Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * IPv4 over IEEE 1394, per RFC 2734
   4 * IPv6 over IEEE 1394, per RFC 3146
   5 *
   6 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
   7 *
   8 * based on eth1394 by Ben Collins et al
   9 */
  10
  11#include <linux/bug.h>
  12#include <linux/compiler.h>
  13#include <linux/delay.h>
  14#include <linux/device.h>
  15#include <linux/ethtool.h>
  16#include <linux/firewire.h>
  17#include <linux/firewire-constants.h>
  18#include <linux/highmem.h>
  19#include <linux/in.h>
  20#include <linux/ip.h>
  21#include <linux/jiffies.h>
  22#include <linux/mod_devicetable.h>
  23#include <linux/module.h>
  24#include <linux/moduleparam.h>
  25#include <linux/mutex.h>
  26#include <linux/netdevice.h>
  27#include <linux/skbuff.h>
  28#include <linux/slab.h>
  29#include <linux/spinlock.h>
  30
  31#include <asm/unaligned.h>
  32#include <net/arp.h>
  33#include <net/firewire.h>
  34
  35/* rx limits */
  36#define FWNET_MAX_FRAGMENTS		30 /* arbitrary, > TX queue depth */
  37#define FWNET_ISO_PAGE_COUNT		(PAGE_SIZE < 16*1024 ? 4 : 2)
  38
  39/* tx limits */
  40#define FWNET_MAX_QUEUED_DATAGRAMS	20 /* < 64 = number of tlabels */
  41#define FWNET_MIN_QUEUED_DATAGRAMS	10 /* should keep AT DMA busy enough */
  42#define FWNET_TX_QUEUE_LEN		FWNET_MAX_QUEUED_DATAGRAMS /* ? */
  43
  44#define IEEE1394_BROADCAST_CHANNEL	31
  45#define IEEE1394_ALL_NODES		(0xffc0 | 0x003f)
  46#define IEEE1394_MAX_PAYLOAD_S100	512
  47#define FWNET_NO_FIFO_ADDR		(~0ULL)
  48
  49#define IANA_SPECIFIER_ID		0x00005eU
  50#define RFC2734_SW_VERSION		0x000001U
  51#define RFC3146_SW_VERSION		0x000002U
  52
  53#define IEEE1394_GASP_HDR_SIZE	8
  54
  55#define RFC2374_UNFRAG_HDR_SIZE	4
  56#define RFC2374_FRAG_HDR_SIZE	8
  57#define RFC2374_FRAG_OVERHEAD	4
  58
  59#define RFC2374_HDR_UNFRAG	0	/* unfragmented		*/
  60#define RFC2374_HDR_FIRSTFRAG	1	/* first fragment	*/
  61#define RFC2374_HDR_LASTFRAG	2	/* last fragment	*/
  62#define RFC2374_HDR_INTFRAG	3	/* interior fragment	*/
  63
  64static bool fwnet_hwaddr_is_multicast(u8 *ha)
  65{
  66	return !!(*ha & 1);
  67}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68
  69/* IPv4 and IPv6 encapsulation header */
  70struct rfc2734_header {
  71	u32 w0;
  72	u32 w1;
  73};
  74
  75#define fwnet_get_hdr_lf(h)		(((h)->w0 & 0xc0000000) >> 30)
  76#define fwnet_get_hdr_ether_type(h)	(((h)->w0 & 0x0000ffff))
  77#define fwnet_get_hdr_dg_size(h)	((((h)->w0 & 0x0fff0000) >> 16) + 1)
  78#define fwnet_get_hdr_fg_off(h)		(((h)->w0 & 0x00000fff))
  79#define fwnet_get_hdr_dgl(h)		(((h)->w1 & 0xffff0000) >> 16)
  80
  81#define fwnet_set_hdr_lf(lf)		((lf) << 30)
  82#define fwnet_set_hdr_ether_type(et)	(et)
  83#define fwnet_set_hdr_dg_size(dgs)	(((dgs) - 1) << 16)
  84#define fwnet_set_hdr_fg_off(fgo)	(fgo)
  85
  86#define fwnet_set_hdr_dgl(dgl)		((dgl) << 16)
  87
  88static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
  89		unsigned ether_type)
  90{
  91	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
  92		  | fwnet_set_hdr_ether_type(ether_type);
  93}
  94
  95static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
  96		unsigned ether_type, unsigned dg_size, unsigned dgl)
  97{
  98	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
  99		  | fwnet_set_hdr_dg_size(dg_size)
 100		  | fwnet_set_hdr_ether_type(ether_type);
 101	hdr->w1 = fwnet_set_hdr_dgl(dgl);
 102}
 103
 104static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
 105		unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
 106{
 107	hdr->w0 = fwnet_set_hdr_lf(lf)
 108		  | fwnet_set_hdr_dg_size(dg_size)
 109		  | fwnet_set_hdr_fg_off(fg_off);
 110	hdr->w1 = fwnet_set_hdr_dgl(dgl);
 111}
 112
 113/* This list keeps track of what parts of the datagram have been filled in */
 114struct fwnet_fragment_info {
 115	struct list_head fi_link;
 116	u16 offset;
 117	u16 len;
 118};
 119
 120struct fwnet_partial_datagram {
 121	struct list_head pd_link;
 122	struct list_head fi_list;
 123	struct sk_buff *skb;
 124	/* FIXME Why not use skb->data? */
 125	char *pbuf;
 126	u16 datagram_label;
 127	u16 ether_type;
 128	u16 datagram_size;
 129};
 130
 131static DEFINE_MUTEX(fwnet_device_mutex);
 132static LIST_HEAD(fwnet_device_list);
 133
 134struct fwnet_device {
 135	struct list_head dev_link;
 136	spinlock_t lock;
 137	enum {
 138		FWNET_BROADCAST_ERROR,
 139		FWNET_BROADCAST_RUNNING,
 140		FWNET_BROADCAST_STOPPED,
 141	} broadcast_state;
 142	struct fw_iso_context *broadcast_rcv_context;
 143	struct fw_iso_buffer broadcast_rcv_buffer;
 144	void **broadcast_rcv_buffer_ptrs;
 145	unsigned broadcast_rcv_next_ptr;
 146	unsigned num_broadcast_rcv_ptrs;
 147	unsigned rcv_buffer_size;
 148	/*
 149	 * This value is the maximum unfragmented datagram size that can be
 150	 * sent by the hardware.  It already has the GASP overhead and the
 151	 * unfragmented datagram header overhead calculated into it.
 152	 */
 153	unsigned broadcast_xmt_max_payload;
 154	u16 broadcast_xmt_datagramlabel;
 155
 156	/*
 157	 * The CSR address that remote nodes must send datagrams to for us to
 158	 * receive them.
 159	 */
 160	struct fw_address_handler handler;
 161	u64 local_fifo;
 162
 163	/* Number of tx datagrams that have been queued but not yet acked */
 164	int queued_datagrams;
 165
 166	int peer_count;
 167	struct list_head peer_list;
 168	struct fw_card *card;
 169	struct net_device *netdev;
 170};
 171
 172struct fwnet_peer {
 173	struct list_head peer_link;
 174	struct fwnet_device *dev;
 175	u64 guid;
 
 
 176
 177	/* guarded by dev->lock */
 178	struct list_head pd_list; /* received partial datagrams */
 179	unsigned pdg_size;        /* pd_list size */
 180
 181	u16 datagram_label;       /* outgoing datagram label */
 182	u16 max_payload;          /* includes RFC2374_FRAG_HDR_SIZE overhead */
 183	int node_id;
 184	int generation;
 185	unsigned speed;
 186};
 187
 188/* This is our task struct. It's used for the packet complete callback.  */
 189struct fwnet_packet_task {
 190	struct fw_transaction transaction;
 191	struct rfc2734_header hdr;
 192	struct sk_buff *skb;
 193	struct fwnet_device *dev;
 194
 195	int outstanding_pkts;
 196	u64 fifo_addr;
 197	u16 dest_node;
 198	u16 max_payload;
 199	u8 generation;
 200	u8 speed;
 201	u8 enqueued;
 202};
 203
 204/*
 205 * Get fifo address embedded in hwaddr
 206 */
 207static __u64 fwnet_hwaddr_fifo(union fwnet_hwaddr *ha)
 208{
 209	return (u64)get_unaligned_be16(&ha->uc.fifo_hi) << 32
 210	       | get_unaligned_be32(&ha->uc.fifo_lo);
 211}
 212
 213/*
 214 * saddr == NULL means use device source address.
 215 * daddr == NULL means leave destination address (eg unresolved arp).
 216 */
 217static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
 218			unsigned short type, const void *daddr,
 219			const void *saddr, unsigned len)
 220{
 221	struct fwnet_header *h;
 222
 223	h = skb_push(skb, sizeof(*h));
 224	put_unaligned_be16(type, &h->h_proto);
 225
 226	if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
 227		memset(h->h_dest, 0, net->addr_len);
 228
 229		return net->hard_header_len;
 230	}
 231
 232	if (daddr) {
 233		memcpy(h->h_dest, daddr, net->addr_len);
 234
 235		return net->hard_header_len;
 236	}
 237
 238	return -net->hard_header_len;
 239}
 240
 
 
 
 
 
 
 
 
 
 
 
 
 241static int fwnet_header_cache(const struct neighbour *neigh,
 242			      struct hh_cache *hh, __be16 type)
 243{
 244	struct net_device *net;
 245	struct fwnet_header *h;
 246
 247	if (type == cpu_to_be16(ETH_P_802_3))
 248		return -1;
 249	net = neigh->dev;
 250	h = (struct fwnet_header *)((u8 *)hh->hh_data + HH_DATA_OFF(sizeof(*h)));
 251	h->h_proto = type;
 252	memcpy(h->h_dest, neigh->ha, net->addr_len);
 253
 254	/* Pairs with the READ_ONCE() in neigh_resolve_output(),
 255	 * neigh_hh_output() and neigh_update_hhs().
 256	 */
 257	smp_store_release(&hh->hh_len, FWNET_HLEN);
 258
 259	return 0;
 260}
 261
 262/* Called by Address Resolution module to notify changes in address. */
 263static void fwnet_header_cache_update(struct hh_cache *hh,
 264		const struct net_device *net, const unsigned char *haddr)
 265{
 266	memcpy((u8 *)hh->hh_data + HH_DATA_OFF(FWNET_HLEN), haddr, net->addr_len);
 267}
 268
 269static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
 270{
 271	memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
 272
 273	return FWNET_ALEN;
 274}
 275
 276static const struct header_ops fwnet_header_ops = {
 277	.create         = fwnet_header_create,
 
 278	.cache		= fwnet_header_cache,
 279	.cache_update	= fwnet_header_cache_update,
 280	.parse          = fwnet_header_parse,
 281};
 282
 283/* FIXME: is this correct for all cases? */
 284static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
 285			       unsigned offset, unsigned len)
 286{
 287	struct fwnet_fragment_info *fi;
 288	unsigned end = offset + len;
 289
 290	list_for_each_entry(fi, &pd->fi_list, fi_link)
 291		if (offset < fi->offset + fi->len && end > fi->offset)
 292			return true;
 293
 294	return false;
 295}
 296
 297/* Assumes that new fragment does not overlap any existing fragments */
 298static struct fwnet_fragment_info *fwnet_frag_new(
 299	struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
 300{
 301	struct fwnet_fragment_info *fi, *fi2, *new;
 302	struct list_head *list;
 303
 304	list = &pd->fi_list;
 305	list_for_each_entry(fi, &pd->fi_list, fi_link) {
 306		if (fi->offset + fi->len == offset) {
 307			/* The new fragment can be tacked on to the end */
 308			/* Did the new fragment plug a hole? */
 309			fi2 = list_entry(fi->fi_link.next,
 310					 struct fwnet_fragment_info, fi_link);
 311			if (fi->offset + fi->len == fi2->offset) {
 312				/* glue fragments together */
 313				fi->len += len + fi2->len;
 314				list_del(&fi2->fi_link);
 315				kfree(fi2);
 316			} else {
 317				fi->len += len;
 318			}
 319
 320			return fi;
 321		}
 322		if (offset + len == fi->offset) {
 323			/* The new fragment can be tacked on to the beginning */
 324			/* Did the new fragment plug a hole? */
 325			fi2 = list_entry(fi->fi_link.prev,
 326					 struct fwnet_fragment_info, fi_link);
 327			if (fi2->offset + fi2->len == fi->offset) {
 328				/* glue fragments together */
 329				fi2->len += fi->len + len;
 330				list_del(&fi->fi_link);
 331				kfree(fi);
 332
 333				return fi2;
 334			}
 335			fi->offset = offset;
 336			fi->len += len;
 337
 338			return fi;
 339		}
 340		if (offset > fi->offset + fi->len) {
 341			list = &fi->fi_link;
 342			break;
 343		}
 344		if (offset + len < fi->offset) {
 345			list = fi->fi_link.prev;
 346			break;
 347		}
 348	}
 349
 350	new = kmalloc(sizeof(*new), GFP_ATOMIC);
 351	if (!new)
 
 352		return NULL;
 
 353
 354	new->offset = offset;
 355	new->len = len;
 356	list_add(&new->fi_link, list);
 357
 358	return new;
 359}
 360
 361static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
 362		struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
 363		void *frag_buf, unsigned frag_off, unsigned frag_len)
 364{
 365	struct fwnet_partial_datagram *new;
 366	struct fwnet_fragment_info *fi;
 367
 368	new = kmalloc(sizeof(*new), GFP_ATOMIC);
 369	if (!new)
 370		goto fail;
 371
 372	INIT_LIST_HEAD(&new->fi_list);
 373	fi = fwnet_frag_new(new, frag_off, frag_len);
 374	if (fi == NULL)
 375		goto fail_w_new;
 376
 377	new->datagram_label = datagram_label;
 378	new->datagram_size = dg_size;
 379	new->skb = dev_alloc_skb(dg_size + LL_RESERVED_SPACE(net));
 380	if (new->skb == NULL)
 381		goto fail_w_fi;
 382
 383	skb_reserve(new->skb, LL_RESERVED_SPACE(net));
 384	new->pbuf = skb_put(new->skb, dg_size);
 385	memcpy(new->pbuf + frag_off, frag_buf, frag_len);
 386	list_add_tail(&new->pd_link, &peer->pd_list);
 387
 388	return new;
 389
 390fail_w_fi:
 391	kfree(fi);
 392fail_w_new:
 393	kfree(new);
 394fail:
 
