Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/* Support for MMIO probes.
  3 * Benfit many code from kprobes
  4 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
  5 *     2007 Alexander Eichner
  6 *     2008 Pekka Paalanen <pq@iki.fi>
  7 */
  8
  9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 10
 11#include <linux/list.h>
 12#include <linux/rculist.h>
 13#include <linux/spinlock.h>
 14#include <linux/hash.h>
 15#include <linux/export.h>
 
 16#include <linux/kernel.h>
 17#include <linux/uaccess.h>
 18#include <linux/ptrace.h>
 19#include <linux/preempt.h>
 20#include <linux/percpu.h>
 21#include <linux/kdebug.h>
 22#include <linux/mutex.h>
 23#include <linux/io.h>
 24#include <linux/slab.h>
 25#include <asm/cacheflush.h>
 26#include <asm/tlbflush.h>
 27#include <linux/errno.h>
 28#include <asm/debugreg.h>
 29#include <linux/mmiotrace.h>
 30
 31#define KMMIO_PAGE_HASH_BITS 4
 32#define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
 33
 34struct kmmio_fault_page {
 35	struct list_head list;
 36	struct kmmio_fault_page *release_next;
 37	unsigned long addr; /* the requested address */
 38	pteval_t old_presence; /* page presence prior to arming */
 39	bool armed;
 40
 41	/*
 42	 * Number of times this page has been registered as a part
 43	 * of a probe. If zero, page is disarmed and this may be freed.
 44	 * Used only by writers (RCU) and post_kmmio_handler().
 45	 * Protected by kmmio_lock, when linked into kmmio_page_table.
 46	 */
 47	int count;
 48
 49	bool scheduled_for_release;
 50};
 51
 52struct kmmio_delayed_release {
 53	struct rcu_head rcu;
 54	struct kmmio_fault_page *release_list;
 55};
 56
 57struct kmmio_context {
 58	struct kmmio_fault_page *fpage;
 59	struct kmmio_probe *probe;
 60	unsigned long saved_flags;
 61	unsigned long addr;
 62	int active;
 63};
 64
 65static DEFINE_SPINLOCK(kmmio_lock);
 66
 67/* Protected by kmmio_lock */
 68unsigned int kmmio_count;
 69
 70/* Read-protected by RCU, write-protected by kmmio_lock. */
 71static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
 72static LIST_HEAD(kmmio_probes);
 73
 74static struct list_head *kmmio_page_list(unsigned long addr)
 75{
 76	unsigned int l;
 77	pte_t *pte = lookup_address(addr, &l);
 78
 79	if (!pte)
 80		return NULL;
 81	addr &= page_level_mask(l);
 82
 83	return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)];
 84}
 85
 86/* Accessed per-cpu */
 87static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
 88
 89/*
 90 * this is basically a dynamic stabbing problem:
 91 * Could use the existing prio tree code or
 92 * Possible better implementations:
 93 * The Interval Skip List: A Data Structure for Finding All Intervals That
 94 * Overlap a Point (might be simple)
 95 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
 96 */
 97/* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
 98static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
 99{
100	struct kmmio_probe *p;
101	list_for_each_entry_rcu(p, &kmmio_probes, list) {
102		if (addr >= p->addr && addr < (p->addr + p->len))
103			return p;
104	}
105	return NULL;
106}
107
108/* You must be holding RCU read lock. */
109static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr)
110{
111	struct list_head *head;
112	struct kmmio_fault_page *f;
113	unsigned int l;
114	pte_t *pte = lookup_address(addr, &l);
115
116	if (!pte)
117		return NULL;
118	addr &= page_level_mask(l);
119	head = kmmio_page_list(addr);
120	list_for_each_entry_rcu(f, head, list) {
121		if (f->addr == addr)
122			return f;
123	}
124	return NULL;
125}
126
127static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
128{
129	pmd_t new_pmd;
130	pmdval_t v = pmd_val(*pmd);
131	if (clear) {
132		*old = v;
133		new_pmd = pmd_mkinvalid(*pmd);
134	} else {
135		/* Presume this has been called with clear==true previously */
136		new_pmd = __pmd(*old);
137	}
138	set_pmd(pmd, new_pmd);
139}
140
141static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
142{
143	pteval_t v = pte_val(*pte);
144	if (clear) {
145		*old = v;
146		/* Nothing should care about address */
147		pte_clear(&init_mm, 0, pte);
148	} else {
149		/* Presume this has been called with clear==true previously */
150		set_pte_atomic(pte, __pte(*old));
151	}
152}
153
154static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
155{
156	unsigned int level;
157	pte_t *pte = lookup_address(f->addr, &level);
158
159	if (!pte) {
160		pr_err("no pte for addr 0x%08lx\n", f->addr);
161		return -1;
162	}
163
164	switch (level) {
165	case PG_LEVEL_2M:
166		clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
167		break;
168	case PG_LEVEL_4K:
169		clear_pte_presence(pte, clear, &f->old_presence);
170		break;
171	default:
172		pr_err("unexpected page level 0x%x.\n", level);
173		return -1;
174	}
175
