Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com>
3 *
4 * This driver supports ATM cards based on the Efficient "Lanai"
5 * chipset such as the Speedstream 3010 and the ENI-25p. The
6 * Speedstream 3060 is currently not supported since we don't
7 * have the code to drive the on-board Alcatel DSL chipset (yet).
8 *
9 * Thanks to Efficient for supporting this project with hardware,
10 * documentation, and by answering my questions.
11 *
12 * Things not working yet:
13 *
14 * o We don't support the Speedstream 3060 yet - this card has
15 * an on-board DSL modem chip by Alcatel and the driver will
16 * need some extra code added to handle it
17 *
18 * o Note that due to limitations of the Lanai only one VCC can be
19 * in CBR at once
20 *
21 * o We don't currently parse the EEPROM at all. The code is all
22 * there as per the spec, but it doesn't actually work. I think
23 * there may be some issues with the docs. Anyway, do NOT
24 * enable it yet - bugs in that code may actually damage your
25 * hardware! Because of this you should hardware an ESI before
26 * trying to use this in a LANE or MPOA environment.
27 *
28 * o AAL0 is stubbed in but the actual rx/tx path isn't written yet:
29 * vcc_tx_aal0() needs to send or queue a SKB
30 * vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
31 * vcc_rx_aal0() needs to handle AAL0 interrupts
32 * This isn't too much work - I just wanted to get other things
33 * done first.
34 *
35 * o lanai_change_qos() isn't written yet
36 *
37 * o There aren't any ioctl's yet -- I'd like to eventually support
38 * setting loopback and LED modes that way.
39 *
40 * o If the segmentation engine or DMA gets shut down we should restart
41 * card as per section 17.0i. (see lanai_reset)
42 *
43 * o setsockopt(SO_CIRANGE) isn't done (although despite what the
44 * API says it isn't exactly commonly implemented)
45 */
46
47/* Version history:
48 * v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
49 * v.0.02 -- 11-JAN-2000 -- Endian fixes
50 * v.0.01 -- 30-NOV-1999 -- Initial release
51 */
52
53#include <linux/module.h>
54#include <linux/slab.h>
55#include <linux/mm.h>
56#include <linux/atmdev.h>
57#include <asm/io.h>
58#include <asm/byteorder.h>
59#include <linux/spinlock.h>
60#include <linux/pci.h>
61#include <linux/dma-mapping.h>
62#include <linux/init.h>
63#include <linux/delay.h>
64#include <linux/interrupt.h>
65
66/* -------------------- TUNABLE PARAMATERS: */
67
68/*
69 * Maximum number of VCIs per card. Setting it lower could theoretically
70 * save some memory, but since we allocate our vcc list with get_free_pages,
71 * it's not really likely for most architectures
72 */
73#define NUM_VCI (1024)
74
75/*
76 * Enable extra debugging
77 */
78#define DEBUG
79/*
80 * Debug _all_ register operations with card, except the memory test.
81 * Also disables the timed poll to prevent extra chattiness. This
82 * isn't for normal use
83 */
84#undef DEBUG_RW
85
86/*
87 * The programming guide specifies a full test of the on-board SRAM
88 * at initialization time. Undefine to remove this
89 */
90#define FULL_MEMORY_TEST
91
92/*
93 * This is the number of (4 byte) service entries that we will
94 * try to allocate at startup. Note that we will end up with
95 * one PAGE_SIZE's worth regardless of what this is set to
96 */
97#define SERVICE_ENTRIES (1024)
98/* TODO: make above a module load-time option */
99
100/*
101 * We normally read the onboard EEPROM in order to discover our MAC
102 * address. Undefine to _not_ do this
103 */
104/* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
105/* TODO: make above a module load-time option (also) */
106
107/*
108 * Depth of TX fifo (in 128 byte units; range 2-31)
109 * Smaller numbers are better for network latency
110 * Larger numbers are better for PCI latency
111 * I'm really sure where the best tradeoff is, but the BSD driver uses
112 * 7 and it seems to work ok.
113 */
114#define TX_FIFO_DEPTH (7)
115/* TODO: make above a module load-time option */
116
117/*
118 * How often (in jiffies) we will try to unstick stuck connections -
119 * shouldn't need to happen much
120 */
121#define LANAI_POLL_PERIOD (10*HZ)
122/* TODO: make above a module load-time option */
123
124/*
125 * When allocating an AAL5 receiving buffer, try to make it at least
126 * large enough to hold this many max_sdu sized PDUs
127 */
128#define AAL5_RX_MULTIPLIER (3)
129/* TODO: make above a module load-time option */
130
131/*
132 * Same for transmitting buffer
133 */
134#define AAL5_TX_MULTIPLIER (3)
135/* TODO: make above a module load-time option */
136
137/*
138 * When allocating an AAL0 transmiting buffer, how many cells should fit.
139 * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
140 * really critical
141 */
142#define AAL0_TX_MULTIPLIER (40)
143/* TODO: make above a module load-time option */
144
145/*
146 * How large should we make the AAL0 receiving buffer. Remember that this
147 * is shared between all AAL0 VC's
148 */
149#define AAL0_RX_BUFFER_SIZE (PAGE_SIZE)
150/* TODO: make above a module load-time option */
151
152/*
153 * Should we use Lanai's "powerdown" feature when no vcc's are bound?
154 */
155/* #define USE_POWERDOWN */
156/* TODO: make above a module load-time option (also) */
157
158/* -------------------- DEBUGGING AIDS: */
159
160#define DEV_LABEL "lanai"
161
162#ifdef DEBUG
163
164#define DPRINTK(format, args...) \
165 printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
166#define APRINTK(truth, format, args...) \
167 do { \
168 if (unlikely(!(truth))) \
169 printk(KERN_ERR DEV_LABEL ": " format, ##args); \
170 } while (0)
171
172#else /* !DEBUG */
173
174#define DPRINTK(format, args...)
175#define APRINTK(truth, format, args...)
176
177#endif /* DEBUG */
178
179#ifdef DEBUG_RW
180#define RWDEBUG(format, args...) \
181 printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
182#else /* !DEBUG_RW */
183#define RWDEBUG(format, args...)
184#endif
185
186/* -------------------- DATA DEFINITIONS: */
187
188#define LANAI_MAPPING_SIZE (0x40000)
189#define LANAI_EEPROM_SIZE (128)
190
191typedef int vci_t;
192typedef void __iomem *bus_addr_t;
193
194/* DMA buffer in host memory for TX, RX, or service list. */
195struct lanai_buffer {
196 u32 *start; /* From get_free_pages */
197 u32 *end; /* One past last byte */
198 u32 *ptr; /* Pointer to current host location */
199 dma_addr_t dmaaddr;
200};
201
202struct lanai_vcc_stats {
203 unsigned rx_nomem;
204 union {
205 struct {
206 unsigned rx_badlen;
207 unsigned service_trash;
208 unsigned service_stream;
209 unsigned service_rxcrc;
210 } aal5;
211 struct {
212 } aal0;
213 } x;
214};
215
216struct lanai_dev; /* Forward declaration */
217
218/*
219 * This is the card-specific per-vcc data. Note that unlike some other
220 * drivers there is NOT a 1-to-1 correspondance between these and
221 * atm_vcc's - each one of these represents an actual 2-way vcc, but
222 * an atm_vcc can be 1-way and share with a 1-way vcc in the other
223 * direction. To make it weirder, there can even be 0-way vccs
224 * bound to us, waiting to do a change_qos
225 */
226struct lanai_vcc {
227 bus_addr_t vbase; /* Base of VCC's registers */
228 struct lanai_vcc_stats stats;
229 int nref; /* # of atm_vcc's who reference us */
230 vci_t vci;
231 struct {
232 struct lanai_buffer buf;
233 struct atm_vcc *atmvcc; /* atm_vcc who is receiver */
234 } rx;
235 struct {
236 struct lanai_buffer buf;
237 struct atm_vcc *atmvcc; /* atm_vcc who is transmitter */
238 int endptr; /* last endptr from service entry */
239 struct sk_buff_head backlog;
240 void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
241 } tx;
242};
243
244enum lanai_type {
245 lanai2 = PCI_DEVICE_ID_EF_ATM_LANAI2,
246 lanaihb = PCI_DEVICE_ID_EF_ATM_LANAIHB
247};
248
249struct lanai_dev_stats {
250 unsigned ovfl_trash; /* # of cells dropped - buffer overflow */
251 unsigned vci_trash; /* # of cells dropped - closed vci */
252 unsigned hec_err; /* # of cells dropped - bad HEC */
253 unsigned atm_ovfl; /* # of cells dropped - rx fifo overflow */
254 unsigned pcierr_parity_detect;
255 unsigned pcierr_serr_set;
256 unsigned pcierr_master_abort;
257 unsigned pcierr_m_target_abort;
258 unsigned pcierr_s_target_abort;
259 unsigned pcierr_master_parity;
260 unsigned service_notx;
261 unsigned service_norx;
262 unsigned service_rxnotaal5;
263 unsigned dma_reenable;
264 unsigned card_reset;
265};
266
267struct lanai_dev {
268 bus_addr_t base;
269 struct lanai_dev_stats stats;
270 struct lanai_buffer service;
271 struct lanai_vcc **vccs;
272#ifdef USE_POWERDOWN
273 int nbound; /* number of bound vccs */
274#endif
275 enum lanai_type type;
276 vci_t num_vci; /* Currently just NUM_VCI */
277 u8 eeprom[LANAI_EEPROM_SIZE];
278 u32 serialno, magicno;
279 struct pci_dev *pci;
280 DECLARE_BITMAP(backlog_vccs, NUM_VCI); /* VCCs with tx backlog */
281 DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
282 struct timer_list timer;
283 int naal0;
284 struct lanai_buffer aal0buf; /* AAL0 RX buffers */
285 u32 conf1, conf2; /* CONFIG[12] registers */
286 u32 status; /* STATUS register */
287 spinlock_t endtxlock;
288 spinlock_t servicelock;
289 struct atm_vcc *cbrvcc;
290 int number;
291 int board_rev;
292/* TODO - look at race conditions with maintence of conf1/conf2 */
293/* TODO - transmit locking: should we use _irq not _irqsave? */
294/* TODO - organize above in some rational fashion (see <asm/cache.h>) */
295};
296
297/*
298 * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
299 * This function iterates one of these, calling a given function for each
300 * vci with their bit set
301 */
302static void vci_bitfield_iterate(struct lanai_dev *lanai,
303 const unsigned long *lp,
304 void (*func)(struct lanai_dev *,vci_t vci))
305{
306 vci_t vci;
307
308 for_each_set_bit(vci, lp, NUM_VCI)
309 func(lanai, vci);
310}
311
312/* -------------------- BUFFER UTILITIES: */
313
314/*
315 * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
316 * usually any page allocation will do. Just to be safe in case
317 * PAGE_SIZE is insanely tiny, though...
318 */
319#define LANAI_PAGE_SIZE ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
320
321/*
322 * Allocate a buffer in host RAM for service list, RX, or TX
323 * Returns buf->start==NULL if no memory
324 * Note that the size will be rounded up 2^n bytes, and
325 * if we can't allocate that we'll settle for something smaller
326 * until minbytes
327 */
328static void lanai_buf_allocate(struct lanai_buffer *buf,
329 size_t bytes, size_t minbytes, struct pci_dev *pci)
330{
331 int size;
332
333 if (bytes > (128 * 1024)) /* max lanai buffer size */
334 bytes = 128 * 1024;
335 for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
336 ;
337 if (minbytes < LANAI_PAGE_SIZE)
338 minbytes = LANAI_PAGE_SIZE;
339 do {
340 /*
341 * Technically we could use non-consistent mappings for
342 * everything, but the way the lanai uses DMA memory would
343 * make that a terrific pain. This is much simpler.
344 */
345 buf->start = dma_alloc_coherent(&pci->dev,
346 size, &buf->dmaaddr, GFP_KERNEL);
347 if (buf->start != NULL) { /* Success */
348 /* Lanai requires 256-byte alignment of DMA bufs */
349 APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
350 "bad dmaaddr: 0x%lx\n",
351 (unsigned long) buf->dmaaddr);
352 buf->ptr = buf->start;
353 buf->end = (u32 *)
354 (&((unsigned char *) buf->start)[size]);
355 memset(buf->start, 0, size);
356 break;
357 }
358 size /= 2;
359 } while (size >= minbytes);
360}
361
362/* size of buffer in bytes */
363static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
364{
365 return ((unsigned long) buf->end) - ((unsigned long) buf->start);
366}
367
368static void lanai_buf_deallocate(struct lanai_buffer *buf,
369 struct pci_dev *pci)
370{
371 if (buf->start != NULL) {
372 dma_free_coherent(&pci->dev, lanai_buf_size(buf),
373 buf->start, buf->dmaaddr);
374 buf->start = buf->end = buf->ptr = NULL;
375 }
376}
377
378/* size of buffer as "card order" (0=1k .. 7=128k) */
379static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
380{
381 int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
382
383 /* This can only happen if PAGE_SIZE is gigantic, but just in case */
384 if (order > 7)
385 order = 7;
386 return order;
387}
388
389/* -------------------- PORT I/O UTILITIES: */
390
391/* Registers (and their bit-fields) */
392enum lanai_register {
393 Reset_Reg = 0x00, /* Reset; read for chip type; bits: */
394#define RESET_GET_BOARD_REV(x) (((x)>> 0)&0x03) /* Board revision */
395#define RESET_GET_BOARD_ID(x) (((x)>> 2)&0x03) /* Board ID */
396#define BOARD_ID_LANAI256 (0) /* 25.6M adapter card */
397 Endian_Reg = 0x04, /* Endian setting */
398 IntStatus_Reg = 0x08, /* Interrupt status */
399 IntStatusMasked_Reg = 0x0C, /* Interrupt status (masked) */
400 IntAck_Reg = 0x10, /* Interrupt acknowledge */
401 IntAckMasked_Reg = 0x14, /* Interrupt acknowledge (masked) */
402 IntStatusSet_Reg = 0x18, /* Get status + enable/disable */
403 IntStatusSetMasked_Reg = 0x1C, /* Get status + en/di (masked) */
404 IntControlEna_Reg = 0x20, /* Interrupt control enable */
405 IntControlDis_Reg = 0x24, /* Interrupt control disable */
406 Status_Reg = 0x28, /* Status */
407#define STATUS_PROMDATA (0x00000001) /* PROM_DATA pin */
408#define STATUS_WAITING (0x00000002) /* Interrupt being delayed */
409#define STATUS_SOOL (0x00000004) /* SOOL alarm */
410#define STATUS_LOCD (0x00000008) /* LOCD alarm */
411#define STATUS_LED (0x00000010) /* LED (HAPPI) output */
412#define STATUS_GPIN (0x00000020) /* GPIN pin */
413#define STATUS_BUTTBUSY (0x00000040) /* Butt register is pending */
414 Config1_Reg = 0x2C, /* Config word 1; bits: */
415#define CONFIG1_PROMDATA (0x00000001) /* PROM_DATA pin */
416#define CONFIG1_PROMCLK (0x00000002) /* PROM_CLK pin */
417#define CONFIG1_SET_READMODE(x) ((x)*0x004) /* PCI BM reads; values: */
418#define READMODE_PLAIN (0) /* Plain memory read */
419#define READMODE_LINE (2) /* Memory read line */
420#define READMODE_MULTIPLE (3) /* Memory read multiple */
421#define CONFIG1_DMA_ENABLE (0x00000010) /* Turn on DMA */
422#define CONFIG1_POWERDOWN (0x00000020) /* Turn off clocks */
423#define CONFIG1_SET_LOOPMODE(x) ((x)*0x080) /* Clock&loop mode; values: */
424#define LOOPMODE_NORMAL (0) /* Normal - no loop */
425#define LOOPMODE_TIME (1)
426#define LOOPMODE_DIAG (2)
427#define LOOPMODE_LINE (3)
428#define CONFIG1_MASK_LOOPMODE (0x00000180)
429#define CONFIG1_SET_LEDMODE(x) ((x)*0x0200) /* Mode of LED; values: */
430#define LEDMODE_NOT_SOOL (0) /* !SOOL */
431#define LEDMODE_OFF (1) /* 0 */
432#define LEDMODE_ON (2) /* 1 */
433#define LEDMODE_NOT_LOCD (3) /* !LOCD */
434#define LEDMORE_GPIN (4) /* GPIN */
435#define LEDMODE_NOT_GPIN (7) /* !GPIN */
436#define CONFIG1_MASK_LEDMODE (0x00000E00)
437#define CONFIG1_GPOUT1 (0x00001000) /* Toggle for reset */
438#define CONFIG1_GPOUT2 (0x00002000) /* Loopback PHY */
439#define CONFIG1_GPOUT3 (0x00004000) /* Loopback lanai */
440 Config2_Reg = 0x30, /* Config word 2; bits: */
441#define CONFIG2_HOWMANY (0x00000001) /* >512 VCIs? */
442#define CONFIG2_PTI7_MODE (0x00000002) /* Make PTI=7 RM, not OAM */
443#define CONFIG2_VPI_CHK_DIS (0x00000004) /* Ignore RX VPI value */
444#define CONFIG2_HEC_DROP (0x00000008) /* Drop cells w/ HEC errors */
445#define CONFIG2_VCI0_NORMAL (0x00000010) /* Treat VCI=0 normally */
446#define CONFIG2_CBR_ENABLE (0x00000020) /* Deal with CBR traffic */
447#define CONFIG2_TRASH_ALL (0x00000040) /* Trashing incoming cells */
448#define CONFIG2_TX_DISABLE (0x00000080) /* Trashing outgoing cells */
449#define CONFIG2_SET_TRASH (0x00000100) /* Turn trashing on */
450 Statistics_Reg = 0x34, /* Statistics; bits: */
451#define STATS_GET_FIFO_OVFL(x) (((x)>> 0)&0xFF) /* FIFO overflowed */
452#define STATS_GET_HEC_ERR(x) (((x)>> 8)&0xFF) /* HEC was bad */
453#define STATS_GET_BAD_VCI(x) (((x)>>16)&0xFF) /* VCI not open */
454#define STATS_GET_BUF_OVFL(x) (((x)>>24)&0xFF) /* VCC buffer full */
455 ServiceStuff_Reg = 0x38, /* Service stuff; bits: */
456#define SSTUFF_SET_SIZE(x) ((x)*0x20000000) /* size of service buffer */
457#define SSTUFF_SET_ADDR(x) ((x)>>8) /* set address of buffer */
458 ServWrite_Reg = 0x3C, /* ServWrite Pointer */
459 ServRead_Reg = 0x40, /* ServRead Pointer */
460 TxDepth_Reg = 0x44, /* FIFO Transmit Depth */
461 Butt_Reg = 0x48, /* Butt register */
462 CBR_ICG_Reg = 0x50,
463 CBR_PTR_Reg = 0x54,
464 PingCount_Reg = 0x58, /* Ping count */
465 DMA_Addr_Reg = 0x5C /* DMA address */
466};
467
468static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
469 enum lanai_register reg)
470{
471 return lanai->base + reg;
472}
473
474static inline u32 reg_read(const struct lanai_dev *lanai,
475 enum lanai_register reg)
476{
477 u32 t;
478 t = readl(reg_addr(lanai, reg));
479 RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
480 (int) reg, t);
481 return t;
482}
483
484static inline void reg_write(const struct lanai_dev *lanai, u32 val,
485 enum lanai_register reg)
486{
487 RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
488 (int) reg, val);
489 writel(val, reg_addr(lanai, reg));
490}
491
492static inline void conf1_write(const struct lanai_dev *lanai)
493{
494 reg_write(lanai, lanai->conf1, Config1_Reg);
495}
496
497static inline void conf2_write(const struct lanai_dev *lanai)
498{
499 reg_write(lanai, lanai->conf2, Config2_Reg);
500}
501
502/* Same as conf2_write(), but defers I/O if we're powered down */
503static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
504{
505#ifdef USE_POWERDOWN
506 if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
507 return;
508#endif /* USE_POWERDOWN */
509 conf2_write(lanai);
510}
511
512static inline void reset_board(const struct lanai_dev *lanai)
513{
514 DPRINTK("about to reset board\n");
515 reg_write(lanai, 0, Reset_Reg);
516 /*
517 * If we don't delay a little while here then we can end up
518 * leaving the card in a VERY weird state and lock up the
519 * PCI bus. This isn't documented anywhere but I've convinced
520 * myself after a lot of painful experimentation
521 */
522 udelay(5);
523}
524
525/* -------------------- CARD SRAM UTILITIES: */
526
527/* The SRAM is mapped into normal PCI memory space - the only catch is
528 * that it is only 16-bits wide but must be accessed as 32-bit. The
529 * 16 high bits will be zero. We don't hide this, since they get
530 * programmed mostly like discrete registers anyway
531 */
532#define SRAM_START (0x20000)
533#define SRAM_BYTES (0x20000) /* Again, half don't really exist */
534
535static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
536{
537 return lanai->base + SRAM_START + offset;
538}
539
540static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
541{
542 return readl(sram_addr(lanai, offset));
543}
544
545static inline void sram_write(const struct lanai_dev *lanai,
546 u32 val, int offset)
547{
548 writel(val, sram_addr(lanai, offset));
549}
550
551static int sram_test_word(const struct lanai_dev *lanai, int offset,
552 u32 pattern)
553{
554 u32 readback;
555 sram_write(lanai, pattern, offset);
556 readback = sram_read(lanai, offset);
557 if (likely(readback == pattern))
558 return 0;
559 printk(KERN_ERR DEV_LABEL
560 "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
561 lanai->number, offset,
562 (unsigned int) pattern, (unsigned int) readback);
563 return -EIO;
564}
565
566static int sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
567{
568 int offset, result = 0;
569 for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
570 result = sram_test_word(lanai, offset, pattern);
571 return result;
572}
573
574static int sram_test_and_clear(const struct lanai_dev *lanai)
575{
576#ifdef FULL_MEMORY_TEST
577 int result;
578 DPRINTK("testing SRAM\n");
579 if ((result = sram_test_pass(lanai, 0x5555)) != 0)
580 return result;
581 if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
582 return result;
583#endif
584 DPRINTK("clearing SRAM\n");
585 return sram_test_pass(lanai, 0x0000);
586}
587
588/* -------------------- CARD-BASED VCC TABLE UTILITIES: */
589
590/* vcc table */
591enum lanai_vcc_offset {
592 vcc_rxaddr1 = 0x00, /* Location1, plus bits: */
593#define RXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of RX buffer */
594#define RXADDR1_SET_RMMODE(x) ((x)*0x00800) /* RM cell action; values: */
595#define RMMODE_TRASH (0) /* discard */
596#define RMMODE_PRESERVE (1) /* input as AAL0 */
597#define RMMODE_PIPE (2) /* pipe to coscheduler */
598#define RMMODE_PIPEALL (3) /* pipe non-RM too */
599#define RXADDR1_OAM_PRESERVE (0x00002000) /* Input OAM cells as AAL0 */
600#define RXADDR1_SET_MODE(x) ((x)*0x0004000) /* Reassembly mode */
601#define RXMODE_TRASH (0) /* discard */
602#define RXMODE_AAL0 (1) /* non-AAL5 mode */
603#define RXMODE_AAL5 (2) /* AAL5, intr. each PDU */
604#define RXMODE_AAL5_STREAM (3) /* AAL5 w/o per-PDU intr */
605 vcc_rxaddr2 = 0x04, /* Location2 */
606 vcc_rxcrc1 = 0x08, /* RX CRC claculation space */
607 vcc_rxcrc2 = 0x0C,
608 vcc_rxwriteptr = 0x10, /* RX writeptr, plus bits: */
609#define RXWRITEPTR_LASTEFCI (0x00002000) /* Last PDU had EFCI bit */
610#define RXWRITEPTR_DROPPING (0x00004000) /* Had error, dropping */
611#define RXWRITEPTR_TRASHING (0x00008000) /* Trashing */
612 vcc_rxbufstart = 0x14, /* RX bufstart, plus bits: */
613#define RXBUFSTART_CLP (0x00004000)
614#define RXBUFSTART_CI (0x00008000)
615 vcc_rxreadptr = 0x18, /* RX readptr */
616 vcc_txicg = 0x1C, /* TX ICG */
617 vcc_txaddr1 = 0x20, /* Location1, plus bits: */
618#define TXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of TX buffer */
619#define TXADDR1_ABR (0x00008000) /* use ABR (doesn't work) */
620 vcc_txaddr2 = 0x24, /* Location2 */
621 vcc_txcrc1 = 0x28, /* TX CRC claculation space */
622 vcc_txcrc2 = 0x2C,
623 vcc_txreadptr = 0x30, /* TX Readptr, plus bits: */
624#define TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
625#define TXREADPTR_MASK_DELTA (0x0000E000) /* ? */
626 vcc_txendptr = 0x34, /* TX Endptr, plus bits: */
627#define TXENDPTR_CLP (0x00002000)
628#define TXENDPTR_MASK_PDUMODE (0x0000C000) /* PDU mode; values: */
629#define PDUMODE_AAL0 (0*0x04000)
630#define PDUMODE_AAL5 (2*0x04000)
631#define PDUMODE_AAL5STREAM (3*0x04000)
632 vcc_txwriteptr = 0x38, /* TX Writeptr */
633#define TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
634 vcc_txcbr_next = 0x3C /* # of next CBR VCI in ring */
635#define TXCBR_NEXT_BOZO (0x00008000) /* "bozo bit" */
636};
637
638#define CARDVCC_SIZE (0x40)
639
640static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
641 vci_t vci)
642{
643 return sram_addr(lanai, vci * CARDVCC_SIZE);
644}
645
646static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
647 enum lanai_vcc_offset offset)
648{
649 u32 val;
650 APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
651 val= readl(lvcc->vbase + offset);
652 RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
653 lvcc->vci, (int) offset, val);
654 return val;
655}
656
657static inline void cardvcc_write(const struct lanai_vcc *lvcc,
658 u32 val, enum lanai_vcc_offset offset)
659{
660 APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
661 APRINTK((val & ~0xFFFF) == 0,
662 "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
663 (unsigned int) val, lvcc->vci, (unsigned int) offset);
664 RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
665 lvcc->vci, (unsigned int) offset, (unsigned int) val);
666 writel(val, lvcc->vbase + offset);
667}
668
669/* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
670
671/* How many bytes will an AAL5 PDU take to transmit - remember that:
672 * o we need to add 8 bytes for length, CPI, UU, and CRC
673 * o we need to round up to 48 bytes for cells
674 */
675static inline int aal5_size(int size)
676{
677 int cells = (size + 8 + 47) / 48;
678 return cells * 48;
679}
680
681/* -------------------- FREE AN ATM SKB: */
682
683static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
684{
685 if (atmvcc->pop != NULL)
686 atmvcc->pop(atmvcc, skb);
687 else
688 dev_kfree_skb_any(skb);
689}
690
691/* -------------------- TURN VCCS ON AND OFF: */
692
693static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
694{
695 u32 addr1;
696 if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
697 dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
698 cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
699 cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
700 cardvcc_write(lvcc, 0, vcc_rxwriteptr);
701 cardvcc_write(lvcc, 0, vcc_rxbufstart);
702 cardvcc_write(lvcc, 0, vcc_rxreadptr);
703 cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
704 addr1 = ((dmaaddr >> 8) & 0xFF) |
705 RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
706 RXADDR1_SET_RMMODE(RMMODE_TRASH) | /* ??? */
707 /* RXADDR1_OAM_PRESERVE | --- no OAM support yet */
708 RXADDR1_SET_MODE(RXMODE_AAL5);
709 } else
710 addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
711 RXADDR1_OAM_PRESERVE | /* ??? */
712 RXADDR1_SET_MODE(RXMODE_AAL0);
713 /* This one must be last! */
714 cardvcc_write(lvcc, addr1, vcc_rxaddr1);
715}
716
717static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
718{
719 dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
720 cardvcc_write(lvcc, 0, vcc_txicg);
721 cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
722 cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
723 cardvcc_write(lvcc, 0, vcc_txreadptr);
724 cardvcc_write(lvcc, 0, vcc_txendptr);
725 cardvcc_write(lvcc, 0, vcc_txwriteptr);
726 cardvcc_write(lvcc,
727 (lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
728 TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
729 cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
730 cardvcc_write(lvcc,
731 ((dmaaddr >> 8) & 0xFF) |
732 TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
733 vcc_txaddr1);
734}
735
736/* Shutdown receiving on card */
737static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
738{
739 if (lvcc->vbase == NULL) /* We were never bound to a VCI */
740 return;
741 /* 15.1.1 - set to trashing, wait one cell time (15us) */
742 cardvcc_write(lvcc,
743 RXADDR1_SET_RMMODE(RMMODE_TRASH) |
744 RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
745 udelay(15);
746 /* 15.1.2 - clear rest of entries */
747 cardvcc_write(lvcc, 0, vcc_rxaddr2);
748 cardvcc_write(lvcc, 0, vcc_rxcrc1);
749 cardvcc_write(lvcc, 0, vcc_rxcrc2);
750 cardvcc_write(lvcc, 0, vcc_rxwriteptr);
751 cardvcc_write(lvcc, 0, vcc_rxbufstart);
752 cardvcc_write(lvcc, 0, vcc_rxreadptr);
753}
754
755/* Shutdown transmitting on card.
