Loading...
1/*
2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33#include <linux/kernel.h>
34#include <linux/slab.h>
35#include <net/sock.h>
36#include <linux/in.h>
37#include <linux/export.h>
38#include <linux/time.h>
39#include <linux/rds.h>
40
41#include "rds.h"
42
43void rds_inc_init(struct rds_incoming *inc, struct rds_connection *conn,
44 struct in6_addr *saddr)
45{
46 refcount_set(&inc->i_refcount, 1);
47 INIT_LIST_HEAD(&inc->i_item);
48 inc->i_conn = conn;
49 inc->i_saddr = *saddr;
50 inc->i_usercopy.rdma_cookie = 0;
51 inc->i_usercopy.rx_tstamp = ktime_set(0, 0);
52
53 memset(inc->i_rx_lat_trace, 0, sizeof(inc->i_rx_lat_trace));
54}
55EXPORT_SYMBOL_GPL(rds_inc_init);
56
57void rds_inc_path_init(struct rds_incoming *inc, struct rds_conn_path *cp,
58 struct in6_addr *saddr)
59{
60 refcount_set(&inc->i_refcount, 1);
61 INIT_LIST_HEAD(&inc->i_item);
62 inc->i_conn = cp->cp_conn;
63 inc->i_conn_path = cp;
64 inc->i_saddr = *saddr;
65 inc->i_usercopy.rdma_cookie = 0;
66 inc->i_usercopy.rx_tstamp = ktime_set(0, 0);
67}
68EXPORT_SYMBOL_GPL(rds_inc_path_init);
69
70static void rds_inc_addref(struct rds_incoming *inc)
71{
72 rdsdebug("addref inc %p ref %d\n", inc, refcount_read(&inc->i_refcount));
73 refcount_inc(&inc->i_refcount);
74}
75
76void rds_inc_put(struct rds_incoming *inc)
77{
78 rdsdebug("put inc %p ref %d\n", inc, refcount_read(&inc->i_refcount));
79 if (refcount_dec_and_test(&inc->i_refcount)) {
80 BUG_ON(!list_empty(&inc->i_item));
81
82 inc->i_conn->c_trans->inc_free(inc);
83 }
84}
85EXPORT_SYMBOL_GPL(rds_inc_put);
86
87static void rds_recv_rcvbuf_delta(struct rds_sock *rs, struct sock *sk,
88 struct rds_cong_map *map,
89 int delta, __be16 port)
90{
91 int now_congested;
92
93 if (delta == 0)
94 return;
95
96 rs->rs_rcv_bytes += delta;
97 if (delta > 0)
98 rds_stats_add(s_recv_bytes_added_to_socket, delta);
99 else
100 rds_stats_add(s_recv_bytes_removed_from_socket, -delta);
101
102 /* loop transport doesn't send/recv congestion updates */
103 if (rs->rs_transport->t_type == RDS_TRANS_LOOP)
104 return;
105
106 now_congested = rs->rs_rcv_bytes > rds_sk_rcvbuf(rs);
107
108 rdsdebug("rs %p (%pI6c:%u) recv bytes %d buf %d "
109 "now_cong %d delta %d\n",
110 rs, &rs->rs_bound_addr,
111 ntohs(rs->rs_bound_port), rs->rs_rcv_bytes,
112 rds_sk_rcvbuf(rs), now_congested, delta);
113
114 /* wasn't -> am congested */
115 if (!rs->rs_congested && now_congested) {
116 rs->rs_congested = 1;
117 rds_cong_set_bit(map, port);
118 rds_cong_queue_updates(map);
119 }
120 /* was -> aren't congested */
121 /* Require more free space before reporting uncongested to prevent
122 bouncing cong/uncong state too often */
123 else if (rs->rs_congested && (rs->rs_rcv_bytes < (rds_sk_rcvbuf(rs)/2))) {
124 rs->rs_congested = 0;
125 rds_cong_clear_bit(map, port);
126 rds_cong_queue_updates(map);
127 }
128
129 /* do nothing if no change in cong state */
130}
131
132static void rds_conn_peer_gen_update(struct rds_connection *conn,
133 u32 peer_gen_num)
134{
135 int i;
136 struct rds_message *rm, *tmp;
137 unsigned long flags;
138
139 WARN_ON(conn->c_trans->t_type != RDS_TRANS_TCP);
140 if (peer_gen_num != 0) {
141 if (conn->c_peer_gen_num != 0 &&
142 peer_gen_num != conn->c_peer_gen_num) {
143 for (i = 0; i < RDS_MPATH_WORKERS; i++) {
144 struct rds_conn_path *cp;
145
146 cp = &conn->c_path[i];
147 spin_lock_irqsave(&cp->cp_lock, flags);
148 cp->cp_next_tx_seq = 1;
149 cp->cp_next_rx_seq = 0;
150 list_for_each_entry_safe(rm, tmp,
151 &cp->cp_retrans,
152 m_conn_item) {
153 set_bit(RDS_MSG_FLUSH, &rm->m_flags);
154 }
155 spin_unlock_irqrestore(&cp->cp_lock, flags);
156 }
157 }
158 conn->c_peer_gen_num = peer_gen_num;
159 }
160}
161
162/*
163 * Process all extension headers that come with this message.