176	flush_tlb_one_kernel(f->addr);
177	return 0;
178}
179
180/*
181 * Mark the given page as not present. Access to it will trigger a fault.
182 *
183 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
184 * protection is ignored here. RCU read lock is assumed held, so the struct
185 * will not disappear unexpectedly. Furthermore, the caller must guarantee,
186 * that double arming the same virtual address (page) cannot occur.
187 *
188 * Double disarming on the other hand is allowed, and may occur when a fault
189 * and mmiotrace shutdown happen simultaneously.
190 */
191static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
192{
193	int ret;
194	WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
195	if (f->armed) {
196		pr_warn("double-arm: addr 0x%08lx, ref %d, old %d\n",
197			f->addr, f->count, !!f->old_presence);
198	}
199	ret = clear_page_presence(f, true);
200	WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"),
201		  f->addr);
202	f->armed = true;
203	return ret;
204}
205
206/** Restore the given page to saved presence state. */
207static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
208{
209	int ret = clear_page_presence(f, false);
210	WARN_ONCE(ret < 0,
211			KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr);
212	f->armed = false;
213}
214
215/*
216 * This is being called from do_page_fault().
217 *
218 * We may be in an interrupt or a critical section. Also prefecthing may
219 * trigger a page fault. We may be in the middle of process switch.
220 * We cannot take any locks, because we could be executing especially
221 * within a kmmio critical section.
222 *
223 * Local interrupts are disabled, so preemption cannot happen.
224 * Do not enable interrupts, do not sleep, and watch out for other CPUs.
225 */
226/*
227 * Interrupts are disabled on entry as trap3 is an interrupt gate
228 * and they remain disabled throughout this function.
229 */
230int kmmio_handler(struct pt_regs *regs, unsigned long addr)
231{
232	struct kmmio_context *ctx;
233	struct kmmio_fault_page *faultpage;
234	int ret = 0; /* default to fault not handled */
235	unsigned long page_base = addr;
236	unsigned int l;
237	pte_t *pte = lookup_address(addr, &l);
238	if (!pte)
239		return -EINVAL;
240	page_base &= page_level_mask(l);
241
242	/*
243	 * Preemption is now disabled to prevent process switch during
244	 * single stepping. We can only handle one active kmmio trace
245	 * per cpu, so ensure that we finish it before something else
246	 * gets to run. We also hold the RCU read lock over single
247	 * stepping to avoid looking up the probe and kmmio_fault_page
248	 * again.
249	 */
250	preempt_disable();
251	rcu_read_lock();
252
253	faultpage = get_kmmio_fault_page(page_base);
254	if (!faultpage) {
255		/*
256		 * Either this page fault is not caused by kmmio, or
257		 * another CPU just pulled the kmmio probe from under
258		 * our feet. The latter case should not be possible.
259		 */
260		goto no_kmmio;
261	}
262
263	ctx = this_cpu_ptr(&kmmio_ctx);
264	if (ctx->active) {
265		if (page_base == ctx->addr) {
266			/*
267			 * A second fault on the same page means some other
268			 * condition needs handling by do_page_fault(), the
269			 * page really not being present is the most common.
270			 */
271			pr_debug("secondary hit for 0x%08lx CPU %d.\n",
272				 addr, smp_processor_id());
273
274			if (!faultpage->old_presence)
275				pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
276					addr, smp_processor_id());
277		} else {
278			/*
279			 * Prevent overwriting already in-flight context.
280			 * This should not happen, let's hope disarming at
281			 * least prevents a panic.
282			 */
283			pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
284				 smp_processor_id(), addr);
285			pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
286			disarm_kmmio_fault_page(faultpage);
287		}
288		goto no_kmmio;
289	}
290	ctx->active++;
291
292	ctx->fpage = faultpage;
293	ctx->probe = get_kmmio_probe(page_base);
294	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
295	ctx->addr = page_base;
296
297	if (ctx->probe && ctx->probe->pre_handler)
298		ctx->probe->pre_handler(ctx->probe, regs, addr);
299
300	/*
301	 * Enable single-stepping and disable interrupts for the faulting
302	 * context. Local interrupts must not get enabled during stepping.
303	 */
304	regs->flags |= X86_EFLAGS_TF;
305	regs->flags &= ~X86_EFLAGS_IF;
306
307	/* Now we set present bit in PTE and single step. */
308	disarm_kmmio_fault_page(ctx->fpage);
309
310	/*
311	 * If another cpu accesses the same page while we are stepping,
312	 * the access will not be caught. It will simply succeed and the
313	 * only downside is we lose the event. If this becomes a problem,
314	 * the user should drop to single cpu before tracing.
315	 */
316
 