756 * Unfortunately the lanai needs us to wait until all the data
757 * drains out of the buffer before we can dealloc it, so this
758 * can take awhile -- up to 370ms for a full 128KB buffer
759 * assuming everone else is quiet. In theory the time is
760 * boundless if there's a CBR VCC holding things up.
761 */
762static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
763 struct lanai_vcc *lvcc)
764{
765 struct sk_buff *skb;
766 unsigned long flags, timeout;
767 int read, write, lastread = -1;
768 APRINTK(!in_interrupt(),
769 "lanai_shutdown_tx_vci called w/o process context!\n");
770 if (lvcc->vbase == NULL) /* We were never bound to a VCI */
771 return;
772 /* 15.2.1 - wait for queue to drain */
773 while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
774 lanai_free_skb(lvcc->tx.atmvcc, skb);
775 read_lock_irqsave(&vcc_sklist_lock, flags);
776 __clear_bit(lvcc->vci, lanai->backlog_vccs);
777 read_unlock_irqrestore(&vcc_sklist_lock, flags);
778 /*
779 * We need to wait for the VCC to drain but don't wait forever. We
780 * give each 1K of buffer size 1/128th of a second to clear out.
781 * TODO: maybe disable CBR if we're about to timeout?
782 */
783 timeout = jiffies +
784 (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
785 write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
786 for (;;) {
787 read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
788 if (read == write && /* Is TX buffer empty? */
789 (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
790 (cardvcc_read(lvcc, vcc_txcbr_next) &
791 TXCBR_NEXT_BOZO) == 0))
792 break;
793 if (read != lastread) { /* Has there been any progress? */
794 lastread = read;
795 timeout += HZ / 10;
796 }
797 if (unlikely(time_after(jiffies, timeout))) {
798 printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
799 "backlog closing vci %d\n",
800 lvcc->tx.atmvcc->dev->number, lvcc->vci);
801 DPRINTK("read, write = %d, %d\n", read, write);
802 break;
803 }
804 msleep(40);
805 }
806 /* 15.2.2 - clear out all tx registers */
807 cardvcc_write(lvcc, 0, vcc_txreadptr);
808 cardvcc_write(lvcc, 0, vcc_txwriteptr);
809 cardvcc_write(lvcc, 0, vcc_txendptr);
810 cardvcc_write(lvcc, 0, vcc_txcrc1);
811 cardvcc_write(lvcc, 0, vcc_txcrc2);
812 cardvcc_write(lvcc, 0, vcc_txaddr2);
813 cardvcc_write(lvcc, 0, vcc_txaddr1);
814}
815
816/* -------------------- MANAGING AAL0 RX BUFFER: */
817
818static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
819{
820 DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
821 lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
822 lanai->pci);
823 return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
824}
825
826static inline void aal0_buffer_free(struct lanai_dev *lanai)
827{
828 DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
829 lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
830}
831
832/* -------------------- EEPROM UTILITIES: */
833
834/* Offsets of data in the EEPROM */
835#define EEPROM_COPYRIGHT (0)
836#define EEPROM_COPYRIGHT_LEN (44)
837#define EEPROM_CHECKSUM (62)
838#define EEPROM_CHECKSUM_REV (63)
839#define EEPROM_MAC (64)
840#define EEPROM_MAC_REV (70)
841#define EEPROM_SERIAL (112)
842#define EEPROM_SERIAL_REV (116)
843#define EEPROM_MAGIC (120)
844#define EEPROM_MAGIC_REV (124)
845
846#define EEPROM_MAGIC_VALUE (0x5AB478D2)
847
848#ifndef READ_EEPROM
849
850/* Stub functions to use if EEPROM reading is disabled */
851static int eeprom_read(struct lanai_dev *lanai)
852{
853 printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
854 lanai->number);
855 memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
856 return 0;
857}
858
859static int eeprom_validate(struct lanai_dev *lanai)
860{
861 lanai->serialno = 0;
862 lanai->magicno = EEPROM_MAGIC_VALUE;
863 return 0;
864}
865
866#else /* READ_EEPROM */
867
868static int eeprom_read(struct lanai_dev *lanai)
869{
870 int i, address;
871 u8 data;
872 u32 tmp;
873#define set_config1(x) do { lanai->conf1 = x; conf1_write(lanai); \
874 } while (0)
875#define clock_h() set_config1(lanai->conf1 | CONFIG1_PROMCLK)
876#define clock_l() set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
877#define data_h() set_config1(lanai->conf1 | CONFIG1_PROMDATA)
878#define data_l() set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
879#define pre_read() do { data_h(); clock_h(); udelay(5); } while (0)
880#define read_pin() (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
881#define send_stop() do { data_l(); udelay(5); clock_h(); udelay(5); \
882 data_h(); udelay(5); } while (0)
883 /* start with both clock and data high */
884 data_h(); clock_h(); udelay(5);
885 for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
886 data = (address << 1) | 1; /* Command=read + address */
887 /* send start bit */
888 data_l(); udelay(5);
889 clock_l(); udelay(5);
890 for (i = 128; i != 0; i >>= 1) { /* write command out */
891 tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
892 ((data & i) ? CONFIG1_PROMDATA : 0);
893 if (lanai->conf1 != tmp) {
894 set_config1(tmp);
895 udelay(5); /* Let new data settle */
896 }
897 clock_h(); udelay(5); clock_l(); udelay(5);
898 }
899 /* look for ack */
900 data_h(); clock_h(); udelay(5);
901 if (read_pin() != 0)
902 goto error; /* No ack seen */
903 clock_l(); udelay(5);
904 /* read back result */
905 for (data = 0, i = 7; i >= 0; i--) {
906 data_h(); clock_h(); udelay(5);
907 data = (data << 1) | !!read_pin();
908 clock_l(); udelay(5);
909 }
910 /* look again for ack */
911 data_h(); clock_h(); udelay(5);
912 if (read_pin() == 0)
913 goto error; /* Spurious ack */
914 clock_l(); udelay(5);
915 send_stop();
916 lanai->eeprom[address] = data;
917 DPRINTK("EEPROM 0x%04X %02X\n",
918 (unsigned int) address, (unsigned int) data);
919 }
920 return 0;
921 error:
922 clock_l(); udelay(5); /* finish read */
923 send_stop();
924 printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
925 lanai->number, address);
926 return -EIO;
927#undef set_config1
928#undef clock_h
929#undef clock_l
930#undef data_h
931#undef data_l
932#undef pre_read
933#undef read_pin
934#undef send_stop
935}
936
937/* read a big-endian 4-byte value out of eeprom */
938static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
939{
940 return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
941}
942
943/* Checksum/validate EEPROM contents */
944static int eeprom_validate(struct lanai_dev *lanai)
945{
946 int i, s;
947 u32 v;
948 const u8 *e = lanai->eeprom;
949#ifdef DEBUG
950 /* First, see if we can get an ASCIIZ string out of the copyright */
951 for (i = EEPROM_COPYRIGHT;
952 i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
953 if (e[i] < 0x20 || e[i] > 0x7E)
954 break;
955 if ( i != EEPROM_COPYRIGHT &&
956 i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
957 DPRINTK("eeprom: copyright = \"%s\"\n",
958 (char *) &e[EEPROM_COPYRIGHT]);
959 else
960 DPRINTK("eeprom: copyright not found\n");
961#endif
962 /* Validate checksum */
963 for (i = s = 0; i < EEPROM_CHECKSUM; i++)
964 s += e[i];
965 s &= 0xFF;
966 if (s != e[EEPROM_CHECKSUM]) {
967 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
968 "(wanted 0x%02X, got 0x%02X)\n", lanai->number,
969 (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
970 return -EIO;
971 }
972 s ^= 0xFF;
973 if (s != e[EEPROM_CHECKSUM_REV]) {
974 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
975 "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
976 (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
977 return -EIO;
978 }
979 /* Verify MAC address */
980 for (i = 0; i < 6; i++)
981 if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
982 printk(KERN_ERR DEV_LABEL
983 "(itf %d) : EEPROM MAC addresses don't match "
984 "(0x%02X, inverse 0x%02X)\n", lanai->number,
985 (unsigned int) e[EEPROM_MAC + i],
986 (unsigned int) e[EEPROM_MAC_REV + i]);
987 return -EIO;
988 }
989 DPRINTK("eeprom: MAC address = %pM\n", &e[EEPROM_MAC]);
990 /* Verify serial number */
991 lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
992 v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
993 if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
994 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
995 "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
996 (unsigned int) lanai->serialno, (unsigned int) v);
997 return -EIO;
998 }
999 DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
1000 /* Verify magic number */
1001 lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
1002 v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
1003 if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
1004 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
1005 "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1006 lanai->magicno, v);
1007 return -EIO;
1008 }
1009 DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
1010 if (lanai->magicno != EEPROM_MAGIC_VALUE)
1011 printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
1012 "magic not what expected (got 0x%08X, not 0x%08X)\n",
1013 lanai->number, (unsigned int) lanai->magicno,
1014 (unsigned int) EEPROM_MAGIC_VALUE);
1015 return 0;
1016}
1017
1018#endif /* READ_EEPROM */
1019
1020static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
1021{
1022 return &lanai->eeprom[EEPROM_MAC];
1023}
1024
1025/* -------------------- INTERRUPT HANDLING UTILITIES: */
1026
1027/* Interrupt types */
1028#define INT_STATS (0x00000002) /* Statistics counter overflow */
1029#define INT_SOOL (0x00000004) /* SOOL changed state */
1030#define INT_LOCD (0x00000008) /* LOCD changed state */
1031#define INT_LED (0x00000010) /* LED (HAPPI) changed state */
1032#define INT_GPIN (0x00000020) /* GPIN changed state */
1033#define INT_PING (0x00000040) /* PING_COUNT fulfilled */
1034#define INT_WAKE (0x00000080) /* Lanai wants bus */
1035#define INT_CBR0 (0x00000100) /* CBR sched hit VCI 0 */
1036#define INT_LOCK (0x00000200) /* Service list overflow */
1037#define INT_MISMATCH (0x00000400) /* TX magic list mismatch */
1038#define INT_AAL0_STR (0x00000800) /* Non-AAL5 buffer half filled */
1039#define INT_AAL0 (0x00001000) /* Non-AAL5 data available */
1040#define INT_SERVICE (0x00002000) /* Service list entries available */
1041#define INT_TABORTSENT (0x00004000) /* Target abort sent by lanai */
1042#define INT_TABORTBM (0x00008000) /* Abort rcv'd as bus master */
1043#define INT_TIMEOUTBM (0x00010000) /* No response to bus master */
1044#define INT_PCIPARITY (0x00020000) /* Parity error on PCI */
1045
1046/* Sets of the above */
1047#define INT_ALL (0x0003FFFE) /* All interrupts */
1048#define INT_STATUS (0x0000003C) /* Some status pin changed */
1049#define INT_DMASHUT (0x00038000) /* DMA engine got shut down */
1050#define INT_SEGSHUT (0x00000700) /* Segmentation got shut down */
1051
1052static inline u32 intr_pending(const struct lanai_dev *lanai)
1053{
1054 return reg_read(lanai, IntStatusMasked_Reg);
1055}
1056
1057static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
1058{
1059 reg_write(lanai, i, IntControlEna_Reg);
1060}
1061
1062static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
1063{
1064 reg_write(lanai, i, IntControlDis_Reg);
1065}
1066
1067/* -------------------- CARD/PCI STATUS: */
1068
1069static void status_message(int itf, const char *name, int status)
1070{
1071 static const char *onoff[2] = { "off to on", "on to off" };
1072 printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
1073 itf, name, onoff[!status]);
1074}
1075
1076static void lanai_check_status(struct lanai_dev *lanai)
1077{
1078 u32 new = reg_read(lanai, Status_Reg);
1079 u32 changes = new ^ lanai->status;
1080 lanai->status = new;
1081#define e(flag, name) \
1082 if (changes & flag) \
1083 status_message(lanai->number, name, new & flag)
1084 e(STATUS_SOOL, "SOOL");
1085 e(STATUS_LOCD, "LOCD");
1086 e(STATUS_LED, "LED");
1087 e(STATUS_GPIN, "GPIN");
1088#undef e
1089}
1090
1091static void pcistatus_got(int itf, const char *name)
1092{
1093 printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
1094}
1095
1096static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
1097{
1098 u16 s;
1099 int result;
1100 result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
1101 if (result != PCIBIOS_SUCCESSFUL) {
1102 printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
1103 "%d\n", lanai->number, result);
1104 return;
1105 }
1106 s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1107 PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
1108 PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
1109 if (s == 0)
1110 return;
1111 result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
1112 if (result != PCIBIOS_SUCCESSFUL)
1113 printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
1114 "%d\n", lanai->number, result);
1115 if (clearonly)
1116 return;
1117#define e(flag, name, stat) \
1118 if (s & flag) { \
1119 pcistatus_got(lanai->number, name); \
1120 ++lanai->stats.pcierr_##stat; \
1121 }
1122 e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
1123 e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
1124 e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
1125 e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
1126 e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
1127 e(PCI_STATUS_PARITY, "master parity", master_parity);
1128#undef e
1129}
1130
1131/* -------------------- VCC TX BUFFER UTILITIES: */
1132
1133/* space left in tx buffer in bytes */
1134static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
1135{
1136 int r;
1137 r = endptr * 16;
1138 r -= ((unsigned long) lvcc->tx.buf.ptr) -
1139 ((unsigned long) lvcc->tx.buf.start);
1140 r -= 16; /* Leave "bubble" - if start==end it looks empty */
1141 if (r < 0)
1142 r += lanai_buf_size(&lvcc->tx.buf);
1143 return r;
1144}
1145
1146/* test if VCC is currently backlogged */
1147static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
1148{
1149 return !skb_queue_empty(&lvcc->tx.backlog);
1150}
1151
1152/* Bit fields in the segmentation buffer descriptor */
1153#define DESCRIPTOR_MAGIC (0xD0000000)
1154#define DESCRIPTOR_AAL5 (0x00008000)
1155#define DESCRIPTOR_AAL5_STREAM (0x00004000)
1156#define DESCRIPTOR_CLP (0x00002000)
1157
1158/* Add 32-bit descriptor with its padding */
1159static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
1160 u32 flags, int len)
1161{
1162 int pos;
1163 APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
1164 "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
1165 lvcc->tx.buf.ptr += 4; /* Hope the values REALLY don't matter */
1166 pos = ((unsigned char *) lvcc->tx.buf.ptr) -
1167 (unsigned char *) lvcc->tx.buf.start;
1168 APRINTK((pos & ~0x0001FFF0) == 0,
1169 "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
1170 "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1171 lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1172 pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
1173 APRINTK((pos & ~0x0001FFF0) == 0,
1174 "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
1175 "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1176 lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1177 lvcc->tx.buf.ptr[-1] =
1178 cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
1179 ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
1180 DESCRIPTOR_CLP : 0) | flags | pos >> 4);
1181 if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1182 lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1183}
1184
1185/* Add 32-bit AAL5 trailer and leave room for its CRC */
1186static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
1187 int len, int cpi, int uu)
1188{
1189 APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
1190 "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
1191 lvcc->tx.buf.ptr += 2;
1192 lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
1193 if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1194 lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1195}
1196
1197static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
1198 const unsigned char *src, int n)
1199{
1200 unsigned char *e;
1201 int m;
1202 e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1203 m = e - (unsigned char *) lvcc->tx.buf.end;
1204 if (m < 0)
1205 m = 0;
1206 memcpy(lvcc->tx.buf.ptr, src, n - m);
1207 if (m != 0) {
1208 memcpy(lvcc->tx.buf.start, src + n - m, m);
1209 e = ((unsigned char *) lvcc->tx.buf.start) + m;
1210 }
1211 lvcc->tx.buf.ptr = (u32 *) e;
1212}
1213
1214static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
1215{
1216 unsigned char *e;
1217 int m;
1218 if (n == 0)
1219 return;
1220 e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1221 m = e - (unsigned char *) lvcc->tx.buf.end;
1222 if (m < 0)
1223 m = 0;
1224 memset(lvcc->tx.buf.ptr, 0, n - m);
1225 if (m != 0) {
1226 memset(lvcc->tx.buf.start, 0, m);
1227 e = ((unsigned char *) lvcc->tx.buf.start) + m;
1228 }
1229 lvcc->tx.buf.ptr = (u32 *) e;
1230}
1231
1232/* Update "butt" register to specify new WritePtr */
1233static inline void lanai_endtx(struct lanai_dev *lanai,
1234 const struct lanai_vcc *lvcc)
1235{
1236 int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
1237 (unsigned char *) lvcc->tx.buf.start;
1238 APRINTK((ptr & ~0x0001FFF0) == 0,
1239 "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
1240 ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
1241 lvcc->tx.buf.end);
1242
1243 /*
1244 * Since the "butt register" is a shared resounce on the card we
1245 * serialize all accesses to it through this spinlock. This is
1246 * mostly just paranoia since the register is rarely "busy" anyway
1247 * but is needed for correctness.