164 */
165static void rds_recv_incoming_exthdrs(struct rds_incoming *inc, struct rds_sock *rs)
166{
167 struct rds_header *hdr = &inc->i_hdr;
168 unsigned int pos = 0, type, len;
169 union {
170 struct rds_ext_header_version version;
171 struct rds_ext_header_rdma rdma;
172 struct rds_ext_header_rdma_dest rdma_dest;
173 } buffer;
174
175 while (1) {
176 len = sizeof(buffer);
177 type = rds_message_next_extension(hdr, &pos, &buffer, &len);
178 if (type == RDS_EXTHDR_NONE)
179 break;
180 /* Process extension header here */
181 switch (type) {
182 case RDS_EXTHDR_RDMA:
183 rds_rdma_unuse(rs, be32_to_cpu(buffer.rdma.h_rdma_rkey), 0);
184 break;
185
186 case RDS_EXTHDR_RDMA_DEST:
187 /* We ignore the size for now. We could stash it
188 * somewhere and use it for error checking. */
189 inc->i_usercopy.rdma_cookie = rds_rdma_make_cookie(
190 be32_to_cpu(buffer.rdma_dest.h_rdma_rkey),
191 be32_to_cpu(buffer.rdma_dest.h_rdma_offset));
192
193 break;
194 }
195 }
196}
197
198static void rds_recv_hs_exthdrs(struct rds_header *hdr,
199 struct rds_connection *conn)
200{
201 unsigned int pos = 0, type, len;
202 union {
203 struct rds_ext_header_version version;
204 u16 rds_npaths;
205 u32 rds_gen_num;
206 } buffer;
207 u32 new_peer_gen_num = 0;
208
209 while (1) {
210 len = sizeof(buffer);
211 type = rds_message_next_extension(hdr, &pos, &buffer, &len);
212 if (type == RDS_EXTHDR_NONE)
213 break;
214 /* Process extension header here */
215 switch (type) {
216 case RDS_EXTHDR_NPATHS:
217 conn->c_npaths = min_t(int, RDS_MPATH_WORKERS,
218 be16_to_cpu(buffer.rds_npaths));
219 break;
220 case RDS_EXTHDR_GEN_NUM:
221 new_peer_gen_num = be32_to_cpu(buffer.rds_gen_num);
222 break;
223 default:
224 pr_warn_ratelimited("ignoring unknown exthdr type "
225 "0x%x\n", type);
226 }
227 }
228 /* if RDS_EXTHDR_NPATHS was not found, default to a single-path */
229 conn->c_npaths = max_t(int, conn->c_npaths, 1);
230 conn->c_ping_triggered = 0;
231 rds_conn_peer_gen_update(conn, new_peer_gen_num);
232}
233
234/* rds_start_mprds() will synchronously start multiple paths when appropriate.
235 * The scheme is based on the following rules:
236 *
237 * 1. rds_sendmsg on first connect attempt sends the probe ping, with the
238 * sender's npaths (s_npaths)
239 * 2. rcvr of probe-ping knows the mprds_paths = min(s_npaths, r_npaths). It
240 * sends back a probe-pong with r_npaths. After that, if rcvr is the
241 * smaller ip addr, it starts rds_conn_path_connect_if_down on all
242 * mprds_paths.
243 * 3. sender gets woken up, and can move to rds_conn_path_connect_if_down.
244 * If it is the smaller ipaddr, rds_conn_path_connect_if_down can be
245 * called after reception of the probe-pong on all mprds_paths.
246 * Otherwise (sender of probe-ping is not the smaller ip addr): just call
247 * rds_conn_path_connect_if_down on the hashed path. (see rule 4)
248 * 4. rds_connect_worker must only trigger a connection if laddr < faddr.
249 * 5. sender may end up queuing the packet on the cp. will get sent out later.
250 * when connection is completed.
251 */
252static void rds_start_mprds(struct rds_connection *conn)
253{
254 int i;
255 struct rds_conn_path *cp;
256
257 if (conn->c_npaths > 1 &&
258 rds_addr_cmp(&conn->c_laddr, &conn->c_faddr) < 0) {
259 for (i = 0; i < conn->c_npaths; i++) {
260 cp = &conn->c_path[i];
261 rds_conn_path_connect_if_down(cp);
262 }
263 }
264}
265
266/*
267 * The transport must make sure that this is serialized against other
268 * rx and conn reset on this specific conn.
269 *
270 * We currently assert that only one fragmented message will be sent
271 * down a connection at a time. This lets us reassemble in the conn
272 * instead of per-flow which means that we don't have to go digging through
273 * flows to tear down partial reassembly progress on conn failure and
274 * we save flow lookup and locking for each frag arrival. It does mean
275 * that small messages will wait behind large ones. Fragmenting at all
276 * is only to reduce the memory consumption of pre-posted buffers.
277 *
278 * The caller passes in saddr and daddr instead of us getting it from the
279 * conn. This lets loopback, who only has one conn for both directions,
280 * tell us which roles the addrs in the conn are playing for this message.
281 */
282void rds_recv_incoming(struct rds_connection *conn, struct in6_addr *saddr,
283 struct in6_addr *daddr,
284 struct rds_incoming *inc, gfp_t gfp)
285{
286 struct rds_sock *rs = NULL;
287 struct sock *sk;
288 unsigned long flags;
289 struct rds_conn_path *cp;
290
291 inc->i_conn = conn;
292 inc->i_rx_jiffies = jiffies;
293 if (conn->c_trans->t_mp_capable)
294 cp = inc->i_conn_path;
295 else
296 cp = &conn->c_path[0];
297
298 rdsdebug("conn %p next %llu inc %p seq %llu len %u sport %u dport %u "
299 "flags 0x%x rx_jiffies %lu\n", conn,
300 (unsigned long long)cp->cp_next_rx_seq,
301 inc,
302 (unsigned long long)be64_to_cpu(inc->i_hdr.h_sequence),
303 be32_to_cpu(inc->i_hdr.h_len),
304 be16_to_cpu(inc->i_hdr.h_sport),
305 be16_to_cpu(inc->i_hdr.h_dport),
306 inc->i_hdr.h_flags,
307 inc->i_rx_jiffies);
308
309 /*
310 * Sequence numbers should only increase. Messages get their
311 * sequence number as they're queued in a sending conn. They
312 * can be dropped, though, if the sending socket is closed before
313 * they hit the wire. So sequence numbers can skip forward
314 * under normal operation. They can also drop back in the conn
315 * failover case as previously sent messages are resent down the
316 * new instance of a conn. We drop those, otherwise we have
317 * to assume that the next valid seq does not come after a
318 * hole in the fragment stream.
319 *
320 * The headers don't give us a way to realize if fragments of
321 * a message have been dropped. We assume that frags that arrive
322 * to a flow are part of the current message on the flow that is
323 * being reassembled. This means that senders can't drop messages
324 * from the sending conn until all their frags are sent.
325 *
326 * XXX we could spend more on the wire to get more robust failure
327 * detection, arguably worth it to avoid data corruption.
