Loading...
Note: File does not exist in v3.1.
1/*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23#ifndef KFD_PRIV_H_INCLUDED
24#define KFD_PRIV_H_INCLUDED
25
26#include <linux/hashtable.h>
27#include <linux/mmu_notifier.h>
28#include <linux/mutex.h>
29#include <linux/types.h>
30#include <linux/atomic.h>
31#include <linux/workqueue.h>
32#include <linux/spinlock.h>
33#include <linux/kfd_ioctl.h>
34#include <linux/idr.h>
35#include <linux/kfifo.h>
36#include <linux/seq_file.h>
37#include <linux/kref.h>
38#include <linux/sysfs.h>
39#include <linux/device_cgroup.h>
40#include <drm/drm_file.h>
41#include <drm/drm_drv.h>
42#include <drm/drm_device.h>
43#include <drm/drm_ioctl.h>
44#include <kgd_kfd_interface.h>
45#include <linux/swap.h>
46
47#include "amd_shared.h"
48
49#define KFD_MAX_RING_ENTRY_SIZE 8
50
51#define KFD_SYSFS_FILE_MODE 0444
52
53/* GPU ID hash width in bits */
54#define KFD_GPU_ID_HASH_WIDTH 16
55
56/* Use upper bits of mmap offset to store KFD driver specific information.
57 * BITS[63:62] - Encode MMAP type
58 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
59 * BITS[45:0] - MMAP offset value
60 *
61 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
62 * defines are w.r.t to PAGE_SIZE
63 */
64#define KFD_MMAP_TYPE_SHIFT 62
65#define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT)
66#define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT)
67#define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT)
68#define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT)
69#define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT)
70
71#define KFD_MMAP_GPU_ID_SHIFT 46
72#define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
73 << KFD_MMAP_GPU_ID_SHIFT)
74#define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
75 & KFD_MMAP_GPU_ID_MASK)
76#define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \
77 >> KFD_MMAP_GPU_ID_SHIFT)
78
79/*
80 * When working with cp scheduler we should assign the HIQ manually or via
81 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
82 * definitions for Kaveri. In Kaveri only the first ME queues participates
83 * in the cp scheduling taking that in mind we set the HIQ slot in the
84 * second ME.
85 */
86#define KFD_CIK_HIQ_PIPE 4
87#define KFD_CIK_HIQ_QUEUE 0
88
89/* Macro for allocating structures */
90#define kfd_alloc_struct(ptr_to_struct) \
91 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
92
93#define KFD_MAX_NUM_OF_PROCESSES 512
94#define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
95
96/*
97 * Size of the per-process TBA+TMA buffer: 2 pages
98 *
99 * The first page is the TBA used for the CWSR ISA code. The second
100 * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
101 */
102#define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
103#define KFD_CWSR_TMA_OFFSET PAGE_SIZE
104
105#define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \
106 (KFD_MAX_NUM_OF_PROCESSES * \
107 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
108
109#define KFD_KERNEL_QUEUE_SIZE 2048
110
111#define KFD_UNMAP_LATENCY_MS (4000)
112
113/*
114 * 512 = 0x200
115 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
116 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
117 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
118 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
119 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
120 */
121#define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
122
123
124/*
125 * Kernel module parameter to specify maximum number of supported queues per
126 * device
127 */
128extern int max_num_of_queues_per_device;
129
130
131/* Kernel module parameter to specify the scheduling policy */
132extern int sched_policy;
133
134/*
135 * Kernel module parameter to specify the maximum process
136 * number per HW scheduler
137 */
138extern int hws_max_conc_proc;
139
140extern int cwsr_enable;
141
142/*
143 * Kernel module parameter to specify whether to send sigterm to HSA process on
144 * unhandled exception
145 */
146extern int send_sigterm;
147
148/*
149 * This kernel module is used to simulate large bar machine on non-large bar
150 * enabled machines.
