Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#ifndef KFD_PRIV_H_INCLUDED
  24#define KFD_PRIV_H_INCLUDED
  25
  26#include <linux/hashtable.h>
  27#include <linux/mmu_notifier.h>
  28#include <linux/mutex.h>
  29#include <linux/types.h>
  30#include <linux/atomic.h>
  31#include <linux/workqueue.h>
  32#include <linux/spinlock.h>
  33#include <linux/kfd_ioctl.h>
  34#include <linux/idr.h>
  35#include <linux/kfifo.h>
  36#include <linux/seq_file.h>
  37#include <linux/kref.h>
  38#include <linux/sysfs.h>
  39#include <linux/device_cgroup.h>
  40#include <drm/drm_file.h>
  41#include <drm/drm_drv.h>
  42#include <drm/drm_device.h>
  43#include <drm/drm_ioctl.h>
  44#include <kgd_kfd_interface.h>
  45#include <linux/swap.h>
  46
  47#include "amd_shared.h"
  48
  49#define KFD_MAX_RING_ENTRY_SIZE	8
  50
  51#define KFD_SYSFS_FILE_MODE 0444
  52
  53/* GPU ID hash width in bits */
  54#define KFD_GPU_ID_HASH_WIDTH 16
  55
  56/* Use upper bits of mmap offset to store KFD driver specific information.
  57 * BITS[63:62] - Encode MMAP type
  58 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
  59 * BITS[45:0]  - MMAP offset value
  60 *
  61 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
  62 *  defines are w.r.t to PAGE_SIZE
  63 */
  64#define KFD_MMAP_TYPE_SHIFT	62
  65#define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
  66#define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
  67#define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
  68#define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
  69#define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
  70
  71#define KFD_MMAP_GPU_ID_SHIFT 46
  72#define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
  73				<< KFD_MMAP_GPU_ID_SHIFT)
  74#define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
  75				& KFD_MMAP_GPU_ID_MASK)
  76#define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
  77				>> KFD_MMAP_GPU_ID_SHIFT)
  78
  79/*
  80 * When working with cp scheduler we should assign the HIQ manually or via
  81 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
  82 * definitions for Kaveri. In Kaveri only the first ME queues participates
  83 * in the cp scheduling taking that in mind we set the HIQ slot in the
  84 * second ME.
  85 */
  86#define KFD_CIK_HIQ_PIPE 4
  87#define KFD_CIK_HIQ_QUEUE 0
  88
  89/* Macro for allocating structures */
  90#define kfd_alloc_struct(ptr_to_struct)	\
  91	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
  92
  93#define KFD_MAX_NUM_OF_PROCESSES 512
  94#define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
  95
  96/*
  97 * Size of the per-process TBA+TMA buffer: 2 pages
  98 *
  99 * The first page is the TBA used for the CWSR ISA code. The second
 100 * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
 101 */
 102#define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
 103#define KFD_CWSR_TMA_OFFSET PAGE_SIZE
 104
 105#define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
 106	(KFD_MAX_NUM_OF_PROCESSES *			\
 107			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
 108
 109#define KFD_KERNEL_QUEUE_SIZE 2048
 110
 111#define KFD_UNMAP_LATENCY_MS	(4000)
 112
 113/*
 114 * 512 = 0x200
 115 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
 116 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
 117 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
 118 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
 119 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
 120 */
 121#define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
 122
 123
 124/*
 125 * Kernel module parameter to specify maximum number of supported queues per
 126 * device
 127 */
 128extern int max_num_of_queues_per_device;
 129
 130
 131/* Kernel module parameter to specify the scheduling policy */
 132extern int sched_policy;
 133
 134/*
 135 * Kernel module parameter to specify the maximum process
 136 * number per HW scheduler
 137 */
 138extern int hws_max_conc_proc;
 139
 140extern int cwsr_enable;
 141
 142/*
 143 * Kernel module parameter to specify whether to send sigterm to HSA process on
 144 * unhandled exception
 145 */
 146extern int send_sigterm;
 147
 148/*
 149 * This kernel module is used to simulate large bar machine on non-large bar
 150 * enabled machines.
