Loading...
1/*
2 * arch/sh/mm/cache-sh4.c
3 *
4 * Copyright (C) 1999, 2000, 2002 Niibe Yutaka
5 * Copyright (C) 2001 - 2009 Paul Mundt
6 * Copyright (C) 2003 Richard Curnow
7 * Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
8 *
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
11 * for more details.
12 */
13#include <linux/init.h>
14#include <linux/mm.h>
15#include <linux/io.h>
16#include <linux/mutex.h>
17#include <linux/fs.h>
18#include <linux/highmem.h>
19#include <asm/mmu_context.h>
20#include <asm/cache_insns.h>
21#include <asm/cacheflush.h>
22
23/*
24 * The maximum number of pages we support up to when doing ranged dcache
25 * flushing. Anything exceeding this will simply flush the dcache in its
26 * entirety.
27 */
28#define MAX_ICACHE_PAGES 32
29
30static void __flush_cache_one(unsigned long addr, unsigned long phys,
31 unsigned long exec_offset);
32
33/*
34 * Write back the range of D-cache, and purge the I-cache.
35 *
36 * Called from kernel/module.c:sys_init_module and routine for a.out format,
37 * signal handler code and kprobes code
38 */
39static void sh4_flush_icache_range(void *args)
40{
41 struct flusher_data *data = args;
42 unsigned long start, end;
43 unsigned long flags, v;
44 int i;
45
46 start = data->addr1;
47 end = data->addr2;
48
49 /* If there are too many pages then just blow away the caches */
50 if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) {
51 local_flush_cache_all(NULL);
52 return;
53 }
54
55 /*
56 * Selectively flush d-cache then invalidate the i-cache.
57 * This is inefficient, so only use this for small ranges.
58 */
59 start &= ~(L1_CACHE_BYTES-1);
60 end += L1_CACHE_BYTES-1;
61 end &= ~(L1_CACHE_BYTES-1);
62
63 local_irq_save(flags);
64 jump_to_uncached();
65
66 for (v = start; v < end; v += L1_CACHE_BYTES) {
67 unsigned long icacheaddr;
68 int j, n;
69
70 __ocbwb(v);
71
72 icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v &
73 cpu_data->icache.entry_mask);
74
75 /* Clear i-cache line valid-bit */
76 n = boot_cpu_data.icache.n_aliases;
77 for (i = 0; i < cpu_data->icache.ways; i++) {
78 for (j = 0; j < n; j++)
79 __raw_writel(0, icacheaddr + (j * PAGE_SIZE));
80 icacheaddr += cpu_data->icache.way_incr;
81 }
82 }
83
84 back_to_cached();
85 local_irq_restore(flags);
86}
87
88static inline void flush_cache_one(unsigned long start, unsigned long phys)
89{
90 unsigned long flags, exec_offset = 0;
91
92 /*
93 * All types of SH-4 require PC to be uncached to operate on the I-cache.
94 * Some types of SH-4 require PC to be uncached to operate on the D-cache.
95 */
96 if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) ||
97 (start < CACHE_OC_ADDRESS_ARRAY))
98 exec_offset = cached_to_uncached;
99
100 local_irq_save(flags);
101 __flush_cache_one(start, phys, exec_offset);
102 local_irq_restore(flags);
103}
104
105/*
106 * Write back & invalidate the D-cache of the page.
107 * (To avoid "alias" issues)
108 */
109static void sh4_flush_dcache_page(void *arg)
110{
111 struct page *page = arg;
112 unsigned long addr = (unsigned long)page_address(page);
113#ifndef CONFIG_SMP
114 struct address_space *mapping = page_mapping_file(page);
115
116 if (mapping && !mapping_mapped(mapping))
117 clear_bit(PG_dcache_clean, &page->flags);
118 else
119#endif
120 flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
121 (addr & shm_align_mask), page_to_phys(page));
122
123 wmb();
124}
125
126/* TODO: Selective icache invalidation through IC address array.. */
127static void flush_icache_all(void)
128{
129 unsigned long flags, ccr;
130
131 local_irq_save(flags);
132 jump_to_uncached();
133
134 /* Flush I-cache */
135 ccr = __raw_readl(SH_CCR);
136 ccr |= CCR_CACHE_ICI;
137 __raw_writel(ccr, SH_CCR);
138
139 /*
140 * back_to_cached() will take care of the barrier for us, don't add
141 * another one!
