Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4 * Copyright 2003 PathScale, Inc.
5 * Derived from include/asm-i386/pgtable.h
6 */
7
8#ifndef __UM_PGTABLE_H
9#define __UM_PGTABLE_H
10
11#include <asm/fixmap.h>
12
13#define _PAGE_PRESENT 0x001
14#define _PAGE_NEWPAGE 0x002
15#define _PAGE_NEWPROT 0x004
16#define _PAGE_RW 0x020
17#define _PAGE_USER 0x040
18#define _PAGE_ACCESSED 0x080
19#define _PAGE_DIRTY 0x100
20/* If _PAGE_PRESENT is clear, we use these: */
21#define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
22 pte_present gives true */
23
24#ifdef CONFIG_3_LEVEL_PGTABLES
25#include <asm/pgtable-3level.h>
26#else
27#include <asm/pgtable-2level.h>
28#endif
29
30extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
31
32/* zero page used for uninitialized stuff */
33extern unsigned long *empty_zero_page;
34
35/* Just any arbitrary offset to the start of the vmalloc VM area: the
36 * current 8MB value just means that there will be a 8MB "hole" after the
37 * physical memory until the kernel virtual memory starts. That means that
38 * any out-of-bounds memory accesses will hopefully be caught.
39 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
40 * area for the same reason. ;)
41 */
42
43extern unsigned long end_iomem;
44
45#define VMALLOC_OFFSET (__va_space)
46#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
47#define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
48#define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
49#define MODULES_VADDR VMALLOC_START
50#define MODULES_END VMALLOC_END
51#define MODULES_LEN (MODULES_VADDR - MODULES_END)
52
53#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
54#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
55#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
56#define __PAGE_KERNEL_EXEC \
57 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
58#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
59#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
60#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
61#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
62#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
63#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
64
65/*
66 * The i386 can't do page protection for execute, and considers that the same
67 * are read.
68 * Also, write permissions imply read permissions. This is the closest we can
69 * get..
70 */
71#define __P000 PAGE_NONE
72#define __P001 PAGE_READONLY
73#define __P010 PAGE_COPY
74#define __P011 PAGE_COPY
75#define __P100 PAGE_READONLY
76#define __P101 PAGE_READONLY
77#define __P110 PAGE_COPY
78#define __P111 PAGE_COPY
79
80#define __S000 PAGE_NONE
81#define __S001 PAGE_READONLY
82#define __S010 PAGE_SHARED
83#define __S011 PAGE_SHARED
84#define __S100 PAGE_READONLY
85#define __S101 PAGE_READONLY
86#define __S110 PAGE_SHARED
87#define __S111 PAGE_SHARED
88
89/*
90 * ZERO_PAGE is a global shared page that is always zero: used
91 * for zero-mapped memory areas etc..
92 */
93#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
94
95#define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
96
97#define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
98#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
99
100#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
101#define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
102
103#define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
104#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
105
106#define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
107#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
108
109#define p4d_newpage(x) (p4d_val(x) & _PAGE_NEWPAGE)
110#define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEWPAGE)
111
112#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
113
114#define pte_page(x) pfn_to_page(pte_pfn(x))
115
116#define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
117
118/*
119 * =================================
120 * Flags checking section.
121 * =================================
122 */
123
124static inline int pte_none(pte_t pte)
125{
126 return pte_is_zero(pte);
127}
128
129/*
130 * The following only work if pte_present() is true.
131 * Undefined behaviour if not..
132 */
133static inline int pte_read(pte_t pte)
134{
135 return((pte_get_bits(pte, _PAGE_USER)) &&
136 !(pte_get_bits(pte, _PAGE_PROTNONE)));
137}
138
139static inline int pte_exec(pte_t pte){
140 return((pte_get_bits(pte, _PAGE_USER)) &&
141 !(pte_get_bits(pte, _PAGE_PROTNONE)));
142}
143
144static inline int pte_write(pte_t pte)
145{
146 return((pte_get_bits(pte, _PAGE_RW)) &&
147 !(pte_get_bits(pte, _PAGE_PROTNONE)));
148}
149
150static inline int pte_dirty(pte_t pte)
151{
152 return pte_get_bits(pte, _PAGE_DIRTY);
153}
154
155static inline int pte_young(pte_t pte)
156{
157 return pte_get_bits(pte, _PAGE_ACCESSED);
158}
159
160static inline int pte_newpage(pte_t pte)
161{
162 return pte_get_bits(pte, _PAGE_NEWPAGE);
163}
164
165static inline int pte_newprot(pte_t pte)
166{
167 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
168}
169
170/*
171 * =================================
172 * Flags setting section.