 151 */
 152extern int debug_largebar;
 153
 154/*
 155 * Ignore CRAT table during KFD initialization, can be used to work around
 156 * broken CRAT tables on some AMD systems
 157 */
 158extern int ignore_crat;
 159
 160/* Set sh_mem_config.retry_disable on GFX v9 */
 161extern int amdgpu_noretry;
 162
 163/* Halt if HWS hang is detected */
 164extern int halt_if_hws_hang;
 165
 166/* Whether MEC FW support GWS barriers */
 167extern bool hws_gws_support;
 168
 169/* Queue preemption timeout in ms */
 170extern int queue_preemption_timeout_ms;
 171
 172/* Enable eviction debug messages */
 173extern bool debug_evictions;
 174
 175enum cache_policy {
 176	cache_policy_coherent,
 177	cache_policy_noncoherent
 178};
 179
 180#define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10)
 181
 182struct kfd_event_interrupt_class {
 183	bool (*interrupt_isr)(struct kfd_dev *dev,
 184			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
 185			bool *patched_flag);
 186	void (*interrupt_wq)(struct kfd_dev *dev,
 187			const uint32_t *ih_ring_entry);
 188};
 189
 190struct kfd_device_info {
 191	enum amd_asic_type asic_family;
 192	const char *asic_name;
 193	const struct kfd_event_interrupt_class *event_interrupt_class;
 194	unsigned int max_pasid_bits;
 195	unsigned int max_no_of_hqd;
 196	unsigned int doorbell_size;
 197	size_t ih_ring_entry_size;
 198	uint8_t num_of_watch_points;
 199	uint16_t mqd_size_aligned;
 200	bool supports_cwsr;
 201	bool needs_iommu_device;
 202	bool needs_pci_atomics;
 203	unsigned int num_sdma_engines;
 204	unsigned int num_xgmi_sdma_engines;
 205	unsigned int num_sdma_queues_per_engine;
 206};
 207
 208struct kfd_mem_obj {
 209	uint32_t range_start;
 210	uint32_t range_end;
 211	uint64_t gpu_addr;
 212	uint32_t *cpu_ptr;
 213	void *gtt_mem;
 214};
 215
 216struct kfd_vmid_info {
 217	uint32_t first_vmid_kfd;
 218	uint32_t last_vmid_kfd;
 219	uint32_t vmid_num_kfd;
 220};
 221
 222struct kfd_dev {
 223	struct kgd_dev *kgd;
 224
 225	const struct kfd_device_info *device_info;
 226	struct pci_dev *pdev;
 227	struct drm_device *ddev;
 228
 229	unsigned int id;		/* topology stub index */
 230
 231	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
 232					 * KFD. It is aligned for mapping
 233					 * into user mode
 234					 */
 235	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
 236					 * doorbell BAR to the first KFD
 237					 * doorbell in dwords. GFX reserves
 238					 * the segment before this offset.
 239					 */
 240	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
 241					   * page used by kernel queue
 242					   */
 243
 244	struct kgd2kfd_shared_resources shared_resources;
 245	struct kfd_vmid_info vm_info;
 246
 247	const struct kfd2kgd_calls *kfd2kgd;
 248	struct mutex doorbell_mutex;
 249	DECLARE_BITMAP(doorbell_available_index,
 250			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
 251
 252	void *gtt_mem;
 253	uint64_t gtt_start_gpu_addr;
 254	void *gtt_start_cpu_ptr;
 255	void *gtt_sa_bitmap;
 256	struct mutex gtt_sa_lock;
 257	unsigned int gtt_sa_chunk_size;
 258	unsigned int gtt_sa_num_of_chunks;
 259
 260	/* Interrupts */
 261	struct kfifo ih_fifo;
 262	struct workqueue_struct *ih_wq;
 263	struct work_struct interrupt_work;
 264	spinlock_t interrupt_lock;
 265
 266	/* QCM Device instance */
 267	struct device_queue_manager *dqm;
 268
 269	bool init_complete;
 270	/*
 271	 * Interrupts of interest to KFD are copied
 272	 * from the HW ring into a SW ring.
 273	 */
 274	bool interrupts_active;
 275
 276	/* Debug manager */
 277	struct kfd_dbgmgr *dbgmgr;
 278
 279	/* Firmware versions */
 280	uint16_t mec_fw_version;
 281	uint16_t mec2_fw_version;
 282	uint16_t sdma_fw_version;
 283
 284	/* Maximum process number mapped to HW scheduler */
 285	unsigned int max_proc_per_quantum;
 286
 287	/* CWSR */
 288	bool cwsr_enabled;
 289	const void *cwsr_isa;
 290	unsigned int cwsr_isa_size;
 291
 292	/* xGMI */
 293	uint64_t hive_id;
 294
 295	/* UUID */
 296	uint64_t unique_id;
 297
 298	bool pci_atomic_requested;
 299
 300	/* SRAM ECC flag */
 301	atomic_t sram_ecc_flag;
 302
 303	/* Compute Profile ref. count */
 304	atomic_t compute_profile;
 305
 306	/* Global GWS resource shared between processes */
 307	void *gws;
 308
 309	/* Clients watching SMI events */
 310	struct list_head smi_clients;
 311	spinlock_t smi_lock;
 312};
 313
 314enum kfd_mempool {
 315	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
 316	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
 317	KFD_MEMPOOL_FRAMEBUFFER = 3,
 318};
 319
 320/* Character device interface */
 321int kfd_chardev_init(void);
 322void kfd_chardev_exit(void);
 323struct device *kfd_chardev(void);
 324
 325/**
 326 * enum kfd_unmap_queues_filter - Enum for queue filters.