 
 395	return NULL;
 396}
 397
 398static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
 399						    u16 datagram_label)
 400{
 401	struct fwnet_partial_datagram *pd;
 402
 403	list_for_each_entry(pd, &peer->pd_list, pd_link)
 404		if (pd->datagram_label == datagram_label)
 405			return pd;
 406
 407	return NULL;
 408}
 409
 410
 411static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
 412{
 413	struct fwnet_fragment_info *fi, *n;
 414
 415	list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
 416		kfree(fi);
 417
 418	list_del(&old->pd_link);
 419	dev_kfree_skb_any(old->skb);
 420	kfree(old);
 421}
 422
 423static bool fwnet_pd_update(struct fwnet_peer *peer,
 424		struct fwnet_partial_datagram *pd, void *frag_buf,
 425		unsigned frag_off, unsigned frag_len)
 426{
 427	if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
 428		return false;
 429
 430	memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
 431
 432	/*
 433	 * Move list entry to beginning of list so that oldest partial
 434	 * datagrams percolate to the end of the list
 435	 */
 436	list_move_tail(&pd->pd_link, &peer->pd_list);
 437
 438	return true;
 439}
 440
 441static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
 442{
 443	struct fwnet_fragment_info *fi;
 444
 445	fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
 446
 447	return fi->len == pd->datagram_size;
 448}
 449
 450/* caller must hold dev->lock */
 451static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
 452						  u64 guid)
 453{
 454	struct fwnet_peer *peer;
 455
 456	list_for_each_entry(peer, &dev->peer_list, peer_link)
 457		if (peer->guid == guid)
 458			return peer;
 459
 460	return NULL;
 461}
 462
 463/* caller must hold dev->lock */
 464static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
 465						int node_id, int generation)
 466{
 467	struct fwnet_peer *peer;
 468
 469	list_for_each_entry(peer, &dev->peer_list, peer_link)
 470		if (peer->node_id    == node_id &&
 471		    peer->generation == generation)
 472			return peer;
 473
 474	return NULL;
 475}
 476
 477/* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
 478static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
 479{
 480	max_rec = min(max_rec, speed + 8);
 481	max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */
 
 
 
 
 482
 483	return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
 484}
 485
 486
 487static int fwnet_finish_incoming_packet(struct net_device *net,
 488					struct sk_buff *skb, u16 source_node_id,
 489					bool is_broadcast, u16 ether_type)
 490{
 491	struct fwnet_device *dev;
 
 492	int status;
 493	__be64 guid;
 494
 495	switch (ether_type) {
 496	case ETH_P_ARP:
 497	case ETH_P_IP:
 498#if IS_ENABLED(CONFIG_IPV6)
 499	case ETH_P_IPV6:
 500#endif
 501		break;
 502	default:
 503		goto err;
 504	}
 505
 506	dev = netdev_priv(net);
 507	/* Write metadata, and then pass to the receive level */
 508	skb->dev = net;
 509	skb->ip_summed = CHECKSUM_NONE;
 510
 511	/*
 512	 * Parse the encapsulation header. This actually does the job of
 513	 * converting to an ethernet-like pseudo frame header.
 
 
 514	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515	guid = cpu_to_be64(dev->card->guid);
 516	if (dev_hard_header(skb, net, ether_type,
 517			   is_broadcast ? net->broadcast : net->dev_addr,
 518			   NULL, skb->len) >= 0) {
 519		struct fwnet_header *eth;
 520		u16 *rawp;
 521		__be16 protocol;
 522
 523		skb_reset_mac_header(skb);
 524		skb_pull(skb, sizeof(*eth));
 525		eth = (struct fwnet_header *)skb_mac_header(skb);
 526		if (fwnet_hwaddr_is_multicast(eth->h_dest)) {
 527			if (memcmp(eth->h_dest, net->broadcast,
 528				   net->addr_len) == 0)
 529				skb->pkt_type = PACKET_BROADCAST;
 530#if 0
 531			else
 532				skb->pkt_type = PACKET_MULTICAST;
 533#endif
 534		} else {
 535			if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
 536				skb->pkt_type = PACKET_OTHERHOST;
 537		}
 538		if (ntohs(eth->h_proto) >= ETH_P_802_3_MIN) {
 539			protocol = eth->h_proto;
 540		} else {
 541			rawp = (u16 *)skb->data;
 542			if (*rawp == 0xffff)
 543				protocol = htons(ETH_P_802_3);
 544			else
 545				protocol = htons(ETH_P_802_2);
 546		}
 547		skb->protocol = protocol;
 548	}
 549	status = netif_rx(skb);
 550	if (status == NET_RX_DROP) {
 551		net->stats.rx_errors++;
 552		net->stats.rx_dropped++;
 553	} else {
 554		net->stats.rx_packets++;
 555		net->stats.rx_bytes += skb->len;
 556	}
 557
 558	return 0;
 559
 560 err:
 561	net->stats.rx_errors++;
 562	net->stats.rx_dropped++;
 563
 564	dev_kfree_skb_any(skb);
 565
 566	return -ENOENT;
 567}
 568
 569static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
 570				 int source_node_id, int generation,
 571				 bool is_broadcast)
 572{
 573	struct sk_buff *skb;
 574	struct net_device *net = dev->netdev;
 575	struct rfc2734_header hdr;
 576	unsigned lf;
 577	unsigned long flags;
 578	struct fwnet_peer *peer;
 579	struct fwnet_partial_datagram *pd;
 580	int fg_off;
 581	int dg_size;
 582	u16 datagram_label;
 583	int retval;
 584	u16 ether_type;
 585
 586	if (len <= RFC2374_UNFRAG_HDR_SIZE)
 587		return 0;
 588
 589	hdr.w0 = be32_to_cpu(buf[0]);
 590	lf = fwnet_get_hdr_lf(&hdr);
 591	if (lf == RFC2374_HDR_UNFRAG) {
 592		/*
 593		 * An unfragmented datagram has been received by the ieee1394
 594		 * bus. Build an skbuff around it so we can pass it to the
 595		 * high level network layer.
 596		 */
 597		ether_type = fwnet_get_hdr_ether_type(&hdr);
 598		buf++;
 599		len -= RFC2374_UNFRAG_HDR_SIZE;
 600
 601		skb = dev_alloc_skb(len + LL_RESERVED_SPACE(net));
 602		if (unlikely(!skb)) {
 
 603			net->stats.rx_dropped++;
 604
 605			return -ENOMEM;
 606		}
 607		skb_reserve(skb, LL_RESERVED_SPACE(net));
 608		skb_put_data(skb, buf, len);
 609
 610		return fwnet_finish_incoming_packet(net, skb, source_node_id,
 611						    is_broadcast, ether_type);
 612	}
 613
 614	/* A datagram fragment has been received, now the fun begins. */
 615
 616	if (len <= RFC2374_FRAG_HDR_SIZE)
 617		return 0;
 618
 619	hdr.w1 = ntohl(buf[1]);
 620	buf += 2;
 621	len -= RFC2374_FRAG_HDR_SIZE;
 622	if (lf == RFC2374_HDR_FIRSTFRAG) {
 623		ether_type = fwnet_get_hdr_ether_type(&hdr);
 624		fg_off = 0;
 625	} else {
 626		ether_type = 0;
 627		fg_off = fwnet_get_hdr_fg_off(&hdr);
 628	}
 629	datagram_label = fwnet_get_hdr_dgl(&hdr);
 630	dg_size = fwnet_get_hdr_dg_size(&hdr);
 631
 632	if (fg_off + len > dg_size)
 633		return 0;
 634
 635	spin_lock_irqsave(&dev->lock, flags);
 636
 637	peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
 638	if (!peer) {
 639		retval = -ENOENT;
 640		goto fail;
 641	}
 642
 643	pd = fwnet_pd_find(peer, datagram_label);
 644	if (pd == NULL) {
 645		while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
 646			/* remove the oldest */
 647			fwnet_pd_delete(list_first_entry(&peer->pd_list,
 648				struct fwnet_partial_datagram, pd_link));
 649			peer->pdg_size--;
 650		}
 651		pd = fwnet_pd_new(net, peer, datagram_label,
 652				  dg_size, buf, fg_off, len);
 653		if (pd == NULL) {
 654			retval = -ENOMEM;
 655			goto fail;
 656		}
 657		peer->pdg_size++;
 658	} else {
 659		if (fwnet_frag_overlap(pd, fg_off, len) ||
 660		    pd->datagram_size != dg_size) {
 661			/*
 662			 * Differing datagram sizes or overlapping fragments,
 663			 * discard old datagram and start a new one.
 664			 */
 665			fwnet_pd_delete(pd);
 666			pd = fwnet_pd_new(net, peer, datagram_label,
 667					  dg_size, buf, fg_off, len);
 668			if (pd == NULL) {
 669				peer->pdg_size--;
 670				retval = -ENOMEM;
 671				goto fail;
 672			}
 673		} else {
 674			if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
 675				/*
 676				 * Couldn't save off fragment anyway
 677				 * so might as well obliterate the
 678				 * datagram now.
 679				 */
 680				fwnet_pd_delete(pd);
 681				peer->pdg_size--;
 682				retval = -ENOMEM;
 683				goto fail;
 684			}
 685		}
 686	} /* new datagram or add to existing one */
 687
 688	if (lf == RFC2374_HDR_FIRSTFRAG)
 689		pd->ether_type = ether_type;
 690
 691	if (fwnet_pd_is_complete(pd)) {
 692		ether_type = pd->ether_type;
 693		peer->pdg_size--;
 694		skb = skb_get(pd->skb);
 695		fwnet_pd_delete(pd);
 696
 697		spin_unlock_irqrestore(&dev->lock, flags);
 698
 699		return fwnet_finish_incoming_packet(net, skb, source_node_id,
 700						    false, ether_type);
 701	}
 702	/*
 703	 * Datagram is not complete, we're done for the
 704	 * moment.
 705	 */
 706	retval = 0;
 707 fail:
 708	spin_unlock_irqrestore(&dev->lock, flags);
 709
 710	return retval;
 711}
 712
 713static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
 714		int tcode, int destination, int source, int generation,
 715		unsigned long long offset, void *payload, size_t length,
 716		void *callback_data)
 717{
 718	struct fwnet_device *dev = callback_data;
 719	int rcode;
 720
 721	if (destination == IEEE1394_ALL_NODES) {
 722		kfree(r);
 723
 724		return;
 725	}
 726
 727	if (offset != dev->handler.offset)
 728		rcode = RCODE_ADDRESS_ERROR;
 729	else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
 730		rcode = RCODE_TYPE_ERROR;
 731	else if (fwnet_incoming_packet(dev, payload, length,
 732				       source, generation, false) != 0) {
 733		dev_err(&dev->netdev->dev, "incoming packet failure\n");
 734		rcode = RCODE_CONFLICT_ERROR;
 735	} else
 736		rcode = RCODE_COMPLETE;
 737
 738	fw_send_response(card, r, rcode);
 739}
 740
 741static int gasp_source_id(__be32 *p)
 742{
 743	return be32_to_cpu(p[0]) >> 16;
 744}
 745
 746static u32 gasp_specifier_id(__be32 *p)
 747{
 748	return (be32_to_cpu(p[0]) & 0xffff) << 8 |
 749	       (be32_to_cpu(p[1]) & 0xff000000) >> 24;
 750}
 751
 752static u32 gasp_version(__be32 *p)
 753{
 754	return be32_to_cpu(p[1]) & 0xffffff;
 755}
 756
 757static void fwnet_receive_broadcast(struct fw_iso_context *context,
 758		u32 cycle, size_t header_length, void *header, void *data)
 759{
 760	struct fwnet_device *dev;
 761	struct fw_iso_packet packet;
 
 762	__be16 *hdr_ptr;
 763	__be32 *buf_ptr;
 764	int retval;
 765	u32 length;
 
 
 
 766	unsigned long offset;
 767	unsigned long flags;
 768
 769	dev = data;
 