173 * =================================
174 */
175
176static inline pte_t pte_mknewprot(pte_t pte)
177{
178 pte_set_bits(pte, _PAGE_NEWPROT);
179 return(pte);
180}
181
182static inline pte_t pte_mkclean(pte_t pte)
183{
184 pte_clear_bits(pte, _PAGE_DIRTY);
185 return(pte);
186}
187
188static inline pte_t pte_mkold(pte_t pte)
189{
190 pte_clear_bits(pte, _PAGE_ACCESSED);
191 return(pte);
192}
193
194static inline pte_t pte_wrprotect(pte_t pte)
195{
196 if (likely(pte_get_bits(pte, _PAGE_RW)))
197 pte_clear_bits(pte, _PAGE_RW);
198 else
199 return pte;
200 return(pte_mknewprot(pte));
201}
202
203static inline pte_t pte_mkread(pte_t pte)
204{
205 if (unlikely(pte_get_bits(pte, _PAGE_USER)))
206 return pte;
207 pte_set_bits(pte, _PAGE_USER);
208 return(pte_mknewprot(pte));
209}
210
211static inline pte_t pte_mkdirty(pte_t pte)
212{
213 pte_set_bits(pte, _PAGE_DIRTY);
214 return(pte);
215}
216
217static inline pte_t pte_mkyoung(pte_t pte)
218{
219 pte_set_bits(pte, _PAGE_ACCESSED);
220 return(pte);
221}
222
223static inline pte_t pte_mkwrite(pte_t pte)
224{
225 if (unlikely(pte_get_bits(pte, _PAGE_RW)))
226 return pte;
227 pte_set_bits(pte, _PAGE_RW);
228 return(pte_mknewprot(pte));
229}
230
231static inline pte_t pte_mkuptodate(pte_t pte)
232{
233 pte_clear_bits(pte, _PAGE_NEWPAGE);
234 if(pte_present(pte))
235 pte_clear_bits(pte, _PAGE_NEWPROT);
236 return(pte);
237}
238
239static inline pte_t pte_mknewpage(pte_t pte)
240{
241 pte_set_bits(pte, _PAGE_NEWPAGE);
242 return(pte);
243}
244
245static inline void set_pte(pte_t *pteptr, pte_t pteval)
246{
247 pte_copy(*pteptr, pteval);
248
249 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
250 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to
251 * mapped pages.
252 */
253
254 *pteptr = pte_mknewpage(*pteptr);
255 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
256}
257
258static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
259 pte_t *pteptr, pte_t pteval)
260{
261 set_pte(pteptr, pteval);
262}
263
264#define __HAVE_ARCH_PTE_SAME
265static inline int pte_same(pte_t pte_a, pte_t pte_b)
266{
267 return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
268}
269
270/*
271 * Conversion functions: convert a page and protection to a page entry,
272 * and a page entry and page directory to the page they refer to.
273 */
274
275#define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
276#define __virt_to_page(virt) phys_to_page(__pa(virt))
277#define page_to_phys(page) pfn_to_phys(page_to_pfn(page))
278#define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
279
280#define mk_pte(page, pgprot) \
281 ({ pte_t pte; \
282 \
283 pte_set_val(pte, page_to_phys(page), (pgprot)); \
284 if (pte_present(pte)) \
285 pte_mknewprot(pte_mknewpage(pte)); \
286 pte;})
287
288static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
289{
290 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
291 return pte;
292}
293
294/*
295 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
296 *
297 * this macro returns the index of the entry in the pmd page which would
298 * control the given virtual address
299 */
300#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
301
302struct mm_struct;
303extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
304
305#define update_mmu_cache(vma,address,ptep) do ; while (0)
306
307/* Encode and de-code a swap entry */
308#define __swp_type(x) (((x).val >> 5) & 0x1f)
309#define __swp_offset(x) ((x).val >> 11)
310
311#define __swp_entry(type, offset) \
312 ((swp_entry_t) { ((type) << 5) | ((offset) << 11) })
313#define __pte_to_swp_entry(pte) \
314 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
315#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
316
317#define kern_addr_valid(addr) (1)
318
319/* Clear a kernel PTE and flush it from the TLB */
320#define kpte_clear_flush(ptep, vaddr) \
321do { \
322 pte_clear(&init_mm, (vaddr), (ptep)); \
323 __flush_tlb_one((vaddr)); \
324} while (0)
325
326#endif
1/*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Copyright 2003 PathScale, Inc.
