	unsigned blocks, maxblocks;
1118	int offs, numheaders;
1119
1120	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1121	if (!buf) {
1122		printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1123		return 0;
1124	}
1125	if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1126		goto out;
1127	mh = (struct NFTLMediaHeader *)buf;
1128
1129	le16_to_cpus(&mh->NumEraseUnits);
1130	le16_to_cpus(&mh->FirstPhysicalEUN);
1131	le32_to_cpus(&mh->FormattedSize);
1132
1133	printk(KERN_INFO "    DataOrgID        = %s\n"
1134			 "    NumEraseUnits    = %d\n"
1135			 "    FirstPhysicalEUN = %d\n"
1136			 "    FormattedSize    = %d\n"
1137			 "    UnitSizeFactor   = %d\n",
1138		mh->DataOrgID, mh->NumEraseUnits,
1139		mh->FirstPhysicalEUN, mh->FormattedSize,
1140		mh->UnitSizeFactor);
1141
1142	blocks = mtd->size >> this->phys_erase_shift;
1143	maxblocks = min(32768U, mtd->erasesize - psize);
1144
1145	if (mh->UnitSizeFactor == 0x00) {
1146		/* Auto-determine UnitSizeFactor.  The constraints are:
1147		   - There can be at most 32768 virtual blocks.
1148		   - There can be at most (virtual block size - page size)
1149		   virtual blocks (because MediaHeader+BBT must fit in 1).
1150		 */
1151		mh->UnitSizeFactor = 0xff;
1152		while (blocks > maxblocks) {
1153			blocks >>= 1;
1154			maxblocks = min(32768U, (maxblocks << 1) + psize);
1155			mh->UnitSizeFactor--;
1156		}
1157		printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1158	}
1159
1160	/* NOTE: The lines below modify internal variables of the NAND and MTD
1161	   layers; variables with have already been configured by nand_scan.
1162	   Unfortunately, we didn't know before this point what these values
1163	   should be.  Thus, this code is somewhat dependent on the exact
1164	   implementation of the NAND layer.  */
1165	if (mh->UnitSizeFactor != 0xff) {
1166		this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1167		mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1168		printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1169		blocks = mtd->size >> this->bbt_erase_shift;
1170		maxblocks = min(32768U, mtd->erasesize - psize);
1171	}
1172
1173	if (blocks > maxblocks) {
1174		printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
1175		goto out;
1176	}
1177
1178	/* Skip past the media headers. */
1179	offs = max(doc->mh0_page, doc->mh1_page);
1180	offs <<= this->page_shift;
1181	offs += mtd->erasesize;
1182
1183	if (show_firmware_partition == 1) {
1184		parts[0].name = " DiskOnChip Firmware / Media Header partition";
1185		parts[0].offset = 0;
1186		parts[0].size = offs;
1187		numparts = 1;
1188	}
1189
1190	parts[numparts].name = " DiskOnChip BDTL partition";
1191	parts[numparts].offset = offs;
1192	parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1193
1194	offs += parts[numparts].size;
1195	numparts++;
1196
1197	if (offs < mtd->size) {
1198		parts[numparts].name = " DiskOnChip Remainder partition";
1199		parts[numparts].offset = offs;
1200		parts[numparts].size = mtd->size - offs;
1201		numparts++;
1202	}
1203
1204	ret = numparts;
1205 out:
1206	kfree(buf);
1207	return ret;
1208}
1209
1210/* This is a stripped-down copy of the code in inftlmount.c */
1211static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1212{
1213	struct nand_chip *this = mtd->priv;
1214	struct doc_priv *doc = this->priv;
1215	int ret = 0;
1216	u_char *buf;
1217	struct INFTLMediaHeader *mh;
1218	struct INFTLPartition *ip;
1219	int numparts = 0;
1220	int blocks;
1221	int vshift, lastvunit = 0;
1222	int i;
1223	int end = mtd->size;
1224
1225	if (inftl_bbt_write)
1226		end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1227
1228	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1229	if (!buf) {
1230		printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1231		return 0;
1232	}
1233
1234	if (!find_media_headers(mtd, buf, "BNAND", 0))
1235		goto out;
