Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2020 Intel
4 *
5 * Based on drivers/base/devres.c
6 */
7
8#include <drm/drm_managed.h>
9
10#include <linux/list.h>
11#include <linux/slab.h>
12#include <linux/spinlock.h>
13
14#include <drm/drm_device.h>
15#include <drm/drm_print.h>
16
17#include "drm_internal.h"
18
19/**
20 * DOC: managed resources
21 *
22 * Inspired by struct &device managed resources, but tied to the lifetime of
23 * struct &drm_device, which can outlive the underlying physical device, usually
24 * when userspace has some open files and other handles to resources still open.
25 *
26 * Release actions can be added with drmm_add_action(), memory allocations can
27 * be done directly with drmm_kmalloc() and the related functions. Everything
28 * will be released on the final drm_dev_put() in reverse order of how the
29 * release actions have been added and memory has been allocated since driver
30 * loading started with drm_dev_init().
31 *
32 * Note that release actions and managed memory can also be added and removed
33 * during the lifetime of the driver, all the functions are fully concurrent
34 * safe. But it is recommended to use managed resources only for resources that
35 * change rarely, if ever, during the lifetime of the &drm_device instance.
36 */
37
38struct drmres_node {
39 struct list_head entry;
40 drmres_release_t release;
41 const char *name;
42 size_t size;
43};
44
45struct drmres {
46 struct drmres_node node;
47 /*
48 * Some archs want to perform DMA into kmalloc caches
49 * and need a guaranteed alignment larger than
50 * the alignment of a 64-bit integer.
51 * Thus we use ARCH_KMALLOC_MINALIGN here and get exactly the same
52 * buffer alignment as if it was allocated by plain kmalloc().
53 */
54 u8 __aligned(ARCH_KMALLOC_MINALIGN) data[];
55};
56
57static void free_dr(struct drmres *dr)
58{
59 kfree_const(dr->node.name);
60 kfree(dr);
61}
62
63void drm_managed_release(struct drm_device *dev)
64{
65 struct drmres *dr, *tmp;
66
67 drm_dbg_drmres(dev, "drmres release begin\n");
68 list_for_each_entry_safe(dr, tmp, &dev->managed.resources, node.entry) {
69 drm_dbg_drmres(dev, "REL %p %s (%zu bytes)\n",
70 dr, dr->node.name, dr->node.size);
71
72 if (dr->node.release)
73 dr->node.release(dev, dr->node.size ? *(void **)&dr->data : NULL);
74
75 list_del(&dr->node.entry);
76 free_dr(dr);
77 }
78 drm_dbg_drmres(dev, "drmres release end\n");
79}
80
81/*
82 * Always inline so that kmalloc_track_caller tracks the actual interesting
83 * caller outside of drm_managed.c.
84 */
85static __always_inline struct drmres * alloc_dr(drmres_release_t release,
86 size_t size, gfp_t gfp, int nid)
87{
88 size_t tot_size;
89 struct drmres *dr;
90
91 /* We must catch any near-SIZE_MAX cases that could overflow. */
92 if (unlikely(check_add_overflow(sizeof(*dr), size, &tot_size)))
93 return NULL;
94
95 dr = kmalloc_node_track_caller(tot_size, gfp, nid);
96 if (unlikely(!dr))
97 return NULL;
98
99 memset(dr, 0, offsetof(struct drmres, data));
100
101 INIT_LIST_HEAD(&dr->node.entry);
102 dr->node.release = release;
103 dr->node.size = size;
104
105 return dr;
106}
107
108static void del_dr(struct drm_device *dev, struct drmres *dr)
109{
110 list_del_init(&dr->node.entry);
111
112 drm_dbg_drmres(dev, "DEL %p %s (%lu bytes)\n",
113 dr, dr->node.name, (unsigned long) dr->node.size);
114}
115
116static void add_dr(struct drm_device *dev, struct drmres *dr)
117{
118 unsigned long flags;
119
120 spin_lock_irqsave(&dev->managed.lock, flags);
121 list_add(&dr->node.entry, &dev->managed.resources);
122 spin_unlock_irqrestore(&dev->managed.lock, flags);
123
124 drm_dbg_drmres(dev, "ADD %p %s (%lu bytes)\n",
125 dr, dr->node.name, (unsigned long) dr->node.size);
126}
127
128/**
129 * drmm_add_final_kfree - add release action for the final kfree()
130 * @dev: DRM device
131 * @container: pointer to the kmalloc allocation containing @dev
132 *
133 * Since the allocation containing the struct &drm_device must be allocated
134 * before it can be initialized with drm_dev_init() there's no way to allocate
135 * that memory with drmm_kmalloc(). To side-step this chicken-egg problem the
136 * pointer for this final kfree() must be specified by calling this function. It
137 * will be released in the final drm_dev_put() for @dev, after all other release
138 * actions installed through drmm_add_action() have been processed.