151 */
152extern int debug_largebar;
153
154/*
155 * Ignore CRAT table during KFD initialization, can be used to work around
156 * broken CRAT tables on some AMD systems
157 */
158extern int ignore_crat;
159
160/* Set sh_mem_config.retry_disable on GFX v9 */
161extern int amdgpu_noretry;
162
163/* Halt if HWS hang is detected */
164extern int halt_if_hws_hang;
165
166/* Whether MEC FW support GWS barriers */
167extern bool hws_gws_support;
168
169/* Queue preemption timeout in ms */
170extern int queue_preemption_timeout_ms;
171
172/* Enable eviction debug messages */
173extern bool debug_evictions;
174
175enum cache_policy {
176 cache_policy_coherent,
177 cache_policy_noncoherent
178};
179
180#define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10)
181
182struct kfd_event_interrupt_class {
183 bool (*interrupt_isr)(struct kfd_dev *dev,
184 const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
185 bool *patched_flag);
186 void (*interrupt_wq)(struct kfd_dev *dev,
187 const uint32_t *ih_ring_entry);
188};
189
190struct kfd_device_info {
191 enum amd_asic_type asic_family;
192 const char *asic_name;
193 const struct kfd_event_interrupt_class *event_interrupt_class;
194 unsigned int max_pasid_bits;
195 unsigned int max_no_of_hqd;
196 unsigned int doorbell_size;
197 size_t ih_ring_entry_size;
198 uint8_t num_of_watch_points;
199 uint16_t mqd_size_aligned;
200 bool supports_cwsr;
201 bool needs_iommu_device;
202 bool needs_pci_atomics;
203 unsigned int num_sdma_engines;
204 unsigned int num_xgmi_sdma_engines;
205 unsigned int num_sdma_queues_per_engine;
206};
207
208struct kfd_mem_obj {
209 uint32_t range_start;
210 uint32_t range_end;
211 uint64_t gpu_addr;
212 uint32_t *cpu_ptr;
213 void *gtt_mem;
214};
215
216struct kfd_vmid_info {
217 uint32_t first_vmid_kfd;
218 uint32_t last_vmid_kfd;
219 uint32_t vmid_num_kfd;
220};
221
222struct kfd_dev {
223 struct kgd_dev *kgd;
224
225 const struct kfd_device_info *device_info;
226 struct pci_dev *pdev;
227 struct drm_device *ddev;
228
229 unsigned int id; /* topology stub index */
230
231 phys_addr_t doorbell_base; /* Start of actual doorbells used by
232 * KFD. It is aligned for mapping
233 * into user mode
234 */
235 size_t doorbell_base_dw_offset; /* Offset from the start of the PCI
236 * doorbell BAR to the first KFD
237 * doorbell in dwords. GFX reserves
238 * the segment before this offset.
239 */
240 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
241 * page used by kernel queue
242 */
243
244 struct kgd2kfd_shared_resources shared_resources;
245 struct kfd_vmid_info vm_info;
246
247 const struct kfd2kgd_calls *kfd2kgd;
248 struct mutex doorbell_mutex;
249 DECLARE_BITMAP(doorbell_available_index,
250 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
251
252 void *gtt_mem;
253 uint64_t gtt_start_gpu_addr;
254 void *gtt_start_cpu_ptr;
255 void *gtt_sa_bitmap;
256 struct mutex gtt_sa_lock;
257 unsigned int gtt_sa_chunk_size;
258 unsigned int gtt_sa_num_of_chunks;
259
260 /* Interrupts */
261 struct kfifo ih_fifo;
262 struct workqueue_struct *ih_wq;
263 struct work_struct interrupt_work;
264 spinlock_t interrupt_lock;
265
266 /* QCM Device instance */
267 struct device_queue_manager *dqm;
268
269 bool init_complete;
270 /*
271 * Interrupts of interest to KFD are copied
272 * from the HW ring into a SW ring.
273 */
274 bool interrupts_active;
275
276 /* Debug manager */
277 struct kfd_dbgmgr *dbgmgr;
278
279 /* Firmware versions */
280 uint16_t mec_fw_version;
281 uint16_t mec2_fw_version;
282 uint16_t sdma_fw_version;
283
284 /* Maximum process number mapped to HW scheduler */
285 unsigned int max_proc_per_quantum;
286
287 /* CWSR */
288 bool cwsr_enabled;
289 const void *cwsr_isa;
290 unsigned int cwsr_isa_size;
291
292 /* xGMI */
293 uint64_t hive_id;
294
295 /* UUID */
296 uint64_t unique_id;
297
298 bool pci_atomic_requested;
299
300 /* SRAM ECC flag */
301 atomic_t sram_ecc_flag;
302
303 /* Compute Profile ref. count */
304 atomic_t compute_profile;
305
306 /* Global GWS resource shared between processes */
307 void *gws;
308
309 /* Clients watching SMI events */
310 struct list_head smi_clients;
311 spinlock_t smi_lock;
312};
313
314enum kfd_mempool {
315 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
316 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
317 KFD_MEMPOOL_FRAMEBUFFER = 3,
318};
319
320/* Character device interface */
321int kfd_chardev_init(void);
322void kfd_chardev_exit(void);
323struct device *kfd_chardev(void);
324
325/**
326 * enum kfd_unmap_queues_filter - Enum for queue filters.