1248 */
1249 spin_lock(&lanai->endtxlock);
1250 /*
1251 * We need to check if the "butt busy" bit is set before
1252 * updating the butt register. In theory this should
1253 * never happen because the ATM card is plenty fast at
1254 * updating the register. Still, we should make sure
1255 */
1256 for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
1257 if (unlikely(i > 50)) {
1258 printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
1259 "always busy!\n", lanai->number);
1260 break;
1261 }
1262 udelay(5);
1263 }
1264 /*
1265 * Before we tall the card to start work we need to be sure 100% of
1266 * the info in the service buffer has been written before we tell
1267 * the card about it
1268 */
1269 wmb();
1270 reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
1271 spin_unlock(&lanai->endtxlock);
1272}
1273
1274/*
1275 * Add one AAL5 PDU to lvcc's transmit buffer. Caller garauntees there's
1276 * space available. "pdusize" is the number of bytes the PDU will take
1277 */
1278static void lanai_send_one_aal5(struct lanai_dev *lanai,
1279 struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
1280{
1281 int pad;
1282 APRINTK(pdusize == aal5_size(skb->len),
1283 "lanai_send_one_aal5: wrong size packet (%d != %d)\n",
1284 pdusize, aal5_size(skb->len));
1285 vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
1286 pad = pdusize - skb->len - 8;
1287 APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
1288 APRINTK(pad < 48, "pad is too big (%d)\n", pad);
1289 vcc_tx_memcpy(lvcc, skb->data, skb->len);
1290 vcc_tx_memzero(lvcc, pad);
1291 vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
1292 lanai_endtx(lanai, lvcc);
1293 lanai_free_skb(lvcc->tx.atmvcc, skb);
1294 atomic_inc(&lvcc->tx.atmvcc->stats->tx);
1295}
1296
1297/* Try to fill the buffer - don't call unless there is backlog */
1298static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
1299 struct lanai_vcc *lvcc, int endptr)
1300{
1301 int n;
1302 struct sk_buff *skb;
1303 int space = vcc_tx_space(lvcc, endptr);
1304 APRINTK(vcc_is_backlogged(lvcc),
1305 "vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
1306 lvcc->vci);
1307 while (space >= 64) {
1308 skb = skb_dequeue(&lvcc->tx.backlog);
1309 if (skb == NULL)
1310 goto no_backlog;
1311 n = aal5_size(skb->len);
1312 if (n + 16 > space) {
1313 /* No room for this packet - put it back on queue */
1314 skb_queue_head(&lvcc->tx.backlog, skb);
1315 return;
1316 }
1317 lanai_send_one_aal5(lanai, lvcc, skb, n);
1318 space -= n + 16;
1319 }
1320 if (!vcc_is_backlogged(lvcc)) {
1321 no_backlog:
1322 __clear_bit(lvcc->vci, lanai->backlog_vccs);
1323 }
1324}
1325
1326/* Given an skb that we want to transmit either send it now or queue */
1327static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1328 struct sk_buff *skb)
1329{
1330 int space, n;
1331 if (vcc_is_backlogged(lvcc)) /* Already backlogged */
1332 goto queue_it;
1333 space = vcc_tx_space(lvcc,
1334 TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
1335 n = aal5_size(skb->len);
1336 APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
1337 if (space < n + 16) { /* No space for this PDU */
1338 __set_bit(lvcc->vci, lanai->backlog_vccs);
1339 queue_it:
1340 skb_queue_tail(&lvcc->tx.backlog, skb);
1341 return;
1342 }
1343 lanai_send_one_aal5(lanai, lvcc, skb, n);
1344}
1345
1346static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
1347 struct lanai_vcc *lvcc, int endptr)
1348{
1349 printk(KERN_INFO DEV_LABEL
1350 ": vcc_tx_unqueue_aal0: not implemented\n");
1351}
1352
1353static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1354 struct sk_buff *skb)
1355{
1356 printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
1357 /* Remember to increment lvcc->tx.atmvcc->stats->tx */
1358 lanai_free_skb(lvcc->tx.atmvcc, skb);
1359}
1360
1361/* -------------------- VCC RX BUFFER UTILITIES: */
1362
1363/* unlike the _tx_ cousins, this doesn't update ptr */
1364static inline void vcc_rx_memcpy(unsigned char *dest,
1365 const struct lanai_vcc *lvcc, int n)
1366{
1367 int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
1368 ((const unsigned char *) (lvcc->rx.buf.end));
1369 if (m < 0)
1370 m = 0;
1371 memcpy(dest, lvcc->rx.buf.ptr, n - m);
1372 memcpy(dest + n - m, lvcc->rx.buf.start, m);
1373 /* Make sure that these copies don't get reordered */
1374 barrier();
1375}
1376
1377/* Receive AAL5 data on a VCC with a particular endptr */
1378static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
1379{
1380 int size;
1381 struct sk_buff *skb;
1382 const u32 *x;
1383 u32 *end = &lvcc->rx.buf.start[endptr * 4];
1384 int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
1385 if (n < 0)
1386 n += lanai_buf_size(&lvcc->rx.buf);
1387 APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
1388 "vcc_rx_aal5: n out of range (%d/%zu)\n",
1389 n, lanai_buf_size(&lvcc->rx.buf));
1390 /* Recover the second-to-last word to get true pdu length */
1391 if ((x = &end[-2]) < lvcc->rx.buf.start)
1392 x = &lvcc->rx.buf.end[-2];
1393 /*
1394 * Before we actually read from the buffer, make sure the memory
1395 * changes have arrived
1396 */
1397 rmb();
1398 size = be32_to_cpup(x) & 0xffff;
1399 if (unlikely(n != aal5_size(size))) {
1400 /* Make sure size matches padding */
1401 printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
1402 "on vci=%d - size=%d n=%d\n",
1403 lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
1404 lvcc->stats.x.aal5.rx_badlen++;
1405 goto out;
1406 }
1407 skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
1408 if (unlikely(skb == NULL)) {
1409 lvcc->stats.rx_nomem++;
1410 goto out;
1411 }
1412 skb_put(skb, size);
1413 vcc_rx_memcpy(skb->data, lvcc, size);
1414 ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
1415 __net_timestamp(skb);
1416 lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
1417 atomic_inc(&lvcc->rx.atmvcc->stats->rx);
1418 out:
1419 lvcc->rx.buf.ptr = end;
1420 cardvcc_write(lvcc, endptr, vcc_rxreadptr);
1421}
1422
1423static void vcc_rx_aal0(struct lanai_dev *lanai)
1424{
1425 printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
1426 /* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
1427 /* Remember to increment lvcc->rx.atmvcc->stats->rx */
1428}
1429
1430/* -------------------- MANAGING HOST-BASED VCC TABLE: */
1431
1432/* Decide whether to use vmalloc or get_zeroed_page for VCC table */
1433#if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
1434#define VCCTABLE_GETFREEPAGE
1435#else
1436#include <linux/vmalloc.h>
1437#endif
1438
1439static int vcc_table_allocate(struct lanai_dev *lanai)
1440{
1441#ifdef VCCTABLE_GETFREEPAGE
1442 APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
1443 "vcc table > PAGE_SIZE!");
1444 lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
1445 return (lanai->vccs == NULL) ? -ENOMEM : 0;
1446#else
1447 int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
1448 lanai->vccs = vzalloc(bytes);
1449 if (unlikely(lanai->vccs == NULL))
1450 return -ENOMEM;
1451 return 0;
1452#endif
1453}
1454
1455static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
1456{
1457#ifdef VCCTABLE_GETFREEPAGE
1458 free_page((unsigned long) lanai->vccs);
1459#else
1460 vfree(lanai->vccs);
1461#endif
1462}
1463
1464/* Allocate a fresh lanai_vcc, with the appropriate things cleared */
1465static inline struct lanai_vcc *new_lanai_vcc(void)
1466{
1467 struct lanai_vcc *lvcc;
1468 lvcc = kzalloc(sizeof(*lvcc), GFP_KERNEL);
1469 if (likely(lvcc != NULL)) {
1470 skb_queue_head_init(&lvcc->tx.backlog);
1471#ifdef DEBUG
1472 lvcc->vci = -1;
1473#endif
1474 }
1475 return lvcc;
1476}
1477
1478static int lanai_get_sized_buffer(struct lanai_dev *lanai,
1479 struct lanai_buffer *buf, int max_sdu, int multiplier,
1480 const char *name)
1481{
1482 int size;
1483 if (unlikely(max_sdu < 1))
1484 max_sdu = 1;
1485 max_sdu = aal5_size(max_sdu);
1486 size = (max_sdu + 16) * multiplier + 16;
1487 lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
1488 if (unlikely(buf->start == NULL))
1489 return -ENOMEM;
1490 if (unlikely(lanai_buf_size(buf) < size))
1491 printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
1492 "for %s buffer, got only %zu\n", lanai->number, size,
1493 name, lanai_buf_size(buf));
1494 DPRINTK("Allocated %zu byte %s buffer\n", lanai_buf_size(buf), name);
1495 return 0;
1496}
1497
1498/* Setup a RX buffer for a currently unbound AAL5 vci */
1499static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
1500 struct lanai_vcc *lvcc, const struct atm_qos *qos)
1501{
1502 return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
1503 qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
1504}
1505
1506/* Setup a TX buffer for a currently unbound AAL5 vci */
1507static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1508 const struct atm_qos *qos)
1509{
1510 int max_sdu, multiplier;
1511 if (qos->aal == ATM_AAL0) {
1512 lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
1513 max_sdu = ATM_CELL_SIZE - 1;
1514 multiplier = AAL0_TX_MULTIPLIER;
1515 } else {
1516 lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
1517 max_sdu = qos->txtp.max_sdu;
1518 multiplier = AAL5_TX_MULTIPLIER;
1519 }
1520 return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
1521 multiplier, "TX");
1522}
1523
1524static inline void host_vcc_bind(struct lanai_dev *lanai,
1525 struct lanai_vcc *lvcc, vci_t vci)
1526{
1527 if (lvcc->vbase != NULL)
1528 return; /* We already were bound in the other direction */
1529 DPRINTK("Binding vci %d\n", vci);
1530#ifdef USE_POWERDOWN
1531 if (lanai->nbound++ == 0) {
1532 DPRINTK("Coming out of powerdown\n");
1533 lanai->conf1 &= ~CONFIG1_POWERDOWN;
1534 conf1_write(lanai);
1535 conf2_write(lanai);
1536 }
1537#endif
1538 lvcc->vbase = cardvcc_addr(lanai, vci);
1539 lanai->vccs[lvcc->vci = vci] = lvcc;
1540}
1541
1542static inline void host_vcc_unbind(struct lanai_dev *lanai,
1543 struct lanai_vcc *lvcc)
1544{
1545 if (lvcc->vbase == NULL)
1546 return; /* This vcc was never bound */
1547 DPRINTK("Unbinding vci %d\n", lvcc->vci);
1548 lvcc->vbase = NULL;
1549 lanai->vccs[lvcc->vci] = NULL;
1550#ifdef USE_POWERDOWN
1551 if (--lanai->nbound == 0) {
1552 DPRINTK("Going into powerdown\n");
1553 lanai->conf1 |= CONFIG1_POWERDOWN;
1554 conf1_write(lanai);
1555 }
1556#endif
1557}
1558
1559/* -------------------- RESET CARD: */
1560
1561static void lanai_reset(struct lanai_dev *lanai)
1562{
1563 printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* resetting - not "
1564 "implemented\n", lanai->number);
1565 /* TODO */
1566 /* The following is just a hack until we write the real
1567 * resetter - at least ack whatever interrupt sent us
1568 * here
1569 */
1570 reg_write(lanai, INT_ALL, IntAck_Reg);
1571 lanai->stats.card_reset++;
1572}
1573
1574/* -------------------- SERVICE LIST UTILITIES: */
1575
1576/*
1577 * Allocate service buffer and tell card about it
1578 */
1579static int service_buffer_allocate(struct lanai_dev *lanai)
1580{
1581 lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
1582 lanai->pci);
1583 if (unlikely(lanai->service.start == NULL))
1584 return -ENOMEM;
1585 DPRINTK("allocated service buffer at %p, size %zu(%d)\n",
1586 lanai->service.start,
1587 lanai_buf_size(&lanai->service),
1588 lanai_buf_size_cardorder(&lanai->service));
1589 /* Clear ServWrite register to be safe */
1590 reg_write(lanai, 0, ServWrite_Reg);
1591 /* ServiceStuff register contains size and address of buffer */
1592 reg_write(lanai,
1593 SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
1594 SSTUFF_SET_ADDR(lanai->service.dmaaddr),
1595 ServiceStuff_Reg);
1596 return 0;
1597}
1598
1599static inline void service_buffer_deallocate(struct lanai_dev *lanai)
1600{
1601 lanai_buf_deallocate(&lanai->service, lanai->pci);
1602}
1603
1604/* Bitfields in service list */
1605#define SERVICE_TX (0x80000000) /* Was from transmission */
1606#define SERVICE_TRASH (0x40000000) /* RXed PDU was trashed */
1607#define SERVICE_CRCERR (0x20000000) /* RXed PDU had CRC error */
1608#define SERVICE_CI (0x10000000) /* RXed PDU had CI set */
1609#define SERVICE_CLP (0x08000000) /* RXed PDU had CLP set */
1610#define SERVICE_STREAM (0x04000000) /* RX Stream mode */
1611#define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
1612#define SERVICE_GET_END(x) ((x)&0x1FFF)
1613
1614/* Handle one thing from the service list - returns true if it marked a
1615 * VCC ready for xmit
1616 */
1617static int handle_service(struct lanai_dev *lanai, u32 s)
1618{
1619 vci_t vci = SERVICE_GET_VCI(s);
1620 struct lanai_vcc *lvcc;
1621 read_lock(&vcc_sklist_lock);
1622 lvcc = lanai->vccs[vci];
1623 if (unlikely(lvcc == NULL)) {
1624 read_unlock(&vcc_sklist_lock);
1625 DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
1626 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1627 if (s & SERVICE_TX)
1628 lanai->stats.service_notx++;
1629 else
1630 lanai->stats.service_norx++;
1631 return 0;
1632 }
1633 if (s & SERVICE_TX) { /* segmentation interrupt */
1634 if (unlikely(lvcc->tx.atmvcc == NULL)) {
1635 read_unlock(&vcc_sklist_lock);
1636 DPRINTK("(itf %d) got service entry 0x%X for non-TX "
1637 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1638 lanai->stats.service_notx++;
1639 return 0;
1640 }
1641 __set_bit(vci, lanai->transmit_ready);
1642 lvcc->tx.endptr = SERVICE_GET_END(s);
1643 read_unlock(&vcc_sklist_lock);
1644 return 1;
1645 }
1646 if (unlikely(lvcc->rx.atmvcc == NULL)) {
1647 read_unlock(&vcc_sklist_lock);
1648 DPRINTK("(itf %d) got service entry 0x%X for non-RX "
1649 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1650 lanai->stats.service_norx++;
1651 return 0;
1652 }
1653 if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
1654 read_unlock(&vcc_sklist_lock);
1655 DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
1656 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1657 lanai->stats.service_rxnotaal5++;
1658 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1659 return 0;
1660 }
1661 if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
1662 vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
1663 read_unlock(&vcc_sklist_lock);
1664 return 0;
1665 }
1666 if (s & SERVICE_TRASH) {
1667 int bytes;
1668 read_unlock(&vcc_sklist_lock);
1669 DPRINTK("got trashed rx pdu on vci %d\n", vci);
1670 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1671 lvcc->stats.x.aal5.service_trash++;
1672 bytes = (SERVICE_GET_END(s) * 16) -
1673 (((unsigned long) lvcc->rx.buf.ptr) -
1674 ((unsigned long) lvcc->rx.buf.start)) + 47;
1675 if (bytes < 0)
1676 bytes += lanai_buf_size(&lvcc->rx.buf);
1677 lanai->stats.ovfl_trash += (bytes / 48);
1678 return 0;
1679 }
1680 if (s & SERVICE_STREAM) {
1681 read_unlock(&vcc_sklist_lock);
1682 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1683 lvcc->stats.x.aal5.service_stream++;
1684 printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
1685 "PDU on VCI %d!\n", lanai->number, vci);
1686 lanai_reset(lanai);
1687 return 0;
1688 }
1689 DPRINTK("got rx crc error on vci %d\n", vci);
1690 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1691 lvcc->stats.x.aal5.service_rxcrc++;
1692 lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
1693 cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
1694 read_unlock(&vcc_sklist_lock);
1695 return 0;
1696}
1697
1698/* Try transmitting on all VCIs that we marked ready to serve */
1699static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
1700{
1701 struct lanai_vcc *lvcc = lanai->vccs[vci];
1702 if (vcc_is_backlogged(lvcc))
1703 lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
1704}
1705
1706/* Run service queue -- called from interrupt context or with
1707 * interrupts otherwise disabled and with the lanai->servicelock
1708 * lock held
1709 */
1710static void run_service(struct lanai_dev *lanai)
1711{
1712 int ntx = 0;
1713 u32 wreg = reg_read(lanai, ServWrite_Reg);
1714 const u32 *end = lanai->service.start + wreg;
1715 while (lanai->service.ptr != end) {
1716 ntx += handle_service(lanai,
1717 le32_to_cpup(lanai->service.ptr++));
1718 if (lanai->service.ptr >= lanai->service.end)
1719 lanai->service.ptr = lanai->service.start;
1720 }
1721 reg_write(lanai, wreg, ServRead_Reg);
1722 if (ntx != 0) {
1723 read_lock(&vcc_sklist_lock);
1724 vci_bitfield_iterate(lanai, lanai->transmit_ready,
1725 iter_transmit);
1726 bitmap_zero(lanai->transmit_ready, NUM_VCI);
1727 read_unlock(&vcc_sklist_lock);
1728 }
1729}
1730
1731/* -------------------- GATHER STATISTICS: */
1732
1733static void get_statistics(struct lanai_dev *lanai)
1734{
1735 u32 statreg = reg_read(lanai, Statistics_Reg);
1736 lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
1737 lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
1738 lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
1739 lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
1740}
1741
1742/* -------------------- POLLING TIMER: */
1743
1744#ifndef DEBUG_RW
1745/* Try to undequeue 1 backlogged vcc */
1746static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
1747{
1748 struct lanai_vcc *lvcc = lanai->vccs[vci];
1749 int endptr;
1750 if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
1751 !vcc_is_backlogged(lvcc)) {
1752 __clear_bit(vci, lanai->backlog_vccs);
1753 return;
1754 }
1755 endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
1756 lvcc->tx.unqueue(lanai, lvcc, endptr);
1757}
1758#endif /* !DEBUG_RW */
1759
1760static void lanai_timed_poll(struct timer_list *t)
1761{
1762 struct lanai_dev *lanai = from_timer(lanai, t, timer);
1763#ifndef DEBUG_RW
1764 unsigned long flags;
1765#ifdef USE_POWERDOWN
1766 if (lanai->conf1 & CONFIG1_POWERDOWN)
1767 return;
1768#endif /* USE_POWERDOWN */
1769 local_irq_save(flags);
1770 /* If we can grab the spinlock, check if any services need to be run */
1771 if (spin_trylock(&lanai->servicelock)) {
1772 run_service(lanai);
1773 spin_unlock(&lanai->servicelock);
1774 }
1775 /* ...and see if any backlogged VCs can make progress */
1776 /* unfortunately linux has no read_trylock() currently */
1777 read_lock(&vcc_sklist_lock);
1778 vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
1779 read_unlock(&vcc_sklist_lock);
1780 local_irq_restore(flags);
1781
1782 get_statistics(lanai);
1783#endif /* !DEBUG_RW */
1784 mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
1785}
1786
1787static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
1788{
1789 timer_setup(&lanai->timer, lanai_timed_poll, 0);
1790 lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
1791 add_timer(&lanai->timer);
1792}
1793
1794static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
1795{
1796 del_timer_sync(&lanai->timer);
1797}
1798
1799/* -------------------- INTERRUPT SERVICE: */
1800
1801static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
1802{
1803 u32 ack = 0;
1804 if (reason & INT_SERVICE) {
1805 ack = INT_SERVICE;
1806 spin_lock(&lanai->servicelock);
1807 run_service(lanai);
1808 spin_unlock(&lanai->servicelock);
1809 }
1810 if (reason & (INT_AAL0_STR | INT_AAL0)) {
1811 ack |= reason & (INT_AAL0_STR | INT_AAL0);
1812 vcc_rx_aal0(lanai);
1813 }
1814 /* The rest of the interrupts are pretty rare */
1815 if (ack == reason)
1816 goto done;
1817 if (reason & INT_STATS) {
1818 reason &= ~INT_STATS; /* No need to ack */
1819 get_statistics(lanai);
1820 }
1821 if (reason & INT_STATUS) {
1822 ack |= reason & INT_STATUS;
1823 lanai_check_status(lanai);
1824 }
1825 if (unlikely(reason & INT_DMASHUT)) {
1826 printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
1827 "shutdown, reason=0x%08X, address=0x%08X\n",
1828 lanai->number, (unsigned int) (reason & INT_DMASHUT),
1829 (unsigned int) reg_read(lanai, DMA_Addr_Reg));
1830 if (reason & INT_TABORTBM) {
1831 lanai_reset(lanai);
1832 return;
1833 }
1834 ack |= (reason & INT_DMASHUT);
1835 printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
1836 lanai->number);
1837 conf1_write(lanai);
1838 lanai->stats.dma_reenable++;
1839 pcistatus_check(lanai, 0);
1840 }
1841 if (unlikely(reason & INT_TABORTSENT)) {
1842 ack |= (reason & INT_TABORTSENT);
1843 printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
1844 lanai->number);
1845 pcistatus_check(lanai, 0);
1846 }
1847 if (unlikely(reason & INT_SEGSHUT)) {
1848 printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1849 "segmentation shutdown, reason=0x%08X\n", lanai->number,
1850 (unsigned int) (reason & INT_SEGSHUT));
1851 lanai_reset(lanai);
1852 return;
1853 }
1854 if (unlikely(reason & (INT_PING | INT_WAKE))) {
1855 printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1856 "unexpected interrupt 0x%08X, resetting\n",
1857 lanai->number,
1858 (unsigned int) (reason & (INT_PING | INT_WAKE)));
1859 lanai_reset(lanai);
1860 return;
1861 }
1862#ifdef DEBUG
1863 if (unlikely(ack != reason)) {
1864 DPRINTK("unacked ints: 0x%08X\n",
1865 (unsigned int) (reason & ~ack));
1866 ack = reason;
1867 }
1868#endif
1869 done:
1870 if (ack != 0)
1871 reg_write(lanai, ack, IntAck_Reg);
1872}
1873
1874static irqreturn_t lanai_int(int irq, void *devid)
1875{
1876 struct lanai_dev *lanai = devid;
1877 u32 reason;
1878
1879#ifdef USE_POWERDOWN
1880 /*
1881 * If we're powered down we shouldn't be generating any interrupts -
1882 * so assume that this is a shared interrupt line and it's for someone
1883 * else
1884 */
1885 if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
1886 return IRQ_NONE;
1887#endif
1888
1889 reason = intr_pending(lanai);
1890 if (reason == 0)
1891 return IRQ_NONE; /* Must be for someone else */
1892
1893 do {
1894 if (unlikely(reason == 0xFFFFFFFF))
1895 break; /* Maybe we've been unplugged? */
1896 lanai_int_1(lanai, reason);
1897 reason = intr_pending(lanai);
1898 } while (reason != 0);
1899
1900 return IRQ_HANDLED;
1901}
1902
1903/* TODO - it would be nice if we could use the "delayed interrupt" system
1904 * to some advantage
1905 */
1906
1907/* -------------------- CHECK BOARD ID/REV: */
1908
1909/*
1910 * The board id and revision are stored both in the reset register and
1911 * in the PCI configuration space - the documentation says to check
1912 * each of them. If revp!=NULL we store the revision there
1913 */
1914static int check_board_id_and_rev(const char *name, u32 val, int *revp)
1915{
1916 DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
1917 (int) RESET_GET_BOARD_ID(val),
1918 (int) RESET_GET_BOARD_REV(val));
1919 if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
1920 printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
1921 "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
1922 return -ENODEV;
1923 }
1924 if (revp != NULL)
1925 *revp = RESET_GET_BOARD_REV(val);
1926 return 0;
1927}
1928
1929/* -------------------- PCI INITIALIZATION/SHUTDOWN: */
1930
1931static int lanai_pci_start(struct lanai_dev *lanai)
1932{
1933 struct pci_dev *pci = lanai->pci;
1934 int result;
1935
1936 if (pci_enable_device(pci) != 0) {
1937 printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
1938 "PCI device", lanai->number);
1939 return -ENXIO;
1940 }
1941 pci_set_master(pci);
1942 if (dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(32)) != 0) {
1943 printk(KERN_WARNING DEV_LABEL
1944 "(itf %d): No suitable DMA available.\n", lanai->number);
1945 return -EBUSY;
1946 }
1947 result = check_board_id_and_rev("PCI", pci->subsystem_device, NULL);
1948 if (result != 0)
1949 return result;
1950 /* Set latency timer to zero as per lanai docs */
1951 result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
1952 if (result != PCIBIOS_SUCCESSFUL) {
1953 printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
1954 "PCI_LATENCY_TIMER: %d\n", lanai->number, result);
1955 return -EINVAL;
1956 }
1957 pcistatus_check(lanai, 1);
1958 pcistatus_check(lanai, 0);
1959 return 0;
1960}
1961
1962/* -------------------- VPI/VCI ALLOCATION: */
1963
1964/*
1965 * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
1966 * get a CBRZERO interrupt), and we can use it only if no one is receiving
1967 * AAL0 traffic (since they will use the same queue) - according to the
1968 * docs we shouldn't even use it for AAL0 traffic
1969 */
1970static inline int vci0_is_ok(struct lanai_dev *lanai,
1971 const struct atm_qos *qos)
1972{
1973 if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
1974 return 0;
1975 if (qos->rxtp.traffic_class != ATM_NONE) {
1976 if (lanai->naal0 != 0)
1977 return 0;
1978 lanai->conf2 |= CONFIG2_VCI0_NORMAL;
1979 conf2_write_if_powerup(lanai);
1980 }
1981 return 1;
1982}
1983
1984/* return true if vci is currently unused, or if requested qos is
1985 * compatible
1986 */
1987static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
1988 const struct atm_vcc *atmvcc)
1989{
1990 const struct atm_qos *qos = &atmvcc->qos;
1991 const struct lanai_vcc *lvcc = lanai->vccs[vci];
1992 if (vci == 0 && !vci0_is_ok(lanai, qos))
1993 return 0;
1994 if (unlikely(lvcc != NULL)) {
1995 if (qos->rxtp.traffic_class != ATM_NONE &&
1996 lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
1997 return 0;
1998 if (qos->txtp.traffic_class != ATM_NONE &&
1999 lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
2000 return 0;
2001 if (qos->txtp.traffic_class == ATM_CBR &&
2002 lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
2003 return 0;
2004 }
2005 if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
2006 qos->rxtp.traffic_class != ATM_NONE) {
2007 const struct lanai_vcc *vci0 = lanai->vccs[0];
2008 if (vci0 != NULL && vci0->rx.atmvcc != NULL)
2009 return 0;
2010 lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
2011 conf2_write_if_powerup(lanai);
2012 }
2013 return 1;
2014}
2015
2016static int lanai_normalize_ci(struct lanai_dev *lanai,
2017 const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
2018{
2019 switch (*vpip) {
2020 case ATM_VPI_ANY:
2021 *vpip = 0;
2022 fallthrough;
2023 case 0:
2024 break;
2025 default:
2026 return -EADDRINUSE;
2027 }
2028 switch (*vcip) {
2029 case ATM_VCI_ANY:
2030 for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
2031 (*vcip)++)
2032 if (vci_is_ok(lanai, *vcip, atmvcc))
2033 return 0;
2034 return -EADDRINUSE;
2035 default:
2036 if (*vcip >= lanai->num_vci || *vcip < 0 ||
2037 !vci_is_ok(lanai, *vcip, atmvcc))
2038 return -EADDRINUSE;
2039 }
2040 return 0;
2041}
2042
2043/* -------------------- MANAGE CBR: */
2044
2045/*
2046 * CBR ICG is stored as a fixed-point number with 4 fractional bits.
