Linux Audio

Check our new training course

Loading...
v5.9
  1/*
  2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
  3 *
  4 * This software is available to you under a choice of one of two
  5 * licenses.  You may choose to be licensed under the terms of the GNU
  6 * General Public License (GPL) Version 2, available from the file
  7 * COPYING in the main directory of this source tree, or the
  8 * OpenIB.org BSD license below:
  9 *
 10 *     Redistribution and use in source and binary forms, with or
 11 *     without modification, are permitted provided that the following
 12 *     conditions are met:
 13 *
 14 *      - Redistributions of source code must retain the above
 15 *        copyright notice, this list of conditions and the following
 16 *        disclaimer.
 17 *
 18 *      - Redistributions in binary form must reproduce the above
 19 *        copyright notice, this list of conditions and the following
 20 *        disclaimer in the documentation and/or other materials
 21 *        provided with the distribution.
 22 *
 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 30 * SOFTWARE.
 31 *
 32 */
 33#include <linux/module.h>
 34#include <linux/errno.h>
 35#include <linux/kernel.h>
 36#include <linux/gfp.h>
 37#include <linux/in.h>
 38#include <linux/ipv6.h>
 39#include <linux/poll.h>
 40#include <net/sock.h>
 41
 42#include "rds.h"
 43
 
 
 
 
 
 
 
 
 
 44/* this is just used for stats gathering :/ */
 45static DEFINE_SPINLOCK(rds_sock_lock);
 46static unsigned long rds_sock_count;
 47static LIST_HEAD(rds_sock_list);
 48DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
 49
 50/*
 51 * This is called as the final descriptor referencing this socket is closed.
 52 * We have to unbind the socket so that another socket can be bound to the
 53 * address it was using.
 54 *
 55 * We have to be careful about racing with the incoming path.  sock_orphan()
 56 * sets SOCK_DEAD and we use that as an indicator to the rx path that new
 57 * messages shouldn't be queued.
 58 */
 59static int rds_release(struct socket *sock)
 60{
 61	struct sock *sk = sock->sk;
 62	struct rds_sock *rs;
 
 63
 64	if (!sk)
 65		goto out;
 66
 67	rs = rds_sk_to_rs(sk);
 68
 69	sock_orphan(sk);
 70	/* Note - rds_clear_recv_queue grabs rs_recv_lock, so
 71	 * that ensures the recv path has completed messing
 72	 * with the socket. */
 73	rds_clear_recv_queue(rs);
 74	rds_cong_remove_socket(rs);
 75
 
 
 
 
 
 76	rds_remove_bound(rs);
 
 77
 78	rds_send_drop_to(rs, NULL);
 79	rds_rdma_drop_keys(rs);
 80	rds_notify_queue_get(rs, NULL);
 81	rds_notify_msg_zcopy_purge(&rs->rs_zcookie_queue);
 82
 83	spin_lock_bh(&rds_sock_lock);
 84	list_del_init(&rs->rs_item);
 85	rds_sock_count--;
 86	spin_unlock_bh(&rds_sock_lock);
 87
 88	rds_trans_put(rs->rs_transport);
 89
 90	sock->sk = NULL;
 91	sock_put(sk);
 92out:
 93	return 0;
 94}
 95
 96/*
 97 * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
 98 * _bh() isn't OK here, we're called from interrupt handlers.  It's probably OK
 99 * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
100 * this seems more conservative.
101 * NB - normally, one would use sk_callback_lock for this, but we can
102 * get here from interrupts, whereas the network code grabs sk_callback_lock
103 * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
104 */
105void rds_wake_sk_sleep(struct rds_sock *rs)
106{
107	unsigned long flags;
108
109	read_lock_irqsave(&rs->rs_recv_lock, flags);
110	__rds_wake_sk_sleep(rds_rs_to_sk(rs));
111	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
112}
113
114static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
115		       int peer)
116{
 