142 */
143
144 back_to_cached();
145 local_irq_restore(flags);
146}
147
148static void flush_dcache_all(void)
149{
150 unsigned long addr, end_addr, entry_offset;
151
152 end_addr = CACHE_OC_ADDRESS_ARRAY +
153 (current_cpu_data.dcache.sets <<
154 current_cpu_data.dcache.entry_shift) *
155 current_cpu_data.dcache.ways;
156
157 entry_offset = 1 << current_cpu_data.dcache.entry_shift;
158
159 for (addr = CACHE_OC_ADDRESS_ARRAY; addr < end_addr; ) {
160 __raw_writel(0, addr); addr += entry_offset;
161 __raw_writel(0, addr); addr += entry_offset;
162 __raw_writel(0, addr); addr += entry_offset;
163 __raw_writel(0, addr); addr += entry_offset;
164 __raw_writel(0, addr); addr += entry_offset;
165 __raw_writel(0, addr); addr += entry_offset;
166 __raw_writel(0, addr); addr += entry_offset;
167 __raw_writel(0, addr); addr += entry_offset;
168 }
169}
170
171static void sh4_flush_cache_all(void *unused)
172{
173 flush_dcache_all();
174 flush_icache_all();
175}
176
177/*
178 * Note : (RPC) since the caches are physically tagged, the only point
179 * of flush_cache_mm for SH-4 is to get rid of aliases from the
180 * D-cache. The assumption elsewhere, e.g. flush_cache_range, is that
181 * lines can stay resident so long as the virtual address they were
182 * accessed with (hence cache set) is in accord with the physical
183 * address (i.e. tag). It's no different here.
184 *
185 * Caller takes mm->mmap_lock.
186 */
187static void sh4_flush_cache_mm(void *arg)
188{
189 struct mm_struct *mm = arg;
190
191 if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT)
192 return;
193
194 flush_dcache_all();
195}
196
197/*
198 * Write back and invalidate I/D-caches for the page.
199 *
200 * ADDR: Virtual Address (U0 address)
201 * PFN: Physical page number
202 */
203static void sh4_flush_cache_page(void *args)
204{
205 struct flusher_data *data = args;
206 struct vm_area_struct *vma;
207 struct page *page;
208 unsigned long address, pfn, phys;
209 int map_coherent = 0;
210 pmd_t *pmd;
211 pte_t *pte;
212 void *vaddr;
213
214 vma = data->vma;
215 address = data->addr1 & PAGE_MASK;
216 pfn = data->addr2;
217 phys = pfn << PAGE_SHIFT;
218 page = pfn_to_page(pfn);
219
220 if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
221 return;
222
223 pmd = pmd_off(vma->vm_mm, address);
224 pte = pte_offset_kernel(pmd, address);
225
226 /* If the page isn't present, there is nothing to do here. */
227 if (!(pte_val(*pte) & _PAGE_PRESENT))
228 return;
229
230 if ((vma->vm_mm == current->active_mm))
231 vaddr = NULL;
232 else {
233 /*
234 * Use kmap_coherent or kmap_atomic to do flushes for
235 * another ASID than the current one.
236 */
237 map_coherent = (current_cpu_data.dcache.n_aliases &&
238 test_bit(PG_dcache_clean, &page->flags) &&
239 page_mapcount(page));
240 if (map_coherent)
241 vaddr = kmap_coherent(page, address);
242 else
243 vaddr = kmap_atomic(page);
244
245 address = (unsigned long)vaddr;
246 }
247
248 flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
249 (address & shm_align_mask), phys);
250
251 if (vma->vm_flags & VM_EXEC)
252 flush_icache_all();
253
254 if (vaddr) {
255 if (map_coherent)
256 kunmap_coherent(vaddr);
257 else
258 kunmap_atomic(vaddr);
259 }
260}
261
262/*
263 * Write back and invalidate D-caches.
264 *
265 * START, END: Virtual Address (U0 address)
266 *
267 * NOTE: We need to flush the _physical_ page entry.