 770	hdr_ptr = header;
 771	length = be16_to_cpup(hdr_ptr);
 772
 773	spin_lock_irqsave(&dev->lock, flags);
 774
 775	offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
 776	buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
 777	if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
 778		dev->broadcast_rcv_next_ptr = 0;
 779
 780	spin_unlock_irqrestore(&dev->lock, flags);
 781
 782	if (length > IEEE1394_GASP_HDR_SIZE &&
 783	    gasp_specifier_id(buf_ptr) == IANA_SPECIFIER_ID &&
 784	    (gasp_version(buf_ptr) == RFC2734_SW_VERSION
 785#if IS_ENABLED(CONFIG_IPV6)
 786	     || gasp_version(buf_ptr) == RFC3146_SW_VERSION
 787#endif
 788	    ))
 789		fwnet_incoming_packet(dev, buf_ptr + 2,
 790				      length - IEEE1394_GASP_HDR_SIZE,
 791				      gasp_source_id(buf_ptr),
 792				      context->card->generation, true);
 793
 794	packet.payload_length = dev->rcv_buffer_size;
 795	packet.interrupt = 1;
 796	packet.skip = 0;
 797	packet.tag = 3;
 798	packet.sy = 0;
 799	packet.header_length = IEEE1394_GASP_HDR_SIZE;
 800
 801	spin_lock_irqsave(&dev->lock, flags);
 802
 803	retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
 804				      &dev->broadcast_rcv_buffer, offset);
 805
 806	spin_unlock_irqrestore(&dev->lock, flags);
 807
 808	if (retval >= 0)
 809		fw_iso_context_queue_flush(dev->broadcast_rcv_context);
 810	else
 811		dev_err(&dev->netdev->dev, "requeue failed\n");
 812}
 813
 814static struct kmem_cache *fwnet_packet_task_cache;
 815
 816static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
 817{
 818	dev_kfree_skb_any(ptask->skb);
 819	kmem_cache_free(fwnet_packet_task_cache, ptask);
 820}
 821
 822/* Caller must hold dev->lock. */
 823static void dec_queued_datagrams(struct fwnet_device *dev)
 824{
 825	if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
 826		netif_wake_queue(dev->netdev);
 827}
 828
 829static int fwnet_send_packet(struct fwnet_packet_task *ptask);
 830
 831static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
 832{
 833	struct fwnet_device *dev = ptask->dev;
 834	struct sk_buff *skb = ptask->skb;
 835	unsigned long flags;
 836	bool free;
 837
 838	spin_lock_irqsave(&dev->lock, flags);
 839
 840	ptask->outstanding_pkts--;
 841
 842	/* Check whether we or the networking TX soft-IRQ is last user. */
 843	free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
 844	if (free)
 845		dec_queued_datagrams(dev);
 846
 847	if (ptask->outstanding_pkts == 0) {
 848		dev->netdev->stats.tx_packets++;
 849		dev->netdev->stats.tx_bytes += skb->len;
 850	}
 851
 852	spin_unlock_irqrestore(&dev->lock, flags);
 853
 854	if (ptask->outstanding_pkts > 0) {
 855		u16 dg_size;
 856		u16 fg_off;
 857		u16 datagram_label;
 858		u16 lf;
 859
 860		/* Update the ptask to point to the next fragment and send it */
 861		lf = fwnet_get_hdr_lf(&ptask->hdr);
 862		switch (lf) {
 863		case RFC2374_HDR_LASTFRAG:
 864		case RFC2374_HDR_UNFRAG:
 865		default:
 866			dev_err(&dev->netdev->dev,
 867				"outstanding packet %x lf %x, header %x,%x\n",
 868				ptask->outstanding_pkts, lf, ptask->hdr.w0,
 869				ptask->hdr.w1);
 870			BUG();
 871
 872		case RFC2374_HDR_FIRSTFRAG:
 873			/* Set frag type here for future interior fragments */
 874			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
 875			fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
 876			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
 877			break;
 878
 879		case RFC2374_HDR_INTFRAG:
 880			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
 881			fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
 882				  + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
 883			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
 884			break;
 885		}
 886
 887		if (ptask->dest_node == IEEE1394_ALL_NODES) {
 888			skb_pull(skb,
 889				 ptask->max_payload + IEEE1394_GASP_HDR_SIZE);
 890		} else {
 891			skb_pull(skb, ptask->max_payload);
 892		}
 893		if (ptask->outstanding_pkts > 1) {
 894			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
 895					  dg_size, fg_off, datagram_label);
 896		} else {
 897			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
 898					  dg_size, fg_off, datagram_label);
 899			ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
 900		}
 901		fwnet_send_packet(ptask);
 902	}
 903
 904	if (free)
 905		fwnet_free_ptask(ptask);
 906}
 907
 908static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
 909{
 910	struct fwnet_device *dev = ptask->dev;
 911	unsigned long flags;
 912	bool free;
 913
 914	spin_lock_irqsave(&dev->lock, flags);
 915
 916	/* One fragment failed; don't try to send remaining fragments. */
 917	ptask->outstanding_pkts = 0;
 918
 919	/* Check whether we or the networking TX soft-IRQ is last user. */
 920	free = ptask->enqueued;
 921	if (free)
 922		dec_queued_datagrams(dev);
 923
 924	dev->netdev->stats.tx_dropped++;
 925	dev->netdev->stats.tx_errors++;
 926
 927	spin_unlock_irqrestore(&dev->lock, flags);
 928
 929	if (free)
 930		fwnet_free_ptask(ptask);
 931}
 932
 933static void fwnet_write_complete(struct fw_card *card, int rcode,
 934				 void *payload, size_t length, void *data)
 935{
 936	struct fwnet_packet_task *ptask = data;
 937	static unsigned long j;
 938	static int last_rcode, errors_skipped;
 939
 940	if (rcode == RCODE_COMPLETE) {
 941		fwnet_transmit_packet_done(ptask);
 942	} else {
 
 
 943		if (printk_timed_ratelimit(&j,  1000) || rcode != last_rcode) {
 944			dev_err(&ptask->dev->netdev->dev,
 945				"fwnet_write_complete failed: %x (skipped %d)\n",
 946				rcode, errors_skipped);
 947
 948			errors_skipped = 0;
 949			last_rcode = rcode;
 950		} else {
 951			errors_skipped++;
 952		}
 953		fwnet_transmit_packet_failed(ptask);
 954	}
 955}
 956
 957static int fwnet_send_packet(struct fwnet_packet_task *ptask)
 958{
 959	struct fwnet_device *dev;
 960	unsigned tx_len;
 961	struct rfc2734_header *bufhdr;
 962	unsigned long flags;
 963	bool free;
 964
 965	dev = ptask->dev;
 966	tx_len = ptask->max_payload;
 967	switch (fwnet_get_hdr_lf(&ptask->hdr)) {
 968	case RFC2374_HDR_UNFRAG:
 969		bufhdr = skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
 
 970		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
 971		break;
 972
 973	case RFC2374_HDR_FIRSTFRAG:
 974	case RFC2374_HDR_INTFRAG:
 975	case RFC2374_HDR_LASTFRAG:
 976		bufhdr = skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
 
 977		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
 978		put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
 979		break;
 980
 981	default:
 982		BUG();
 983	}
 984	if (ptask->dest_node == IEEE1394_ALL_NODES) {
 985		u8 *p;
 986		int generation;
 987		int node_id;
 988		unsigned int sw_version;
 989
 990		/* ptask->generation may not have been set yet */
 991		generation = dev->card->generation;
 992		smp_rmb();
 993		node_id = dev->card->node_id;
 994
 995		switch (ptask->skb->protocol) {
 996		default:
 997			sw_version = RFC2734_SW_VERSION;
 998			break;
 999#if IS_ENABLED(CONFIG_IPV6)
1000		case htons(ETH_P_IPV6):
1001			sw_version = RFC3146_SW_VERSION;
1002#endif
1003		}
1004
1005		p = skb_push(ptask->skb, IEEE1394_GASP_HDR_SIZE);
1006		put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1007		put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1008						| sw_version, &p[4]);
1009
1010		/* We should not transmit if broadcast_channel.valid == 0. */
1011		fw_send_request(dev->card, &ptask->transaction,
1012				TCODE_STREAM_DATA,
1013				fw_stream_packet_destination_id(3,
1014						IEEE1394_BROADCAST_CHANNEL, 0),
1015				generation, SCODE_100, 0ULL, ptask->skb->data,
1016				tx_len + 8, fwnet_write_complete, ptask);
1017
1018		spin_lock_irqsave(&dev->lock, flags);
1019
1020		/* If the AT tasklet already ran, we may be last user. */
1021		free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1022		if (!free)
1023			ptask->enqueued = true;
1024		else
1025			dec_queued_datagrams(dev);
1026
1027		spin_unlock_irqrestore(&dev->lock, flags);
1028
1029		goto out;
1030	}
1031
1032	fw_send_request(dev->card, &ptask->transaction,
1033			TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1034			ptask->generation, ptask->speed, ptask->fifo_addr,
1035			ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1036
1037	spin_lock_irqsave(&dev->lock, flags);
1038
1039	/* If the AT tasklet already ran, we may be last user. */
1040	free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1041	if (!free)
1042		ptask->enqueued = true;
1043	else
1044		dec_queued_datagrams(dev);
1045
1046	spin_unlock_irqrestore(&dev->lock, flags);
1047
1048	netif_trans_update(dev->netdev);
1049 out:
1050	if (free)
1051		fwnet_free_ptask(ptask);
1052
1053	return 0;
1054}
1055
1056static void fwnet_fifo_stop(struct fwnet_device *dev)
1057{
1058	if (dev->local_fifo == FWNET_NO_FIFO_ADDR)
1059		return;
1060
1061	fw_core_remove_address_handler(&dev->handler);
1062	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1063}
1064
1065static int fwnet_fifo_start(struct fwnet_device *dev)
1066{
1067	int retval;
1068
1069	if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1070		return 0;
1071
1072	dev->handler.length = 4096;
1073	dev->handler.address_callback = fwnet_receive_packet;
1074	dev->handler.callback_data = dev;
1075
1076	retval = fw_core_add_address_handler(&dev->handler,
1077					     &fw_high_memory_region);
1078	if (retval < 0)
1079		return retval;
1080
1081	dev->local_fifo = dev->handler.offset;
1082
1083	return 0;
1084}
1085
1086static void __fwnet_broadcast_stop(struct fwnet_device *dev)
1087{
1088	unsigned u;
1089
1090	if (dev->broadcast_state != FWNET_BROADCAST_ERROR) {
1091		for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++)
1092			kunmap(dev->broadcast_rcv_buffer.pages[u]);
1093		fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1094	}
1095	if (dev->broadcast_rcv_context) {
1096		fw_iso_context_destroy(dev->broadcast_rcv_context);
1097		dev->broadcast_rcv_context = NULL;
1098	}
1099	kfree(dev->broadcast_rcv_buffer_ptrs);
1100	dev->broadcast_rcv_buffer_ptrs = NULL;
1101	dev->broadcast_state = FWNET_BROADCAST_ERROR;
1102}
1103
1104static void fwnet_broadcast_stop(struct fwnet_device *dev)
1105{
1106	if (dev->broadcast_state == FWNET_BROADCAST_ERROR)
1107		return;
1108	fw_iso_context_stop(dev->broadcast_rcv_context);
1109	__fwnet_broadcast_stop(dev);
1110}
1111
1112static int fwnet_broadcast_start(struct fwnet_device *dev)
1113{
1114	struct fw_iso_context *context;
1115	int retval;
1116	unsigned num_packets;
1117	unsigned max_receive;
1118	struct fw_iso_packet packet;
1119	unsigned long offset;
1120	void **ptrptr;
1121	unsigned u;
1122
1123	if (dev->broadcast_state != FWNET_BROADCAST_ERROR)
1124		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125
1126	max_receive = 1U << (dev->card->max_receive + 1);
1127	num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1128
1129	ptrptr = kmalloc_array(num_packets, sizeof(void *), GFP_KERNEL);
1130	if (!ptrptr) {
1131		retval = -ENOMEM;
1132		goto failed;
1133	}
1134	dev->broadcast_rcv_buffer_ptrs = ptrptr;
1135
1136	context = fw_iso_context_create(dev->card, FW_ISO_CONTEXT_RECEIVE,
1137					IEEE1394_BROADCAST_CHANNEL,
1138					dev->card->link_speed, 8,
1139					fwnet_receive_broadcast, dev);
1140	if (IS_ERR(context)) {
1141		retval = PTR_ERR(context);
1142		goto failed;
1143	}
1144
1145	retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, dev->card,
1146				    FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1147	if (retval < 0)
1148		goto failed;
 
 
 
1149
1150	dev->broadcast_state = FWNET_BROADCAST_STOPPED;
 
 
 
1151
1152	for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1153		void *ptr;
1154		unsigned v;
 
 
1155
1156		ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1157		for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1158			*ptrptr++ = (void *) ((char *)ptr + v * max_receive);
 
 
 
 
 
 
 
 
 
 
1159	}
1160	dev->broadcast_rcv_context = context;
1161
1162	packet.payload_length = max_receive;
1163	packet.interrupt = 1;
1164	packet.skip = 0;
1165	packet.tag = 3;
1166	packet.sy = 0;
1167	packet.header_length = IEEE1394_GASP_HDR_SIZE;
1168	offset = 0;
1169
1170	for (u = 0; u < num_packets; u++) {
1171		retval = fw_iso_context_queue(context, &packet,
1172				&dev->broadcast_rcv_buffer, offset);
1173		if (retval < 0)
1174			goto failed;
1175
1176		offset += max_receive;
1177	}
1178	dev->num_broadcast_rcv_ptrs = num_packets;
1179	dev->rcv_buffer_size = max_receive;
1180	dev->broadcast_rcv_next_ptr = 0U;
1181	retval = fw_iso_context_start(context, -1, 0,
1182			FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1183	if (retval < 0)
1184		goto failed;
1185
1186	/* FIXME: adjust it according to the min. speed of all known peers? */
1187	dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1188			- IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1189	dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1190
1191	return 0;
1192
1193 failed:
1194	__fwnet_broadcast_stop(dev);
 
 
 
 
 
 
 
 
 
 
 
1195	return retval;
1196}
1197
1198static void set_carrier_state(struct fwnet_device *dev)
1199{
1200	if (dev->peer_count > 1)
1201		netif_carrier_on(dev->netdev);
1202	else
1203		netif_carrier_off(dev->netdev);
1204}
1205
1206/* ifup */
1207static int fwnet_open(struct net_device *net)
1208{
1209	struct fwnet_device *dev = netdev_priv(net);
1210	int ret;
1211
1212	ret = fwnet_broadcast_start(dev);
1213	if (ret)
1214		return ret;
1215
 
1216	netif_start_queue(net);
1217
1218	spin_lock_irq(&dev->lock);
1219	set_carrier_state(dev);
1220	spin_unlock_irq(&dev->lock);
1221
1222	return 0;
1223}
1224
1225/* ifdown */
1226static int fwnet_stop(struct net_device *net)
1227{
1228	struct fwnet_device *dev = netdev_priv(net);
1229
1230	netif_stop_queue(net);
1231	fwnet_broadcast_stop(dev);
 
1232
1233	return 0;
1234}
1235
1236static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1237{
1238	struct fwnet_header hdr_buf;
1239	struct fwnet_device *dev = netdev_priv(net);
1240	__be16 proto;
1241	u16 dest_node;
1242	unsigned max_payload;
1243	u16 dg_size;
1244	u16 *datagram_label_ptr;
1245	struct fwnet_packet_task *ptask;
1246	struct fwnet_peer *peer;
1247	unsigned long flags;
1248
1249	spin_lock_irqsave(&dev->lock, flags);
1250
1251	/* Can this happen? */
1252	if (netif_queue_stopped(dev->netdev)) {
1253		spin_unlock_irqrestore(&dev->lock, flags);
1254
1255		return NETDEV_TX_BUSY;
1256	}
1257
1258	ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1259	if (ptask == NULL)
1260		goto fail;
1261
1262	skb = skb_share_check(skb, GFP_ATOMIC);
1263	if (!skb)
1264		goto fail;
1265
1266	/*
1267	 * Make a copy of the driver-specific header.
1268	 * We might need to rebuild the header on tx failure.
1269	 */
1270	memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1271	proto = hdr_buf.h_proto;
1272
1273	switch (proto) {
1274	case htons(ETH_P_ARP):
1275	case htons(ETH_P_IP):
1276#if IS_ENABLED(CONFIG_IPV6)
1277	case htons(ETH_P_IPV6):
1278#endif
1279		break;
1280	default:
1281		goto fail;
1282	}
1283
1284	skb_pull(skb, sizeof(hdr_buf));
 
 
1285	dg_size = skb->len;
1286
1287	/*
1288	 * Set the transmission type for the packet.  ARP packets and IP
1289	 * broadcast packets are sent via GASP.
1290	 */
1291	if (fwnet_hwaddr_is_multicast(hdr_buf.h_dest)) {
 
 
 