139 */
140void drmm_add_final_kfree(struct drm_device *dev, void *container)
141{
142 WARN_ON(dev->managed.final_kfree);
143 WARN_ON(dev < (struct drm_device *) container);
144 WARN_ON(dev + 1 > (struct drm_device *) (container + ksize(container)));
145 dev->managed.final_kfree = container;
146}
147EXPORT_SYMBOL(drmm_add_final_kfree);
148
149int __drmm_add_action(struct drm_device *dev,
150 drmres_release_t action,
151 void *data, const char *name)
152{
153 struct drmres *dr;
154 void **void_ptr;
155
156 dr = alloc_dr(action, data ? sizeof(void*) : 0,
157 GFP_KERNEL | __GFP_ZERO,
158 dev_to_node(dev->dev));
159 if (!dr) {
160 drm_dbg_drmres(dev, "failed to add action %s for %p\n",
161 name, data);
162 return -ENOMEM;
163 }
164
165 dr->node.name = kstrdup_const(name, GFP_KERNEL);
166 if (data) {
167 void_ptr = (void **)&dr->data;
168 *void_ptr = data;
169 }
170
171 add_dr(dev, dr);
172
173 return 0;
174}
175EXPORT_SYMBOL(__drmm_add_action);
176
177int __drmm_add_action_or_reset(struct drm_device *dev,
178 drmres_release_t action,
179 void *data, const char *name)
180{
181 int ret;
182
183 ret = __drmm_add_action(dev, action, data, name);
184 if (ret)
185 action(dev, data);
186
187 return ret;
188}
189EXPORT_SYMBOL(__drmm_add_action_or_reset);
190
191/**
192 * drmm_kmalloc - &drm_device managed kmalloc()
193 * @dev: DRM device
194 * @size: size of the memory allocation
195 * @gfp: GFP allocation flags
196 *
197 * This is a &drm_device managed version of kmalloc(). The allocated memory is
198 * automatically freed on the final drm_dev_put(). Memory can also be freed
199 * before the final drm_dev_put() by calling drmm_kfree().
200 */
201void *drmm_kmalloc(struct drm_device *dev, size_t size, gfp_t gfp)
202{
203 struct drmres *dr;
204
205 dr = alloc_dr(NULL, size, gfp, dev_to_node(dev->dev));
206 if (!dr) {
207 drm_dbg_drmres(dev, "failed to allocate %zu bytes, %u flags\n",
208 size, gfp);
209 return NULL;
210 }
211 dr->node.name = kstrdup_const("kmalloc", GFP_KERNEL);
212
213 add_dr(dev, dr);
214
215 return dr->data;
216}
217EXPORT_SYMBOL(drmm_kmalloc);
218
219/**
220 * drmm_kstrdup - &drm_device managed kstrdup()
221 * @dev: DRM device
222 * @s: 0-terminated string to be duplicated
223 * @gfp: GFP allocation flags
224 *
225 * This is a &drm_device managed version of kstrdup(). The allocated memory is
226 * automatically freed on the final drm_dev_put() and works exactly like a
227 * memory allocation obtained by drmm_kmalloc().
228 */
229char *drmm_kstrdup(struct drm_device *dev, const char *s, gfp_t gfp)
230{
231 size_t size;
232 char *buf;
233
234 if (!s)
235 return NULL;
236
237 size = strlen(s) + 1;
238 buf = drmm_kmalloc(dev, size, gfp);
239 if (buf)
240 memcpy(buf, s, size);
241 return buf;
242}
243EXPORT_SYMBOL_GPL(drmm_kstrdup);
244
245/**
246 * drmm_kfree - &drm_device managed kfree()
247 * @dev: DRM device
248 * @data: memory allocation to be freed
249 *
250 * This is a &drm_device managed version of kfree() which can be used to
251 * release memory allocated through drmm_kmalloc() or any of its related
252 * functions before the final drm_dev_put() of @dev.
253 */
254void drmm_kfree(struct drm_device *dev, void *data)
255{
256 struct drmres *dr_match = NULL, *dr;
257 unsigned long flags;
258
259 if (!data)
260 return;
261
262 spin_lock_irqsave(&dev->managed.lock, flags);
263 list_for_each_entry(dr, &dev->managed.resources, node.entry) {
264 if (dr->data == data) {
265 dr_match = dr;
266 del_dr(dev, dr_match);
267 break;
268 }
269 }
270 spin_unlock_irqrestore(&dev->managed.lock, flags);
271
272 if (WARN_ON(!dr_match))
273 return;
274
275 free_dr(dr_match);
276}
277EXPORT_SYMBOL(drmm_kfree);