Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * guest access functions
   4 *
   5 * Copyright IBM Corp. 2014
   6 *
   7 */
   8
   9#include <linux/vmalloc.h>
  10#include <linux/mm_types.h>
  11#include <linux/err.h>
  12#include <linux/pgtable.h>
  13
  14#include <asm/gmap.h>
  15#include "kvm-s390.h"
  16#include "gaccess.h"
  17#include <asm/switch_to.h>
  18
  19union asce {
  20	unsigned long val;
  21	struct {
  22		unsigned long origin : 52; /* Region- or Segment-Table Origin */
  23		unsigned long	 : 2;
  24		unsigned long g  : 1; /* Subspace Group Control */
  25		unsigned long p  : 1; /* Private Space Control */
  26		unsigned long s  : 1; /* Storage-Alteration-Event Control */
  27		unsigned long x  : 1; /* Space-Switch-Event Control */
  28		unsigned long r  : 1; /* Real-Space Control */
  29		unsigned long	 : 1;
  30		unsigned long dt : 2; /* Designation-Type Control */
  31		unsigned long tl : 2; /* Region- or Segment-Table Length */
  32	};
  33};
  34
  35enum {
  36	ASCE_TYPE_SEGMENT = 0,
  37	ASCE_TYPE_REGION3 = 1,
  38	ASCE_TYPE_REGION2 = 2,
  39	ASCE_TYPE_REGION1 = 3
  40};
  41
  42union region1_table_entry {
  43	unsigned long val;
  44	struct {
  45		unsigned long rto: 52;/* Region-Table Origin */
  46		unsigned long	 : 2;
  47		unsigned long p  : 1; /* DAT-Protection Bit */
  48		unsigned long	 : 1;
  49		unsigned long tf : 2; /* Region-Second-Table Offset */
  50		unsigned long i  : 1; /* Region-Invalid Bit */
  51		unsigned long	 : 1;
  52		unsigned long tt : 2; /* Table-Type Bits */
  53		unsigned long tl : 2; /* Region-Second-Table Length */
  54	};
  55};
  56
  57union region2_table_entry {
  58	unsigned long val;
  59	struct {
  60		unsigned long rto: 52;/* Region-Table Origin */
  61		unsigned long	 : 2;
  62		unsigned long p  : 1; /* DAT-Protection Bit */
  63		unsigned long	 : 1;
  64		unsigned long tf : 2; /* Region-Third-Table Offset */
  65		unsigned long i  : 1; /* Region-Invalid Bit */
  66		unsigned long	 : 1;
  67		unsigned long tt : 2; /* Table-Type Bits */
  68		unsigned long tl : 2; /* Region-Third-Table Length */
  69	};
  70};
  71
  72struct region3_table_entry_fc0 {
  73	unsigned long sto: 52;/* Segment-Table Origin */
  74	unsigned long	 : 1;
  75	unsigned long fc : 1; /* Format-Control */
  76	unsigned long p  : 1; /* DAT-Protection Bit */
  77	unsigned long	 : 1;
  78	unsigned long tf : 2; /* Segment-Table Offset */
  79	unsigned long i  : 1; /* Region-Invalid Bit */
  80	unsigned long cr : 1; /* Common-Region Bit */
  81	unsigned long tt : 2; /* Table-Type Bits */
  82	unsigned long tl : 2; /* Segment-Table Length */
  83};
  84
  85struct region3_table_entry_fc1 {
  86	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
  87	unsigned long	 : 14;
  88	unsigned long av : 1; /* ACCF-Validity Control */
  89	unsigned long acc: 4; /* Access-Control Bits */
  90	unsigned long f  : 1; /* Fetch-Protection Bit */
  91	unsigned long fc : 1; /* Format-Control */
  92	unsigned long p  : 1; /* DAT-Protection Bit */
  93	unsigned long iep: 1; /* Instruction-Execution-Protection */
  94	unsigned long	 : 2;
  95	unsigned long i  : 1; /* Region-Invalid Bit */
  96	unsigned long cr : 1; /* Common-Region Bit */
  97	unsigned long tt : 2; /* Table-Type Bits */
  98	unsigned long	 : 2;
  99};
 100
 101union region3_table_entry {
 102	unsigned long val;
 103	struct region3_table_entry_fc0 fc0;
 104	struct region3_table_entry_fc1 fc1;
 105	struct {
 106		unsigned long	 : 53;
 107		unsigned long fc : 1; /* Format-Control */
 108		unsigned long	 : 4;
 109		unsigned long i  : 1; /* Region-Invalid Bit */
 110		unsigned long cr : 1; /* Common-Region Bit */
 111		unsigned long tt : 2; /* Table-Type Bits */
 112		unsigned long	 : 2;
 113	};
 114};
 115
 116struct segment_entry_fc0 {
 117	unsigned long pto: 53;/* Page-Table Origin */
 118	unsigned long fc : 1; /* Format-Control */
 119	unsigned long p  : 1; /* DAT-Protection Bit */
 120	unsigned long	 : 3;
 121	unsigned long i  : 1; /* Segment-Invalid Bit */
 122	unsigned long cs : 1; /* Common-Segment Bit */
 123	unsigned long tt : 2; /* Table-Type Bits */
 124	unsigned long	 : 2;
 125};
 126
 127struct segment_entry_fc1 {
 128	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
 129	unsigned long	 : 3;
 130	unsigned long av : 1; /* ACCF-Validity Control */
 131	unsigned long acc: 4; /* Access-Control Bits */
 132	unsigned long f  : 1; /* Fetch-Protection Bit */
 133	unsigned long fc : 1; /* Format-Control */
 134	unsigned long p  : 1; /* DAT-Protection Bit */