117	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
118	struct sockaddr_in6 *sin6;
119	struct sockaddr_in *sin;
120	int uaddr_len;
121
122	/* racey, don't care */
123	if (peer) {
124		if (ipv6_addr_any(&rs->rs_conn_addr))
125			return -ENOTCONN;
126
127		if (ipv6_addr_v4mapped(&rs->rs_conn_addr)) {
128			sin = (struct sockaddr_in *)uaddr;
129			memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
130			sin->sin_family = AF_INET;
131			sin->sin_port = rs->rs_conn_port;
132			sin->sin_addr.s_addr = rs->rs_conn_addr_v4;
133			uaddr_len = sizeof(*sin);
134		} else {
135			sin6 = (struct sockaddr_in6 *)uaddr;
136			sin6->sin6_family = AF_INET6;
137			sin6->sin6_port = rs->rs_conn_port;
138			sin6->sin6_addr = rs->rs_conn_addr;
139			sin6->sin6_flowinfo = 0;
140			/* scope_id is the same as in the bound address. */
141			sin6->sin6_scope_id = rs->rs_bound_scope_id;
142			uaddr_len = sizeof(*sin6);
143		}
144	} else {
145		/* If socket is not yet bound and the socket is connected,
146		 * set the return address family to be the same as the
147		 * connected address, but with 0 address value.  If it is not
148		 * connected, set the family to be AF_UNSPEC (value 0) and
149		 * the address size to be that of an IPv4 address.
150		 */
151		if (ipv6_addr_any(&rs->rs_bound_addr)) {
152			if (ipv6_addr_any(&rs->rs_conn_addr)) {
153				sin = (struct sockaddr_in *)uaddr;
154				memset(sin, 0, sizeof(*sin));
155				sin->sin_family = AF_UNSPEC;
156				return sizeof(*sin);
157			}
158
159#if IS_ENABLED(CONFIG_IPV6)
160			if (!(ipv6_addr_type(&rs->rs_conn_addr) &
161			      IPV6_ADDR_MAPPED)) {
162				sin6 = (struct sockaddr_in6 *)uaddr;
163				memset(sin6, 0, sizeof(*sin6));
164				sin6->sin6_family = AF_INET6;
165				return sizeof(*sin6);
166			}
167#endif
168
169			sin = (struct sockaddr_in *)uaddr;
170			memset(sin, 0, sizeof(*sin));
171			sin->sin_family = AF_INET;
172			return sizeof(*sin);
173		}
174		if (ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
175			sin = (struct sockaddr_in *)uaddr;
176			memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
177			sin->sin_family = AF_INET;
178			sin->sin_port = rs->rs_bound_port;
179			sin->sin_addr.s_addr = rs->rs_bound_addr_v4;
180			uaddr_len = sizeof(*sin);
181		} else {
182			sin6 = (struct sockaddr_in6 *)uaddr;
183			sin6->sin6_family = AF_INET6;
184			sin6->sin6_port = rs->rs_bound_port;
185			sin6->sin6_addr = rs->rs_bound_addr;
186			sin6->sin6_flowinfo = 0;
187			sin6->sin6_scope_id = rs->rs_bound_scope_id;
188			uaddr_len = sizeof(*sin6);
189		}
190	}
191
192	return uaddr_len;
 
 
 