1236	doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1237	mh = (struct INFTLMediaHeader *)buf;
1238
1239	le32_to_cpus(&mh->NoOfBootImageBlocks);
1240	le32_to_cpus(&mh->NoOfBinaryPartitions);
1241	le32_to_cpus(&mh->NoOfBDTLPartitions);
1242	le32_to_cpus(&mh->BlockMultiplierBits);
1243	le32_to_cpus(&mh->FormatFlags);
1244	le32_to_cpus(&mh->PercentUsed);
1245
1246	printk(KERN_INFO "    bootRecordID          = %s\n"
1247			 "    NoOfBootImageBlocks   = %d\n"
1248			 "    NoOfBinaryPartitions  = %d\n"
1249			 "    NoOfBDTLPartitions    = %d\n"
1250			 "    BlockMultiplerBits    = %d\n"
1251			 "    FormatFlgs            = %d\n"
1252			 "    OsakVersion           = %d.%d.%d.%d\n"
1253			 "    PercentUsed           = %d\n",
1254		mh->bootRecordID, mh->NoOfBootImageBlocks,
1255		mh->NoOfBinaryPartitions,
1256		mh->NoOfBDTLPartitions,
1257		mh->BlockMultiplierBits, mh->FormatFlags,
1258		((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1259		((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1260		((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1261		((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1262		mh->PercentUsed);
1263
1264	vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1265
1266	blocks = mtd->size >> vshift;
1267	if (blocks > 32768) {
1268		printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
1269		goto out;
1270	}
1271
1272	blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1273	if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1274		printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
1275		goto out;
1276	}
1277
1278	/* Scan the partitions */
1279	for (i = 0; (i < 4); i++) {
1280		ip = &(mh->Partitions[i]);
1281		le32_to_cpus(&ip->virtualUnits);
1282		le32_to_cpus(&ip->firstUnit);
1283		le32_to_cpus(&ip->lastUnit);
1284		le32_to_cpus(&ip->flags);
1285		le32_to_cpus(&ip->spareUnits);
1286		le32_to_cpus(&ip->Reserved0);
1287
1288		printk(KERN_INFO	"    PARTITION[%d] ->\n"
1289			"        virtualUnits    = %d\n"
1290			"        firstUnit       = %d\n"
1291			"        lastUnit        = %d\n"
1292			"        flags           = 0x%x\n"
1293			"        spareUnits      = %d\n",
1294			i, ip->virtualUnits, ip->firstUnit,
1295			ip->lastUnit, ip->flags,
1296			ip->spareUnits);
1297
1298		if ((show_firmware_partition == 1) &&
1299		    (i == 0) && (ip->firstUnit > 0)) {
1300			parts[0].name = " DiskOnChip IPL / Media Header partition";
1301			parts[0].offset = 0;
1302			parts[0].size = mtd->erasesize * ip->firstUnit;
1303			numparts = 1;
1304		}
1305
1306		if (ip->flags & INFTL_BINARY)
1307			parts[numparts].name = " DiskOnChip BDK partition";
1308		else
1309			parts[numparts].name = " DiskOnChip BDTL partition";
1310		parts[numparts].offset = ip->firstUnit << vshift;
1311		parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1312		numparts++;
1313		if (ip->lastUnit > lastvunit)
1314			lastvunit = ip->lastUnit;
1315		if (ip->flags & INFTL_LAST)
1316			break;
1317	}
1318	lastvunit++;
1319	if ((lastvunit << vshift) < end) {
1320		parts[numparts].name = " DiskOnChip Remainder partition";
1321		parts[numparts].offset = lastvunit << vshift;
1322		parts[numparts].size = end - parts[numparts].offset;
1323		numparts++;
1324	}
1325	ret = numparts;
1326 out:
1327	kfree(buf);
1328	return ret;
1329}
1330
1331static int __init nftl_scan_bbt(struct mtd_info *mtd)
1332{
1333	int ret, numparts;
1334	struct nand_chip *this = mtd->priv;
1335	struct doc_priv *doc = this->priv;
1336	struct mtd_partition parts[2];
1337
1338	memset((char *)parts, 0, sizeof(parts));
1339	/* On NFTL, we have to find the media headers before we can read the
1340	   BBTs, since they're stored in the media header eraseblocks. */
1341	numparts = nftl_partscan(mtd, parts);
1342	if (!numparts)
1343		return -EIO;
1344	this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1345				NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1346				NAND_BBT_VERSION;