 135	unsigned long iep: 1; /* Instruction-Execution-Protection */
 136	unsigned long	 : 2;
 137	unsigned long i  : 1; /* Segment-Invalid Bit */
 138	unsigned long cs : 1; /* Common-Segment Bit */
 139	unsigned long tt : 2; /* Table-Type Bits */
 140	unsigned long	 : 2;
 141};
 142
 143union segment_table_entry {
 144	unsigned long val;
 145	struct segment_entry_fc0 fc0;
 146	struct segment_entry_fc1 fc1;
 147	struct {
 148		unsigned long	 : 53;
 149		unsigned long fc : 1; /* Format-Control */
 150		unsigned long	 : 4;
 151		unsigned long i  : 1; /* Segment-Invalid Bit */
 152		unsigned long cs : 1; /* Common-Segment Bit */
 153		unsigned long tt : 2; /* Table-Type Bits */
 154		unsigned long	 : 2;
 155	};
 156};
 157
 158enum {
 159	TABLE_TYPE_SEGMENT = 0,
 160	TABLE_TYPE_REGION3 = 1,
 161	TABLE_TYPE_REGION2 = 2,
 162	TABLE_TYPE_REGION1 = 3
 163};
 164
 165union page_table_entry {
 166	unsigned long val;
 167	struct {
 168		unsigned long pfra : 52; /* Page-Frame Real Address */
 169		unsigned long z  : 1; /* Zero Bit */
 170		unsigned long i  : 1; /* Page-Invalid Bit */
 171		unsigned long p  : 1; /* DAT-Protection Bit */
 172		unsigned long iep: 1; /* Instruction-Execution-Protection */
 173		unsigned long	 : 8;
 174	};
 175};
 176
 177/*
 178 * vaddress union in order to easily decode a virtual address into its
 179 * region first index, region second index etc. parts.
 180 */
 181union vaddress {
 182	unsigned long addr;
 183	struct {
 184		unsigned long rfx : 11;
 185		unsigned long rsx : 11;
 186		unsigned long rtx : 11;
 187		unsigned long sx  : 11;
 188		unsigned long px  : 8;
 189		unsigned long bx  : 12;
 190	};
 191	struct {
 192		unsigned long rfx01 : 2;
 193		unsigned long	    : 9;
 194		unsigned long rsx01 : 2;
 195		unsigned long	    : 9;
 196		unsigned long rtx01 : 2;
 197		unsigned long	    : 9;
 198		unsigned long sx01  : 2;
 199		unsigned long	    : 29;
 200	};
 201};
 202
 203/*
 204 * raddress union which will contain the result (real or absolute address)
 205 * after a page table walk. The rfaa, sfaa and pfra members are used to
 206 * simply assign them the value of a region, segment or page table entry.
 207 */
 208union raddress {
 209	unsigned long addr;
 210	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
 211	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
 212	unsigned long pfra : 52; /* Page-Frame Real Address */
 213};
 214
 215union alet {
 216	u32 val;
 217	struct {
 218		u32 reserved : 7;
 219		u32 p        : 1;
 220		u32 alesn    : 8;
 221		u32 alen     : 16;
 222	};
 223};
 224
 225union ald {
 226	u32 val;
 227	struct {
 228		u32     : 1;
 229		u32 alo : 24;
 230		u32 all : 7;
 231	};
 232};
 233
 234struct ale {
 235	unsigned long i      : 1; /* ALEN-Invalid Bit */
 236	unsigned long        : 5;
 237	unsigned long fo     : 1; /* Fetch-Only Bit */
 238	unsigned long p      : 1; /* Private Bit */
 239	unsigned long alesn  : 8; /* Access-List-Entry Sequence Number */
 240	unsigned long aleax  : 16; /* Access-List-Entry Authorization Index */
 241	unsigned long        : 32;
 242	unsigned long        : 1;
 243	unsigned long asteo  : 25; /* ASN-Second-Table-Entry Origin */
 244	unsigned long        : 6;
 245	unsigned long astesn : 32; /* ASTE Sequence Number */
 246};
 247
 248struct aste {
 249	unsigned long i      : 1; /* ASX-Invalid Bit */
 250	unsigned long ato    : 29; /* Authority-Table Origin */
 251	unsigned long        : 1;
 252	unsigned long b      : 1; /* Base-Space Bit */
 253	unsigned long ax     : 16; /* Authorization Index */
 254	unsigned long atl    : 12; /* Authority-Table Length */
 255	unsigned long        : 2;
 256	unsigned long ca     : 1; /* Controlled-ASN Bit */
 257	unsigned long ra     : 1; /* Reusable-ASN Bit */
 258	unsigned long asce   : 64; /* Address-Space-Control Element */
 259	unsigned long ald    : 32;
 260	unsigned long astesn : 32;
 261	/* .. more fields there */
 262};
 263
 264int ipte_lock_held(struct kvm_vcpu *vcpu)
 265{
 266	if (vcpu->arch.sie_block->eca & ECA_SII) {
 267		int rc;
 268
 269		read_lock(&vcpu->kvm->arch.sca_lock);
 270		rc = kvm_s390_get_ipte_control(vcpu->kvm)->kh != 0;
 271		read_unlock(&vcpu->kvm->arch.sca_lock);
 272		return rc;
 273	}
 274	return vcpu->kvm->arch.ipte_lock_count != 0;
 275}
 276
 277static void ipte_lock_simple(struct kvm_vcpu *vcpu)
 278{
 279	union ipte_control old, new, *ic;
 280
 281	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
 282	vcpu->kvm->arch.ipte_lock_count++;