328 */
329 if (be64_to_cpu(inc->i_hdr.h_sequence) < cp->cp_next_rx_seq &&
330 (inc->i_hdr.h_flags & RDS_FLAG_RETRANSMITTED)) {
331 rds_stats_inc(s_recv_drop_old_seq);
332 goto out;
333 }
334 cp->cp_next_rx_seq = be64_to_cpu(inc->i_hdr.h_sequence) + 1;
335
336 if (rds_sysctl_ping_enable && inc->i_hdr.h_dport == 0) {
337 if (inc->i_hdr.h_sport == 0) {
338 rdsdebug("ignore ping with 0 sport from %pI6c\n",
339 saddr);
340 goto out;
341 }
342 rds_stats_inc(s_recv_ping);
343 rds_send_pong(cp, inc->i_hdr.h_sport);
344 /* if this is a handshake ping, start multipath if necessary */
345 if (RDS_HS_PROBE(be16_to_cpu(inc->i_hdr.h_sport),
346 be16_to_cpu(inc->i_hdr.h_dport))) {
347 rds_recv_hs_exthdrs(&inc->i_hdr, cp->cp_conn);
348 rds_start_mprds(cp->cp_conn);
349 }
350 goto out;
351 }
352
353 if (be16_to_cpu(inc->i_hdr.h_dport) == RDS_FLAG_PROBE_PORT &&
354 inc->i_hdr.h_sport == 0) {
355 rds_recv_hs_exthdrs(&inc->i_hdr, cp->cp_conn);
356 /* if this is a handshake pong, start multipath if necessary */
357 rds_start_mprds(cp->cp_conn);
358 wake_up(&cp->cp_conn->c_hs_waitq);
359 goto out;
360 }
361
362 rs = rds_find_bound(daddr, inc->i_hdr.h_dport, conn->c_bound_if);
363 if (!rs) {
364 rds_stats_inc(s_recv_drop_no_sock);
365 goto out;
366 }
367
368 /* Process extension headers */
369 rds_recv_incoming_exthdrs(inc, rs);
370
371 /* We can be racing with rds_release() which marks the socket dead. */
372 sk = rds_rs_to_sk(rs);
373
374 /* serialize with rds_release -> sock_orphan */
375 write_lock_irqsave(&rs->rs_recv_lock, flags);
376 if (!sock_flag(sk, SOCK_DEAD)) {
377 rdsdebug("adding inc %p to rs %p's recv queue\n", inc, rs);
378 rds_stats_inc(s_recv_queued);
379 rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
380 be32_to_cpu(inc->i_hdr.h_len),
381 inc->i_hdr.h_dport);
382 if (sock_flag(sk, SOCK_RCVTSTAMP))
383 inc->i_usercopy.rx_tstamp = ktime_get_real();
384 rds_inc_addref(inc);
385 inc->i_rx_lat_trace[RDS_MSG_RX_END] = local_clock();
386 list_add_tail(&inc->i_item, &rs->rs_recv_queue);
387 __rds_wake_sk_sleep(sk);
388 } else {
389 rds_stats_inc(s_recv_drop_dead_sock);
390 }
391 write_unlock_irqrestore(&rs->rs_recv_lock, flags);
392
393out:
394 if (rs)
395 rds_sock_put(rs);
396}
397EXPORT_SYMBOL_GPL(rds_recv_incoming);
398
399/*
400 * be very careful here. This is being called as the condition in
401 * wait_event_*() needs to cope with being called many times.
402 */
403static int rds_next_incoming(struct rds_sock *rs, struct rds_incoming **inc)
404{
405 unsigned long flags;
406
407 if (!*inc) {
408 read_lock_irqsave(&rs->rs_recv_lock, flags);
409 if (!list_empty(&rs->rs_recv_queue)) {
410 *inc = list_entry(rs->rs_recv_queue.next,
411 struct rds_incoming,
412 i_item);
413 rds_inc_addref(*inc);
414 }
415 read_unlock_irqrestore(&rs->rs_recv_lock, flags);
416 }
417
418 return *inc != NULL;
419}
420
421static int rds_still_queued(struct rds_sock *rs, struct rds_incoming *inc,
422 int drop)
423{
424 struct sock *sk = rds_rs_to_sk(rs);
425 int ret = 0;
426 unsigned long flags;
427
428 write_lock_irqsave(&rs->rs_recv_lock, flags);
429 if (!list_empty(&inc->i_item)) {
430 ret = 1;
431 if (drop) {
432 /* XXX make sure this i_conn is reliable */
433 rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
434 -be32_to_cpu(inc->i_hdr.h_len),
435 inc->i_hdr.h_dport);
436 list_del_init(&inc->i_item);
437 rds_inc_put(inc);
438 }
439 }
440 write_unlock_irqrestore(&rs->rs_recv_lock, flags);
441
442 rdsdebug("inc %p rs %p still %d dropped %d\n", inc, rs, ret, drop);
443 return ret;
444}
445
446/*
447 * Pull errors off the error queue.
448 * If msghdr is NULL, we will just purge the error queue.
449 */
450int rds_notify_queue_get(struct rds_sock *rs, struct msghdr *msghdr)
451{
452 struct rds_notifier *notifier;
453 struct rds_rdma_notify cmsg;
454 unsigned int count = 0, max_messages = ~0U;
455 unsigned long flags;
456 LIST_HEAD(copy);
457 int err = 0;
458
459 memset(&cmsg, 0, sizeof(cmsg)); /* fill holes with zero */
460
461 /* put_cmsg copies to user space and thus may sleep. We can't do this
462 * with rs_lock held, so first grab as many notifications as we can stuff
463 * in the user provided cmsg buffer. We don't try to copy more, to avoid
464 * losing notifications - except when the buffer is so small that it wouldn't
465 * even hold a single notification. Then we give him as much of this single
466 * msg as we can squeeze in, and set MSG_CTRUNC.
