Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/arch/x86_64/mm/init.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
8 */
9
10#include <linux/signal.h>
11#include <linux/sched.h>
12#include <linux/kernel.h>
13#include <linux/errno.h>
14#include <linux/string.h>
15#include <linux/types.h>
16#include <linux/ptrace.h>
17#include <linux/mman.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/smp.h>
21#include <linux/init.h>
22#include <linux/initrd.h>
23#include <linux/pagemap.h>
24#include <linux/memblock.h>
25#include <linux/proc_fs.h>
26#include <linux/pci.h>
27#include <linux/pfn.h>
28#include <linux/poison.h>
29#include <linux/dma-mapping.h>
30#include <linux/memory.h>
31#include <linux/memory_hotplug.h>
32#include <linux/memremap.h>
33#include <linux/nmi.h>
34#include <linux/gfp.h>
35#include <linux/kcore.h>
36
37#include <asm/processor.h>
38#include <asm/bios_ebda.h>
39#include <linux/uaccess.h>
40#include <asm/pgalloc.h>
41#include <asm/dma.h>
42#include <asm/fixmap.h>
43#include <asm/e820/api.h>
44#include <asm/apic.h>
45#include <asm/tlb.h>
46#include <asm/mmu_context.h>
47#include <asm/proto.h>
48#include <asm/smp.h>
49#include <asm/sections.h>
50#include <asm/kdebug.h>
51#include <asm/numa.h>
52#include <asm/set_memory.h>
53#include <asm/init.h>
54#include <asm/uv/uv.h>
55#include <asm/setup.h>
56#include <asm/ftrace.h>
57
58#include "mm_internal.h"
59
60#include "ident_map.c"
61
62#define DEFINE_POPULATE(fname, type1, type2, init) \
63static inline void fname##_init(struct mm_struct *mm, \
64 type1##_t *arg1, type2##_t *arg2, bool init) \
65{ \
66 if (init) \
67 fname##_safe(mm, arg1, arg2); \
68 else \
69 fname(mm, arg1, arg2); \
70}
71
72DEFINE_POPULATE(p4d_populate, p4d, pud, init)
73DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
74DEFINE_POPULATE(pud_populate, pud, pmd, init)
75DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
76
77#define DEFINE_ENTRY(type1, type2, init) \
78static inline void set_##type1##_init(type1##_t *arg1, \
79 type2##_t arg2, bool init) \
80{ \
81 if (init) \
82 set_##type1##_safe(arg1, arg2); \
83 else \
84 set_##type1(arg1, arg2); \
85}
86
87DEFINE_ENTRY(p4d, p4d, init)
88DEFINE_ENTRY(pud, pud, init)
89DEFINE_ENTRY(pmd, pmd, init)
90DEFINE_ENTRY(pte, pte, init)
91
92
93/*
94 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
95 * physical space so we can cache the place of the first one and move
96 * around without checking the pgd every time.
97 */
98
99/* Bits supported by the hardware: */
100pteval_t __supported_pte_mask __read_mostly = ~0;
101/* Bits allowed in normal kernel mappings: */
102pteval_t __default_kernel_pte_mask __read_mostly = ~0;
103EXPORT_SYMBOL_GPL(__supported_pte_mask);
104/* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
105EXPORT_SYMBOL(__default_kernel_pte_mask);
106
107int force_personality32;
108
109/*
110 * noexec32=on|off
111 * Control non executable heap for 32bit processes.
112 * To control the stack too use noexec=off
113 *
114 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
115 * off PROT_READ implies PROT_EXEC
116 */
117static int __init nonx32_setup(char *str)
118{
119 if (!strcmp(str, "on"))
120 force_personality32 &= ~READ_IMPLIES_EXEC;
121 else if (!strcmp(str, "off"))
122 force_personality32 |= READ_IMPLIES_EXEC;
123 return 1;
124}
125__setup("noexec32=", nonx32_setup);
126
127static void sync_global_pgds_l5(unsigned long start, unsigned long end)
128{
129 unsigned long addr;
130
131 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
132 const pgd_t *pgd_ref = pgd_offset_k(addr);
133 struct page *page;
134
135 /* Check for overflow */
136 if (addr < start)
137 break;
138
139 if (pgd_none(*pgd_ref))
140 continue;
141
142 spin_lock(&pgd_lock);
143 list_for_each_entry(page, &pgd_list, lru) {
144 pgd_t *pgd;
145 spinlock_t *pgt_lock;
146
147 pgd = (pgd_t *)page_address(page) + pgd_index(addr);
148 /* the pgt_lock only for Xen */
149 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
150 spin_lock(pgt_lock);
151
152 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
153 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
154
155 if (pgd_none(*pgd))
156 set_pgd(pgd, *pgd_ref);
157
158 spin_unlock(pgt_lock);
159 }
160 spin_unlock(&pgd_lock);
161 }
162}
163
164static void sync_global_pgds_l4(unsigned long start, unsigned long end)
165{
166 unsigned long addr;
167
168 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
169 pgd_t *pgd_ref = pgd_offset_k(addr);
170 const p4d_t *p4d_ref;
171 struct page *page;
172
173 /*
174 * With folded p4d, pgd_none() is always false, we need to
175 * handle synchonization on p4d level.
176 */
177 MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
178 p4d_ref = p4d_offset(pgd_ref, addr);
179
180 if (p4d_none(*p4d_ref))
181 continue;
182
183 spin_lock(&pgd_lock);
184 list_for_each_entry(page, &pgd_list, lru) {
185 pgd_t *pgd;
186 p4d_t *p4d;
187 spinlock_t *pgt_lock;
188
189 pgd = (pgd_t *)page_address(page) + pgd_index(addr);
190 p4d = p4d_offset(pgd, addr);
191 /* the pgt_lock only for Xen */
192 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
193 spin_lock(pgt_lock);
194
195 if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
196 BUG_ON(p4d_page_vaddr(*p4d)
197 != p4d_page_vaddr(*p4d_ref));
198
199 if (p4d_none(*p4d))
200 set_p4d(p4d, *p4d_ref);
201
202 spin_unlock(pgt_lock);
203 }
204 spin_unlock(&pgd_lock);
205 }
206}
207
208/*
209 * When memory was added make sure all the processes MM have
210 * suitable PGD entries in the local PGD level page.
211 */
212static void sync_global_pgds(unsigned long start, unsigned long end)
213{
214 if (pgtable_l5_enabled())
215 sync_global_pgds_l5(start, end);
216 else
217 sync_global_pgds_l4(start, end);
218}
219
220void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
221{
222 sync_global_pgds(start, end);
223}
224
225/*
226 * NOTE: This function is marked __ref because it calls __init function
227 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
228 */
229static __ref void *spp_getpage(void)
230{
231 void *ptr;
232
233 if (after_bootmem)
234 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
235 else
236 ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
237
238 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
239 panic("set_pte_phys: cannot allocate page data %s\n",
240 after_bootmem ? "after bootmem" : "");
241 }
242
243 pr_debug("spp_getpage %p\n", ptr);
244
245 return ptr;
246}
247
248static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
249{
250 if (pgd_none(*pgd)) {
251 p4d_t *p4d = (p4d_t *)spp_getpage();
252 pgd_populate(&init_mm, pgd, p4d);
253 if (p4d != p4d_offset(pgd, 0))
254 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
255 p4d, p4d_offset(pgd, 0));
256 }
257 return p4d_offset(pgd, vaddr);
258}
259
260static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
261{
262 if (p4d_none(*p4d)) {
263 pud_t *pud = (pud_t *)spp_getpage();
264 p4d_populate(&init_mm, p4d, pud);
265 if (pud != pud_offset(p4d, 0))
266 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
267 pud, pud_offset(p4d, 0));
268 }
269 return pud_offset(p4d, vaddr);
270}
271
272static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
273{
274 if (pud_none(*pud)) {
275 pmd_t *pmd = (pmd_t *) spp_getpage();
276 pud_populate(&init_mm, pud, pmd);
277 if (pmd != pmd_offset(pud, 0))
278 printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
279 pmd, pmd_offset(pud, 0));
280 }
281 return pmd_offset(pud, vaddr);
282}
283
284static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
285{
286 if (pmd_none(*pmd)) {
287 pte_t *pte = (pte_t *) spp_getpage();
288 pmd_populate_kernel(&init_mm, pmd, pte);
289 if (pte != pte_offset_kernel(pmd, 0))
290 printk(KERN_ERR "PAGETABLE BUG #03!\n");
291 }
292 return pte_offset_kernel(pmd, vaddr);
293}
294
295static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
296{
297 pmd_t *pmd = fill_pmd(pud, vaddr);
298 pte_t *pte = fill_pte(pmd, vaddr);
299
300 set_pte(pte, new_pte);
301
302 /*
303 * It's enough to flush this one mapping.
304 * (PGE mappings get flushed as well)
305 */
306 flush_tlb_one_kernel(vaddr);
307}
308
309void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
310{
311 p4d_t *p4d = p4d_page + p4d_index(vaddr);
312 pud_t *pud = fill_pud(p4d, vaddr);
313
314 __set_pte_vaddr(pud, vaddr, new_pte);
315}
316
317void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
318{
319 pud_t *pud = pud_page + pud_index(vaddr);
320
321 __set_pte_vaddr(pud, vaddr, new_pte);
322}
323
324void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
325{
326 pgd_t *pgd;
327 p4d_t *p4d_page;
328
329 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
330
331 pgd = pgd_offset_k(vaddr);
332 if (pgd_none(*pgd)) {
333 printk(KERN_ERR
334 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
335 return;
336 }
337
338 p4d_page = p4d_offset(pgd, 0);
339 set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
340}
341
342pmd_t * __init populate_extra_pmd(unsigned long vaddr)
343{
344 pgd_t *pgd;
345 p4d_t *p4d;
346 pud_t *pud;
347
348 pgd = pgd_offset_k(vaddr);
349 p4d = fill_p4d(pgd, vaddr);
350 pud = fill_pud(p4d, vaddr);
351 return fill_pmd(pud, vaddr);
352}
353
354pte_t * __init populate_extra_pte(unsigned long vaddr)
355{
356 pmd_t *pmd;
357
358 pmd = populate_extra_pmd(vaddr);
359 return fill_pte(pmd, vaddr);
360}
361
362/*
363 * Create large page table mappings for a range of physical addresses.