 283	if (vcpu->kvm->arch.ipte_lock_count > 1)
 284		goto out;
 285retry:
 286	read_lock(&vcpu->kvm->arch.sca_lock);
 287	ic = kvm_s390_get_ipte_control(vcpu->kvm);
 288	do {
 289		old = READ_ONCE(*ic);
 290		if (old.k) {
 291			read_unlock(&vcpu->kvm->arch.sca_lock);
 292			cond_resched();
 293			goto retry;
 294		}
 295		new = old;
 296		new.k = 1;
 297	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
 298	read_unlock(&vcpu->kvm->arch.sca_lock);
 299out:
 300	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
 301}
 302
 303static void ipte_unlock_simple(struct kvm_vcpu *vcpu)
 304{
 305	union ipte_control old, new, *ic;
 306
 307	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
 308	vcpu->kvm->arch.ipte_lock_count--;
 309	if (vcpu->kvm->arch.ipte_lock_count)
 310		goto out;
 311	read_lock(&vcpu->kvm->arch.sca_lock);
 312	ic = kvm_s390_get_ipte_control(vcpu->kvm);
 313	do {
 314		old = READ_ONCE(*ic);
 315		new = old;
 316		new.k = 0;
 317	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
 318	read_unlock(&vcpu->kvm->arch.sca_lock);
 319	wake_up(&vcpu->kvm->arch.ipte_wq);
 320out:
 321	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
 322}
 323
 324static void ipte_lock_siif(struct kvm_vcpu *vcpu)
 325{
 326	union ipte_control old, new, *ic;
 327
 328retry:
 329	read_lock(&vcpu->kvm->arch.sca_lock);
 330	ic = kvm_s390_get_ipte_control(vcpu->kvm);
 331	do {
 332		old = READ_ONCE(*ic);
 333		if (old.kg) {
 334			read_unlock(&vcpu->kvm->arch.sca_lock);
 335			cond_resched();
 336			goto retry;
 337		}
 338		new = old;
 339		new.k = 1;
 340		new.kh++;
 341	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
 342	read_unlock(&vcpu->kvm->arch.sca_lock);
 343}
 344
 345static void ipte_unlock_siif(struct kvm_vcpu *vcpu)
 346{
 347	union ipte_control old, new, *ic;
 348
 349	read_lock(&vcpu->kvm->arch.sca_lock);
 350	ic = kvm_s390_get_ipte_control(vcpu->kvm);
 351	do {
 352		old = READ_ONCE(*ic);
 353		new = old;
 354		new.kh--;
 355		if (!new.kh)
 356			new.k = 0;
 357	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
 358	read_unlock(&vcpu->kvm->arch.sca_lock);
 359	if (!new.kh)
 360		wake_up(&vcpu->kvm->arch.ipte_wq);
 361}
 362
 363void ipte_lock(struct kvm_vcpu *vcpu)
 364{
 365	if (vcpu->arch.sie_block->eca & ECA_SII)
 366		ipte_lock_siif(vcpu);
 367	else
 368		ipte_lock_simple(vcpu);
 369}
 370
 371void ipte_unlock(struct kvm_vcpu *vcpu)
 372{
 373	if (vcpu->arch.sie_block->eca & ECA_SII)
 374		ipte_unlock_siif(vcpu);
 375	else
 376		ipte_unlock_simple(vcpu);
 377}
 378
 379static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, u8 ar,
 380			  enum gacc_mode mode)
 381{
 382	union alet alet;
 383	struct ale ale;
 384	struct aste aste;
 385	unsigned long ald_addr, authority_table_addr;
 386	union ald ald;
 387	int eax, rc;
 388	u8 authority_table;
 389
 390	if (ar >= NUM_ACRS)
 391		return -EINVAL;
 392
 393	save_access_regs(vcpu->run->s.regs.acrs);
 394	alet.val = vcpu->run->s.regs.acrs[ar];
 395
 396	if (ar == 0 || alet.val == 0) {
 397		asce->val = vcpu->arch.sie_block->gcr[1];
 398		return 0;
 399	} else if (alet.val == 1) {
 400		asce->val = vcpu->arch.sie_block->gcr[7];
 401		return 0;
 402	}
 403
 404	if (alet.reserved)
 405		return PGM_ALET_SPECIFICATION;
 406
 407	if (alet.p)
 408		ald_addr = vcpu->arch.sie_block->gcr[5];
 409	else
 410		ald_addr = vcpu->arch.sie_block->gcr[2];
 411	ald_addr &= 0x7fffffc0;
 412
 413	rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
 414	if (rc)
 415		return rc;
 416
 417	if (alet.alen / 8 > ald.all)
 418		return PGM_ALEN_TRANSLATION;
 419
 420	if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
 421		return PGM_ADDRESSING;
 422
 423	rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
 424			     sizeof(struct ale));
 425	if (rc)
 426		return rc;
 427
 428	if (ale.i == 1)
 429		return PGM_ALEN_TRANSLATION;
 430	if (ale.alesn != alet.alesn)
 431		return PGM_ALE_SEQUENCE;
 432
 433	rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
 434	if (rc)
 435		return rc;
 436
 437	if (aste.i)
 438		return PGM_ASTE_VALIDITY;
 439	if (aste.astesn != ale.astesn)
 440		return PGM_ASTE_SEQUENCE;
 441
 442	if (ale.p == 1) {
 443		eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
 444		if (ale.aleax != eax) {
 445			if (eax / 16 > aste.atl)
 446				return PGM_EXTENDED_AUTHORITY;
 447
 448			authority_table_addr = aste.ato * 4 + eax / 4;
 449
 450			rc = read_guest_real(vcpu, authority_table_addr,
 451					     &authority_table,
 452					     sizeof(u8));
 453			if (rc)