 327 *
 328 * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
 329 *
 330 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
 331 *						running queues list.
 332 *
 333 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
 334 *						specific process.
 335 *
 336 */
 337enum kfd_unmap_queues_filter {
 338	KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
 339	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
 340	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
 341	KFD_UNMAP_QUEUES_FILTER_BY_PASID
 342};
 343
 344/**
 345 * enum kfd_queue_type - Enum for various queue types.
 346 *
 347 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
 348 *
 349 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
 350 *
 351 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
 352 *
 353 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
 354 *
 355 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
 356 */
 357enum kfd_queue_type  {
 358	KFD_QUEUE_TYPE_COMPUTE,
 359	KFD_QUEUE_TYPE_SDMA,
 360	KFD_QUEUE_TYPE_HIQ,
 361	KFD_QUEUE_TYPE_DIQ,
 362	KFD_QUEUE_TYPE_SDMA_XGMI
 363};
 364
 365enum kfd_queue_format {
 366	KFD_QUEUE_FORMAT_PM4,
 367	KFD_QUEUE_FORMAT_AQL
 368};
 369
 370enum KFD_QUEUE_PRIORITY {
 371	KFD_QUEUE_PRIORITY_MINIMUM = 0,
 372	KFD_QUEUE_PRIORITY_MAXIMUM = 15
 373};
 374
 375/**
 376 * struct queue_properties
 377 *
 378 * @type: The queue type.
 379 *
 380 * @queue_id: Queue identifier.
 381 *
 382 * @queue_address: Queue ring buffer address.
 383 *
 384 * @queue_size: Queue ring buffer size.
 385 *
 386 * @priority: Defines the queue priority relative to other queues in the
 387 * process.
 388 * This is just an indication and HW scheduling may override the priority as
 389 * necessary while keeping the relative prioritization.
 390 * the priority granularity is from 0 to f which f is the highest priority.
 391 * currently all queues are initialized with the highest priority.
 392 *
 393 * @queue_percent: This field is partially implemented and currently a zero in
 394 * this field defines that the queue is non active.
 395 *
 396 * @read_ptr: User space address which points to the number of dwords the
 397 * cp read from the ring buffer. This field updates automatically by the H/W.
 398 *
 399 * @write_ptr: Defines the number of dwords written to the ring buffer.
 400 *
 401 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
 402 * buffer. This field should be similar to write_ptr and the user should
 403 * update this field after updating the write_ptr.
 404 *
 405 * @doorbell_off: The doorbell offset in the doorbell pci-bar.
 406 *
 407 * @is_interop: Defines if this is a interop queue. Interop queue means that
 408 * the queue can access both graphics and compute resources.
 409 *
 410 * @is_evicted: Defines if the queue is evicted. Only active queues
 411 * are evicted, rendering them inactive.
 412 *
 413 * @is_active: Defines if the queue is active or not. @is_active and
 414 * @is_evicted are protected by the DQM lock.
 415 *
 416 * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
 417 * @is_gws should be protected by the DQM lock, since changing it can yield the
 418 * possibility of updating DQM state on number of GWS queues.
 419 *
 420 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
 421 * of the queue.
 422 *
 423 * This structure represents the queue properties for each queue no matter if
 424 * it's user mode or kernel mode queue.