1292		max_payload        = dev->broadcast_xmt_max_payload;
1293		datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1294
1295		ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1296		ptask->generation  = 0;
1297		ptask->dest_node   = IEEE1394_ALL_NODES;
1298		ptask->speed       = SCODE_100;
1299	} else {
1300		union fwnet_hwaddr *ha = (union fwnet_hwaddr *)hdr_buf.h_dest;
1301		__be64 guid = get_unaligned(&ha->uc.uniq_id);
1302		u8 generation;
1303
1304		peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1305		if (!peer)
1306			goto fail;
1307
1308		generation         = peer->generation;
1309		dest_node          = peer->node_id;
1310		max_payload        = peer->max_payload;
1311		datagram_label_ptr = &peer->datagram_label;
1312
1313		ptask->fifo_addr   = fwnet_hwaddr_fifo(ha);
1314		ptask->generation  = generation;
1315		ptask->dest_node   = dest_node;
1316		ptask->speed       = peer->speed;
1317	}
1318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1319	ptask->hdr.w0 = 0;
1320	ptask->hdr.w1 = 0;
1321	ptask->skb = skb;
1322	ptask->dev = dev;
1323
1324	/* Does it all fit in one packet? */
1325	if (dg_size <= max_payload) {
1326		fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1327		ptask->outstanding_pkts = 1;
1328		max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1329	} else {
1330		u16 datagram_label;
1331
1332		max_payload -= RFC2374_FRAG_OVERHEAD;
1333		datagram_label = (*datagram_label_ptr)++;
1334		fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1335				  datagram_label);
1336		ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1337		max_payload += RFC2374_FRAG_HDR_SIZE;
1338	}
1339
1340	if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1341		netif_stop_queue(dev->netdev);
1342
1343	spin_unlock_irqrestore(&dev->lock, flags);
1344
1345	ptask->max_payload = max_payload;
1346	ptask->enqueued    = 0;
1347
1348	fwnet_send_packet(ptask);
1349
1350	return NETDEV_TX_OK;
1351
1352 fail:
1353	spin_unlock_irqrestore(&dev->lock, flags);
1354
1355	if (ptask)
1356		kmem_cache_free(fwnet_packet_task_cache, ptask);
1357
1358	if (skb != NULL)
1359		dev_kfree_skb(skb);
1360
1361	net->stats.tx_dropped++;
1362	net->stats.tx_errors++;
1363
1364	/*
1365	 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1366	 * causes serious problems" here, allegedly.  Before that patch,
1367	 * -ERRNO was returned which is not appropriate under Linux 2.6.
1368	 * Perhaps more needs to be done?  Stop the queue in serious
1369	 * conditions and restart it elsewhere?
1370	 */
1371	return NETDEV_TX_OK;
1372}
1373
 
 
 
 
 
 
 
 
 
1374static const struct ethtool_ops fwnet_ethtool_ops = {
1375	.get_link	= ethtool_op_get_link,
1376};
1377
1378static const struct net_device_ops fwnet_netdev_ops = {
1379	.ndo_open       = fwnet_open,
1380	.ndo_stop	= fwnet_stop,
1381	.ndo_start_xmit = fwnet_tx,
 
1382};
1383
1384static void fwnet_init_dev(struct net_device *net)
1385{
1386	net->header_ops		= &fwnet_header_ops;
1387	net->netdev_ops		= &fwnet_netdev_ops;
1388	net->watchdog_timeo	= 2 * HZ;
1389	net->flags		= IFF_BROADCAST | IFF_MULTICAST;
1390	net->features		= NETIF_F_HIGHDMA;
1391	net->addr_len		= FWNET_ALEN;
1392	net->hard_header_len	= FWNET_HLEN;
1393	net->type		= ARPHRD_IEEE1394;
1394	net->tx_queue_len	= FWNET_TX_QUEUE_LEN;
1395	net->ethtool_ops	= &fwnet_ethtool_ops;
1396}
1397
1398/* caller must hold fwnet_device_mutex */
1399static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1400{
1401	struct fwnet_device *dev;
1402
1403	list_for_each_entry(dev, &fwnet_device_list, dev_link)
1404		if (dev->card == card)
1405			return dev;
1406
1407	return NULL;
1408}
1409
1410static int fwnet_add_peer(struct fwnet_device *dev,
1411			  struct fw_unit *unit, struct fw_device *device)
1412{
1413	struct fwnet_peer *peer;
1414
1415	peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1416	if (!peer)
1417		return -ENOMEM;
1418
1419	dev_set_drvdata(&unit->device, peer);
1420
1421	peer->dev = dev;
1422	peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
 
 
1423	INIT_LIST_HEAD(&peer->pd_list);
1424	peer->pdg_size = 0;
1425	peer->datagram_label = 0;
1426	peer->speed = device->max_speed;
1427	peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1428
1429	peer->generation = device->generation;
1430	smp_rmb();
1431	peer->node_id = device->node_id;
1432
1433	spin_lock_irq(&dev->lock);
1434	list_add_tail(&peer->peer_link, &dev->peer_list);
1435	dev->peer_count++;
1436	set_carrier_state(dev);
1437	spin_unlock_irq(&dev->lock);
1438
1439	return 0;
1440}
1441
1442static int fwnet_probe(struct fw_unit *unit,
1443		       const struct ieee1394_device_id *id)
1444{
 
1445	struct fw_device *device = fw_parent_device(unit);
1446	struct fw_card *card = device->card;
1447	struct net_device *net;
1448	bool allocated_netdev = false;
1449	struct fwnet_device *dev;
 
1450	int ret;
1451	union fwnet_hwaddr *ha;
1452
1453	mutex_lock(&fwnet_device_mutex);
1454
1455	dev = fwnet_dev_find(card);
1456	if (dev) {
1457		net = dev->netdev;
1458		goto have_dev;
1459	}
1460
1461	net = alloc_netdev(sizeof(*dev), "firewire%d", NET_NAME_UNKNOWN,
1462			   fwnet_init_dev);
1463	if (net == NULL) {
1464		mutex_unlock(&fwnet_device_mutex);
1465		return -ENOMEM;
1466	}
1467
1468	allocated_netdev = true;
1469	SET_NETDEV_DEV(net, card->device);
1470	dev = netdev_priv(net);
1471
1472	spin_lock_init(&dev->lock);
1473	dev->broadcast_state = FWNET_BROADCAST_ERROR;
1474	dev->broadcast_rcv_context = NULL;
1475	dev->broadcast_xmt_max_payload = 0;
1476	dev->broadcast_xmt_datagramlabel = 0;
1477	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1478	dev->queued_datagrams = 0;
1479	INIT_LIST_HEAD(&dev->peer_list);
1480	dev->card = card;
1481	dev->netdev = net;
1482
1483	ret = fwnet_fifo_start(dev);
1484	if (ret < 0)
1485		goto out;
1486	dev->local_fifo = dev->handler.offset;
1487
1488	/*
1489	 * default MTU: RFC 2734 cl. 4, RFC 3146 cl. 4
1490	 * maximum MTU: RFC 2734 cl. 4.2, fragment encapsulation header's
1491	 *              maximum possible datagram_size + 1 = 0xfff + 1
1492	 */
1493	net->mtu = 1500U;
1494	net->min_mtu = ETH_MIN_MTU;
1495	net->max_mtu = 4096U;
1496
1497	/* Set our hardware address while we're at it */
1498	ha = (union fwnet_hwaddr *)net->dev_addr;
1499	put_unaligned_be64(card->guid, &ha->uc.uniq_id);
1500	ha->uc.max_rec = dev->card->max_receive;
1501	ha->uc.sspd = dev->card->link_speed;
1502	put_unaligned_be16(dev->local_fifo >> 32, &ha->uc.fifo_hi);
1503	put_unaligned_be32(dev->local_fifo & 0xffffffff, &ha->uc.fifo_lo);
1504
1505	memset(net->broadcast, -1, net->addr_len);
1506
1507	ret = register_netdev(net);
1508	if (ret)
 
1509		goto out;
 
1510
1511	list_add_tail(&dev->dev_link, &fwnet_device_list);
1512	dev_notice(&net->dev, "IP over IEEE 1394 on card %s\n",
1513		   dev_name(card->device));
1514 have_dev:
1515	ret = fwnet_add_peer(dev, unit, device);
1516	if (ret && allocated_netdev) {
1517		unregister_netdev(net);
1518		list_del(&dev->dev_link);
 
1519 out:
1520		fwnet_fifo_stop(dev);
1521		free_netdev(net);
1522	}
1523
1524	mutex_unlock(&fwnet_device_mutex);
1525
1526	return ret;
1527}
1528
1529/*
1530 * FIXME abort partially sent fragmented datagrams,
1531 * discard partially received fragmented datagrams
1532 */
1533static void fwnet_update(struct fw_unit *unit)
1534{
1535	struct fw_device *device = fw_parent_device(unit);
1536	struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1537	int generation;
1538
1539	generation = device->generation;
1540
1541	spin_lock_irq(&peer->dev->lock);
1542	peer->node_id    = device->node_id;
1543	peer->generation = generation;
1544	spin_unlock_irq(&peer->dev->lock);
1545}
1546
1547static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1548{
1549	struct fwnet_partial_datagram *pd, *pd_next;
1550
1551	spin_lock_irq(&dev->lock);
1552	list_del(&peer->peer_link);
1553	dev->peer_count--;
1554	set_carrier_state(dev);
1555	spin_unlock_irq(&dev->lock);
1556
1557	list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1558		fwnet_pd_delete(pd);
1559
1560	kfree(peer);
1561}
1562
1563static void fwnet_remove(struct fw_unit *unit)
1564{
1565	struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1566	struct fwnet_device *dev = peer->dev;
1567	struct net_device *net;
1568	int i;
1569
1570	mutex_lock(&fwnet_device_mutex);
1571
1572	net = dev->netdev;
 
 
1573
1574	fwnet_remove_peer(peer, dev);
1575
1576	if (list_empty(&dev->peer_list)) {
1577		unregister_netdev(net);
1578
1579		fwnet_fifo_stop(dev);
1580
 
 
 
 
 
 
1581		for (i = 0; dev->queued_datagrams && i < 5; i++)
1582			ssleep(1);
1583		WARN_ON(dev->queued_datagrams);
1584		list_del(&dev->dev_link);
1585
1586		free_netdev(net);
1587	}
1588
1589	mutex_unlock(&fwnet_device_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1590}
1591
1592static const struct ieee1394_device_id fwnet_id_table[] = {
1593	{
1594		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1595				IEEE1394_MATCH_VERSION,
1596		.specifier_id = IANA_SPECIFIER_ID,
1597		.version      = RFC2734_SW_VERSION,
1598	},
1599#if IS_ENABLED(CONFIG_IPV6)
1600	{
1601		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1602				IEEE1394_MATCH_VERSION,
1603		.specifier_id = IANA_SPECIFIER_ID,
1604		.version      = RFC3146_SW_VERSION,
1605	},
1606#endif
1607	{ }
1608};
1609
1610static struct fw_driver fwnet_driver = {
1611	.driver = {
1612		.owner  = THIS_MODULE,
1613		.name   = KBUILD_MODNAME,
1614		.bus    = &fw_bus_type,
 
 
1615	},
1616	.probe    = fwnet_probe,
1617	.update   = fwnet_update,
1618	.remove   = fwnet_remove,
1619	.id_table = fwnet_id_table,
1620};
1621
1622static const u32 rfc2374_unit_directory_data[] = {
1623	0x00040000,	/* directory_length		*/
1624	0x1200005e,	/* unit_specifier_id: IANA	*/
1625	0x81000003,	/* textual descriptor offset	*/
1626	0x13000001,	/* unit_sw_version: RFC 2734	*/
1627	0x81000005,	/* textual descriptor offset	*/
1628	0x00030000,	/* descriptor_length		*/
1629	0x00000000,	/* text				*/
1630	0x00000000,	/* minimal ASCII, en		*/
1631	0x49414e41,	/* I A N A			*/
1632	0x00030000,	/* descriptor_length		*/
1633	0x00000000,	/* text				*/
1634	0x00000000,	/* minimal ASCII, en		*/
1635	0x49507634,	/* I P v 4			*/
1636};
1637
1638static struct fw_descriptor rfc2374_unit_directory = {
1639	.length = ARRAY_SIZE(rfc2374_unit_directory_data),
1640	.key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1641	.data   = rfc2374_unit_directory_data
1642};
1643
1644#if IS_ENABLED(CONFIG_IPV6)
1645static const u32 rfc3146_unit_directory_data[] = {
1646	0x00040000,	/* directory_length		*/
1647	0x1200005e,	/* unit_specifier_id: IANA	*/
1648	0x81000003,	/* textual descriptor offset	*/
1649	0x13000002,	/* unit_sw_version: RFC 3146	*/
1650	0x81000005,	/* textual descriptor offset	*/
1651	0x00030000,	/* descriptor_length		*/
1652	0x00000000,	/* text				*/
1653	0x00000000,	/* minimal ASCII, en		*/
1654	0x49414e41,	/* I A N A			*/
1655	0x00030000,	/* descriptor_length		*/
1656	0x00000000,	/* text				*/
1657	0x00000000,	/* minimal ASCII, en		*/
1658	0x49507636,	/* I P v 6			*/
1659};
1660
1661static struct fw_descriptor rfc3146_unit_directory = {
1662	.length = ARRAY_SIZE(rfc3146_unit_directory_data),
1663	.key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1664	.data   = rfc3146_unit_directory_data
1665};
1666#endif
1667
1668static int __init fwnet_init(void)
1669{
1670	int err;
1671
1672	err = fw_core_add_descriptor(&rfc2374_unit_directory);
1673	if (err)
1674		return err;
1675
1676#if IS_ENABLED(CONFIG_IPV6)
1677	err = fw_core_add_descriptor(&rfc3146_unit_directory);
1678	if (err)
1679		goto out;
1680#endif
1681
1682	fwnet_packet_task_cache = kmem_cache_create("packet_task",
1683			sizeof(struct fwnet_packet_task), 0, 0, NULL);
1684	if (!fwnet_packet_task_cache) {
1685		err = -ENOMEM;
1686		goto out2;
1687	}
1688
1689	err = driver_register(&fwnet_driver.driver);
1690	if (!err)
1691		return 0;
1692
1693	kmem_cache_destroy(fwnet_packet_task_cache);
1694out2:
1695#if IS_ENABLED(CONFIG_IPV6)
1696	fw_core_remove_descriptor(&rfc3146_unit_directory);
1697out:
1698#endif
1699	fw_core_remove_descriptor(&rfc2374_unit_directory);
1700
1701	return err;
1702}
1703module_init(fwnet_init);
1704
1705static void __exit fwnet_cleanup(void)
1706{
1707	driver_unregister(&fwnet_driver.driver);
1708	kmem_cache_destroy(fwnet_packet_task_cache);
1709#if IS_ENABLED(CONFIG_IPV6)
1710	fw_core_remove_descriptor(&rfc3146_unit_directory);
1711#endif
1712	fw_core_remove_descriptor(&rfc2374_unit_directory);
1713}
1714module_exit(fwnet_cleanup);
1715
1716MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1717MODULE_DESCRIPTION("IP over IEEE1394 as per RFC 2734/3146");
1718MODULE_LICENSE("GPL");
1719MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);
v3.1
 