2047 * Note that storing a number greater than 2046.0 will result in
2048 * incorrect shaping
2049 */
2050#define CBRICG_FRAC_BITS (4)
2051#define CBRICG_MAX (2046 << CBRICG_FRAC_BITS)
2052
2053/*
2054 * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
2055 * where MAXPCR is (according to the docs) 25600000/(54*8),
2056 * which is equal to (3125<<9)/27.
2057 *
2058 * Solving for ICG, we get:
2059 * ICG = MAXPCR/PCR - 1
2060 * ICG = (3125<<9)/(27*PCR) - 1
2061 * ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
2062 *
2063 * The end result is supposed to be a fixed-point number with FRAC_BITS
2064 * bits of a fractional part, so we keep everything in the numerator
2065 * shifted by that much as we compute
2066 *
2067 */
2068static int pcr_to_cbricg(const struct atm_qos *qos)
2069{
2070 int rounddown = 0; /* 1 = Round PCR down, i.e. round ICG _up_ */
2071 int x, icg, pcr = atm_pcr_goal(&qos->txtp);
2072 if (pcr == 0) /* Use maximum bandwidth */
2073 return 0;
2074 if (pcr < 0) {
2075 rounddown = 1;
2076 pcr = -pcr;
2077 }
2078 x = pcr * 27;
2079 icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
2080 if (rounddown)
2081 icg += x - 1;
2082 icg /= x;
2083 if (icg > CBRICG_MAX)
2084 icg = CBRICG_MAX;
2085 DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
2086 pcr, rounddown ? 'Y' : 'N', icg);
2087 return icg;
2088}
2089
2090static inline void lanai_cbr_setup(struct lanai_dev *lanai)
2091{
2092 reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
2093 reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
2094 lanai->conf2 |= CONFIG2_CBR_ENABLE;
2095 conf2_write(lanai);
2096}
2097
2098static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
2099{
2100 lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
2101 conf2_write(lanai);
2102}
2103
2104/* -------------------- OPERATIONS: */
2105
2106/* setup a newly detected device */
2107static int lanai_dev_open(struct atm_dev *atmdev)
2108{
2109 struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2110 unsigned long raw_base;
2111 int result;
2112
2113 DPRINTK("In lanai_dev_open()\n");
2114 /* Basic device fields */
2115 lanai->number = atmdev->number;
2116 lanai->num_vci = NUM_VCI;
2117 bitmap_zero(lanai->backlog_vccs, NUM_VCI);
2118 bitmap_zero(lanai->transmit_ready, NUM_VCI);
2119 lanai->naal0 = 0;
2120#ifdef USE_POWERDOWN
2121 lanai->nbound = 0;
2122#endif
2123 lanai->cbrvcc = NULL;
2124 memset(&lanai->stats, 0, sizeof lanai->stats);
2125 spin_lock_init(&lanai->endtxlock);
2126 spin_lock_init(&lanai->servicelock);
2127 atmdev->ci_range.vpi_bits = 0;
2128 atmdev->ci_range.vci_bits = 0;
2129 while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
2130 atmdev->ci_range.vci_bits++;
2131 atmdev->link_rate = ATM_25_PCR;
2132
2133 /* 3.2: PCI initialization */
2134 if ((result = lanai_pci_start(lanai)) != 0)
2135 goto error;
2136 raw_base = lanai->pci->resource[0].start;
2137 lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
2138 if (lanai->base == NULL) {
2139 printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
2140 result = -ENOMEM;
2141 goto error_pci;
2142 }
2143 /* 3.3: Reset lanai and PHY */
2144 reset_board(lanai);
2145 lanai->conf1 = reg_read(lanai, Config1_Reg);
2146 lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
2147 CONFIG1_MASK_LEDMODE);
2148 lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
2149 reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2150 udelay(1000);
2151 conf1_write(lanai);
2152
2153 /*
2154 * 3.4: Turn on endian mode for big-endian hardware
2155 * We don't actually want to do this - the actual bit fields
2156 * in the endian register are not documented anywhere.
2157 * Instead we do the bit-flipping ourselves on big-endian
2158 * hardware.
2159 *
2160 * 3.5: get the board ID/rev by reading the reset register
2161 */
2162 result = check_board_id_and_rev("register",
2163 reg_read(lanai, Reset_Reg), &lanai->board_rev);
2164 if (result != 0)
2165 goto error_unmap;
2166
2167 /* 3.6: read EEPROM */
2168 if ((result = eeprom_read(lanai)) != 0)
2169 goto error_unmap;
2170 if ((result = eeprom_validate(lanai)) != 0)
2171 goto error_unmap;
2172
2173 /* 3.7: re-reset PHY, do loopback tests, setup PHY */
2174 reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2175 udelay(1000);
2176 conf1_write(lanai);
2177 /* TODO - loopback tests */
2178 lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
2179 conf1_write(lanai);
2180
2181 /* 3.8/3.9: test and initialize card SRAM */
2182 if ((result = sram_test_and_clear(lanai)) != 0)
2183 goto error_unmap;
2184
2185 /* 3.10: initialize lanai registers */
2186 lanai->conf1 |= CONFIG1_DMA_ENABLE;
2187 conf1_write(lanai);
2188 if ((result = service_buffer_allocate(lanai)) != 0)
2189 goto error_unmap;
2190 if ((result = vcc_table_allocate(lanai)) != 0)
2191 goto error_service;
2192 lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
2193 CONFIG2_HEC_DROP | /* ??? */ CONFIG2_PTI7_MODE;
2194 conf2_write(lanai);
2195 reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
2196 reg_write(lanai, 0, CBR_ICG_Reg); /* CBR defaults to no limit */
2197 if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
2198 DEV_LABEL, lanai)) != 0) {
2199 printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
2200 goto error_vcctable;
2201 }
2202 mb(); /* Make sure that all that made it */
2203 intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
2204 /* 3.11: initialize loop mode (i.e. turn looping off) */
2205 lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
2206 CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
2207 CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
2208 conf1_write(lanai);
2209 lanai->status = reg_read(lanai, Status_Reg);
2210 /* We're now done initializing this card */
2211#ifdef USE_POWERDOWN
2212 lanai->conf1 |= CONFIG1_POWERDOWN;
2213 conf1_write(lanai);
2214#endif
2215 memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
2216 lanai_timed_poll_start(lanai);
2217 printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=%p, irq=%u "
2218 "(%pMF)\n", lanai->number, (int) lanai->pci->revision,
2219 lanai->base, lanai->pci->irq, atmdev->esi);
2220 printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
2221 "board_rev=%d\n", lanai->number,
2222 lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
2223 (unsigned int) lanai->serialno, lanai->board_rev);
2224 return 0;
2225
2226 error_vcctable:
2227 vcc_table_deallocate(lanai);
2228 error_service:
2229 service_buffer_deallocate(lanai);
2230 error_unmap:
2231 reset_board(lanai);
2232#ifdef USE_POWERDOWN
2233 lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
2234 conf1_write(lanai);
2235#endif
2236 iounmap(lanai->base);
2237 error_pci:
2238 pci_disable_device(lanai->pci);
2239 error:
2240 return result;
2241}
2242
2243/* called when device is being shutdown, and all vcc's are gone - higher
2244 * levels will deallocate the atm device for us
2245 */
2246static void lanai_dev_close(struct atm_dev *atmdev)
2247{
2248 struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2249 printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
2250 lanai->number);
2251 lanai_timed_poll_stop(lanai);
2252#ifdef USE_POWERDOWN
2253 lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
2254 conf1_write(lanai);
2255#endif
2256 intr_disable(lanai, INT_ALL);
2257 free_irq(lanai->pci->irq, lanai);
2258 reset_board(lanai);
2259#ifdef USE_POWERDOWN
2260 lanai->conf1 |= CONFIG1_POWERDOWN;
2261 conf1_write(lanai);
2262#endif
2263 pci_disable_device(lanai->pci);
2264 vcc_table_deallocate(lanai);
2265 service_buffer_deallocate(lanai);
2266 iounmap(lanai->base);
2267 kfree(lanai);
2268}
2269
2270/* close a vcc */
2271static void lanai_close(struct atm_vcc *atmvcc)
2272{
2273 struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2274 struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2275 if (lvcc == NULL)
2276 return;
2277 clear_bit(ATM_VF_READY, &atmvcc->flags);
2278 clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
2279 if (lvcc->rx.atmvcc == atmvcc) {
2280 lanai_shutdown_rx_vci(lvcc);
2281 if (atmvcc->qos.aal == ATM_AAL0) {
2282 if (--lanai->naal0 <= 0)
2283 aal0_buffer_free(lanai);
2284 } else
2285 lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
2286 lvcc->rx.atmvcc = NULL;
2287 }
2288 if (lvcc->tx.atmvcc == atmvcc) {
2289 if (atmvcc == lanai->cbrvcc) {
2290 if (lvcc->vbase != NULL)
2291 lanai_cbr_shutdown(lanai);
2292 lanai->cbrvcc = NULL;
2293 }
2294 lanai_shutdown_tx_vci(lanai, lvcc);
2295 lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
2296 lvcc->tx.atmvcc = NULL;
2297 }
2298 if (--lvcc->nref == 0) {
2299 host_vcc_unbind(lanai, lvcc);
2300 kfree(lvcc);
2301 }
2302 atmvcc->dev_data = NULL;
2303 clear_bit(ATM_VF_ADDR, &atmvcc->flags);
2304}
2305
2306/* open a vcc on the card to vpi/vci */
2307static int lanai_open(struct atm_vcc *atmvcc)
2308{
2309 struct lanai_dev *lanai;
2310 struct lanai_vcc *lvcc;
2311 int result = 0;
2312 int vci = atmvcc->vci;
2313 short vpi = atmvcc->vpi;
2314 /* we don't support partial open - it's not really useful anyway */
2315 if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
2316 (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
2317 return -EINVAL;
2318 lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2319 result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
2320 if (unlikely(result != 0))
2321 goto out;
2322 set_bit(ATM_VF_ADDR, &atmvcc->flags);
2323 if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
2324 return -EINVAL;
2325 DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
2326 (int) vpi, vci);
2327 lvcc = lanai->vccs[vci];
2328 if (lvcc == NULL) {
2329 lvcc = new_lanai_vcc();
2330 if (unlikely(lvcc == NULL))
2331 return -ENOMEM;
2332 atmvcc->dev_data = lvcc;
2333 }
2334 lvcc->nref++;
2335 if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
2336 APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
2337 vci);
2338 if (atmvcc->qos.aal == ATM_AAL0) {
2339 if (lanai->naal0 == 0)
2340 result = aal0_buffer_allocate(lanai);
2341 } else
2342 result = lanai_setup_rx_vci_aal5(
2343 lanai, lvcc, &atmvcc->qos);
2344 if (unlikely(result != 0))
2345 goto out_free;
2346 lvcc->rx.atmvcc = atmvcc;
2347 lvcc->stats.rx_nomem = 0;
2348 lvcc->stats.x.aal5.rx_badlen = 0;
2349 lvcc->stats.x.aal5.service_trash = 0;
2350 lvcc->stats.x.aal5.service_stream = 0;
2351 lvcc->stats.x.aal5.service_rxcrc = 0;
2352 if (atmvcc->qos.aal == ATM_AAL0)
2353 lanai->naal0++;
2354 }
2355 if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
2356 APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
2357 vci);
2358 result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
2359 if (unlikely(result != 0))
2360 goto out_free;
2361 lvcc->tx.atmvcc = atmvcc;
2362 if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
2363 APRINTK(lanai->cbrvcc == NULL,
2364 "cbrvcc!=NULL, vci=%d\n", vci);
2365 lanai->cbrvcc = atmvcc;
2366 }
2367 }
2368 host_vcc_bind(lanai, lvcc, vci);
2369 /*
2370 * Make sure everything made it to RAM before we tell the card about
2371 * the VCC
2372 */
2373 wmb();
2374 if (atmvcc == lvcc->rx.atmvcc)
2375 host_vcc_start_rx(lvcc);
2376 if (atmvcc == lvcc->tx.atmvcc) {
2377 host_vcc_start_tx(lvcc);
2378 if (lanai->cbrvcc == atmvcc)
2379 lanai_cbr_setup(lanai);
2380 }
2381 set_bit(ATM_VF_READY, &atmvcc->flags);
2382 return 0;
2383 out_free:
2384 lanai_close(atmvcc);
2385 out:
2386 return result;
2387}
2388
2389static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
2390{
2391 struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2392 struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2393 unsigned long flags;
2394 if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
2395 lvcc->tx.atmvcc != atmvcc))
2396 goto einval;
2397#ifdef DEBUG
2398 if (unlikely(skb == NULL)) {
2399 DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
2400 goto einval;
2401 }
2402 if (unlikely(lanai == NULL)) {
2403 DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
2404 goto einval;
2405 }
2406#endif
2407 ATM_SKB(skb)->vcc = atmvcc;
2408 switch (atmvcc->qos.aal) {
2409 case ATM_AAL5:
2410 read_lock_irqsave(&vcc_sklist_lock, flags);
2411 vcc_tx_aal5(lanai, lvcc, skb);
2412 read_unlock_irqrestore(&vcc_sklist_lock, flags);
2413 return 0;
2414 case ATM_AAL0:
2415 if (unlikely(skb->len != ATM_CELL_SIZE-1))
2416 goto einval;
2417 /* NOTE - this next line is technically invalid - we haven't unshared skb */
2418 cpu_to_be32s((u32 *) skb->data);
2419 read_lock_irqsave(&vcc_sklist_lock, flags);
2420 vcc_tx_aal0(lanai, lvcc, skb);
2421 read_unlock_irqrestore(&vcc_sklist_lock, flags);
2422 return 0;
2423 }
2424 DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
2425 atmvcc->vci);
2426 einval:
2427 lanai_free_skb(atmvcc, skb);
2428 return -EINVAL;
2429}
2430
2431static int lanai_change_qos(struct atm_vcc *atmvcc,
2432 /*const*/ struct atm_qos *qos, int flags)
2433{
2434 return -EBUSY; /* TODO: need to write this */
2435}
2436
2437#ifndef CONFIG_PROC_FS
2438#define lanai_proc_read NULL
2439#else
2440static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
2441{
2442 struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2443 loff_t left = *pos;
2444 struct lanai_vcc *lvcc;
2445 if (left-- == 0)
2446 return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
2447 "serial=%u, magic=0x%08X, num_vci=%d\n",
2448 atmdev->number, lanai->type==lanai2 ? "2" : "HB",
2449 (unsigned int) lanai->serialno,
2450 (unsigned int) lanai->magicno, lanai->num_vci);
2451 if (left-- == 0)
2452 return sprintf(page, "revision: board=%d, pci_if=%d\n",
2453 lanai->board_rev, (int) lanai->pci->revision);
2454 if (left-- == 0)
2455 return sprintf(page, "EEPROM ESI: %pM\n",
2456 &lanai->eeprom[EEPROM_MAC]);
2457 if (left-- == 0)
2458 return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
2459 "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
2460 (lanai->status & STATUS_LOCD) ? 1 : 0,
2461 (lanai->status & STATUS_LED) ? 1 : 0,
2462 (lanai->status & STATUS_GPIN) ? 1 : 0);
2463 if (left-- == 0)
2464 return sprintf(page, "global buffer sizes: service=%zu, "
2465 "aal0_rx=%zu\n", lanai_buf_size(&lanai->service),
2466 lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
2467 if (left-- == 0) {
2468 get_statistics(lanai);
2469 return sprintf(page, "cells in error: overflow=%u, "
2470 "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
2471 lanai->stats.ovfl_trash, lanai->stats.vci_trash,
2472 lanai->stats.hec_err, lanai->stats.atm_ovfl);
2473 }
2474 if (left-- == 0)
2475 return sprintf(page, "PCI errors: parity_detect=%u, "
2476 "master_abort=%u, master_target_abort=%u,\n",
2477 lanai->stats.pcierr_parity_detect,
2478 lanai->stats.pcierr_serr_set,
2479 lanai->stats.pcierr_m_target_abort);
2480 if (left-- == 0)
2481 return sprintf(page, " slave_target_abort=%u, "
2482 "master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
2483 lanai->stats.pcierr_master_parity);
2484 if (left-- == 0)
2485 return sprintf(page, " no_tx=%u, "
2486 "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
2487 lanai->stats.service_notx,
2488 lanai->stats.service_rxnotaal5);
2489 if (left-- == 0)
2490 return sprintf(page, "resets: dma=%u, card=%u\n",
2491 lanai->stats.dma_reenable, lanai->stats.card_reset);
2492 /* At this point, "left" should be the VCI we're looking for */
2493 read_lock(&vcc_sklist_lock);
2494 for (; ; left++) {
2495 if (left >= NUM_VCI) {
2496 left = 0;
2497 goto out;
2498 }
2499 if ((lvcc = lanai->vccs[left]) != NULL)
2500 break;
2501 (*pos)++;
2502 }
2503 /* Note that we re-use "left" here since we're done with it */
2504 left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u", (vci_t) left,
2505 lvcc->nref, lvcc->stats.rx_nomem);
2506 if (lvcc->rx.atmvcc != NULL) {
2507 left += sprintf(&page[left], ",\n rx_AAL=%d",
2508 lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
2509 if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
2510 left += sprintf(&page[left], ", rx_buf_size=%zu, "
2511 "rx_bad_len=%u,\n rx_service_trash=%u, "
2512 "rx_service_stream=%u, rx_bad_crc=%u",
2513 lanai_buf_size(&lvcc->rx.buf),
2514 lvcc->stats.x.aal5.rx_badlen,
2515 lvcc->stats.x.aal5.service_trash,
2516 lvcc->stats.x.aal5.service_stream,
2517 lvcc->stats.x.aal5.service_rxcrc);
2518 }
2519 if (lvcc->tx.atmvcc != NULL)
2520 left += sprintf(&page[left], ",\n tx_AAL=%d, "
2521 "tx_buf_size=%zu, tx_qos=%cBR, tx_backlogged=%c",
2522 lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
2523 lanai_buf_size(&lvcc->tx.buf),
2524 lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
2525 vcc_is_backlogged(lvcc) ? 'Y' : 'N');
2526 page[left++] = '\n';
2527 page[left] = '\0';
2528 out:
2529 read_unlock(&vcc_sklist_lock);
2530 return left;
2531}
2532#endif /* CONFIG_PROC_FS */
2533
2534/* -------------------- HOOKS: */
2535
2536static const struct atmdev_ops ops = {
2537 .dev_close = lanai_dev_close,
2538 .open = lanai_open,
2539 .close = lanai_close,
2540 .send = lanai_send,
2541 .phy_put = NULL,
2542 .phy_get = NULL,
2543 .change_qos = lanai_change_qos,
2544 .proc_read = lanai_proc_read,
2545 .owner = THIS_MODULE
2546};
2547
2548/* initialize one probed card */
2549static int lanai_init_one(struct pci_dev *pci,
2550 const struct pci_device_id *ident)
2551{
2552 struct lanai_dev *lanai;
2553 struct atm_dev *atmdev;
2554 int result;
2555
2556 lanai = kmalloc(sizeof(*lanai), GFP_KERNEL);
2557 if (lanai == NULL) {
2558 printk(KERN_ERR DEV_LABEL
2559 ": couldn't allocate dev_data structure!\n");
2560 return -ENOMEM;
2561 }
2562
2563 atmdev = atm_dev_register(DEV_LABEL, &pci->dev, &ops, -1, NULL);
2564 if (atmdev == NULL) {
2565 printk(KERN_ERR DEV_LABEL
2566 ": couldn't register atm device!\n");
2567 kfree(lanai);
2568 return -EBUSY;
2569 }
2570
2571 atmdev->dev_data = lanai;
2572 lanai->pci = pci;
2573 lanai->type = (enum lanai_type) ident->device;
2574
2575 result = lanai_dev_open(atmdev);
2576 if (result != 0) {
2577 DPRINTK("lanai_start() failed, err=%d\n", -result);
2578 atm_dev_deregister(atmdev);
2579 kfree(lanai);
2580 }
2581 return result;
2582}
2583
2584static const struct pci_device_id lanai_pci_tbl[] = {
2585 { PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAI2) },
2586 { PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAIHB) },
2587 { 0, } /* terminal entry */
2588};
2589MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
2590
2591static struct pci_driver lanai_driver = {
2592 .name = DEV_LABEL,
2593 .id_table = lanai_pci_tbl,
2594 .probe = lanai_init_one,
2595};
2596
2597module_pci_driver(lanai_driver);
2598
2599MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>");
2600MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
2601MODULE_LICENSE("GPL");
1/* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com>
2 *
3 * This program is free software; you can redistribute it and/or
4 * modify it under the terms of the GNU General Public License
5 * as published by the Free Software Foundation; either version
6 * 2 of the License, or (at your option) any later version.
7 *
8 * This driver supports ATM cards based on the Efficient "Lanai"
9 * chipset such as the Speedstream 3010 and the ENI-25p. The
10 * Speedstream 3060 is currently not supported since we don't
11 * have the code to drive the on-board Alcatel DSL chipset (yet).
12 *
13 * Thanks to Efficient for supporting this project with hardware,
14 * documentation, and by answering my questions.