317	return 1; /* fault handled */
318
 
 
319no_kmmio:
320	rcu_read_unlock();
321	preempt_enable_no_resched();
322	return ret;
323}
324
325/*
326 * Interrupts are disabled on entry as trap1 is an interrupt gate
327 * and they remain disabled throughout this function.
328 * This must always get called as the pair to kmmio_handler().
329 */
330static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
331{
332	int ret = 0;
333	struct kmmio_context *ctx = this_cpu_ptr(&kmmio_ctx);
334
335	if (!ctx->active) {
336		/*
337		 * debug traps without an active context are due to either
338		 * something external causing them (f.e. using a debugger while
339		 * mmio tracing enabled), or erroneous behaviour
340		 */
341		pr_warn("unexpected debug trap on CPU %d.\n", smp_processor_id());
 
342		goto out;
343	}
344
345	if (ctx->probe && ctx->probe->post_handler)
346		ctx->probe->post_handler(ctx->probe, condition, regs);
347
348	/* Prevent racing against release_kmmio_fault_page(). */
349	spin_lock(&kmmio_lock);
350	if (ctx->fpage->count)
351		arm_kmmio_fault_page(ctx->fpage);
352	spin_unlock(&kmmio_lock);
353
354	regs->flags &= ~X86_EFLAGS_TF;
355	regs->flags |= ctx->saved_flags;
356
357	/* These were acquired in kmmio_handler(). */
358	ctx->active--;
359	BUG_ON(ctx->active);
360	rcu_read_unlock();
361	preempt_enable_no_resched();
362
363	/*
364	 * if somebody else is singlestepping across a probe point, flags
365	 * will have TF set, in which case, continue the remaining processing
366	 * of do_debug, as if this is not a probe hit.
367	 */
368	if (!(regs->flags & X86_EFLAGS_TF))
369		ret = 1;
370out:
 
371	return ret;
372}
373
374/* You must be holding kmmio_lock. */
375static int add_kmmio_fault_page(unsigned long addr)
376{
377	struct kmmio_fault_page *f;
378
379	f = get_kmmio_fault_page(addr);
 
380	if (f) {
381		if (!f->count)
382			arm_kmmio_fault_page(f);
383		f->count++;
384		return 0;
385	}
386
387	f = kzalloc(sizeof(*f), GFP_ATOMIC);
388	if (!f)
389		return -1;
390
391	f->count = 1;
392	f->addr = addr;
393
394	if (arm_kmmio_fault_page(f)) {
395		kfree(f);
396		return -1;
397	}
398
399	list_add_rcu(&f->list, kmmio_page_list(f->addr));
400
401	return 0;
402}
403
404/* You must be holding kmmio_lock. */
405static void release_kmmio_fault_page(unsigned long addr,
406				struct kmmio_fault_page **release_list)
407{
408	struct kmmio_fault_page *f;
409
410	f = get_kmmio_fault_page(addr);
 