268 * Flushing the cache lines for U0 only isn't enough.
269 * We need to flush for P1 too, which may contain aliases.
270 */
271static void sh4_flush_cache_range(void *args)
272{
273 struct flusher_data *data = args;
274 struct vm_area_struct *vma;
275 unsigned long start, end;
276
277 vma = data->vma;
278 start = data->addr1;
279 end = data->addr2;
280
281 if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
282 return;
283
284 /*
285 * If cache is only 4k-per-way, there are never any 'aliases'. Since
286 * the cache is physically tagged, the data can just be left in there.
287 */
288 if (boot_cpu_data.dcache.n_aliases == 0)
289 return;
290
291 flush_dcache_all();
292
293 if (vma->vm_flags & VM_EXEC)
294 flush_icache_all();
295}
296
297/**
298 * __flush_cache_one
299 *
300 * @addr: address in memory mapped cache array
301 * @phys: P1 address to flush (has to match tags if addr has 'A' bit
302 * set i.e. associative write)
303 * @exec_offset: set to 0x20000000 if flush has to be executed from P2
304 * region else 0x0
305 *
306 * The offset into the cache array implied by 'addr' selects the
307 * 'colour' of the virtual address range that will be flushed. The
308 * operation (purge/write-back) is selected by the lower 2 bits of
309 * 'phys'.
310 */
311static void __flush_cache_one(unsigned long addr, unsigned long phys,
312 unsigned long exec_offset)
313{
314 int way_count;
315 unsigned long base_addr = addr;
316 struct cache_info *dcache;
317 unsigned long way_incr;
318 unsigned long a, ea, p;
319 unsigned long temp_pc;
320
321 dcache = &boot_cpu_data.dcache;
322 /* Write this way for better assembly. */
323 way_count = dcache->ways;
324 way_incr = dcache->way_incr;
325
326 /*
327 * Apply exec_offset (i.e. branch to P2 if required.).
328 *
329 * FIXME:
330 *
331 * If I write "=r" for the (temp_pc), it puts this in r6 hence
332 * trashing exec_offset before it's been added on - why? Hence
333 * "=&r" as a 'workaround'
334 */
335 asm volatile("mov.l 1f, %0\n\t"
336 "add %1, %0\n\t"
337 "jmp @%0\n\t"
338 "nop\n\t"
339 ".balign 4\n\t"
340 "1: .long 2f\n\t"
341 "2:\n" : "=&r" (temp_pc) : "r" (exec_offset));
342
343 /*
344 * We know there will be >=1 iteration, so write as do-while to avoid
345 * pointless nead-of-loop check for 0 iterations.
346 */
347 do {
348 ea = base_addr + PAGE_SIZE;
349 a = base_addr;
350 p = phys;
351
352 do {
353 *(volatile unsigned long *)a = p;
354 /*
355 * Next line: intentionally not p+32, saves an add, p
356 * will do since only the cache tag bits need to
357 * match.
358 */
359 *(volatile unsigned long *)(a+32) = p;
360 a += 64;
361 p += 64;
362 } while (a < ea);
363
364 base_addr += way_incr;
365 } while (--way_count != 0);
366}
367
368extern void __weak sh4__flush_region_init(void);
369
370/*
371 * SH-4 has virtually indexed and physically tagged cache.
372 */
373void __init sh4_cache_init(void)
374{
375 printk("PVR=%08x CVR=%08x PRR=%08x\n",
376 __raw_readl(CCN_PVR),
377 __raw_readl(CCN_CVR),
378 __raw_readl(CCN_PRR));
379
380 local_flush_icache_range = sh4_flush_icache_range;
381 local_flush_dcache_page = sh4_flush_dcache_page;
382 local_flush_cache_all = sh4_flush_cache_all;
383 local_flush_cache_mm = sh4_flush_cache_mm;
384 local_flush_cache_dup_mm = sh4_flush_cache_mm;
385 local_flush_cache_page = sh4_flush_cache_page;
386 local_flush_cache_range = sh4_flush_cache_range;
387
388 sh4__flush_region_init();
389}
1/*
2 * arch/sh/mm/cache-sh4.c
3 *
4 * Copyright (C) 1999, 2000, 2002 Niibe Yutaka
5 * Copyright (C) 2001 - 2009 Paul Mundt
6 * Copyright (C) 2003 Richard Curnow
7 * Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
8 *
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
11 * for more details.