 454				return rc;
 455
 456			if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
 457				return PGM_EXTENDED_AUTHORITY;
 458		}
 459	}
 460
 461	if (ale.fo == 1 && mode == GACC_STORE)
 462		return PGM_PROTECTION;
 463
 464	asce->val = aste.asce;
 465	return 0;
 466}
 467
 468struct trans_exc_code_bits {
 469	unsigned long addr : 52; /* Translation-exception Address */
 470	unsigned long fsi  : 2;  /* Access Exception Fetch/Store Indication */
 471	unsigned long	   : 2;
 472	unsigned long b56  : 1;
 473	unsigned long	   : 3;
 474	unsigned long b60  : 1;
 475	unsigned long b61  : 1;
 476	unsigned long as   : 2;  /* ASCE Identifier */
 477};
 478
 479enum {
 480	FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
 481	FSI_STORE   = 1, /* Exception was due to store operation */
 482	FSI_FETCH   = 2  /* Exception was due to fetch operation */
 483};
 484
 485enum prot_type {
 486	PROT_TYPE_LA   = 0,
 487	PROT_TYPE_KEYC = 1,
 488	PROT_TYPE_ALC  = 2,
 489	PROT_TYPE_DAT  = 3,
 490	PROT_TYPE_IEP  = 4,
 491};
 492
 493static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva,
 494		     u8 ar, enum gacc_mode mode, enum prot_type prot)
 495{
 496	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
 497	struct trans_exc_code_bits *tec;
 498
 499	memset(pgm, 0, sizeof(*pgm));
 500	pgm->code = code;
 501	tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
 502
 503	switch (code) {
 504	case PGM_PROTECTION:
 505		switch (prot) {
 506		case PROT_TYPE_IEP:
 507			tec->b61 = 1;
 508			fallthrough;
 509		case PROT_TYPE_LA:
 510			tec->b56 = 1;
 511			break;
 512		case PROT_TYPE_KEYC:
 513			tec->b60 = 1;
 514			break;
 515		case PROT_TYPE_ALC:
 516			tec->b60 = 1;
 517			fallthrough;
 518		case PROT_TYPE_DAT:
 519			tec->b61 = 1;
 520			break;
 521		}
 522		fallthrough;
 523	case PGM_ASCE_TYPE:
 524	case PGM_PAGE_TRANSLATION:
 525	case PGM_REGION_FIRST_TRANS:
 526	case PGM_REGION_SECOND_TRANS:
 527	case PGM_REGION_THIRD_TRANS:
 528	case PGM_SEGMENT_TRANSLATION:
 529		/*
 530		 * op_access_id only applies to MOVE_PAGE -> set bit 61
 531		 * exc_access_id has to be set to 0 for some instructions. Both
 532		 * cases have to be handled by the caller.
 533		 */
 534		tec->addr = gva >> PAGE_SHIFT;
 535		tec->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH;
 536		tec->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
 537		fallthrough;
 538	case PGM_ALEN_TRANSLATION:
 539	case PGM_ALE_SEQUENCE:
 540	case PGM_ASTE_VALIDITY:
 541	case PGM_ASTE_SEQUENCE:
 542	case PGM_EXTENDED_AUTHORITY:
 543		/*
 544		 * We can always store exc_access_id, as it is
 545		 * undefined for non-ar cases. It is undefined for
 546		 * most DAT protection exceptions.
 547		 */
 548		pgm->exc_access_id = ar;
 549		break;
 550	}
 551	return code;
 552}
 553
 554static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
 555			 unsigned long ga, u8 ar, enum gacc_mode mode)
 556{
 557	int rc;
 558	struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
 559
 560	if (!psw.dat) {
 561		asce->val = 0;
 562		asce->r = 1;
 563		return 0;
 564	}
 565
 566	if ((mode == GACC_IFETCH) && (psw.as != PSW_BITS_AS_HOME))
 567		psw.as = PSW_BITS_AS_PRIMARY;
 568
 569	switch (psw.as) {
 570	case PSW_BITS_AS_PRIMARY:
 571		asce->val = vcpu->arch.sie_block->gcr[1];
 572		return 0;
 573	case PSW_BITS_AS_SECONDARY:
 574		asce->val = vcpu->arch.sie_block->gcr[7];
 575		return 0;
 576	case PSW_BITS_AS_HOME:
 577		asce->val = vcpu->arch.sie_block->gcr[13];
 578		return 0;
 579	case PSW_BITS_AS_ACCREG:
 580		rc = ar_translation(vcpu, asce, ar, mode);
 581		if (rc > 0)
 582			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC);
 583		return rc;
 584	}
 585	return 0;
 586}
 587
 588static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
 589{
 590	return kvm_read_guest(kvm, gpa, val, sizeof(*val));
 591}
 592
 593/**
 594 * guest_translate - translate a guest virtual into a guest absolute address
 595 * @vcpu: virtual cpu
 596 * @gva: guest virtual address
 597 * @gpa: points to where guest physical (absolute) address should be stored
 598 * @asce: effective asce
 599 * @mode: indicates the access mode to be used
 600 * @prot: returns the type for protection exceptions
 601 *
 602 * Translate a guest virtual address into a guest absolute address by means
 603 * of dynamic address translation as specified by the architecture.
 604 * If the resulting absolute address is not available in the configuration
 605 * an addressing exception is indicated and @gpa will not be changed.