364 */
365static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
366 enum page_cache_mode cache)
367{
368 pgd_t *pgd;
369 p4d_t *p4d;
370 pud_t *pud;
371 pmd_t *pmd;
372 pgprot_t prot;
373
374 pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
375 protval_4k_2_large(cachemode2protval(cache));
376 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
377 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
378 pgd = pgd_offset_k((unsigned long)__va(phys));
379 if (pgd_none(*pgd)) {
380 p4d = (p4d_t *) spp_getpage();
381 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
382 _PAGE_USER));
383 }
384 p4d = p4d_offset(pgd, (unsigned long)__va(phys));
385 if (p4d_none(*p4d)) {
386 pud = (pud_t *) spp_getpage();
387 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
388 _PAGE_USER));
389 }
390 pud = pud_offset(p4d, (unsigned long)__va(phys));
391 if (pud_none(*pud)) {
392 pmd = (pmd_t *) spp_getpage();
393 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
394 _PAGE_USER));
395 }
396 pmd = pmd_offset(pud, phys);
397 BUG_ON(!pmd_none(*pmd));
398 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
399 }
400}
401
402void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
403{
404 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
405}
406
407void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
408{
409 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
410}
411
412/*
413 * The head.S code sets up the kernel high mapping:
414 *
415 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
416 *
417 * phys_base holds the negative offset to the kernel, which is added
418 * to the compile time generated pmds. This results in invalid pmds up
419 * to the point where we hit the physaddr 0 mapping.
420 *
421 * We limit the mappings to the region from _text to _brk_end. _brk_end
422 * is rounded up to the 2MB boundary. This catches the invalid pmds as
423 * well, as they are located before _text:
424 */
425void __init cleanup_highmap(void)
426{
427 unsigned long vaddr = __START_KERNEL_map;
428 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
429 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
430 pmd_t *pmd = level2_kernel_pgt;
431
432 /*
433 * Native path, max_pfn_mapped is not set yet.
434 * Xen has valid max_pfn_mapped set in
435 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
436 */
437 if (max_pfn_mapped)
438 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
439
440 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
441 if (pmd_none(*pmd))
442 continue;
443 if (vaddr < (unsigned long) _text || vaddr > end)
444 set_pmd(pmd, __pmd(0));
445 }
446}
447
448/*
449 * Create PTE level page table mapping for physical addresses.
450 * It returns the last physical address mapped.
451 */
452static unsigned long __meminit
453phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
454 pgprot_t prot, bool init)
455{
456 unsigned long pages = 0, paddr_next;
457 unsigned long paddr_last = paddr_end;
458 pte_t *pte;
459 int i;
460
461 pte = pte_page + pte_index(paddr);
462 i = pte_index(paddr);
463
464 for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
465 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
466 if (paddr >= paddr_end) {
467 if (!after_bootmem &&
468 !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
469 E820_TYPE_RAM) &&
470 !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
471 E820_TYPE_RESERVED_KERN))
472 set_pte_init(pte, __pte(0), init);
473 continue;
474 }
475
476 /*
477 * We will re-use the existing mapping.
478 * Xen for example has some special requirements, like mapping
479 * pagetable pages as RO. So assume someone who pre-setup
480 * these mappings are more intelligent.
481 */
482 if (!pte_none(*pte)) {
483 if (!after_bootmem)
484 pages++;
485 continue;
486 }
487
488 if (0)
489 pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr,
490 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
491 pages++;
492 set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
493 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
494 }
495
496 update_page_count(PG_LEVEL_4K, pages);
497
498 return paddr_last;
499}
500
501/*
502 * Create PMD level page table mapping for physical addresses. The virtual
503 * and physical address have to be aligned at this level.
504 * It returns the last physical address mapped.
505 */
506static unsigned long __meminit
507phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
508 unsigned long page_size_mask, pgprot_t prot, bool init)
509{
510 unsigned long pages = 0, paddr_next;
511 unsigned long paddr_last = paddr_end;
512
513 int i = pmd_index(paddr);
514
515 for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
516 pmd_t *pmd = pmd_page + pmd_index(paddr);
517 pte_t *pte;
518 pgprot_t new_prot = prot;
519
520 paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
521 if (paddr >= paddr_end) {
522 if (!after_bootmem &&
523 !e820__mapped_any(paddr & PMD_MASK, paddr_next,
524 E820_TYPE_RAM) &&
525 !e820__mapped_any(paddr & PMD_MASK, paddr_next,
526 E820_TYPE_RESERVED_KERN))
527 set_pmd_init(pmd, __pmd(0), init);
528 continue;
529 }
530
531 if (!pmd_none(*pmd)) {
532 if (!pmd_large(*pmd)) {
533 spin_lock(&init_mm.page_table_lock);
534 pte = (pte_t *)pmd_page_vaddr(*pmd);
535 paddr_last = phys_pte_init(pte, paddr,
536 paddr_end, prot,
537 init);
538 spin_unlock(&init_mm.page_table_lock);
539 continue;
540 }
541 /*
542 * If we are ok with PG_LEVEL_2M mapping, then we will
543 * use the existing mapping,
544 *
545 * Otherwise, we will split the large page mapping but
546 * use the same existing protection bits except for
547 * large page, so that we don't violate Intel's TLB
548 * Application note (317080) which says, while changing
549 * the page sizes, new and old translations should
550 * not differ with respect to page frame and
551 * attributes.
552 */
553 if (page_size_mask & (1 << PG_LEVEL_2M)) {
554 if (!after_bootmem)
555 pages++;
556 paddr_last = paddr_next;
557 continue;
558 }
559 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
560 }
561
562 if (page_size_mask & (1<<PG_LEVEL_2M)) {
563 pages++;
564 spin_lock(&init_mm.page_table_lock);
565 set_pte_init((pte_t *)pmd,
566 pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
567 __pgprot(pgprot_val(prot) | _PAGE_PSE)),
568 init);
569 spin_unlock(&init_mm.page_table_lock);
570 paddr_last = paddr_next;
571 continue;
572 }
573
574 pte = alloc_low_page();
575 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
576
577 spin_lock(&init_mm.page_table_lock);
578 pmd_populate_kernel_init(&init_mm, pmd, pte, init);
579 spin_unlock(&init_mm.page_table_lock);
580 }
581 update_page_count(PG_LEVEL_2M, pages);
582 return paddr_last;
583}
584
585/*
586 * Create PUD level page table mapping for physical addresses. The virtual
587 * and physical address do not have to be aligned at this level. KASLR can
588 * randomize virtual addresses up to this level.
589 * It returns the last physical address mapped.
590 */
591static unsigned long __meminit
592phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
593 unsigned long page_size_mask, pgprot_t _prot, bool init)
594{
595 unsigned long pages = 0, paddr_next;
596 unsigned long paddr_last = paddr_end;
597 unsigned long vaddr = (unsigned long)__va(paddr);
598 int i = pud_index(vaddr);
599
600 for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
601 pud_t *pud;
602 pmd_t *pmd;
603 pgprot_t prot = _prot;
604
605 vaddr = (unsigned long)__va(paddr);
606 pud = pud_page + pud_index(vaddr);
607 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
608
609 if (paddr >= paddr_end) {
610 if (!after_bootmem &&
611 !e820__mapped_any(paddr & PUD_MASK, paddr_next,
612 E820_TYPE_RAM) &&
613 !e820__mapped_any(paddr & PUD_MASK, paddr_next,
614 E820_TYPE_RESERVED_KERN))
615 set_pud_init(pud, __pud(0), init);
616 continue;
617 }
618
619 if (!pud_none(*pud)) {
620 if (!pud_large(*pud)) {
621 pmd = pmd_offset(pud, 0);
622 paddr_last = phys_pmd_init(pmd, paddr,
623 paddr_end,
624 page_size_mask,
625 prot, init);
626 continue;
627 }
628 /*
629 * If we are ok with PG_LEVEL_1G mapping, then we will
630 * use the existing mapping.
631 *
632 * Otherwise, we will split the gbpage mapping but use
633 * the same existing protection bits except for large
634 * page, so that we don't violate Intel's TLB
635 * Application note (317080) which says, while changing
636 * the page sizes, new and old translations should
637 * not differ with respect to page frame and
638 * attributes.
