Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Re-map IO memory to kernel address space so that we can access it.
  4 * This is needed for high PCI addresses that aren't mapped in the
  5 * 640k-1MB IO memory area on PC's
  6 *
  7 * (C) Copyright 1995 1996 Linus Torvalds
  8 */
  9
 10#include <linux/memblock.h>
 11#include <linux/init.h>
 12#include <linux/io.h>
 13#include <linux/ioport.h>
 14#include <linux/slab.h>
 15#include <linux/vmalloc.h>
 16#include <linux/mmiotrace.h>
 17#include <linux/mem_encrypt.h>
 18#include <linux/efi.h>
 19#include <linux/pgtable.h>
 20
 21#include <asm/set_memory.h>
 22#include <asm/e820/api.h>
 23#include <asm/efi.h>
 24#include <asm/fixmap.h>
 
 25#include <asm/tlbflush.h>
 26#include <asm/pgalloc.h>
 27#include <asm/memtype.h>
 28#include <asm/setup.h>
 29
 30#include "physaddr.h"
 31
 32/*
 33 * Descriptor controlling ioremap() behavior.
 34 */
 35struct ioremap_desc {
 36	unsigned int flags;
 37};
 38
 39/*
 40 * Fix up the linear direct mapping of the kernel to avoid cache attribute
 41 * conflicts.
 42 */
 43int ioremap_change_attr(unsigned long vaddr, unsigned long size,
 44			enum page_cache_mode pcm)
 45{
 46	unsigned long nrpages = size >> PAGE_SHIFT;
 47	int err;
 48
 49	switch (pcm) {
 50	case _PAGE_CACHE_MODE_UC:
 51	default:
 52		err = _set_memory_uc(vaddr, nrpages);
 53		break;
 54	case _PAGE_CACHE_MODE_WC:
 55		err = _set_memory_wc(vaddr, nrpages);
 56		break;
 57	case _PAGE_CACHE_MODE_WT:
 58		err = _set_memory_wt(vaddr, nrpages);
 59		break;
 60	case _PAGE_CACHE_MODE_WB:
 61		err = _set_memory_wb(vaddr, nrpages);
 62		break;
 63	}
 64
 65	return err;
 66}
 67
 68/* Does the range (or a subset of) contain normal RAM? */
 69static unsigned int __ioremap_check_ram(struct resource *res)
 70{
 71	unsigned long start_pfn, stop_pfn;
 72	unsigned long i;
 73
 74	if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
 75		return 0;
 76
 77	start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
 78	stop_pfn = (res->end + 1) >> PAGE_SHIFT;
 79	if (stop_pfn > start_pfn) {
 80		for (i = 0; i < (stop_pfn - start_pfn); ++i)
 81			if (pfn_valid(start_pfn + i) &&
 82			    !PageReserved(pfn_to_page(start_pfn + i)))
 83				return IORES_MAP_SYSTEM_RAM;
 84	}
 85
 86	return 0;
 87}
 88
 89/*
 90 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
 91 * there the whole memory is already encrypted.
 92 */
 93static unsigned int __ioremap_check_encrypted(struct resource *res)
 94{
 95	if (!sev_active())
 96		return 0;
 97
 98	switch (res->desc) {
 99	case IORES_DESC_NONE:
100	case IORES_DESC_RESERVED:
101		break;
102	default:
103		return IORES_MAP_ENCRYPTED;
104	}
105
106	return 0;
107}
108
109/*
110 * The EFI runtime services data area is not covered by walk_mem_res(), but must
111 * be mapped encrypted when SEV is active.
112 */
113static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
114{
115	if (!sev_active())
116		return;
117
118	if (!IS_ENABLED(CONFIG_EFI))
119		return;
120
121	if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA)
122		desc->flags |= IORES_MAP_ENCRYPTED;
123}
124
125static int __ioremap_collect_map_flags(struct resource *res, void *arg)
126{
127	struct ioremap_desc *desc = arg;
128
129	if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
130		desc->flags |= __ioremap_check_ram(res);
131
132	if (!(desc->flags & IORES_MAP_ENCRYPTED))
133		desc->flags |= __ioremap_check_encrypted(res);
134
135	return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
136			       (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
137}
138
139/*
140 * To avoid multiple resource walks, this function walks resources marked as
141 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
142 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
143 *
144 * After that, deal with misc other ranges in __ioremap_check_other() which do
145 * not fall into the above category.
146 */
147static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
148				struct ioremap_desc *desc)
149{
150	u64 start, end;
151
152	start = (u64)addr;
153	end = start + size - 1;
154	memset(desc, 0, sizeof(struct ioremap_desc));
155
156	walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
157
158	__ioremap_check_other(addr, desc);
159}
160
161/*
162 * Remap an arbitrary physical address space into the kernel virtual
163 * address space. It transparently creates kernel huge I/O mapping when
164 * the physical address is aligned by a huge page size (1GB or 2MB) and
165 * the requested size is at least the huge page size.
166 *
167 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
168 * Therefore, the mapping code falls back to use a smaller page toward 4KB
169 * when a mapping range is covered by non-WB type of MTRRs.
170 *
171 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
172 * have to convert them into an offset in a page-aligned mapping, but the
173 * caller shouldn't need to know that small detail.
174 */
175static void __iomem *
176__ioremap_caller(resource_size_t phys_addr, unsigned long size,
177		 enum page_cache_mode pcm, void *caller, bool encrypted)
178{
179	unsigned long offset, vaddr;
180	resource_size_t last_addr;
181	const resource_size_t unaligned_phys_addr = phys_addr;
182	const unsigned long unaligned_size = size;
183	struct ioremap_desc io_desc;
184	struct vm_struct *area;
185	enum page_cache_mode new_pcm;
186	pgprot_t prot;
187	int retval;
188	void __iomem *ret_addr;
189
190	/* Don't allow wraparound or zero size */
191	last_addr = phys_addr + size - 1;
192	if (!size || last_addr < phys_addr)
193		return NULL;
194
195	if (!phys_addr_valid(phys_addr)) {
196		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
197		       (unsigned long long)phys_addr);
198		WARN_ON_ONCE(1);
199		return NULL;
200	}
201
202	__ioremap_check_mem(phys_addr, size, &io_desc);
 
