Linux Audio

Check our new training course

Loading...
v5.9
  1/*
  2 * arch/sh/mm/cache-sh4.c
  3 *
  4 * Copyright (C) 1999, 2000, 2002  Niibe Yutaka
  5 * Copyright (C) 2001 - 2009  Paul Mundt
  6 * Copyright (C) 2003  Richard Curnow
  7 * Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
  8 *
  9 * This file is subject to the terms and conditions of the GNU General Public
 10 * License.  See the file "COPYING" in the main directory of this archive
 11 * for more details.
 12 */
 13#include <linux/init.h>
 14#include <linux/mm.h>
 15#include <linux/io.h>
 16#include <linux/mutex.h>
 17#include <linux/fs.h>
 18#include <linux/highmem.h>
 
 19#include <asm/mmu_context.h>
 20#include <asm/cache_insns.h>
 21#include <asm/cacheflush.h>
 22
 23/*
 24 * The maximum number of pages we support up to when doing ranged dcache
 25 * flushing. Anything exceeding this will simply flush the dcache in its
 26 * entirety.
 27 */
 28#define MAX_ICACHE_PAGES	32
 29
 30static void __flush_cache_one(unsigned long addr, unsigned long phys,
 31			       unsigned long exec_offset);
 32
 33/*
 34 * Write back the range of D-cache, and purge the I-cache.
 35 *
 36 * Called from kernel/module.c:sys_init_module and routine for a.out format,
 37 * signal handler code and kprobes code
 38 */
 39static void sh4_flush_icache_range(void *args)
 40{
 41	struct flusher_data *data = args;
 42	unsigned long start, end;
 43	unsigned long flags, v;
 44	int i;
 45
 46	start = data->addr1;
 47	end = data->addr2;
 48
 49	/* If there are too many pages then just blow away the caches */
 50	if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) {
 51		local_flush_cache_all(NULL);
 52		return;
 53	}
 54
 55	/*
 56	 * Selectively flush d-cache then invalidate the i-cache.
 57	 * This is inefficient, so only use this for small ranges.
 58	 */
 59	start &= ~(L1_CACHE_BYTES-1);
 60	end += L1_CACHE_BYTES-1;
 61	end &= ~(L1_CACHE_BYTES-1);
 62
 63	local_irq_save(flags);
 64	jump_to_uncached();
 65
 66	for (v = start; v < end; v += L1_CACHE_BYTES) {
 67		unsigned long icacheaddr;
 68		int j, n;
 69
 70		__ocbwb(v);
 71
 72		icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v &
 73				cpu_data->icache.entry_mask);
 74
 75		/* Clear i-cache line valid-bit */
 76		n = boot_cpu_data.icache.n_aliases;
 77		for (i = 0; i < cpu_data->icache.ways; i++) {
 78			for (j = 0; j < n; j++)
 79				__raw_writel(0, icacheaddr + (j * PAGE_SIZE));
 80			icacheaddr += cpu_data->icache.way_incr;
 81		}
 82	}
 83
 84	back_to_cached();
 85	local_irq_restore(flags);
 86}
 87
 88static inline void flush_cache_one(unsigned long start, unsigned long phys)
 89{
 90	unsigned long flags, exec_offset = 0;
 91
 92	/*
 93	 * All types of SH-4 require PC to be uncached to operate on the I-cache.
 94	 * Some types of SH-4 require PC to be uncached to operate on the D-cache.
 95	 */
 96	if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) ||
 97	    (start < CACHE_OC_ADDRESS_ARRAY))
 98		exec_offset = cached_to_uncached;
 99
100	local_irq_save(flags);
101	__flush_cache_one(start, phys, exec_offset);
102	local_irq_restore(flags);
103}
104
105/*
106 * Write back & invalidate the D-cache of the page.
107 * (To avoid "alias" issues)
108 */
109static void sh4_flush_dcache_page(void *arg)
110{
111	struct page *page = arg;
112	unsigned long addr = (unsigned long)page_address(page);
113#ifndef CONFIG_SMP
114	struct address_space *mapping = page_mapping_file(page);
115
116	if (mapping && !mapping_mapped(mapping))
117		clear_bit(PG_dcache_clean, &page->flags);
118	else
119#endif
120		flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
121				(addr & shm_align_mask), page_to_phys(page));
122
123	wmb();
124}
125
126/* TODO: Selective icache invalidation through IC address array.. */
127static void flush_icache_all(void)
128{
129	unsigned long flags, ccr;
130
131	local_irq_save(flags);
132	jump_to_uncached();
133
134	/* Flush I-cache */
135	ccr = __raw_readl(SH_CCR);
136	ccr |= CCR_CACHE_ICI;
137	__raw_writel(ccr, SH_CCR);
138
139	/*
140	 * back_to_cached() will take care of the barrier for us, don't add
141	 * another one!