639 */
640 if (page_size_mask & (1 << PG_LEVEL_1G)) {
641 if (!after_bootmem)
642 pages++;
643 paddr_last = paddr_next;
644 continue;
645 }
646 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
647 }
648
649 if (page_size_mask & (1<<PG_LEVEL_1G)) {
650 pages++;
651 spin_lock(&init_mm.page_table_lock);
652
653 prot = __pgprot(pgprot_val(prot) | __PAGE_KERNEL_LARGE);
654
655 set_pte_init((pte_t *)pud,
656 pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
657 prot),
658 init);
659 spin_unlock(&init_mm.page_table_lock);
660 paddr_last = paddr_next;
661 continue;
662 }
663
664 pmd = alloc_low_page();
665 paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
666 page_size_mask, prot, init);
667
668 spin_lock(&init_mm.page_table_lock);
669 pud_populate_init(&init_mm, pud, pmd, init);
670 spin_unlock(&init_mm.page_table_lock);
671 }
672
673 update_page_count(PG_LEVEL_1G, pages);
674
675 return paddr_last;
676}
677
678static unsigned long __meminit
679phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
680 unsigned long page_size_mask, pgprot_t prot, bool init)
681{
682 unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
683
684 paddr_last = paddr_end;
685 vaddr = (unsigned long)__va(paddr);
686 vaddr_end = (unsigned long)__va(paddr_end);
687
688 if (!pgtable_l5_enabled())
689 return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
690 page_size_mask, prot, init);
691
692 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
693 p4d_t *p4d = p4d_page + p4d_index(vaddr);
694 pud_t *pud;
695
696 vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
697 paddr = __pa(vaddr);
698
699 if (paddr >= paddr_end) {
700 paddr_next = __pa(vaddr_next);
701 if (!after_bootmem &&
702 !e820__mapped_any(paddr & P4D_MASK, paddr_next,
703 E820_TYPE_RAM) &&
704 !e820__mapped_any(paddr & P4D_MASK, paddr_next,
705 E820_TYPE_RESERVED_KERN))
706 set_p4d_init(p4d, __p4d(0), init);
707 continue;
708 }
709
710 if (!p4d_none(*p4d)) {
711 pud = pud_offset(p4d, 0);
712 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
713 page_size_mask, prot, init);
714 continue;
715 }
716
717 pud = alloc_low_page();
718 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
719 page_size_mask, prot, init);
720
721 spin_lock(&init_mm.page_table_lock);
722 p4d_populate_init(&init_mm, p4d, pud, init);
723 spin_unlock(&init_mm.page_table_lock);
724 }
725
726 return paddr_last;
727}
728
729static unsigned long __meminit
730__kernel_physical_mapping_init(unsigned long paddr_start,
731 unsigned long paddr_end,
732 unsigned long page_size_mask,
733 pgprot_t prot, bool init)
734{
735 bool pgd_changed = false;
736 unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
737
738 paddr_last = paddr_end;
739 vaddr = (unsigned long)__va(paddr_start);
740 vaddr_end = (unsigned long)__va(paddr_end);
741 vaddr_start = vaddr;
742
743 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
744 pgd_t *pgd = pgd_offset_k(vaddr);
745 p4d_t *p4d;
746
747 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
748
749 if (pgd_val(*pgd)) {
750 p4d = (p4d_t *)pgd_page_vaddr(*pgd);
751 paddr_last = phys_p4d_init(p4d, __pa(vaddr),
752 __pa(vaddr_end),
753 page_size_mask,
754 prot, init);
755 continue;
756 }
757
758 p4d = alloc_low_page();
759 paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
760 page_size_mask, prot, init);
761
762 spin_lock(&init_mm.page_table_lock);
763 if (pgtable_l5_enabled())
764 pgd_populate_init(&init_mm, pgd, p4d, init);
765 else
766 p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
767 (pud_t *) p4d, init);
768
769 spin_unlock(&init_mm.page_table_lock);
770 pgd_changed = true;
771 }
772
773 if (pgd_changed)
774 sync_global_pgds(vaddr_start, vaddr_end - 1);
775
776 return paddr_last;
777}
778
779
780/*
781 * Create page table mapping for the physical memory for specific physical
782 * addresses. Note that it can only be used to populate non-present entries.
783 * The virtual and physical addresses have to be aligned on PMD level
784 * down. It returns the last physical address mapped.
785 */
786unsigned long __meminit
787kernel_physical_mapping_init(unsigned long paddr_start,
788 unsigned long paddr_end,
789 unsigned long page_size_mask, pgprot_t prot)
790{
791 return __kernel_physical_mapping_init(paddr_start, paddr_end,
792 page_size_mask, prot, true);
793}
794
795/*
796 * This function is similar to kernel_physical_mapping_init() above with the
797 * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
798 * when updating the mapping. The caller is responsible to flush the TLBs after
799 * the function returns.
800 */
801unsigned long __meminit
802kernel_physical_mapping_change(unsigned long paddr_start,
803 unsigned long paddr_end,
804 unsigned long page_size_mask)
805{
806 return __kernel_physical_mapping_init(paddr_start, paddr_end,
807 page_size_mask, PAGE_KERNEL,
808 false);
809}
810
811#ifndef CONFIG_NUMA
812void __init initmem_init(void)
813{
814 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
815}
816#endif
817
818void __init paging_init(void)
819{
820 sparse_init();
821
822 /*
823 * clear the default setting with node 0
824 * note: don't use nodes_clear here, that is really clearing when
825 * numa support is not compiled in, and later node_set_state
826 * will not set it back.
827 */
828 node_clear_state(0, N_MEMORY);
829 node_clear_state(0, N_NORMAL_MEMORY);
830
831 zone_sizes_init();
832}
833
834/*
835 * Memory hotplug specific functions
836 */
837#ifdef CONFIG_MEMORY_HOTPLUG
838/*
839 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
840 * updating.
841 */
842static void update_end_of_memory_vars(u64 start, u64 size)
843{
844 unsigned long end_pfn = PFN_UP(start + size);
845
846 if (end_pfn > max_pfn) {
847 max_pfn = end_pfn;
848 max_low_pfn = end_pfn;
849 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
850 }
851}
852
853int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
854 struct mhp_params *params)
855{
856 int ret;
857
858 ret = __add_pages(nid, start_pfn, nr_pages, params);
859 WARN_ON_ONCE(ret);
860
861 /* update max_pfn, max_low_pfn and high_memory */
862 update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
863 nr_pages << PAGE_SHIFT);
864
865 return ret;
866}
867
868int arch_add_memory(int nid, u64 start, u64 size,
869 struct mhp_params *params)
870{
871 unsigned long start_pfn = start >> PAGE_SHIFT;
872 unsigned long nr_pages = size >> PAGE_SHIFT;
873
874 init_memory_mapping(start, start + size, params->pgprot);
875
876 return add_pages(nid, start_pfn, nr_pages, params);
877}
878
879#define PAGE_INUSE 0xFD
880
881static void __meminit free_pagetable(struct page *page, int order)
882{
883 unsigned long magic;
884 unsigned int nr_pages = 1 << order;
885
886 /* bootmem page has reserved flag */
887 if (PageReserved(page)) {
888 __ClearPageReserved(page);
889
890 magic = (unsigned long)page->freelist;
891 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
892 while (nr_pages--)
893 put_page_bootmem(page++);
894 } else
895 while (nr_pages--)
896 free_reserved_page(page++);
897 } else
898 free_pages((unsigned long)page_address(page), order);
899}
900
901static void __meminit free_hugepage_table(struct page *page,
902 struct vmem_altmap *altmap)
903{
904 if (altmap)
905 vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
906 else
907 free_pagetable(page, get_order(PMD_SIZE));
908}
909
910static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
911{
912 pte_t *pte;
913 int i;
914
915 for (i = 0; i < PTRS_PER_PTE; i++) {
916 pte = pte_start + i;
917 if (!pte_none(*pte))
918 return;
919 }
920
921 /* free a pte talbe */
922 free_pagetable(pmd_page(*pmd), 0);
923 spin_lock(&init_mm.page_table_lock);
924 pmd_clear(pmd);
925 spin_unlock(&init_mm.page_table_lock);
926}
927
928static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
929{
930 pmd_t *pmd;
931 int i;
932
933 for (i = 0; i < PTRS_PER_PMD; i++) {
934 pmd = pmd_start + i;
935 if (!pmd_none(*pmd))
936 return;
937 }
938
939 /* free a pmd talbe */
940 free_pagetable(pud_page(*pud), 0);
941 spin_lock(&init_mm.page_table_lock);
942 pud_clear(pud);
943 spin_unlock(&init_mm.page_table_lock);
944}
945
946static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
947{
948 pud_t *pud;
949 int i;
950
951 for (i = 0; i < PTRS_PER_PUD; i++) {
952 pud = pud_start + i;
953 if (!pud_none(*pud))
954 return;
955 }
956
957 /* free a pud talbe */
958 free_pagetable(p4d_page(*p4d), 0);
959 spin_lock(&init_mm.page_table_lock);
960 p4d_clear(p4d);
961 spin_unlock(&init_mm.page_table_lock);
962}
963
964static void __meminit
965remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
966 bool direct)
967{
968 unsigned long next, pages = 0;
969 pte_t *pte;
970 void *page_addr;
971 phys_addr_t phys_addr;
972
973 pte = pte_start + pte_index(addr);
974 for (; addr < end; addr = next, pte++) {
975 next = (addr + PAGE_SIZE) & PAGE_MASK;
976 if (next > end)
977 next = end;
978
979 if (!pte_present(*pte))
980 continue;
981
982 /*
983 * We mapped [0,1G) memory as identity mapping when
984 * initializing, in arch/x86/kernel/head_64.S. These
985 * pagetables cannot be removed.
986 */
987 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
988 if (phys_addr < (phys_addr_t)0x40000000)
989 return;
990
991 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
992 /*
993 * Do not free direct mapping pages since they were
994 * freed when offlining, or simplely not in use.
995 */
996 if (!direct)
997 free_pagetable(pte_page(*pte), 0);
998
999 spin_lock(&init_mm.page_table_lock);
1000 pte_clear(&init_mm, addr, pte);
1001 spin_unlock(&init_mm.page_table_lock);
1002
1003 /* For non-direct mapping, pages means nothing. */
1004 pages++;
1005 } else {
1006 /*
1007 * If we are here, we are freeing vmemmap pages since
1008 * direct mapped memory ranges to be freed are aligned.