 425 *
 426 */
 427struct queue_properties {
 428	enum kfd_queue_type type;
 429	enum kfd_queue_format format;
 430	unsigned int queue_id;
 431	uint64_t queue_address;
 432	uint64_t  queue_size;
 433	uint32_t priority;
 434	uint32_t queue_percent;
 435	uint32_t *read_ptr;
 436	uint32_t *write_ptr;
 437	void __iomem *doorbell_ptr;
 438	uint32_t doorbell_off;
 439	bool is_interop;
 440	bool is_evicted;
 441	bool is_active;
 442	bool is_gws;
 443	/* Not relevant for user mode queues in cp scheduling */
 444	unsigned int vmid;
 445	/* Relevant only for sdma queues*/
 446	uint32_t sdma_engine_id;
 447	uint32_t sdma_queue_id;
 448	uint32_t sdma_vm_addr;
 449	/* Relevant only for VI */
 450	uint64_t eop_ring_buffer_address;
 451	uint32_t eop_ring_buffer_size;
 452	uint64_t ctx_save_restore_area_address;
 453	uint32_t ctx_save_restore_area_size;
 454	uint32_t ctl_stack_size;
 455	uint64_t tba_addr;
 456	uint64_t tma_addr;
 457	/* Relevant for CU */
 458	uint32_t cu_mask_count; /* Must be a multiple of 32 */
 459	uint32_t *cu_mask;
 460};
 461
 462#define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
 463			    (q).queue_address != 0 &&	\
 464			    (q).queue_percent > 0 &&	\
 465			    !(q).is_evicted)
 466
 467/**
 468 * struct queue
 469 *
 470 * @list: Queue linked list.
 471 *
 472 * @mqd: The queue MQD (memory queue descriptor).
 473 *
 474 * @mqd_mem_obj: The MQD local gpu memory object.
 475 *
 476 * @gart_mqd_addr: The MQD gart mc address.
 477 *
 478 * @properties: The queue properties.
 479 *
 480 * @mec: Used only in no cp scheduling mode and identifies to micro engine id
 481 *	 that the queue should be executed on.
 482 *
 483 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
 484 *	  id.
 485 *
 486 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
 487 *
 488 * @process: The kfd process that created this queue.
 489 *
 490 * @device: The kfd device that created this queue.
 491 *
 492 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
 493 * otherwise.
 494 *
 495 * This structure represents user mode compute queues.
 496 * It contains all the necessary data to handle such queues.
 497 *
 498 */
 499
 500struct queue {
 501	struct list_head list;
 502	void *mqd;
 503	struct kfd_mem_obj *mqd_mem_obj;
 504	uint64_t gart_mqd_addr;
 505	struct queue_properties properties;
 506
 507	uint32_t mec;
 508	uint32_t pipe;
 509	uint32_t queue;
 510
 511	unsigned int sdma_id;
 512	unsigned int doorbell_id;
 513
 514	struct kfd_process	*process;
 515	struct kfd_dev		*device;
 516	void *gws;
 517
 518	/* procfs */
 519	struct kobject kobj;
 520};
 521
 522enum KFD_MQD_TYPE {
 523	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
 524	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
 525	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
 526	KFD_MQD_TYPE_DIQ,		/* for diq */
 527	KFD_MQD_TYPE_MAX
 528};
 529
 530enum KFD_PIPE_PRIORITY {
 531	KFD_PIPE_PRIORITY_CS_LOW = 0,
 532	KFD_PIPE_PRIORITY_CS_MEDIUM,
 533	KFD_PIPE_PRIORITY_CS_HIGH
 534};
 535
 536struct scheduling_resources {
 537	unsigned int vmid_mask;
 538	enum kfd_queue_type type;
 539	uint64_t queue_mask;
 540	uint64_t gws_mask;
 541	uint32_t oac_mask;
 542	uint32_t gds_heap_base;
 543	uint32_t gds_heap_size;
 544};
 545
 546struct process_queue_manager {
 547	/* data */
 548	struct kfd_process	*process;
 549	struct list_head	queues;
 550	unsigned long		*queue_slot_bitmap;
 551};
 552
 553struct qcm_process_device {
 554	/* The Device Queue Manager that owns this data */
 555	struct device_queue_manager *dqm;
 556	struct process_queue_manager *pqm;
 557	/* Queues list */
 558	struct list_head queues_list;
 559	struct list_head priv_queue_list;
 560
 561	unsigned int queue_count;
 562	unsigned int vmid;
 563	bool is_debug;
 564	unsigned int evicted; /* eviction counter, 0=active */
 565
 566	/* This flag tells if we should reset all wavefronts on
 567	 * process termination
 568	 */
 569	bool reset_wavefronts;
 570
 571	/* This flag tells us if this process has a GWS-capable
 572	 * queue that will be mapped into the runlist. It's
 573	 * possible to request a GWS BO, but not have the queue
 574	 * currently mapped, and this changes how the MAP_PROCESS
 575	 * PM4 packet is configured.