 606 *
 607 * Returns: - zero on success; @gpa contains the resulting absolute address
 608 *	    - a negative value if guest access failed due to e.g. broken
 609 *	      guest mapping
 610 *	    - a positve value if an access exception happened. In this case
 611 *	      the returned value is the program interruption code as defined
 612 *	      by the architecture
 613 */
 614static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
 615				     unsigned long *gpa, const union asce asce,
 616				     enum gacc_mode mode, enum prot_type *prot)
 617{
 618	union vaddress vaddr = {.addr = gva};
 619	union raddress raddr = {.addr = gva};
 620	union page_table_entry pte;
 621	int dat_protection = 0;
 622	int iep_protection = 0;
 623	union ctlreg0 ctlreg0;
 624	unsigned long ptr;
 625	int edat1, edat2, iep;
 626
 627	ctlreg0.val = vcpu->arch.sie_block->gcr[0];
 628	edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
 629	edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
 630	iep = ctlreg0.iep && test_kvm_facility(vcpu->kvm, 130);
 631	if (asce.r)
 632		goto real_address;
 633	ptr = asce.origin * PAGE_SIZE;
 634	switch (asce.dt) {
 635	case ASCE_TYPE_REGION1:
 636		if (vaddr.rfx01 > asce.tl)
 637			return PGM_REGION_FIRST_TRANS;
 638		ptr += vaddr.rfx * 8;
 639		break;
 640	case ASCE_TYPE_REGION2:
 641		if (vaddr.rfx)
 642			return PGM_ASCE_TYPE;
 643		if (vaddr.rsx01 > asce.tl)
 644			return PGM_REGION_SECOND_TRANS;
 645		ptr += vaddr.rsx * 8;
 646		break;
 647	case ASCE_TYPE_REGION3:
 648		if (vaddr.rfx || vaddr.rsx)
 649			return PGM_ASCE_TYPE;
 650		if (vaddr.rtx01 > asce.tl)
 651			return PGM_REGION_THIRD_TRANS;
 652		ptr += vaddr.rtx * 8;
 653		break;
 654	case ASCE_TYPE_SEGMENT:
 655		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
 656			return PGM_ASCE_TYPE;
 657		if (vaddr.sx01 > asce.tl)
 658			return PGM_SEGMENT_TRANSLATION;
 659		ptr += vaddr.sx * 8;
 660		break;
 661	}
 662	switch (asce.dt) {
 663	case ASCE_TYPE_REGION1:	{
 664		union region1_table_entry rfte;
 665
 666		if (kvm_is_error_gpa(vcpu->kvm, ptr))
 667			return PGM_ADDRESSING;
 668		if (deref_table(vcpu->kvm, ptr, &rfte.val))
 669			return -EFAULT;
 670		if (rfte.i)
 671			return PGM_REGION_FIRST_TRANS;
 672		if (rfte.tt != TABLE_TYPE_REGION1)
 673			return PGM_TRANSLATION_SPEC;
 674		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
 675			return PGM_REGION_SECOND_TRANS;
 676		if (edat1)
 677			dat_protection |= rfte.p;
 678		ptr = rfte.rto * PAGE_SIZE + vaddr.rsx * 8;
 679	}
 680		fallthrough;
 681	case ASCE_TYPE_REGION2: {
 682		union region2_table_entry rste;
 683
 684		if (kvm_is_error_gpa(vcpu->kvm, ptr))
 685			return PGM_ADDRESSING;
 686		if (deref_table(vcpu->kvm, ptr, &rste.val))
 687			return -EFAULT;
 688		if (rste.i)
 689			return PGM_REGION_SECOND_TRANS;
 690		if (rste.tt != TABLE_TYPE_REGION2)
 691			return PGM_TRANSLATION_SPEC;
 692		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
 693			return PGM_REGION_THIRD_TRANS;
 694		if (edat1)
 695			dat_protection |= rste.p;
 696		ptr = rste.rto * PAGE_SIZE + vaddr.rtx * 8;
 697	}
 698		fallthrough;
 699	case ASCE_TYPE_REGION3: {
 700		union region3_table_entry rtte;
 701
 702		if (kvm_is_error_gpa(vcpu->kvm, ptr))
 703			return PGM_ADDRESSING;
 704		if (deref_table(vcpu->kvm, ptr, &rtte.val))
 705			return -EFAULT;
 706		if (rtte.i)
 707			return PGM_REGION_THIRD_TRANS;
 708		if (rtte.tt != TABLE_TYPE_REGION3)
 709			return PGM_TRANSLATION_SPEC;
 710		if (rtte.cr && asce.p && edat2)
 711			return PGM_TRANSLATION_SPEC;
 712		if (rtte.fc && edat2) {
 713			dat_protection |= rtte.fc1.p;
 714			iep_protection = rtte.fc1.iep;
 715			raddr.rfaa = rtte.fc1.rfaa;
 716			goto absolute_address;
 717		}
 718		if (vaddr.sx01 < rtte.fc0.tf)
 719			return PGM_SEGMENT_TRANSLATION;
 720		if (vaddr.sx01 > rtte.fc0.tl)
 721			return PGM_SEGMENT_TRANSLATION;
 722		if (edat1)
 723			dat_protection |= rtte.fc0.p;
 724		ptr = rtte.fc0.sto * PAGE_SIZE + vaddr.sx * 8;
 725	}
 726		fallthrough;
 727	case ASCE_TYPE_SEGMENT: {
 728		union segment_table_entry ste;
 729
 730		if (kvm_is_error_gpa(vcpu->kvm, ptr))
 731			return PGM_ADDRESSING;
 732		if (deref_table(vcpu->kvm, ptr, &ste.val))
 733			return -EFAULT;
 734		if (ste.i)
 735			return PGM_SEGMENT_TRANSLATION;
 736		if (ste.tt != TABLE_TYPE_SEGMENT)
 737			return PGM_TRANSLATION_SPEC;
 738		if (ste.cs && asce.p)
 739			return PGM_TRANSLATION_SPEC;
 740		if (ste.fc && edat1) {
 741			dat_protection |= ste.fc1.p;
 742			iep_protection = ste.fc1.iep;
 743			raddr.sfaa = ste.fc1.sfaa;
 744			goto absolute_address;
 745		}
 746		dat_protection |= ste.fc0.p;