 
 
 
203
204	/*
205	 * Don't allow anybody to remap normal RAM that we're using..
206	 */
207	if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
208		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
209			  &phys_addr, &last_addr);
210		return NULL;
 
 
 
211	}
212
213	/*
214	 * Mappings have to be page-aligned
215	 */
216	offset = phys_addr & ~PAGE_MASK;
217	phys_addr &= PHYSICAL_PAGE_MASK;
218	size = PAGE_ALIGN(last_addr+1) - phys_addr;
219
220	retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
221						pcm, &new_pcm);
222	if (retval) {
223		printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
224		return NULL;
225	}
226
227	if (pcm != new_pcm) {
228		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
 
229			printk(KERN_ERR
230		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
231				(unsigned long long)phys_addr,
232				(unsigned long long)(phys_addr + size),
233				pcm, new_pcm);
234			goto err_free_memtype;
235		}
236		pcm = new_pcm;
237	}
238
239	/*
240	 * If the page being mapped is in memory and SEV is active then
241	 * make sure the memory encryption attribute is enabled in the
242	 * resulting mapping.
243	 */
244	prot = PAGE_KERNEL_IO;
245	if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
246		prot = pgprot_encrypted(prot);
247
248	switch (pcm) {
249	case _PAGE_CACHE_MODE_UC:
250	default:
251		prot = __pgprot(pgprot_val(prot) |
252				cachemode2protval(_PAGE_CACHE_MODE_UC));
253		break;
254	case _PAGE_CACHE_MODE_UC_MINUS:
255		prot = __pgprot(pgprot_val(prot) |
256				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
257		break;
258	case _PAGE_CACHE_MODE_WC:
259		prot = __pgprot(pgprot_val(prot) |
260				cachemode2protval(_PAGE_CACHE_MODE_WC));
261		break;
262	case _PAGE_CACHE_MODE_WT:
263		prot = __pgprot(pgprot_val(prot) |
264				cachemode2protval(_PAGE_CACHE_MODE_WT));
265		break;
266	case _PAGE_CACHE_MODE_WB:
267		break;
268	}
269
270	/*
271	 * Ok, go for it..
272	 */
273	area = get_vm_area_caller(size, VM_IOREMAP, caller);
274	if (!area)
275		goto err_free_memtype;
276	area->phys_addr = phys_addr;
277	vaddr = (unsigned long) area->addr;
278
279	if (memtype_kernel_map_sync(phys_addr, size, pcm))
280		goto err_free_area;
281
282	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
283		goto err_free_area;
284
285	ret_addr = (void __iomem *) (vaddr + offset);
286	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
287
288	/*
289	 * Check if the request spans more than any BAR in the iomem resource
290	 * tree.
291	 */
292	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
293		pr_warn("caller %pS mapping multiple BARs\n", caller);
294
295	return ret_addr;
296err_free_area:
297	free_vm_area(area);
298err_free_memtype:
299	memtype_free(phys_addr, phys_addr + size);
300	return NULL;
301}
302
303/**
304 * ioremap     -   map bus memory into CPU space
305 * @phys_addr:    bus address of the memory
306 * @size:      size of the resource to map
307 *
308 * ioremap performs a platform specific sequence of operations to
309 * make bus memory CPU accessible via the readb/readw/readl/writeb/
310 * writew/writel functions and the other mmio helpers. The returned
311 * address is not guaranteed to be usable directly as a virtual
312 * address.
313 *
314 * This version of ioremap ensures that the memory is marked uncachable
315 * on the CPU as well as honouring existing caching rules from things like
316 * the PCI bus. Note that there are other caches and buffers on many
317 * busses. In particular driver authors should read up on PCI writes
318 *
319 * It's useful if some control registers are in such an area and
320 * write combining or read caching is not desirable:
321 *
322 * Must be freed with iounmap.
323 */
324void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
325{
326	/*
327	 * Ideally, this should be:
328	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
329	 *
330	 * Till we fix all X drivers to use ioremap_wc(), we will use
331	 * UC MINUS. Drivers that are certain they need or can already
332	 * be converted over to strong UC can use ioremap_uc().
333	 */
334	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
335
336	return __ioremap_caller(phys_addr, size, pcm,
337				__builtin_return_address(0), false);
338}
339EXPORT_SYMBOL(ioremap);
340
341/**
342 * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
343 * @phys_addr:    bus address of the memory
344 * @size:      size of the resource to map
345 *
346 * ioremap_uc performs a platform specific sequence of operations to
347 * make bus memory CPU accessible via the readb/readw/readl/writeb/
348 * writew/writel functions and the other mmio helpers. The returned
349 * address is not guaranteed to be usable directly as a virtual
350 * address.
351 *
352 * This version of ioremap ensures that the memory is marked with a strong
353 * preference as completely uncachable on the CPU when possible. For non-PAT
354 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
355 * systems this will set the PAT entry for the pages as strong UC.  This call
356 * will honor existing caching rules from things like the PCI bus. Note that
357 * there are other caches and buffers on many busses. In particular driver
358 * authors should read up on PCI writes.
359 *
360 * It's useful if some control registers are in such an area and
361 * write combining or read caching is not desirable:
362 *
363 * Must be freed with iounmap.
364 */
365void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
366{
367	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
368
369	return __ioremap_caller(phys_addr, size, pcm,
370				__builtin_return_address(0), false);
371}
372EXPORT_SYMBOL_GPL(ioremap_uc);
373
374/**
375 * ioremap_wc	-	map memory into CPU space write combined
376 * @phys_addr:	bus address of the memory
377 * @size:	size of the resource to map
378 *
379 * This version of ioremap ensures that the memory is marked write combining.
380 * Write combining allows faster writes to some hardware devices.
381 *
382 * Must be freed with iounmap.
383 */
384void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
385{
386	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
387					__builtin_return_address(0), false);
 