 576	 */
 577	bool mapped_gws_queue;
 578
 579	/* All the memory management data should be here too */
 580	uint64_t gds_context_area;
 581	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
 582	uint64_t page_table_base;
 583	uint32_t sh_mem_config;
 584	uint32_t sh_mem_bases;
 585	uint32_t sh_mem_ape1_base;
 586	uint32_t sh_mem_ape1_limit;
 587	uint32_t gds_size;
 588	uint32_t num_gws;
 589	uint32_t num_oac;
 590	uint32_t sh_hidden_private_base;
 591
 592	/* CWSR memory */
 593	void *cwsr_kaddr;
 594	uint64_t cwsr_base;
 595	uint64_t tba_addr;
 596	uint64_t tma_addr;
 597
 598	/* IB memory */
 599	uint64_t ib_base;
 600	void *ib_kaddr;
 601
 602	/* doorbell resources per process per device */
 603	unsigned long *doorbell_bitmap;
 604};
 605
 606/* KFD Memory Eviction */
 607
 608/* Approx. wait time before attempting to restore evicted BOs */
 609#define PROCESS_RESTORE_TIME_MS 100
 610/* Approx. back off time if restore fails due to lack of memory */
 611#define PROCESS_BACK_OFF_TIME_MS 100
 612/* Approx. time before evicting the process again */
 613#define PROCESS_ACTIVE_TIME_MS 10
 614
 615/* 8 byte handle containing GPU ID in the most significant 4 bytes and
 616 * idr_handle in the least significant 4 bytes
 617 */
 618#define MAKE_HANDLE(gpu_id, idr_handle) \
 619	(((uint64_t)(gpu_id) << 32) + idr_handle)
 620#define GET_GPU_ID(handle) (handle >> 32)
 621#define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
 622
 623enum kfd_pdd_bound {
 624	PDD_UNBOUND = 0,
 625	PDD_BOUND,
 626	PDD_BOUND_SUSPENDED,
 627};
 628
 629#define MAX_SYSFS_FILENAME_LEN 11
 630
 631/*
 632 * SDMA counter runs at 100MHz frequency.
 633 * We display SDMA activity in microsecond granularity in sysfs.
 634 * As a result, the divisor is 100.
 635 */
 636#define SDMA_ACTIVITY_DIVISOR  100
 637
 638/* Data that is per-process-per device. */
 639struct kfd_process_device {
 640	/*
 641	 * List of all per-device data for a process.
 642	 * Starts from kfd_process.per_device_data.
 643	 */
 644	struct list_head per_device_list;
 645
 646	/* The device that owns this data. */
 647	struct kfd_dev *dev;
 648
 649	/* The process that owns this kfd_process_device. */
 650	struct kfd_process *process;
 651
 652	/* per-process-per device QCM data structure */
 653	struct qcm_process_device qpd;
 654
 655	/*Apertures*/
 656	uint64_t lds_base;
 657	uint64_t lds_limit;
 658	uint64_t gpuvm_base;
 659	uint64_t gpuvm_limit;
 660	uint64_t scratch_base;
 661	uint64_t scratch_limit;
 662
 663	/* VM context for GPUVM allocations */
 664	struct file *drm_file;
 665	void *vm;
 666
 667	/* GPUVM allocations storage */
 668	struct idr alloc_idr;
 669
 670	/* Flag used to tell the pdd has dequeued from the dqm.
 671	 * This is used to prevent dev->dqm->ops.process_termination() from
 672	 * being called twice when it is already called in IOMMU callback
 673	 * function.
 674	 */
 675	bool already_dequeued;
 676	bool runtime_inuse;
 677
 678	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
 679	enum kfd_pdd_bound bound;
 680
 681	/* VRAM usage */
 682	uint64_t vram_usage;
 683	struct attribute attr_vram;
 684	char vram_filename[MAX_SYSFS_FILENAME_LEN];
 685
 686	/* SDMA activity tracking */
 687	uint64_t sdma_past_activity_counter;
 688	struct attribute attr_sdma;
 689	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
 690};
 691
 692#define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
 693
 694/* Process data */
 695struct kfd_process {
 696	/*
 697	 * kfd_process are stored in an mm_struct*->kfd_process*
 698	 * hash table (kfd_processes in kfd_process.c)
 699	 */
 700	struct hlist_node kfd_processes;
 701
 702	/*
 703	 * Opaque pointer to mm_struct. We don't hold a reference to
 704	 * it so it should never be dereferenced from here. This is
 705	 * only used for looking up processes by their mm.