12 */
13#include <linux/init.h>
14#include <linux/mm.h>
15#include <linux/io.h>
16#include <linux/mutex.h>
17#include <linux/fs.h>
18#include <linux/highmem.h>
19#include <asm/pgtable.h>
20#include <asm/mmu_context.h>
21#include <asm/cacheflush.h>
22
23/*
24 * The maximum number of pages we support up to when doing ranged dcache
25 * flushing. Anything exceeding this will simply flush the dcache in its
26 * entirety.
27 */
28#define MAX_ICACHE_PAGES 32
29
30static void __flush_cache_one(unsigned long addr, unsigned long phys,
31 unsigned long exec_offset);
32
33/*
34 * Write back the range of D-cache, and purge the I-cache.
35 *
36 * Called from kernel/module.c:sys_init_module and routine for a.out format,
37 * signal handler code and kprobes code
38 */
39static void sh4_flush_icache_range(void *args)
40{
41 struct flusher_data *data = args;
42 unsigned long start, end;
43 unsigned long flags, v;
44 int i;
45
46 start = data->addr1;
47 end = data->addr2;
48
49 /* If there are too many pages then just blow away the caches */
50 if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) {
51 local_flush_cache_all(NULL);
52 return;
53 }
54
55 /*
56 * Selectively flush d-cache then invalidate the i-cache.
57 * This is inefficient, so only use this for small ranges.
58 */
59 start &= ~(L1_CACHE_BYTES-1);
60 end += L1_CACHE_BYTES-1;
61 end &= ~(L1_CACHE_BYTES-1);
62
63 local_irq_save(flags);
64 jump_to_uncached();
65
66 for (v = start; v < end; v += L1_CACHE_BYTES) {
67 unsigned long icacheaddr;
68 int j, n;
69
70 __ocbwb(v);
71
72 icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v &
73 cpu_data->icache.entry_mask);
74
75 /* Clear i-cache line valid-bit */
76 n = boot_cpu_data.icache.n_aliases;
77 for (i = 0; i < cpu_data->icache.ways; i++) {
78 for (j = 0; j < n; j++)
79 __raw_writel(0, icacheaddr + (j * PAGE_SIZE));
80 icacheaddr += cpu_data->icache.way_incr;
81 }
82 }
83
84 back_to_cached();
85 local_irq_restore(flags);
86}
87
88static inline void flush_cache_one(unsigned long start, unsigned long phys)
89{
90 unsigned long flags, exec_offset = 0;
91
92 /*
93 * All types of SH-4 require PC to be uncached to operate on the I-cache.
94 * Some types of SH-4 require PC to be uncached to operate on the D-cache.
95 */
96 if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) ||
97 (start < CACHE_OC_ADDRESS_ARRAY))
98 exec_offset = cached_to_uncached;
99
100 local_irq_save(flags);
101 __flush_cache_one(start, phys, exec_offset);
102 local_irq_restore(flags);
103}
104
105/*
106 * Write back & invalidate the D-cache of the page.
107 * (To avoid "alias" issues)
108 */
109static void sh4_flush_dcache_page(void *arg)
110{
111 struct page *page = arg;
112 unsigned long addr = (unsigned long)page_address(page);
113#ifndef CONFIG_SMP
114 struct address_space *mapping = page_mapping(page);
115
116 if (mapping && !mapping_mapped(mapping))
117 clear_bit(PG_dcache_clean, &page->flags);
118 else
119#endif
120 flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
121 (addr & shm_align_mask), page_to_phys(page));
122
123 wmb();
124}
125
126/* TODO: Selective icache invalidation through IC address array.. */
127static void flush_icache_all(void)
128{
129 unsigned long flags, ccr;
130
131 local_irq_save(flags);
132 jump_to_uncached();
133
134 /* Flush I-cache */
135 ccr = __raw_readl(CCR);
136 ccr |= CCR_CACHE_ICI;
137 __raw_writel(ccr, CCR);
138
139 /*
140 * back_to_cached() will take care of the barrier for us, don't add
141 * another one!