 747		ptr = ste.fc0.pto * (PAGE_SIZE / 2) + vaddr.px * 8;
 748	}
 749	}
 750	if (kvm_is_error_gpa(vcpu->kvm, ptr))
 751		return PGM_ADDRESSING;
 752	if (deref_table(vcpu->kvm, ptr, &pte.val))
 753		return -EFAULT;
 754	if (pte.i)
 755		return PGM_PAGE_TRANSLATION;
 756	if (pte.z)
 757		return PGM_TRANSLATION_SPEC;
 758	dat_protection |= pte.p;
 759	iep_protection = pte.iep;
 760	raddr.pfra = pte.pfra;
 761real_address:
 762	raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
 763absolute_address:
 764	if (mode == GACC_STORE && dat_protection) {
 765		*prot = PROT_TYPE_DAT;
 766		return PGM_PROTECTION;
 767	}
 768	if (mode == GACC_IFETCH && iep_protection && iep) {
 769		*prot = PROT_TYPE_IEP;
 770		return PGM_PROTECTION;
 771	}
 772	if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
 773		return PGM_ADDRESSING;
 774	*gpa = raddr.addr;
 775	return 0;
 776}
 777
 778static inline int is_low_address(unsigned long ga)
 779{
 780	/* Check for address ranges 0..511 and 4096..4607 */
 781	return (ga & ~0x11fful) == 0;
 782}
 783
 784static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
 785					  const union asce asce)
 786{
 787	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
 788	psw_t *psw = &vcpu->arch.sie_block->gpsw;
 789
 790	if (!ctlreg0.lap)
 791		return 0;
 792	if (psw_bits(*psw).dat && asce.p)
 793		return 0;
 794	return 1;
 795}
 796
 797static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
 798			    unsigned long *pages, unsigned long nr_pages,
 799			    const union asce asce, enum gacc_mode mode)
 800{
 801	psw_t *psw = &vcpu->arch.sie_block->gpsw;
 802	int lap_enabled, rc = 0;
 803	enum prot_type prot;
 804
 805	lap_enabled = low_address_protection_enabled(vcpu, asce);
 806	while (nr_pages) {
 807		ga = kvm_s390_logical_to_effective(vcpu, ga);
 808		if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
 809			return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
 810					 PROT_TYPE_LA);
 811		ga &= PAGE_MASK;
 812		if (psw_bits(*psw).dat) {
 813			rc = guest_translate(vcpu, ga, pages, asce, mode, &prot);
 814			if (rc < 0)
 815				return rc;
 816		} else {
 817			*pages = kvm_s390_real_to_abs(vcpu, ga);
 818			if (kvm_is_error_gpa(vcpu->kvm, *pages))
 819				rc = PGM_ADDRESSING;
 820		}
 821		if (rc)
 822			return trans_exc(vcpu, rc, ga, ar, mode, prot);
 823		ga += PAGE_SIZE;
 824		pages++;
 825		nr_pages--;
 826	}
 827	return 0;
 828}
 829
 830int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar, void *data,
 831		 unsigned long len, enum gacc_mode mode)
 832{
 833	psw_t *psw = &vcpu->arch.sie_block->gpsw;
 834	unsigned long _len, nr_pages, gpa, idx;
 835	unsigned long pages_array[2];
 836	unsigned long *pages;
 837	int need_ipte_lock;
 838	union asce asce;
 839	int rc;
 840
 841	if (!len)
 842		return 0;
 843	ga = kvm_s390_logical_to_effective(vcpu, ga);
 844	rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode);
 845	if (rc)
 846		return rc;
 847	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
 848	pages = pages_array;
 849	if (nr_pages > ARRAY_SIZE(pages_array))
 850		pages = vmalloc(array_size(nr_pages, sizeof(unsigned long)));
 851	if (!pages)
 852		return -ENOMEM;
 853	need_ipte_lock = psw_bits(*psw).dat && !asce.r;
 854	if (need_ipte_lock)
 855		ipte_lock(vcpu);
 856	rc = guest_page_range(vcpu, ga, ar, pages, nr_pages, asce, mode);
 857	for (idx = 0; idx < nr_pages && !rc; idx++) {
 858		gpa = *(pages + idx) + (ga & ~PAGE_MASK);
 859		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
 860		if (mode == GACC_STORE)
 861			rc = kvm_write_guest(vcpu->kvm, gpa, data, _len);
 862		else
 863			rc = kvm_read_guest(vcpu->kvm, gpa, data, _len);
 864		len -= _len;
 865		ga += _len;
 866		data += _len;
 867	}
 868	if (need_ipte_lock)
 869		ipte_unlock(vcpu);
 870	if (nr_pages > ARRAY_SIZE(pages_array))
 871		vfree(pages);
 872	return rc;
 873}
 874
 875int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
 876		      void *data, unsigned long len, enum gacc_mode mode)
 877{
 878	unsigned long _len, gpa;
 879	int rc = 0;
 880
 881	while (len && !rc) {
 882		gpa = kvm_s390_real_to_abs(vcpu, gra);
 883		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
 884		if (mode)
 885			rc = write_guest_abs(vcpu, gpa, data, _len);
 886		else
 887			rc = read_guest_abs(vcpu, gpa, data, _len);
 888		len -= _len;
 889		gra += _len;
 890		data += _len;
 891	}
 892	return rc;
 893}
 894
 895/**
 896 * guest_translate_address - translate guest logical into guest absolute address
 897 *
 898 * Parameter semantics are the same as the ones from guest_translate.