411	if (!f)
412		return;
413
414	f->count--;
415	BUG_ON(f->count < 0);
416	if (!f->count) {
417		disarm_kmmio_fault_page(f);
418		if (!f->scheduled_for_release) {
419			f->release_next = *release_list;
420			*release_list = f;
421			f->scheduled_for_release = true;
422		}
423	}
424}
425
426/*
427 * With page-unaligned ioremaps, one or two armed pages may contain
428 * addresses from outside the intended mapping. Events for these addresses
429 * are currently silently dropped. The events may result only from programming
430 * mistakes by accessing addresses before the beginning or past the end of a
431 * mapping.
432 */
433int register_kmmio_probe(struct kmmio_probe *p)
434{
435	unsigned long flags;
436	int ret = 0;
437	unsigned long size = 0;
438	unsigned long addr = p->addr & PAGE_MASK;
439	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
440	unsigned int l;
441	pte_t *pte;
442
443	spin_lock_irqsave(&kmmio_lock, flags);
444	if (get_kmmio_probe(addr)) {
445		ret = -EEXIST;
446		goto out;
447	}
448
449	pte = lookup_address(addr, &l);
450	if (!pte) {
451		ret = -EINVAL;
452		goto out;
453	}
454
455	kmmio_count++;
456	list_add_rcu(&p->list, &kmmio_probes);
457	while (size < size_lim) {
458		if (add_kmmio_fault_page(addr + size))
459			pr_err("Unable to set page fault.\n");
460		size += page_level_size(l);
461	}
462out:
463	spin_unlock_irqrestore(&kmmio_lock, flags);
464	/*
465	 * XXX: What should I do here?
466	 * Here was a call to global_flush_tlb(), but it does not exist
467	 * anymore. It seems it's not needed after all.
468	 */
469	return ret;
470}
471EXPORT_SYMBOL(register_kmmio_probe);
472
473static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
474{
475	struct kmmio_delayed_release *dr = container_of(
476						head,
477						struct kmmio_delayed_release,
478						rcu);
479	struct kmmio_fault_page *f = dr->release_list;
480	while (f) {
481		struct kmmio_fault_page *next = f->release_next;
482		BUG_ON(f->count);
483		kfree(f);
484		f = next;
485	}
486	kfree(dr);
487}
488
489static void remove_kmmio_fault_pages(struct rcu_head *head)
490{
491	struct kmmio_delayed_release *dr =
492		container_of(head, struct kmmio_delayed_release, rcu);
493	struct kmmio_fault_page *f = dr->release_list;
494	struct kmmio_fault_page **prevp = &dr->release_list;
495	unsigned long flags;
496
497	spin_lock_irqsave(&kmmio_lock, flags);
498	while (f) {
499		if (!f->count) {
500			list_del_rcu(&f->list);
501			prevp = &f->release_next;
502		} else {
503			*prevp = f->release_next;
504			f->release_next = NULL;
505			f->scheduled_for_release = false;
506		}
507		f = *prevp;
508	}
509	spin_unlock_irqrestore(&kmmio_lock, flags);
510
511	/* This is the real RCU destroy call. */
512	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
513}
514
515/*
516 * Remove a kmmio probe. You have to synchronize_rcu() before you can be
517 * sure that the callbacks will not be called anymore. Only after that
518 * you may actually release your struct kmmio_probe.
519 *
520 * Unregistering a kmmio fault page has three steps:
521 * 1. release_kmmio_fault_page()
522 *    Disarm the page, wait a grace period to let all faults finish.
523 * 2. remove_kmmio_fault_pages()
524 *    Remove the pages from kmmio_page_table.
525 * 3. rcu_free_kmmio_fault_pages()
526 *    Actually free the kmmio_fault_page structs as with RCU.
527 */
528void unregister_kmmio_probe(struct kmmio_probe *p)
529{
530	unsigned long flags;
531	unsigned long size = 0;
532	unsigned long addr = p->addr & PAGE_MASK;
533	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
534	struct kmmio_fault_page *release_list = NULL;
535	struct kmmio_delayed_release *drelease;
536	unsigned int l;
537	pte_t *pte;
538
539	pte = lookup_address(addr, &l);
540	if (!pte)
541		return;
542
543	spin_lock_irqsave(&kmmio_lock, flags);
544	while (size < size_lim) {
545		release_kmmio_fault_page(addr + size, &release_list);
546		size += page_level_size(l);
547	}
548	list_del_rcu(&p->list);
549	kmmio_count--;
550	spin_unlock_irqrestore(&kmmio_lock, flags);
551
552	if (!release_list)
553		return;
554
555	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
556	if (!drelease) {
557		pr_crit("leaking kmmio_fault_page objects.\n");
558		return;
559	}
560	drelease->release_list = release_list;
561
562	/*
563	 * This is not really RCU here. We have just disarmed a set of
564	 * pages so that they cannot trigger page faults anymore. However,
565	 * we cannot remove the pages from kmmio_page_table,
566	 * because a probe hit might be in flight on another CPU. The
567	 * pages are collected into a list, and they will be removed from
568	 * kmmio_page_table when it is certain that no probe hit related to
569	 * these pages can be in flight. RCU grace period sounds like a
570	 * good choice.
571	 *
572	 * If we removed the pages too early, kmmio page fault handler might
573	 * not find the respective kmmio_fault_page and determine it's not
574	 * a kmmio fault, when it actually is. This would lead to madness.
575	 */
576	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
577}
578EXPORT_SYMBOL(unregister_kmmio_probe);
579
580static int
581kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
582{
583	struct die_args *arg = args;
584	unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
585
586	if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
587		if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
588			/*
589			 * Reset the BS bit in dr6 (pointed by args->err) to
590			 * denote completion of processing
591			 */
592			*dr6_p &= ~DR_STEP;
593			return NOTIFY_STOP;
594		}
595
596	return NOTIFY_DONE;
597}
598
599static struct notifier_block nb_die = {
600	.notifier_call = kmmio_die_notifier
601};
602
603int kmmio_init(void)
604{
605	int i;
606
607	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
608		INIT_LIST_HEAD(&kmmio_page_table[i]);
609
610	return register_die_notifier(&nb_die);
611}
612
613void kmmio_cleanup(void)
614{
615	int i;
616
617	unregister_die_notifier(&nb_die);
618	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
619		WARN_ONCE(!list_empty(&kmmio_page_table[i]),
620			KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
621	}
622}
v3.1
 