   1/*
   2 * IPv4 over IEEE 1394, per RFC 2734
 
   3 *
   4 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
   5 *
   6 * based on eth1394 by Ben Collins et al
   7 */
   8
   9#include <linux/bug.h>
  10#include <linux/compiler.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
  13#include <linux/ethtool.h>
  14#include <linux/firewire.h>
  15#include <linux/firewire-constants.h>
  16#include <linux/highmem.h>
  17#include <linux/in.h>
  18#include <linux/ip.h>
  19#include <linux/jiffies.h>
  20#include <linux/mod_devicetable.h>
  21#include <linux/module.h>
  22#include <linux/moduleparam.h>
  23#include <linux/mutex.h>
  24#include <linux/netdevice.h>
  25#include <linux/skbuff.h>
  26#include <linux/slab.h>
  27#include <linux/spinlock.h>
  28
  29#include <asm/unaligned.h>
  30#include <net/arp.h>
 
  31
  32/* rx limits */
  33#define FWNET_MAX_FRAGMENTS		30 /* arbitrary, > TX queue depth */
  34#define FWNET_ISO_PAGE_COUNT		(PAGE_SIZE < 16*1024 ? 4 : 2)
  35
  36/* tx limits */
  37#define FWNET_MAX_QUEUED_DATAGRAMS	20 /* < 64 = number of tlabels */
  38#define FWNET_MIN_QUEUED_DATAGRAMS	10 /* should keep AT DMA busy enough */
  39#define FWNET_TX_QUEUE_LEN		FWNET_MAX_QUEUED_DATAGRAMS /* ? */
  40
  41#define IEEE1394_BROADCAST_CHANNEL	31
  42#define IEEE1394_ALL_NODES		(0xffc0 | 0x003f)
  43#define IEEE1394_MAX_PAYLOAD_S100	512
  44#define FWNET_NO_FIFO_ADDR		(~0ULL)
  45
  46#define IANA_SPECIFIER_ID		0x00005eU
  47#define RFC2734_SW_VERSION		0x000001U
 
  48
  49#define IEEE1394_GASP_HDR_SIZE	8
  50
  51#define RFC2374_UNFRAG_HDR_SIZE	4
  52#define RFC2374_FRAG_HDR_SIZE	8
  53#define RFC2374_FRAG_OVERHEAD	4
  54
  55#define RFC2374_HDR_UNFRAG	0	/* unfragmented		*/
  56#define RFC2374_HDR_FIRSTFRAG	1	/* first fragment	*/
  57#define RFC2374_HDR_LASTFRAG	2	/* last fragment	*/
  58#define RFC2374_HDR_INTFRAG	3	/* interior fragment	*/
  59
  60#define RFC2734_HW_ADDR_LEN	16
  61
  62struct rfc2734_arp {
  63	__be16 hw_type;		/* 0x0018	*/
  64	__be16 proto_type;	/* 0x0806       */
  65	u8 hw_addr_len;		/* 16		*/
  66	u8 ip_addr_len;		/* 4		*/
  67	__be16 opcode;		/* ARP Opcode	*/
  68	/* Above is exactly the same format as struct arphdr */
  69
  70	__be64 s_uniq_id;	/* Sender's 64bit EUI			*/
  71	u8 max_rec;		/* Sender's max packet size		*/
  72	u8 sspd;		/* Sender's max speed			*/
  73	__be16 fifo_hi;		/* hi 16bits of sender's FIFO addr	*/
  74	__be32 fifo_lo;		/* lo 32bits of sender's FIFO addr	*/
  75	__be32 sip;		/* Sender's IP Address			*/
  76	__be32 tip;		/* IP Address of requested hw addr	*/
  77} __packed;
  78
  79/* This header format is specific to this driver implementation. */
  80#define FWNET_ALEN	8
  81#define FWNET_HLEN	10
  82struct fwnet_header {
  83	u8 h_dest[FWNET_ALEN];	/* destination address */
  84	__be16 h_proto;		/* packet type ID field */
  85} __packed;
  86
  87/* IPv4 and IPv6 encapsulation header */
  88struct rfc2734_header {
  89	u32 w0;
  90	u32 w1;
  91};
  92
  93#define fwnet_get_hdr_lf(h)		(((h)->w0 & 0xc0000000) >> 30)
  94#define fwnet_get_hdr_ether_type(h)	(((h)->w0 & 0x0000ffff))
  95#define fwnet_get_hdr_dg_size(h)	(((h)->w0 & 0x0fff0000) >> 16)
  96#define fwnet_get_hdr_fg_off(h)		(((h)->w0 & 0x00000fff))
  97#define fwnet_get_hdr_dgl(h)		(((h)->w1 & 0xffff0000) >> 16)
  98
  99#define fwnet_set_hdr_lf(lf)		((lf)  << 30)
 100#define fwnet_set_hdr_ether_type(et)	(et)
 101#define fwnet_set_hdr_dg_size(dgs)	((dgs) << 16)
 102#define fwnet_set_hdr_fg_off(fgo)	(fgo)
 103
 104#define fwnet_set_hdr_dgl(dgl)		((dgl) << 16)
 105
 106static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
 107		unsigned ether_type)
 108{
 109	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
 110		  | fwnet_set_hdr_ether_type(ether_type);
 111}
 112
 113static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
 114		unsigned ether_type, unsigned dg_size, unsigned dgl)
 115{
 116	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
 117		  | fwnet_set_hdr_dg_size(dg_size)
 118		  | fwnet_set_hdr_ether_type(ether_type);
 119	hdr->w1 = fwnet_set_hdr_dgl(dgl);
 120}
 121
 122static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
 123		unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
 124{
 125	hdr->w0 = fwnet_set_hdr_lf(lf)
 126		  | fwnet_set_hdr_dg_size(dg_size)
 127		  | fwnet_set_hdr_fg_off(fg_off);
 128	hdr->w1 = fwnet_set_hdr_dgl(dgl);
 129}
 130
 131/* This list keeps track of what parts of the datagram have been filled in */
 132struct fwnet_fragment_info {
 133	struct list_head fi_link;
 134	u16 offset;
 135	u16 len;
 136};
 137
 138struct fwnet_partial_datagram {
 139	struct list_head pd_link;
 140	struct list_head fi_list;
 141	struct sk_buff *skb;
 142	/* FIXME Why not use skb->data? */
 143	char *pbuf;
 144	u16 datagram_label;
 145	u16 ether_type;
 146	u16 datagram_size;
 147};
 148
 149static DEFINE_MUTEX(fwnet_device_mutex);
 150static LIST_HEAD(fwnet_device_list);
 151
 152struct fwnet_device {
 153	struct list_head dev_link;
 154	spinlock_t lock;
 155	enum {
 156		FWNET_BROADCAST_ERROR,
 157		FWNET_BROADCAST_RUNNING,
 158		FWNET_BROADCAST_STOPPED,
 159	} broadcast_state;
 160	struct fw_iso_context *broadcast_rcv_context;
 161	struct fw_iso_buffer broadcast_rcv_buffer;
 162	void **broadcast_rcv_buffer_ptrs;
 163	unsigned broadcast_rcv_next_ptr;
 164	unsigned num_broadcast_rcv_ptrs;
 165	unsigned rcv_buffer_size;
 166	/*
 167	 * This value is the maximum unfragmented datagram size that can be
 168	 * sent by the hardware.  It already has the GASP overhead and the
 169	 * unfragmented datagram header overhead calculated into it.
 170	 */
 171	unsigned broadcast_xmt_max_payload;
 172	u16 broadcast_xmt_datagramlabel;
 173
 174	/*
 175	 * The CSR address that remote nodes must send datagrams to for us to
 176	 * receive them.
 177	 */
 178	struct fw_address_handler handler;
 179	u64 local_fifo;
 180
 181	/* Number of tx datagrams that have been queued but not yet acked */
 182	int queued_datagrams;
 183
 184	int peer_count;
 185	struct list_head peer_list;
 186	struct fw_card *card;
 187	struct net_device *netdev;
 188};
 189
 190struct fwnet_peer {
 191	struct list_head peer_link;
 192	struct fwnet_device *dev;
 193	u64 guid;
 194	u64 fifo;
 195	__be32 ip;
 196
 197	/* guarded by dev->lock */
 198	struct list_head pd_list; /* received partial datagrams */
 199	unsigned pdg_size;        /* pd_list size */
 200
 201	u16 datagram_label;       /* outgoing datagram label */
 202	u16 max_payload;          /* includes RFC2374_FRAG_HDR_SIZE overhead */
 203	int node_id;
 204	int generation;
 205	unsigned speed;
 206};
 207
 208/* This is our task struct. It's used for the packet complete callback.  */
 209struct fwnet_packet_task {
 210	struct fw_transaction transaction;
 211	struct rfc2734_header hdr;
 212	struct sk_buff *skb;
 213	struct fwnet_device *dev;
 214
 215	int outstanding_pkts;
 216	u64 fifo_addr;
 217	u16 dest_node;
 218	u16 max_payload;
 219	u8 generation;
 220	u8 speed;
 221	u8 enqueued;
 222};
 223
 224/*
 
 
 
 
 
 
 
 
 
 225 * saddr == NULL means use device source address.
 226 * daddr == NULL means leave destination address (eg unresolved arp).
 227 */
 228static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
 229			unsigned short type, const void *daddr,
 230			const void *saddr, unsigned len)
 231{
 232	struct fwnet_header *h;
 233
 234	h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
 235	put_unaligned_be16(type, &h->h_proto);
 236
 237	if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
 238		memset(h->h_dest, 0, net->addr_len);
 239
 240		return net->hard_header_len;
 241	}
 242
 243	if (daddr) {
 244		memcpy(h->h_dest, daddr, net->addr_len);
 245
 246		return net->hard_header_len;
 247	}
 248
 249	return -net->hard_header_len;
 250}
 251
 252static int fwnet_header_rebuild(struct sk_buff *skb)
 253{
 254	struct fwnet_header *h = (struct fwnet_header *)skb->data;
 255
 256	if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
 257		return arp_find((unsigned char *)&h->h_dest, skb);
 258
 259	fw_notify("%s: unable to resolve type %04x addresses\n",
 260		  skb->dev->name, be16_to_cpu(h->h_proto));
 261	return 0;
 262}
 263
 264static int fwnet_header_cache(const struct neighbour *neigh,
 265			      struct hh_cache *hh, __be16 type)
 266{
 267	struct net_device *net;
 268	struct fwnet_header *h;
 269
 270	if (type == cpu_to_be16(ETH_P_802_3))
 271		return -1;
 272	net = neigh->dev;
 273	h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
 274	h->h_proto = type;
 275	memcpy(h->h_dest, neigh->ha, net->addr_len);
 276	hh->hh_len = FWNET_HLEN;
 
 
 