1009 *
1010 * If we are not removing the whole page, it means
1011 * other page structs in this page are being used and
1012 * we canot remove them. So fill the unused page_structs
1013 * with 0xFD, and remove the page when it is wholly
1014 * filled with 0xFD.
1015 */
1016 memset((void *)addr, PAGE_INUSE, next - addr);
1017
1018 page_addr = page_address(pte_page(*pte));
1019 if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
1020 free_pagetable(pte_page(*pte), 0);
1021
1022 spin_lock(&init_mm.page_table_lock);
1023 pte_clear(&init_mm, addr, pte);
1024 spin_unlock(&init_mm.page_table_lock);
1025 }
1026 }
1027 }
1028
1029 /* Call free_pte_table() in remove_pmd_table(). */
1030 flush_tlb_all();
1031 if (direct)
1032 update_page_count(PG_LEVEL_4K, -pages);
1033}
1034
1035static void __meminit
1036remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1037 bool direct, struct vmem_altmap *altmap)
1038{
1039 unsigned long next, pages = 0;
1040 pte_t *pte_base;
1041 pmd_t *pmd;
1042 void *page_addr;
1043
1044 pmd = pmd_start + pmd_index(addr);
1045 for (; addr < end; addr = next, pmd++) {
1046 next = pmd_addr_end(addr, end);
1047
1048 if (!pmd_present(*pmd))
1049 continue;
1050
1051 if (pmd_large(*pmd)) {
1052 if (IS_ALIGNED(addr, PMD_SIZE) &&
1053 IS_ALIGNED(next, PMD_SIZE)) {
1054 if (!direct)
1055 free_hugepage_table(pmd_page(*pmd),
1056 altmap);
1057
1058 spin_lock(&init_mm.page_table_lock);
1059 pmd_clear(pmd);
1060 spin_unlock(&init_mm.page_table_lock);
1061 pages++;
1062 } else {
1063 /* If here, we are freeing vmemmap pages. */
1064 memset((void *)addr, PAGE_INUSE, next - addr);
1065
1066 page_addr = page_address(pmd_page(*pmd));
1067 if (!memchr_inv(page_addr, PAGE_INUSE,
1068 PMD_SIZE)) {
1069 free_hugepage_table(pmd_page(*pmd),
1070 altmap);
1071
1072 spin_lock(&init_mm.page_table_lock);
1073 pmd_clear(pmd);
1074 spin_unlock(&init_mm.page_table_lock);
1075 }
1076 }
1077
1078 continue;
1079 }
1080
1081 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1082 remove_pte_table(pte_base, addr, next, direct);
1083 free_pte_table(pte_base, pmd);
1084 }
1085
1086 /* Call free_pmd_table() in remove_pud_table(). */
1087 if (direct)
1088 update_page_count(PG_LEVEL_2M, -pages);
1089}
1090
1091static void __meminit
1092remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1093 struct vmem_altmap *altmap, bool direct)
1094{
1095 unsigned long next, pages = 0;
1096 pmd_t *pmd_base;
1097 pud_t *pud;
1098 void *page_addr;
1099
1100 pud = pud_start + pud_index(addr);
1101 for (; addr < end; addr = next, pud++) {
1102 next = pud_addr_end(addr, end);
1103
1104 if (!pud_present(*pud))
1105 continue;
1106
1107 if (pud_large(*pud)) {
1108 if (IS_ALIGNED(addr, PUD_SIZE) &&
1109 IS_ALIGNED(next, PUD_SIZE)) {
1110 if (!direct)
1111 free_pagetable(pud_page(*pud),
1112 get_order(PUD_SIZE));
1113
1114 spin_lock(&init_mm.page_table_lock);
1115 pud_clear(pud);
1116 spin_unlock(&init_mm.page_table_lock);
1117 pages++;
1118 } else {
1119 /* If here, we are freeing vmemmap pages. */
1120 memset((void *)addr, PAGE_INUSE, next - addr);
1121
1122 page_addr = page_address(pud_page(*pud));
1123 if (!memchr_inv(page_addr, PAGE_INUSE,
1124 PUD_SIZE)) {
1125 free_pagetable(pud_page(*pud),
1126 get_order(PUD_SIZE));
1127
1128 spin_lock(&init_mm.page_table_lock);
1129 pud_clear(pud);
1130 spin_unlock(&init_mm.page_table_lock);
1131 }
1132 }
1133
1134 continue;
1135 }
1136
1137 pmd_base = pmd_offset(pud, 0);
1138 remove_pmd_table(pmd_base, addr, next, direct, altmap);
1139 free_pmd_table(pmd_base, pud);
1140 }
1141
1142 if (direct)
1143 update_page_count(PG_LEVEL_1G, -pages);
1144}
1145
1146static void __meminit
1147remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1148 struct vmem_altmap *altmap, bool direct)
1149{
1150 unsigned long next, pages = 0;
1151 pud_t *pud_base;
1152 p4d_t *p4d;
1153
1154 p4d = p4d_start + p4d_index(addr);
1155 for (; addr < end; addr = next, p4d++) {
1156 next = p4d_addr_end(addr, end);
1157
1158 if (!p4d_present(*p4d))
1159 continue;
1160
1161 BUILD_BUG_ON(p4d_large(*p4d));
1162
1163 pud_base = pud_offset(p4d, 0);
1164 remove_pud_table(pud_base, addr, next, altmap, direct);
1165 /*
1166 * For 4-level page tables we do not want to free PUDs, but in the
1167 * 5-level case we should free them. This code will have to change
1168 * to adapt for boot-time switching between 4 and 5 level page tables.
1169 */
1170 if (pgtable_l5_enabled())
1171 free_pud_table(pud_base, p4d);
1172 }
1173
1174 if (direct)
1175 update_page_count(PG_LEVEL_512G, -pages);
1176}
1177
1178/* start and end are both virtual address. */
1179static void __meminit
1180remove_pagetable(unsigned long start, unsigned long end, bool direct,
1181 struct vmem_altmap *altmap)
1182{
1183 unsigned long next;
1184 unsigned long addr;
1185 pgd_t *pgd;
1186 p4d_t *p4d;
1187
1188 for (addr = start; addr < end; addr = next) {
1189 next = pgd_addr_end(addr, end);
1190
1191 pgd = pgd_offset_k(addr);
1192 if (!pgd_present(*pgd))
1193 continue;
1194
1195 p4d = p4d_offset(pgd, 0);
1196 remove_p4d_table(p4d, addr, next, altmap, direct);
1197 }
1198
1199 flush_tlb_all();
1200}
1201
1202void __ref vmemmap_free(unsigned long start, unsigned long end,
1203 struct vmem_altmap *altmap)
1204{
1205 remove_pagetable(start, end, false, altmap);
1206}
1207
1208static void __meminit
1209kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1210{
1211 start = (unsigned long)__va(start);
1212 end = (unsigned long)__va(end);
1213
1214 remove_pagetable(start, end, true, NULL);
1215}
1216
1217void __ref arch_remove_memory(int nid, u64 start, u64 size,
1218 struct vmem_altmap *altmap)
1219{
1220 unsigned long start_pfn = start >> PAGE_SHIFT;
1221 unsigned long nr_pages = size >> PAGE_SHIFT;
1222
1223 __remove_pages(start_pfn, nr_pages, altmap);
1224 kernel_physical_mapping_remove(start, start + size);
1225}
1226#endif /* CONFIG_MEMORY_HOTPLUG */
1227
1228static struct kcore_list kcore_vsyscall;
1229
1230static void __init register_page_bootmem_info(void)
1231{
1232#ifdef CONFIG_NUMA
1233 int i;
1234
1235 for_each_online_node(i)
1236 register_page_bootmem_info_node(NODE_DATA(i));
1237#endif
1238}
1239
1240/*
1241 * Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
1242 * Only the level which needs to be synchronized between all page-tables is
1243 * allocated because the synchronization can be expensive.
1244 */
1245static void __init preallocate_vmalloc_pages(void)
1246{
1247 unsigned long addr;
1248 const char *lvl;
1249
1250 for (addr = VMALLOC_START; addr <= VMALLOC_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1251 pgd_t *pgd = pgd_offset_k(addr);
1252 p4d_t *p4d;
1253 pud_t *pud;
1254
1255 lvl = "p4d";
1256 p4d = p4d_alloc(&init_mm, pgd, addr);
1257 if (!p4d)
1258 goto failed;
1259
1260 /*
1261 * With 5-level paging the P4D level is not folded. So the PGDs
1262 * are now populated and there is no need to walk down to the
1263 * PUD level.
1264 */
1265 if (pgtable_l5_enabled())
1266 continue;
1267
1268 lvl = "pud";
1269 pud = pud_alloc(&init_mm, p4d, addr);
1270 if (!pud)
1271 goto failed;
1272 }
1273
1274 return;
1275
1276failed:
1277
1278 /*
1279 * The pages have to be there now or they will be missing in
1280 * process page-tables later.
1281 */
1282 panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
1283}
1284
1285void __init mem_init(void)
1286{
1287 pci_iommu_alloc();
1288
1289 /* clear_bss() already clear the empty_zero_page */
1290
1291 /* this will put all memory onto the freelists */
1292 memblock_free_all();
1293 after_bootmem = 1;
1294 x86_init.hyper.init_after_bootmem();
1295
1296 /*
1297 * Must be done after boot memory is put on freelist, because here we
1298 * might set fields in deferred struct pages that have not yet been
1299 * initialized, and memblock_free_all() initializes all the reserved
1300 * deferred pages for us.