327 *
328 * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
329 *
330 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
331 * running queues list.
332 *
333 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
334 * specific process.
335 *
336 */
337enum kfd_unmap_queues_filter {
338 KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
339 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
340 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
341 KFD_UNMAP_QUEUES_FILTER_BY_PASID
342};
343
344/**
345 * enum kfd_queue_type - Enum for various queue types.
346 *
347 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
348 *
349 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
350 *
351 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
352 *
353 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
354 *
355 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
356 */
357enum kfd_queue_type {
358 KFD_QUEUE_TYPE_COMPUTE,
359 KFD_QUEUE_TYPE_SDMA,
360 KFD_QUEUE_TYPE_HIQ,
361 KFD_QUEUE_TYPE_DIQ,
362 KFD_QUEUE_TYPE_SDMA_XGMI
363};
364
365enum kfd_queue_format {
366 KFD_QUEUE_FORMAT_PM4,
367 KFD_QUEUE_FORMAT_AQL
368};
369
370enum KFD_QUEUE_PRIORITY {
371 KFD_QUEUE_PRIORITY_MINIMUM = 0,
372 KFD_QUEUE_PRIORITY_MAXIMUM = 15
373};
374
375/**
376 * struct queue_properties
377 *
378 * @type: The queue type.
379 *
380 * @queue_id: Queue identifier.
381 *
382 * @queue_address: Queue ring buffer address.
383 *
384 * @queue_size: Queue ring buffer size.
385 *
386 * @priority: Defines the queue priority relative to other queues in the
387 * process.
388 * This is just an indication and HW scheduling may override the priority as
389 * necessary while keeping the relative prioritization.
390 * the priority granularity is from 0 to f which f is the highest priority.
391 * currently all queues are initialized with the highest priority.
392 *
393 * @queue_percent: This field is partially implemented and currently a zero in
394 * this field defines that the queue is non active.
395 *
396 * @read_ptr: User space address which points to the number of dwords the
397 * cp read from the ring buffer. This field updates automatically by the H/W.
398 *
399 * @write_ptr: Defines the number of dwords written to the ring buffer.
400 *
401 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
402 * buffer. This field should be similar to write_ptr and the user should
403 * update this field after updating the write_ptr.
404 *
405 * @doorbell_off: The doorbell offset in the doorbell pci-bar.
406 *
407 * @is_interop: Defines if this is a interop queue. Interop queue means that
408 * the queue can access both graphics and compute resources.
409 *
410 * @is_evicted: Defines if the queue is evicted. Only active queues
411 * are evicted, rendering them inactive.
412 *
413 * @is_active: Defines if the queue is active or not. @is_active and
414 * @is_evicted are protected by the DQM lock.
415 *
416 * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
417 * @is_gws should be protected by the DQM lock, since changing it can yield the
418 * possibility of updating DQM state on number of GWS queues.
419 *
420 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
421 * of the queue.
422 *
423 * This structure represents the queue properties for each queue no matter if
424 * it's user mode or kernel mode queue.