467 */
468 if (msghdr) {
469 max_messages = msghdr->msg_controllen / CMSG_SPACE(sizeof(cmsg));
470 if (!max_messages)
471 max_messages = 1;
472 }
473
474 spin_lock_irqsave(&rs->rs_lock, flags);
475 while (!list_empty(&rs->rs_notify_queue) && count < max_messages) {
476 notifier = list_entry(rs->rs_notify_queue.next,
477 struct rds_notifier, n_list);
478 list_move(¬ifier->n_list, ©);
479 count++;
480 }
481 spin_unlock_irqrestore(&rs->rs_lock, flags);
482
483 if (!count)
484 return 0;
485
486 while (!list_empty(©)) {
487 notifier = list_entry(copy.next, struct rds_notifier, n_list);
488
489 if (msghdr) {
490 cmsg.user_token = notifier->n_user_token;
491 cmsg.status = notifier->n_status;
492
493 err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_RDMA_STATUS,
494 sizeof(cmsg), &cmsg);
495 if (err)
496 break;
497 }
498
499 list_del_init(¬ifier->n_list);
500 kfree(notifier);
501 }
502
503 /* If we bailed out because of an error in put_cmsg,
504 * we may be left with one or more notifications that we
505 * didn't process. Return them to the head of the list. */
506 if (!list_empty(©)) {
507 spin_lock_irqsave(&rs->rs_lock, flags);
508 list_splice(©, &rs->rs_notify_queue);
509 spin_unlock_irqrestore(&rs->rs_lock, flags);
510 }
511
512 return err;
513}
514
515/*
516 * Queue a congestion notification
517 */
518static int rds_notify_cong(struct rds_sock *rs, struct msghdr *msghdr)
519{
520 uint64_t notify = rs->rs_cong_notify;
521 unsigned long flags;
522 int err;
523
524 err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_CONG_UPDATE,
525 sizeof(notify), ¬ify);
526 if (err)
527 return err;
528
529 spin_lock_irqsave(&rs->rs_lock, flags);
530 rs->rs_cong_notify &= ~notify;
531 spin_unlock_irqrestore(&rs->rs_lock, flags);
532
533 return 0;
534}
535
536/*
537 * Receive any control messages.
538 */
539static int rds_cmsg_recv(struct rds_incoming *inc, struct msghdr *msg,
540 struct rds_sock *rs)
541{
542 int ret = 0;
543
544 if (inc->i_usercopy.rdma_cookie) {
545 ret = put_cmsg(msg, SOL_RDS, RDS_CMSG_RDMA_DEST,
546 sizeof(inc->i_usercopy.rdma_cookie),
547 &inc->i_usercopy.rdma_cookie);
548 if (ret)
549 goto out;
550 }
551
552 if ((inc->i_usercopy.rx_tstamp != 0) &&
553 sock_flag(rds_rs_to_sk(rs), SOCK_RCVTSTAMP)) {
554 struct __kernel_old_timeval tv =
555 ns_to_kernel_old_timeval(inc->i_usercopy.rx_tstamp);
556
557 if (!sock_flag(rds_rs_to_sk(rs), SOCK_TSTAMP_NEW)) {
558 ret = put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
559 sizeof(tv), &tv);
560 } else {
561 struct __kernel_sock_timeval sk_tv;
562
563 sk_tv.tv_sec = tv.tv_sec;
564 sk_tv.tv_usec = tv.tv_usec;
565
566 ret = put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
567 sizeof(sk_tv), &sk_tv);
568 }
569
570 if (ret)
571 goto out;
572 }
573
574 if (rs->rs_rx_traces) {
575 struct rds_cmsg_rx_trace t;
576 int i, j;
577
578 memset(&t, 0, sizeof(t));
579 inc->i_rx_lat_trace[RDS_MSG_RX_CMSG] = local_clock();
580 t.rx_traces = rs->rs_rx_traces;
581 for (i = 0; i < rs->rs_rx_traces; i++) {
582 j = rs->rs_rx_trace[i];
583 t.rx_trace_pos[i] = j;
584 t.rx_trace[i] = inc->i_rx_lat_trace[j + 1] -
585 inc->i_rx_lat_trace[j];
586 }
587
588 ret = put_cmsg(msg, SOL_RDS, RDS_CMSG_RXPATH_LATENCY,
589 sizeof(t), &t);
590 if (ret)
591 goto out;
592 }
593
594out:
595 return ret;
596}
597
598static bool rds_recvmsg_zcookie(struct rds_sock *rs, struct msghdr *msg)
599{
600 struct rds_msg_zcopy_queue *q = &rs->rs_zcookie_queue;
601 struct rds_msg_zcopy_info *info = NULL;
602 struct rds_zcopy_cookies *done;
603 unsigned long flags;
604
605 if (!msg->msg_control)
606 return false;
607
608 if (!sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY) ||
609 msg->msg_controllen < CMSG_SPACE(sizeof(*done)))
610 return false;
611
612 spin_lock_irqsave(&q->lock, flags);
613 if (!list_empty(&q->zcookie_head)) {
614 info = list_entry(q->zcookie_head.next,
615 struct rds_msg_zcopy_info, rs_zcookie_next);
616 list_del(&info->rs_zcookie_next);
617 }
618 spin_unlock_irqrestore(&q->lock, flags);
619 if (!info)
620 return false;
621 done = &info->zcookies;
622 if (put_cmsg(msg, SOL_RDS, RDS_CMSG_ZCOPY_COMPLETION, sizeof(*done),
623 done)) {
624 spin_lock_irqsave(&q->lock, flags);
625 list_add(&info->rs_zcookie_next, &q->zcookie_head);
626 spin_unlock_irqrestore(&q->lock, flags);
627 return false;
628 }
629 kfree(info);
630 return true;
631}
632
633int rds_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
634 int msg_flags)
635{
636 struct sock *sk = sock->sk;
637 struct rds_sock *rs = rds_sk_to_rs(sk);
638 long timeo;
639 int ret = 0, nonblock = msg_flags & MSG_DONTWAIT;
640 DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name);
641 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
642 struct rds_incoming *inc = NULL;
643
644 /* udp_recvmsg()->sock_recvtimeo() gets away without locking too.. */
645 timeo = sock_rcvtimeo(sk, nonblock);
646
647 rdsdebug("size %zu flags 0x%x timeo %ld\n", size, msg_flags, timeo);
648
649 if (msg_flags & MSG_OOB)
650 goto out;
651 if (msg_flags & MSG_ERRQUEUE)
652 return sock_recv_errqueue(sk, msg, size, SOL_IP, IP_RECVERR);
653
654 while (1) {
655 /* If there are pending notifications, do those - and nothing else */
656 if (!list_empty(&rs->rs_notify_queue)) {
657 ret = rds_notify_queue_get(rs, msg);
658 break;
659 }
660
661 if (rs->rs_cong_notify) {
662 ret = rds_notify_cong(rs, msg);
663 break;
664 }
665
666 if (!rds_next_incoming(rs, &inc)) {
667 if (nonblock) {
668 bool reaped = rds_recvmsg_zcookie(rs, msg);
669
670 ret = reaped ? 0 : -EAGAIN;
671 break;
672 }
673
674 timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
675 (!list_empty(&rs->rs_notify_queue) ||
676 rs->rs_cong_notify ||
677 rds_next_incoming(rs, &inc)), timeo);
678 rdsdebug("recvmsg woke inc %p timeo %ld\n", inc,
679 timeo);
680 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
681 continue;
682
683 ret = timeo;
684 if (ret == 0)
685 ret = -ETIMEDOUT;
686 break;
687 }
688
689 rdsdebug("copying inc %p from %pI6c:%u to user\n", inc,
690 &inc->i_conn->c_faddr,
691 ntohs(inc->i_hdr.h_sport));
692 ret = inc->i_conn->c_trans->inc_copy_to_user(inc, &msg->msg_iter);
693 if (ret < 0)
694 break;
695
696 /*
697 * if the message we just copied isn't at the head of the
698 * recv queue then someone else raced us to return it, try
699 * to get the next message.