 
 
388}
389EXPORT_SYMBOL(ioremap_wc);
390
391/**
392 * ioremap_wt	-	map memory into CPU space write through
393 * @phys_addr:	bus address of the memory
394 * @size:	size of the resource to map
395 *
396 * This version of ioremap ensures that the memory is marked write through.
397 * Write through stores data into memory while keeping the cache up-to-date.
398 *
399 * Must be freed with iounmap.
400 */
401void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
402{
403	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
404					__builtin_return_address(0), false);
405}
406EXPORT_SYMBOL(ioremap_wt);
407
408void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
409{
410	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
411				__builtin_return_address(0), true);
412}
413EXPORT_SYMBOL(ioremap_encrypted);
414
415void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
416{
417	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
418				__builtin_return_address(0), false);
419}
420EXPORT_SYMBOL(ioremap_cache);
421
422void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
423				unsigned long prot_val)
424{
425	return __ioremap_caller(phys_addr, size,
426				pgprot2cachemode(__pgprot(prot_val)),
427				__builtin_return_address(0), false);
428}
429EXPORT_SYMBOL(ioremap_prot);
430
431/**
432 * iounmap - Free a IO remapping
433 * @addr: virtual address from ioremap_*
434 *
435 * Caller must ensure there is only one unmapping for the same pointer.
436 */
437void iounmap(volatile void __iomem *addr)
438{
439	struct vm_struct *p, *o;
440
441	if ((void __force *)addr <= high_memory)
442		return;
443
444	/*
445	 * The PCI/ISA range special-casing was removed from __ioremap()
446	 * so this check, in theory, can be removed. However, there are
447	 * cases where iounmap() is called for addresses not obtained via
448	 * ioremap() (vga16fb for example). Add a warning so that these
449	 * cases can be caught and fixed.
450	 */
451	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
452	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
453		WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
454		return;
455	}
456
457	mmiotrace_iounmap(addr);
458
459	addr = (volatile void __iomem *)
460		(PAGE_MASK & (unsigned long __force)addr);
461
 
 
462	/* Use the vm area unlocked, assuming the caller
463	   ensures there isn't another iounmap for the same address
464	   in parallel. Reuse of the virtual address is prevented by
465	   leaving it in the global lists until we're done with it.
466	   cpa takes care of the direct mappings. */
467	p = find_vm_area((void __force *)addr);
 
 
 
 
 
468
469	if (!p) {
470		printk(KERN_ERR "iounmap: bad address %p\n", addr);
471		dump_stack();
472		return;
473	}
474
475	memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
476
477	/* Finally remove it */
478	o = remove_vm_area((void __force *)addr);
479	BUG_ON(p != o || o == NULL);
480	kfree(p);
481}
482EXPORT_SYMBOL(iounmap);
483
484int __init arch_ioremap_p4d_supported(void)
485{
486	return 0;
487}
488
489int __init arch_ioremap_pud_supported(void)
490{
491#ifdef CONFIG_X86_64
492	return boot_cpu_has(X86_FEATURE_GBPAGES);
493#else
494	return 0;
495#endif
496}
497
498int __init arch_ioremap_pmd_supported(void)
499{
500	return boot_cpu_has(X86_FEATURE_PSE);
501}
502
503/*
504 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
505 * access
506 */
507void *xlate_dev_mem_ptr(phys_addr_t phys)
508{
509	unsigned long start  = phys &  PAGE_MASK;
510	unsigned long offset = phys & ~PAGE_MASK;
511	void *vaddr;
512
513	/* memremap() maps if RAM, otherwise falls back to ioremap() */
514	vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
 