142	 */
143
144	back_to_cached();
145	local_irq_restore(flags);
146}
147
148static void flush_dcache_all(void)
149{
150	unsigned long addr, end_addr, entry_offset;
151
152	end_addr = CACHE_OC_ADDRESS_ARRAY +
153		(current_cpu_data.dcache.sets <<
154		 current_cpu_data.dcache.entry_shift) *
155			current_cpu_data.dcache.ways;
156
157	entry_offset = 1 << current_cpu_data.dcache.entry_shift;
158
159	for (addr = CACHE_OC_ADDRESS_ARRAY; addr < end_addr; ) {
160		__raw_writel(0, addr); addr += entry_offset;
161		__raw_writel(0, addr); addr += entry_offset;
162		__raw_writel(0, addr); addr += entry_offset;
163		__raw_writel(0, addr); addr += entry_offset;
164		__raw_writel(0, addr); addr += entry_offset;
165		__raw_writel(0, addr); addr += entry_offset;
166		__raw_writel(0, addr); addr += entry_offset;
167		__raw_writel(0, addr); addr += entry_offset;
168	}
169}
170
171static void sh4_flush_cache_all(void *unused)
172{
173	flush_dcache_all();
174	flush_icache_all();
175}
176
177/*
178 * Note : (RPC) since the caches are physically tagged, the only point
179 * of flush_cache_mm for SH-4 is to get rid of aliases from the
180 * D-cache.  The assumption elsewhere, e.g. flush_cache_range, is that
181 * lines can stay resident so long as the virtual address they were
182 * accessed with (hence cache set) is in accord with the physical
183 * address (i.e. tag).  It's no different here.
184 *
185 * Caller takes mm->mmap_lock.
186 */
187static void sh4_flush_cache_mm(void *arg)
188{
189	struct mm_struct *mm = arg;
190
191	if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT)
192		return;
193
194	flush_dcache_all();
195}
196
197/*
198 * Write back and invalidate I/D-caches for the page.
199 *
200 * ADDR: Virtual Address (U0 address)
201 * PFN: Physical page number
202 */
203static void sh4_flush_cache_page(void *args)
204{
205	struct flusher_data *data = args;
206	struct vm_area_struct *vma;
207	struct page *page;
208	unsigned long address, pfn, phys;
209	int map_coherent = 0;
 
 
210	pmd_t *pmd;
211	pte_t *pte;
212	void *vaddr;
213
214	vma = data->vma;
215	address = data->addr1 & PAGE_MASK;
216	pfn = data->addr2;
217	phys = pfn << PAGE_SHIFT;
218	page = pfn_to_page(pfn);
219
220	if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
221		return;
222
223	pmd = pmd_off(vma->vm_mm, address);
 
 
224	pte = pte_offset_kernel(pmd, address);
225
226	/* If the page isn't present, there is nothing to do here. */
227	if (!(pte_val(*pte) & _PAGE_PRESENT))
228		return;
229
230	if ((vma->vm_mm == current->active_mm))
231		vaddr = NULL;
232	else {
233		/*
234		 * Use kmap_coherent or kmap_atomic to do flushes for
235		 * another ASID than the current one.
236		 */
237		map_coherent = (current_cpu_data.dcache.n_aliases &&
238			test_bit(PG_dcache_clean, &page->flags) &&
239			page_mapcount(page));
240		if (map_coherent)
241			vaddr = kmap_coherent(page, address);
242		else
243			vaddr = kmap_atomic(page);
244
245		address = (unsigned long)vaddr;
246	}
247
248	flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
249			(address & shm_align_mask), phys);
250
251	if (vma->vm_flags & VM_EXEC)
252		flush_icache_all();
253
254	if (vaddr) {
255		if (map_coherent)
256			kunmap_coherent(vaddr);
257		else
258			kunmap_atomic(vaddr);
259	}
260}
261
262/*
263 * Write back and invalidate D-caches.