700 */
701 if (!rds_still_queued(rs, inc, !(msg_flags & MSG_PEEK))) {
702 rds_inc_put(inc);
703 inc = NULL;
704 rds_stats_inc(s_recv_deliver_raced);
705 iov_iter_revert(&msg->msg_iter, ret);
706 continue;
707 }
708
709 if (ret < be32_to_cpu(inc->i_hdr.h_len)) {
710 if (msg_flags & MSG_TRUNC)
711 ret = be32_to_cpu(inc->i_hdr.h_len);
712 msg->msg_flags |= MSG_TRUNC;
713 }
714
715 if (rds_cmsg_recv(inc, msg, rs)) {
716 ret = -EFAULT;
717 goto out;
718 }
719 rds_recvmsg_zcookie(rs, msg);
720
721 rds_stats_inc(s_recv_delivered);
722
723 if (msg->msg_name) {
724 if (ipv6_addr_v4mapped(&inc->i_saddr)) {
725 sin = (struct sockaddr_in *)msg->msg_name;
726
727 sin->sin_family = AF_INET;
728 sin->sin_port = inc->i_hdr.h_sport;
729 sin->sin_addr.s_addr =
730 inc->i_saddr.s6_addr32[3];
731 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
732 msg->msg_namelen = sizeof(*sin);
733 } else {
734 sin6 = (struct sockaddr_in6 *)msg->msg_name;
735
736 sin6->sin6_family = AF_INET6;
737 sin6->sin6_port = inc->i_hdr.h_sport;
738 sin6->sin6_addr = inc->i_saddr;
739 sin6->sin6_flowinfo = 0;
740 sin6->sin6_scope_id = rs->rs_bound_scope_id;
741 msg->msg_namelen = sizeof(*sin6);
742 }
743 }
744 break;
745 }
746
747 if (inc)
748 rds_inc_put(inc);
749
750out:
751 return ret;
752}
753
754/*
755 * The socket is being shut down and we're asked to drop messages that were
756 * queued for recvmsg. The caller has unbound the socket so the receive path
757 * won't queue any more incoming fragments or messages on the socket.
758 */
759void rds_clear_recv_queue(struct rds_sock *rs)
760{
761 struct sock *sk = rds_rs_to_sk(rs);
762 struct rds_incoming *inc, *tmp;
763 unsigned long flags;
764
765 write_lock_irqsave(&rs->rs_recv_lock, flags);
766 list_for_each_entry_safe(inc, tmp, &rs->rs_recv_queue, i_item) {
767 rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
768 -be32_to_cpu(inc->i_hdr.h_len),
769 inc->i_hdr.h_dport);
770 list_del_init(&inc->i_item);
771 rds_inc_put(inc);
772 }
773 write_unlock_irqrestore(&rs->rs_recv_lock, flags);
774}
775
776/*
777 * inc->i_saddr isn't used here because it is only set in the receive
778 * path.
779 */
780void rds_inc_info_copy(struct rds_incoming *inc,
781 struct rds_info_iterator *iter,
782 __be32 saddr, __be32 daddr, int flip)
783{
784 struct rds_info_message minfo;
785
786 minfo.seq = be64_to_cpu(inc->i_hdr.h_sequence);
787 minfo.len = be32_to_cpu(inc->i_hdr.h_len);
788 minfo.tos = inc->i_conn->c_tos;
789
790 if (flip) {
791 minfo.laddr = daddr;
792 minfo.faddr = saddr;
793 minfo.lport = inc->i_hdr.h_dport;
794 minfo.fport = inc->i_hdr.h_sport;
795 } else {
796 minfo.laddr = saddr;
797 minfo.faddr = daddr;
798 minfo.lport = inc->i_hdr.h_sport;
799 minfo.fport = inc->i_hdr.h_dport;
800 }
801
802 minfo.flags = 0;
803
804 rds_info_copy(iter, &minfo, sizeof(minfo));
805}
806
807#if IS_ENABLED(CONFIG_IPV6)
808void rds6_inc_info_copy(struct rds_incoming *inc,
809 struct rds_info_iterator *iter,
810 struct in6_addr *saddr, struct in6_addr *daddr,
811 int flip)
812{
813 struct rds6_info_message minfo6;
814
815 minfo6.seq = be64_to_cpu(inc->i_hdr.h_sequence);
816 minfo6.len = be32_to_cpu(inc->i_hdr.h_len);
817 minfo6.tos = inc->i_conn->c_tos;
818
819 if (flip) {
820 minfo6.laddr = *daddr;
821 minfo6.faddr = *saddr;
822 minfo6.lport = inc->i_hdr.h_dport;
823 minfo6.fport = inc->i_hdr.h_sport;
824 } else {
825 minfo6.laddr = *saddr;
826 minfo6.faddr = *daddr;
827 minfo6.lport = inc->i_hdr.h_sport;
828 minfo6.fport = inc->i_hdr.h_dport;
829 }
830
831 minfo6.flags = 0;
832
833 rds_info_copy(iter, &minfo6, sizeof(minfo6));
834}
835#endif
1/*
2 * Copyright (c) 2006 Oracle. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33#include <linux/kernel.h>
34#include <linux/slab.h>
35#include <net/sock.h>
36#include <linux/in.h>
37
38#include "rds.h"
39
40void rds_inc_init(struct rds_incoming *inc, struct rds_connection *conn,
41 __be32 saddr)
42{
43 atomic_set(&inc->i_refcount, 1);
44 INIT_LIST_HEAD(&inc->i_item);
45 inc->i_conn = conn;
46 inc->i_saddr = saddr;
47 inc->i_rdma_cookie = 0;
48}
49EXPORT_SYMBOL_GPL(rds_inc_init);
50
51static void rds_inc_addref(struct rds_incoming *inc)
52{
53 rdsdebug("addref inc %p ref %d\n", inc, atomic_read(&inc->i_refcount));
54 atomic_inc(&inc->i_refcount);
55}
56
57void rds_inc_put(struct rds_incoming *inc)
58{
59 rdsdebug("put inc %p ref %d\n", inc, atomic_read(&inc->i_refcount));