515
516	/* Only add the offset on success and return NULL if memremap() failed */
517	if (vaddr)
518		vaddr += offset;
519
520	return vaddr;
521}
522
523void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
524{
525	memunmap((void *)((unsigned long)addr & PAGE_MASK));
526}
527
528/*
529 * Examine the physical address to determine if it is an area of memory
530 * that should be mapped decrypted.  If the memory is not part of the
531 * kernel usable area it was accessed and created decrypted, so these
532 * areas should be mapped decrypted. And since the encryption key can
533 * change across reboots, persistent memory should also be mapped
534 * decrypted.
535 *
536 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
537 * only persistent memory should be mapped decrypted.
538 */
539static bool memremap_should_map_decrypted(resource_size_t phys_addr,
540					  unsigned long size)
541{
542	int is_pmem;
543
544	/*
545	 * Check if the address is part of a persistent memory region.
546	 * This check covers areas added by E820, EFI and ACPI.
547	 */
548	is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
549				    IORES_DESC_PERSISTENT_MEMORY);
550	if (is_pmem != REGION_DISJOINT)
551		return true;
552
553	/*
554	 * Check if the non-volatile attribute is set for an EFI
555	 * reserved area.
556	 */
557	if (efi_enabled(EFI_BOOT)) {
558		switch (efi_mem_type(phys_addr)) {
559		case EFI_RESERVED_TYPE:
560			if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
561				return true;
562			break;
563		default:
564			break;
565		}
566	}
567
568	/* Check if the address is outside kernel usable area */
569	switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
570	case E820_TYPE_RESERVED:
571	case E820_TYPE_ACPI:
572	case E820_TYPE_NVS:
573	case E820_TYPE_UNUSABLE:
574		/* For SEV, these areas are encrypted */
575		if (sev_active())
576			break;
577		fallthrough;
578
579	case E820_TYPE_PRAM:
580		return true;
581	default:
582		break;
583	}
584
585	return false;
586}
587
588/*
589 * Examine the physical address to determine if it is EFI data. Check
590 * it against the boot params structure and EFI tables and memory types.
591 */
592static bool memremap_is_efi_data(resource_size_t phys_addr,
593				 unsigned long size)
594{
595	u64 paddr;
596
597	/* Check if the address is part of EFI boot/runtime data */
598	if (!efi_enabled(EFI_BOOT))
599		return false;
600
601	paddr = boot_params.efi_info.efi_memmap_hi;
602	paddr <<= 32;
603	paddr |= boot_params.efi_info.efi_memmap;
604	if (phys_addr == paddr)
605		return true;
606
607	paddr = boot_params.efi_info.efi_systab_hi;
608	paddr <<= 32;
609	paddr |= boot_params.efi_info.efi_systab;
610	if (phys_addr == paddr)
611		return true;
612
613	if (efi_is_table_address(phys_addr))
614		return true;
615
616	switch (efi_mem_type(phys_addr)) {
617	case EFI_BOOT_SERVICES_DATA:
618	case EFI_RUNTIME_SERVICES_DATA:
619		return true;
620	default:
621		break;
622	}
623
624	return false;
625}
626
627/*
628 * Examine the physical address to determine if it is boot data by checking
629 * it against the boot params setup_data chain.
630 */
631static bool memremap_is_setup_data(resource_size_t phys_addr,
632				   unsigned long size)
633{
634	struct setup_data *data;
635	u64 paddr, paddr_next;
636
637	paddr = boot_params.hdr.setup_data;
638	while (paddr) {
639		unsigned int len;
640
641		if (phys_addr == paddr)
642			return true;
643
644		data = memremap(paddr, sizeof(*data),
645				MEMREMAP_WB | MEMREMAP_DEC);
646
647		paddr_next = data->next;
648		len = data->len;
649
650		if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
651			memunmap(data);
652			return true;
653		}
654
655		if (data->type == SETUP_INDIRECT &&
656		    ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
657			paddr = ((struct setup_indirect *)data->data)->addr;
658			len = ((struct setup_indirect *)data->data)->len;
659		}
660
661		memunmap(data);
662
663		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
664			return true;
665
666		paddr = paddr_next;
667	}
668
669	return false;
670}
671
672/*
673 * Examine the physical address to determine if it is boot data by checking
674 * it against the boot params setup_data chain (early boot version).
675 */
676static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
677						unsigned long size)
678{
679	struct setup_data *data;
680	u64 paddr, paddr_next;
681
682	paddr = boot_params.hdr.setup_data;
683	while (paddr) {
684		unsigned int len;
685
686		if (phys_addr == paddr)
687			return true;
688
689		data = early_memremap_decrypted(paddr, sizeof(*data));
690
691		paddr_next = data->next;
692		len = data->len;
693
694		early_memunmap(data, sizeof(*data));
695
696		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
697			return true;
698
699		paddr = paddr_next;
700	}
701
702	return false;
703}
704
705/*
706 * Architecture function to determine if RAM remap is allowed. By default, a
707 * RAM remap will map the data as encrypted. Determine if a RAM remap should
708 * not be done so that the data will be mapped decrypted.
709 */
710bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
711				 unsigned long flags)
712{
713	if (!mem_encrypt_active())
714		return true;
715
716	if (flags & MEMREMAP_ENC)
717		return true;
718
719	if (flags & MEMREMAP_DEC)
720		return false;
721
722	if (sme_active()) {
723		if (memremap_is_setup_data(phys_addr, size) ||
724		    memremap_is_efi_data(phys_addr, size))
725			return false;
726	}
727
728	return !memremap_should_map_decrypted(phys_addr, size);
729}
730
731/*
732 * Architecture override of __weak function to adjust the protection attributes
733 * used when remapping memory. By default, early_memremap() will map the data
734 * as encrypted. Determine if an encrypted mapping should not be done and set
735 * the appropriate protection attributes.
736 */
737pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
738					     unsigned long size,
739					     pgprot_t prot)
740{
741	bool encrypted_prot;
742
743	if (!mem_encrypt_active())
744		return prot;
745
746	encrypted_prot = true;
747
748	if (sme_active()) {
749		if (early_memremap_is_setup_data(phys_addr, size) ||
750		    memremap_is_efi_data(phys_addr, size))
751			encrypted_prot = false;
752	}
753
754	if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
755		encrypted_prot = false;
756
757	return encrypted_prot ? pgprot_encrypted(prot)
758			      : pgprot_decrypted(prot);
759}
760
761bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
762{
763	return arch_memremap_can_ram_remap(phys_addr, size, 0);
764}
765
766#ifdef CONFIG_AMD_MEM_ENCRYPT
767/* Remap memory with encryption */
768void __init *early_memremap_encrypted(resource_size_t phys_addr,
769				      unsigned long size)
770{
771	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
772}
773
774/*
775 * Remap memory with encryption and write-protected - cannot be called
776 * before pat_init() is called
777 */
778void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
779					 unsigned long size)
780{
781	if (!x86_has_pat_wp())
782		return NULL;
783	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
784}
785
786/* Remap memory without encryption */
787void __init *early_memremap_decrypted(resource_size_t phys_addr,
788				      unsigned long size)
789{
790	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
791}
792
793/*
794 * Remap memory without encryption and write-protected - cannot be called
795 * before pat_init() is called
796 */
797void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
798					 unsigned long size)
799{
800	if (!x86_has_pat_wp())
801		return NULL;
802	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
803}
804#endif	/* CONFIG_AMD_MEM_ENCRYPT */
805
 