425 *
426 */
427struct queue_properties {
428 enum kfd_queue_type type;
429 enum kfd_queue_format format;
430 unsigned int queue_id;
431 uint64_t queue_address;
432 uint64_t queue_size;
433 uint32_t priority;
434 uint32_t queue_percent;
435 uint32_t *read_ptr;
436 uint32_t *write_ptr;
437 void __iomem *doorbell_ptr;
438 uint32_t doorbell_off;
439 bool is_interop;
440 bool is_evicted;
441 bool is_active;
442 bool is_gws;
443 /* Not relevant for user mode queues in cp scheduling */
444 unsigned int vmid;
445 /* Relevant only for sdma queues*/
446 uint32_t sdma_engine_id;
447 uint32_t sdma_queue_id;
448 uint32_t sdma_vm_addr;
449 /* Relevant only for VI */
450 uint64_t eop_ring_buffer_address;
451 uint32_t eop_ring_buffer_size;
452 uint64_t ctx_save_restore_area_address;
453 uint32_t ctx_save_restore_area_size;
454 uint32_t ctl_stack_size;
455 uint64_t tba_addr;
456 uint64_t tma_addr;
457 /* Relevant for CU */
458 uint32_t cu_mask_count; /* Must be a multiple of 32 */
459 uint32_t *cu_mask;
460};
461
462#define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \
463 (q).queue_address != 0 && \
464 (q).queue_percent > 0 && \
465 !(q).is_evicted)
466
467/**
468 * struct queue
469 *
470 * @list: Queue linked list.
471 *
472 * @mqd: The queue MQD (memory queue descriptor).
473 *
474 * @mqd_mem_obj: The MQD local gpu memory object.
475 *
476 * @gart_mqd_addr: The MQD gart mc address.
477 *
478 * @properties: The queue properties.
479 *
480 * @mec: Used only in no cp scheduling mode and identifies to micro engine id
481 * that the queue should be executed on.
482 *
483 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
484 * id.
485 *
486 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
487 *
488 * @process: The kfd process that created this queue.
489 *
490 * @device: The kfd device that created this queue.
491 *
492 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
493 * otherwise.
494 *
495 * This structure represents user mode compute queues.
496 * It contains all the necessary data to handle such queues.
497 *
498 */
499
500struct queue {
501 struct list_head list;
502 void *mqd;
503 struct kfd_mem_obj *mqd_mem_obj;
504 uint64_t gart_mqd_addr;
505 struct queue_properties properties;
506
507 uint32_t mec;
508 uint32_t pipe;
509 uint32_t queue;
510
511 unsigned int sdma_id;
512 unsigned int doorbell_id;
513
514 struct kfd_process *process;
515 struct kfd_dev *device;
516 void *gws;
517
518 /* procfs */
519 struct kobject kobj;
520};
521
522enum KFD_MQD_TYPE {
523 KFD_MQD_TYPE_HIQ = 0, /* for hiq */
524 KFD_MQD_TYPE_CP, /* for cp queues and diq */
525 KFD_MQD_TYPE_SDMA, /* for sdma queues */
526 KFD_MQD_TYPE_DIQ, /* for diq */
527 KFD_MQD_TYPE_MAX
528};
529
530enum KFD_PIPE_PRIORITY {
531 KFD_PIPE_PRIORITY_CS_LOW = 0,
532 KFD_PIPE_PRIORITY_CS_MEDIUM,
533 KFD_PIPE_PRIORITY_CS_HIGH
534};
535
536struct scheduling_resources {
537 unsigned int vmid_mask;
538 enum kfd_queue_type type;
539 uint64_t queue_mask;
540 uint64_t gws_mask;
541 uint32_t oac_mask;
542 uint32_t gds_heap_base;
543 uint32_t gds_heap_size;
544};
545
546struct process_queue_manager {
547 /* data */
548 struct kfd_process *process;
549 struct list_head queues;
550 unsigned long *queue_slot_bitmap;
551};
552
553struct qcm_process_device {
554 /* The Device Queue Manager that owns this data */
555 struct device_queue_manager *dqm;
556 struct process_queue_manager *pqm;
557 /* Queues list */
558 struct list_head queues_list;
559 struct list_head priv_queue_list;
560
561 unsigned int queue_count;
562 unsigned int vmid;
563 bool is_debug;
564 unsigned int evicted; /* eviction counter, 0=active */
565
566 /* This flag tells if we should reset all wavefronts on
567 * process termination
568 */
569 bool reset_wavefronts;
570
571 /* This flag tells us if this process has a GWS-capable
572 * queue that will be mapped into the runlist. It's
573 * possible to request a GWS BO, but not have the queue
574 * currently mapped, and this changes how the MAP_PROCESS
575 * PM4 packet is configured.