  1/* Support for MMIO probes.
  2 * Benfit many code from kprobes
  3 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
  4 *     2007 Alexander Eichner
  5 *     2008 Pekka Paalanen <pq@iki.fi>
  6 */
  7
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/list.h>
 11#include <linux/rculist.h>
 12#include <linux/spinlock.h>
 13#include <linux/hash.h>
 14#include <linux/init.h>
 15#include <linux/module.h>
 16#include <linux/kernel.h>
 17#include <linux/uaccess.h>
 18#include <linux/ptrace.h>
 19#include <linux/preempt.h>
 20#include <linux/percpu.h>
 21#include <linux/kdebug.h>
 22#include <linux/mutex.h>
 23#include <linux/io.h>
 24#include <linux/slab.h>
 25#include <asm/cacheflush.h>
 26#include <asm/tlbflush.h>
 27#include <linux/errno.h>
 28#include <asm/debugreg.h>
 29#include <linux/mmiotrace.h>
 30
 31#define KMMIO_PAGE_HASH_BITS 4
 32#define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
 33
 34struct kmmio_fault_page {
 35	struct list_head list;
 36	struct kmmio_fault_page *release_next;
 37	unsigned long page; /* location of the fault page */
 38	pteval_t old_presence; /* page presence prior to arming */
 39	bool armed;
 40
 41	/*
 42	 * Number of times this page has been registered as a part
 43	 * of a probe. If zero, page is disarmed and this may be freed.
 44	 * Used only by writers (RCU) and post_kmmio_handler().
 45	 * Protected by kmmio_lock, when linked into kmmio_page_table.
 46	 */
 47	int count;
 48
 49	bool scheduled_for_release;
 50};
 51
 52struct kmmio_delayed_release {
 53	struct rcu_head rcu;
 54	struct kmmio_fault_page *release_list;
 55};
 56
 57struct kmmio_context {
 58	struct kmmio_fault_page *fpage;
 59	struct kmmio_probe *probe;
 60	unsigned long saved_flags;
 61	unsigned long addr;
 62	int active;
 63};
 64
 65static DEFINE_SPINLOCK(kmmio_lock);
 66
 67/* Protected by kmmio_lock */
 68unsigned int kmmio_count;
 69
 70/* Read-protected by RCU, write-protected by kmmio_lock. */
 71static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
 72static LIST_HEAD(kmmio_probes);
 73
 74static struct list_head *kmmio_page_list(unsigned long page)
 75{
 76	return &kmmio_page_table[hash_long(page, KMMIO_PAGE_HASH_BITS)];
 
 
 
 
 
 
 
 77}
 78
 79/* Accessed per-cpu */
 80static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
 81
 82/*
 83 * this is basically a dynamic stabbing problem:
 84 * Could use the existing prio tree code or
 85 * Possible better implementations:
 86 * The Interval Skip List: A Data Structure for Finding All Intervals That
 87 * Overlap a Point (might be simple)
 88 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
 89 */
 90/* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
 91static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
 92{
 93	struct kmmio_probe *p;
 94	list_for_each_entry_rcu(p, &kmmio_probes, list) {
 95		if (addr >= p->addr && addr < (p->addr + p->len))
 96			return p;
 97	}
 98	return NULL;
 99}
100
101/* You must be holding RCU read lock. */
102static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long page)
103{
104	struct list_head *head;
105	struct kmmio_fault_page *f;
 
 
106
107	page &= PAGE_MASK;
108	head = kmmio_page_list(page);
 
 
109	list_for_each_entry_rcu(f, head, list) {
110		if (f->page == page)
111			return f;
112	}
113	return NULL;
114}
115
116static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
117{
 
118	pmdval_t v = pmd_val(*pmd);
119	if (clear) {
120		*old = v & _PAGE_PRESENT;
121		v &= ~_PAGE_PRESENT;
122	} else	/* presume this has been called with clear==true previously */
123		v |= *old;
124	set_pmd(pmd, __pmd(v));
 
 
125}
126
127static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
128{
129	pteval_t v = pte_val(*pte);
130	if (clear) {
131		*old = v & _PAGE_PRESENT;
132		v &= ~_PAGE_PRESENT;
133	} else	/* presume this has been called with clear==true previously */
134		v |= *old;
135	set_pte_atomic(pte, __pte(v));
 
