Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v5.9
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * SGI UV architectural definitions
  7 *
  8 * Copyright (C) 2008 Silicon Graphics, Inc. All rights reserved.
  9 */
 10
 11#ifndef __ASM_IA64_UV_HUB_H__
 12#define __ASM_IA64_UV_HUB_H__
 13
 14#include <linux/numa.h>
 15#include <linux/percpu.h>
 16#include <asm/types.h>
 17#include <asm/percpu.h>
 18
 19
 20/*
 21 * Addressing Terminology
 22 *
 23 *	M       - The low M bits of a physical address represent the offset
 24 *		  into the blade local memory. RAM memory on a blade is physically
 25 *		  contiguous (although various IO spaces may punch holes in
 26 *		  it)..
 27 *
 28 * 	N	- Number of bits in the node portion of a socket physical
 29 * 		  address.
 30 *
 31 * 	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
 32 * 	 	  routers always have low bit of 1, C/MBricks have low bit
 33 * 		  equal to 0. Most addressing macros that target UV hub chips
 34 * 		  right shift the NASID by 1 to exclude the always-zero bit.
 35 * 		  NASIDs contain up to 15 bits.
 36 *
 37 *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
 38 *		  of nasids.
 39 *
 40 * 	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
 41 * 		  of the nasid for socket usage.
 42 *
 43 *
 44 *  NumaLink Global Physical Address Format:
 45 *  +--------------------------------+---------------------+
 46 *  |00..000|      GNODE             |      NodeOffset     |
 47 *  +--------------------------------+---------------------+
 48 *          |<-------53 - M bits --->|<--------M bits ----->
 49 *
 50 *	M - number of node offset bits (35 .. 40)
 51 *
 52 *
 53 *  Memory/UV-HUB Processor Socket Address Format:
 54 *  +----------------+---------------+---------------------+
 55 *  |00..000000000000|   PNODE       |      NodeOffset     |
 56 *  +----------------+---------------+---------------------+
 57 *                   <--- N bits --->|<--------M bits ----->
 58 *
 59 *	M - number of node offset bits (35 .. 40)
 60 *	N - number of PNODE bits (0 .. 10)
 61 *
 62 *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
 63 *		The actual values are configuration dependent and are set at
 64 *		boot time. M & N values are set by the hardware/BIOS at boot.
 65 */
 66
 67
 68/*
 69 * Maximum number of bricks in all partitions and in all coherency domains.
 70 * This is the total number of bricks accessible in the numalink fabric. It
 71 * includes all C & M bricks. Routers are NOT included.
 72 *
 73 * This value is also the value of the maximum number of non-router NASIDs
 74 * in the numalink fabric.
 75 *
 76 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
 77 */
 78#define UV_MAX_NUMALINK_BLADES	16384
 79
 80/*
 81 * Maximum number of C/Mbricks within a software SSI (hardware may support
 82 * more).
 83 */
 84#define UV_MAX_SSI_BLADES	1
 85
 86/*
 87 * The largest possible NASID of a C or M brick (+ 2)
 88 */
 89#define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_NODES * 2)
 90
 91/*
 92 * The following defines attributes of the HUB chip. These attributes are
 93 * frequently referenced and are kept in the per-cpu data areas of each cpu.
 94 * They are kept together in a struct to minimize cache misses.
 95 */
 96struct uv_hub_info_s {
 97	unsigned long	global_mmr_base;
 98	unsigned long	gpa_mask;
 99	unsigned long	gnode_upper;
100	unsigned long	lowmem_remap_top;
101	unsigned long	lowmem_remap_base;
102	unsigned short	pnode;
103	unsigned short	pnode_mask;
104	unsigned short	coherency_domain_number;
105	unsigned short	numa_blade_id;
106	unsigned char	blade_processor_id;
107	unsigned char	m_val;
108	unsigned char	n_val;
109};
110DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
111#define uv_hub_info 		this_cpu_ptr(&__uv_hub_info)
112#define uv_cpu_hub_info(cpu)	(&per_cpu(__uv_hub_info, cpu))
113
114/*
115 * Local & Global MMR space macros.
116 * 	Note: macros are intended to be used ONLY by inline functions
117 * 	in this file - not by other kernel code.
118 * 		n -  NASID (full 15-bit global nasid)
119 * 		g -  GNODE (full 15-bit global nasid, right shifted 1)
120 * 		p -  PNODE (local part of nsids, right shifted 1)
121 */
122#define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
123#define UV_PNODE_TO_NASID(p)		(((p) << 1) | uv_hub_info->gnode_upper)
124
125#define UV_LOCAL_MMR_BASE		0xf4000000UL
126#define UV_GLOBAL_MMR32_BASE		0xf8000000UL
127#define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
128
129#define UV_GLOBAL_MMR32_PNODE_SHIFT	15
130#define UV_GLOBAL_MMR64_PNODE_SHIFT	26
131
132#define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
133
134#define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
135	((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
136
137/*
138 * Macros for converting between kernel virtual addresses, socket local physical
139 * addresses, and UV global physical addresses.