60 if (atomic_dec_and_test(&inc->i_refcount)) {
61 BUG_ON(!list_empty(&inc->i_item));
62
63 inc->i_conn->c_trans->inc_free(inc);
64 }
65}
66EXPORT_SYMBOL_GPL(rds_inc_put);
67
68static void rds_recv_rcvbuf_delta(struct rds_sock *rs, struct sock *sk,
69 struct rds_cong_map *map,
70 int delta, __be16 port)
71{
72 int now_congested;
73
74 if (delta == 0)
75 return;
76
77 rs->rs_rcv_bytes += delta;
78 now_congested = rs->rs_rcv_bytes > rds_sk_rcvbuf(rs);
79
80 rdsdebug("rs %p (%pI4:%u) recv bytes %d buf %d "
81 "now_cong %d delta %d\n",
82 rs, &rs->rs_bound_addr,
83 ntohs(rs->rs_bound_port), rs->rs_rcv_bytes,
84 rds_sk_rcvbuf(rs), now_congested, delta);
85
86 /* wasn't -> am congested */
87 if (!rs->rs_congested && now_congested) {
88 rs->rs_congested = 1;
89 rds_cong_set_bit(map, port);
90 rds_cong_queue_updates(map);
91 }
92 /* was -> aren't congested */
93 /* Require more free space before reporting uncongested to prevent
94 bouncing cong/uncong state too often */
95 else if (rs->rs_congested && (rs->rs_rcv_bytes < (rds_sk_rcvbuf(rs)/2))) {
96 rs->rs_congested = 0;
97 rds_cong_clear_bit(map, port);
98 rds_cong_queue_updates(map);
99 }
100
101 /* do nothing if no change in cong state */
102}
103
104/*
105 * Process all extension headers that come with this message.
106 */
107static void rds_recv_incoming_exthdrs(struct rds_incoming *inc, struct rds_sock *rs)
108{
109 struct rds_header *hdr = &inc->i_hdr;
110 unsigned int pos = 0, type, len;
111 union {
112 struct rds_ext_header_version version;
113 struct rds_ext_header_rdma rdma;
114 struct rds_ext_header_rdma_dest rdma_dest;
115 } buffer;
116
117 while (1) {
118 len = sizeof(buffer);
119 type = rds_message_next_extension(hdr, &pos, &buffer, &len);
120 if (type == RDS_EXTHDR_NONE)
121 break;
122 /* Process extension header here */
123 switch (type) {
124 case RDS_EXTHDR_RDMA:
125 rds_rdma_unuse(rs, be32_to_cpu(buffer.rdma.h_rdma_rkey), 0);
126 break;
127
128 case RDS_EXTHDR_RDMA_DEST:
129 /* We ignore the size for now. We could stash it
130 * somewhere and use it for error checking. */
131 inc->i_rdma_cookie = rds_rdma_make_cookie(
132 be32_to_cpu(buffer.rdma_dest.h_rdma_rkey),
133 be32_to_cpu(buffer.rdma_dest.h_rdma_offset));
134
135 break;
136 }
137 }
138}
139
140/*
141 * The transport must make sure that this is serialized against other
142 * rx and conn reset on this specific conn.
143 *
144 * We currently assert that only one fragmented message will be sent
145 * down a connection at a time. This lets us reassemble in the conn
146 * instead of per-flow which means that we don't have to go digging through
147 * flows to tear down partial reassembly progress on conn failure and
148 * we save flow lookup and locking for each frag arrival. It does mean
149 * that small messages will wait behind large ones. Fragmenting at all
150 * is only to reduce the memory consumption of pre-posted buffers.
151 *
152 * The caller passes in saddr and daddr instead of us getting it from the
153 * conn. This lets loopback, who only has one conn for both directions,
154 * tell us which roles the addrs in the conn are playing for this message.
155 */
156void rds_recv_incoming(struct rds_connection *conn, __be32 saddr, __be32 daddr,
157 struct rds_incoming *inc, gfp_t gfp, enum km_type km)
158{
159 struct rds_sock *rs = NULL;
160 struct sock *sk;
161 unsigned long flags;
162
163 inc->i_conn = conn;
164 inc->i_rx_jiffies = jiffies;
165
166 rdsdebug("conn %p next %llu inc %p seq %llu len %u sport %u dport %u "
167 "flags 0x%x rx_jiffies %lu\n", conn,
168 (unsigned long long)conn->c_next_rx_seq,
169 inc,
170 (unsigned long long)be64_to_cpu(inc->i_hdr.h_sequence),
171 be32_to_cpu(inc->i_hdr.h_len),
172 be16_to_cpu(inc->i_hdr.h_sport),
173 be16_to_cpu(inc->i_hdr.h_dport),
174 inc->i_hdr.h_flags,
175 inc->i_rx_jiffies);
176
177 /*
178 * Sequence numbers should only increase. Messages get their
179 * sequence number as they're queued in a sending conn. They
180 * can be dropped, though, if the sending socket is closed before
181 * they hit the wire. So sequence numbers can skip forward
182 * under normal operation. They can also drop back in the conn
183 * failover case as previously sent messages are resent down the
184 * new instance of a conn. We drop those, otherwise we have
185 * to assume that the next valid seq does not come after a
186 * hole in the fragment stream.