264 *
265 * START, END: Virtual Address (U0 address)
266 *
267 * NOTE: We need to flush the _physical_ page entry.
268 * Flushing the cache lines for U0 only isn't enough.
269 * We need to flush for P1 too, which may contain aliases.
270 */
271static void sh4_flush_cache_range(void *args)
272{
273	struct flusher_data *data = args;
274	struct vm_area_struct *vma;
275	unsigned long start, end;
276
277	vma = data->vma;
278	start = data->addr1;
279	end = data->addr2;
280
281	if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
282		return;
283
284	/*
285	 * If cache is only 4k-per-way, there are never any 'aliases'.  Since
286	 * the cache is physically tagged, the data can just be left in there.
287	 */
288	if (boot_cpu_data.dcache.n_aliases == 0)
289		return;
290
291	flush_dcache_all();
292
293	if (vma->vm_flags & VM_EXEC)
294		flush_icache_all();
295}
296
297/**
298 * __flush_cache_one
299 *
300 * @addr:  address in memory mapped cache array
301 * @phys:  P1 address to flush (has to match tags if addr has 'A' bit
302 *         set i.e. associative write)
303 * @exec_offset: set to 0x20000000 if flush has to be executed from P2
304 *               region else 0x0
305 *
306 * The offset into the cache array implied by 'addr' selects the
307 * 'colour' of the virtual address range that will be flushed.  The
308 * operation (purge/write-back) is selected by the lower 2 bits of
309 * 'phys'.
310 */
311static void __flush_cache_one(unsigned long addr, unsigned long phys,
312			       unsigned long exec_offset)
313{
314	int way_count;
315	unsigned long base_addr = addr;
316	struct cache_info *dcache;
317	unsigned long way_incr;
318	unsigned long a, ea, p;
319	unsigned long temp_pc;
320
321	dcache = &boot_cpu_data.dcache;
322	/* Write this way for better assembly. */
323	way_count = dcache->ways;
324	way_incr = dcache->way_incr;
325
326	/*
327	 * Apply exec_offset (i.e. branch to P2 if required.).
328	 *
329	 * FIXME:
330	 *
331	 *	If I write "=r" for the (temp_pc), it puts this in r6 hence
332	 *	trashing exec_offset before it's been added on - why?  Hence
333	 *	"=&r" as a 'workaround'
334	 */
335	asm volatile("mov.l 1f, %0\n\t"
336		     "add   %1, %0\n\t"
337		     "jmp   @%0\n\t"
338		     "nop\n\t"
339		     ".balign 4\n\t"
340		     "1:  .long 2f\n\t"
341		     "2:\n" : "=&r" (temp_pc) : "r" (exec_offset));
342
343	/*
344	 * We know there will be >=1 iteration, so write as do-while to avoid
345	 * pointless nead-of-loop check for 0 iterations.
346	 */
347	do {
348		ea = base_addr + PAGE_SIZE;
349		a = base_addr;
350		p = phys;
351
352		do {
353			*(volatile unsigned long *)a = p;
354			/*
355			 * Next line: intentionally not p+32, saves an add, p
356			 * will do since only the cache tag bits need to
357			 * match.
358			 */
359			*(volatile unsigned long *)(a+32) = p;
360			a += 64;
361			p += 64;
362		} while (a < ea);
363
364		base_addr += way_incr;
365	} while (--way_count != 0);
366}
367
368extern void __weak sh4__flush_region_init(void);
369
370/*
371 * SH-4 has virtually indexed and physically tagged cache.
372 */
373void __init sh4_cache_init(void)
374{
375	printk("PVR=%08x CVR=%08x PRR=%08x\n",
376		__raw_readl(CCN_PVR),
377		__raw_readl(CCN_CVR),
378		__raw_readl(CCN_PRR));
379
380	local_flush_icache_range	= sh4_flush_icache_range;
381	local_flush_dcache_page		= sh4_flush_dcache_page;
382	local_flush_cache_all		= sh4_flush_cache_all;
383	local_flush_cache_mm		= sh4_flush_cache_mm;
384	local_flush_cache_dup_mm	= sh4_flush_cache_mm;
385	local_flush_cache_page		= sh4_flush_cache_page;
386	local_flush_cache_range		= sh4_flush_cache_range;
387
388	sh4__flush_region_init();
389}
v3.1
  1/*
  2 * arch/sh/mm/cache-sh4.c
  3 *
  4 * Copyright (C) 1999, 2000, 2002  Niibe Yutaka
  5 * Copyright (C) 2001 - 2009  Paul Mundt
  6 * Copyright (C) 2003  Richard Curnow
  7 * Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
  8 *
  9 * This file is subject to the terms and conditions of the GNU General Public
 10 * License.  See the file "COPYING" in the main directory of this archive
 11 * for more details.