 
136}
137
138static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
139{
140	unsigned int level;
141	pte_t *pte = lookup_address(f->page, &level);
142
143	if (!pte) {
144		pr_err("no pte for page 0x%08lx\n", f->page);
145		return -1;
146	}
147
148	switch (level) {
149	case PG_LEVEL_2M:
150		clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
151		break;
152	case PG_LEVEL_4K:
153		clear_pte_presence(pte, clear, &f->old_presence);
154		break;
155	default:
156		pr_err("unexpected page level 0x%x.\n", level);
157		return -1;
158	}
159
160	__flush_tlb_one(f->page);
161	return 0;
162}
163
164/*
165 * Mark the given page as not present. Access to it will trigger a fault.
166 *
167 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
168 * protection is ignored here. RCU read lock is assumed held, so the struct
169 * will not disappear unexpectedly. Furthermore, the caller must guarantee,
170 * that double arming the same virtual address (page) cannot occur.
171 *
172 * Double disarming on the other hand is allowed, and may occur when a fault
173 * and mmiotrace shutdown happen simultaneously.
174 */
175static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
176{
177	int ret;
178	WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
179	if (f->armed) {
180		pr_warning("double-arm: page 0x%08lx, ref %d, old %d\n",
181			   f->page, f->count, !!f->old_presence);
182	}
183	ret = clear_page_presence(f, true);
184	WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming 0x%08lx failed.\n"),
185		  f->page);
186	f->armed = true;
187	return ret;
188}
189
190/** Restore the given page to saved presence state. */
191static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
192{
193	int ret = clear_page_presence(f, false);
194	WARN_ONCE(ret < 0,
195			KERN_ERR "kmmio disarming 0x%08lx failed.\n", f->page);
196	f->armed = false;
197}
198
199/*
200 * This is being called from do_page_fault().
201 *
202 * We may be in an interrupt or a critical section. Also prefecthing may
203 * trigger a page fault. We may be in the middle of process switch.
204 * We cannot take any locks, because we could be executing especially
205 * within a kmmio critical section.
206 *
207 * Local interrupts are disabled, so preemption cannot happen.
208 * Do not enable interrupts, do not sleep, and watch out for other CPUs.
209 */
210/*
211 * Interrupts are disabled on entry as trap3 is an interrupt gate
212 * and they remain disabled throughout this function.
213 */
214int kmmio_handler(struct pt_regs *regs, unsigned long addr)
215{
216	struct kmmio_context *ctx;
217	struct kmmio_fault_page *faultpage;
218	int ret = 0; /* default to fault not handled */
 
 
 
 
 