806static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
807
808static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
809{
810	/* Don't assume we're using swapper_pg_dir at this point */
811	pgd_t *base = __va(read_cr3_pa());
812	pgd_t *pgd = &base[pgd_index(addr)];
813	p4d_t *p4d = p4d_offset(pgd, addr);
814	pud_t *pud = pud_offset(p4d, addr);
815	pmd_t *pmd = pmd_offset(pud, addr);
816
817	return pmd;
818}
819
820static inline pte_t * __init early_ioremap_pte(unsigned long addr)
821{
822	return &bm_pte[pte_index(addr)];
823}
824
825bool __init is_early_ioremap_ptep(pte_t *ptep)
826{
827	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
828}
829
 
 
830void __init early_ioremap_init(void)
831{
832	pmd_t *pmd;
 
833
834#ifdef CONFIG_X86_64
835	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
836#else
837	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
838#endif
839
840	early_ioremap_setup();
 
841
842	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
843	memset(bm_pte, 0, sizeof(bm_pte));
844	pmd_populate_kernel(&init_mm, pmd, bm_pte);
845
846	/*
847	 * The boot-ioremap range spans multiple pmds, for which
848	 * we are not prepared:
849	 */
850#define __FIXADDR_TOP (-PAGE_SIZE)
851	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
852		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
853#undef __FIXADDR_TOP
854	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
855		WARN_ON(1);
856		printk(KERN_WARNING "pmd %p != %p\n",
857		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
858		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
859			fix_to_virt(FIX_BTMAP_BEGIN));
860		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
861			fix_to_virt(FIX_BTMAP_END));
862
863		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
864		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
865		       FIX_BTMAP_BEGIN);
866	}
867}
868
869void __init __early_set_fixmap(enum fixed_addresses idx,
870			       phys_addr_t phys, pgprot_t flags)
 
 
 
 
 
871{
872	unsigned long addr = __fix_to_virt(idx);
873	pte_t *pte;
874
875	if (idx >= __end_of_fixed_addresses) {
876		BUG();
877		return;
878	}
879	pte = early_ioremap_pte(addr);
880
881	/* Sanitize 'prot' against any unsupported bits: */
882	pgprot_val(flags) &= __supported_pte_mask;
883
884	if (pgprot_val(flags))
885		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
886	else
887		pte_clear(&init_mm, addr, pte);
888	flush_tlb_one_kernel(addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
889}
v3.1
 
  1/*
  2 * Re-map IO memory to kernel address space so that we can access it.
  3 * This is needed for high PCI addresses that aren't mapped in the
  4 * 640k-1MB IO memory area on PC's
  5 *
  6 * (C) Copyright 1995 1996 Linus Torvalds
  7 */
  8
  9#include <linux/bootmem.h>
 10#include <linux/init.h>
 11#include <linux/io.h>
 12#include <linux/module.h>
 13#include <linux/slab.h>
 14#include <linux/vmalloc.h>
 15#include <linux/mmiotrace.h>
 16
 17#include <asm/cacheflush.h>
 18#include <asm/e820.h>
 
 
 
 
 19#include <asm/fixmap.h>
 20#include <asm/pgtable.h>
 21#include <asm/tlbflush.h>
 22#include <asm/pgalloc.h>
 23#include <asm/pat.h>
 
 24
 25#include "physaddr.h"
 26
 27/*
 
 
 
 
 
 
 
 28 * Fix up the linear direct mapping of the kernel to avoid cache attribute
 29 * conflicts.
 30 */
 31int ioremap_change_attr(unsigned long vaddr, unsigned long size,
 32			       unsigned long prot_val)
 33{
 34	unsigned long nrpages = size >> PAGE_SHIFT;
 35	int err;
 36
 37	switch (prot_val) {
 38	case _PAGE_CACHE_UC:
 39	default:
 40		err = _set_memory_uc(vaddr, nrpages);
 41		break;
 42	case _PAGE_CACHE_WC:
 43		err = _set_memory_wc(vaddr, nrpages);
 44		break;
 45	case _PAGE_CACHE_WB:
 
 
 
 46		err = _set_memory_wb(vaddr, nrpages);
 47		break;
 48	}
 49
 50	return err;
 51}
 52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 53/*
 54 * Remap an arbitrary physical address space into the kernel virtual
 55 * address space. Needed when the kernel wants to access high addresses
 56 * directly.
 
 
 
 
 
 57 *
 58 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
 59 * have to convert them into an offset in a page-aligned mapping, but the
 60 * caller shouldn't need to know that small detail.
 61 */
 62static void __iomem *__ioremap_caller(resource_size_t phys_addr,
 63		unsigned long size, unsigned long prot_val, void *caller)
 
 64{
 65	unsigned long offset, vaddr;
 66	resource_size_t pfn, last_pfn, last_addr;
 67	const resource_size_t unaligned_phys_addr = phys_addr;
 68	const unsigned long unaligned_size = size;
 