 12 */
 13#include <linux/init.h>
 14#include <linux/mm.h>
 15#include <linux/io.h>
 16#include <linux/mutex.h>
 17#include <linux/fs.h>
 18#include <linux/highmem.h>
 19#include <asm/pgtable.h>
 20#include <asm/mmu_context.h>
 
 21#include <asm/cacheflush.h>
 22
 23/*
 24 * The maximum number of pages we support up to when doing ranged dcache
 25 * flushing. Anything exceeding this will simply flush the dcache in its
 26 * entirety.
 27 */
 28#define MAX_ICACHE_PAGES	32
 29
 30static void __flush_cache_one(unsigned long addr, unsigned long phys,
 31			       unsigned long exec_offset);
 32
 33/*
 34 * Write back the range of D-cache, and purge the I-cache.
 35 *
 36 * Called from kernel/module.c:sys_init_module and routine for a.out format,
 37 * signal handler code and kprobes code
 38 */
 39static void sh4_flush_icache_range(void *args)
 40{
 41	struct flusher_data *data = args;
 42	unsigned long start, end;
 43	unsigned long flags, v;
 44	int i;
 45
 46	start = data->addr1;
 47	end = data->addr2;
 48
 49	/* If there are too many pages then just blow away the caches */
 50	if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) {
 51		local_flush_cache_all(NULL);
 52		return;
 53	}
 54
 55	/*
 56	 * Selectively flush d-cache then invalidate the i-cache.
 57	 * This is inefficient, so only use this for small ranges.
 58	 */
 59	start &= ~(L1_CACHE_BYTES-1);
 60	end += L1_CACHE_BYTES-1;
 61	end &= ~(L1_CACHE_BYTES-1);
 62
 63	local_irq_save(flags);
 64	jump_to_uncached();
 65
 66	for (v = start; v < end; v += L1_CACHE_BYTES) {
 67		unsigned long icacheaddr;
 68		int j, n;
 69
 70		__ocbwb(v);
 71
 72		icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v &
 73				cpu_data->icache.entry_mask);
 74
 75		/* Clear i-cache line valid-bit */
 76		n = boot_cpu_data.icache.n_aliases;
 77		for (i = 0; i < cpu_data->icache.ways; i++) {
 78			for (j = 0; j < n; j++)
 79				__raw_writel(0, icacheaddr + (j * PAGE_SIZE));
 80			icacheaddr += cpu_data->icache.way_incr;
 81		}
 82	}
 83
 84	back_to_cached();
 85	local_irq_restore(flags);
 86}
 87
 88static inline void flush_cache_one(unsigned long start, unsigned long phys)
 89{
 90	unsigned long flags, exec_offset = 0;
 91
 92	/*
 93	 * All types of SH-4 require PC to be uncached to operate on the I-cache.
 94	 * Some types of SH-4 require PC to be uncached to operate on the D-cache.
 95	 */
 96	if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) ||
 97	    (start < CACHE_OC_ADDRESS_ARRAY))
 98		exec_offset = cached_to_uncached;
 99
100	local_irq_save(flags);
101	__flush_cache_one(start, phys, exec_offset);
102	local_irq_restore(flags);
103}
104
105/*
106 * Write back & invalidate the D-cache of the page.
107 * (To avoid "alias" issues)
108 */
109static void sh4_flush_dcache_page(void *arg)
110{
111	struct page *page = arg;
112	unsigned long addr = (unsigned long)page_address(page);
113#ifndef CONFIG_SMP
114	struct address_space *mapping = page_mapping(page);
115
116	if (mapping && !mapping_mapped(mapping))
117		clear_bit(PG_dcache_clean, &page->flags);
118	else
119#endif
120		flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
121				(addr & shm_align_mask), page_to_phys(page));
122
123	wmb();
124}
125
126/* TODO: Selective icache invalidation through IC address array.. */
127static void flush_icache_all(void)
128{
129	unsigned long flags, ccr;
130
131	local_irq_save(flags);
132	jump_to_uncached();
133
134	/* Flush I-cache */
135	ccr = __raw_readl(CCR);
136	ccr |= CCR_CACHE_ICI;
137	__raw_writel(ccr, CCR);
138
139	/*
140	 * back_to_cached() will take care of the barrier for us, don't add
141	 * another one!