15 *
16 * Things not working yet:
17 *
18 * o We don't support the Speedstream 3060 yet - this card has
19 * an on-board DSL modem chip by Alcatel and the driver will
20 * need some extra code added to handle it
21 *
22 * o Note that due to limitations of the Lanai only one VCC can be
23 * in CBR at once
24 *
25 * o We don't currently parse the EEPROM at all. The code is all
26 * there as per the spec, but it doesn't actually work. I think
27 * there may be some issues with the docs. Anyway, do NOT
28 * enable it yet - bugs in that code may actually damage your
29 * hardware! Because of this you should hardware an ESI before
30 * trying to use this in a LANE or MPOA environment.
31 *
32 * o AAL0 is stubbed in but the actual rx/tx path isn't written yet:
33 * vcc_tx_aal0() needs to send or queue a SKB
34 * vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
35 * vcc_rx_aal0() needs to handle AAL0 interrupts
36 * This isn't too much work - I just wanted to get other things
37 * done first.
38 *
39 * o lanai_change_qos() isn't written yet
40 *
41 * o There aren't any ioctl's yet -- I'd like to eventually support
42 * setting loopback and LED modes that way.
43 *
44 * o If the segmentation engine or DMA gets shut down we should restart
45 * card as per section 17.0i. (see lanai_reset)
46 *
47 * o setsockopt(SO_CIRANGE) isn't done (although despite what the
48 * API says it isn't exactly commonly implemented)
49 */
50
51/* Version history:
52 * v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
53 * v.0.02 -- 11-JAN-2000 -- Endian fixes
54 * v.0.01 -- 30-NOV-1999 -- Initial release
55 */
56
57#include <linux/module.h>
58#include <linux/slab.h>
59#include <linux/mm.h>
60#include <linux/atmdev.h>
61#include <asm/io.h>
62#include <asm/byteorder.h>
63#include <linux/spinlock.h>
64#include <linux/pci.h>
65#include <linux/dma-mapping.h>
66#include <linux/init.h>
67#include <linux/delay.h>
68#include <linux/interrupt.h>
69
70/* -------------------- TUNABLE PARAMATERS: */
71
72/*
73 * Maximum number of VCIs per card. Setting it lower could theoretically
74 * save some memory, but since we allocate our vcc list with get_free_pages,
75 * it's not really likely for most architectures
76 */
77#define NUM_VCI (1024)
78
79/*
80 * Enable extra debugging
81 */
82#define DEBUG
83/*
84 * Debug _all_ register operations with card, except the memory test.
85 * Also disables the timed poll to prevent extra chattiness. This
86 * isn't for normal use
87 */
88#undef DEBUG_RW
89
90/*
91 * The programming guide specifies a full test of the on-board SRAM
92 * at initialization time. Undefine to remove this
93 */
94#define FULL_MEMORY_TEST
95
96/*
97 * This is the number of (4 byte) service entries that we will
98 * try to allocate at startup. Note that we will end up with
99 * one PAGE_SIZE's worth regardless of what this is set to
100 */
101#define SERVICE_ENTRIES (1024)
102/* TODO: make above a module load-time option */
103
104/*
105 * We normally read the onboard EEPROM in order to discover our MAC
106 * address. Undefine to _not_ do this
107 */
108/* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
109/* TODO: make above a module load-time option (also) */
110
111/*
112 * Depth of TX fifo (in 128 byte units; range 2-31)
113 * Smaller numbers are better for network latency
114 * Larger numbers are better for PCI latency
115 * I'm really sure where the best tradeoff is, but the BSD driver uses
116 * 7 and it seems to work ok.
117 */
118#define TX_FIFO_DEPTH (7)
119/* TODO: make above a module load-time option */
120
121/*
122 * How often (in jiffies) we will try to unstick stuck connections -
123 * shouldn't need to happen much
124 */
125#define LANAI_POLL_PERIOD (10*HZ)
126/* TODO: make above a module load-time option */
127
128/*
129 * When allocating an AAL5 receiving buffer, try to make it at least
130 * large enough to hold this many max_sdu sized PDUs
131 */
132#define AAL5_RX_MULTIPLIER (3)
133/* TODO: make above a module load-time option */
134
135/*
136 * Same for transmitting buffer
137 */
138#define AAL5_TX_MULTIPLIER (3)
139/* TODO: make above a module load-time option */
140
141/*
142 * When allocating an AAL0 transmiting buffer, how many cells should fit.
143 * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
144 * really critical
145 */
146#define AAL0_TX_MULTIPLIER (40)
147/* TODO: make above a module load-time option */
148
149/*
150 * How large should we make the AAL0 receiving buffer. Remember that this
151 * is shared between all AAL0 VC's
152 */
153#define AAL0_RX_BUFFER_SIZE (PAGE_SIZE)
154/* TODO: make above a module load-time option */
155
156/*
157 * Should we use Lanai's "powerdown" feature when no vcc's are bound?
158 */
159/* #define USE_POWERDOWN */
160/* TODO: make above a module load-time option (also) */
161
162/* -------------------- DEBUGGING AIDS: */
163
164#define DEV_LABEL "lanai"
165
166#ifdef DEBUG
167
168#define DPRINTK(format, args...) \
169 printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
170#define APRINTK(truth, format, args...) \
171 do { \
172 if (unlikely(!(truth))) \
173 printk(KERN_ERR DEV_LABEL ": " format, ##args); \
174 } while (0)
175
176#else /* !DEBUG */
177
178#define DPRINTK(format, args...)
179#define APRINTK(truth, format, args...)
180
181#endif /* DEBUG */
182
183#ifdef DEBUG_RW
184#define RWDEBUG(format, args...) \
185 printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
186#else /* !DEBUG_RW */
187#define RWDEBUG(format, args...)
188#endif
189
190/* -------------------- DATA DEFINITIONS: */
191
192#define LANAI_MAPPING_SIZE (0x40000)
193#define LANAI_EEPROM_SIZE (128)
194
195typedef int vci_t;
196typedef void __iomem *bus_addr_t;
197
198/* DMA buffer in host memory for TX, RX, or service list. */
199struct lanai_buffer {
200 u32 *start; /* From get_free_pages */
201 u32 *end; /* One past last byte */
202 u32 *ptr; /* Pointer to current host location */
203 dma_addr_t dmaaddr;
204};
205
206struct lanai_vcc_stats {
207 unsigned rx_nomem;
208 union {
209 struct {
210 unsigned rx_badlen;
211 unsigned service_trash;
212 unsigned service_stream;
213 unsigned service_rxcrc;
214 } aal5;
215 struct {
216 } aal0;
217 } x;
218};
219
220struct lanai_dev; /* Forward declaration */
221
222/*
223 * This is the card-specific per-vcc data. Note that unlike some other
224 * drivers there is NOT a 1-to-1 correspondance between these and
225 * atm_vcc's - each one of these represents an actual 2-way vcc, but
226 * an atm_vcc can be 1-way and share with a 1-way vcc in the other
227 * direction. To make it weirder, there can even be 0-way vccs
228 * bound to us, waiting to do a change_qos
229 */
230struct lanai_vcc {
231 bus_addr_t vbase; /* Base of VCC's registers */
232 struct lanai_vcc_stats stats;
233 int nref; /* # of atm_vcc's who reference us */
234 vci_t vci;
235 struct {
236 struct lanai_buffer buf;
237 struct atm_vcc *atmvcc; /* atm_vcc who is receiver */
238 } rx;
239 struct {
240 struct lanai_buffer buf;
241 struct atm_vcc *atmvcc; /* atm_vcc who is transmitter */
242 int endptr; /* last endptr from service entry */
243 struct sk_buff_head backlog;
244 void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
245 } tx;
246};
247
248enum lanai_type {
249 lanai2 = PCI_DEVICE_ID_EF_ATM_LANAI2,
250 lanaihb = PCI_DEVICE_ID_EF_ATM_LANAIHB
251};
252
253struct lanai_dev_stats {
254 unsigned ovfl_trash; /* # of cells dropped - buffer overflow */
255 unsigned vci_trash; /* # of cells dropped - closed vci */
256 unsigned hec_err; /* # of cells dropped - bad HEC */
257 unsigned atm_ovfl; /* # of cells dropped - rx fifo overflow */
258 unsigned pcierr_parity_detect;
259 unsigned pcierr_serr_set;
260 unsigned pcierr_master_abort;
261 unsigned pcierr_m_target_abort;
262 unsigned pcierr_s_target_abort;
263 unsigned pcierr_master_parity;
264 unsigned service_notx;
265 unsigned service_norx;
266 unsigned service_rxnotaal5;
267 unsigned dma_reenable;
268 unsigned card_reset;
269};
270
271struct lanai_dev {
272 bus_addr_t base;
273 struct lanai_dev_stats stats;
274 struct lanai_buffer service;
275 struct lanai_vcc **vccs;
276#ifdef USE_POWERDOWN
277 int nbound; /* number of bound vccs */
278#endif
279 enum lanai_type type;
280 vci_t num_vci; /* Currently just NUM_VCI */
281 u8 eeprom[LANAI_EEPROM_SIZE];
282 u32 serialno, magicno;
283 struct pci_dev *pci;
284 DECLARE_BITMAP(backlog_vccs, NUM_VCI); /* VCCs with tx backlog */
285 DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
286 struct timer_list timer;
287 int naal0;
288 struct lanai_buffer aal0buf; /* AAL0 RX buffers */
289 u32 conf1, conf2; /* CONFIG[12] registers */
290 u32 status; /* STATUS register */
291 spinlock_t endtxlock;
292 spinlock_t servicelock;
293 struct atm_vcc *cbrvcc;
294 int number;
295 int board_rev;
296/* TODO - look at race conditions with maintence of conf1/conf2 */
297/* TODO - transmit locking: should we use _irq not _irqsave? */
298/* TODO - organize above in some rational fashion (see <asm/cache.h>) */
299};
300
301/*
302 * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
303 * This function iterates one of these, calling a given function for each
304 * vci with their bit set
305 */
306static void vci_bitfield_iterate(struct lanai_dev *lanai,
307 const unsigned long *lp,
308 void (*func)(struct lanai_dev *,vci_t vci))
309{
310 vci_t vci;
311
312 for_each_set_bit(vci, lp, NUM_VCI)
313 func(lanai, vci);
314}
315
316/* -------------------- BUFFER UTILITIES: */
317
318/*
319 * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
320 * usually any page allocation will do. Just to be safe in case
321 * PAGE_SIZE is insanely tiny, though...
322 */
323#define LANAI_PAGE_SIZE ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
324
325/*
326 * Allocate a buffer in host RAM for service list, RX, or TX
327 * Returns buf->start==NULL if no memory
328 * Note that the size will be rounded up 2^n bytes, and
329 * if we can't allocate that we'll settle for something smaller
330 * until minbytes
331 */
332static void lanai_buf_allocate(struct lanai_buffer *buf,
333 size_t bytes, size_t minbytes, struct pci_dev *pci)
334{
335 int size;
336
337 if (bytes > (128 * 1024)) /* max lanai buffer size */
338 bytes = 128 * 1024;
339 for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
340 ;
341 if (minbytes < LANAI_PAGE_SIZE)
342 minbytes = LANAI_PAGE_SIZE;
343 do {
344 /*
345 * Technically we could use non-consistent mappings for
346 * everything, but the way the lanai uses DMA memory would
347 * make that a terrific pain. This is much simpler.
348 */
349 buf->start = pci_alloc_consistent(pci, size, &buf->dmaaddr);
350 if (buf->start != NULL) { /* Success */
351 /* Lanai requires 256-byte alignment of DMA bufs */
352 APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
353 "bad dmaaddr: 0x%lx\n",
354 (unsigned long) buf->dmaaddr);
355 buf->ptr = buf->start;
356 buf->end = (u32 *)
357 (&((unsigned char *) buf->start)[size]);
358 memset(buf->start, 0, size);
359 break;
360 }
361 size /= 2;
362 } while (size >= minbytes);
363}
364
365/* size of buffer in bytes */
366static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
367{
368 return ((unsigned long) buf->end) - ((unsigned long) buf->start);
369}
370
371static void lanai_buf_deallocate(struct lanai_buffer *buf,
372 struct pci_dev *pci)
373{
374 if (buf->start != NULL) {
375 pci_free_consistent(pci, lanai_buf_size(buf),
376 buf->start, buf->dmaaddr);
377 buf->start = buf->end = buf->ptr = NULL;
378 }
379}
380
381/* size of buffer as "card order" (0=1k .. 7=128k) */
382static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
383{
384 int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
385
386 /* This can only happen if PAGE_SIZE is gigantic, but just in case */
387 if (order > 7)
388 order = 7;
389 return order;
390}
391
392/* -------------------- PORT I/O UTILITIES: */
393
394/* Registers (and their bit-fields) */
395enum lanai_register {
396 Reset_Reg = 0x00, /* Reset; read for chip type; bits: */
397#define RESET_GET_BOARD_REV(x) (((x)>> 0)&0x03) /* Board revision */
398#define RESET_GET_BOARD_ID(x) (((x)>> 2)&0x03) /* Board ID */
399#define BOARD_ID_LANAI256 (0) /* 25.6M adapter card */
400 Endian_Reg = 0x04, /* Endian setting */
401 IntStatus_Reg = 0x08, /* Interrupt status */
402 IntStatusMasked_Reg = 0x0C, /* Interrupt status (masked) */
403 IntAck_Reg = 0x10, /* Interrupt acknowledge */
404 IntAckMasked_Reg = 0x14, /* Interrupt acknowledge (masked) */
405 IntStatusSet_Reg = 0x18, /* Get status + enable/disable */
406 IntStatusSetMasked_Reg = 0x1C, /* Get status + en/di (masked) */
407 IntControlEna_Reg = 0x20, /* Interrupt control enable */
408 IntControlDis_Reg = 0x24, /* Interrupt control disable */
409 Status_Reg = 0x28, /* Status */
410#define STATUS_PROMDATA (0x00000001) /* PROM_DATA pin */
411#define STATUS_WAITING (0x00000002) /* Interrupt being delayed */
412#define STATUS_SOOL (0x00000004) /* SOOL alarm */
413#define STATUS_LOCD (0x00000008) /* LOCD alarm */
414#define STATUS_LED (0x00000010) /* LED (HAPPI) output */
415#define STATUS_GPIN (0x00000020) /* GPIN pin */
416#define STATUS_BUTTBUSY (0x00000040) /* Butt register is pending */
417 Config1_Reg = 0x2C, /* Config word 1; bits: */
418#define CONFIG1_PROMDATA (0x00000001) /* PROM_DATA pin */
419#define CONFIG1_PROMCLK (0x00000002) /* PROM_CLK pin */
420#define CONFIG1_SET_READMODE(x) ((x)*0x004) /* PCI BM reads; values: */
421#define READMODE_PLAIN (0) /* Plain memory read */
422#define READMODE_LINE (2) /* Memory read line */
423#define READMODE_MULTIPLE (3) /* Memory read multiple */
424#define CONFIG1_DMA_ENABLE (0x00000010) /* Turn on DMA */
425#define CONFIG1_POWERDOWN (0x00000020) /* Turn off clocks */
426#define CONFIG1_SET_LOOPMODE(x) ((x)*0x080) /* Clock&loop mode; values: */
427#define LOOPMODE_NORMAL (0) /* Normal - no loop */
428#define LOOPMODE_TIME (1)
429#define LOOPMODE_DIAG (2)
430#define LOOPMODE_LINE (3)
431#define CONFIG1_MASK_LOOPMODE (0x00000180)
432#define CONFIG1_SET_LEDMODE(x) ((x)*0x0200) /* Mode of LED; values: */
433#define LEDMODE_NOT_SOOL (0) /* !SOOL */
434#define LEDMODE_OFF (1) /* 0 */
435#define LEDMODE_ON (2) /* 1 */
436#define LEDMODE_NOT_LOCD (3) /* !LOCD */
437#define LEDMORE_GPIN (4) /* GPIN */
438#define LEDMODE_NOT_GPIN (7) /* !GPIN */
439#define CONFIG1_MASK_LEDMODE (0x00000E00)
440#define CONFIG1_GPOUT1 (0x00001000) /* Toggle for reset */
441#define CONFIG1_GPOUT2 (0x00002000) /* Loopback PHY */
442#define CONFIG1_GPOUT3 (0x00004000) /* Loopback lanai */
443 Config2_Reg = 0x30, /* Config word 2; bits: */
444#define CONFIG2_HOWMANY (0x00000001) /* >512 VCIs? */
445#define CONFIG2_PTI7_MODE (0x00000002) /* Make PTI=7 RM, not OAM */
446#define CONFIG2_VPI_CHK_DIS (0x00000004) /* Ignore RX VPI value */
447#define CONFIG2_HEC_DROP (0x00000008) /* Drop cells w/ HEC errors */
448#define CONFIG2_VCI0_NORMAL (0x00000010) /* Treat VCI=0 normally */
449#define CONFIG2_CBR_ENABLE (0x00000020) /* Deal with CBR traffic */
450#define CONFIG2_TRASH_ALL (0x00000040) /* Trashing incoming cells */
451#define CONFIG2_TX_DISABLE (0x00000080) /* Trashing outgoing cells */
452#define CONFIG2_SET_TRASH (0x00000100) /* Turn trashing on */
453 Statistics_Reg = 0x34, /* Statistics; bits: */
454#define STATS_GET_FIFO_OVFL(x) (((x)>> 0)&0xFF) /* FIFO overflowed */
455#define STATS_GET_HEC_ERR(x) (((x)>> 8)&0xFF) /* HEC was bad */
456#define STATS_GET_BAD_VCI(x) (((x)>>16)&0xFF) /* VCI not open */
457#define STATS_GET_BUF_OVFL(x) (((x)>>24)&0xFF) /* VCC buffer full */
458 ServiceStuff_Reg = 0x38, /* Service stuff; bits: */
459#define SSTUFF_SET_SIZE(x) ((x)*0x20000000) /* size of service buffer */
460#define SSTUFF_SET_ADDR(x) ((x)>>8) /* set address of buffer */
461 ServWrite_Reg = 0x3C, /* ServWrite Pointer */
462 ServRead_Reg = 0x40, /* ServRead Pointer */
463 TxDepth_Reg = 0x44, /* FIFO Transmit Depth */
464 Butt_Reg = 0x48, /* Butt register */
465 CBR_ICG_Reg = 0x50,
466 CBR_PTR_Reg = 0x54,
467 PingCount_Reg = 0x58, /* Ping count */
468 DMA_Addr_Reg = 0x5C /* DMA address */
469};
470
471static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
472 enum lanai_register reg)
473{
474 return lanai->base + reg;
475}
476
477static inline u32 reg_read(const struct lanai_dev *lanai,
478 enum lanai_register reg)
479{
480 u32 t;
481 t = readl(reg_addr(lanai, reg));
482 RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
483 (int) reg, t);
484 return t;
485}
486
487static inline void reg_write(const struct lanai_dev *lanai, u32 val,
488 enum lanai_register reg)
489{
490 RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
491 (int) reg, val);
492 writel(val, reg_addr(lanai, reg));
493}
494
495static inline void conf1_write(const struct lanai_dev *lanai)
496{
497 reg_write(lanai, lanai->conf1, Config1_Reg);
498}
499
500static inline void conf2_write(const struct lanai_dev *lanai)
501{
502 reg_write(lanai, lanai->conf2, Config2_Reg);
503}
504
505/* Same as conf2_write(), but defers I/O if we're powered down */
506static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
507{
508#ifdef USE_POWERDOWN
509 if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
510 return;
511#endif /* USE_POWERDOWN */
512 conf2_write(lanai);
513}
514
515static inline void reset_board(const struct lanai_dev *lanai)
516{
517 DPRINTK("about to reset board\n");
518 reg_write(lanai, 0, Reset_Reg);
519 /*
520 * If we don't delay a little while here then we can end up
521 * leaving the card in a VERY weird state and lock up the
522 * PCI bus. This isn't documented anywhere but I've convinced
523 * myself after a lot of painful experimentation
524 */
525 udelay(5);
526}
527
528/* -------------------- CARD SRAM UTILITIES: */
529
530/* The SRAM is mapped into normal PCI memory space - the only catch is
531 * that it is only 16-bits wide but must be accessed as 32-bit. The
532 * 16 high bits will be zero. We don't hide this, since they get
533 * programmed mostly like discrete registers anyway
534 */
535#define SRAM_START (0x20000)
536#define SRAM_BYTES (0x20000) /* Again, half don't really exist */
537
538static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
539{
540 return lanai->base + SRAM_START + offset;
541}
542
543static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
544{
545 return readl(sram_addr(lanai, offset));
546}
547
548static inline void sram_write(const struct lanai_dev *lanai,
549 u32 val, int offset)
550{
551 writel(val, sram_addr(lanai, offset));
552}
553
554static int __devinit sram_test_word(const struct lanai_dev *lanai,
555 int offset, u32 pattern)
556{
557 u32 readback;
558 sram_write(lanai, pattern, offset);
559 readback = sram_read(lanai, offset);
560 if (likely(readback == pattern))
561 return 0;
562 printk(KERN_ERR DEV_LABEL
563 "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
564 lanai->number, offset,
565 (unsigned int) pattern, (unsigned int) readback);
566 return -EIO;
567}
568
569static int __devinit sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
570{
571 int offset, result = 0;
572 for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
573 result = sram_test_word(lanai, offset, pattern);
574 return result;
575}
576
577static int __devinit sram_test_and_clear(const struct lanai_dev *lanai)
578{
579#ifdef FULL_MEMORY_TEST
580 int result;
581 DPRINTK("testing SRAM\n");
582 if ((result = sram_test_pass(lanai, 0x5555)) != 0)
583 return result;
584 if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
585 return result;
586#endif
587 DPRINTK("clearing SRAM\n");
588 return sram_test_pass(lanai, 0x0000);
589}
590
591/* -------------------- CARD-BASED VCC TABLE UTILITIES: */
592
593/* vcc table */
594enum lanai_vcc_offset {
595 vcc_rxaddr1 = 0x00, /* Location1, plus bits: */
596#define RXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of RX buffer */
597#define RXADDR1_SET_RMMODE(x) ((x)*0x00800) /* RM cell action; values: */
598#define RMMODE_TRASH (0) /* discard */
599#define RMMODE_PRESERVE (1) /* input as AAL0 */
600#define RMMODE_PIPE (2) /* pipe to coscheduler */
601#define RMMODE_PIPEALL (3) /* pipe non-RM too */
602#define RXADDR1_OAM_PRESERVE (0x00002000) /* Input OAM cells as AAL0 */
603#define RXADDR1_SET_MODE(x) ((x)*0x0004000) /* Reassembly mode */
604#define RXMODE_TRASH (0) /* discard */
605#define RXMODE_AAL0 (1) /* non-AAL5 mode */
606#define RXMODE_AAL5 (2) /* AAL5, intr. each PDU */
607#define RXMODE_AAL5_STREAM (3) /* AAL5 w/o per-PDU intr */
608 vcc_rxaddr2 = 0x04, /* Location2 */
609 vcc_rxcrc1 = 0x08, /* RX CRC claculation space */
610 vcc_rxcrc2 = 0x0C,
611 vcc_rxwriteptr = 0x10, /* RX writeptr, plus bits: */
612#define RXWRITEPTR_LASTEFCI (0x00002000) /* Last PDU had EFCI bit */
613#define RXWRITEPTR_DROPPING (0x00004000) /* Had error, dropping */
614#define RXWRITEPTR_TRASHING (0x00008000) /* Trashing */
615 vcc_rxbufstart = 0x14, /* RX bufstart, plus bits: */
616#define RXBUFSTART_CLP (0x00004000)
617#define RXBUFSTART_CI (0x00008000)
618 vcc_rxreadptr = 0x18, /* RX readptr */
619 vcc_txicg = 0x1C, /* TX ICG */
620 vcc_txaddr1 = 0x20, /* Location1, plus bits: */
621#define TXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of TX buffer */
622#define TXADDR1_ABR (0x00008000) /* use ABR (doesn't work) */
623 vcc_txaddr2 = 0x24, /* Location2 */
624 vcc_txcrc1 = 0x28, /* TX CRC claculation space */
625 vcc_txcrc2 = 0x2C,
626 vcc_txreadptr = 0x30, /* TX Readptr, plus bits: */
627#define TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
628#define TXREADPTR_MASK_DELTA (0x0000E000) /* ? */
629 vcc_txendptr = 0x34, /* TX Endptr, plus bits: */
630#define TXENDPTR_CLP (0x00002000)
631#define TXENDPTR_MASK_PDUMODE (0x0000C000) /* PDU mode; values: */
632#define PDUMODE_AAL0 (0*0x04000)
633#define PDUMODE_AAL5 (2*0x04000)
634#define PDUMODE_AAL5STREAM (3*0x04000)
635 vcc_txwriteptr = 0x38, /* TX Writeptr */
636#define TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
637 vcc_txcbr_next = 0x3C /* # of next CBR VCI in ring */
638#define TXCBR_NEXT_BOZO (0x00008000) /* "bozo bit" */
639};
640
641#define CARDVCC_SIZE (0x40)
642
643static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
644 vci_t vci)
645{
646 return sram_addr(lanai, vci * CARDVCC_SIZE);
647}
648
649static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
650 enum lanai_vcc_offset offset)
651{
652 u32 val;
653 APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
654 val= readl(lvcc->vbase + offset);
655 RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
656 lvcc->vci, (int) offset, val);
657 return val;
658}
659
660static inline void cardvcc_write(const struct lanai_vcc *lvcc,
661 u32 val, enum lanai_vcc_offset offset)
662{
663 APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
664 APRINTK((val & ~0xFFFF) == 0,
665 "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
666 (unsigned int) val, lvcc->vci, (unsigned int) offset);
667 RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
668 lvcc->vci, (unsigned int) offset, (unsigned int) val);
669 writel(val, lvcc->vbase + offset);
670}
671
672/* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
673
674/* How many bytes will an AAL5 PDU take to transmit - remember that:
675 * o we need to add 8 bytes for length, CPI, UU, and CRC
676 * o we need to round up to 48 bytes for cells
677 */
678static inline int aal5_size(int size)
679{
680 int cells = (size + 8 + 47) / 48;
681 return cells * 48;
682}
683
684/* How many bytes can we send if we have "space" space, assuming we have
685 * to send full cells
686 */
687static inline int aal5_spacefor(int space)
688{
689 int cells = space / 48;
690 return cells * 48;
691}
692
693/* -------------------- FREE AN ATM SKB: */
694
695static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
696{
697 if (atmvcc->pop != NULL)
698 atmvcc->pop(atmvcc, skb);
699 else
700 dev_kfree_skb_any(skb);
701}
702
703/* -------------------- TURN VCCS ON AND OFF: */
704
705static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
706{
707 u32 addr1;
708 if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
709 dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
710 cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
711 cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
712 cardvcc_write(lvcc, 0, vcc_rxwriteptr);
713 cardvcc_write(lvcc, 0, vcc_rxbufstart);
714 cardvcc_write(lvcc, 0, vcc_rxreadptr);
715 cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
716 addr1 = ((dmaaddr >> 8) & 0xFF) |
717 RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
718 RXADDR1_SET_RMMODE(RMMODE_TRASH) | /* ??? */
719 /* RXADDR1_OAM_PRESERVE | --- no OAM support yet */
720 RXADDR1_SET_MODE(RXMODE_AAL5);
721 } else
722 addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
723 RXADDR1_OAM_PRESERVE | /* ??? */
724 RXADDR1_SET_MODE(RXMODE_AAL0);
725 /* This one must be last! */
726 cardvcc_write(lvcc, addr1, vcc_rxaddr1);
727}
728
729static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
730{
731 dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
732 cardvcc_write(lvcc, 0, vcc_txicg);
733 cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
734 cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
735 cardvcc_write(lvcc, 0, vcc_txreadptr);
736 cardvcc_write(lvcc, 0, vcc_txendptr);
737 cardvcc_write(lvcc, 0, vcc_txwriteptr);
738 cardvcc_write(lvcc,
739 (lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
740 TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
741 cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
742 cardvcc_write(lvcc,
743 ((dmaaddr >> 8) & 0xFF) |
744 TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
745 vcc_txaddr1);
746}
747
748/* Shutdown receiving on card */
749static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
750{
751 if (lvcc->vbase == NULL) /* We were never bound to a VCI */
752 return;
753 /* 15.1.1 - set to trashing, wait one cell time (15us) */
754 cardvcc_write(lvcc,
755 RXADDR1_SET_RMMODE(RMMODE_TRASH) |
756 RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
757 udelay(15);
758 /* 15.1.2 - clear rest of entries */
759 cardvcc_write(lvcc, 0, vcc_rxaddr2);
760 cardvcc_write(lvcc, 0, vcc_rxcrc1);
761 cardvcc_write(lvcc, 0, vcc_rxcrc2);
762 cardvcc_write(lvcc, 0, vcc_rxwriteptr);
763 cardvcc_write(lvcc, 0, vcc_rxbufstart);
764 cardvcc_write(lvcc, 0, vcc_rxreadptr);
765}
766
767/* Shutdown transmitting on card.