 
219
220	/*
221	 * Preemption is now disabled to prevent process switch during
222	 * single stepping. We can only handle one active kmmio trace
223	 * per cpu, so ensure that we finish it before something else
224	 * gets to run. We also hold the RCU read lock over single
225	 * stepping to avoid looking up the probe and kmmio_fault_page
226	 * again.
227	 */
228	preempt_disable();
229	rcu_read_lock();
230
231	faultpage = get_kmmio_fault_page(addr);
232	if (!faultpage) {
233		/*
234		 * Either this page fault is not caused by kmmio, or
235		 * another CPU just pulled the kmmio probe from under
236		 * our feet. The latter case should not be possible.
237		 */
238		goto no_kmmio;
239	}
240
241	ctx = &get_cpu_var(kmmio_ctx);
242	if (ctx->active) {
243		if (addr == ctx->addr) {
244			/*
245			 * A second fault on the same page means some other
246			 * condition needs handling by do_page_fault(), the
247			 * page really not being present is the most common.
248			 */
249			pr_debug("secondary hit for 0x%08lx CPU %d.\n",
250				 addr, smp_processor_id());
251
252			if (!faultpage->old_presence)
253				pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
254					addr, smp_processor_id());
255		} else {
256			/*
257			 * Prevent overwriting already in-flight context.
258			 * This should not happen, let's hope disarming at
259			 * least prevents a panic.
260			 */
261			pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
262				 smp_processor_id(), addr);
263			pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
264			disarm_kmmio_fault_page(faultpage);
265		}
266		goto no_kmmio_ctx;
267	}
268	ctx->active++;
269
270	ctx->fpage = faultpage;
271	ctx->probe = get_kmmio_probe(addr);
272	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
273	ctx->addr = addr;
274
275	if (ctx->probe && ctx->probe->pre_handler)
276		ctx->probe->pre_handler(ctx->probe, regs, addr);
277
278	/*
279	 * Enable single-stepping and disable interrupts for the faulting
280	 * context. Local interrupts must not get enabled during stepping.
281	 */
282	regs->flags |= X86_EFLAGS_TF;
283	regs->flags &= ~X86_EFLAGS_IF;
284
285	/* Now we set present bit in PTE and single step. */
286	disarm_kmmio_fault_page(ctx->fpage);
287
288	/*
289	 * If another cpu accesses the same page while we are stepping,
290	 * the access will not be caught. It will simply succeed and the
291	 * only downside is we lose the event. If this becomes a problem,
292	 * the user should drop to single cpu before tracing.
293	 */
294
295	put_cpu_var(kmmio_ctx);
296	return 1; /* fault handled */
297
298no_kmmio_ctx:
299	put_cpu_var(kmmio_ctx);
300no_kmmio:
301	rcu_read_unlock();
302	preempt_enable_no_resched();
303	return ret;
304}
305
306/*
307 * Interrupts are disabled on entry as trap1 is an interrupt gate
308 * and they remain disabled throughout this function.
309 * This must always get called as the pair to kmmio_handler().
310 */
311static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
312{
313	int ret = 0;
314	struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
315
316	if (!ctx->active) {
317		/*
318		 * debug traps without an active context are due to either
319		 * something external causing them (f.e. using a debugger while
320		 * mmio tracing enabled), or erroneous behaviour
321		 */
322		pr_warning("unexpected debug trap on CPU %d.\n",
323			   smp_processor_id());
324		goto out;
325	}
326
327	if (ctx->probe && ctx->probe->post_handler)
328		ctx->probe->post_handler(ctx->probe, condition, regs);
329
330	/* Prevent racing against release_kmmio_fault_page(). */
331	spin_lock(&kmmio_lock);
332	if (ctx->fpage->count)
333		arm_kmmio_fault_page(ctx->fpage);
334	spin_unlock(&kmmio_lock);
335
336	regs->flags &= ~X86_EFLAGS_TF;
337	regs->flags |= ctx->saved_flags;
338
339	/* These were acquired in kmmio_handler(). */
340	ctx->active--;
341	BUG_ON(ctx->active);
342	rcu_read_unlock();
343	preempt_enable_no_resched();
344
345	/*
346	 * if somebody else is singlestepping across a probe point, flags
347	 * will have TF set, in which case, continue the remaining processing
348	 * of do_debug, as if this is not a probe hit.
349	 */
350	if (!(regs->flags & X86_EFLAGS_TF))
351		ret = 1;
352out:
353	put_cpu_var(kmmio_ctx);
354	return ret;
355}
356
357/* You must be holding kmmio_lock. */
358static int add_kmmio_fault_page(unsigned long page)
359{
360	struct kmmio_fault_page *f;
361
362	page &= PAGE_MASK;
363	f = get_kmmio_fault_page(page);
364	if (f) {
365		if (!f->count)
366			arm_kmmio_fault_page(f);
367		f->count++;
368		return 0;
369	}
370
371	f = kzalloc(sizeof(*f), GFP_ATOMIC);
372	if (!f)
373		return -1;
374
375	f->count = 1;
376	f->page = page;
377
378	if (arm_kmmio_fault_page(f)) {
379		kfree(f);
380		return -1;
381	}
382
383	list_add_rcu(&f->list, kmmio_page_list(f->page));
384
385	return 0;
386}
387
388/* You must be holding kmmio_lock. */
389static void release_kmmio_fault_page(unsigned long page,
390				struct kmmio_fault_page **release_list)
391{
392	struct kmmio_fault_page *f;
393
394	page &= PAGE_MASK;
395	f = get_kmmio_fault_page(page);
396	if (!f)
397		return;
398
399	f->count--;
400	BUG_ON(f->count < 0);
401	if (!f->count) {
402		disarm_kmmio_fault_page(f);
403		if (!f->scheduled_for_release) {
404			f->release_next = *release_list;
405			*release_list = f;
406			f->scheduled_for_release = true;
407		}
408	}
409}
410
411/*
412 * With page-unaligned ioremaps, one or two armed pages may contain
413 * addresses from outside the intended mapping. Events for these addresses
414 * are currently silently dropped. The events may result only from programming
415 * mistakes by accessing addresses before the beginning or past the end of a
416 * mapping.
417 */
418int register_kmmio_probe(struct kmmio_probe *p)
419{
420	unsigned long flags;
421	int ret = 0;
422	unsigned long size = 0;
 
423	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
 
 
424
425	spin_lock_irqsave(&kmmio_lock, flags);
426	if (get_kmmio_probe(p->addr)) {
427		ret = -EEXIST;
428		goto out;
429	}
 
 
 
 
 
 
 