1301 */
1302 register_page_bootmem_info();
1303
1304 /* Register memory areas for /proc/kcore */
1305 if (get_gate_vma(&init_mm))
1306 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1307
1308 preallocate_vmalloc_pages();
1309
1310 mem_init_print_info(NULL);
1311}
1312
1313#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1314int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1315{
1316 /*
1317 * More CPUs always led to greater speedups on tested systems, up to
1318 * all the nodes' CPUs. Use all since the system is otherwise idle
1319 * now.
1320 */
1321 return max_t(int, cpumask_weight(node_cpumask), 1);
1322}
1323#endif
1324
1325int kernel_set_to_readonly;
1326
1327void mark_rodata_ro(void)
1328{
1329 unsigned long start = PFN_ALIGN(_text);
1330 unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1331 unsigned long end = (unsigned long)__end_rodata_hpage_align;
1332 unsigned long text_end = PFN_ALIGN(_etext);
1333 unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1334 unsigned long all_end;
1335
1336 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1337 (end - start) >> 10);
1338 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1339
1340 kernel_set_to_readonly = 1;
1341
1342 /*
1343 * The rodata/data/bss/brk section (but not the kernel text!)
1344 * should also be not-executable.
1345 *
1346 * We align all_end to PMD_SIZE because the existing mapping
1347 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1348 * split the PMD and the reminder between _brk_end and the end
1349 * of the PMD will remain mapped executable.
1350 *
1351 * Any PMD which was setup after the one which covers _brk_end
1352 * has been zapped already via cleanup_highmem().
1353 */
1354 all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1355 set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1356
1357 set_ftrace_ops_ro();
1358
1359#ifdef CONFIG_CPA_DEBUG
1360 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1361 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1362
1363 printk(KERN_INFO "Testing CPA: again\n");
1364 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1365#endif
1366
1367 free_kernel_image_pages("unused kernel image (text/rodata gap)",
1368 (void *)text_end, (void *)rodata_start);
1369 free_kernel_image_pages("unused kernel image (rodata/data gap)",
1370 (void *)rodata_end, (void *)_sdata);
1371
1372 debug_checkwx();
1373}
1374
1375int kern_addr_valid(unsigned long addr)
1376{
1377 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1378 pgd_t *pgd;
1379 p4d_t *p4d;
1380 pud_t *pud;
1381 pmd_t *pmd;
1382 pte_t *pte;
1383
1384 if (above != 0 && above != -1UL)
1385 return 0;
1386
1387 pgd = pgd_offset_k(addr);
1388 if (pgd_none(*pgd))
1389 return 0;
1390
1391 p4d = p4d_offset(pgd, addr);
1392 if (p4d_none(*p4d))
1393 return 0;
1394
1395 pud = pud_offset(p4d, addr);
1396 if (pud_none(*pud))
1397 return 0;
1398
1399 if (pud_large(*pud))
1400 return pfn_valid(pud_pfn(*pud));
1401
1402 pmd = pmd_offset(pud, addr);
1403 if (pmd_none(*pmd))
1404 return 0;
1405
1406 if (pmd_large(*pmd))
1407 return pfn_valid(pmd_pfn(*pmd));
1408
1409 pte = pte_offset_kernel(pmd, addr);
1410 if (pte_none(*pte))
1411 return 0;
1412
1413 return pfn_valid(pte_pfn(*pte));
1414}
1415
1416/*
1417 * Block size is the minimum amount of memory which can be hotplugged or
1418 * hotremoved. It must be power of two and must be equal or larger than
1419 * MIN_MEMORY_BLOCK_SIZE.
1420 */
1421#define MAX_BLOCK_SIZE (2UL << 30)
1422
1423/* Amount of ram needed to start using large blocks */
1424#define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1425
1426/* Adjustable memory block size */
1427static unsigned long set_memory_block_size;
1428int __init set_memory_block_size_order(unsigned int order)
1429{
1430 unsigned long size = 1UL << order;
1431
1432 if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1433 return -EINVAL;
1434
1435 set_memory_block_size = size;
1436 return 0;
1437}
1438
1439static unsigned long probe_memory_block_size(void)
1440{
1441 unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1442 unsigned long bz;
1443
1444 /* If memory block size has been set, then use it */
1445 bz = set_memory_block_size;
1446 if (bz)
1447 goto done;
1448
1449 /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1450 if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1451 bz = MIN_MEMORY_BLOCK_SIZE;
1452 goto done;
1453 }
1454
1455 /*
1456 * Use max block size to minimize overhead on bare metal, where
1457 * alignment for memory hotplug isn't a concern.
1458 */
1459 if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1460 bz = MAX_BLOCK_SIZE;
1461 goto done;
1462 }
1463
1464 /* Find the largest allowed block size that aligns to memory end */
1465 for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1466 if (IS_ALIGNED(boot_mem_end, bz))
1467 break;
1468 }
1469done:
1470 pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1471
1472 return bz;
1473}
1474
1475static unsigned long memory_block_size_probed;
1476unsigned long memory_block_size_bytes(void)
1477{
1478 if (!memory_block_size_probed)
1479 memory_block_size_probed = probe_memory_block_size();
1480
1481 return memory_block_size_probed;
1482}
1483
1484#ifdef CONFIG_SPARSEMEM_VMEMMAP
1485/*
1486 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1487 */
1488static long __meminitdata addr_start, addr_end;
1489static void __meminitdata *p_start, *p_end;
1490static int __meminitdata node_start;
1491
1492static int __meminit vmemmap_populate_hugepages(unsigned long start,
1493 unsigned long end, int node, struct vmem_altmap *altmap)
1494{
1495 unsigned long addr;
1496 unsigned long next;
1497 pgd_t *pgd;
1498 p4d_t *p4d;
1499 pud_t *pud;
1500 pmd_t *pmd;
1501
1502 for (addr = start; addr < end; addr = next) {
1503 next = pmd_addr_end(addr, end);
1504
1505 pgd = vmemmap_pgd_populate(addr, node);
1506 if (!pgd)
1507 return -ENOMEM;
1508
1509 p4d = vmemmap_p4d_populate(pgd, addr, node);
1510 if (!p4d)
1511 return -ENOMEM;
1512
1513 pud = vmemmap_pud_populate(p4d, addr, node);
1514 if (!pud)
1515 return -ENOMEM;
1516
1517 pmd = pmd_offset(pud, addr);
1518 if (pmd_none(*pmd)) {
1519 void *p;
1520
1521 p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1522 if (p) {
1523 pte_t entry;
1524
1525 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1526 PAGE_KERNEL_LARGE);
1527 set_pmd(pmd, __pmd(pte_val(entry)));
1528
1529 /* check to see if we have contiguous blocks */
1530 if (p_end != p || node_start != node) {
1531 if (p_start)
1532 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1533 addr_start, addr_end-1, p_start, p_end-1, node_start);
1534 addr_start = addr;
1535 node_start = node;
1536 p_start = p;
1537 }
1538
1539 addr_end = addr + PMD_SIZE;
1540 p_end = p + PMD_SIZE;
1541 continue;
1542 } else if (altmap)
1543 return -ENOMEM; /* no fallback */
1544 } else if (pmd_large(*pmd)) {
1545 vmemmap_verify((pte_t *)pmd, node, addr, next);
1546 continue;
1547 }
1548 if (vmemmap_populate_basepages(addr, next, node, NULL))
1549 return -ENOMEM;
1550 }
1551 return 0;
1552}
1553
1554int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1555 struct vmem_altmap *altmap)
1556{
1557 int err;
1558
1559 if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1560 err = vmemmap_populate_basepages(start, end, node, NULL);
1561 else if (boot_cpu_has(X86_FEATURE_PSE))
1562 err = vmemmap_populate_hugepages(start, end, node, altmap);
1563 else if (altmap) {
1564 pr_err_once("%s: no cpu support for altmap allocations\n",
1565 __func__);
1566 err = -ENOMEM;
1567 } else
1568 err = vmemmap_populate_basepages(start, end, node, NULL);
1569 if (!err)
1570 sync_global_pgds(start, end - 1);
1571 return err;
1572}
1573
1574#if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1575void register_page_bootmem_memmap(unsigned long section_nr,
1576 struct page *start_page, unsigned long nr_pages)
1577{
1578 unsigned long addr = (unsigned long)start_page;
1579 unsigned long end = (unsigned long)(start_page + nr_pages);
1580 unsigned long next;
1581 pgd_t *pgd;
1582 p4d_t *p4d;
1583 pud_t *pud;
1584 pmd_t *pmd;
1585 unsigned int nr_pmd_pages;
1586 struct page *page;
1587
1588 for (; addr < end; addr = next) {
1589 pte_t *pte = NULL;
1590
1591 pgd = pgd_offset_k(addr);
1592 if (pgd_none(*pgd)) {
1593 next = (addr + PAGE_SIZE) & PAGE_MASK;
1594 continue;
1595 }
1596 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1597
1598 p4d = p4d_offset(pgd, addr);
1599 if (p4d_none(*p4d)) {
1600 next = (addr + PAGE_SIZE) & PAGE_MASK;
1601 continue;
1602 }
1603 get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1604
1605 pud = pud_offset(p4d, addr);
1606 if (pud_none(*pud)) {
1607 next = (addr + PAGE_SIZE) & PAGE_MASK;