 69	struct vm_struct *area;
 70	unsigned long new_prot_val;
 71	pgprot_t prot;
 72	int retval;
 73	void __iomem *ret_addr;
 74
 75	/* Don't allow wraparound or zero size */
 76	last_addr = phys_addr + size - 1;
 77	if (!size || last_addr < phys_addr)
 78		return NULL;
 79
 80	if (!phys_addr_valid(phys_addr)) {
 81		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
 82		       (unsigned long long)phys_addr);
 83		WARN_ON_ONCE(1);
 84		return NULL;
 85	}
 86
 87	/*
 88	 * Don't remap the low PCI/ISA area, it's always mapped..
 89	 */
 90	if (is_ISA_range(phys_addr, last_addr))
 91		return (__force void __iomem *)phys_to_virt(phys_addr);
 92
 93	/*
 94	 * Don't allow anybody to remap normal RAM that we're using..
 95	 */
 96	last_pfn = last_addr >> PAGE_SHIFT;
 97	for (pfn = phys_addr >> PAGE_SHIFT; pfn <= last_pfn; pfn++) {
 98		int is_ram = page_is_ram(pfn);
 99
100		if (is_ram && pfn_valid(pfn) && !PageReserved(pfn_to_page(pfn)))
101			return NULL;
102		WARN_ON_ONCE(is_ram);
103	}
104
105	/*
106	 * Mappings have to be page-aligned
107	 */
108	offset = phys_addr & ~PAGE_MASK;
109	phys_addr &= PHYSICAL_PAGE_MASK;
110	size = PAGE_ALIGN(last_addr+1) - phys_addr;
111
112	retval = reserve_memtype(phys_addr, (u64)phys_addr + size,
113						prot_val, &new_prot_val);
114	if (retval) {
115		printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval);
116		return NULL;
117	}
118
119	if (prot_val != new_prot_val) {
120		if (!is_new_memtype_allowed(phys_addr, size,
121					    prot_val, new_prot_val)) {
122			printk(KERN_ERR
123		"ioremap error for 0x%llx-0x%llx, requested 0x%lx, got 0x%lx\n",
124				(unsigned long long)phys_addr,
125				(unsigned long long)(phys_addr + size),
126				prot_val, new_prot_val);
127			goto err_free_memtype;
128		}
129		prot_val = new_prot_val;
130	}
131
132	switch (prot_val) {
133	case _PAGE_CACHE_UC:
 
 
 
 
 
 
 
 
 
134	default:
135		prot = PAGE_KERNEL_IO_NOCACHE;
 
136		break;
137	case _PAGE_CACHE_UC_MINUS:
138		prot = PAGE_KERNEL_IO_UC_MINUS;
 
139		break;
140	case _PAGE_CACHE_WC:
141		prot = PAGE_KERNEL_IO_WC;
 
142		break;
143	case _PAGE_CACHE_WB:
144		prot = PAGE_KERNEL_IO;
 
 
 
145		break;
146	}
147
148	/*
149	 * Ok, go for it..
150	 */
151	area = get_vm_area_caller(size, VM_IOREMAP, caller);
152	if (!area)
153		goto err_free_memtype;
154	area->phys_addr = phys_addr;
155	vaddr = (unsigned long) area->addr;
156
157	if (kernel_map_sync_memtype(phys_addr, size, prot_val))
158		goto err_free_area;
159
160	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
161		goto err_free_area;
162
163	ret_addr = (void __iomem *) (vaddr + offset);
164	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
165
166	/*
167	 * Check if the request spans more than any BAR in the iomem resource
168	 * tree.
169	 */
170	WARN_ONCE(iomem_map_sanity_check(unaligned_phys_addr, unaligned_size),
171		  KERN_INFO "Info: mapping multiple BARs. Your kernel is fine.");
172
173	return ret_addr;
174err_free_area:
175	free_vm_area(area);
176err_free_memtype:
177	free_memtype(phys_addr, phys_addr + size);
178	return NULL;
179}
180
181/**
182 * ioremap_nocache     -   map bus memory into CPU space
183 * @offset:    bus address of the memory
184 * @size:      size of the resource to map
185 *
186 * ioremap_nocache performs a platform specific sequence of operations to
187 * make bus memory CPU accessible via the readb/readw/readl/writeb/
188 * writew/writel functions and the other mmio helpers. The returned
189 * address is not guaranteed to be usable directly as a virtual
190 * address.
191 *
192 * This version of ioremap ensures that the memory is marked uncachable
193 * on the CPU as well as honouring existing caching rules from things like
194 * the PCI bus. Note that there are other caches and buffers on many
195 * busses. In particular driver authors should read up on PCI writes
196 *
197 * It's useful if some control registers are in such an area and
198 * write combining or read caching is not desirable:
199 *
200 * Must be freed with iounmap.
201 */
202void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size)
203{
204	/*
205	 * Ideally, this should be:
206	 *	pat_enabled ? _PAGE_CACHE_UC : _PAGE_CACHE_UC_MINUS;
207	 *
208	 * Till we fix all X drivers to use ioremap_wc(), we will use
209	 * UC MINUS.
 
210	 */
211	unsigned long val = _PAGE_CACHE_UC_MINUS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212
213	return __ioremap_caller(phys_addr, size, val,
214				__builtin_return_address(0));
215}
216EXPORT_SYMBOL(ioremap_nocache);
217
218/**
219 * ioremap_wc	-	map memory into CPU space write combined
220 * @offset:	bus address of the memory
221 * @size:	size of the resource to map
222 *
223 * This version of ioremap ensures that the memory is marked write combining.
224 * Write combining allows faster writes to some hardware devices.
225 *
226 * Must be freed with iounmap.
227 */
228void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
229{
230	if (pat_enabled)
231		return __ioremap_caller(phys_addr, size, _PAGE_CACHE_WC,
232					__builtin_return_address(0));
233	else
234		return ioremap_nocache(phys_addr, size);
235}
236EXPORT_SYMBOL(ioremap_wc);
237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
239{
240	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_WB,
241				__builtin_return_address(0));
242}
243EXPORT_SYMBOL(ioremap_cache);
244
245void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
246				unsigned long prot_val)
247{
248	return __ioremap_caller(phys_addr, size, (prot_val & _PAGE_CACHE_MASK),
249				__builtin_return_address(0));
 
250}
251EXPORT_SYMBOL(ioremap_prot);
252
253/**
254 * iounmap - Free a IO remapping
255 * @addr: virtual address from ioremap_*
256 *
257 * Caller must ensure there is only one unmapping for the same pointer.
258 */
259void iounmap(volatile void __iomem *addr)
260{
261	struct vm_struct *p, *o;
262
263	if ((void __force *)addr <= high_memory)
264		return;
265
266	/*
267	 * __ioremap special-cases the PCI/ISA range by not instantiating a
268	 * vm_area and by simply returning an address into the kernel mapping
269	 * of ISA space.   So handle that here.
 