768 * Unfortunately the lanai needs us to wait until all the data
769 * drains out of the buffer before we can dealloc it, so this
770 * can take awhile -- up to 370ms for a full 128KB buffer
771 * assuming everone else is quiet. In theory the time is
772 * boundless if there's a CBR VCC holding things up.
773 */
774static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
775 struct lanai_vcc *lvcc)
776{
777 struct sk_buff *skb;
778 unsigned long flags, timeout;
779 int read, write, lastread = -1;
780 APRINTK(!in_interrupt(),
781 "lanai_shutdown_tx_vci called w/o process context!\n");
782 if (lvcc->vbase == NULL) /* We were never bound to a VCI */
783 return;
784 /* 15.2.1 - wait for queue to drain */
785 while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
786 lanai_free_skb(lvcc->tx.atmvcc, skb);
787 read_lock_irqsave(&vcc_sklist_lock, flags);
788 __clear_bit(lvcc->vci, lanai->backlog_vccs);
789 read_unlock_irqrestore(&vcc_sklist_lock, flags);
790 /*
791 * We need to wait for the VCC to drain but don't wait forever. We
792 * give each 1K of buffer size 1/128th of a second to clear out.
793 * TODO: maybe disable CBR if we're about to timeout?
794 */
795 timeout = jiffies +
796 (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
797 write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
798 for (;;) {
799 read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
800 if (read == write && /* Is TX buffer empty? */
801 (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
802 (cardvcc_read(lvcc, vcc_txcbr_next) &
803 TXCBR_NEXT_BOZO) == 0))
804 break;
805 if (read != lastread) { /* Has there been any progress? */
806 lastread = read;
807 timeout += HZ / 10;
808 }
809 if (unlikely(time_after(jiffies, timeout))) {
810 printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
811 "backlog closing vci %d\n",
812 lvcc->tx.atmvcc->dev->number, lvcc->vci);
813 DPRINTK("read, write = %d, %d\n", read, write);
814 break;
815 }
816 msleep(40);
817 }
818 /* 15.2.2 - clear out all tx registers */
819 cardvcc_write(lvcc, 0, vcc_txreadptr);
820 cardvcc_write(lvcc, 0, vcc_txwriteptr);
821 cardvcc_write(lvcc, 0, vcc_txendptr);
822 cardvcc_write(lvcc, 0, vcc_txcrc1);
823 cardvcc_write(lvcc, 0, vcc_txcrc2);
824 cardvcc_write(lvcc, 0, vcc_txaddr2);
825 cardvcc_write(lvcc, 0, vcc_txaddr1);
826}
827
828/* -------------------- MANAGING AAL0 RX BUFFER: */
829
830static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
831{
832 DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
833 lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
834 lanai->pci);
835 return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
836}
837
838static inline void aal0_buffer_free(struct lanai_dev *lanai)
839{
840 DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
841 lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
842}
843
844/* -------------------- EEPROM UTILITIES: */
845
846/* Offsets of data in the EEPROM */
847#define EEPROM_COPYRIGHT (0)
848#define EEPROM_COPYRIGHT_LEN (44)
849#define EEPROM_CHECKSUM (62)
850#define EEPROM_CHECKSUM_REV (63)
851#define EEPROM_MAC (64)
852#define EEPROM_MAC_REV (70)
853#define EEPROM_SERIAL (112)
854#define EEPROM_SERIAL_REV (116)
855#define EEPROM_MAGIC (120)
856#define EEPROM_MAGIC_REV (124)
857
858#define EEPROM_MAGIC_VALUE (0x5AB478D2)
859
860#ifndef READ_EEPROM
861
862/* Stub functions to use if EEPROM reading is disabled */
863static int __devinit eeprom_read(struct lanai_dev *lanai)
864{
865 printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
866 lanai->number);
867 memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
868 return 0;
869}
870
871static int __devinit eeprom_validate(struct lanai_dev *lanai)
872{
873 lanai->serialno = 0;
874 lanai->magicno = EEPROM_MAGIC_VALUE;
875 return 0;
876}
877
878#else /* READ_EEPROM */
879
880static int __devinit eeprom_read(struct lanai_dev *lanai)
881{
882 int i, address;
883 u8 data;
884 u32 tmp;
885#define set_config1(x) do { lanai->conf1 = x; conf1_write(lanai); \
886 } while (0)
887#define clock_h() set_config1(lanai->conf1 | CONFIG1_PROMCLK)
888#define clock_l() set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
889#define data_h() set_config1(lanai->conf1 | CONFIG1_PROMDATA)
890#define data_l() set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
891#define pre_read() do { data_h(); clock_h(); udelay(5); } while (0)
892#define read_pin() (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
893#define send_stop() do { data_l(); udelay(5); clock_h(); udelay(5); \
894 data_h(); udelay(5); } while (0)
895 /* start with both clock and data high */
896 data_h(); clock_h(); udelay(5);
897 for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
898 data = (address << 1) | 1; /* Command=read + address */
899 /* send start bit */
900 data_l(); udelay(5);
901 clock_l(); udelay(5);
902 for (i = 128; i != 0; i >>= 1) { /* write command out */
903 tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
904 ((data & i) ? CONFIG1_PROMDATA : 0);
905 if (lanai->conf1 != tmp) {
906 set_config1(tmp);
907 udelay(5); /* Let new data settle */
908 }
909 clock_h(); udelay(5); clock_l(); udelay(5);
910 }
911 /* look for ack */
912 data_h(); clock_h(); udelay(5);
913 if (read_pin() != 0)
914 goto error; /* No ack seen */
915 clock_l(); udelay(5);
916 /* read back result */
917 for (data = 0, i = 7; i >= 0; i--) {
918 data_h(); clock_h(); udelay(5);
919 data = (data << 1) | !!read_pin();
920 clock_l(); udelay(5);
921 }
922 /* look again for ack */
923 data_h(); clock_h(); udelay(5);
924 if (read_pin() == 0)
925 goto error; /* Spurious ack */
926 clock_l(); udelay(5);
927 send_stop();
928 lanai->eeprom[address] = data;
929 DPRINTK("EEPROM 0x%04X %02X\n",
930 (unsigned int) address, (unsigned int) data);
931 }
932 return 0;
933 error:
934 clock_l(); udelay(5); /* finish read */
935 send_stop();
936 printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
937 lanai->number, address);
938 return -EIO;
939#undef set_config1
940#undef clock_h
941#undef clock_l
942#undef data_h
943#undef data_l
944#undef pre_read
945#undef read_pin
946#undef send_stop
947}
948
949/* read a big-endian 4-byte value out of eeprom */
950static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
951{
952 return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
953}
954
955/* Checksum/validate EEPROM contents */
956static int __devinit eeprom_validate(struct lanai_dev *lanai)
957{
958 int i, s;
959 u32 v;
960 const u8 *e = lanai->eeprom;
961#ifdef DEBUG
962 /* First, see if we can get an ASCIIZ string out of the copyright */
963 for (i = EEPROM_COPYRIGHT;
964 i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
965 if (e[i] < 0x20 || e[i] > 0x7E)
966 break;
967 if ( i != EEPROM_COPYRIGHT &&
968 i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
969 DPRINTK("eeprom: copyright = \"%s\"\n",
970 (char *) &e[EEPROM_COPYRIGHT]);
971 else
972 DPRINTK("eeprom: copyright not found\n");
973#endif
974 /* Validate checksum */
975 for (i = s = 0; i < EEPROM_CHECKSUM; i++)
976 s += e[i];
977 s &= 0xFF;
978 if (s != e[EEPROM_CHECKSUM]) {
979 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
980 "(wanted 0x%02X, got 0x%02X)\n", lanai->number,
981 (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
982 return -EIO;
983 }
984 s ^= 0xFF;
985 if (s != e[EEPROM_CHECKSUM_REV]) {
986 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
987 "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
988 (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
989 return -EIO;
990 }
991 /* Verify MAC address */
992 for (i = 0; i < 6; i++)
993 if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
994 printk(KERN_ERR DEV_LABEL
995 "(itf %d) : EEPROM MAC addresses don't match "
996 "(0x%02X, inverse 0x%02X)\n", lanai->number,
997 (unsigned int) e[EEPROM_MAC + i],
998 (unsigned int) e[EEPROM_MAC_REV + i]);
999 return -EIO;
1000 }
1001 DPRINTK("eeprom: MAC address = %pM\n", &e[EEPROM_MAC]);
1002 /* Verify serial number */
1003 lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
1004 v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
1005 if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
1006 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
1007 "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1008 (unsigned int) lanai->serialno, (unsigned int) v);
1009 return -EIO;
1010 }
1011 DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
1012 /* Verify magic number */
1013 lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
1014 v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
1015 if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
1016 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
1017 "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1018 lanai->magicno, v);
1019 return -EIO;
1020 }
1021 DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
1022 if (lanai->magicno != EEPROM_MAGIC_VALUE)
1023 printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
1024 "magic not what expected (got 0x%08X, not 0x%08X)\n",
1025 lanai->number, (unsigned int) lanai->magicno,
1026 (unsigned int) EEPROM_MAGIC_VALUE);
1027 return 0;
1028}
1029
1030#endif /* READ_EEPROM */
1031
1032static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
1033{
1034 return &lanai->eeprom[EEPROM_MAC];
1035}
1036
1037/* -------------------- INTERRUPT HANDLING UTILITIES: */
1038
1039/* Interrupt types */
1040#define INT_STATS (0x00000002) /* Statistics counter overflow */
1041#define INT_SOOL (0x00000004) /* SOOL changed state */
1042#define INT_LOCD (0x00000008) /* LOCD changed state */
1043#define INT_LED (0x00000010) /* LED (HAPPI) changed state */
1044#define INT_GPIN (0x00000020) /* GPIN changed state */
1045#define INT_PING (0x00000040) /* PING_COUNT fulfilled */
1046#define INT_WAKE (0x00000080) /* Lanai wants bus */
1047#define INT_CBR0 (0x00000100) /* CBR sched hit VCI 0 */
1048#define INT_LOCK (0x00000200) /* Service list overflow */
1049#define INT_MISMATCH (0x00000400) /* TX magic list mismatch */
1050#define INT_AAL0_STR (0x00000800) /* Non-AAL5 buffer half filled */
1051#define INT_AAL0 (0x00001000) /* Non-AAL5 data available */
1052#define INT_SERVICE (0x00002000) /* Service list entries available */
1053#define INT_TABORTSENT (0x00004000) /* Target abort sent by lanai */
1054#define INT_TABORTBM (0x00008000) /* Abort rcv'd as bus master */
1055#define INT_TIMEOUTBM (0x00010000) /* No response to bus master */
1056#define INT_PCIPARITY (0x00020000) /* Parity error on PCI */
1057
1058/* Sets of the above */
1059#define INT_ALL (0x0003FFFE) /* All interrupts */
1060#define INT_STATUS (0x0000003C) /* Some status pin changed */
1061#define INT_DMASHUT (0x00038000) /* DMA engine got shut down */
1062#define INT_SEGSHUT (0x00000700) /* Segmentation got shut down */
1063
1064static inline u32 intr_pending(const struct lanai_dev *lanai)
1065{
1066 return reg_read(lanai, IntStatusMasked_Reg);
1067}
1068
1069static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
1070{
1071 reg_write(lanai, i, IntControlEna_Reg);
1072}
1073
1074static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
1075{
1076 reg_write(lanai, i, IntControlDis_Reg);
1077}
1078
1079/* -------------------- CARD/PCI STATUS: */
1080
1081static void status_message(int itf, const char *name, int status)
1082{
1083 static const char *onoff[2] = { "off to on", "on to off" };
1084 printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
1085 itf, name, onoff[!status]);
1086}
1087
1088static void lanai_check_status(struct lanai_dev *lanai)
1089{
1090 u32 new = reg_read(lanai, Status_Reg);
1091 u32 changes = new ^ lanai->status;
1092 lanai->status = new;
1093#define e(flag, name) \
1094 if (changes & flag) \
1095 status_message(lanai->number, name, new & flag)
1096 e(STATUS_SOOL, "SOOL");
1097 e(STATUS_LOCD, "LOCD");
1098 e(STATUS_LED, "LED");
1099 e(STATUS_GPIN, "GPIN");
1100#undef e
1101}
1102
1103static void pcistatus_got(int itf, const char *name)
1104{
1105 printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
1106}
1107
1108static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
1109{
1110 u16 s;
1111 int result;
1112 result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
1113 if (result != PCIBIOS_SUCCESSFUL) {
1114 printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
1115 "%d\n", lanai->number, result);
1116 return;
1117 }
1118 s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1119 PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
1120 PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
1121 if (s == 0)
1122 return;
1123 result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
1124 if (result != PCIBIOS_SUCCESSFUL)
1125 printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
1126 "%d\n", lanai->number, result);
1127 if (clearonly)
1128 return;
1129#define e(flag, name, stat) \
1130 if (s & flag) { \
1131 pcistatus_got(lanai->number, name); \
1132 ++lanai->stats.pcierr_##stat; \
1133 }
1134 e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
1135 e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
1136 e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
1137 e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
1138 e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
1139 e(PCI_STATUS_PARITY, "master parity", master_parity);
1140#undef e
1141}
1142
1143/* -------------------- VCC TX BUFFER UTILITIES: */
1144
1145/* space left in tx buffer in bytes */
1146static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
1147{
1148 int r;
1149 r = endptr * 16;
1150 r -= ((unsigned long) lvcc->tx.buf.ptr) -
1151 ((unsigned long) lvcc->tx.buf.start);
1152 r -= 16; /* Leave "bubble" - if start==end it looks empty */
1153 if (r < 0)
1154 r += lanai_buf_size(&lvcc->tx.buf);
1155 return r;
1156}
1157
1158/* test if VCC is currently backlogged */
1159static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
1160{
1161 return !skb_queue_empty(&lvcc->tx.backlog);
1162}
1163
1164/* Bit fields in the segmentation buffer descriptor */
1165#define DESCRIPTOR_MAGIC (0xD0000000)
1166#define DESCRIPTOR_AAL5 (0x00008000)
1167#define DESCRIPTOR_AAL5_STREAM (0x00004000)
1168#define DESCRIPTOR_CLP (0x00002000)
1169
1170/* Add 32-bit descriptor with its padding */
1171static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
1172 u32 flags, int len)
1173{
1174 int pos;
1175 APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
1176 "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
1177 lvcc->tx.buf.ptr += 4; /* Hope the values REALLY don't matter */
1178 pos = ((unsigned char *) lvcc->tx.buf.ptr) -
1179 (unsigned char *) lvcc->tx.buf.start;
1180 APRINTK((pos & ~0x0001FFF0) == 0,
1181 "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
1182 "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1183 lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1184 pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
1185 APRINTK((pos & ~0x0001FFF0) == 0,
1186 "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
1187 "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1188 lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1189 lvcc->tx.buf.ptr[-1] =
1190 cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
1191 ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
1192 DESCRIPTOR_CLP : 0) | flags | pos >> 4);
1193 if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1194 lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1195}
1196
1197/* Add 32-bit AAL5 trailer and leave room for its CRC */
1198static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
1199 int len, int cpi, int uu)
1200{
1201 APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
1202 "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
1203 lvcc->tx.buf.ptr += 2;
1204 lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
1205 if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1206 lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1207}
1208
1209static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
1210 const unsigned char *src, int n)
1211{
1212 unsigned char *e;
1213 int m;
1214 e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1215 m = e - (unsigned char *) lvcc->tx.buf.end;
1216 if (m < 0)
1217 m = 0;
1218 memcpy(lvcc->tx.buf.ptr, src, n - m);
1219 if (m != 0) {
1220 memcpy(lvcc->tx.buf.start, src + n - m, m);
1221 e = ((unsigned char *) lvcc->tx.buf.start) + m;
1222 }
1223 lvcc->tx.buf.ptr = (u32 *) e;
1224}
1225
1226static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
1227{
1228 unsigned char *e;
1229 int m;
1230 if (n == 0)
1231 return;
1232 e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1233 m = e - (unsigned char *) lvcc->tx.buf.end;
1234 if (m < 0)
1235 m = 0;
1236 memset(lvcc->tx.buf.ptr, 0, n - m);
1237 if (m != 0) {
1238 memset(lvcc->tx.buf.start, 0, m);
1239 e = ((unsigned char *) lvcc->tx.buf.start) + m;
1240 }
1241 lvcc->tx.buf.ptr = (u32 *) e;
1242}
1243
1244/* Update "butt" register to specify new WritePtr */
1245static inline void lanai_endtx(struct lanai_dev *lanai,
1246 const struct lanai_vcc *lvcc)
1247{
1248 int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
1249 (unsigned char *) lvcc->tx.buf.start;
1250 APRINTK((ptr & ~0x0001FFF0) == 0,
1251 "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
1252 ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
1253 lvcc->tx.buf.end);
1254
1255 /*
1256 * Since the "butt register" is a shared resounce on the card we
1257 * serialize all accesses to it through this spinlock. This is
1258 * mostly just paranoia since the register is rarely "busy" anyway
1259 * but is needed for correctness.