576 */
577 bool mapped_gws_queue;
578
579 /* All the memory management data should be here too */
580 uint64_t gds_context_area;
581 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
582 uint64_t page_table_base;
583 uint32_t sh_mem_config;
584 uint32_t sh_mem_bases;
585 uint32_t sh_mem_ape1_base;
586 uint32_t sh_mem_ape1_limit;
587 uint32_t gds_size;
588 uint32_t num_gws;
589 uint32_t num_oac;
590 uint32_t sh_hidden_private_base;
591
592 /* CWSR memory */
593 void *cwsr_kaddr;
594 uint64_t cwsr_base;
595 uint64_t tba_addr;
596 uint64_t tma_addr;
597
598 /* IB memory */
599 uint64_t ib_base;
600 void *ib_kaddr;
601
602 /* doorbell resources per process per device */
603 unsigned long *doorbell_bitmap;
604};
605
606/* KFD Memory Eviction */
607
608/* Approx. wait time before attempting to restore evicted BOs */
609#define PROCESS_RESTORE_TIME_MS 100
610/* Approx. back off time if restore fails due to lack of memory */
611#define PROCESS_BACK_OFF_TIME_MS 100
612/* Approx. time before evicting the process again */
613#define PROCESS_ACTIVE_TIME_MS 10
614
615/* 8 byte handle containing GPU ID in the most significant 4 bytes and
616 * idr_handle in the least significant 4 bytes
617 */
618#define MAKE_HANDLE(gpu_id, idr_handle) \
619 (((uint64_t)(gpu_id) << 32) + idr_handle)
620#define GET_GPU_ID(handle) (handle >> 32)
621#define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
622
623enum kfd_pdd_bound {
624 PDD_UNBOUND = 0,
625 PDD_BOUND,
626 PDD_BOUND_SUSPENDED,
627};
628
629#define MAX_SYSFS_FILENAME_LEN 11
630
631/*
632 * SDMA counter runs at 100MHz frequency.
633 * We display SDMA activity in microsecond granularity in sysfs.
634 * As a result, the divisor is 100.
635 */
636#define SDMA_ACTIVITY_DIVISOR 100
637
638/* Data that is per-process-per device. */
639struct kfd_process_device {
640 /*
641 * List of all per-device data for a process.
642 * Starts from kfd_process.per_device_data.
643 */
644 struct list_head per_device_list;
645
646 /* The device that owns this data. */
647 struct kfd_dev *dev;
648
649 /* The process that owns this kfd_process_device. */
650 struct kfd_process *process;
651
652 /* per-process-per device QCM data structure */
653 struct qcm_process_device qpd;
654
655 /*Apertures*/
656 uint64_t lds_base;
657 uint64_t lds_limit;
658 uint64_t gpuvm_base;
659 uint64_t gpuvm_limit;
660 uint64_t scratch_base;
661 uint64_t scratch_limit;
662
663 /* VM context for GPUVM allocations */
664 struct file *drm_file;
665 void *vm;
666
667 /* GPUVM allocations storage */
668 struct idr alloc_idr;
669
670 /* Flag used to tell the pdd has dequeued from the dqm.
671 * This is used to prevent dev->dqm->ops.process_termination() from
672 * being called twice when it is already called in IOMMU callback
673 * function.
674 */
675 bool already_dequeued;
676 bool runtime_inuse;
677
678 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
679 enum kfd_pdd_bound bound;
680
681 /* VRAM usage */
682 uint64_t vram_usage;
683 struct attribute attr_vram;
684 char vram_filename[MAX_SYSFS_FILENAME_LEN];
685
686 /* SDMA activity tracking */
687 uint64_t sdma_past_activity_counter;
688 struct attribute attr_sdma;
689 char sdma_filename[MAX_SYSFS_FILENAME_LEN];
690};
691
692#define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
693
694/* Process data */
695struct kfd_process {
696 /*
697 * kfd_process are stored in an mm_struct*->kfd_process*
698 * hash table (kfd_processes in kfd_process.c)
699 */
700 struct hlist_node kfd_processes;
701
702 /*
703 * Opaque pointer to mm_struct. We don't hold a reference to
704 * it so it should never be dereferenced from here. This is
705 * only used for looking up processes by their mm.