1347	this->bbt_td->veroffs = 7;
1348	this->bbt_td->pages[0] = doc->mh0_page + 1;
1349	if (doc->mh1_page != -1) {
1350		this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1351					NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1352					NAND_BBT_VERSION;
1353		this->bbt_md->veroffs = 7;
1354		this->bbt_md->pages[0] = doc->mh1_page + 1;
1355	} else {
1356		this->bbt_md = NULL;
1357	}
1358
1359	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1360	   At least as nand_bbt.c is currently written. */
1361	if ((ret = nand_scan_bbt(mtd, NULL)))
1362		return ret;
1363	mtd_device_register(mtd, NULL, 0);
1364	if (!no_autopart)
1365		mtd_device_register(mtd, parts, numparts);
1366	return 0;
1367}
1368
1369static int __init inftl_scan_bbt(struct mtd_info *mtd)
1370{
1371	int ret, numparts;
1372	struct nand_chip *this = mtd->priv;
1373	struct doc_priv *doc = this->priv;
1374	struct mtd_partition parts[5];
1375
1376	if (this->numchips > doc->chips_per_floor) {
1377		printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1378		return -EIO;
1379	}
1380
1381	if (DoC_is_MillenniumPlus(doc)) {
1382		this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1383		if (inftl_bbt_write)
1384			this->bbt_td->options |= NAND_BBT_WRITE;
1385		this->bbt_td->pages[0] = 2;
1386		this->bbt_md = NULL;
1387	} else {
1388		this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1389		if (inftl_bbt_write)
1390			this->bbt_td->options |= NAND_BBT_WRITE;
1391		this->bbt_td->offs = 8;
1392		this->bbt_td->len = 8;
1393		this->bbt_td->veroffs = 7;
1394		this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1395		this->bbt_td->reserved_block_code = 0x01;
1396		this->bbt_td->pattern = "MSYS_BBT";
1397
1398		this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1399		if (inftl_bbt_write)
1400			this->bbt_md->options |= NAND_BBT_WRITE;
1401		this->bbt_md->offs = 8;
1402		this->bbt_md->len = 8;
1403		this->bbt_md->veroffs = 7;
1404		this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1405		this->bbt_md->reserved_block_code = 0x01;
1406		this->bbt_md->pattern = "TBB_SYSM";
1407	}
1408
1409	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1410	   At least as nand_bbt.c is currently written. */
1411	if ((ret = nand_scan_bbt(mtd, NULL)))
1412		return ret;
1413	memset((char *)parts, 0, sizeof(parts));
1414	numparts = inftl_partscan(mtd, parts);
1415	/* At least for now, require the INFTL Media Header.  We could probably
1416	   do without it for non-INFTL use, since all it gives us is
1417	   autopartitioning, but I want to give it more thought. */
1418	if (!numparts)
1419		return -EIO;
1420	mtd_device_register(mtd, NULL, 0);
1421	if (!no_autopart)
1422		mtd_device_register(mtd, parts, numparts);
1423	return 0;
1424}
1425
1426static inline int __init doc2000_init(struct mtd_info *mtd)
1427{
1428	struct nand_chip *this = mtd->priv;
1429	struct doc_priv *doc = this->priv;
1430
1431	this->read_byte = doc2000_read_byte;
1432	this->write_buf = doc2000_writebuf;
1433	this->read_buf = doc2000_readbuf;
1434	this->verify_buf = doc2000_verifybuf;
1435	this->scan_bbt = nftl_scan_bbt;
1436
1437	doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1438	doc2000_count_chips(mtd);
1439	mtd->name = "DiskOnChip 2000 (NFTL Model)";
1440	return (4 * doc->chips_per_floor);
1441}
1442
1443static inline int __init doc2001_init(struct mtd_info *mtd)
1444{
1445	struct nand_chip *this = mtd->priv;
1446	struct doc_priv *doc = this->priv;
1447
1448	this->read_byte = doc2001_read_byte;
1449	this->write_buf = doc2001_writebuf;
1450	this->read_buf = doc2001_readbuf;
1451	this->verify_buf = doc2001_verifybuf;
1452
1453	ReadDOC(doc->virtadr, ChipID);
1454	ReadDOC(doc->virtadr, ChipID);
1455	ReadDOC(doc->virtadr, ChipID);
1456	if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1457		/* It's not a Millennium; it's one of the newer