187 *
188 * The headers don't give us a way to realize if fragments of
189 * a message have been dropped. We assume that frags that arrive
190 * to a flow are part of the current message on the flow that is
191 * being reassembled. This means that senders can't drop messages
192 * from the sending conn until all their frags are sent.
193 *
194 * XXX we could spend more on the wire to get more robust failure
195 * detection, arguably worth it to avoid data corruption.
196 */
197 if (be64_to_cpu(inc->i_hdr.h_sequence) < conn->c_next_rx_seq &&
198 (inc->i_hdr.h_flags & RDS_FLAG_RETRANSMITTED)) {
199 rds_stats_inc(s_recv_drop_old_seq);
200 goto out;
201 }
202 conn->c_next_rx_seq = be64_to_cpu(inc->i_hdr.h_sequence) + 1;
203
204 if (rds_sysctl_ping_enable && inc->i_hdr.h_dport == 0) {
205 rds_stats_inc(s_recv_ping);
206 rds_send_pong(conn, inc->i_hdr.h_sport);
207 goto out;
208 }
209
210 rs = rds_find_bound(daddr, inc->i_hdr.h_dport);
211 if (!rs) {
212 rds_stats_inc(s_recv_drop_no_sock);
213 goto out;
214 }
215
216 /* Process extension headers */
217 rds_recv_incoming_exthdrs(inc, rs);
218
219 /* We can be racing with rds_release() which marks the socket dead. */
220 sk = rds_rs_to_sk(rs);
221
222 /* serialize with rds_release -> sock_orphan */
223 write_lock_irqsave(&rs->rs_recv_lock, flags);
224 if (!sock_flag(sk, SOCK_DEAD)) {
225 rdsdebug("adding inc %p to rs %p's recv queue\n", inc, rs);
226 rds_stats_inc(s_recv_queued);
227 rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
228 be32_to_cpu(inc->i_hdr.h_len),
229 inc->i_hdr.h_dport);
230 rds_inc_addref(inc);
231 list_add_tail(&inc->i_item, &rs->rs_recv_queue);
232 __rds_wake_sk_sleep(sk);
233 } else {
234 rds_stats_inc(s_recv_drop_dead_sock);
235 }
236 write_unlock_irqrestore(&rs->rs_recv_lock, flags);
237
238out:
239 if (rs)
240 rds_sock_put(rs);
241}
242EXPORT_SYMBOL_GPL(rds_recv_incoming);
243
244/*
245 * be very careful here. This is being called as the condition in
246 * wait_event_*() needs to cope with being called many times.
247 */
248static int rds_next_incoming(struct rds_sock *rs, struct rds_incoming **inc)
249{
250 unsigned long flags;
251
252 if (!*inc) {
253 read_lock_irqsave(&rs->rs_recv_lock, flags);
254 if (!list_empty(&rs->rs_recv_queue)) {
255 *inc = list_entry(rs->rs_recv_queue.next,
256 struct rds_incoming,
257 i_item);
258 rds_inc_addref(*inc);
259 }
260 read_unlock_irqrestore(&rs->rs_recv_lock, flags);
261 }
262
263 return *inc != NULL;
264}
265
266static int rds_still_queued(struct rds_sock *rs, struct rds_incoming *inc,
267 int drop)
268{
269 struct sock *sk = rds_rs_to_sk(rs);
270 int ret = 0;
271 unsigned long flags;
272
273 write_lock_irqsave(&rs->rs_recv_lock, flags);
274 if (!list_empty(&inc->i_item)) {
275 ret = 1;
276 if (drop) {
277 /* XXX make sure this i_conn is reliable */
278 rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
279 -be32_to_cpu(inc->i_hdr.h_len),
280 inc->i_hdr.h_dport);
281 list_del_init(&inc->i_item);
282 rds_inc_put(inc);
283 }
284 }
285 write_unlock_irqrestore(&rs->rs_recv_lock, flags);
286
287 rdsdebug("inc %p rs %p still %d dropped %d\n", inc, rs, ret, drop);
288 return ret;
289}
290
291/*
292 * Pull errors off the error queue.
293 * If msghdr is NULL, we will just purge the error queue.
294 */
295int rds_notify_queue_get(struct rds_sock *rs, struct msghdr *msghdr)
296{
297 struct rds_notifier *notifier;
298 struct rds_rdma_notify cmsg = { 0 }; /* fill holes with zero */
299 unsigned int count = 0, max_messages = ~0U;
300 unsigned long flags;
301 LIST_HEAD(copy);
302 int err = 0;
303
304
305 /* put_cmsg copies to user space and thus may sleep. We can't do this
306 * with rs_lock held, so first grab as many notifications as we can stuff
307 * in the user provided cmsg buffer. We don't try to copy more, to avoid
308 * losing notifications - except when the buffer is so small that it wouldn't
309 * even hold a single notification. Then we give him as much of this single
310 * msg as we can squeeze in, and set MSG_CTRUNC.
311 */
312 if (msghdr) {
313 max_messages = msghdr->msg_controllen / CMSG_SPACE(sizeof(cmsg));
314 if (!max_messages)
315 max_messages = 1;
316 }
317
318 spin_lock_irqsave(&rs->rs_lock, flags);
319 while (!list_empty(&rs->rs_notify_queue) && count < max_messages) {
320 notifier = list_entry(rs->rs_notify_queue.next,
321 struct rds_notifier, n_list);
322 list_move(¬ifier->n_list, ©);
323 count++;
324 }
325 spin_unlock_irqrestore(&rs->rs_lock, flags);
326
327 if (!count)
328 return 0;
329
330 while (!list_empty(©)) {
331 notifier = list_entry(copy.next, struct rds_notifier, n_list);
332
333 if (msghdr) {
334 cmsg.user_token = notifier->n_user_token;
335 cmsg.status = notifier->n_status;
336
337 err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_RDMA_STATUS,
338 sizeof(cmsg), &cmsg);
339 if (err)
340 break;
341 }
342
343 list_del_init(¬ifier->n_list);
344 kfree(notifier);
345 }
346
347 /* If we bailed out because of an error in put_cmsg,
348 * we may be left with one or more notifications that we
349 * didn't process. Return them to the head of the list. */
350 if (!list_empty(©)) {
351 spin_lock_irqsave(&rs->rs_lock, flags);
352 list_splice(©, &rs->rs_notify_queue);
353 spin_unlock_irqrestore(&rs->rs_lock, flags);
354 }
355
356 return err;
357}
358
359/*
360 * Queue a congestion notification
361 */
362static int rds_notify_cong(struct rds_sock *rs, struct msghdr *msghdr)
363{
364 uint64_t notify = rs->rs_cong_notify;
365 unsigned long flags;
366 int err;
367
368 err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_CONG_UPDATE,
369 sizeof(notify), ¬ify);
370 if (err)
371 return err;
372
373 spin_lock_irqsave(&rs->rs_lock, flags);
374 rs->rs_cong_notify &= ~notify;
375 spin_unlock_irqrestore(&rs->rs_lock, flags);
376
377 return 0;
378}
379
380/*
381 * Receive any control messages.