1608 continue;
1609 }
1610 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1611
1612 if (!boot_cpu_has(X86_FEATURE_PSE)) {
1613 next = (addr + PAGE_SIZE) & PAGE_MASK;
1614 pmd = pmd_offset(pud, addr);
1615 if (pmd_none(*pmd))
1616 continue;
1617 get_page_bootmem(section_nr, pmd_page(*pmd),
1618 MIX_SECTION_INFO);
1619
1620 pte = pte_offset_kernel(pmd, addr);
1621 if (pte_none(*pte))
1622 continue;
1623 get_page_bootmem(section_nr, pte_page(*pte),
1624 SECTION_INFO);
1625 } else {
1626 next = pmd_addr_end(addr, end);
1627
1628 pmd = pmd_offset(pud, addr);
1629 if (pmd_none(*pmd))
1630 continue;
1631
1632 nr_pmd_pages = 1 << get_order(PMD_SIZE);
1633 page = pmd_page(*pmd);
1634 while (nr_pmd_pages--)
1635 get_page_bootmem(section_nr, page++,
1636 SECTION_INFO);
1637 }
1638 }
1639}
1640#endif
1641
1642void __meminit vmemmap_populate_print_last(void)
1643{
1644 if (p_start) {
1645 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1646 addr_start, addr_end-1, p_start, p_end-1, node_start);
1647 p_start = NULL;
1648 p_end = NULL;
1649 node_start = 0;
1650 }
1651}
1652#endif
1/*
2 * linux/arch/x86_64/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9#include <linux/signal.h>
10#include <linux/sched.h>
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/string.h>
14#include <linux/types.h>
15#include <linux/ptrace.h>
16#include <linux/mman.h>
17#include <linux/mm.h>
18#include <linux/swap.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/initrd.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/memblock.h>
25#include <linux/proc_fs.h>
26#include <linux/pci.h>
27#include <linux/pfn.h>
28#include <linux/poison.h>
29#include <linux/dma-mapping.h>
30#include <linux/module.h>
31#include <linux/memory.h>
32#include <linux/memory_hotplug.h>
33#include <linux/nmi.h>
34#include <linux/gfp.h>
35
36#include <asm/processor.h>
37#include <asm/bios_ebda.h>
38#include <asm/system.h>
39#include <asm/uaccess.h>
40#include <asm/pgtable.h>
41#include <asm/pgalloc.h>
42#include <asm/dma.h>
43#include <asm/fixmap.h>
44#include <asm/e820.h>
45#include <asm/apic.h>
46#include <asm/tlb.h>
47#include <asm/mmu_context.h>
48#include <asm/proto.h>
49#include <asm/smp.h>
50#include <asm/sections.h>
51#include <asm/kdebug.h>
52#include <asm/numa.h>
53#include <asm/cacheflush.h>
54#include <asm/init.h>
55#include <asm/uv/uv.h>
56#include <asm/setup.h>
57
58static int __init parse_direct_gbpages_off(char *arg)
59{
60 direct_gbpages = 0;
61 return 0;
62}
63early_param("nogbpages", parse_direct_gbpages_off);
64
65static int __init parse_direct_gbpages_on(char *arg)
66{
67 direct_gbpages = 1;
68 return 0;
69}
70early_param("gbpages", parse_direct_gbpages_on);
71
72/*
73 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
74 * physical space so we can cache the place of the first one and move
75 * around without checking the pgd every time.
76 */
77
78pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
79EXPORT_SYMBOL_GPL(__supported_pte_mask);
80
81int force_personality32;
82
83/*
84 * noexec32=on|off
85 * Control non executable heap for 32bit processes.
86 * To control the stack too use noexec=off
87 *
88 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
89 * off PROT_READ implies PROT_EXEC
90 */
91static int __init nonx32_setup(char *str)
92{
93 if (!strcmp(str, "on"))
94 force_personality32 &= ~READ_IMPLIES_EXEC;
95 else if (!strcmp(str, "off"))
96 force_personality32 |= READ_IMPLIES_EXEC;
97 return 1;
98}
99__setup("noexec32=", nonx32_setup);
100
101/*
102 * When memory was added/removed make sure all the processes MM have
103 * suitable PGD entries in the local PGD level page.
104 */
105void sync_global_pgds(unsigned long start, unsigned long end)
106{
107 unsigned long address;
108
109 for (address = start; address <= end; address += PGDIR_SIZE) {
110 const pgd_t *pgd_ref = pgd_offset_k(address);
111 struct page *page;
112
113 if (pgd_none(*pgd_ref))
114 continue;
115
116 spin_lock(&pgd_lock);
117 list_for_each_entry(page, &pgd_list, lru) {
118 pgd_t *pgd;
119 spinlock_t *pgt_lock;
120
121 pgd = (pgd_t *)page_address(page) + pgd_index(address);
122 /* the pgt_lock only for Xen */
123 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
124 spin_lock(pgt_lock);
125
126 if (pgd_none(*pgd))
127 set_pgd(pgd, *pgd_ref);
128 else
129 BUG_ON(pgd_page_vaddr(*pgd)
130 != pgd_page_vaddr(*pgd_ref));
131
132 spin_unlock(pgt_lock);
133 }
134 spin_unlock(&pgd_lock);
135 }
136}
137
138/*
139 * NOTE: This function is marked __ref because it calls __init function
140 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
141 */
142static __ref void *spp_getpage(void)
143{
144 void *ptr;
145
146 if (after_bootmem)
147 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
148 else
149 ptr = alloc_bootmem_pages(PAGE_SIZE);
150
151 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
152 panic("set_pte_phys: cannot allocate page data %s\n",
153 after_bootmem ? "after bootmem" : "");
154 }
155
156 pr_debug("spp_getpage %p\n", ptr);
157
158 return ptr;
159}
160
161static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
162{
163 if (pgd_none(*pgd)) {
164 pud_t *pud = (pud_t *)spp_getpage();
165 pgd_populate(&init_mm, pgd, pud);
166 if (pud != pud_offset(pgd, 0))
167 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
168 pud, pud_offset(pgd, 0));
169 }
170 return pud_offset(pgd, vaddr);
171}
172
173static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
174{
175 if (pud_none(*pud)) {
176 pmd_t *pmd = (pmd_t *) spp_getpage();
177 pud_populate(&init_mm, pud, pmd);
178 if (pmd != pmd_offset(pud, 0))
179 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
180 pmd, pmd_offset(pud, 0));
181 }
182 return pmd_offset(pud, vaddr);
183}
184
185static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
186{
187 if (pmd_none(*pmd)) {
188 pte_t *pte = (pte_t *) spp_getpage();
189 pmd_populate_kernel(&init_mm, pmd, pte);
190 if (pte != pte_offset_kernel(pmd, 0))
191 printk(KERN_ERR "PAGETABLE BUG #02!\n");
192 }
193 return pte_offset_kernel(pmd, vaddr);
194}
195
196void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
197{
198 pud_t *pud;
199 pmd_t *pmd;
200 pte_t *pte;
201
202 pud = pud_page + pud_index(vaddr);
203 pmd = fill_pmd(pud, vaddr);
204 pte = fill_pte(pmd, vaddr);
205
206 set_pte(pte, new_pte);
207
208 /*
209 * It's enough to flush this one mapping.
210 * (PGE mappings get flushed as well)
211 */
212 __flush_tlb_one(vaddr);
213}
214
215void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
216{
217 pgd_t *pgd;
218 pud_t *pud_page;
219
220 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
221
222 pgd = pgd_offset_k(vaddr);
223 if (pgd_none(*pgd)) {
224 printk(KERN_ERR
225 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
226 return;
227 }
228 pud_page = (pud_t*)pgd_page_vaddr(*pgd);
229 set_pte_vaddr_pud(pud_page, vaddr, pteval);
230}
231
232pmd_t * __init populate_extra_pmd(unsigned long vaddr)
233{
234 pgd_t *pgd;
235 pud_t *pud;
236
237 pgd = pgd_offset_k(vaddr);
238 pud = fill_pud(pgd, vaddr);
239 return fill_pmd(pud, vaddr);
240}
241
242pte_t * __init populate_extra_pte(unsigned long vaddr)
243{
244 pmd_t *pmd;
245
246 pmd = populate_extra_pmd(vaddr);
247 return fill_pte(pmd, vaddr);
248}
249
250/*
251 * Create large page table mappings for a range of physical addresses.
252 */
253static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
254 pgprot_t prot)
255{
256 pgd_t *pgd;
257 pud_t *pud;
258 pmd_t *pmd;
259
260 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
261 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
262 pgd = pgd_offset_k((unsigned long)__va(phys));
263 if (pgd_none(*pgd)) {
264 pud = (pud_t *) spp_getpage();
265 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
266 _PAGE_USER));
267 }
268 pud = pud_offset(pgd, (unsigned long)__va(phys));
269 if (pud_none(*pud)) {
270 pmd = (pmd_t *) spp_getpage();
271 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
272 _PAGE_USER));
273 }
274 pmd = pmd_offset(pud, phys);
275 BUG_ON(!pmd_none(*pmd));
276 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
277 }
278}
279
280void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
281{
282 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
283}
284
285void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
286{
287 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
288}
289
290/*
291 * The head.S code sets up the kernel high mapping:
292 *
293 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
294 *
295 * phys_addr holds the negative offset to the kernel, which is added
296 * to the compile time generated pmds. This results in invalid pmds up
297 * to the point where we hit the physaddr 0 mapping.