706 */
707 void *mm;
708
709 struct kref ref;
710 struct work_struct release_work;
711
712 struct mutex mutex;
713
714 /*
715 * In any process, the thread that started main() is the lead
716 * thread and outlives the rest.
717 * It is here because amd_iommu_bind_pasid wants a task_struct.
718 * It can also be used for safely getting a reference to the
719 * mm_struct of the process.
720 */
721 struct task_struct *lead_thread;
722
723 /* We want to receive a notification when the mm_struct is destroyed */
724 struct mmu_notifier mmu_notifier;
725
726 uint16_t pasid;
727 unsigned int doorbell_index;
728
729 /*
730 * List of kfd_process_device structures,
731 * one for each device the process is using.
732 */
733 struct list_head per_device_data;
734
735 struct process_queue_manager pqm;
736
737 /*Is the user space process 32 bit?*/
738 bool is_32bit_user_mode;
739
740 /* Event-related data */
741 struct mutex event_mutex;
742 /* Event ID allocator and lookup */
743 struct idr event_idr;
744 /* Event page */
745 struct kfd_signal_page *signal_page;
746 size_t signal_mapped_size;
747 size_t signal_event_count;
748 bool signal_event_limit_reached;
749
750 /* Information used for memory eviction */
751 void *kgd_process_info;
752 /* Eviction fence that is attached to all the BOs of this process. The
753 * fence will be triggered during eviction and new one will be created
754 * during restore
755 */
756 struct dma_fence *ef;
757
758 /* Work items for evicting and restoring BOs */
759 struct delayed_work eviction_work;
760 struct delayed_work restore_work;
761 /* seqno of the last scheduled eviction */
762 unsigned int last_eviction_seqno;
763 /* Approx. the last timestamp (in jiffies) when the process was
764 * restored after an eviction
765 */
766 unsigned long last_restore_timestamp;
767
768 /* Kobj for our procfs */
769 struct kobject *kobj;
770 struct kobject *kobj_queues;
771 struct attribute attr_pasid;
772};
773
774#define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
775extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
776extern struct srcu_struct kfd_processes_srcu;
777
778/**
779 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
780 *
781 * @filep: pointer to file structure.
782 * @p: amdkfd process pointer.
783 * @data: pointer to arg that was copied from user.
784 *
785 * Return: returns ioctl completion code.
786 */
787typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
788 void *data);
789
790struct amdkfd_ioctl_desc {
791 unsigned int cmd;
792 int flags;
793 amdkfd_ioctl_t *func;
794 unsigned int cmd_drv;
795 const char *name;
796};
797bool kfd_dev_is_large_bar(struct kfd_dev *dev);
798
799int kfd_process_create_wq(void);
800void kfd_process_destroy_wq(void);
801struct kfd_process *kfd_create_process(struct file *filep);
802struct kfd_process *kfd_get_process(const struct task_struct *);
803struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid);
804struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
805void kfd_unref_process(struct kfd_process *p);
806int kfd_process_evict_queues(struct kfd_process *p);
807int kfd_process_restore_queues(struct kfd_process *p);
808void kfd_suspend_all_processes(void);
809int kfd_resume_all_processes(void);
810
811int kfd_process_device_init_vm(struct kfd_process_device *pdd,
812 struct file *drm_file);
813struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
814 struct kfd_process *p);
815struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
816 struct kfd_process *p);
817struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
818 struct kfd_process *p);
819
820int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
821 struct vm_area_struct *vma);
822
823/* KFD process API for creating and translating handles */
824int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
825 void *mem);
826void *kfd_process_device_translate_handle(struct kfd_process_device *p,
827 int handle);
828void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
829 int handle);
830
831/* Process device data iterator */
832struct kfd_process_device *kfd_get_first_process_device_data(
833 struct kfd_process *p);
834struct kfd_process_device *kfd_get_next_process_device_data(
835 struct kfd_process *p,
836 struct kfd_process_device *pdd);
837bool kfd_has_process_device_data(struct kfd_process *p);
838
839/* PASIDs */
840int kfd_pasid_init(void);
841void kfd_pasid_exit(void);
842bool kfd_set_pasid_limit(unsigned int new_limit);
843unsigned int kfd_get_pasid_limit(void);
844unsigned int kfd_pasid_alloc(void);
845void kfd_pasid_free(unsigned int pasid);
846
847/* Doorbells */
848size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
849int kfd_doorbell_init(struct kfd_dev *kfd);
850void kfd_doorbell_fini(struct kfd_dev *kfd);
851int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
852 struct vm_area_struct *vma);
853void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
854 unsigned int *doorbell_off);
855void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