 
 277
 278	return 0;
 279}
 280
 281/* Called by Address Resolution module to notify changes in address. */
 282static void fwnet_header_cache_update(struct hh_cache *hh,
 283		const struct net_device *net, const unsigned char *haddr)
 284{
 285	memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
 286}
 287
 288static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
 289{
 290	memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
 291
 292	return FWNET_ALEN;
 293}
 294
 295static const struct header_ops fwnet_header_ops = {
 296	.create         = fwnet_header_create,
 297	.rebuild        = fwnet_header_rebuild,
 298	.cache		= fwnet_header_cache,
 299	.cache_update	= fwnet_header_cache_update,
 300	.parse          = fwnet_header_parse,
 301};
 302
 303/* FIXME: is this correct for all cases? */
 304static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
 305			       unsigned offset, unsigned len)
 306{
 307	struct fwnet_fragment_info *fi;
 308	unsigned end = offset + len;
 309
 310	list_for_each_entry(fi, &pd->fi_list, fi_link)
 311		if (offset < fi->offset + fi->len && end > fi->offset)
 312			return true;
 313
 314	return false;
 315}
 316
 317/* Assumes that new fragment does not overlap any existing fragments */
 318static struct fwnet_fragment_info *fwnet_frag_new(
 319	struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
 320{
 321	struct fwnet_fragment_info *fi, *fi2, *new;
 322	struct list_head *list;
 323
 324	list = &pd->fi_list;
 325	list_for_each_entry(fi, &pd->fi_list, fi_link) {
 326		if (fi->offset + fi->len == offset) {
 327			/* The new fragment can be tacked on to the end */
 328			/* Did the new fragment plug a hole? */
 329			fi2 = list_entry(fi->fi_link.next,
 330					 struct fwnet_fragment_info, fi_link);
 331			if (fi->offset + fi->len == fi2->offset) {
 332				/* glue fragments together */
 333				fi->len += len + fi2->len;
 334				list_del(&fi2->fi_link);
 335				kfree(fi2);
 336			} else {
 337				fi->len += len;
 338			}
 339
 340			return fi;
 341		}
 342		if (offset + len == fi->offset) {
 343			/* The new fragment can be tacked on to the beginning */
 344			/* Did the new fragment plug a hole? */
 345			fi2 = list_entry(fi->fi_link.prev,
 346					 struct fwnet_fragment_info, fi_link);
 347			if (fi2->offset + fi2->len == fi->offset) {
 348				/* glue fragments together */
 349				fi2->len += fi->len + len;
 350				list_del(&fi->fi_link);
 351				kfree(fi);
 352
 353				return fi2;
 354			}
 355			fi->offset = offset;
 356			fi->len += len;
 357
 358			return fi;
 359		}
 360		if (offset > fi->offset + fi->len) {
 361			list = &fi->fi_link;
 362			break;
 363		}
 364		if (offset + len < fi->offset) {
 365			list = fi->fi_link.prev;
 366			break;
 367		}
 368	}
 369
 370	new = kmalloc(sizeof(*new), GFP_ATOMIC);
 371	if (!new) {
 372		fw_error("out of memory\n");
 373		return NULL;
 374	}
 375
 376	new->offset = offset;
 377	new->len = len;
 378	list_add(&new->fi_link, list);
 379
 380	return new;
 381}
 382
 383static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
 384		struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
 385		void *frag_buf, unsigned frag_off, unsigned frag_len)
 386{
 387	struct fwnet_partial_datagram *new;
 388	struct fwnet_fragment_info *fi;
 389
 390	new = kmalloc(sizeof(*new), GFP_ATOMIC);
 391	if (!new)
 392		goto fail;
 393
 394	INIT_LIST_HEAD(&new->fi_list);
 395	fi = fwnet_frag_new(new, frag_off, frag_len);
 396	if (fi == NULL)
 397		goto fail_w_new;
 398
 399	new->datagram_label = datagram_label;
 400	new->datagram_size = dg_size;
 401	new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
 402	if (new->skb == NULL)
 403		goto fail_w_fi;
 404
 405	skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
 406	new->pbuf = skb_put(new->skb, dg_size);
 407	memcpy(new->pbuf + frag_off, frag_buf, frag_len);
 408	list_add_tail(&new->pd_link, &peer->pd_list);
 409
 410	return new;
 411
 412fail_w_fi:
 413	kfree(fi);
 414fail_w_new:
 415	kfree(new);
 416fail:
 417	fw_error("out of memory\n");
 418
 419	return NULL;
 420}
 421
 422static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
 423						    u16 datagram_label)
 424{
 425	struct fwnet_partial_datagram *pd;
 426
 427	list_for_each_entry(pd, &peer->pd_list, pd_link)
 428		if (pd->datagram_label == datagram_label)
 429			return pd;
 430
 431	return NULL;
 432}
 433
 434
 435static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
 436{
 437	struct fwnet_fragment_info *fi, *n;
 438
 439	list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
 440		kfree(fi);
 441
 442	list_del(&old->pd_link);
 443	dev_kfree_skb_any(old->skb);
 444	kfree(old);
 445}
 446
 447static bool fwnet_pd_update(struct fwnet_peer *peer,
 448		struct fwnet_partial_datagram *pd, void *frag_buf,
 449		unsigned frag_off, unsigned frag_len)
 450{
 451	if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
 452		return false;
 453
 454	memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
 455
 456	/*
 457	 * Move list entry to beginning of list so that oldest partial
 458	 * datagrams percolate to the end of the list
 459	 */
 460	list_move_tail(&pd->pd_link, &peer->pd_list);
 461
 462	return true;
 463}
 464
 465static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
 466{
 467	struct fwnet_fragment_info *fi;
 468
 469	fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
 470
 471	return fi->len == pd->datagram_size;
 472}
 473
 474/* caller must hold dev->lock */
 475static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
 476						  u64 guid)
 477{
 478	struct fwnet_peer *peer;
 479
 480	list_for_each_entry(peer, &dev->peer_list, peer_link)
 481		if (peer->guid == guid)
 482			return peer;
 483
 484	return NULL;
 485}
 486
 487/* caller must hold dev->lock */
 488static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
 489						int node_id, int generation)
 490{
 491	struct fwnet_peer *peer;
 492
 493	list_for_each_entry(peer, &dev->peer_list, peer_link)
 494		if (peer->node_id    == node_id &&
 495		    peer->generation == generation)
 496			return peer;
 497
 498	return NULL;
 499}
 500
 501/* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
 502static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
 503{
 504	max_rec = min(max_rec, speed + 8);
 505	max_rec = min(max_rec, 0xbU); /* <= 4096 */
 506	if (max_rec < 8) {
 507		fw_notify("max_rec %x out of range\n", max_rec);
 508		max_rec = 8;
 509	}
 510
 511	return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
 512}
 513
 514
 515static int fwnet_finish_incoming_packet(struct net_device *net,
 516					struct sk_buff *skb, u16 source_node_id,
 517					bool is_broadcast, u16 ether_type)
 518{
 519	struct fwnet_device *dev;
 520	static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
 521	int status;
 522	__be64 guid;
 523
 
 
 
 
 
 
 
 
 
 
 
 524	dev = netdev_priv(net);
 525	/* Write metadata, and then pass to the receive level */
 526	skb->dev = net;
 527	skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
 528
 529	/*
 530	 * Parse the encapsulation header. This actually does the job of
 531	 * converting to an ethernet frame header, as well as arp
 532	 * conversion if needed. ARP conversion is easier in this
 533	 * direction, since we are using ethernet as our backend.
 534	 */
 535	/*
 536	 * If this is an ARP packet, convert it. First, we want to make
 537	 * use of some of the fields, since they tell us a little bit
 538	 * about the sending machine.
 539	 */
 540	if (ether_type == ETH_P_ARP) {
 541		struct rfc2734_arp *arp1394;
 542		struct arphdr *arp;
 543		unsigned char *arp_ptr;
 544		u64 fifo_addr;
 545		u64 peer_guid;
 546		unsigned sspd;
 547		u16 max_payload;
 548		struct fwnet_peer *peer;
 549		unsigned long flags;
 550
 551		arp1394   = (struct rfc2734_arp *)skb->data;
 552		arp       = (struct arphdr *)skb->data;
 553		arp_ptr   = (unsigned char *)(arp + 1);
 554		peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
 555		fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
 556				| get_unaligned_be32(&arp1394->fifo_lo);
 557
 558		sspd = arp1394->sspd;
 559		/* Sanity check.  OS X 10.3 PPC reportedly sends 131. */
 560		if (sspd > SCODE_3200) {
 561			fw_notify("sspd %x out of range\n", sspd);
 562			sspd = SCODE_3200;
 563		}
 564		max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
 565
 566		spin_lock_irqsave(&dev->lock, flags);
 567		peer = fwnet_peer_find_by_guid(dev, peer_guid);
 568		if (peer) {
 569			peer->fifo = fifo_addr;
 570
 571			if (peer->speed > sspd)
 572				peer->speed = sspd;
 573			if (peer->max_payload > max_payload)
 574				peer->max_payload = max_payload;
 575
 576			peer->ip = arp1394->sip;
 577		}
 578		spin_unlock_irqrestore(&dev->lock, flags);
 579
 580		if (!peer) {
 581			fw_notify("No peer for ARP packet from %016llx\n",
 582				  (unsigned long long)peer_guid);
 583			goto no_peer;
 584		}
 585
 586		/*
 587		 * Now that we're done with the 1394 specific stuff, we'll
 588		 * need to alter some of the data.  Believe it or not, all
 589		 * that needs to be done is sender_IP_address needs to be
 590		 * moved, the destination hardware address get stuffed
 591		 * in and the hardware address length set to 8.
 592		 *
 593		 * IMPORTANT: The code below overwrites 1394 specific data
 594		 * needed above so keep the munging of the data for the
 595		 * higher level IP stack last.
 596		 */
 597
 598		arp->ar_hln = 8;
 599		/* skip over sender unique id */
 600		arp_ptr += arp->ar_hln;
 601		/* move sender IP addr */
 602		put_unaligned(arp1394->sip, (u32 *)arp_ptr);
 603		/* skip over sender IP addr */
 604		arp_ptr += arp->ar_pln;
 605
 606		if (arp->ar_op == htons(ARPOP_REQUEST))
 607			memset(arp_ptr, 0, sizeof(u64));
 608		else
 609			memcpy(arp_ptr, net->dev_addr, sizeof(u64));
 610	}
 611
 612	/* Now add the ethernet header. */
 613	guid = cpu_to_be64(dev->card->guid);
 614	if (dev_hard_header(skb, net, ether_type,
 615			   is_broadcast ? &broadcast_hw : &guid,
 616			   NULL, skb->len) >= 0) {
 617		struct fwnet_header *eth;
 618		u16 *rawp;
 619		__be16 protocol;
 620
 621		skb_reset_mac_header(skb);
 622		skb_pull(skb, sizeof(*eth));
 623		eth = (struct fwnet_header *)skb_mac_header(skb);
 624		if (*eth->h_dest & 1) {
 625			if (memcmp(eth->h_dest, net->broadcast,
 626				   net->addr_len) == 0)
 627				skb->pkt_type = PACKET_BROADCAST;
 628#if 0
 629			else
 630				skb->pkt_type = PACKET_MULTICAST;
 631#endif
 632		} else {
 633			if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
 634				skb->pkt_type = PACKET_OTHERHOST;
 635		}
 636		if (ntohs(eth->h_proto) >= 1536) {
 637			protocol = eth->h_proto;
 638		} else {
 639			rawp = (u16 *)skb->data;
 640			if (*rawp == 0xffff)
 641				protocol = htons(ETH_P_802_3);
 642			else
 643				protocol = htons(ETH_P_802_2);
 644		}
 645		skb->protocol = protocol;
 646	}
 647	status = netif_rx(skb);
 648	if (status == NET_RX_DROP) {
 649		net->stats.rx_errors++;
 650		net->stats.rx_dropped++;
 651	} else {
 652		net->stats.rx_packets++;
 653		net->stats.rx_bytes += skb->len;
 654	}
 655
 656	return 0;
 657
 658 no_peer:
 659	net->stats.rx_errors++;
 660	net->stats.rx_dropped++;
 661
 662	dev_kfree_skb_any(skb);
 663
 664	return -ENOENT;
 665}
 666
 667static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
 668				 int source_node_id, int generation,
 669				 bool is_broadcast)
 670{
 671	struct sk_buff *skb;
 672	struct net_device *net = dev->netdev;
 673	struct rfc2734_header hdr;
 674	unsigned lf;
 675	unsigned long flags;
 676	struct fwnet_peer *peer;
 677	struct fwnet_partial_datagram *pd;
 678	int fg_off;
 679	int dg_size;
 680	u16 datagram_label;
 681	int retval;
 682	u16 ether_type;
 683
 
 
 
 684	hdr.w0 = be32_to_cpu(buf[0]);
 685	lf = fwnet_get_hdr_lf(&hdr);
 686	if (lf == RFC2374_HDR_UNFRAG) {
 687		/*
 688		 * An unfragmented datagram has been received by the ieee1394
 689		 * bus. Build an skbuff around it so we can pass it to the
 690		 * high level network layer.
 691		 */
 692		ether_type = fwnet_get_hdr_ether_type(&hdr);
 693		buf++;
 694		len -= RFC2374_UNFRAG_HDR_SIZE;
 695
 696		skb = dev_alloc_skb(len + net->hard_header_len + 15);
 697		if (unlikely(!skb)) {
 698			fw_error("out of memory\n");
 699			net->stats.rx_dropped++;
 700
 701			return -ENOMEM;
 702		}
 703		skb_reserve(skb, (net->hard_header_len + 15) & ~15);
 704		memcpy(skb_put(skb, len), buf, len);
 705
 706		return fwnet_finish_incoming_packet(net, skb, source_node_id,
 707						    is_broadcast, ether_type);
 708	}
 
 709	/* A datagram fragment has been received, now the fun begins. */
 
 
 
 
 710	hdr.w1 = ntohl(buf[1]);
 711	buf += 2;
 712	len -= RFC2374_FRAG_HDR_SIZE;
 713	if (lf == RFC2374_HDR_FIRSTFRAG) {
 714		ether_type = fwnet_get_hdr_ether_type(&hdr);
 715		fg_off = 0;
 716	} else {
 717		ether_type = 0;
 718		fg_off = fwnet_get_hdr_fg_off(&hdr);
 719	}
 720	datagram_label = fwnet_get_hdr_dgl(&hdr);
 721	dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
 
 
 