140 * 	Note: use the standard __pa() & __va() macros for converting
141 * 	      between socket virtual and socket physical addresses.
142 */
143
144/* socket phys RAM --> UV global physical address */
145static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
146{
147	if (paddr < uv_hub_info->lowmem_remap_top)
148		paddr += uv_hub_info->lowmem_remap_base;
149	return paddr | uv_hub_info->gnode_upper;
150}
151
152
153/* socket virtual --> UV global physical address */
154static inline unsigned long uv_gpa(void *v)
155{
156	return __pa(v) | uv_hub_info->gnode_upper;
157}
158
159/* socket virtual --> UV global physical address */
160static inline void *uv_vgpa(void *v)
161{
162	return (void *)uv_gpa(v);
163}
164
165/* UV global physical address --> socket virtual */
166static inline void *uv_va(unsigned long gpa)
167{
168	return __va(gpa & uv_hub_info->gpa_mask);
169}
170
171/* pnode, offset --> socket virtual */
172static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
173{
174	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
175}
176
177
178/*
179 * Access global MMRs using the low memory MMR32 space. This region supports
180 * faster MMR access but not all MMRs are accessible in this space.
181 */
182static inline unsigned long *uv_global_mmr32_address(int pnode,
183				unsigned long offset)
184{
185	return __va(UV_GLOBAL_MMR32_BASE |
186		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
187}
188
189static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
190				 unsigned long val)
191{
192	*uv_global_mmr32_address(pnode, offset) = val;
193}
194
195static inline unsigned long uv_read_global_mmr32(int pnode,
196						 unsigned long offset)
197{
198	return *uv_global_mmr32_address(pnode, offset);
199}
200
201/*
202 * Access Global MMR space using the MMR space located at the top of physical
203 * memory.
204 */
205static inline unsigned long *uv_global_mmr64_address(int pnode,
206				unsigned long offset)
207{
208	return __va(UV_GLOBAL_MMR64_BASE |
209		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
210}
211
212static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
213				unsigned long val)
214{
215	*uv_global_mmr64_address(pnode, offset) = val;
216}
217
218static inline unsigned long uv_read_global_mmr64(int pnode,
219						 unsigned long offset)
220{
221	return *uv_global_mmr64_address(pnode, offset);
222}
223
224/*
225 * Access hub local MMRs. Faster than using global space but only local MMRs
226 * are accessible.
227 */
228static inline unsigned long *uv_local_mmr_address(unsigned long offset)
229{
230	return __va(UV_LOCAL_MMR_BASE | offset);
231}
232
233static inline unsigned long uv_read_local_mmr(unsigned long offset)
234{
235	return *uv_local_mmr_address(offset);
236}
237
238static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
239{
240	*uv_local_mmr_address(offset) = val;
241}
242
243/*
244 * Structures and definitions for converting between cpu, node, pnode, and blade
245 * numbers.
246 */
247
248/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
249static inline int uv_blade_processor_id(void)
250{
251	return smp_processor_id();
252}
253
254/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
255static inline int uv_numa_blade_id(void)
256{
257	return 0;
258}
259
260/* Convert a cpu number to the the UV blade number */
261static inline int uv_cpu_to_blade_id(int cpu)
262{
263	return 0;
264}
265
266/* Convert linux node number to the UV blade number */
267static inline int uv_node_to_blade_id(int nid)
268{
269	return 0;
270}
271
272/* Convert a blade id to the PNODE of the blade */
273static inline int uv_blade_to_pnode(int bid)
274{
275	return 0;
276}
277
278/* Determine the number of possible cpus on a blade */
279static inline int uv_blade_nr_possible_cpus(int bid)
280{
281	return num_possible_cpus();
282}
283
284/* Determine the number of online cpus on a blade */
285static inline int uv_blade_nr_online_cpus(int bid)
286{
287	return num_online_cpus();
288}
289
290/* Convert a cpu id to the PNODE of the blade containing the cpu */
291static inline int uv_cpu_to_pnode(int cpu)
292{
293	return 0;
294}
295
296/* Convert a linux node number to the PNODE of the blade */
297static inline int uv_node_to_pnode(int nid)
298{
299	return 0;
300}
301
302/* Maximum possible number of blades */
303static inline int uv_num_possible_blades(void)
304{
305	return 1;
306}
307
308static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
309{
310	/* not currently needed on ia64 */
311}
312
313
314#endif /* __ASM_IA64_UV_HUB__ */
315
v3.1
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * SGI UV architectural definitions
  7 *
  8 * Copyright (C) 2008 Silicon Graphics, Inc. All rights reserved.