 
270	 */
271	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
272	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS))
 
273		return;
 
 
 
274
275	addr = (volatile void __iomem *)
276		(PAGE_MASK & (unsigned long __force)addr);
277
278	mmiotrace_iounmap(addr);
279
280	/* Use the vm area unlocked, assuming the caller
281	   ensures there isn't another iounmap for the same address
282	   in parallel. Reuse of the virtual address is prevented by
283	   leaving it in the global lists until we're done with it.
284	   cpa takes care of the direct mappings. */
285	read_lock(&vmlist_lock);
286	for (p = vmlist; p; p = p->next) {
287		if (p->addr == (void __force *)addr)
288			break;
289	}
290	read_unlock(&vmlist_lock);
291
292	if (!p) {
293		printk(KERN_ERR "iounmap: bad address %p\n", addr);
294		dump_stack();
295		return;
296	}
297
298	free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p));
299
300	/* Finally remove it */
301	o = remove_vm_area((void __force *)addr);
302	BUG_ON(p != o || o == NULL);
303	kfree(p);
304}
305EXPORT_SYMBOL(iounmap);
306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
307/*
308 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
309 * access
310 */
311void *xlate_dev_mem_ptr(unsigned long phys)
312{
313	void *addr;
314	unsigned long start = phys & PAGE_MASK;
 
315
316	/* If page is RAM, we can use __va. Otherwise ioremap and unmap. */
317	if (page_is_ram(start >> PAGE_SHIFT))
318		return __va(phys);
319
320	addr = (void __force *)ioremap_cache(start, PAGE_SIZE);
321	if (addr)
322		addr = (void *)((unsigned long)addr | (phys & ~PAGE_MASK));
323
324	return addr;
325}
326
327void unxlate_dev_mem_ptr(unsigned long phys, void *addr)
328{
329	if (page_is_ram(phys >> PAGE_SHIFT))
330		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331
332	iounmap((void __iomem *)((unsigned long)addr & PAGE_MASK));
333	return;
334}
335
336static int __initdata early_ioremap_debug;
 
 
 
 
 
 
 
 
 
 
 
337
338static int __init early_ioremap_debug_setup(char *str)
 
 
 
 
 
339{
340	early_ioremap_debug = 1;
 
 
 
341
342	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
343}
344early_param("early_ioremap_debug", early_ioremap_debug_setup);
345
346static __initdata int after_paging_init;
347static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
348
349static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
350{
351	/* Don't assume we're using swapper_pg_dir at this point */
352	pgd_t *base = __va(read_cr3());
353	pgd_t *pgd = &base[pgd_index(addr)];
354	pud_t *pud = pud_offset(pgd, addr);
 
355	pmd_t *pmd = pmd_offset(pud, addr);
356
357	return pmd;
358}
359
360static inline pte_t * __init early_ioremap_pte(unsigned long addr)
361{
362	return &bm_pte[pte_index(addr)];
363}
364
365bool __init is_early_ioremap_ptep(pte_t *ptep)
366{
367	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
368}
369
370static unsigned long slot_virt[FIX_BTMAPS_SLOTS] __initdata;
371
372void __init early_ioremap_init(void)
373{
374	pmd_t *pmd;
375	int i;
376
377	if (early_ioremap_debug)
378		printk(KERN_INFO "early_ioremap_init()\n");
 
 
 
379
380	for (i = 0; i < FIX_BTMAPS_SLOTS; i++)
381		slot_virt[i] = __fix_to_virt(FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*i);
382
383	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
384	memset(bm_pte, 0, sizeof(bm_pte));
385	pmd_populate_kernel(&init_mm, pmd, bm_pte);
386
387	/*
388	 * The boot-ioremap range spans multiple pmds, for which
389	 * we are not prepared:
390	 */
391#define __FIXADDR_TOP (-PAGE_SIZE)
392	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
393		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
394#undef __FIXADDR_TOP
395	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
396		WARN_ON(1);
397		printk(KERN_WARNING "pmd %p != %p\n",
398		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
399		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
400			fix_to_virt(FIX_BTMAP_BEGIN));
401		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
402			fix_to_virt(FIX_BTMAP_END));
403
404		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
405		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
406		       FIX_BTMAP_BEGIN);
407	}
408}
409
410void __init early_ioremap_reset(void)
411{
412	after_paging_init = 1;
413}
414
415static void __init __early_set_fixmap(enum fixed_addresses idx,
416				      phys_addr_t phys, pgprot_t flags)
417{
418	unsigned long addr = __fix_to_virt(idx);
419	pte_t *pte;
420
421	if (idx >= __end_of_fixed_addresses) {
422		BUG();
423		return;
424	}
425	pte = early_ioremap_pte(addr);
426
 
 
 