 722
 723	spin_lock_irqsave(&dev->lock, flags);
 724
 725	peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
 726	if (!peer) {
 727		retval = -ENOENT;
 728		goto fail;
 729	}
 730
 731	pd = fwnet_pd_find(peer, datagram_label);
 732	if (pd == NULL) {
 733		while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
 734			/* remove the oldest */
 735			fwnet_pd_delete(list_first_entry(&peer->pd_list,
 736				struct fwnet_partial_datagram, pd_link));
 737			peer->pdg_size--;
 738		}
 739		pd = fwnet_pd_new(net, peer, datagram_label,
 740				  dg_size, buf, fg_off, len);
 741		if (pd == NULL) {
 742			retval = -ENOMEM;
 743			goto fail;
 744		}
 745		peer->pdg_size++;
 746	} else {
 747		if (fwnet_frag_overlap(pd, fg_off, len) ||
 748		    pd->datagram_size != dg_size) {
 749			/*
 750			 * Differing datagram sizes or overlapping fragments,
 751			 * discard old datagram and start a new one.
 752			 */
 753			fwnet_pd_delete(pd);
 754			pd = fwnet_pd_new(net, peer, datagram_label,
 755					  dg_size, buf, fg_off, len);
 756			if (pd == NULL) {
 757				peer->pdg_size--;
 758				retval = -ENOMEM;
 759				goto fail;
 760			}
 761		} else {
 762			if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
 763				/*
 764				 * Couldn't save off fragment anyway
 765				 * so might as well obliterate the
 766				 * datagram now.
 767				 */
 768				fwnet_pd_delete(pd);
 769				peer->pdg_size--;
 770				retval = -ENOMEM;
 771				goto fail;
 772			}
 773		}
 774	} /* new datagram or add to existing one */
 775
 776	if (lf == RFC2374_HDR_FIRSTFRAG)
 777		pd->ether_type = ether_type;
 778
 779	if (fwnet_pd_is_complete(pd)) {
 780		ether_type = pd->ether_type;
 781		peer->pdg_size--;
 782		skb = skb_get(pd->skb);
 783		fwnet_pd_delete(pd);
 784
 785		spin_unlock_irqrestore(&dev->lock, flags);
 786
 787		return fwnet_finish_incoming_packet(net, skb, source_node_id,
 788						    false, ether_type);
 789	}
 790	/*
 791	 * Datagram is not complete, we're done for the
 792	 * moment.
 793	 */
 794	retval = 0;
 795 fail:
 796	spin_unlock_irqrestore(&dev->lock, flags);
 797
 798	return retval;
 799}
 800
 801static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
 802		int tcode, int destination, int source, int generation,
 803		unsigned long long offset, void *payload, size_t length,
 804		void *callback_data)
 805{
 806	struct fwnet_device *dev = callback_data;
 807	int rcode;
 808
 809	if (destination == IEEE1394_ALL_NODES) {
 810		kfree(r);
 811
 812		return;
 813	}
 814
 815	if (offset != dev->handler.offset)
 816		rcode = RCODE_ADDRESS_ERROR;
 817	else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
 818		rcode = RCODE_TYPE_ERROR;
 819	else if (fwnet_incoming_packet(dev, payload, length,
 820				       source, generation, false) != 0) {
 821		fw_error("Incoming packet failure\n");
 822		rcode = RCODE_CONFLICT_ERROR;
 823	} else
 824		rcode = RCODE_COMPLETE;
 825
 826	fw_send_response(card, r, rcode);
 827}
 828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 829static void fwnet_receive_broadcast(struct fw_iso_context *context,
 830		u32 cycle, size_t header_length, void *header, void *data)
 831{
 832	struct fwnet_device *dev;
 833	struct fw_iso_packet packet;
 834	struct fw_card *card;
 835	__be16 *hdr_ptr;
 836	__be32 *buf_ptr;
 837	int retval;
 838	u32 length;
 839	u16 source_node_id;
 840	u32 specifier_id;
 841	u32 ver;
 842	unsigned long offset;
 843	unsigned long flags;
 844
 845	dev = data;
 846	card = dev->card;
 847	hdr_ptr = header;
 848	length = be16_to_cpup(hdr_ptr);
 849
 850	spin_lock_irqsave(&dev->lock, flags);
 851
 852	offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
 853	buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
 854	if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
 855		dev->broadcast_rcv_next_ptr = 0;
 856
 857	spin_unlock_irqrestore(&dev->lock, flags);
 858
 859	specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
 860			| (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
 861	ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
 862	source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
 863
 864	if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
 865		buf_ptr += 2;
 866		length -= IEEE1394_GASP_HDR_SIZE;
 867		fwnet_incoming_packet(dev, buf_ptr, length,
 868				      source_node_id, -1, true);
 869	}
 870
 871	packet.payload_length = dev->rcv_buffer_size;
 872	packet.interrupt = 1;
 873	packet.skip = 0;
 874	packet.tag = 3;
 875	packet.sy = 0;
 876	packet.header_length = IEEE1394_GASP_HDR_SIZE;
 877
 878	spin_lock_irqsave(&dev->lock, flags);
 879
 880	retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
 881				      &dev->broadcast_rcv_buffer, offset);
 882
 883	spin_unlock_irqrestore(&dev->lock, flags);
 884
 885	if (retval >= 0)
 886		fw_iso_context_queue_flush(dev->broadcast_rcv_context);
 887	else
 888		fw_error("requeue failed\n");
 889}
 890
 891static struct kmem_cache *fwnet_packet_task_cache;
 892
 893static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
 894{
 895	dev_kfree_skb_any(ptask->skb);
 896	kmem_cache_free(fwnet_packet_task_cache, ptask);
 897}
 898
 899/* Caller must hold dev->lock. */
 900static void dec_queued_datagrams(struct fwnet_device *dev)
 901{
 902	if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
 903		netif_wake_queue(dev->netdev);
 904}
 905
 906static int fwnet_send_packet(struct fwnet_packet_task *ptask);
 907
 908static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
 909{
 910	struct fwnet_device *dev = ptask->dev;
 911	struct sk_buff *skb = ptask->skb;
 912	unsigned long flags;
 913	bool free;
 914
 915	spin_lock_irqsave(&dev->lock, flags);
 916
 917	ptask->outstanding_pkts--;
 918
 919	/* Check whether we or the networking TX soft-IRQ is last user. */
 920	free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
 921	if (free)
 922		dec_queued_datagrams(dev);
 923
 924	if (ptask->outstanding_pkts == 0) {
 925		dev->netdev->stats.tx_packets++;
 926		dev->netdev->stats.tx_bytes += skb->len;
 927	}
 928
 929	spin_unlock_irqrestore(&dev->lock, flags);
 930
 931	if (ptask->outstanding_pkts > 0) {
 932		u16 dg_size;
 933		u16 fg_off;
 934		u16 datagram_label;
 935		u16 lf;
 936
 937		/* Update the ptask to point to the next fragment and send it */
 938		lf = fwnet_get_hdr_lf(&ptask->hdr);
 939		switch (lf) {
 940		case RFC2374_HDR_LASTFRAG:
 941		case RFC2374_HDR_UNFRAG:
 942		default:
 943			fw_error("Outstanding packet %x lf %x, header %x,%x\n",
 944				 ptask->outstanding_pkts, lf, ptask->hdr.w0,
 945				 ptask->hdr.w1);
 
 946			BUG();
 947
 948		case RFC2374_HDR_FIRSTFRAG:
 949			/* Set frag type here for future interior fragments */
 950			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
 951			fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
 952			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
 953			break;
 954
 955		case RFC2374_HDR_INTFRAG:
 956			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
 957			fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
 958				  + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
 959			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
 960			break;
 961		}
 962
 963		skb_pull(skb, ptask->max_payload);
 
 
 
 
 
 964		if (ptask->outstanding_pkts > 1) {
 965			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
 966					  dg_size, fg_off, datagram_label);
 967		} else {
 968			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
 969					  dg_size, fg_off, datagram_label);
 970			ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
 971		}
 972		fwnet_send_packet(ptask);
 973	}
 974
 975	if (free)
 976		fwnet_free_ptask(ptask);
 977}
 978
 979static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
 980{
 981	struct fwnet_device *dev = ptask->dev;
 982	unsigned long flags;
 983	bool free;
 984
 985	spin_lock_irqsave(&dev->lock, flags);
 986
 987	/* One fragment failed; don't try to send remaining fragments. */
 988	ptask->outstanding_pkts = 0;
 989
 990	/* Check whether we or the networking TX soft-IRQ is last user. */
 991	free = ptask->enqueued;
 992	if (free)
 993		dec_queued_datagrams(dev);
 994
 995	dev->netdev->stats.tx_dropped++;
 996	dev->netdev->stats.tx_errors++;
 997
 998	spin_unlock_irqrestore(&dev->lock, flags);
 999
1000	if (free)
1001		fwnet_free_ptask(ptask);
1002}
1003
1004static void fwnet_write_complete(struct fw_card *card, int rcode,
1005				 void *payload, size_t length, void *data)
1006{
1007	struct fwnet_packet_task *ptask = data;
1008	static unsigned long j;
1009	static int last_rcode, errors_skipped;
1010
1011	if (rcode == RCODE_COMPLETE) {
1012		fwnet_transmit_packet_done(ptask);
1013	} else {
1014		fwnet_transmit_packet_failed(ptask);
1015
1016		if (printk_timed_ratelimit(&j,  1000) || rcode != last_rcode) {
1017			fw_error("fwnet_write_complete: "
1018				"failed: %x (skipped %d)\n", rcode, errors_skipped);
 
1019
1020			errors_skipped = 0;
1021			last_rcode = rcode;
1022		} else
1023			errors_skipped++;
 
 
1024	}
1025}
1026
1027static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1028{
1029	struct fwnet_device *dev;
1030	unsigned tx_len;
1031	struct rfc2734_header *bufhdr;
1032	unsigned long flags;
1033	bool free;
1034
1035	dev = ptask->dev;
1036	tx_len = ptask->max_payload;
1037	switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1038	case RFC2374_HDR_UNFRAG:
1039		bufhdr = (struct rfc2734_header *)
1040				skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1041		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1042		break;
1043
1044	case RFC2374_HDR_FIRSTFRAG:
1045	case RFC2374_HDR_INTFRAG:
1046	case RFC2374_HDR_LASTFRAG:
1047		bufhdr = (struct rfc2734_header *)
1048				skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1049		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1050		put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1051		break;
1052
1053	default:
1054		BUG();
1055	}
1056	if (ptask->dest_node == IEEE1394_ALL_NODES) {
1057		u8 *p;
1058		int generation;
1059		int node_id;
 
1060
1061		/* ptask->generation may not have been set yet */
1062		generation = dev->card->generation;
1063		smp_rmb();
1064		node_id = dev->card->node_id;
1065
1066		p = skb_push(ptask->skb, 8);
 
 
 
 
 
 
 
 
 
 
1067		put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1068		put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1069						| RFC2734_SW_VERSION, &p[4]);
1070
1071		/* We should not transmit if broadcast_channel.valid == 0. */
1072		fw_send_request(dev->card, &ptask->transaction,
1073				TCODE_STREAM_DATA,
1074				fw_stream_packet_destination_id(3,
1075						IEEE1394_BROADCAST_CHANNEL, 0),
1076				generation, SCODE_100, 0ULL, ptask->skb->data,
1077				tx_len + 8, fwnet_write_complete, ptask);
1078
1079		spin_lock_irqsave(&dev->lock, flags);
1080
1081		/* If the AT tasklet already ran, we may be last user. */
1082		free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1083		if (!free)
1084			ptask->enqueued = true;
1085		else
1086			dec_queued_datagrams(dev);
1087
1088		spin_unlock_irqrestore(&dev->lock, flags);
1089
1090		goto out;
1091	}
1092
1093	fw_send_request(dev->card, &ptask->transaction,
1094			TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1095			ptask->generation, ptask->speed, ptask->fifo_addr,
1096			ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1097
1098	spin_lock_irqsave(&dev->lock, flags);
1099
1100	/* If the AT tasklet already ran, we may be last user. */
1101	free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1102	if (!free)
1103		ptask->enqueued = true;
1104	else
1105		dec_queued_datagrams(dev);
1106
1107	spin_unlock_irqrestore(&dev->lock, flags);
1108
1109	dev->netdev->trans_start = jiffies;
1110 out:
1111	if (free)
1112		fwnet_free_ptask(ptask);
1113
1114	return 0;
1115}
1116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1117static int fwnet_broadcast_start(struct fwnet_device *dev)
1118{
1119	struct fw_iso_context *context;
1120	int retval;
1121	unsigned num_packets;
1122	unsigned max_receive;
1123	struct fw_iso_packet packet;
1124	unsigned long offset;
 
1125	unsigned u;
1126
1127	if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1128		/* outside OHCI posted write area? */
1129		static const struct fw_address_region region = {
1130			.start = 0xffff00000000ULL,
1131			.end   = CSR_REGISTER_BASE,
1132		};
1133
1134		dev->handler.length = 4096;
1135		dev->handler.address_callback = fwnet_receive_packet;
1136		dev->handler.callback_data = dev;
1137
1138		retval = fw_core_add_address_handler(&dev->handler, &region);
1139		if (retval < 0)
1140			goto failed_initial;
1141
1142		dev->local_fifo = dev->handler.offset;
1143	}
1144
1145	max_receive = 1U << (dev->card->max_receive + 1);
1146	num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1147
1148	if (!dev->broadcast_rcv_context) {
1149		void **ptrptr;
 
 
 
 
 
 
 
 
 
 
 
 
 
1150
1151		context = fw_iso_context_create(dev->card,
1152		    FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1153		    dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1154		if (IS_ERR(context)) {
1155			retval = PTR_ERR(context);
1156			goto failed_context_create;
1157		}
1158
1159		retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1160		    dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1161		if (retval < 0)
1162			goto failed_buffer_init;
1163
1164		ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1165		if (!ptrptr) {
1166			retval = -ENOMEM;
1167			goto failed_ptrs_alloc;
1168		}
1169
1170		dev->broadcast_rcv_buffer_ptrs = ptrptr;
1171		for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1172			void *ptr;
1173			unsigned v;
1174
1175			ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1176			for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1177				*ptrptr++ = (void *)
1178						((char *)ptr + v * max_receive);
1179		}
1180		dev->broadcast_rcv_context = context;
1181	} else {
1182		context = dev->broadcast_rcv_context;
1183	}
 
1184
1185	packet.payload_length = max_receive;
1186	packet.interrupt = 1;
1187	packet.skip = 0;
1188	packet.tag = 3;
1189	packet.sy = 0;
1190	packet.header_length = IEEE1394_GASP_HDR_SIZE;
1191	offset = 0;
1192
1193	for (u = 0; u < num_packets; u++) {
1194		retval = fw_iso_context_queue(context, &packet,
1195				&dev->broadcast_rcv_buffer, offset);
1196		if (retval < 0)
1197			goto failed_rcv_queue;
1198
1199		offset += max_receive;
1200	}
1201	dev->num_broadcast_rcv_ptrs = num_packets;
1202	dev->rcv_buffer_size = max_receive;
1203	dev->broadcast_rcv_next_ptr = 0U;
1204	retval = fw_iso_context_start(context, -1, 0,
1205			FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1206	if (retval < 0)
1207		goto failed_rcv_queue;
1208
1209	/* FIXME: adjust it according to the min. speed of all known peers? */
1210	dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1211			- IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1212	dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1213
1214	return 0;
1215
1216 failed_rcv_queue:
1217	kfree(dev->broadcast_rcv_buffer_ptrs);
1218	dev->broadcast_rcv_buffer_ptrs = NULL;
1219 failed_ptrs_alloc:
1220	fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1221 failed_buffer_init:
1222	fw_iso_context_destroy(context);
1223	dev->broadcast_rcv_context = NULL;
1224 failed_context_create:
1225	fw_core_remove_address_handler(&dev->handler);
1226 failed_initial:
1227	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1228
1229	return retval;
1230}
1231
1232static void set_carrier_state(struct fwnet_device *dev)
1233{
1234	if (dev->peer_count > 1)
1235		netif_carrier_on(dev->netdev);
1236	else
1237		netif_carrier_off(dev->netdev);
1238}
1239
1240/* ifup */
1241static int fwnet_open(struct net_device *net)
1242{
1243	struct fwnet_device *dev = netdev_priv(net);
1244	int ret;
1245
1246	if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1247		ret = fwnet_broadcast_start(dev);
1248		if (ret)
1249			return ret;
1250	}
1251	netif_start_queue(net);
1252
1253	spin_lock_irq(&dev->lock);
1254	set_carrier_state(dev);
1255	spin_unlock_irq(&dev->lock);
1256
1257	return 0;
1258}
1259
1260/* ifdown */
1261static int fwnet_stop(struct net_device *net)
1262{
 
 
1263	netif_stop_queue(net);
1264
1265	/* Deallocate iso context for use by other applications? */
1266
1267	return 0;
1268}
1269
1270static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1271{
1272	struct fwnet_header hdr_buf;
1273	struct fwnet_device *dev = netdev_priv(net);
1274	__be16 proto;
1275	u16 dest_node;
1276	unsigned max_payload;
1277	u16 dg_size;
1278	u16 *datagram_label_ptr;
1279	struct fwnet_packet_task *ptask;
1280	struct fwnet_peer *peer;
1281	unsigned long flags;
1282
1283	spin_lock_irqsave(&dev->lock, flags);
1284
1285	/* Can this happen? */
1286	if (netif_queue_stopped(dev->netdev)) {
1287		spin_unlock_irqrestore(&dev->lock, flags);
1288
1289		return NETDEV_TX_BUSY;
1290	}
1291
1292	ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1293	if (ptask == NULL)
1294		goto fail;
1295
1296	skb = skb_share_check(skb, GFP_ATOMIC);
1297	if (!skb)
1298		goto fail;
1299
1300	/*
1301	 * Make a copy of the driver-specific header.
1302	 * We might need to rebuild the header on tx failure.
1303	 */
1304	memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
 