1458		   DiskOnChip 2000 units with a similar ASIC.
1459		   Treat it like a Millennium, except that it
1460		   can have multiple chips. */
1461		doc2000_count_chips(mtd);
1462		mtd->name = "DiskOnChip 2000 (INFTL Model)";
1463		this->scan_bbt = inftl_scan_bbt;
1464		return (4 * doc->chips_per_floor);
1465	} else {
1466		/* Bog-standard Millennium */
1467		doc->chips_per_floor = 1;
1468		mtd->name = "DiskOnChip Millennium";
1469		this->scan_bbt = nftl_scan_bbt;
1470		return 1;
1471	}
1472}
1473
1474static inline int __init doc2001plus_init(struct mtd_info *mtd)
1475{
1476	struct nand_chip *this = mtd->priv;
1477	struct doc_priv *doc = this->priv;
1478
1479	this->read_byte = doc2001plus_read_byte;
1480	this->write_buf = doc2001plus_writebuf;
1481	this->read_buf = doc2001plus_readbuf;
1482	this->verify_buf = doc2001plus_verifybuf;
1483	this->scan_bbt = inftl_scan_bbt;
1484	this->cmd_ctrl = NULL;
1485	this->select_chip = doc2001plus_select_chip;
1486	this->cmdfunc = doc2001plus_command;
1487	this->ecc.hwctl = doc2001plus_enable_hwecc;
1488
1489	doc->chips_per_floor = 1;
1490	mtd->name = "DiskOnChip Millennium Plus";
1491
1492	return 1;
1493}
1494
1495static int __init doc_probe(unsigned long physadr)
1496{
1497	unsigned char ChipID;
1498	struct mtd_info *mtd;
1499	struct nand_chip *nand;
1500	struct doc_priv *doc;
1501	void __iomem *virtadr;
1502	unsigned char save_control;
1503	unsigned char tmp, tmpb, tmpc;
1504	int reg, len, numchips;
1505	int ret = 0;
1506
1507	virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1508	if (!virtadr) {
1509		printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1510		return -EIO;
1511	}
1512
1513	/* It's not possible to cleanly detect the DiskOnChip - the
1514	 * bootup procedure will put the device into reset mode, and
1515	 * it's not possible to talk to it without actually writing
1516	 * to the DOCControl register. So we store the current contents
1517	 * of the DOCControl register's location, in case we later decide
1518	 * that it's not a DiskOnChip, and want to put it back how we
1519	 * found it.