382 */
383static int rds_cmsg_recv(struct rds_incoming *inc, struct msghdr *msg)
384{
385 int ret = 0;
386
387 if (inc->i_rdma_cookie) {
388 ret = put_cmsg(msg, SOL_RDS, RDS_CMSG_RDMA_DEST,
389 sizeof(inc->i_rdma_cookie), &inc->i_rdma_cookie);
390 if (ret)
391 return ret;
392 }
393
394 return 0;
395}
396
397int rds_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
398 size_t size, int msg_flags)
399{
400 struct sock *sk = sock->sk;
401 struct rds_sock *rs = rds_sk_to_rs(sk);
402 long timeo;
403 int ret = 0, nonblock = msg_flags & MSG_DONTWAIT;
404 struct sockaddr_in *sin;
405 struct rds_incoming *inc = NULL;
406
407 /* udp_recvmsg()->sock_recvtimeo() gets away without locking too.. */
408 timeo = sock_rcvtimeo(sk, nonblock);
409
410 rdsdebug("size %zu flags 0x%x timeo %ld\n", size, msg_flags, timeo);
411
412 if (msg_flags & MSG_OOB)
413 goto out;
414
415 while (1) {
416 /* If there are pending notifications, do those - and nothing else */
417 if (!list_empty(&rs->rs_notify_queue)) {
418 ret = rds_notify_queue_get(rs, msg);
419 break;
420 }
421
422 if (rs->rs_cong_notify) {
423 ret = rds_notify_cong(rs, msg);
424 break;
425 }
426
427 if (!rds_next_incoming(rs, &inc)) {
428 if (nonblock) {
429 ret = -EAGAIN;
430 break;
431 }
432
433 timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
434 (!list_empty(&rs->rs_notify_queue) ||
435 rs->rs_cong_notify ||
436 rds_next_incoming(rs, &inc)), timeo);
437 rdsdebug("recvmsg woke inc %p timeo %ld\n", inc,
438 timeo);
439 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
440 continue;
441
442 ret = timeo;
443 if (ret == 0)
444 ret = -ETIMEDOUT;
445 break;
446 }
447
448 rdsdebug("copying inc %p from %pI4:%u to user\n", inc,
449 &inc->i_conn->c_faddr,
450 ntohs(inc->i_hdr.h_sport));
451 ret = inc->i_conn->c_trans->inc_copy_to_user(inc, msg->msg_iov,
452 size);
453 if (ret < 0)
454 break;
455
456 /*
457 * if the message we just copied isn't at the head of the
458 * recv queue then someone else raced us to return it, try
459 * to get the next message.
460 */
461 if (!rds_still_queued(rs, inc, !(msg_flags & MSG_PEEK))) {
462 rds_inc_put(inc);
463 inc = NULL;
464 rds_stats_inc(s_recv_deliver_raced);
465 continue;
466 }
467
468 if (ret < be32_to_cpu(inc->i_hdr.h_len)) {
469 if (msg_flags & MSG_TRUNC)
470 ret = be32_to_cpu(inc->i_hdr.h_len);
471 msg->msg_flags |= MSG_TRUNC;
472 }
473
474 if (rds_cmsg_recv(inc, msg)) {
475 ret = -EFAULT;
476 goto out;
477 }
478
479 rds_stats_inc(s_recv_delivered);
480
481 sin = (struct sockaddr_in *)msg->msg_name;
482 if (sin) {
483 sin->sin_family = AF_INET;
484 sin->sin_port = inc->i_hdr.h_sport;
485 sin->sin_addr.s_addr = inc->i_saddr;
486 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
487 }
488 break;
489 }
490
491 if (inc)
492 rds_inc_put(inc);
493
494out:
495 return ret;
496}
497
498/*
499 * The socket is being shut down and we're asked to drop messages that were
500 * queued for recvmsg. The caller has unbound the socket so the receive path
501 * won't queue any more incoming fragments or messages on the socket.
502 */
503void rds_clear_recv_queue(struct rds_sock *rs)
504{
505 struct sock *sk = rds_rs_to_sk(rs);
506 struct rds_incoming *inc, *tmp;
507 unsigned long flags;
508
509 write_lock_irqsave(&rs->rs_recv_lock, flags);
510 list_for_each_entry_safe(inc, tmp, &rs->rs_recv_queue, i_item) {
511 rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
512 -be32_to_cpu(inc->i_hdr.h_len),
513 inc->i_hdr.h_dport);
514 list_del_init(&inc->i_item);
515 rds_inc_put(inc);
516 }
517 write_unlock_irqrestore(&rs->rs_recv_lock, flags);
518}
519
520/*
521 * inc->i_saddr isn't used here because it is only set in the receive
522 * path.
523 */
524void rds_inc_info_copy(struct rds_incoming *inc,
525 struct rds_info_iterator *iter,
526 __be32 saddr, __be32 daddr, int flip)
527{
528 struct rds_info_message minfo;
529
530 minfo.seq = be64_to_cpu(inc->i_hdr.h_sequence);
531 minfo.len = be32_to_cpu(inc->i_hdr.h_len);
532
533 if (flip) {
534 minfo.laddr = daddr;
535 minfo.faddr = saddr;
536 minfo.lport = inc->i_hdr.h_dport;
537 minfo.fport = inc->i_hdr.h_sport;
538 } else {
539 minfo.laddr = saddr;
540 minfo.faddr = daddr;
541 minfo.lport = inc->i_hdr.h_sport;
542 minfo.fport = inc->i_hdr.h_dport;
543 }
544
545 rds_info_copy(iter, &minfo, sizeof(minfo));
546}