 899 * The memory contents at the guest address are not changed.
 900 *
 901 * Note: The IPTE lock is not taken during this function, so the caller
 902 * has to take care of this.
 903 */
 904int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
 905			    unsigned long *gpa, enum gacc_mode mode)
 906{
 907	psw_t *psw = &vcpu->arch.sie_block->gpsw;
 908	enum prot_type prot;
 909	union asce asce;
 910	int rc;
 911
 912	gva = kvm_s390_logical_to_effective(vcpu, gva);
 913	rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
 914	if (rc)
 915		return rc;
 916	if (is_low_address(gva) && low_address_protection_enabled(vcpu, asce)) {
 917		if (mode == GACC_STORE)
 918			return trans_exc(vcpu, PGM_PROTECTION, gva, 0,
 919					 mode, PROT_TYPE_LA);
 920	}
 921
 922	if (psw_bits(*psw).dat && !asce.r) {	/* Use DAT? */
 923		rc = guest_translate(vcpu, gva, gpa, asce, mode, &prot);
 924		if (rc > 0)
 925			return trans_exc(vcpu, rc, gva, 0, mode, prot);
 926	} else {
 927		*gpa = kvm_s390_real_to_abs(vcpu, gva);
 928		if (kvm_is_error_gpa(vcpu->kvm, *gpa))
 929			return trans_exc(vcpu, rc, gva, PGM_ADDRESSING, mode, 0);
 930	}
 931
 932	return rc;
 933}
 934
 935/**
 936 * check_gva_range - test a range of guest virtual addresses for accessibility
 937 */
 938int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
 939		    unsigned long length, enum gacc_mode mode)
 940{
 941	unsigned long gpa;
 942	unsigned long currlen;
 943	int rc = 0;
 944
 945	ipte_lock(vcpu);
 946	while (length > 0 && !rc) {
 947		currlen = min(length, PAGE_SIZE - (gva % PAGE_SIZE));
 948		rc = guest_translate_address(vcpu, gva, ar, &gpa, mode);
 949		gva += currlen;
 950		length -= currlen;
 951	}
 952	ipte_unlock(vcpu);
 953
 954	return rc;
 955}
 956
 957/**
 958 * kvm_s390_check_low_addr_prot_real - check for low-address protection
 959 * @gra: Guest real address
 960 *
 961 * Checks whether an address is subject to low-address protection and set
 962 * up vcpu->arch.pgm accordingly if necessary.
 963 *
 964 * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
 965 */
 966int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
 967{
 968	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
 969
 970	if (!ctlreg0.lap || !is_low_address(gra))
 971		return 0;
 972	return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA);
 973}
 974
 975/**
 976 * kvm_s390_shadow_tables - walk the guest page table and create shadow tables
 977 * @sg: pointer to the shadow guest address space structure
 978 * @saddr: faulting address in the shadow gmap
 979 * @pgt: pointer to the page table address result
 980 * @fake: pgt references contiguous guest memory block, not a pgtable
 981 */
 982static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
 983				  unsigned long *pgt, int *dat_protection,
 984				  int *fake)
 985{
 986	struct gmap *parent;
 987	union asce asce;
 988	union vaddress vaddr;
 989	unsigned long ptr;
 990	int rc;
 991
 992	*fake = 0;
 993	*dat_protection = 0;
 994	parent = sg->parent;
 995	vaddr.addr = saddr;
 996	asce.val = sg->orig_asce;
 997	ptr = asce.origin * PAGE_SIZE;
 998	if (asce.r) {
 999		*fake = 1;
1000		ptr = 0;
1001		asce.dt = ASCE_TYPE_REGION1;
1002	}
1003	switch (asce.dt) {
1004	case ASCE_TYPE_REGION1:
1005		if (vaddr.rfx01 > asce.tl && !*fake)
1006			return PGM_REGION_FIRST_TRANS;
1007		break;
1008	case ASCE_TYPE_REGION2:
1009		if (vaddr.rfx)
1010			return PGM_ASCE_TYPE;
1011		if (vaddr.rsx01 > asce.tl)
1012			return PGM_REGION_SECOND_TRANS;
1013		break;
1014	case ASCE_TYPE_REGION3:
1015		if (vaddr.rfx || vaddr.rsx)
1016			return PGM_ASCE_TYPE;
1017		if (vaddr.rtx01 > asce.tl)
1018			return PGM_REGION_THIRD_TRANS;
1019		break;
1020	case ASCE_TYPE_SEGMENT:
1021		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
1022			return PGM_ASCE_TYPE;
1023		if (vaddr.sx01 > asce.tl)
1024			return PGM_SEGMENT_TRANSLATION;
1025		break;
1026	}
1027
1028	switch (asce.dt) {
1029	case ASCE_TYPE_REGION1: {
1030		union region1_table_entry rfte;
1031
1032		if (*fake) {
1033			ptr += vaddr.rfx * _REGION1_SIZE;
1034			rfte.val = ptr;
1035			goto shadow_r2t;
1036		}
1037		rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
1038		if (rc)
1039			return rc;
1040		if (rfte.i)
1041			return PGM_REGION_FIRST_TRANS;
1042		if (rfte.tt != TABLE_TYPE_REGION1)
1043			return PGM_TRANSLATION_SPEC;
1044		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
1045			return PGM_REGION_SECOND_TRANS;
1046		if (sg->edat_level >= 1)
1047			*dat_protection |= rfte.p;
1048		ptr = rfte.rto * PAGE_SIZE;
1049shadow_r2t:
1050		rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake);