  9 */
 10
 11#ifndef __ASM_IA64_UV_HUB_H__
 12#define __ASM_IA64_UV_HUB_H__
 13
 14#include <linux/numa.h>
 15#include <linux/percpu.h>
 16#include <asm/types.h>
 17#include <asm/percpu.h>
 18
 19
 20/*
 21 * Addressing Terminology
 22 *
 23 *	M       - The low M bits of a physical address represent the offset
 24 *		  into the blade local memory. RAM memory on a blade is physically
 25 *		  contiguous (although various IO spaces may punch holes in
 26 *		  it)..
 27 *
 28 * 	N	- Number of bits in the node portion of a socket physical
 29 * 		  address.
 30 *
 31 * 	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
 32 * 	 	  routers always have low bit of 1, C/MBricks have low bit
 33 * 		  equal to 0. Most addressing macros that target UV hub chips
 34 * 		  right shift the NASID by 1 to exclude the always-zero bit.
 35 * 		  NASIDs contain up to 15 bits.
 36 *
 37 *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
 38 *		  of nasids.
 39 *
 40 * 	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
 41 * 		  of the nasid for socket usage.
 42 *
 43 *
 44 *  NumaLink Global Physical Address Format:
 45 *  +--------------------------------+---------------------+
 46 *  |00..000|      GNODE             |      NodeOffset     |
 47 *  +--------------------------------+---------------------+
 48 *          |<-------53 - M bits --->|<--------M bits ----->
 49 *
 50 *	M - number of node offset bits (35 .. 40)
 51 *
 52 *
 53 *  Memory/UV-HUB Processor Socket Address Format:
 54 *  +----------------+---------------+---------------------+
 55 *  |00..000000000000|   PNODE       |      NodeOffset     |
 56 *  +----------------+---------------+---------------------+
 57 *                   <--- N bits --->|<--------M bits ----->
 58 *
 59 *	M - number of node offset bits (35 .. 40)
 60 *	N - number of PNODE bits (0 .. 10)
 61 *
 62 *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
 63 *		The actual values are configuration dependent and are set at
 64 *		boot time. M & N values are set by the hardware/BIOS at boot.
 65 */
 66
 67
 68/*
 69 * Maximum number of bricks in all partitions and in all coherency domains.
 70 * This is the total number of bricks accessible in the numalink fabric. It
 71 * includes all C & M bricks. Routers are NOT included.
 72 *
 73 * This value is also the value of the maximum number of non-router NASIDs
 74 * in the numalink fabric.
 75 *
 76 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
 77 */
 78#define UV_MAX_NUMALINK_BLADES	16384
 79
 80/*
 81 * Maximum number of C/Mbricks within a software SSI (hardware may support
 82 * more).
 83 */
 84#define UV_MAX_SSI_BLADES	1
 85
 86/*
 87 * The largest possible NASID of a C or M brick (+ 2)
 88 */
 89#define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_NODES * 2)
 90
 91/*
 92 * The following defines attributes of the HUB chip. These attributes are
 93 * frequently referenced and are kept in the per-cpu data areas of each cpu.
 94 * They are kept together in a struct to minimize cache misses.
 95 */
 96struct uv_hub_info_s {
 97	unsigned long	global_mmr_base;
 98	unsigned long	gpa_mask;
 99	unsigned long	gnode_upper;
100	unsigned long	lowmem_remap_top;
101	unsigned long	lowmem_remap_base;
102	unsigned short	pnode;
103	unsigned short	pnode_mask;
104	unsigned short	coherency_domain_number;
105	unsigned short	numa_blade_id;
106	unsigned char	blade_processor_id;
107	unsigned char	m_val;
108	unsigned char	n_val;
109};
110DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
111#define uv_hub_info 		(&__get_cpu_var(__uv_hub_info))
112#define uv_cpu_hub_info(cpu)	(&per_cpu(__uv_hub_info, cpu))
113
114/*
115 * Local & Global MMR space macros.
116 * 	Note: macros are intended to be used ONLY by inline functions
117 * 	in this file - not by other kernel code.
118 * 		n -  NASID (full 15-bit global nasid)
119 * 		g -  GNODE (full 15-bit global nasid, right shifted 1)
120 * 		p -  PNODE (local part of nsids, right shifted 1)
121 */
122#define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
123#define UV_PNODE_TO_NASID(p)		(((p) << 1) | uv_hub_info->gnode_upper)
124
125#define UV_LOCAL_MMR_BASE		0xf4000000UL
126#define UV_GLOBAL_MMR32_BASE		0xf8000000UL
127#define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
128
129#define UV_GLOBAL_MMR32_PNODE_SHIFT	15
130#define UV_GLOBAL_MMR64_PNODE_SHIFT	26
131
132#define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
133
134#define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
135	((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
136
137/*
138 * Macros for converting between kernel virtual addresses, socket local physical
139 * addresses, and UV global physical addresses.