142 */
143
144 back_to_cached();
145 local_irq_restore(flags);
146}
147
148static void flush_dcache_all(void)
149{
150 unsigned long addr, end_addr, entry_offset;
151
152 end_addr = CACHE_OC_ADDRESS_ARRAY +
153 (current_cpu_data.dcache.sets <<
154 current_cpu_data.dcache.entry_shift) *
155 current_cpu_data.dcache.ways;
156
157 entry_offset = 1 << current_cpu_data.dcache.entry_shift;
158
159 for (addr = CACHE_OC_ADDRESS_ARRAY; addr < end_addr; ) {
160 __raw_writel(0, addr); addr += entry_offset;
161 __raw_writel(0, addr); addr += entry_offset;
162 __raw_writel(0, addr); addr += entry_offset;
163 __raw_writel(0, addr); addr += entry_offset;
164 __raw_writel(0, addr); addr += entry_offset;
165 __raw_writel(0, addr); addr += entry_offset;
166 __raw_writel(0, addr); addr += entry_offset;
167 __raw_writel(0, addr); addr += entry_offset;
168 }
169}
170
171static void sh4_flush_cache_all(void *unused)
172{
173 flush_dcache_all();
174 flush_icache_all();
175}
176
177/*
178 * Note : (RPC) since the caches are physically tagged, the only point
179 * of flush_cache_mm for SH-4 is to get rid of aliases from the
180 * D-cache. The assumption elsewhere, e.g. flush_cache_range, is that
181 * lines can stay resident so long as the virtual address they were
182 * accessed with (hence cache set) is in accord with the physical
183 * address (i.e. tag). It's no different here.
184 *
185 * Caller takes mm->mmap_sem.
186 */
187static void sh4_flush_cache_mm(void *arg)
188{
189 struct mm_struct *mm = arg;
190
191 if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT)
192 return;
193
194 flush_dcache_all();
195}
196
197/*
198 * Write back and invalidate I/D-caches for the page.
199 *
200 * ADDR: Virtual Address (U0 address)
201 * PFN: Physical page number
202 */
203static void sh4_flush_cache_page(void *args)
204{
205 struct flusher_data *data = args;
206 struct vm_area_struct *vma;
207 struct page *page;
208 unsigned long address, pfn, phys;
209 int map_coherent = 0;
210 pgd_t *pgd;
211 pud_t *pud;
212 pmd_t *pmd;
213 pte_t *pte;
214 void *vaddr;
215
216 vma = data->vma;
217 address = data->addr1 & PAGE_MASK;
218 pfn = data->addr2;
219 phys = pfn << PAGE_SHIFT;
220 page = pfn_to_page(pfn);
221
222 if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
223 return;
224
225 pgd = pgd_offset(vma->vm_mm, address);
226 pud = pud_offset(pgd, address);
227 pmd = pmd_offset(pud, address);
228 pte = pte_offset_kernel(pmd, address);
229
230 /* If the page isn't present, there is nothing to do here. */
231 if (!(pte_val(*pte) & _PAGE_PRESENT))
232 return;
233
234 if ((vma->vm_mm == current->active_mm))
235 vaddr = NULL;
236 else {
237 /*
238 * Use kmap_coherent or kmap_atomic to do flushes for
239 * another ASID than the current one.
240 */
241 map_coherent = (current_cpu_data.dcache.n_aliases &&
242 test_bit(PG_dcache_clean, &page->flags) &&
243 page_mapped(page));
244 if (map_coherent)
245 vaddr = kmap_coherent(page, address);
246 else
247 vaddr = kmap_atomic(page, KM_USER0);
248
249 address = (unsigned long)vaddr;
250 }
251
252 flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
253 (address & shm_align_mask), phys);
254
255 if (vma->vm_flags & VM_EXEC)
256 flush_icache_all();
257
258 if (vaddr) {
259 if (map_coherent)
260 kunmap_coherent(vaddr);
261 else
262 kunmap_atomic(vaddr, KM_USER0);
263 }
264}
265
266/*
267 * Write back and invalidate D-caches.