1520	 */
1521	save_control = ReadDOC(virtadr, DOCControl);
1522
1523	/* Reset the DiskOnChip ASIC */
1524	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1525	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1526
1527	/* Enable the DiskOnChip ASIC */
1528	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1529	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1530
1531	ChipID = ReadDOC(virtadr, ChipID);
1532
1533	switch (ChipID) {
1534	case DOC_ChipID_Doc2k:
1535		reg = DoC_2k_ECCStatus;
1536		break;
1537	case DOC_ChipID_DocMil:
1538		reg = DoC_ECCConf;
1539		break;
1540	case DOC_ChipID_DocMilPlus16:
1541	case DOC_ChipID_DocMilPlus32:
1542	case 0:
1543		/* Possible Millennium Plus, need to do more checks */
1544		/* Possibly release from power down mode */
1545		for (tmp = 0; (tmp < 4); tmp++)
1546			ReadDOC(virtadr, Mplus_Power);
1547
1548		/* Reset the Millennium Plus ASIC */
1549		tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1550		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1551		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1552
1553		mdelay(1);
1554		/* Enable the Millennium Plus ASIC */
1555		tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1556		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1557		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1558		mdelay(1);
1559
1560		ChipID = ReadDOC(virtadr, ChipID);
1561
1562		switch (ChipID) {
1563		case DOC_ChipID_DocMilPlus16:
1564			reg = DoC_Mplus_Toggle;
1565			break;
1566		case DOC_ChipID_DocMilPlus32:
1567			printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1568		default:
1569			ret = -ENODEV;
1570			goto notfound;
1571		}
1572		break;
1573
1574	default:
1575		ret = -ENODEV;
1576		goto notfound;
1577	}
1578	/* Check the TOGGLE bit in the ECC register */
1579	tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1580	tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1581	tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1582	if ((tmp == tmpb) || (tmp != tmpc)) {
1583		printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1584		ret = -ENODEV;
1585		goto notfound;
1586	}
1587
1588	for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1589		unsigned char oldval;
1590		unsigned char newval;
1591		nand = mtd->priv;
1592		doc = nand->priv;
1593		/* Use the alias resolution register to determine if this is
1594		   in fact the same DOC aliased to a new address.  If writes
1595		   to one chip's alias resolution register change the value on
1596		   the other chip, they're the same chip. */
1597		if (ChipID == DOC_ChipID_DocMilPlus16) {
1598			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1599			newval = ReadDOC(virtadr, Mplus_AliasResolution);
1600		} else {
1601			oldval = ReadDOC(doc->virtadr, AliasResolution);
1602			newval = ReadDOC(virtadr, AliasResolution);
1603		}
1604		if (oldval != newval)
1605			continue;
1606		if (ChipID == DOC_ChipID_DocMilPlus16) {
1607			WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1608			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1609			WriteDOC(newval, virtadr, Mplus_AliasResolution);	// restore it
1610		} else {
1611			WriteDOC(~newval, virtadr, AliasResolution);
1612			oldval = ReadDOC(doc->virtadr, AliasResolution);
1613			WriteDOC(newval, virtadr, AliasResolution);	// restore it
1614		}
1615		newval = ~newval;
1616		if (oldval == newval) {
1617			printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1618			goto notfound;
1619		}
1620	}
1621
1622	printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1623
1624	len = sizeof(struct mtd_info) +
1625	    sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1626	mtd = kzalloc(len, GFP_KERNEL);
1627	if (!mtd) {
1628		printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1629		ret = -ENOMEM;
1630		goto fail;
1631	}
1632
1633	nand			= (struct nand_chip *) (mtd + 1);
1634	doc			= (struct doc_priv *) (nand + 1);
1635	nand->bbt_td		= (struct nand_bbt_descr *) (doc + 1);