 706	 */
 707	void *mm;
 708
 709	struct kref ref;
 710	struct work_struct release_work;
 711
 712	struct mutex mutex;
 713
 714	/*
 715	 * In any process, the thread that started main() is the lead
 716	 * thread and outlives the rest.
 717	 * It is here because amd_iommu_bind_pasid wants a task_struct.
 718	 * It can also be used for safely getting a reference to the
 719	 * mm_struct of the process.
 720	 */
 721	struct task_struct *lead_thread;
 722
 723	/* We want to receive a notification when the mm_struct is destroyed */
 724	struct mmu_notifier mmu_notifier;
 725
 726	uint16_t pasid;
 727	unsigned int doorbell_index;
 728
 729	/*
 730	 * List of kfd_process_device structures,
 731	 * one for each device the process is using.
 732	 */
 733	struct list_head per_device_data;
 734
 735	struct process_queue_manager pqm;
 736
 737	/*Is the user space process 32 bit?*/
 738	bool is_32bit_user_mode;
 739
 740	/* Event-related data */
 741	struct mutex event_mutex;
 742	/* Event ID allocator and lookup */
 743	struct idr event_idr;
 744	/* Event page */
 745	struct kfd_signal_page *signal_page;
 746	size_t signal_mapped_size;
 747	size_t signal_event_count;
 748	bool signal_event_limit_reached;
 749
 750	/* Information used for memory eviction */
 751	void *kgd_process_info;
 752	/* Eviction fence that is attached to all the BOs of this process. The
 753	 * fence will be triggered during eviction and new one will be created
 754	 * during restore
 755	 */
 756	struct dma_fence *ef;
 757
 758	/* Work items for evicting and restoring BOs */
 759	struct delayed_work eviction_work;
 760	struct delayed_work restore_work;
 761	/* seqno of the last scheduled eviction */
 762	unsigned int last_eviction_seqno;
 763	/* Approx. the last timestamp (in jiffies) when the process was
 764	 * restored after an eviction
 765	 */
 766	unsigned long last_restore_timestamp;
 767
 768	/* Kobj for our procfs */
 769	struct kobject *kobj;
 770	struct kobject *kobj_queues;
 771	struct attribute attr_pasid;
 772};
 773
 774#define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
 775extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
 776extern struct srcu_struct kfd_processes_srcu;
 777
 778/**
 779 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
 780 *
 781 * @filep: pointer to file structure.
 782 * @p: amdkfd process pointer.
 783 * @data: pointer to arg that was copied from user.
 784 *
 785 * Return: returns ioctl completion code.
 786 */
 787typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
 788				void *data);
 789
 790struct amdkfd_ioctl_desc {
 791	unsigned int cmd;
 792	int flags;
 793	amdkfd_ioctl_t *func;
 794	unsigned int cmd_drv;
 795	const char *name;
 796};
 797bool kfd_dev_is_large_bar(struct kfd_dev *dev);
 798
 799int kfd_process_create_wq(void);
 800void kfd_process_destroy_wq(void);
 801struct kfd_process *kfd_create_process(struct file *filep);
 802struct kfd_process *kfd_get_process(const struct task_struct *);
 803struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid);
 804struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
 805void kfd_unref_process(struct kfd_process *p);
 806int kfd_process_evict_queues(struct kfd_process *p);
 807int kfd_process_restore_queues(struct kfd_process *p);
 808void kfd_suspend_all_processes(void);
 809int kfd_resume_all_processes(void);
 810
 811int kfd_process_device_init_vm(struct kfd_process_device *pdd,
 812			       struct file *drm_file);
 813struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
 814						struct kfd_process *p);
 815struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
 816							struct kfd_process *p);
 817struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
 818							struct kfd_process *p);
 819
 820int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
 821			  struct vm_area_struct *vma);
 822
 823/* KFD process API for creating and translating handles */
 824int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
 825					void *mem);
 826void *kfd_process_device_translate_handle(struct kfd_process_device *p,
 827					int handle);
 828void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
 829					int handle);
 830
 831/* Process device data iterator */
 832struct kfd_process_device *kfd_get_first_process_device_data(
 833							struct kfd_process *p);
 834struct kfd_process_device *kfd_get_next_process_device_data(
 835						struct kfd_process *p,
 836						struct kfd_process_device *pdd);
 837bool kfd_has_process_device_data(struct kfd_process *p);
 838
 839/* PASIDs */
 840int kfd_pasid_init(void);
 841void kfd_pasid_exit(void);
 842bool kfd_set_pasid_limit(unsigned int new_limit);
 843unsigned int kfd_get_pasid_limit(void);
 844unsigned int kfd_pasid_alloc(void);
 845void kfd_pasid_free(unsigned int pasid);
 846
 847/* Doorbells */
 848size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
 849int kfd_doorbell_init(struct kfd_dev *kfd);
 850void kfd_doorbell_fini(struct kfd_dev *kfd);
 851int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
 852		      struct vm_area_struct *vma);
 853void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
 854					unsigned int *doorbell_off);