1051		if (rc)
1052			return rc;
1053	}
1054		fallthrough;
1055	case ASCE_TYPE_REGION2: {
1056		union region2_table_entry rste;
1057
1058		if (*fake) {
1059			ptr += vaddr.rsx * _REGION2_SIZE;
1060			rste.val = ptr;
1061			goto shadow_r3t;
1062		}
1063		rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
1064		if (rc)
1065			return rc;
1066		if (rste.i)
1067			return PGM_REGION_SECOND_TRANS;
1068		if (rste.tt != TABLE_TYPE_REGION2)
1069			return PGM_TRANSLATION_SPEC;
1070		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
1071			return PGM_REGION_THIRD_TRANS;
1072		if (sg->edat_level >= 1)
1073			*dat_protection |= rste.p;
1074		ptr = rste.rto * PAGE_SIZE;
1075shadow_r3t:
1076		rste.p |= *dat_protection;
1077		rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake);
1078		if (rc)
1079			return rc;
1080	}
1081		fallthrough;
1082	case ASCE_TYPE_REGION3: {
1083		union region3_table_entry rtte;
1084
1085		if (*fake) {
1086			ptr += vaddr.rtx * _REGION3_SIZE;
1087			rtte.val = ptr;
1088			goto shadow_sgt;
1089		}
1090		rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
1091		if (rc)
1092			return rc;
1093		if (rtte.i)
1094			return PGM_REGION_THIRD_TRANS;
1095		if (rtte.tt != TABLE_TYPE_REGION3)
1096			return PGM_TRANSLATION_SPEC;
1097		if (rtte.cr && asce.p && sg->edat_level >= 2)
1098			return PGM_TRANSLATION_SPEC;
1099		if (rtte.fc && sg->edat_level >= 2) {
1100			*dat_protection |= rtte.fc0.p;
1101			*fake = 1;
1102			ptr = rtte.fc1.rfaa * _REGION3_SIZE;
1103			rtte.val = ptr;
1104			goto shadow_sgt;
1105		}
1106		if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl)
1107			return PGM_SEGMENT_TRANSLATION;
1108		if (sg->edat_level >= 1)
1109			*dat_protection |= rtte.fc0.p;
1110		ptr = rtte.fc0.sto * PAGE_SIZE;
1111shadow_sgt:
1112		rtte.fc0.p |= *dat_protection;
1113		rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake);
1114		if (rc)
1115			return rc;
1116	}
1117		fallthrough;
1118	case ASCE_TYPE_SEGMENT: {
1119		union segment_table_entry ste;
1120
1121		if (*fake) {
1122			ptr += vaddr.sx * _SEGMENT_SIZE;
1123			ste.val = ptr;
1124			goto shadow_pgt;
1125		}
1126		rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
1127		if (rc)
1128			return rc;
1129		if (ste.i)
1130			return PGM_SEGMENT_TRANSLATION;
1131		if (ste.tt != TABLE_TYPE_SEGMENT)
1132			return PGM_TRANSLATION_SPEC;
1133		if (ste.cs && asce.p)
1134			return PGM_TRANSLATION_SPEC;
1135		*dat_protection |= ste.fc0.p;
1136		if (ste.fc && sg->edat_level >= 1) {
1137			*fake = 1;
1138			ptr = ste.fc1.sfaa * _SEGMENT_SIZE;
1139			ste.val = ptr;
1140			goto shadow_pgt;
1141		}
1142		ptr = ste.fc0.pto * (PAGE_SIZE / 2);
1143shadow_pgt:
1144		ste.fc0.p |= *dat_protection;
1145		rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake);
1146		if (rc)
1147			return rc;
1148	}
1149	}
1150	/* Return the parent address of the page table */
1151	*pgt = ptr;
1152	return 0;
1153}
1154
1155/**
1156 * kvm_s390_shadow_fault - handle fault on a shadow page table
1157 * @vcpu: virtual cpu
1158 * @sg: pointer to the shadow guest address space structure
1159 * @saddr: faulting address in the shadow gmap
1160 *
1161 * Returns: - 0 if the shadow fault was successfully resolved
1162 *	    - > 0 (pgm exception code) on exceptions while faulting
1163 *	    - -EAGAIN if the caller can retry immediately
1164 *	    - -EFAULT when accessing invalid guest addresses
1165 *	    - -ENOMEM if out of memory
1166 */
1167int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
1168			  unsigned long saddr)
1169{
1170	union vaddress vaddr;
1171	union page_table_entry pte;
1172	unsigned long pgt;
1173	int dat_protection, fake;
1174	int rc;
1175
1176	mmap_read_lock(sg->mm);
1177	/*
1178	 * We don't want any guest-2 tables to change - so the parent
1179	 * tables/pointers we read stay valid - unshadowing is however
1180	 * always possible - only guest_table_lock protects us.
1181	 */
1182	ipte_lock(vcpu);
1183
1184	rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake);
1185	if (rc)
1186		rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection,
1187					    &fake);
1188
1189	vaddr.addr = saddr;
1190	if (fake) {
1191		pte.val = pgt + vaddr.px * PAGE_SIZE;
1192		goto shadow_page;
1193	}
1194	if (!rc)
1195		rc = gmap_read_table(sg->parent, pgt + vaddr.px * 8, &pte.val);
1196	if (!rc && pte.i)
1197		rc = PGM_PAGE_TRANSLATION;
1198	if (!rc && pte.z)
1199		rc = PGM_TRANSLATION_SPEC;
1200shadow_page:
1201	pte.p |= dat_protection;
1202	if (!rc)
1203		rc = gmap_shadow_page(sg, saddr, __pte(pte.val));
1204	ipte_unlock(vcpu);
1205	mmap_read_unlock(sg->mm);
1206	return rc;
1207}