268 *
269 * START, END: Virtual Address (U0 address)
270 *
271 * NOTE: We need to flush the _physical_ page entry.
272 * Flushing the cache lines for U0 only isn't enough.
273 * We need to flush for P1 too, which may contain aliases.
274 */
275static void sh4_flush_cache_range(void *args)
276{
277 struct flusher_data *data = args;
278 struct vm_area_struct *vma;
279 unsigned long start, end;
280
281 vma = data->vma;
282 start = data->addr1;
283 end = data->addr2;
284
285 if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
286 return;
287
288 /*
289 * If cache is only 4k-per-way, there are never any 'aliases'. Since
290 * the cache is physically tagged, the data can just be left in there.
291 */
292 if (boot_cpu_data.dcache.n_aliases == 0)
293 return;
294
295 flush_dcache_all();
296
297 if (vma->vm_flags & VM_EXEC)
298 flush_icache_all();
299}
300
301/**
302 * __flush_cache_one
303 *
304 * @addr: address in memory mapped cache array
305 * @phys: P1 address to flush (has to match tags if addr has 'A' bit
306 * set i.e. associative write)
307 * @exec_offset: set to 0x20000000 if flush has to be executed from P2
308 * region else 0x0
309 *
310 * The offset into the cache array implied by 'addr' selects the
311 * 'colour' of the virtual address range that will be flushed. The
312 * operation (purge/write-back) is selected by the lower 2 bits of
313 * 'phys'.
314 */
315static void __flush_cache_one(unsigned long addr, unsigned long phys,
316 unsigned long exec_offset)
317{
318 int way_count;
319 unsigned long base_addr = addr;
320 struct cache_info *dcache;
321 unsigned long way_incr;
322 unsigned long a, ea, p;
323 unsigned long temp_pc;
324
325 dcache = &boot_cpu_data.dcache;
326 /* Write this way for better assembly. */
327 way_count = dcache->ways;
328 way_incr = dcache->way_incr;
329
330 /*
331 * Apply exec_offset (i.e. branch to P2 if required.).
332 *
333 * FIXME:
334 *
335 * If I write "=r" for the (temp_pc), it puts this in r6 hence
336 * trashing exec_offset before it's been added on - why? Hence
337 * "=&r" as a 'workaround'
338 */
339 asm volatile("mov.l 1f, %0\n\t"
340 "add %1, %0\n\t"
341 "jmp @%0\n\t"
342 "nop\n\t"
343 ".balign 4\n\t"
344 "1: .long 2f\n\t"
345 "2:\n" : "=&r" (temp_pc) : "r" (exec_offset));
346
347 /*
348 * We know there will be >=1 iteration, so write as do-while to avoid
349 * pointless nead-of-loop check for 0 iterations.
350 */
351 do {
352 ea = base_addr + PAGE_SIZE;
353 a = base_addr;
354 p = phys;
355
356 do {
357 *(volatile unsigned long *)a = p;
358 /*
359 * Next line: intentionally not p+32, saves an add, p
360 * will do since only the cache tag bits need to
361 * match.
362 */
363 *(volatile unsigned long *)(a+32) = p;
364 a += 64;
365 p += 64;
366 } while (a < ea);
367
368 base_addr += way_incr;
369 } while (--way_count != 0);
370}
371
372extern void __weak sh4__flush_region_init(void);
373
374/*
375 * SH-4 has virtually indexed and physically tagged cache.
376 */
377void __init sh4_cache_init(void)
378{
379 printk("PVR=%08x CVR=%08x PRR=%08x\n",
380 __raw_readl(CCN_PVR),
381 __raw_readl(CCN_CVR),
382 __raw_readl(CCN_PRR));
383
384 local_flush_icache_range = sh4_flush_icache_range;
385 local_flush_dcache_page = sh4_flush_dcache_page;
386 local_flush_cache_all = sh4_flush_cache_all;
387 local_flush_cache_mm = sh4_flush_cache_mm;
388 local_flush_cache_dup_mm = sh4_flush_cache_mm;
389 local_flush_cache_page = sh4_flush_cache_page;
390 local_flush_cache_range = sh4_flush_cache_range;
391
392 sh4__flush_region_init();
393}