 
 
 
 
 
 
 
 
 
 
 
 
1305	skb_pull(skb, sizeof(hdr_buf));
1306
1307	proto = hdr_buf.h_proto;
1308	dg_size = skb->len;
1309
1310	/*
1311	 * Set the transmission type for the packet.  ARP packets and IP
1312	 * broadcast packets are sent via GASP.
1313	 */
1314	if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1315	    || proto == htons(ETH_P_ARP)
1316	    || (proto == htons(ETH_P_IP)
1317		&& IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1318		max_payload        = dev->broadcast_xmt_max_payload;
1319		datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1320
1321		ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1322		ptask->generation  = 0;
1323		ptask->dest_node   = IEEE1394_ALL_NODES;
1324		ptask->speed       = SCODE_100;
1325	} else {
1326		__be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
 
1327		u8 generation;
1328
1329		peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1330		if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1331			goto fail;
1332
1333		generation         = peer->generation;
1334		dest_node          = peer->node_id;
1335		max_payload        = peer->max_payload;
1336		datagram_label_ptr = &peer->datagram_label;
1337
1338		ptask->fifo_addr   = peer->fifo;
1339		ptask->generation  = generation;
1340		ptask->dest_node   = dest_node;
1341		ptask->speed       = peer->speed;
1342	}
1343
1344	/* If this is an ARP packet, convert it */
1345	if (proto == htons(ETH_P_ARP)) {
1346		struct arphdr *arp = (struct arphdr *)skb->data;
1347		unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1348		struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1349		__be32 ipaddr;
1350
1351		ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1352
1353		arp1394->hw_addr_len    = RFC2734_HW_ADDR_LEN;
1354		arp1394->max_rec        = dev->card->max_receive;
1355		arp1394->sspd		= dev->card->link_speed;
1356
1357		put_unaligned_be16(dev->local_fifo >> 32,
1358				   &arp1394->fifo_hi);
1359		put_unaligned_be32(dev->local_fifo & 0xffffffff,
1360				   &arp1394->fifo_lo);
1361		put_unaligned(ipaddr, &arp1394->sip);
1362	}
1363
1364	ptask->hdr.w0 = 0;
1365	ptask->hdr.w1 = 0;
1366	ptask->skb = skb;
1367	ptask->dev = dev;
1368
1369	/* Does it all fit in one packet? */
1370	if (dg_size <= max_payload) {
1371		fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1372		ptask->outstanding_pkts = 1;
1373		max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1374	} else {
1375		u16 datagram_label;
1376
1377		max_payload -= RFC2374_FRAG_OVERHEAD;
1378		datagram_label = (*datagram_label_ptr)++;
1379		fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1380				  datagram_label);
1381		ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1382		max_payload += RFC2374_FRAG_HDR_SIZE;
1383	}
1384
1385	if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1386		netif_stop_queue(dev->netdev);
1387
1388	spin_unlock_irqrestore(&dev->lock, flags);
1389
1390	ptask->max_payload = max_payload;
1391	ptask->enqueued    = 0;
1392
1393	fwnet_send_packet(ptask);
1394
1395	return NETDEV_TX_OK;
1396
1397 fail:
1398	spin_unlock_irqrestore(&dev->lock, flags);
1399
1400	if (ptask)
1401		kmem_cache_free(fwnet_packet_task_cache, ptask);
1402
1403	if (skb != NULL)
1404		dev_kfree_skb(skb);
1405
1406	net->stats.tx_dropped++;
1407	net->stats.tx_errors++;
1408
1409	/*
1410	 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1411	 * causes serious problems" here, allegedly.  Before that patch,
1412	 * -ERRNO was returned which is not appropriate under Linux 2.6.
1413	 * Perhaps more needs to be done?  Stop the queue in serious
1414	 * conditions and restart it elsewhere?
1415	 */
1416	return NETDEV_TX_OK;
1417}
1418
1419static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1420{
1421	if (new_mtu < 68)
1422		return -EINVAL;
1423
1424	net->mtu = new_mtu;
1425	return 0;
1426}
1427
1428static const struct ethtool_ops fwnet_ethtool_ops = {
1429	.get_link	= ethtool_op_get_link,
1430};
1431
1432static const struct net_device_ops fwnet_netdev_ops = {
1433	.ndo_open       = fwnet_open,
1434	.ndo_stop	= fwnet_stop,
1435	.ndo_start_xmit = fwnet_tx,
1436	.ndo_change_mtu = fwnet_change_mtu,
1437};
1438
1439static void fwnet_init_dev(struct net_device *net)
1440{
1441	net->header_ops		= &fwnet_header_ops;
1442	net->netdev_ops		= &fwnet_netdev_ops;
1443	net->watchdog_timeo	= 2 * HZ;
1444	net->flags		= IFF_BROADCAST | IFF_MULTICAST;
1445	net->features		= NETIF_F_HIGHDMA;
1446	net->addr_len		= FWNET_ALEN;
1447	net->hard_header_len	= FWNET_HLEN;
1448	net->type		= ARPHRD_IEEE1394;
1449	net->tx_queue_len	= FWNET_TX_QUEUE_LEN;
1450	net->ethtool_ops	= &fwnet_ethtool_ops;
1451}
1452
1453/* caller must hold fwnet_device_mutex */
1454static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1455{
1456	struct fwnet_device *dev;
1457
1458	list_for_each_entry(dev, &fwnet_device_list, dev_link)
1459		if (dev->card == card)
1460			return dev;
1461
1462	return NULL;
1463}
1464
1465static int fwnet_add_peer(struct fwnet_device *dev,
1466			  struct fw_unit *unit, struct fw_device *device)
1467{
1468	struct fwnet_peer *peer;
1469
1470	peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1471	if (!peer)
1472		return -ENOMEM;
1473
1474	dev_set_drvdata(&unit->device, peer);
1475
1476	peer->dev = dev;
1477	peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1478	peer->fifo = FWNET_NO_FIFO_ADDR;
1479	peer->ip = 0;
1480	INIT_LIST_HEAD(&peer->pd_list);
1481	peer->pdg_size = 0;
1482	peer->datagram_label = 0;
1483	peer->speed = device->max_speed;
1484	peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1485
1486	peer->generation = device->generation;
1487	smp_rmb();
1488	peer->node_id = device->node_id;
1489
1490	spin_lock_irq(&dev->lock);
1491	list_add_tail(&peer->peer_link, &dev->peer_list);
1492	dev->peer_count++;
1493	set_carrier_state(dev);
1494	spin_unlock_irq(&dev->lock);
1495
1496	return 0;
1497}
1498
1499static int fwnet_probe(struct device *_dev)
 
1500{
1501	struct fw_unit *unit = fw_unit(_dev);
1502	struct fw_device *device = fw_parent_device(unit);
1503	struct fw_card *card = device->card;
1504	struct net_device *net;
1505	bool allocated_netdev = false;
1506	struct fwnet_device *dev;
1507	unsigned max_mtu;
1508	int ret;
 
1509
1510	mutex_lock(&fwnet_device_mutex);
1511
1512	dev = fwnet_dev_find(card);
1513	if (dev) {
1514		net = dev->netdev;
1515		goto have_dev;
1516	}
1517
1518	net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
 
1519	if (net == NULL) {
1520		ret = -ENOMEM;
1521		goto out;
1522	}
1523
1524	allocated_netdev = true;
1525	SET_NETDEV_DEV(net, card->device);
1526	dev = netdev_priv(net);
1527
1528	spin_lock_init(&dev->lock);
1529	dev->broadcast_state = FWNET_BROADCAST_ERROR;
1530	dev->broadcast_rcv_context = NULL;
1531	dev->broadcast_xmt_max_payload = 0;
1532	dev->broadcast_xmt_datagramlabel = 0;
1533	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1534	dev->queued_datagrams = 0;
1535	INIT_LIST_HEAD(&dev->peer_list);
1536	dev->card = card;
1537	dev->netdev = net;
1538
 
 
 
 
 
1539	/*
1540	 * Use the RFC 2734 default 1500 octets or the maximum payload
1541	 * as initial MTU
 
1542	 */
1543	max_mtu = (1 << (card->max_receive + 1))
1544		  - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1545	net->mtu = min(1500U, max_mtu);
1546
1547	/* Set our hardware address while we're at it */
1548	put_unaligned_be64(card->guid, net->dev_addr);
1549	put_unaligned_be64(~0ULL, net->broadcast);
 
 
 
 
 
 
 
1550	ret = register_netdev(net);
1551	if (ret) {
1552		fw_error("Cannot register the driver\n");
1553		goto out;
1554	}
1555
1556	list_add_tail(&dev->dev_link, &fwnet_device_list);
1557	fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1558		  net->name, (unsigned long long)card->guid);
1559 have_dev:
1560	ret = fwnet_add_peer(dev, unit, device);
1561	if (ret && allocated_netdev) {
1562		unregister_netdev(net);
1563		list_del(&dev->dev_link);
1564	}
1565 out:
1566	if (ret && allocated_netdev)
1567		free_netdev(net);
 
1568
1569	mutex_unlock(&fwnet_device_mutex);
1570
1571	return ret;
1572}
1573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1574static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1575{
1576	struct fwnet_partial_datagram *pd, *pd_next;
1577
1578	spin_lock_irq(&dev->lock);
1579	list_del(&peer->peer_link);
1580	dev->peer_count--;
1581	set_carrier_state(dev);
1582	spin_unlock_irq(&dev->lock);
1583
1584	list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1585		fwnet_pd_delete(pd);
1586
1587	kfree(peer);
1588}
1589
1590static int fwnet_remove(struct device *_dev)
1591{
1592	struct fwnet_peer *peer = dev_get_drvdata(_dev);
1593	struct fwnet_device *dev = peer->dev;
1594	struct net_device *net;
1595	int i;
1596
1597	mutex_lock(&fwnet_device_mutex);
1598
1599	net = dev->netdev;
1600	if (net && peer->ip)
1601		arp_invalidate(net, peer->ip);
1602
1603	fwnet_remove_peer(peer, dev);
1604
1605	if (list_empty(&dev->peer_list)) {
1606		unregister_netdev(net);
1607
1608		if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1609			fw_core_remove_address_handler(&dev->handler);
1610		if (dev->broadcast_rcv_context) {
1611			fw_iso_context_stop(dev->broadcast_rcv_context);
1612			fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1613					      dev->card);
1614			fw_iso_context_destroy(dev->broadcast_rcv_context);
1615		}
1616		for (i = 0; dev->queued_datagrams && i < 5; i++)
1617			ssleep(1);
1618		WARN_ON(dev->queued_datagrams);
1619		list_del(&dev->dev_link);
1620
1621		free_netdev(net);
1622	}
1623
1624	mutex_unlock(&fwnet_device_mutex);
1625
1626	return 0;
1627}
1628
1629/*
1630 * FIXME abort partially sent fragmented datagrams,
1631 * discard partially received fragmented datagrams
1632 */
1633static void fwnet_update(struct fw_unit *unit)
1634{
1635	struct fw_device *device = fw_parent_device(unit);
1636	struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1637	int generation;
1638
1639	generation = device->generation;
1640
1641	spin_lock_irq(&peer->dev->lock);
1642	peer->node_id    = device->node_id;
1643	peer->generation = generation;
1644	spin_unlock_irq(&peer->dev->lock);
1645}
1646
1647static const struct ieee1394_device_id fwnet_id_table[] = {
1648	{
1649		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1650				IEEE1394_MATCH_VERSION,
1651		.specifier_id = IANA_SPECIFIER_ID,
1652		.version      = RFC2734_SW_VERSION,
1653	},
 
 
 
 
 
 
 
 
1654	{ }
1655};
1656
1657static struct fw_driver fwnet_driver = {
1658	.driver = {
1659		.owner  = THIS_MODULE,
1660		.name   = "net",
1661		.bus    = &fw_bus_type,
1662		.probe  = fwnet_probe,
1663		.remove = fwnet_remove,
1664	},
 
1665	.update   = fwnet_update,
 
1666	.id_table = fwnet_id_table,
1667};
1668
1669static const u32 rfc2374_unit_directory_data[] = {
1670	0x00040000,	/* directory_length		*/
1671	0x1200005e,	/* unit_specifier_id: IANA	*/
1672	0x81000003,	/* textual descriptor offset	*/
1673	0x13000001,	/* unit_sw_version: RFC 2734	*/
1674	0x81000005,	/* textual descriptor offset	*/
1675	0x00030000,	/* descriptor_length		*/
1676	0x00000000,	/* text				*/
1677	0x00000000,	/* minimal ASCII, en		*/
1678	0x49414e41,	/* I A N A			*/
1679	0x00030000,	/* descriptor_length		*/
1680	0x00000000,	/* text				*/
1681	0x00000000,	/* minimal ASCII, en		*/
1682	0x49507634,	/* I P v 4			*/
1683};
1684
1685static struct fw_descriptor rfc2374_unit_directory = {
1686	.length = ARRAY_SIZE(rfc2374_unit_directory_data),
1687	.key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1688	.data   = rfc2374_unit_directory_data
1689};
1690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1691static int __init fwnet_init(void)
1692{
1693	int err;
1694
1695	err = fw_core_add_descriptor(&rfc2374_unit_directory);
1696	if (err)
1697		return err;
1698
 
 
 
 
 
 
1699	fwnet_packet_task_cache = kmem_cache_create("packet_task",
1700			sizeof(struct fwnet_packet_task), 0, 0, NULL);
1701	if (!fwnet_packet_task_cache) {
1702		err = -ENOMEM;
1703		goto out;
1704	}
1705
1706	err = driver_register(&fwnet_driver.driver);
1707	if (!err)
1708		return 0;
1709
1710	kmem_cache_destroy(fwnet_packet_task_cache);
 
 
 
1711out:
 
1712	fw_core_remove_descriptor(&rfc2374_unit_directory);
1713
1714	return err;
1715}
1716module_init(fwnet_init);
1717
1718static void __exit fwnet_cleanup(void)
1719{
1720	driver_unregister(&fwnet_driver.driver);
1721	kmem_cache_destroy(fwnet_packet_task_cache);
 
 
 
1722	fw_core_remove_descriptor(&rfc2374_unit_directory);
1723}
1724module_exit(fwnet_cleanup);
1725
1726MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1727MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1728MODULE_LICENSE("GPL");
1729MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);