856u32 read_kernel_doorbell(u32 __iomem *db);
857void write_kernel_doorbell(void __iomem *db, u32 value);
858void write_kernel_doorbell64(void __iomem *db, u64 value);
859unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
860 struct kfd_process *process,
861 unsigned int doorbell_id);
862phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
863 struct kfd_process *process);
864int kfd_alloc_process_doorbells(struct kfd_process *process);
865void kfd_free_process_doorbells(struct kfd_process *process);
866
867/* GTT Sub-Allocator */
868
869int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
870 struct kfd_mem_obj **mem_obj);
871
872int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
873
874extern struct device *kfd_device;
875
876/* KFD's procfs */
877void kfd_procfs_init(void);
878void kfd_procfs_shutdown(void);
879int kfd_procfs_add_queue(struct queue *q);
880void kfd_procfs_del_queue(struct queue *q);
881
882/* Topology */
883int kfd_topology_init(void);
884void kfd_topology_shutdown(void);
885int kfd_topology_add_device(struct kfd_dev *gpu);
886int kfd_topology_remove_device(struct kfd_dev *gpu);
887struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
888 uint32_t proximity_domain);
889struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
890struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
891struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
892struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd);
893int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
894int kfd_numa_node_to_apic_id(int numa_node_id);
895
896/* Interrupts */
897int kfd_interrupt_init(struct kfd_dev *dev);
898void kfd_interrupt_exit(struct kfd_dev *dev);
899bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry);
900bool interrupt_is_wanted(struct kfd_dev *dev,
901 const uint32_t *ih_ring_entry,
902 uint32_t *patched_ihre, bool *flag);
903
904/* amdkfd Apertures */
905int kfd_init_apertures(struct kfd_process *process);
906
907/* Queue Context Management */
908int init_queue(struct queue **q, const struct queue_properties *properties);
909void uninit_queue(struct queue *q);
910void print_queue_properties(struct queue_properties *q);
911void print_queue(struct queue *q);
912
913struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
914 struct kfd_dev *dev);
915struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
916 struct kfd_dev *dev);
917struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
918 struct kfd_dev *dev);
919struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
920 struct kfd_dev *dev);
921struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
922 struct kfd_dev *dev);
923struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
924 struct kfd_dev *dev);
925struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
926void device_queue_manager_uninit(struct device_queue_manager *dqm);
927struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
928 enum kfd_queue_type type);
929void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
930int kfd_process_vm_fault(struct device_queue_manager *dqm, unsigned int pasid);
931
932/* Process Queue Manager */
933struct process_queue_node {
934 struct queue *q;
935 struct kernel_queue *kq;
936 struct list_head process_queue_list;
937};
938
939void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
940void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
941int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
942void pqm_uninit(struct process_queue_manager *pqm);
943int pqm_create_queue(struct process_queue_manager *pqm,
944 struct kfd_dev *dev,
945 struct file *f,
946 struct queue_properties *properties,
947 unsigned int *qid,
948 uint32_t *p_doorbell_offset_in_process);
949int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
950int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
951 struct queue_properties *p);
952int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid,
953 struct queue_properties *p);
954int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
955 void *gws);
956struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
957 unsigned int qid);
958struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
959 unsigned int qid);
960int pqm_get_wave_state(struct process_queue_manager *pqm,
961 unsigned int qid,
962 void __user *ctl_stack,
963 u32 *ctl_stack_used_size,
964 u32 *save_area_used_size);
965
966int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
967 unsigned int fence_value,
968 unsigned int timeout_ms);
969
970/* Packet Manager */
971
972#define KFD_FENCE_COMPLETED (100)
973#define KFD_FENCE_INIT (10)
974
975struct packet_manager {
976 struct device_queue_manager *dqm;
977 struct kernel_queue *priv_queue;
978 struct mutex lock;
979 bool allocated;
980 struct kfd_mem_obj *ib_buffer_obj;
981 unsigned int ib_size_bytes;
982 bool is_over_subscription;
983
984 const struct packet_manager_funcs *pmf;
985};
986
987struct packet_manager_funcs {
988 /* Support ASIC-specific packet formats for PM4 packets */