298 *
299 * We limit the mappings to the region from _text to _brk_end. _brk_end
300 * is rounded up to the 2MB boundary. This catches the invalid pmds as
301 * well, as they are located before _text:
302 */
303void __init cleanup_highmap(void)
304{
305 unsigned long vaddr = __START_KERNEL_map;
306 unsigned long vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
307 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
308 pmd_t *pmd = level2_kernel_pgt;
309
310 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
311 if (pmd_none(*pmd))
312 continue;
313 if (vaddr < (unsigned long) _text || vaddr > end)
314 set_pmd(pmd, __pmd(0));
315 }
316}
317
318static __ref void *alloc_low_page(unsigned long *phys)
319{
320 unsigned long pfn = pgt_buf_end++;
321 void *adr;
322
323 if (after_bootmem) {
324 adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
325 *phys = __pa(adr);
326
327 return adr;
328 }
329
330 if (pfn >= pgt_buf_top)
331 panic("alloc_low_page: ran out of memory");
332
333 adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
334 clear_page(adr);
335 *phys = pfn * PAGE_SIZE;
336 return adr;
337}
338
339static __ref void *map_low_page(void *virt)
340{
341 void *adr;
342 unsigned long phys, left;
343
344 if (after_bootmem)
345 return virt;
346
347 phys = __pa(virt);
348 left = phys & (PAGE_SIZE - 1);
349 adr = early_memremap(phys & PAGE_MASK, PAGE_SIZE);
350 adr = (void *)(((unsigned long)adr) | left);
351
352 return adr;
353}
354
355static __ref void unmap_low_page(void *adr)
356{
357 if (after_bootmem)
358 return;
359
360 early_iounmap((void *)((unsigned long)adr & PAGE_MASK), PAGE_SIZE);
361}
362
363static unsigned long __meminit
364phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
365 pgprot_t prot)
366{
367 unsigned pages = 0;
368 unsigned long last_map_addr = end;
369 int i;
370
371 pte_t *pte = pte_page + pte_index(addr);
372
373 for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
374
375 if (addr >= end) {
376 if (!after_bootmem) {
377 for(; i < PTRS_PER_PTE; i++, pte++)
378 set_pte(pte, __pte(0));
379 }
380 break;
381 }
382
383 /*
384 * We will re-use the existing mapping.
385 * Xen for example has some special requirements, like mapping
386 * pagetable pages as RO. So assume someone who pre-setup
387 * these mappings are more intelligent.
388 */
389 if (pte_val(*pte)) {
390 pages++;
391 continue;
392 }
393
394 if (0)
395 printk(" pte=%p addr=%lx pte=%016lx\n",
396 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
397 pages++;
398 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
399 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
400 }
401
402 update_page_count(PG_LEVEL_4K, pages);
403
404 return last_map_addr;
405}
406
407static unsigned long __meminit
408phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
409 unsigned long page_size_mask, pgprot_t prot)
410{
411 unsigned long pages = 0;
412 unsigned long last_map_addr = end;
413
414 int i = pmd_index(address);
415
416 for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
417 unsigned long pte_phys;
418 pmd_t *pmd = pmd_page + pmd_index(address);
419 pte_t *pte;
420 pgprot_t new_prot = prot;
421
422 if (address >= end) {
423 if (!after_bootmem) {
424 for (; i < PTRS_PER_PMD; i++, pmd++)
425 set_pmd(pmd, __pmd(0));
426 }
427 break;
428 }
429
430 if (pmd_val(*pmd)) {
431 if (!pmd_large(*pmd)) {
432 spin_lock(&init_mm.page_table_lock);
433 pte = map_low_page((pte_t *)pmd_page_vaddr(*pmd));
434 last_map_addr = phys_pte_init(pte, address,
435 end, prot);
436 unmap_low_page(pte);
437 spin_unlock(&init_mm.page_table_lock);
438 continue;
439 }
440 /*
441 * If we are ok with PG_LEVEL_2M mapping, then we will
442 * use the existing mapping,
443 *
444 * Otherwise, we will split the large page mapping but
445 * use the same existing protection bits except for
446 * large page, so that we don't violate Intel's TLB
447 * Application note (317080) which says, while changing
448 * the page sizes, new and old translations should
449 * not differ with respect to page frame and
450 * attributes.
451 */
452 if (page_size_mask & (1 << PG_LEVEL_2M)) {
453 pages++;
454 continue;
455 }
456 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
457 }
458
459 if (page_size_mask & (1<<PG_LEVEL_2M)) {
460 pages++;
461 spin_lock(&init_mm.page_table_lock);
462 set_pte((pte_t *)pmd,
463 pfn_pte(address >> PAGE_SHIFT,
464 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
465 spin_unlock(&init_mm.page_table_lock);
466 last_map_addr = (address & PMD_MASK) + PMD_SIZE;
467 continue;
468 }
469
470 pte = alloc_low_page(&pte_phys);
471 last_map_addr = phys_pte_init(pte, address, end, new_prot);
472 unmap_low_page(pte);
473
474 spin_lock(&init_mm.page_table_lock);
475 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
476 spin_unlock(&init_mm.page_table_lock);
477 }
478 update_page_count(PG_LEVEL_2M, pages);
479 return last_map_addr;
480}
481
482static unsigned long __meminit
483phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
484 unsigned long page_size_mask)
485{
486 unsigned long pages = 0;
487 unsigned long last_map_addr = end;
488 int i = pud_index(addr);
489
490 for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
491 unsigned long pmd_phys;
492 pud_t *pud = pud_page + pud_index(addr);
493 pmd_t *pmd;
494 pgprot_t prot = PAGE_KERNEL;
495
496 if (addr >= end)
497 break;
498
499 if (!after_bootmem &&
500 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
501 set_pud(pud, __pud(0));
502 continue;
503 }
504
505 if (pud_val(*pud)) {
506 if (!pud_large(*pud)) {
507 pmd = map_low_page(pmd_offset(pud, 0));
508 last_map_addr = phys_pmd_init(pmd, addr, end,
509 page_size_mask, prot);
510 unmap_low_page(pmd);
511 __flush_tlb_all();
512 continue;
513 }
514 /*
515 * If we are ok with PG_LEVEL_1G mapping, then we will
516 * use the existing mapping.
517 *
518 * Otherwise, we will split the gbpage mapping but use
519 * the same existing protection bits except for large
520 * page, so that we don't violate Intel's TLB
521 * Application note (317080) which says, while changing
522 * the page sizes, new and old translations should
523 * not differ with respect to page frame and
524 * attributes.
525 */
526 if (page_size_mask & (1 << PG_LEVEL_1G)) {
527 pages++;
528 continue;
529 }
530 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
531 }
532
533 if (page_size_mask & (1<<PG_LEVEL_1G)) {
534 pages++;
535 spin_lock(&init_mm.page_table_lock);
536 set_pte((pte_t *)pud,
537 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
538 spin_unlock(&init_mm.page_table_lock);
539 last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
540 continue;
541 }
542
543 pmd = alloc_low_page(&pmd_phys);
544 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
545 prot);
546 unmap_low_page(pmd);
547
548 spin_lock(&init_mm.page_table_lock);
549 pud_populate(&init_mm, pud, __va(pmd_phys));
550 spin_unlock(&init_mm.page_table_lock);
551 }
552 __flush_tlb_all();
553
554 update_page_count(PG_LEVEL_1G, pages);
555
556 return last_map_addr;
557}
558
559unsigned long __meminit
560kernel_physical_mapping_init(unsigned long start,
561 unsigned long end,
562 unsigned long page_size_mask)
563{
564 bool pgd_changed = false;
565 unsigned long next, last_map_addr = end;
566 unsigned long addr;
567
568 start = (unsigned long)__va(start);
569 end = (unsigned long)__va(end);
570 addr = start;
571
572 for (; start < end; start = next) {
573 pgd_t *pgd = pgd_offset_k(start);
574 unsigned long pud_phys;
575 pud_t *pud;
576
577 next = (start + PGDIR_SIZE) & PGDIR_MASK;
578 if (next > end)
579 next = end;
580
581 if (pgd_val(*pgd)) {
582 pud = map_low_page((pud_t *)pgd_page_vaddr(*pgd));
583 last_map_addr = phys_pud_init(pud, __pa(start),
584 __pa(end), page_size_mask);
585 unmap_low_page(pud);
586 continue;
587 }
588
589 pud = alloc_low_page(&pud_phys);
590 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
591 page_size_mask);
592 unmap_low_page(pud);
593
594 spin_lock(&init_mm.page_table_lock);
595 pgd_populate(&init_mm, pgd, __va(pud_phys));
596 spin_unlock(&init_mm.page_table_lock);
597 pgd_changed = true;
598 }
599
600 if (pgd_changed)
601 sync_global_pgds(addr, end);
602
603 __flush_tlb_all();
604
605 return last_map_addr;
606}
607
608#ifndef CONFIG_NUMA
609void __init initmem_init(void)
610{
611 memblock_x86_register_active_regions(0, 0, max_pfn);
612}
613#endif
614
615void __init paging_init(void)
616{
617 unsigned long max_zone_pfns[MAX_NR_ZONES];
618
619 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
620#ifdef CONFIG_ZONE_DMA
621 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
622#endif
623 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
624 max_zone_pfns[ZONE_NORMAL] = max_pfn;
625
626 sparse_memory_present_with_active_regions(MAX_NUMNODES);
627 sparse_init();
628
629 /*
630 * clear the default setting with node 0
631 * note: don't use nodes_clear here, that is really clearing when
632 * numa support is not compiled in, and later node_set_state
633 * will not set it back.
634 */
635 node_clear_state(0, N_NORMAL_MEMORY);
636
637 free_area_init_nodes(max_zone_pfns);
638}
639
640/*
641 * Memory hotplug specific functions
642 */
643#ifdef CONFIG_MEMORY_HOTPLUG
644/*
645 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
646 * updating.
647 */
648static void update_end_of_memory_vars(u64 start, u64 size)
649{
650 unsigned long end_pfn = PFN_UP(start + size);
651
652 if (end_pfn > max_pfn) {
653 max_pfn = end_pfn;
654 max_low_pfn = end_pfn;
655 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
656 }
657}
658
659/*
660 * Memory is added always to NORMAL zone. This means you will never get
661 * additional DMA/DMA32 memory.