142	 */
143
144	back_to_cached();
145	local_irq_restore(flags);
146}
147
148static void flush_dcache_all(void)
149{
150	unsigned long addr, end_addr, entry_offset;
151
152	end_addr = CACHE_OC_ADDRESS_ARRAY +
153		(current_cpu_data.dcache.sets <<
154		 current_cpu_data.dcache.entry_shift) *
155			current_cpu_data.dcache.ways;
156
157	entry_offset = 1 << current_cpu_data.dcache.entry_shift;
158
159	for (addr = CACHE_OC_ADDRESS_ARRAY; addr < end_addr; ) {
160		__raw_writel(0, addr); addr += entry_offset;
161		__raw_writel(0, addr); addr += entry_offset;
162		__raw_writel(0, addr); addr += entry_offset;
163		__raw_writel(0, addr); addr += entry_offset;
164		__raw_writel(0, addr); addr += entry_offset;
165		__raw_writel(0, addr); addr += entry_offset;
166		__raw_writel(0, addr); addr += entry_offset;
167		__raw_writel(0, addr); addr += entry_offset;
168	}
169}
170
171static void sh4_flush_cache_all(void *unused)
172{
173	flush_dcache_all();
174	flush_icache_all();
175}
176
177/*
178 * Note : (RPC) since the caches are physically tagged, the only point
179 * of flush_cache_mm for SH-4 is to get rid of aliases from the
180 * D-cache.  The assumption elsewhere, e.g. flush_cache_range, is that
181 * lines can stay resident so long as the virtual address they were
182 * accessed with (hence cache set) is in accord with the physical
183 * address (i.e. tag).  It's no different here.
184 *
185 * Caller takes mm->mmap_sem.
186 */
187static void sh4_flush_cache_mm(void *arg)
188{
189	struct mm_struct *mm = arg;
190
191	if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT)
192		return;
193
194	flush_dcache_all();
195}
196
197/*
198 * Write back and invalidate I/D-caches for the page.
199 *
200 * ADDR: Virtual Address (U0 address)
201 * PFN: Physical page number
202 */
203static void sh4_flush_cache_page(void *args)
204{
205	struct flusher_data *data = args;
206	struct vm_area_struct *vma;
207	struct page *page;
208	unsigned long address, pfn, phys;
209	int map_coherent = 0;
210	pgd_t *pgd;
211	pud_t *pud;
212	pmd_t *pmd;
213	pte_t *pte;
214	void *vaddr;
215
216	vma = data->vma;
217	address = data->addr1 & PAGE_MASK;
218	pfn = data->addr2;
219	phys = pfn << PAGE_SHIFT;
220	page = pfn_to_page(pfn);
221
222	if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
223		return;
224
225	pgd = pgd_offset(vma->vm_mm, address);
226	pud = pud_offset(pgd, address);
227	pmd = pmd_offset(pud, address);
228	pte = pte_offset_kernel(pmd, address);
229
230	/* If the page isn't present, there is nothing to do here. */
231	if (!(pte_val(*pte) & _PAGE_PRESENT))
232		return;
233
234	if ((vma->vm_mm == current->active_mm))
235		vaddr = NULL;
236	else {
237		/*
238		 * Use kmap_coherent or kmap_atomic to do flushes for
239		 * another ASID than the current one.
240		 */
241		map_coherent = (current_cpu_data.dcache.n_aliases &&
242			test_bit(PG_dcache_clean, &page->flags) &&
243			page_mapped(page));
244		if (map_coherent)
245			vaddr = kmap_coherent(page, address);
246		else
247			vaddr = kmap_atomic(page, KM_USER0);
248
249		address = (unsigned long)vaddr;
250	}
251
252	flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
253			(address & shm_align_mask), phys);
254
255	if (vma->vm_flags & VM_EXEC)
256		flush_icache_all();
257
258	if (vaddr) {
259		if (map_coherent)
260			kunmap_coherent(vaddr);
261		else
262			kunmap_atomic(vaddr, KM_USER0);
263	}
264}
265
266/*
267 * Write back and invalidate D-caches.