140 * 	Note: use the standard __pa() & __va() macros for converting
141 * 	      between socket virtual and socket physical addresses.
142 */
143
144/* socket phys RAM --> UV global physical address */
145static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
146{
147	if (paddr < uv_hub_info->lowmem_remap_top)
148		paddr += uv_hub_info->lowmem_remap_base;
149	return paddr | uv_hub_info->gnode_upper;
150}
151
152
153/* socket virtual --> UV global physical address */
154static inline unsigned long uv_gpa(void *v)
155{
156	return __pa(v) | uv_hub_info->gnode_upper;
157}
158
159/* socket virtual --> UV global physical address */
160static inline void *uv_vgpa(void *v)
161{
162	return (void *)uv_gpa(v);
163}
164
165/* UV global physical address --> socket virtual */
166static inline void *uv_va(unsigned long gpa)
167{
168	return __va(gpa & uv_hub_info->gpa_mask);
169}
170
171/* pnode, offset --> socket virtual */
172static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
173{
174	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
175}
176
177
178/*
179 * Access global MMRs using the low memory MMR32 space. This region supports
180 * faster MMR access but not all MMRs are accessible in this space.
181 */
182static inline unsigned long *uv_global_mmr32_address(int pnode,
183				unsigned long offset)
184{
185	return __va(UV_GLOBAL_MMR32_BASE |
186		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
187}
188
189static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
190				 unsigned long val)
191{
192	*uv_global_mmr32_address(pnode, offset) = val;
193}
194
195static inline unsigned long uv_read_global_mmr32(int pnode,
196						 unsigned long offset)
197{
198	return *uv_global_mmr32_address(pnode, offset);
199}
200
201/*
202 * Access Global MMR space using the MMR space located at the top of physical
203 * memory.
204 */
205static inline unsigned long *uv_global_mmr64_address(int pnode,
206				unsigned long offset)
207{
208	return __va(UV_GLOBAL_MMR64_BASE |
209		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
210}
211
212static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
213				unsigned long val)
214{
215	*uv_global_mmr64_address(pnode, offset) = val;
216}
217
218static inline unsigned long uv_read_global_mmr64(int pnode,
219						 unsigned long offset)
220{
221	return *uv_global_mmr64_address(pnode, offset);
222}
223
224/*
225 * Access hub local MMRs. Faster than using global space but only local MMRs
226 * are accessible.
227 */
228static inline unsigned long *uv_local_mmr_address(unsigned long offset)
229{
230	return __va(UV_LOCAL_MMR_BASE | offset);
231}
232
233static inline unsigned long uv_read_local_mmr(unsigned long offset)
234{
235	return *uv_local_mmr_address(offset);
236}
237
238static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
239{
240	*uv_local_mmr_address(offset) = val;
241}
242
243/*
244 * Structures and definitions for converting between cpu, node, pnode, and blade
245 * numbers.
246 */
247
248/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
249static inline int uv_blade_processor_id(void)
250{
251	return smp_processor_id();
252}
253
254/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
255static inline int uv_numa_blade_id(void)
256{
257	return 0;
258}
259
260/* Convert a cpu number to the the UV blade number */
261static inline int uv_cpu_to_blade_id(int cpu)
262{
263	return 0;
264}
265
266/* Convert linux node number to the UV blade number */
267static inline int uv_node_to_blade_id(int nid)
268{
269	return 0;
270}
271
272/* Convert a blade id to the PNODE of the blade */
273static inline int uv_blade_to_pnode(int bid)
274{
275	return 0;
276}
277
278/* Determine the number of possible cpus on a blade */
279static inline int uv_blade_nr_possible_cpus(int bid)
280{
281	return num_possible_cpus();
282}
283
284/* Determine the number of online cpus on a blade */
285static inline int uv_blade_nr_online_cpus(int bid)
286{
287	return num_online_cpus();
288}
289
290/* Convert a cpu id to the PNODE of the blade containing the cpu */
291static inline int uv_cpu_to_pnode(int cpu)
292{
293	return 0;
294}
295
296/* Convert a linux node number to the PNODE of the blade */
297static inline int uv_node_to_pnode(int nid)
298{
299	return 0;
300}
301
302/* Maximum possible number of blades */
303static inline int uv_num_possible_blades(void)
304{
305	return 1;
306}
307
308static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
309{
310	/* not currently needed on ia64 */
311}
312
313
314#endif /* __ASM_IA64_UV_HUB__ */
315