662 */
663int arch_add_memory(int nid, u64 start, u64 size)
664{
665 struct pglist_data *pgdat = NODE_DATA(nid);
666 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
667 unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
668 unsigned long nr_pages = size >> PAGE_SHIFT;
669 int ret;
670
671 last_mapped_pfn = init_memory_mapping(start, start + size);
672 if (last_mapped_pfn > max_pfn_mapped)
673 max_pfn_mapped = last_mapped_pfn;
674
675 ret = __add_pages(nid, zone, start_pfn, nr_pages);
676 WARN_ON_ONCE(ret);
677
678 /* update max_pfn, max_low_pfn and high_memory */
679 update_end_of_memory_vars(start, size);
680
681 return ret;
682}
683EXPORT_SYMBOL_GPL(arch_add_memory);
684
685#endif /* CONFIG_MEMORY_HOTPLUG */
686
687static struct kcore_list kcore_vsyscall;
688
689void __init mem_init(void)
690{
691 long codesize, reservedpages, datasize, initsize;
692 unsigned long absent_pages;
693
694 pci_iommu_alloc();
695
696 /* clear_bss() already clear the empty_zero_page */
697
698 reservedpages = 0;
699
700 /* this will put all low memory onto the freelists */
701#ifdef CONFIG_NUMA
702 totalram_pages = numa_free_all_bootmem();
703#else
704 totalram_pages = free_all_bootmem();
705#endif
706
707 absent_pages = absent_pages_in_range(0, max_pfn);
708 reservedpages = max_pfn - totalram_pages - absent_pages;
709 after_bootmem = 1;
710
711 codesize = (unsigned long) &_etext - (unsigned long) &_text;
712 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
713 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
714
715 /* Register memory areas for /proc/kcore */
716 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
717 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
718
719 printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
720 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
721 nr_free_pages() << (PAGE_SHIFT-10),
722 max_pfn << (PAGE_SHIFT-10),
723 codesize >> 10,
724 absent_pages << (PAGE_SHIFT-10),
725 reservedpages << (PAGE_SHIFT-10),
726 datasize >> 10,
727 initsize >> 10);
728}
729
730#ifdef CONFIG_DEBUG_RODATA
731const int rodata_test_data = 0xC3;
732EXPORT_SYMBOL_GPL(rodata_test_data);
733
734int kernel_set_to_readonly;
735
736void set_kernel_text_rw(void)
737{
738 unsigned long start = PFN_ALIGN(_text);
739 unsigned long end = PFN_ALIGN(__stop___ex_table);
740
741 if (!kernel_set_to_readonly)
742 return;
743
744 pr_debug("Set kernel text: %lx - %lx for read write\n",
745 start, end);
746
747 /*
748 * Make the kernel identity mapping for text RW. Kernel text
749 * mapping will always be RO. Refer to the comment in
750 * static_protections() in pageattr.c
751 */
752 set_memory_rw(start, (end - start) >> PAGE_SHIFT);
753}
754
755void set_kernel_text_ro(void)
756{
757 unsigned long start = PFN_ALIGN(_text);
758 unsigned long end = PFN_ALIGN(__stop___ex_table);
759
760 if (!kernel_set_to_readonly)
761 return;
762
763 pr_debug("Set kernel text: %lx - %lx for read only\n",
764 start, end);
765
766 /*
767 * Set the kernel identity mapping for text RO.
768 */
769 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
770}
771
772void mark_rodata_ro(void)
773{
774 unsigned long start = PFN_ALIGN(_text);
775 unsigned long rodata_start =
776 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
777 unsigned long end = (unsigned long) &__end_rodata_hpage_align;
778 unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
779 unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
780 unsigned long data_start = (unsigned long) &_sdata;
781
782 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
783 (end - start) >> 10);
784 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
785
786 kernel_set_to_readonly = 1;
787
788 /*
789 * The rodata section (but not the kernel text!) should also be
790 * not-executable.
791 */
792 set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
793
794 rodata_test();
795
796#ifdef CONFIG_CPA_DEBUG
797 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
798 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
799
800 printk(KERN_INFO "Testing CPA: again\n");
801 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
802#endif
803
804 free_init_pages("unused kernel memory",
805 (unsigned long) page_address(virt_to_page(text_end)),
806 (unsigned long)
807 page_address(virt_to_page(rodata_start)));
808 free_init_pages("unused kernel memory",
809 (unsigned long) page_address(virt_to_page(rodata_end)),
810 (unsigned long) page_address(virt_to_page(data_start)));
811}
812
813#endif
814
815int kern_addr_valid(unsigned long addr)
816{
817 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
818 pgd_t *pgd;
819 pud_t *pud;
820 pmd_t *pmd;
821 pte_t *pte;
822
823 if (above != 0 && above != -1UL)
824 return 0;
825
826 pgd = pgd_offset_k(addr);
827 if (pgd_none(*pgd))
828 return 0;
829
830 pud = pud_offset(pgd, addr);
831 if (pud_none(*pud))
832 return 0;
833
834 pmd = pmd_offset(pud, addr);
835 if (pmd_none(*pmd))
836 return 0;
837
838 if (pmd_large(*pmd))
839 return pfn_valid(pmd_pfn(*pmd));
840
841 pte = pte_offset_kernel(pmd, addr);
842 if (pte_none(*pte))
843 return 0;
844
845 return pfn_valid(pte_pfn(*pte));
846}
847
848/*
849 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
850 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
851 * not need special handling anymore:
852 */
853static struct vm_area_struct gate_vma = {
854 .vm_start = VSYSCALL_START,
855 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
856 .vm_page_prot = PAGE_READONLY_EXEC,
857 .vm_flags = VM_READ | VM_EXEC
858};
859
860struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
861{
862#ifdef CONFIG_IA32_EMULATION
863 if (!mm || mm->context.ia32_compat)
864 return NULL;
865#endif
866 return &gate_vma;
867}
868
869int in_gate_area(struct mm_struct *mm, unsigned long addr)
870{
871 struct vm_area_struct *vma = get_gate_vma(mm);
872
873 if (!vma)
874 return 0;
875
876 return (addr >= vma->vm_start) && (addr < vma->vm_end);
877}
878
879/*
880 * Use this when you have no reliable mm, typically from interrupt
881 * context. It is less reliable than using a task's mm and may give
882 * false positives.
883 */
884int in_gate_area_no_mm(unsigned long addr)
885{
886 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
887}
888
889const char *arch_vma_name(struct vm_area_struct *vma)
890{
891 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
892 return "[vdso]";
893 if (vma == &gate_vma)
894 return "[vsyscall]";
895 return NULL;
896}
897
898#ifdef CONFIG_X86_UV
899unsigned long memory_block_size_bytes(void)
900{
901 if (is_uv_system()) {
902 printk(KERN_INFO "UV: memory block size 2GB\n");
903 return 2UL * 1024 * 1024 * 1024;
904 }
905 return MIN_MEMORY_BLOCK_SIZE;
906}
907#endif
908
909#ifdef CONFIG_SPARSEMEM_VMEMMAP
910/*
911 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
912 */
913static long __meminitdata addr_start, addr_end;
914static void __meminitdata *p_start, *p_end;
915static int __meminitdata node_start;
916
917int __meminit
918vmemmap_populate(struct page *start_page, unsigned long size, int node)
919{
920 unsigned long addr = (unsigned long)start_page;
921 unsigned long end = (unsigned long)(start_page + size);
922 unsigned long next;
923 pgd_t *pgd;
924 pud_t *pud;
925 pmd_t *pmd;
926
927 for (; addr < end; addr = next) {
928 void *p = NULL;
929
930 pgd = vmemmap_pgd_populate(addr, node);
931 if (!pgd)
932 return -ENOMEM;
933
934 pud = vmemmap_pud_populate(pgd, addr, node);
935 if (!pud)
936 return -ENOMEM;
937
938 if (!cpu_has_pse) {
939 next = (addr + PAGE_SIZE) & PAGE_MASK;
940 pmd = vmemmap_pmd_populate(pud, addr, node);
941
942 if (!pmd)
943 return -ENOMEM;
944
945 p = vmemmap_pte_populate(pmd, addr, node);
946
947 if (!p)
948 return -ENOMEM;
949
950 addr_end = addr + PAGE_SIZE;
951 p_end = p + PAGE_SIZE;
952 } else {
953 next = pmd_addr_end(addr, end);
954
955 pmd = pmd_offset(pud, addr);
956 if (pmd_none(*pmd)) {
957 pte_t entry;
958
959 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
960 if (!p)
961 return -ENOMEM;
962
963 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
964 PAGE_KERNEL_LARGE);
965 set_pmd(pmd, __pmd(pte_val(entry)));
966
967 /* check to see if we have contiguous blocks */
968 if (p_end != p || node_start != node) {
969 if (p_start)
970 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
971 addr_start, addr_end-1, p_start, p_end-1, node_start);
972 addr_start = addr;
973 node_start = node;
974 p_start = p;
975 }
976
977 addr_end = addr + PMD_SIZE;
978 p_end = p + PMD_SIZE;
979 } else
980 vmemmap_verify((pte_t *)pmd, node, addr, next);
981 }
982
983 }
984 sync_global_pgds((unsigned long)start_page, end);
985 return 0;
986}
987
988void __meminit vmemmap_populate_print_last(void)
989{
990 if (p_start) {
991 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
992 addr_start, addr_end-1, p_start, p_end-1, node_start);
993 p_start = NULL;
994 p_end = NULL;
995 node_start = 0;
996 }
997}
998#endif