427	if (pgprot_val(flags))
428		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
429	else
430		pte_clear(&init_mm, addr, pte);
431	__flush_tlb_one(addr);
432}
433
434static inline void __init early_set_fixmap(enum fixed_addresses idx,
435					   phys_addr_t phys, pgprot_t prot)
436{
437	if (after_paging_init)
438		__set_fixmap(idx, phys, prot);
439	else
440		__early_set_fixmap(idx, phys, prot);
441}
442
443static inline void __init early_clear_fixmap(enum fixed_addresses idx)
444{
445	if (after_paging_init)
446		clear_fixmap(idx);
447	else
448		__early_set_fixmap(idx, 0, __pgprot(0));
449}
450
451static void __iomem *prev_map[FIX_BTMAPS_SLOTS] __initdata;
452static unsigned long prev_size[FIX_BTMAPS_SLOTS] __initdata;
453
454void __init fixup_early_ioremap(void)
455{
456	int i;
457
458	for (i = 0; i < FIX_BTMAPS_SLOTS; i++) {
459		if (prev_map[i]) {
460			WARN_ON(1);
461			break;
462		}
463	}
464
465	early_ioremap_init();
466}
467
468static int __init check_early_ioremap_leak(void)
469{
470	int count = 0;
471	int i;
472
473	for (i = 0; i < FIX_BTMAPS_SLOTS; i++)
474		if (prev_map[i])
475			count++;
476
477	if (!count)
478		return 0;
479	WARN(1, KERN_WARNING
480	       "Debug warning: early ioremap leak of %d areas detected.\n",
481		count);
482	printk(KERN_WARNING
483		"please boot with early_ioremap_debug and report the dmesg.\n");
484
485	return 1;
486}
487late_initcall(check_early_ioremap_leak);
488
489static void __init __iomem *
490__early_ioremap(resource_size_t phys_addr, unsigned long size, pgprot_t prot)
491{
492	unsigned long offset;
493	resource_size_t last_addr;
494	unsigned int nrpages;
495	enum fixed_addresses idx0, idx;
496	int i, slot;
497
498	WARN_ON(system_state != SYSTEM_BOOTING);
499
500	slot = -1;
501	for (i = 0; i < FIX_BTMAPS_SLOTS; i++) {
502		if (!prev_map[i]) {
503			slot = i;
504			break;
505		}
506	}
507
508	if (slot < 0) {
509		printk(KERN_INFO "early_iomap(%08llx, %08lx) not found slot\n",
510			 (u64)phys_addr, size);
511		WARN_ON(1);
512		return NULL;
513	}
514
515	if (early_ioremap_debug) {
516		printk(KERN_INFO "early_ioremap(%08llx, %08lx) [%d] => ",
517		       (u64)phys_addr, size, slot);
518		dump_stack();
519	}
520
521	/* Don't allow wraparound or zero size */
522	last_addr = phys_addr + size - 1;
523	if (!size || last_addr < phys_addr) {
524		WARN_ON(1);
525		return NULL;
526	}
527
528	prev_size[slot] = size;
529	/*
530	 * Mappings have to be page-aligned
531	 */
532	offset = phys_addr & ~PAGE_MASK;
533	phys_addr &= PAGE_MASK;
534	size = PAGE_ALIGN(last_addr + 1) - phys_addr;
535
536	/*
537	 * Mappings have to fit in the FIX_BTMAP area.
538	 */
539	nrpages = size >> PAGE_SHIFT;
540	if (nrpages > NR_FIX_BTMAPS) {
541		WARN_ON(1);
542		return NULL;
543	}
544
545	/*
546	 * Ok, go for it..
547	 */
548	idx0 = FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*slot;
549	idx = idx0;
550	while (nrpages > 0) {
551		early_set_fixmap(idx, phys_addr, prot);
552		phys_addr += PAGE_SIZE;
553		--idx;
554		--nrpages;
555	}
556	if (early_ioremap_debug)
557		printk(KERN_CONT "%08lx + %08lx\n", offset, slot_virt[slot]);
558
559	prev_map[slot] = (void __iomem *)(offset + slot_virt[slot]);
560	return prev_map[slot];
561}
562
563/* Remap an IO device */
564void __init __iomem *
565early_ioremap(resource_size_t phys_addr, unsigned long size)
566{
567	return __early_ioremap(phys_addr, size, PAGE_KERNEL_IO);
568}
569
570/* Remap memory */
571void __init __iomem *
572early_memremap(resource_size_t phys_addr, unsigned long size)
573{
574	return __early_ioremap(phys_addr, size, PAGE_KERNEL);
575}
576
577void __init early_iounmap(void __iomem *addr, unsigned long size)
578{
579	unsigned long virt_addr;
580	unsigned long offset;
581	unsigned int nrpages;
582	enum fixed_addresses idx;
583	int i, slot;
584
585	slot = -1;
586	for (i = 0; i < FIX_BTMAPS_SLOTS; i++) {
587		if (prev_map[i] == addr) {
588			slot = i;
589			break;
590		}
591	}
592
593	if (slot < 0) {
594		printk(KERN_INFO "early_iounmap(%p, %08lx) not found slot\n",
595			 addr, size);
596		WARN_ON(1);
597		return;
598	}
599
600	if (prev_size[slot] != size) {
601		printk(KERN_INFO "early_iounmap(%p, %08lx) [%d] size not consistent %08lx\n",
602			 addr, size, slot, prev_size[slot]);
603		WARN_ON(1);
604		return;
605	}
606
607	if (early_ioremap_debug) {
608		printk(KERN_INFO "early_iounmap(%p, %08lx) [%d]\n", addr,
609		       size, slot);
610		dump_stack();
611	}
612
613	virt_addr = (unsigned long)addr;
614	if (virt_addr < fix_to_virt(FIX_BTMAP_BEGIN)) {
615		WARN_ON(1);
616		return;
617	}
618	offset = virt_addr & ~PAGE_MASK;
619	nrpages = PAGE_ALIGN(offset + size) >> PAGE_SHIFT;
620
621	idx = FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*slot;
622	while (nrpages > 0) {
623		early_clear_fixmap(idx);
624		--idx;
625		--nrpages;
626	}
627	prev_map[slot] = NULL;
628}