268 *
269 * START, END: Virtual Address (U0 address)
270 *
271 * NOTE: We need to flush the _physical_ page entry.
272 * Flushing the cache lines for U0 only isn't enough.
273 * We need to flush for P1 too, which may contain aliases.
274 */
275static void sh4_flush_cache_range(void *args)
276{
277	struct flusher_data *data = args;
278	struct vm_area_struct *vma;
279	unsigned long start, end;
280
281	vma = data->vma;
282	start = data->addr1;
283	end = data->addr2;
284
285	if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
286		return;
287
288	/*
289	 * If cache is only 4k-per-way, there are never any 'aliases'.  Since
290	 * the cache is physically tagged, the data can just be left in there.
291	 */
292	if (boot_cpu_data.dcache.n_aliases == 0)
293		return;
294
295	flush_dcache_all();
296
297	if (vma->vm_flags & VM_EXEC)
298		flush_icache_all();
299}
300
301/**
302 * __flush_cache_one
303 *
304 * @addr:  address in memory mapped cache array
305 * @phys:  P1 address to flush (has to match tags if addr has 'A' bit
306 *         set i.e. associative write)
307 * @exec_offset: set to 0x20000000 if flush has to be executed from P2
308 *               region else 0x0
309 *
310 * The offset into the cache array implied by 'addr' selects the
311 * 'colour' of the virtual address range that will be flushed.  The
312 * operation (purge/write-back) is selected by the lower 2 bits of
313 * 'phys'.
314 */
315static void __flush_cache_one(unsigned long addr, unsigned long phys,
316			       unsigned long exec_offset)
317{
318	int way_count;
319	unsigned long base_addr = addr;
320	struct cache_info *dcache;
321	unsigned long way_incr;
322	unsigned long a, ea, p;
323	unsigned long temp_pc;
324
325	dcache = &boot_cpu_data.dcache;
326	/* Write this way for better assembly. */
327	way_count = dcache->ways;
328	way_incr = dcache->way_incr;
329
330	/*
331	 * Apply exec_offset (i.e. branch to P2 if required.).
332	 *
333	 * FIXME:
334	 *
335	 *	If I write "=r" for the (temp_pc), it puts this in r6 hence
336	 *	trashing exec_offset before it's been added on - why?  Hence
337	 *	"=&r" as a 'workaround'
338	 */
339	asm volatile("mov.l 1f, %0\n\t"
340		     "add   %1, %0\n\t"
341		     "jmp   @%0\n\t"
342		     "nop\n\t"
343		     ".balign 4\n\t"
344		     "1:  .long 2f\n\t"
345		     "2:\n" : "=&r" (temp_pc) : "r" (exec_offset));
346
347	/*
348	 * We know there will be >=1 iteration, so write as do-while to avoid
349	 * pointless nead-of-loop check for 0 iterations.
350	 */
351	do {
352		ea = base_addr + PAGE_SIZE;
353		a = base_addr;
354		p = phys;
355
356		do {
357			*(volatile unsigned long *)a = p;
358			/*
359			 * Next line: intentionally not p+32, saves an add, p
360			 * will do since only the cache tag bits need to
361			 * match.
362			 */
363			*(volatile unsigned long *)(a+32) = p;
364			a += 64;
365			p += 64;
366		} while (a < ea);
367
368		base_addr += way_incr;
369	} while (--way_count != 0);
370}
371
372extern void __weak sh4__flush_region_init(void);
373
374/*
375 * SH-4 has virtually indexed and physically tagged cache.
376 */
377void __init sh4_cache_init(void)
378{
379	printk("PVR=%08x CVR=%08x PRR=%08x\n",
380		__raw_readl(CCN_PVR),
381		__raw_readl(CCN_CVR),
382		__raw_readl(CCN_PRR));
383
384	local_flush_icache_range	= sh4_flush_icache_range;
385	local_flush_dcache_page		= sh4_flush_dcache_page;
386	local_flush_cache_all		= sh4_flush_cache_all;
387	local_flush_cache_mm		= sh4_flush_cache_mm;
388	local_flush_cache_dup_mm	= sh4_flush_cache_mm;
389	local_flush_cache_page		= sh4_flush_cache_page;
390	local_flush_cache_range		= sh4_flush_cache_range;
391
392	sh4__flush_region_init();
393}