989 int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
990 struct qcm_process_device *qpd);
991 int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
992 uint64_t ib, size_t ib_size_in_dwords, bool chain);
993 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
994 struct scheduling_resources *res);
995 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
996 struct queue *q, bool is_static);
997 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
998 enum kfd_queue_type type,
999 enum kfd_unmap_queues_filter mode,
1000 uint32_t filter_param, bool reset,
1001 unsigned int sdma_engine);
1002 int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1003 uint64_t fence_address, uint32_t fence_value);
1004 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1005
1006 /* Packet sizes */
1007 int map_process_size;
1008 int runlist_size;
1009 int set_resources_size;
1010 int map_queues_size;
1011 int unmap_queues_size;
1012 int query_status_size;
1013 int release_mem_size;
1014};
1015
1016extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1017extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1018
1019int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1020void pm_uninit(struct packet_manager *pm, bool hanging);
1021int pm_send_set_resources(struct packet_manager *pm,
1022 struct scheduling_resources *res);
1023int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1024int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1025 uint32_t fence_value);
1026
1027int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
1028 enum kfd_unmap_queues_filter mode,
1029 uint32_t filter_param, bool reset,
1030 unsigned int sdma_engine);
1031
1032void pm_release_ib(struct packet_manager *pm);
1033
1034/* Following PM funcs can be shared among VI and AI */
1035unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1036
1037uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1038
1039/* Events */
1040extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1041extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1042
1043extern const struct kfd_device_global_init_class device_global_init_class_cik;
1044
1045void kfd_event_init_process(struct kfd_process *p);
1046void kfd_event_free_process(struct kfd_process *p);
1047int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1048int kfd_wait_on_events(struct kfd_process *p,
1049 uint32_t num_events, void __user *data,
1050 bool all, uint32_t user_timeout_ms,
1051 uint32_t *wait_result);
1052void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
1053 uint32_t valid_id_bits);
1054void kfd_signal_iommu_event(struct kfd_dev *dev,
1055 unsigned int pasid, unsigned long address,
1056 bool is_write_requested, bool is_execute_requested);
1057void kfd_signal_hw_exception_event(unsigned int pasid);
1058int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1059int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1060int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1061 uint64_t size);
1062int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1063 uint32_t event_type, bool auto_reset, uint32_t node_id,
1064 uint32_t *event_id, uint32_t *event_trigger_data,
1065 uint64_t *event_page_offset, uint32_t *event_slot_index);
1066int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1067
1068void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid,
1069 struct kfd_vm_fault_info *info);
1070
1071void kfd_signal_reset_event(struct kfd_dev *dev);
1072
1073void kfd_flush_tlb(struct kfd_process_device *pdd);
1074
1075int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1076
1077bool kfd_is_locked(void);
1078
1079/* Compute profile */
1080void kfd_inc_compute_active(struct kfd_dev *dev);
1081void kfd_dec_compute_active(struct kfd_dev *dev);
1082
1083/* Cgroup Support */
1084/* Check with device cgroup if @kfd device is accessible */
1085static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1086{
1087#if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1088 struct drm_device *ddev = kfd->ddev;
1089
1090 return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1091 ddev->render->index,
1092 DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1093#else
1094 return 0;
1095#endif
1096}
1097
1098/* Debugfs */
1099#if defined(CONFIG_DEBUG_FS)
1100
1101void kfd_debugfs_init(void);
1102void kfd_debugfs_fini(void);
1103int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1104int pqm_debugfs_mqds(struct seq_file *m, void *data);
1105int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1106int dqm_debugfs_hqds(struct seq_file *m, void *data);
1107int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1108int pm_debugfs_runlist(struct seq_file *m, void *data);
1109
1110int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1111int pm_debugfs_hang_hws(struct packet_manager *pm);
1112int dqm_debugfs_execute_queues(struct device_queue_manager *dqm);
1113
1114#else
1115
1116static inline void kfd_debugfs_init(void) {}
1117static inline void kfd_debugfs_fini(void) {}
1118
1119#endif
1120
1121#endif