 855void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
 856u32 read_kernel_doorbell(u32 __iomem *db);
 857void write_kernel_doorbell(void __iomem *db, u32 value);
 858void write_kernel_doorbell64(void __iomem *db, u64 value);
 859unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
 860					struct kfd_process *process,
 861					unsigned int doorbell_id);
 862phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
 863					struct kfd_process *process);
 864int kfd_alloc_process_doorbells(struct kfd_process *process);
 865void kfd_free_process_doorbells(struct kfd_process *process);
 866
 867/* GTT Sub-Allocator */
 868
 869int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
 870			struct kfd_mem_obj **mem_obj);
 871
 872int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
 873
 874extern struct device *kfd_device;
 875
 876/* KFD's procfs */
 877void kfd_procfs_init(void);
 878void kfd_procfs_shutdown(void);
 879int kfd_procfs_add_queue(struct queue *q);
 880void kfd_procfs_del_queue(struct queue *q);
 881
 882/* Topology */
 883int kfd_topology_init(void);
 884void kfd_topology_shutdown(void);
 885int kfd_topology_add_device(struct kfd_dev *gpu);
 886int kfd_topology_remove_device(struct kfd_dev *gpu);
 887struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
 888						uint32_t proximity_domain);
 889struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
 890struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
 891struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
 892struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd);
 893int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
 894int kfd_numa_node_to_apic_id(int numa_node_id);
 895
 896/* Interrupts */
 897int kfd_interrupt_init(struct kfd_dev *dev);
 898void kfd_interrupt_exit(struct kfd_dev *dev);
 899bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
 900bool interrupt_is_wanted(struct kfd_dev *dev,
 901				const uint32_t *ih_ring_entry,
 902				uint32_t *patched_ihre, bool *flag);
 903
 904/* amdkfd Apertures */
 905int kfd_init_apertures(struct kfd_process *process);
 906
 907/* Queue Context Management */
 908int init_queue(struct queue **q, const struct queue_properties *properties);
 909void uninit_queue(struct queue *q);
 910void print_queue_properties(struct queue_properties *q);
 911void print_queue(struct queue *q);
 912
 913struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
 914		struct kfd_dev *dev);
 915struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
 916		struct kfd_dev *dev);
 917struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
 918		struct kfd_dev *dev);
 919struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
 920		struct kfd_dev *dev);
 921struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
 922		struct kfd_dev *dev);
 923struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
 924		struct kfd_dev *dev);
 925struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
 926void device_queue_manager_uninit(struct device_queue_manager *dqm);
 927struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
 928					enum kfd_queue_type type);
 929void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
 930int kfd_process_vm_fault(struct device_queue_manager *dqm, unsigned int pasid);
 931
 932/* Process Queue Manager */
 933struct process_queue_node {
 934	struct queue *q;
 935	struct kernel_queue *kq;
 936	struct list_head process_queue_list;
 937};
 938
 939void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
 940void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
 941int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
 942void pqm_uninit(struct process_queue_manager *pqm);
 943int pqm_create_queue(struct process_queue_manager *pqm,
 944			    struct kfd_dev *dev,
 945			    struct file *f,
 946			    struct queue_properties *properties,
 947			    unsigned int *qid,
 948			    uint32_t *p_doorbell_offset_in_process);
 949int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
 950int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
 951			struct queue_properties *p);
 952int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid,
 953			struct queue_properties *p);
 954int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
 955			void *gws);
 956struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
 957						unsigned int qid);
 958struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
 959						unsigned int qid);
 960int pqm_get_wave_state(struct process_queue_manager *pqm,
 961		       unsigned int qid,
 962		       void __user *ctl_stack,
 963		       u32 *ctl_stack_used_size,
 964		       u32 *save_area_used_size);
 965
 966int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
 967			      unsigned int fence_value,
 968			      unsigned int timeout_ms);
 969
 970/* Packet Manager */
 971
 972#define KFD_FENCE_COMPLETED (100)
 973#define KFD_FENCE_INIT   (10)
 974
 975struct packet_manager {
 976	struct device_queue_manager *dqm;
 977	struct kernel_queue *priv_queue;
 978	struct mutex lock;
 979	bool allocated;
 980	struct kfd_mem_obj *ib_buffer_obj;
 981	unsigned int ib_size_bytes;
 982	bool is_over_subscription;
 983
 984	const struct packet_manager_funcs *pmf;
 985};