1260 */
1261 spin_lock(&lanai->endtxlock);
1262 /*
1263 * We need to check if the "butt busy" bit is set before
1264 * updating the butt register. In theory this should
1265 * never happen because the ATM card is plenty fast at
1266 * updating the register. Still, we should make sure
1267 */
1268 for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
1269 if (unlikely(i > 50)) {
1270 printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
1271 "always busy!\n", lanai->number);
1272 break;
1273 }
1274 udelay(5);
1275 }
1276 /*
1277 * Before we tall the card to start work we need to be sure 100% of
1278 * the info in the service buffer has been written before we tell
1279 * the card about it
1280 */
1281 wmb();
1282 reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
1283 spin_unlock(&lanai->endtxlock);
1284}
1285
1286/*
1287 * Add one AAL5 PDU to lvcc's transmit buffer. Caller garauntees there's
1288 * space available. "pdusize" is the number of bytes the PDU will take
1289 */
1290static void lanai_send_one_aal5(struct lanai_dev *lanai,
1291 struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
1292{
1293 int pad;
1294 APRINTK(pdusize == aal5_size(skb->len),
1295 "lanai_send_one_aal5: wrong size packet (%d != %d)\n",
1296 pdusize, aal5_size(skb->len));
1297 vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
1298 pad = pdusize - skb->len - 8;
1299 APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
1300 APRINTK(pad < 48, "pad is too big (%d)\n", pad);
1301 vcc_tx_memcpy(lvcc, skb->data, skb->len);
1302 vcc_tx_memzero(lvcc, pad);
1303 vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
1304 lanai_endtx(lanai, lvcc);
1305 lanai_free_skb(lvcc->tx.atmvcc, skb);
1306 atomic_inc(&lvcc->tx.atmvcc->stats->tx);
1307}
1308
1309/* Try to fill the buffer - don't call unless there is backlog */
1310static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
1311 struct lanai_vcc *lvcc, int endptr)
1312{
1313 int n;
1314 struct sk_buff *skb;
1315 int space = vcc_tx_space(lvcc, endptr);
1316 APRINTK(vcc_is_backlogged(lvcc),
1317 "vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
1318 lvcc->vci);
1319 while (space >= 64) {
1320 skb = skb_dequeue(&lvcc->tx.backlog);
1321 if (skb == NULL)
1322 goto no_backlog;
1323 n = aal5_size(skb->len);
1324 if (n + 16 > space) {
1325 /* No room for this packet - put it back on queue */
1326 skb_queue_head(&lvcc->tx.backlog, skb);
1327 return;
1328 }
1329 lanai_send_one_aal5(lanai, lvcc, skb, n);
1330 space -= n + 16;
1331 }
1332 if (!vcc_is_backlogged(lvcc)) {
1333 no_backlog:
1334 __clear_bit(lvcc->vci, lanai->backlog_vccs);
1335 }
1336}
1337
1338/* Given an skb that we want to transmit either send it now or queue */
1339static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1340 struct sk_buff *skb)
1341{
1342 int space, n;
1343 if (vcc_is_backlogged(lvcc)) /* Already backlogged */
1344 goto queue_it;
1345 space = vcc_tx_space(lvcc,
1346 TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
1347 n = aal5_size(skb->len);
1348 APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
1349 if (space < n + 16) { /* No space for this PDU */
1350 __set_bit(lvcc->vci, lanai->backlog_vccs);
1351 queue_it:
1352 skb_queue_tail(&lvcc->tx.backlog, skb);
1353 return;
1354 }
1355 lanai_send_one_aal5(lanai, lvcc, skb, n);
1356}
1357
1358static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
1359 struct lanai_vcc *lvcc, int endptr)
1360{
1361 printk(KERN_INFO DEV_LABEL
1362 ": vcc_tx_unqueue_aal0: not implemented\n");
1363}
1364
1365static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1366 struct sk_buff *skb)
1367{
1368 printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
1369 /* Remember to increment lvcc->tx.atmvcc->stats->tx */
1370 lanai_free_skb(lvcc->tx.atmvcc, skb);
1371}
1372
1373/* -------------------- VCC RX BUFFER UTILITIES: */
1374
1375/* unlike the _tx_ cousins, this doesn't update ptr */
1376static inline void vcc_rx_memcpy(unsigned char *dest,
1377 const struct lanai_vcc *lvcc, int n)
1378{
1379 int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
1380 ((const unsigned char *) (lvcc->rx.buf.end));
1381 if (m < 0)
1382 m = 0;
1383 memcpy(dest, lvcc->rx.buf.ptr, n - m);
1384 memcpy(dest + n - m, lvcc->rx.buf.start, m);
1385 /* Make sure that these copies don't get reordered */
1386 barrier();
1387}
1388
1389/* Receive AAL5 data on a VCC with a particular endptr */
1390static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
1391{
1392 int size;
1393 struct sk_buff *skb;
1394 const u32 *x;
1395 u32 *end = &lvcc->rx.buf.start[endptr * 4];
1396 int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
1397 if (n < 0)
1398 n += lanai_buf_size(&lvcc->rx.buf);
1399 APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
1400 "vcc_rx_aal5: n out of range (%d/%Zu)\n",
1401 n, lanai_buf_size(&lvcc->rx.buf));
1402 /* Recover the second-to-last word to get true pdu length */
1403 if ((x = &end[-2]) < lvcc->rx.buf.start)
1404 x = &lvcc->rx.buf.end[-2];
1405 /*
1406 * Before we actually read from the buffer, make sure the memory
1407 * changes have arrived
1408 */
1409 rmb();
1410 size = be32_to_cpup(x) & 0xffff;
1411 if (unlikely(n != aal5_size(size))) {
1412 /* Make sure size matches padding */
1413 printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
1414 "on vci=%d - size=%d n=%d\n",
1415 lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
1416 lvcc->stats.x.aal5.rx_badlen++;
1417 goto out;
1418 }
1419 skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
1420 if (unlikely(skb == NULL)) {
1421 lvcc->stats.rx_nomem++;
1422 goto out;
1423 }
1424 skb_put(skb, size);
1425 vcc_rx_memcpy(skb->data, lvcc, size);
1426 ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
1427 __net_timestamp(skb);
1428 lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
1429 atomic_inc(&lvcc->rx.atmvcc->stats->rx);
1430 out:
1431 lvcc->rx.buf.ptr = end;
1432 cardvcc_write(lvcc, endptr, vcc_rxreadptr);
1433}
1434
1435static void vcc_rx_aal0(struct lanai_dev *lanai)
1436{
1437 printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
1438 /* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
1439 /* Remember to increment lvcc->rx.atmvcc->stats->rx */
1440}
1441
1442/* -------------------- MANAGING HOST-BASED VCC TABLE: */
1443
1444/* Decide whether to use vmalloc or get_zeroed_page for VCC table */
1445#if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
1446#define VCCTABLE_GETFREEPAGE
1447#else
1448#include <linux/vmalloc.h>
1449#endif
1450
1451static int __devinit vcc_table_allocate(struct lanai_dev *lanai)
1452{
1453#ifdef VCCTABLE_GETFREEPAGE
1454 APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
1455 "vcc table > PAGE_SIZE!");
1456 lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
1457 return (lanai->vccs == NULL) ? -ENOMEM : 0;
1458#else
1459 int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
1460 lanai->vccs = (struct lanai_vcc **) vmalloc(bytes);
1461 if (unlikely(lanai->vccs == NULL))
1462 return -ENOMEM;
1463 memset(lanai->vccs, 0, bytes);
1464 return 0;
1465#endif
1466}
1467
1468static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
1469{
1470#ifdef VCCTABLE_GETFREEPAGE
1471 free_page((unsigned long) lanai->vccs);
1472#else
1473 vfree(lanai->vccs);
1474#endif
1475}
1476
1477/* Allocate a fresh lanai_vcc, with the appropriate things cleared */
1478static inline struct lanai_vcc *new_lanai_vcc(void)
1479{
1480 struct lanai_vcc *lvcc;
1481 lvcc = kzalloc(sizeof(*lvcc), GFP_KERNEL);
1482 if (likely(lvcc != NULL)) {
1483 skb_queue_head_init(&lvcc->tx.backlog);
1484#ifdef DEBUG
1485 lvcc->vci = -1;
1486#endif
1487 }
1488 return lvcc;
1489}
1490
1491static int lanai_get_sized_buffer(struct lanai_dev *lanai,
1492 struct lanai_buffer *buf, int max_sdu, int multiplier,
1493 const char *name)
1494{
1495 int size;
1496 if (unlikely(max_sdu < 1))
1497 max_sdu = 1;
1498 max_sdu = aal5_size(max_sdu);
1499 size = (max_sdu + 16) * multiplier + 16;
1500 lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
1501 if (unlikely(buf->start == NULL))
1502 return -ENOMEM;
1503 if (unlikely(lanai_buf_size(buf) < size))
1504 printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
1505 "for %s buffer, got only %Zu\n", lanai->number, size,
1506 name, lanai_buf_size(buf));
1507 DPRINTK("Allocated %Zu byte %s buffer\n", lanai_buf_size(buf), name);
1508 return 0;
1509}
1510
1511/* Setup a RX buffer for a currently unbound AAL5 vci */
1512static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
1513 struct lanai_vcc *lvcc, const struct atm_qos *qos)
1514{
1515 return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
1516 qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
1517}
1518
1519/* Setup a TX buffer for a currently unbound AAL5 vci */
1520static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1521 const struct atm_qos *qos)
1522{
1523 int max_sdu, multiplier;
1524 if (qos->aal == ATM_AAL0) {
1525 lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
1526 max_sdu = ATM_CELL_SIZE - 1;
1527 multiplier = AAL0_TX_MULTIPLIER;
1528 } else {
1529 lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
1530 max_sdu = qos->txtp.max_sdu;
1531 multiplier = AAL5_TX_MULTIPLIER;
1532 }
1533 return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
1534 multiplier, "TX");
1535}
1536
1537static inline void host_vcc_bind(struct lanai_dev *lanai,
1538 struct lanai_vcc *lvcc, vci_t vci)
1539{
1540 if (lvcc->vbase != NULL)
1541 return; /* We already were bound in the other direction */
1542 DPRINTK("Binding vci %d\n", vci);
1543#ifdef USE_POWERDOWN
1544 if (lanai->nbound++ == 0) {
1545 DPRINTK("Coming out of powerdown\n");
1546 lanai->conf1 &= ~CONFIG1_POWERDOWN;
1547 conf1_write(lanai);
1548 conf2_write(lanai);
1549 }
1550#endif
1551 lvcc->vbase = cardvcc_addr(lanai, vci);
1552 lanai->vccs[lvcc->vci = vci] = lvcc;
1553}
1554
1555static inline void host_vcc_unbind(struct lanai_dev *lanai,
1556 struct lanai_vcc *lvcc)
1557{
1558 if (lvcc->vbase == NULL)
1559 return; /* This vcc was never bound */
1560 DPRINTK("Unbinding vci %d\n", lvcc->vci);
1561 lvcc->vbase = NULL;
1562 lanai->vccs[lvcc->vci] = NULL;
1563#ifdef USE_POWERDOWN
1564 if (--lanai->nbound == 0) {
1565 DPRINTK("Going into powerdown\n");
1566 lanai->conf1 |= CONFIG1_POWERDOWN;
1567 conf1_write(lanai);
1568 }
1569#endif
1570}
1571
1572/* -------------------- RESET CARD: */
1573
1574static void lanai_reset(struct lanai_dev *lanai)
1575{
1576 printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* reseting - not "
1577 "implemented\n", lanai->number);
1578 /* TODO */
1579 /* The following is just a hack until we write the real
1580 * resetter - at least ack whatever interrupt sent us
1581 * here
1582 */
1583 reg_write(lanai, INT_ALL, IntAck_Reg);
1584 lanai->stats.card_reset++;
1585}
1586
1587/* -------------------- SERVICE LIST UTILITIES: */
1588
1589/*
1590 * Allocate service buffer and tell card about it
1591 */
1592static int __devinit service_buffer_allocate(struct lanai_dev *lanai)
1593{
1594 lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
1595 lanai->pci);
1596 if (unlikely(lanai->service.start == NULL))
1597 return -ENOMEM;
1598 DPRINTK("allocated service buffer at 0x%08lX, size %Zu(%d)\n",
1599 (unsigned long) lanai->service.start,
1600 lanai_buf_size(&lanai->service),
1601 lanai_buf_size_cardorder(&lanai->service));
1602 /* Clear ServWrite register to be safe */
1603 reg_write(lanai, 0, ServWrite_Reg);
1604 /* ServiceStuff register contains size and address of buffer */
1605 reg_write(lanai,
1606 SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
1607 SSTUFF_SET_ADDR(lanai->service.dmaaddr),
1608 ServiceStuff_Reg);
1609 return 0;
1610}
1611
1612static inline void service_buffer_deallocate(struct lanai_dev *lanai)
1613{
1614 lanai_buf_deallocate(&lanai->service, lanai->pci);
1615}
1616
1617/* Bitfields in service list */
1618#define SERVICE_TX (0x80000000) /* Was from transmission */
1619#define SERVICE_TRASH (0x40000000) /* RXed PDU was trashed */
1620#define SERVICE_CRCERR (0x20000000) /* RXed PDU had CRC error */
1621#define SERVICE_CI (0x10000000) /* RXed PDU had CI set */
1622#define SERVICE_CLP (0x08000000) /* RXed PDU had CLP set */
1623#define SERVICE_STREAM (0x04000000) /* RX Stream mode */
1624#define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
1625#define SERVICE_GET_END(x) ((x)&0x1FFF)
1626
1627/* Handle one thing from the service list - returns true if it marked a
1628 * VCC ready for xmit
1629 */
1630static int handle_service(struct lanai_dev *lanai, u32 s)
1631{
1632 vci_t vci = SERVICE_GET_VCI(s);
1633 struct lanai_vcc *lvcc;
1634 read_lock(&vcc_sklist_lock);
1635 lvcc = lanai->vccs[vci];
1636 if (unlikely(lvcc == NULL)) {
1637 read_unlock(&vcc_sklist_lock);
1638 DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
1639 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1640 if (s & SERVICE_TX)
1641 lanai->stats.service_notx++;
1642 else
1643 lanai->stats.service_norx++;
1644 return 0;
1645 }
1646 if (s & SERVICE_TX) { /* segmentation interrupt */
1647 if (unlikely(lvcc->tx.atmvcc == NULL)) {
1648 read_unlock(&vcc_sklist_lock);
1649 DPRINTK("(itf %d) got service entry 0x%X for non-TX "
1650 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1651 lanai->stats.service_notx++;
1652 return 0;
1653 }
1654 __set_bit(vci, lanai->transmit_ready);
1655 lvcc->tx.endptr = SERVICE_GET_END(s);
1656 read_unlock(&vcc_sklist_lock);
1657 return 1;
1658 }
1659 if (unlikely(lvcc->rx.atmvcc == NULL)) {
1660 read_unlock(&vcc_sklist_lock);
1661 DPRINTK("(itf %d) got service entry 0x%X for non-RX "
1662 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1663 lanai->stats.service_norx++;
1664 return 0;
1665 }
1666 if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
1667 read_unlock(&vcc_sklist_lock);
1668 DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
1669 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1670 lanai->stats.service_rxnotaal5++;
1671 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1672 return 0;
1673 }
1674 if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
1675 vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
1676 read_unlock(&vcc_sklist_lock);
1677 return 0;
1678 }
1679 if (s & SERVICE_TRASH) {
1680 int bytes;
1681 read_unlock(&vcc_sklist_lock);
1682 DPRINTK("got trashed rx pdu on vci %d\n", vci);
1683 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1684 lvcc->stats.x.aal5.service_trash++;
1685 bytes = (SERVICE_GET_END(s) * 16) -
1686 (((unsigned long) lvcc->rx.buf.ptr) -
1687 ((unsigned long) lvcc->rx.buf.start)) + 47;
1688 if (bytes < 0)
1689 bytes += lanai_buf_size(&lvcc->rx.buf);
1690 lanai->stats.ovfl_trash += (bytes / 48);
1691 return 0;
1692 }
1693 if (s & SERVICE_STREAM) {
1694 read_unlock(&vcc_sklist_lock);
1695 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1696 lvcc->stats.x.aal5.service_stream++;
1697 printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
1698 "PDU on VCI %d!\n", lanai->number, vci);
1699 lanai_reset(lanai);
1700 return 0;
1701 }
1702 DPRINTK("got rx crc error on vci %d\n", vci);
1703 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1704 lvcc->stats.x.aal5.service_rxcrc++;
1705 lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
1706 cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
1707 read_unlock(&vcc_sklist_lock);
1708 return 0;
1709}
1710
1711/* Try transmitting on all VCIs that we marked ready to serve */
1712static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
1713{
1714 struct lanai_vcc *lvcc = lanai->vccs[vci];
1715 if (vcc_is_backlogged(lvcc))
1716 lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
1717}
1718
1719/* Run service queue -- called from interrupt context or with
1720 * interrupts otherwise disabled and with the lanai->servicelock
1721 * lock held
1722 */
1723static void run_service(struct lanai_dev *lanai)
1724{
1725 int ntx = 0;
1726 u32 wreg = reg_read(lanai, ServWrite_Reg);
1727 const u32 *end = lanai->service.start + wreg;
1728 while (lanai->service.ptr != end) {
1729 ntx += handle_service(lanai,
1730 le32_to_cpup(lanai->service.ptr++));
1731 if (lanai->service.ptr >= lanai->service.end)
1732 lanai->service.ptr = lanai->service.start;
1733 }
1734 reg_write(lanai, wreg, ServRead_Reg);
1735 if (ntx != 0) {
1736 read_lock(&vcc_sklist_lock);
1737 vci_bitfield_iterate(lanai, lanai->transmit_ready,
1738 iter_transmit);
1739 bitmap_zero(lanai->transmit_ready, NUM_VCI);
1740 read_unlock(&vcc_sklist_lock);
1741 }
1742}
1743
1744/* -------------------- GATHER STATISTICS: */
1745
1746static void get_statistics(struct lanai_dev *lanai)
1747{
1748 u32 statreg = reg_read(lanai, Statistics_Reg);
1749 lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
1750 lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
1751 lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
1752 lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
1753}
1754
1755/* -------------------- POLLING TIMER: */
1756
1757#ifndef DEBUG_RW
1758/* Try to undequeue 1 backlogged vcc */
1759static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
1760{
1761 struct lanai_vcc *lvcc = lanai->vccs[vci];
1762 int endptr;
1763 if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
1764 !vcc_is_backlogged(lvcc)) {
1765 __clear_bit(vci, lanai->backlog_vccs);
1766 return;
1767 }
1768 endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
1769 lvcc->tx.unqueue(lanai, lvcc, endptr);
1770}
1771#endif /* !DEBUG_RW */
1772
1773static void lanai_timed_poll(unsigned long arg)
1774{
1775 struct lanai_dev *lanai = (struct lanai_dev *) arg;
1776#ifndef DEBUG_RW
1777 unsigned long flags;
1778#ifdef USE_POWERDOWN
1779 if (lanai->conf1 & CONFIG1_POWERDOWN)
1780 return;
1781#endif /* USE_POWERDOWN */
1782 local_irq_save(flags);
1783 /* If we can grab the spinlock, check if any services need to be run */
1784 if (spin_trylock(&lanai->servicelock)) {
1785 run_service(lanai);
1786 spin_unlock(&lanai->servicelock);
1787 }
1788 /* ...and see if any backlogged VCs can make progress */
1789 /* unfortunately linux has no read_trylock() currently */
1790 read_lock(&vcc_sklist_lock);
1791 vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
1792 read_unlock(&vcc_sklist_lock);
1793 local_irq_restore(flags);
1794
1795 get_statistics(lanai);
1796#endif /* !DEBUG_RW */
1797 mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
1798}
1799
1800static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
1801{
1802 init_timer(&lanai->timer);
1803 lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
1804 lanai->timer.data = (unsigned long) lanai;
1805 lanai->timer.function = lanai_timed_poll;
1806 add_timer(&lanai->timer);
1807}
1808
1809static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
1810{
1811 del_timer_sync(&lanai->timer);
1812}
1813
1814/* -------------------- INTERRUPT SERVICE: */
1815
1816static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
1817{
1818 u32 ack = 0;
1819 if (reason & INT_SERVICE) {
1820 ack = INT_SERVICE;
1821 spin_lock(&lanai->servicelock);
1822 run_service(lanai);
1823 spin_unlock(&lanai->servicelock);
1824 }
1825 if (reason & (INT_AAL0_STR | INT_AAL0)) {
1826 ack |= reason & (INT_AAL0_STR | INT_AAL0);
1827 vcc_rx_aal0(lanai);
1828 }
1829 /* The rest of the interrupts are pretty rare */
1830 if (ack == reason)
1831 goto done;
1832 if (reason & INT_STATS) {
1833 reason &= ~INT_STATS; /* No need to ack */
1834 get_statistics(lanai);
1835 }
1836 if (reason & INT_STATUS) {
1837 ack |= reason & INT_STATUS;
1838 lanai_check_status(lanai);
1839 }
1840 if (unlikely(reason & INT_DMASHUT)) {
1841 printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
1842 "shutdown, reason=0x%08X, address=0x%08X\n",
1843 lanai->number, (unsigned int) (reason & INT_DMASHUT),
1844 (unsigned int) reg_read(lanai, DMA_Addr_Reg));
1845 if (reason & INT_TABORTBM) {
1846 lanai_reset(lanai);
1847 return;
1848 }
1849 ack |= (reason & INT_DMASHUT);
1850 printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
1851 lanai->number);
1852 conf1_write(lanai);
1853 lanai->stats.dma_reenable++;
1854 pcistatus_check(lanai, 0);
1855 }
1856 if (unlikely(reason & INT_TABORTSENT)) {
1857 ack |= (reason & INT_TABORTSENT);
1858 printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
1859 lanai->number);
1860 pcistatus_check(lanai, 0);
1861 }
1862 if (unlikely(reason & INT_SEGSHUT)) {
1863 printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1864 "segmentation shutdown, reason=0x%08X\n", lanai->number,
1865 (unsigned int) (reason & INT_SEGSHUT));
1866 lanai_reset(lanai);
1867 return;
1868 }
1869 if (unlikely(reason & (INT_PING | INT_WAKE))) {
1870 printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1871 "unexpected interrupt 0x%08X, resetting\n",
1872 lanai->number,
1873 (unsigned int) (reason & (INT_PING | INT_WAKE)));
1874 lanai_reset(lanai);
1875 return;
1876 }
1877#ifdef DEBUG
1878 if (unlikely(ack != reason)) {
1879 DPRINTK("unacked ints: 0x%08X\n",
1880 (unsigned int) (reason & ~ack));
1881 ack = reason;
1882 }
1883#endif
1884 done:
1885 if (ack != 0)
1886 reg_write(lanai, ack, IntAck_Reg);
1887}
1888
1889static irqreturn_t lanai_int(int irq, void *devid)
1890{
1891 struct lanai_dev *lanai = devid;
1892 u32 reason;
1893
1894#ifdef USE_POWERDOWN
1895 /*
1896 * If we're powered down we shouldn't be generating any interrupts -
1897 * so assume that this is a shared interrupt line and it's for someone
1898 * else
1899 */
1900 if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
1901 return IRQ_NONE;
1902#endif
1903
1904 reason = intr_pending(lanai);
1905 if (reason == 0)
1906 return IRQ_NONE; /* Must be for someone else */
1907
1908 do {
1909 if (unlikely(reason == 0xFFFFFFFF))
1910 break; /* Maybe we've been unplugged? */
1911 lanai_int_1(lanai, reason);
1912 reason = intr_pending(lanai);
1913 } while (reason != 0);
1914
1915 return IRQ_HANDLED;
1916}
1917
1918/* TODO - it would be nice if we could use the "delayed interrupt" system
1919 * to some advantage
1920 */
1921
1922/* -------------------- CHECK BOARD ID/REV: */
1923
1924/*
1925 * The board id and revision are stored both in the reset register and
1926 * in the PCI configuration space - the documentation says to check
1927 * each of them. If revp!=NULL we store the revision there
1928 */
1929static int check_board_id_and_rev(const char *name, u32 val, int *revp)
1930{
1931 DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
1932 (int) RESET_GET_BOARD_ID(val),
1933 (int) RESET_GET_BOARD_REV(val));
1934 if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
1935 printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
1936 "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
1937 return -ENODEV;
1938 }
1939 if (revp != NULL)
1940 *revp = RESET_GET_BOARD_REV(val);
1941 return 0;
1942}
1943
1944/* -------------------- PCI INITIALIZATION/SHUTDOWN: */
1945
1946static int __devinit lanai_pci_start(struct lanai_dev *lanai)
1947{
1948 struct pci_dev *pci = lanai->pci;
1949 int result;
1950
1951 if (pci_enable_device(pci) != 0) {
1952 printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
1953 "PCI device", lanai->number);
1954 return -ENXIO;
1955 }
1956 pci_set_master(pci);
1957 if (pci_set_dma_mask(pci, DMA_BIT_MASK(32)) != 0) {
1958 printk(KERN_WARNING DEV_LABEL
1959 "(itf %d): No suitable DMA available.\n", lanai->number);
1960 return -EBUSY;
1961 }
1962 if (pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(32)) != 0) {
1963 printk(KERN_WARNING DEV_LABEL
1964 "(itf %d): No suitable DMA available.\n", lanai->number);
1965 return -EBUSY;
1966 }
1967 result = check_board_id_and_rev("PCI", pci->subsystem_device, NULL);
1968 if (result != 0)
1969 return result;
1970 /* Set latency timer to zero as per lanai docs */
1971 result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
1972 if (result != PCIBIOS_SUCCESSFUL) {
1973 printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
1974 "PCI_LATENCY_TIMER: %d\n", lanai->number, result);
1975 return -EINVAL;
1976 }
1977 pcistatus_check(lanai, 1);
1978 pcistatus_check(lanai, 0);
1979 return 0;
1980}
1981
1982/* -------------------- VPI/VCI ALLOCATION: */
1983
1984/*
1985 * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
1986 * get a CBRZERO interrupt), and we can use it only if no one is receiving
1987 * AAL0 traffic (since they will use the same queue) - according to the
1988 * docs we shouldn't even use it for AAL0 traffic
1989 */
1990static inline int vci0_is_ok(struct lanai_dev *lanai,
1991 const struct atm_qos *qos)
1992{
1993 if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
1994 return 0;
1995 if (qos->rxtp.traffic_class != ATM_NONE) {
1996 if (lanai->naal0 != 0)
1997 return 0;
1998 lanai->conf2 |= CONFIG2_VCI0_NORMAL;
1999 conf2_write_if_powerup(lanai);
2000 }
2001 return 1;
2002}
2003
2004/* return true if vci is currently unused, or if requested qos is
2005 * compatible
2006 */
2007static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
2008 const struct atm_vcc *atmvcc)
2009{
2010 const struct atm_qos *qos = &atmvcc->qos;
2011 const struct lanai_vcc *lvcc = lanai->vccs[vci];
2012 if (vci == 0 && !vci0_is_ok(lanai, qos))
2013 return 0;
2014 if (unlikely(lvcc != NULL)) {
2015 if (qos->rxtp.traffic_class != ATM_NONE &&
2016 lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
2017 return 0;
2018 if (qos->txtp.traffic_class != ATM_NONE &&
2019 lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
2020 return 0;
2021 if (qos->txtp.traffic_class == ATM_CBR &&
2022 lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
2023 return 0;
2024 }
2025 if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
2026 qos->rxtp.traffic_class != ATM_NONE) {
2027 const struct lanai_vcc *vci0 = lanai->vccs[0];
2028 if (vci0 != NULL && vci0->rx.atmvcc != NULL)
2029 return 0;
2030 lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
2031 conf2_write_if_powerup(lanai);
2032 }
2033 return 1;
2034}
2035
2036static int lanai_normalize_ci(struct lanai_dev *lanai,
2037 const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
2038{
2039 switch (*vpip) {
2040 case ATM_VPI_ANY:
2041 *vpip = 0;
2042 /* FALLTHROUGH */
2043 case 0:
2044 break;
2045 default:
2046 return -EADDRINUSE;
2047 }
2048 switch (*vcip) {
2049 case ATM_VCI_ANY:
2050 for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
2051 (*vcip)++)
2052 if (vci_is_ok(lanai, *vcip, atmvcc))
2053 return 0;
2054 return -EADDRINUSE;
2055 default:
2056 if (*vcip >= lanai->num_vci || *vcip < 0 ||
2057 !vci_is_ok(lanai, *vcip, atmvcc))
2058 return -EADDRINUSE;
2059 }
2060 return 0;
2061}
2062
2063/* -------------------- MANAGE CBR: */
2064
2065/*
2066 * CBR ICG is stored as a fixed-point number with 4 fractional bits.