4 * Derived from include/asm-i386/pgtable.h
5 * Licensed under the GPL
6 */
7
8#ifndef __UM_PGTABLE_H
9#define __UM_PGTABLE_H
10
11#include <asm/fixmap.h>
12
13#define _PAGE_PRESENT 0x001
14#define _PAGE_NEWPAGE 0x002
15#define _PAGE_NEWPROT 0x004
16#define _PAGE_RW 0x020
17#define _PAGE_USER 0x040
18#define _PAGE_ACCESSED 0x080
19#define _PAGE_DIRTY 0x100
20/* If _PAGE_PRESENT is clear, we use these: */
21#define _PAGE_FILE 0x008 /* nonlinear file mapping, saved PTE; unset:swap */
22#define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
23 pte_present gives true */
24
25#ifdef CONFIG_3_LEVEL_PGTABLES
26#include "asm/pgtable-3level.h"
27#else
28#include "asm/pgtable-2level.h"
29#endif
30
31extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
32
33/* zero page used for uninitialized stuff */
34extern unsigned long *empty_zero_page;
35
36#define pgtable_cache_init() do ; while (0)
37
38/* Just any arbitrary offset to the start of the vmalloc VM area: the
39 * current 8MB value just means that there will be a 8MB "hole" after the
40 * physical memory until the kernel virtual memory starts. That means that
41 * any out-of-bounds memory accesses will hopefully be caught.
42 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
43 * area for the same reason. ;)
44 */
45
46extern unsigned long end_iomem;
47
48#define VMALLOC_OFFSET (__va_space)
49#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
50#define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
51#ifdef CONFIG_HIGHMEM
52# define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
53#else
54# define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
55#endif
56#define MODULES_VADDR VMALLOC_START
57#define MODULES_END VMALLOC_END
58#define MODULES_LEN (MODULES_VADDR - MODULES_END)
59
60#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
61#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
62#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
63#define __PAGE_KERNEL_EXEC \
64 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
65#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
66#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
67#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
68#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
69#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
70#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
71
72/*
73 * The i386 can't do page protection for execute, and considers that the same
74 * are read.
75 * Also, write permissions imply read permissions. This is the closest we can
76 * get..
77 */
78#define __P000 PAGE_NONE
79#define __P001 PAGE_READONLY
80#define __P010 PAGE_COPY
81#define __P011 PAGE_COPY
82#define __P100 PAGE_READONLY
83#define __P101 PAGE_READONLY
84#define __P110 PAGE_COPY
85#define __P111 PAGE_COPY
86
87#define __S000 PAGE_NONE
88#define __S001 PAGE_READONLY
89#define __S010 PAGE_SHARED
90#define __S011 PAGE_SHARED
91#define __S100 PAGE_READONLY
92#define __S101 PAGE_READONLY
93#define __S110 PAGE_SHARED
94#define __S111 PAGE_SHARED
95
96/*
97 * ZERO_PAGE is a global shared page that is always zero: used
98 * for zero-mapped memory areas etc..
99 */
100#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
101
102#define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
103
104#define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
105#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
106
107#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
108#define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
109
110#define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
111#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
112
113#define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
114#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
115
116#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
117
118#define pte_page(x) pfn_to_page(pte_pfn(x))
119
120#define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
121
122/*
123 * =================================
124 * Flags checking section.
125 * =================================
126 */
127
128static inline int pte_none(pte_t pte)
129{
130 return pte_is_zero(pte);
131}
132
133/*
134 * The following only work if pte_present() is true.
135 * Undefined behaviour if not..
136 */
137static inline int pte_read(pte_t pte)
138{
139 return((pte_get_bits(pte, _PAGE_USER)) &&
140 !(pte_get_bits(pte, _PAGE_PROTNONE)));
141}
142
143static inline int pte_exec(pte_t pte){
144 return((pte_get_bits(pte, _PAGE_USER)) &&
145 !(pte_get_bits(pte, _PAGE_PROTNONE)));
146}
147
148static inline int pte_write(pte_t pte)
149{
150 return((pte_get_bits(pte, _PAGE_RW)) &&
151 !(pte_get_bits(pte, _PAGE_PROTNONE)));
152}
153
154/*
155 * The following only works if pte_present() is not true.
156 */
157static inline int pte_file(pte_t pte)
158{
159 return pte_get_bits(pte, _PAGE_FILE);
160}
161
162static inline int pte_dirty(pte_t pte)
163{
164 return pte_get_bits(pte, _PAGE_DIRTY);
165}
166
167static inline int pte_young(pte_t pte)
168{
169 return pte_get_bits(pte, _PAGE_ACCESSED);
170}
171
172static inline int pte_newpage(pte_t pte)
173{
174 return pte_get_bits(pte, _PAGE_NEWPAGE);
175}
176
177static inline int pte_newprot(pte_t pte)
178{
179 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
180}
181
182static inline int pte_special(pte_t pte)
183{
184 return 0;
185}
186
187/*
188 * =================================
189 * Flags setting section.