 986
 987struct packet_manager_funcs {
 988	/* Support ASIC-specific packet formats for PM4 packets */
 989	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
 990			struct qcm_process_device *qpd);
 991	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
 992			uint64_t ib, size_t ib_size_in_dwords, bool chain);
 993	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
 994			struct scheduling_resources *res);
 995	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
 996			struct queue *q, bool is_static);
 997	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
 998			enum kfd_queue_type type,
 999			enum kfd_unmap_queues_filter mode,
1000			uint32_t filter_param, bool reset,
1001			unsigned int sdma_engine);
1002	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1003			uint64_t fence_address,	uint32_t fence_value);
1004	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1005
1006	/* Packet sizes */
1007	int map_process_size;
1008	int runlist_size;
1009	int set_resources_size;
1010	int map_queues_size;
1011	int unmap_queues_size;
1012	int query_status_size;
1013	int release_mem_size;
1014};
1015
1016extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1017extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1018
1019int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1020void pm_uninit(struct packet_manager *pm, bool hanging);
1021int pm_send_set_resources(struct packet_manager *pm,
1022				struct scheduling_resources *res);
1023int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1024int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1025				uint32_t fence_value);
1026
1027int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
1028			enum kfd_unmap_queues_filter mode,
1029			uint32_t filter_param, bool reset,
1030			unsigned int sdma_engine);
1031
1032void pm_release_ib(struct packet_manager *pm);
1033
1034/* Following PM funcs can be shared among VI and AI */
1035unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1036
1037uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1038
1039/* Events */
1040extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1041extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1042
1043extern const struct kfd_device_global_init_class device_global_init_class_cik;
1044
1045void kfd_event_init_process(struct kfd_process *p);
1046void kfd_event_free_process(struct kfd_process *p);
1047int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1048int kfd_wait_on_events(struct kfd_process *p,
1049		       uint32_t num_events, void __user *data,
1050		       bool all, uint32_t user_timeout_ms,
1051		       uint32_t *wait_result);
1052void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
1053				uint32_t valid_id_bits);
1054void kfd_signal_iommu_event(struct kfd_dev *dev,
1055		unsigned int pasid, unsigned long address,
1056		bool is_write_requested, bool is_execute_requested);
1057void kfd_signal_hw_exception_event(unsigned int pasid);
1058int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1059int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1060int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1061		       uint64_t size);
1062int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1063		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1064		     uint32_t *event_id, uint32_t *event_trigger_data,
1065		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1066int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1067
1068void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid,
1069				struct kfd_vm_fault_info *info);
1070
1071void kfd_signal_reset_event(struct kfd_dev *dev);
1072
1073void kfd_flush_tlb(struct kfd_process_device *pdd);
1074
1075int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1076
1077bool kfd_is_locked(void);
1078
1079/* Compute profile */
1080void kfd_inc_compute_active(struct kfd_dev *dev);
1081void kfd_dec_compute_active(struct kfd_dev *dev);
1082
1083/* Cgroup Support */
1084/* Check with device cgroup if @kfd device is accessible */
1085static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1086{
1087#if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1088	struct drm_device *ddev = kfd->ddev;
1089
1090	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1091					  ddev->render->index,
1092					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1093#else
1094	return 0;
1095#endif
1096}
1097
1098/* Debugfs */
1099#if defined(CONFIG_DEBUG_FS)
1100
1101void kfd_debugfs_init(void);
1102void kfd_debugfs_fini(void);
1103int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1104int pqm_debugfs_mqds(struct seq_file *m, void *data);
1105int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1106int dqm_debugfs_hqds(struct seq_file *m, void *data);
1107int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1108int pm_debugfs_runlist(struct seq_file *m, void *data);
1109
1110int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1111int pm_debugfs_hang_hws(struct packet_manager *pm);
1112int dqm_debugfs_execute_queues(struct device_queue_manager *dqm);
1113
1114#else
1115
1116static inline void kfd_debugfs_init(void) {}
1117static inline void kfd_debugfs_fini(void) {}
1118
1119#endif
1120
1121#endif