2067 * Note that storing a number greater than 2046.0 will result in
2068 * incorrect shaping
2069 */
2070#define CBRICG_FRAC_BITS (4)
2071#define CBRICG_MAX (2046 << CBRICG_FRAC_BITS)
2072
2073/*
2074 * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
2075 * where MAXPCR is (according to the docs) 25600000/(54*8),
2076 * which is equal to (3125<<9)/27.
2077 *
2078 * Solving for ICG, we get:
2079 * ICG = MAXPCR/PCR - 1
2080 * ICG = (3125<<9)/(27*PCR) - 1
2081 * ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
2082 *
2083 * The end result is supposed to be a fixed-point number with FRAC_BITS
2084 * bits of a fractional part, so we keep everything in the numerator
2085 * shifted by that much as we compute
2086 *
2087 */
2088static int pcr_to_cbricg(const struct atm_qos *qos)
2089{
2090 int rounddown = 0; /* 1 = Round PCR down, i.e. round ICG _up_ */
2091 int x, icg, pcr = atm_pcr_goal(&qos->txtp);
2092 if (pcr == 0) /* Use maximum bandwidth */
2093 return 0;
2094 if (pcr < 0) {
2095 rounddown = 1;
2096 pcr = -pcr;
2097 }
2098 x = pcr * 27;
2099 icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
2100 if (rounddown)
2101 icg += x - 1;
2102 icg /= x;
2103 if (icg > CBRICG_MAX)
2104 icg = CBRICG_MAX;
2105 DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
2106 pcr, rounddown ? 'Y' : 'N', icg);
2107 return icg;
2108}
2109
2110static inline void lanai_cbr_setup(struct lanai_dev *lanai)
2111{
2112 reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
2113 reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
2114 lanai->conf2 |= CONFIG2_CBR_ENABLE;
2115 conf2_write(lanai);
2116}
2117
2118static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
2119{
2120 lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
2121 conf2_write(lanai);
2122}
2123
2124/* -------------------- OPERATIONS: */
2125
2126/* setup a newly detected device */
2127static int __devinit lanai_dev_open(struct atm_dev *atmdev)
2128{
2129 struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2130 unsigned long raw_base;
2131 int result;
2132
2133 DPRINTK("In lanai_dev_open()\n");
2134 /* Basic device fields */
2135 lanai->number = atmdev->number;
2136 lanai->num_vci = NUM_VCI;
2137 bitmap_zero(lanai->backlog_vccs, NUM_VCI);
2138 bitmap_zero(lanai->transmit_ready, NUM_VCI);
2139 lanai->naal0 = 0;
2140#ifdef USE_POWERDOWN
2141 lanai->nbound = 0;
2142#endif
2143 lanai->cbrvcc = NULL;
2144 memset(&lanai->stats, 0, sizeof lanai->stats);
2145 spin_lock_init(&lanai->endtxlock);
2146 spin_lock_init(&lanai->servicelock);
2147 atmdev->ci_range.vpi_bits = 0;
2148 atmdev->ci_range.vci_bits = 0;
2149 while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
2150 atmdev->ci_range.vci_bits++;
2151 atmdev->link_rate = ATM_25_PCR;
2152
2153 /* 3.2: PCI initialization */
2154 if ((result = lanai_pci_start(lanai)) != 0)
2155 goto error;
2156 raw_base = lanai->pci->resource[0].start;
2157 lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
2158 if (lanai->base == NULL) {
2159 printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
2160 goto error_pci;
2161 }
2162 /* 3.3: Reset lanai and PHY */
2163 reset_board(lanai);
2164 lanai->conf1 = reg_read(lanai, Config1_Reg);
2165 lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
2166 CONFIG1_MASK_LEDMODE);
2167 lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
2168 reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2169 udelay(1000);
2170 conf1_write(lanai);
2171
2172 /*
2173 * 3.4: Turn on endian mode for big-endian hardware
2174 * We don't actually want to do this - the actual bit fields
2175 * in the endian register are not documented anywhere.
2176 * Instead we do the bit-flipping ourselves on big-endian
2177 * hardware.
2178 *
2179 * 3.5: get the board ID/rev by reading the reset register
2180 */
2181 result = check_board_id_and_rev("register",
2182 reg_read(lanai, Reset_Reg), &lanai->board_rev);
2183 if (result != 0)
2184 goto error_unmap;
2185
2186 /* 3.6: read EEPROM */
2187 if ((result = eeprom_read(lanai)) != 0)
2188 goto error_unmap;
2189 if ((result = eeprom_validate(lanai)) != 0)
2190 goto error_unmap;
2191
2192 /* 3.7: re-reset PHY, do loopback tests, setup PHY */
2193 reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2194 udelay(1000);
2195 conf1_write(lanai);
2196 /* TODO - loopback tests */
2197 lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
2198 conf1_write(lanai);
2199
2200 /* 3.8/3.9: test and initialize card SRAM */
2201 if ((result = sram_test_and_clear(lanai)) != 0)
2202 goto error_unmap;
2203
2204 /* 3.10: initialize lanai registers */
2205 lanai->conf1 |= CONFIG1_DMA_ENABLE;
2206 conf1_write(lanai);
2207 if ((result = service_buffer_allocate(lanai)) != 0)
2208 goto error_unmap;
2209 if ((result = vcc_table_allocate(lanai)) != 0)
2210 goto error_service;
2211 lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
2212 CONFIG2_HEC_DROP | /* ??? */ CONFIG2_PTI7_MODE;
2213 conf2_write(lanai);
2214 reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
2215 reg_write(lanai, 0, CBR_ICG_Reg); /* CBR defaults to no limit */
2216 if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
2217 DEV_LABEL, lanai)) != 0) {
2218 printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
2219 goto error_vcctable;
2220 }
2221 mb(); /* Make sure that all that made it */
2222 intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
2223 /* 3.11: initialize loop mode (i.e. turn looping off) */
2224 lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
2225 CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
2226 CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
2227 conf1_write(lanai);
2228 lanai->status = reg_read(lanai, Status_Reg);
2229 /* We're now done initializing this card */
2230#ifdef USE_POWERDOWN
2231 lanai->conf1 |= CONFIG1_POWERDOWN;
2232 conf1_write(lanai);
2233#endif
2234 memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
2235 lanai_timed_poll_start(lanai);
2236 printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=0x%lx, irq=%u "
2237 "(%pMF)\n", lanai->number, (int) lanai->pci->revision,
2238 (unsigned long) lanai->base, lanai->pci->irq, atmdev->esi);
2239 printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
2240 "board_rev=%d\n", lanai->number,
2241 lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
2242 (unsigned int) lanai->serialno, lanai->board_rev);
2243 return 0;
2244
2245 error_vcctable:
2246 vcc_table_deallocate(lanai);
2247 error_service:
2248 service_buffer_deallocate(lanai);
2249 error_unmap:
2250 reset_board(lanai);
2251#ifdef USE_POWERDOWN
2252 lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
2253 conf1_write(lanai);
2254#endif
2255 iounmap(lanai->base);
2256 error_pci:
2257 pci_disable_device(lanai->pci);
2258 error:
2259 return result;
2260}
2261
2262/* called when device is being shutdown, and all vcc's are gone - higher
2263 * levels will deallocate the atm device for us
2264 */
2265static void lanai_dev_close(struct atm_dev *atmdev)
2266{
2267 struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2268 printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
2269 lanai->number);
2270 lanai_timed_poll_stop(lanai);
2271#ifdef USE_POWERDOWN
2272 lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
2273 conf1_write(lanai);
2274#endif
2275 intr_disable(lanai, INT_ALL);
2276 free_irq(lanai->pci->irq, lanai);
2277 reset_board(lanai);
2278#ifdef USE_POWERDOWN
2279 lanai->conf1 |= CONFIG1_POWERDOWN;
2280 conf1_write(lanai);
2281#endif
2282 pci_disable_device(lanai->pci);
2283 vcc_table_deallocate(lanai);
2284 service_buffer_deallocate(lanai);
2285 iounmap(lanai->base);
2286 kfree(lanai);
2287}
2288
2289/* close a vcc */
2290static void lanai_close(struct atm_vcc *atmvcc)
2291{
2292 struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2293 struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2294 if (lvcc == NULL)
2295 return;
2296 clear_bit(ATM_VF_READY, &atmvcc->flags);
2297 clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
2298 if (lvcc->rx.atmvcc == atmvcc) {
2299 lanai_shutdown_rx_vci(lvcc);
2300 if (atmvcc->qos.aal == ATM_AAL0) {
2301 if (--lanai->naal0 <= 0)
2302 aal0_buffer_free(lanai);
2303 } else
2304 lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
2305 lvcc->rx.atmvcc = NULL;
2306 }
2307 if (lvcc->tx.atmvcc == atmvcc) {
2308 if (atmvcc == lanai->cbrvcc) {
2309 if (lvcc->vbase != NULL)
2310 lanai_cbr_shutdown(lanai);
2311 lanai->cbrvcc = NULL;
2312 }
2313 lanai_shutdown_tx_vci(lanai, lvcc);
2314 lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
2315 lvcc->tx.atmvcc = NULL;
2316 }
2317 if (--lvcc->nref == 0) {
2318 host_vcc_unbind(lanai, lvcc);
2319 kfree(lvcc);
2320 }
2321 atmvcc->dev_data = NULL;
2322 clear_bit(ATM_VF_ADDR, &atmvcc->flags);
2323}
2324
2325/* open a vcc on the card to vpi/vci */
2326static int lanai_open(struct atm_vcc *atmvcc)
2327{
2328 struct lanai_dev *lanai;
2329 struct lanai_vcc *lvcc;
2330 int result = 0;
2331 int vci = atmvcc->vci;
2332 short vpi = atmvcc->vpi;
2333 /* we don't support partial open - it's not really useful anyway */
2334 if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
2335 (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
2336 return -EINVAL;
2337 lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2338 result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
2339 if (unlikely(result != 0))
2340 goto out;
2341 set_bit(ATM_VF_ADDR, &atmvcc->flags);
2342 if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
2343 return -EINVAL;
2344 DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
2345 (int) vpi, vci);
2346 lvcc = lanai->vccs[vci];
2347 if (lvcc == NULL) {
2348 lvcc = new_lanai_vcc();
2349 if (unlikely(lvcc == NULL))
2350 return -ENOMEM;
2351 atmvcc->dev_data = lvcc;
2352 }
2353 lvcc->nref++;
2354 if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
2355 APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
2356 vci);
2357 if (atmvcc->qos.aal == ATM_AAL0) {
2358 if (lanai->naal0 == 0)
2359 result = aal0_buffer_allocate(lanai);
2360 } else
2361 result = lanai_setup_rx_vci_aal5(
2362 lanai, lvcc, &atmvcc->qos);
2363 if (unlikely(result != 0))
2364 goto out_free;
2365 lvcc->rx.atmvcc = atmvcc;
2366 lvcc->stats.rx_nomem = 0;
2367 lvcc->stats.x.aal5.rx_badlen = 0;
2368 lvcc->stats.x.aal5.service_trash = 0;
2369 lvcc->stats.x.aal5.service_stream = 0;
2370 lvcc->stats.x.aal5.service_rxcrc = 0;
2371 if (atmvcc->qos.aal == ATM_AAL0)
2372 lanai->naal0++;
2373 }
2374 if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
2375 APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
2376 vci);
2377 result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
2378 if (unlikely(result != 0))
2379 goto out_free;
2380 lvcc->tx.atmvcc = atmvcc;
2381 if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
2382 APRINTK(lanai->cbrvcc == NULL,
2383 "cbrvcc!=NULL, vci=%d\n", vci);
2384 lanai->cbrvcc = atmvcc;
2385 }
2386 }
2387 host_vcc_bind(lanai, lvcc, vci);
2388 /*
2389 * Make sure everything made it to RAM before we tell the card about
2390 * the VCC
2391 */
2392 wmb();
2393 if (atmvcc == lvcc->rx.atmvcc)
2394 host_vcc_start_rx(lvcc);
2395 if (atmvcc == lvcc->tx.atmvcc) {
2396 host_vcc_start_tx(lvcc);
2397 if (lanai->cbrvcc == atmvcc)
2398 lanai_cbr_setup(lanai);
2399 }
2400 set_bit(ATM_VF_READY, &atmvcc->flags);
2401 return 0;
2402 out_free:
2403 lanai_close(atmvcc);
2404 out:
2405 return result;
2406}
2407
2408static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
2409{
2410 struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2411 struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2412 unsigned long flags;
2413 if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
2414 lvcc->tx.atmvcc != atmvcc))
2415 goto einval;
2416#ifdef DEBUG
2417 if (unlikely(skb == NULL)) {
2418 DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
2419 goto einval;
2420 }
2421 if (unlikely(lanai == NULL)) {
2422 DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
2423 goto einval;
2424 }
2425#endif
2426 ATM_SKB(skb)->vcc = atmvcc;
2427 switch (atmvcc->qos.aal) {
2428 case ATM_AAL5:
2429 read_lock_irqsave(&vcc_sklist_lock, flags);
2430 vcc_tx_aal5(lanai, lvcc, skb);
2431 read_unlock_irqrestore(&vcc_sklist_lock, flags);
2432 return 0;
2433 case ATM_AAL0:
2434 if (unlikely(skb->len != ATM_CELL_SIZE-1))
2435 goto einval;
2436 /* NOTE - this next line is technically invalid - we haven't unshared skb */
2437 cpu_to_be32s((u32 *) skb->data);
2438 read_lock_irqsave(&vcc_sklist_lock, flags);
2439 vcc_tx_aal0(lanai, lvcc, skb);
2440 read_unlock_irqrestore(&vcc_sklist_lock, flags);
2441 return 0;
2442 }
2443 DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
2444 atmvcc->vci);
2445 einval:
2446 lanai_free_skb(atmvcc, skb);
2447 return -EINVAL;
2448}
2449
2450static int lanai_change_qos(struct atm_vcc *atmvcc,
2451 /*const*/ struct atm_qos *qos, int flags)
2452{
2453 return -EBUSY; /* TODO: need to write this */
2454}
2455
2456#ifndef CONFIG_PROC_FS
2457#define lanai_proc_read NULL
2458#else
2459static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
2460{
2461 struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2462 loff_t left = *pos;
2463 struct lanai_vcc *lvcc;
2464 if (left-- == 0)
2465 return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
2466 "serial=%u, magic=0x%08X, num_vci=%d\n",
2467 atmdev->number, lanai->type==lanai2 ? "2" : "HB",
2468 (unsigned int) lanai->serialno,
2469 (unsigned int) lanai->magicno, lanai->num_vci);
2470 if (left-- == 0)
2471 return sprintf(page, "revision: board=%d, pci_if=%d\n",
2472 lanai->board_rev, (int) lanai->pci->revision);
2473 if (left-- == 0)
2474 return sprintf(page, "EEPROM ESI: %pM\n",
2475 &lanai->eeprom[EEPROM_MAC]);
2476 if (left-- == 0)
2477 return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
2478 "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
2479 (lanai->status & STATUS_LOCD) ? 1 : 0,
2480 (lanai->status & STATUS_LED) ? 1 : 0,
2481 (lanai->status & STATUS_GPIN) ? 1 : 0);
2482 if (left-- == 0)
2483 return sprintf(page, "global buffer sizes: service=%Zu, "
2484 "aal0_rx=%Zu\n", lanai_buf_size(&lanai->service),
2485 lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
2486 if (left-- == 0) {
2487 get_statistics(lanai);
2488 return sprintf(page, "cells in error: overflow=%u, "
2489 "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
2490 lanai->stats.ovfl_trash, lanai->stats.vci_trash,
2491 lanai->stats.hec_err, lanai->stats.atm_ovfl);
2492 }
2493 if (left-- == 0)
2494 return sprintf(page, "PCI errors: parity_detect=%u, "
2495 "master_abort=%u, master_target_abort=%u,\n",
2496 lanai->stats.pcierr_parity_detect,
2497 lanai->stats.pcierr_serr_set,
2498 lanai->stats.pcierr_m_target_abort);
2499 if (left-- == 0)
2500 return sprintf(page, " slave_target_abort=%u, "
2501 "master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
2502 lanai->stats.pcierr_master_parity);
2503 if (left-- == 0)
2504 return sprintf(page, " no_tx=%u, "
2505 "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
2506 lanai->stats.service_notx,
2507 lanai->stats.service_rxnotaal5);
2508 if (left-- == 0)
2509 return sprintf(page, "resets: dma=%u, card=%u\n",
2510 lanai->stats.dma_reenable, lanai->stats.card_reset);
2511 /* At this point, "left" should be the VCI we're looking for */
2512 read_lock(&vcc_sklist_lock);
2513 for (; ; left++) {
2514 if (left >= NUM_VCI) {
2515 left = 0;
2516 goto out;
2517 }
2518 if ((lvcc = lanai->vccs[left]) != NULL)
2519 break;
2520 (*pos)++;
2521 }
2522 /* Note that we re-use "left" here since we're done with it */
2523 left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u", (vci_t) left,
2524 lvcc->nref, lvcc->stats.rx_nomem);
2525 if (lvcc->rx.atmvcc != NULL) {
2526 left += sprintf(&page[left], ",\n rx_AAL=%d",
2527 lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
2528 if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
2529 left += sprintf(&page[left], ", rx_buf_size=%Zu, "
2530 "rx_bad_len=%u,\n rx_service_trash=%u, "
2531 "rx_service_stream=%u, rx_bad_crc=%u",
2532 lanai_buf_size(&lvcc->rx.buf),
2533 lvcc->stats.x.aal5.rx_badlen,
2534 lvcc->stats.x.aal5.service_trash,
2535 lvcc->stats.x.aal5.service_stream,
2536 lvcc->stats.x.aal5.service_rxcrc);
2537 }
2538 if (lvcc->tx.atmvcc != NULL)
2539 left += sprintf(&page[left], ",\n tx_AAL=%d, "
2540 "tx_buf_size=%Zu, tx_qos=%cBR, tx_backlogged=%c",
2541 lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
2542 lanai_buf_size(&lvcc->tx.buf),
2543 lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
2544 vcc_is_backlogged(lvcc) ? 'Y' : 'N');
2545 page[left++] = '\n';
2546 page[left] = '\0';
2547 out:
2548 read_unlock(&vcc_sklist_lock);
2549 return left;
2550}
2551#endif /* CONFIG_PROC_FS */
2552
2553/* -------------------- HOOKS: */
2554
2555static const struct atmdev_ops ops = {
2556 .dev_close = lanai_dev_close,
2557 .open = lanai_open,
2558 .close = lanai_close,
2559 .getsockopt = NULL,
2560 .setsockopt = NULL,
2561 .send = lanai_send,
2562 .phy_put = NULL,
2563 .phy_get = NULL,
2564 .change_qos = lanai_change_qos,
2565 .proc_read = lanai_proc_read,
2566 .owner = THIS_MODULE
2567};
2568
2569/* initialize one probed card */
2570static int __devinit lanai_init_one(struct pci_dev *pci,
2571 const struct pci_device_id *ident)
2572{
2573 struct lanai_dev *lanai;
2574 struct atm_dev *atmdev;
2575 int result;
2576
2577 lanai = kmalloc(sizeof(*lanai), GFP_KERNEL);
2578 if (lanai == NULL) {
2579 printk(KERN_ERR DEV_LABEL
2580 ": couldn't allocate dev_data structure!\n");
2581 return -ENOMEM;
2582 }
2583
2584 atmdev = atm_dev_register(DEV_LABEL, &pci->dev, &ops, -1, NULL);
2585 if (atmdev == NULL) {
2586 printk(KERN_ERR DEV_LABEL
2587 ": couldn't register atm device!\n");
2588 kfree(lanai);
2589 return -EBUSY;
2590 }
2591
2592 atmdev->dev_data = lanai;
2593 lanai->pci = pci;
2594 lanai->type = (enum lanai_type) ident->device;
2595
2596 result = lanai_dev_open(atmdev);
2597 if (result != 0) {
2598 DPRINTK("lanai_start() failed, err=%d\n", -result);
2599 atm_dev_deregister(atmdev);
2600 kfree(lanai);
2601 }
2602 return result;
2603}
2604
2605static struct pci_device_id lanai_pci_tbl[] = {
2606 { PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAI2) },
2607 { PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAIHB) },
2608 { 0, } /* terminal entry */
2609};
2610MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
2611
2612static struct pci_driver lanai_driver = {
2613 .name = DEV_LABEL,
2614 .id_table = lanai_pci_tbl,
2615 .probe = lanai_init_one,
2616};
2617
2618static int __init lanai_module_init(void)
2619{
2620 int x;
2621
2622 x = pci_register_driver(&lanai_driver);
2623 if (x != 0)
2624 printk(KERN_ERR DEV_LABEL ": no adapter found\n");
2625 return x;
2626}
2627
2628static void __exit lanai_module_exit(void)
2629{
2630 /* We'll only get called when all the interfaces are already
2631 * gone, so there isn't much to do
2632 */
2633 DPRINTK("cleanup_module()\n");
2634 pci_unregister_driver(&lanai_driver);
2635}
2636
2637module_init(lanai_module_init);
2638module_exit(lanai_module_exit);
2639
2640MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>");
2641MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
2642MODULE_LICENSE("GPL");