190 * =================================
191 */
192
193static inline pte_t pte_mknewprot(pte_t pte)
194{
195 pte_set_bits(pte, _PAGE_NEWPROT);
196 return(pte);
197}
198
199static inline pte_t pte_mkclean(pte_t pte)
200{
201 pte_clear_bits(pte, _PAGE_DIRTY);
202 return(pte);
203}
204
205static inline pte_t pte_mkold(pte_t pte)
206{
207 pte_clear_bits(pte, _PAGE_ACCESSED);
208 return(pte);
209}
210
211static inline pte_t pte_wrprotect(pte_t pte)
212{
213 pte_clear_bits(pte, _PAGE_RW);
214 return(pte_mknewprot(pte));
215}
216
217static inline pte_t pte_mkread(pte_t pte)
218{
219 pte_set_bits(pte, _PAGE_USER);
220 return(pte_mknewprot(pte));
221}
222
223static inline pte_t pte_mkdirty(pte_t pte)
224{
225 pte_set_bits(pte, _PAGE_DIRTY);
226 return(pte);
227}
228
229static inline pte_t pte_mkyoung(pte_t pte)
230{
231 pte_set_bits(pte, _PAGE_ACCESSED);
232 return(pte);
233}
234
235static inline pte_t pte_mkwrite(pte_t pte)
236{
237 pte_set_bits(pte, _PAGE_RW);
238 return(pte_mknewprot(pte));
239}
240
241static inline pte_t pte_mkuptodate(pte_t pte)
242{
243 pte_clear_bits(pte, _PAGE_NEWPAGE);
244 if(pte_present(pte))
245 pte_clear_bits(pte, _PAGE_NEWPROT);
246 return(pte);
247}
248
249static inline pte_t pte_mknewpage(pte_t pte)
250{
251 pte_set_bits(pte, _PAGE_NEWPAGE);
252 return(pte);
253}
254
255static inline pte_t pte_mkspecial(pte_t pte)
256{
257 return(pte);
258}
259
260static inline void set_pte(pte_t *pteptr, pte_t pteval)
261{
262 pte_copy(*pteptr, pteval);
263
264 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
265 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to
266 * mapped pages.
267 */
268
269 *pteptr = pte_mknewpage(*pteptr);
270 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
271}
272#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
273
274/*
275 * Conversion functions: convert a page and protection to a page entry,
276 * and a page entry and page directory to the page they refer to.
277 */
278
279#define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
280#define __virt_to_page(virt) phys_to_page(__pa(virt))
281#define page_to_phys(page) pfn_to_phys((pfn_t) page_to_pfn(page))
282#define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
283
284#define mk_pte(page, pgprot) \
285 ({ pte_t pte; \
286 \
287 pte_set_val(pte, page_to_phys(page), (pgprot)); \
288 if (pte_present(pte)) \
289 pte_mknewprot(pte_mknewpage(pte)); \
290 pte;})
291
292static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
293{
294 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
295 return pte;
296}
297
298/*
299 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
300 *
301 * this macro returns the index of the entry in the pgd page which would
302 * control the given virtual address
303 */
304#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
305
306/*
307 * pgd_offset() returns a (pgd_t *)
308 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
309 */
310#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
311
312/*
313 * a shortcut which implies the use of the kernel's pgd, instead
314 * of a process's
315 */
316#define pgd_offset_k(address) pgd_offset(&init_mm, address)
317
318/*
319 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
320 *
321 * this macro returns the index of the entry in the pmd page which would
322 * control the given virtual address
323 */
324#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
325#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
326
327#define pmd_page_vaddr(pmd) \
328 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
329
330/*
331 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
332 *
333 * this macro returns the index of the entry in the pte page which would
334 * control the given virtual address
335 */
336#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
337#define pte_offset_kernel(dir, address) \
338 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
339#define pte_offset_map(dir, address) \
340 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
341#define pte_unmap(pte) do { } while (0)
342
343struct mm_struct;
344extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
345
346#define update_mmu_cache(vma,address,ptep) do ; while (0)
347
348/* Encode and de-code a swap entry */
349#define __swp_type(x) (((x).val >> 4) & 0x3f)
350#define __swp_offset(x) ((x).val >> 11)
351
352#define __swp_entry(type, offset) \
353 ((swp_entry_t) { ((type) << 4) | ((offset) << 11) })
354#define __pte_to_swp_entry(pte) \
355 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
356#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
357
358#define kern_addr_valid(addr) (1)
359
360#include <asm-generic/pgtable.h>
361
362/* Clear a kernel PTE and flush it from the TLB */
363#define kpte_clear_flush(ptep, vaddr) \
364do { \
365 pte_clear(&init_mm, (vaddr), (ptep)); \
366 __flush_tlb_one((vaddr)); \
367} while (0)
368
369#endif