430	kmmio_count++;
431	list_add_rcu(&p->list, &kmmio_probes);
432	while (size < size_lim) {
433		if (add_kmmio_fault_page(p->addr + size))
434			pr_err("Unable to set page fault.\n");
435		size += PAGE_SIZE;
436	}
437out:
438	spin_unlock_irqrestore(&kmmio_lock, flags);
439	/*
440	 * XXX: What should I do here?
441	 * Here was a call to global_flush_tlb(), but it does not exist
442	 * anymore. It seems it's not needed after all.
443	 */
444	return ret;
445}
446EXPORT_SYMBOL(register_kmmio_probe);
447
448static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
449{
450	struct kmmio_delayed_release *dr = container_of(
451						head,
452						struct kmmio_delayed_release,
453						rcu);
454	struct kmmio_fault_page *f = dr->release_list;
455	while (f) {
456		struct kmmio_fault_page *next = f->release_next;
457		BUG_ON(f->count);
458		kfree(f);
459		f = next;
460	}
461	kfree(dr);
462}
463
464static void remove_kmmio_fault_pages(struct rcu_head *head)
465{
466	struct kmmio_delayed_release *dr =
467		container_of(head, struct kmmio_delayed_release, rcu);
468	struct kmmio_fault_page *f = dr->release_list;
469	struct kmmio_fault_page **prevp = &dr->release_list;
470	unsigned long flags;
471
472	spin_lock_irqsave(&kmmio_lock, flags);
473	while (f) {
474		if (!f->count) {
475			list_del_rcu(&f->list);
476			prevp = &f->release_next;
477		} else {
478			*prevp = f->release_next;
479			f->release_next = NULL;
480			f->scheduled_for_release = false;
481		}
482		f = *prevp;
483	}
484	spin_unlock_irqrestore(&kmmio_lock, flags);
485
486	/* This is the real RCU destroy call. */
487	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
488}
489
490/*
491 * Remove a kmmio probe. You have to synchronize_rcu() before you can be
492 * sure that the callbacks will not be called anymore. Only after that
493 * you may actually release your struct kmmio_probe.
494 *
495 * Unregistering a kmmio fault page has three steps:
496 * 1. release_kmmio_fault_page()
497 *    Disarm the page, wait a grace period to let all faults finish.
498 * 2. remove_kmmio_fault_pages()
499 *    Remove the pages from kmmio_page_table.
500 * 3. rcu_free_kmmio_fault_pages()
501 *    Actually free the kmmio_fault_page structs as with RCU.
502 */
503void unregister_kmmio_probe(struct kmmio_probe *p)
504{
505	unsigned long flags;
506	unsigned long size = 0;
 
507	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
508	struct kmmio_fault_page *release_list = NULL;
509	struct kmmio_delayed_release *drelease;
 
 
 
 
 
 
510
511	spin_lock_irqsave(&kmmio_lock, flags);
512	while (size < size_lim) {
513		release_kmmio_fault_page(p->addr + size, &release_list);
514		size += PAGE_SIZE;
515	}
516	list_del_rcu(&p->list);
517	kmmio_count--;
518	spin_unlock_irqrestore(&kmmio_lock, flags);
519
520	if (!release_list)
521		return;
522
523	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
524	if (!drelease) {
525		pr_crit("leaking kmmio_fault_page objects.\n");
526		return;
527	}
528	drelease->release_list = release_list;
529
530	/*
531	 * This is not really RCU here. We have just disarmed a set of
532	 * pages so that they cannot trigger page faults anymore. However,
533	 * we cannot remove the pages from kmmio_page_table,
534	 * because a probe hit might be in flight on another CPU. The
535	 * pages are collected into a list, and they will be removed from
536	 * kmmio_page_table when it is certain that no probe hit related to
537	 * these pages can be in flight. RCU grace period sounds like a
538	 * good choice.
539	 *
540	 * If we removed the pages too early, kmmio page fault handler might
541	 * not find the respective kmmio_fault_page and determine it's not
542	 * a kmmio fault, when it actually is. This would lead to madness.
543	 */
544	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
545}
546EXPORT_SYMBOL(unregister_kmmio_probe);
547
548static int
549kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
550{
551	struct die_args *arg = args;
552	unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
553
554	if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
555		if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
556			/*
557			 * Reset the BS bit in dr6 (pointed by args->err) to
558			 * denote completion of processing
559			 */
560			*dr6_p &= ~DR_STEP;
561			return NOTIFY_STOP;
562		}
563
564	return NOTIFY_DONE;
565}
566
567static struct notifier_block nb_die = {
568	.notifier_call = kmmio_die_notifier
569};
570
571int kmmio_init(void)
572{
573	int i;
574
575	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
576		INIT_LIST_HEAD(&kmmio_page_table[i]);
577
578	return register_die_notifier(&nb_die);
579}
580
581void kmmio_cleanup(void)
582{
583	int i;
584
585	unregister_die_notifier(&nb_die);
586	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
587		WARN_ONCE(!list_empty(&kmmio_page_table[i]),
588			KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
589	}
590}