1636	nand->bbt_md		= nand->bbt_td + 1;
1637
1638	mtd->priv		= nand;
1639	mtd->owner		= THIS_MODULE;
1640
1641	nand->priv		= doc;
1642	nand->select_chip	= doc200x_select_chip;
1643	nand->cmd_ctrl		= doc200x_hwcontrol;
1644	nand->dev_ready		= doc200x_dev_ready;
1645	nand->waitfunc		= doc200x_wait;
1646	nand->block_bad		= doc200x_block_bad;
1647	nand->ecc.hwctl		= doc200x_enable_hwecc;
1648	nand->ecc.calculate	= doc200x_calculate_ecc;
1649	nand->ecc.correct	= doc200x_correct_data;
1650
1651	nand->ecc.layout	= &doc200x_oobinfo;
1652	nand->ecc.mode		= NAND_ECC_HW_SYNDROME;
1653	nand->ecc.size		= 512;
1654	nand->ecc.bytes		= 6;
1655	nand->options		= NAND_USE_FLASH_BBT;
1656
1657	doc->physadr		= physadr;
1658	doc->virtadr		= virtadr;
1659	doc->ChipID		= ChipID;
1660	doc->curfloor		= -1;
1661	doc->curchip		= -1;
1662	doc->mh0_page		= -1;
1663	doc->mh1_page		= -1;
1664	doc->nextdoc		= doclist;
1665
1666	if (ChipID == DOC_ChipID_Doc2k)
1667		numchips = doc2000_init(mtd);
1668	else if (ChipID == DOC_ChipID_DocMilPlus16)
1669		numchips = doc2001plus_init(mtd);
1670	else
1671		numchips = doc2001_init(mtd);
1672
1673	if ((ret = nand_scan(mtd, numchips))) {
1674		/* DBB note: i believe nand_release is necessary here, as
1675		   buffers may have been allocated in nand_base.  Check with
1676		   Thomas. FIX ME! */
1677		/* nand_release will call mtd_device_unregister, but we
1678		   haven't yet added it.  This is handled without incident by
1679		   mtd_device_unregister, as far as I can tell. */
1680		nand_release(mtd);
1681		kfree(mtd);
1682		goto fail;
1683	}
1684
1685	/* Success! */
1686	doclist = mtd;
1687	return 0;
1688
1689 notfound:
1690	/* Put back the contents of the DOCControl register, in case it's not
1691	   actually a DiskOnChip.  */
1692	WriteDOC(save_control, virtadr, DOCControl);
1693 fail:
1694	iounmap(virtadr);
1695	return ret;
1696}
1697
1698static void release_nanddoc(void)
1699{
1700	struct mtd_info *mtd, *nextmtd;
1701	struct nand_chip *nand;
1702	struct doc_priv *doc;
1703
1704	for (mtd = doclist; mtd; mtd = nextmtd) {
1705		nand = mtd->priv;
1706		doc = nand->priv;
1707
1708		nextmtd = doc->nextdoc;
1709		nand_release(mtd);
1710		iounmap(doc->virtadr);
1711		kfree(mtd);
1712	}
1713}
1714
1715static int __init init_nanddoc(void)
1716{
1717	int i, ret = 0;
1718
1719	/* We could create the decoder on demand, if memory is a concern.
1720	 * This way we have it handy, if an error happens
1721	 *
1722	 * Symbolsize is 10 (bits)
1723	 * Primitve polynomial is x^10+x^3+1
1724	 * first consecutive root is 510
1725	 * primitve element to generate roots = 1
1726	 * generator polinomial degree = 4
1727	 */
1728	rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1729	if (!rs_decoder) {
1730		printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1731		return -ENOMEM;
1732	}
1733
1734	if (doc_config_location) {
1735		printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1736		ret = doc_probe(doc_config_location);
1737		if (ret < 0)
1738			goto outerr;
1739	} else {
1740		for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1741			doc_probe(doc_locations[i]);
1742		}
1743	}
1744	/* No banner message any more. Print a message if no DiskOnChip
1745	   found, so the user knows we at least tried. */
1746	if (!doclist) {
1747		printk(KERN_INFO "No valid DiskOnChip devices found\n");
1748		ret = -ENODEV;
1749		goto outerr;
1750	}
1751	return 0;
1752 outerr:
1753	free_rs(rs_decoder);
1754	return ret;
1755}
1756
1757static void __exit cleanup_nanddoc(void)
1758{
1759	/* Cleanup the nand/DoC resources */
1760	release_nanddoc();
1761
1762	/* Free the reed solomon resources */
1763	if (rs_decoder) {
1764		free_rs(rs_decoder);
1765	}
1766}
1767
1768module_init(init_nanddoc);
1769module_exit(cleanup_nanddoc);
1770
1771MODULE_LICENSE("GPL");
1772MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1773MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");