193}
194
195/*
196 * RDS' poll is without a doubt the least intuitive part of the interface,
197 * as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from
198 * a network protocol.
199 *
200 * EPOLLIN is asserted if
201 *  -	there is data on the receive queue.
202 *  -	to signal that a previously congested destination may have become
203 *	uncongested
204 *  -	A notification has been queued to the socket (this can be a congestion
205 *	update, or a RDMA completion, or a MSG_ZEROCOPY completion).
206 *
207 * EPOLLOUT is asserted if there is room on the send queue. This does not mean
208 * however, that the next sendmsg() call will succeed. If the application tries
209 * to send to a congested destination, the system call may still fail (and
210 * return ENOBUFS).
211 */
212static __poll_t rds_poll(struct file *file, struct socket *sock,
213			     poll_table *wait)
214{
215	struct sock *sk = sock->sk;
216	struct rds_sock *rs = rds_sk_to_rs(sk);
217	__poll_t mask = 0;
218	unsigned long flags;
219
220	poll_wait(file, sk_sleep(sk), wait);
221
222	if (rs->rs_seen_congestion)
223		poll_wait(file, &rds_poll_waitq, wait);
224
225	read_lock_irqsave(&rs->rs_recv_lock, flags);
226	if (!rs->rs_cong_monitor) {
227		/* When a congestion map was updated, we signal EPOLLIN for
228		 * "historical" reasons. Applications can also poll for
229		 * WRBAND instead. */
230		if (rds_cong_updated_since(&rs->rs_cong_track))
231			mask |= (EPOLLIN | EPOLLRDNORM | EPOLLWRBAND);
232	} else {
233		spin_lock(&rs->rs_lock);
234		if (rs->rs_cong_notify)
235			mask |= (EPOLLIN | EPOLLRDNORM);
236		spin_unlock(&rs->rs_lock);
237	}
238	if (!list_empty(&rs->rs_recv_queue) ||
239	    !list_empty(&rs->rs_notify_queue) ||
240	    !list_empty(&rs->rs_zcookie_queue.zcookie_head))
241		mask |= (EPOLLIN | EPOLLRDNORM);
242	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
243		mask |= (EPOLLOUT | EPOLLWRNORM);
244	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
245		mask |= POLLERR;
246	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
247
248	/* clear state any time we wake a seen-congested socket */
249	if (mask)
250		rs->rs_seen_congestion = 0;
251
252	return mask;
253}
254
255static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
256{
257	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
258	rds_tos_t utos, tos = 0;
259
260	switch (cmd) {
261	case SIOCRDSSETTOS:
262		if (get_user(utos, (rds_tos_t __user *)arg))
263			return -EFAULT;
264
265		if (rs->rs_transport &&
266		    rs->rs_transport->get_tos_map)
267			tos = rs->rs_transport->get_tos_map(utos);
268		else
269			return -ENOIOCTLCMD;
270
271		spin_lock_bh(&rds_sock_lock);
272		if (rs->rs_tos || rs->rs_conn) {
273			spin_unlock_bh(&rds_sock_lock);
274			return -EINVAL;
275		}
276		rs->rs_tos = tos;
277		spin_unlock_bh(&rds_sock_lock);
278		break;
279	case SIOCRDSGETTOS:
280		spin_lock_bh(&rds_sock_lock);
281		tos = rs->rs_tos;
282		spin_unlock_bh(&rds_sock_lock);
283		if (put_user(tos, (rds_tos_t __user *)arg))
284			return -EFAULT;
285		break;
286	default:
287		return -ENOIOCTLCMD;
288	}
289
290	return 0;
291}
292
293static int rds_cancel_sent_to(struct rds_sock *rs, sockptr_t optval, int len)
 
294{
295	struct sockaddr_in6 sin6;
296	struct sockaddr_in sin;
297	int ret = 0;
298
299	/* racing with another thread binding seems ok here */
300	if (ipv6_addr_any(&rs->rs_bound_addr)) {
301		ret = -ENOTCONN; /* XXX not a great errno */
302		goto out;
303	}
304
305	if (len < sizeof(struct sockaddr_in)) {
306		ret = -EINVAL;
307		goto out;
308	} else if (len < sizeof(struct sockaddr_in6)) {
309		/* Assume IPv4 */
310		if (copy_from_sockptr(&sin, optval,
311				sizeof(struct sockaddr_in))) {
312			ret = -EFAULT;
313			goto out;
314		}
315		ipv6_addr_set_v4mapped(sin.sin_addr.s_addr, &sin6.sin6_addr);
316		sin6.sin6_port = sin.sin_port;
317	} else {
318		if (copy_from_sockptr(&sin6, optval,
319				   sizeof(struct sockaddr_in6))) {
320			ret = -EFAULT;
321			goto out;
322		}
323	}
324
325	rds_send_drop_to(rs, &sin6);
 
 
 
 
 
326out:
327	return ret;
328}
329
330static int rds_set_bool_option(unsigned char *optvar, sockptr_t optval,
331			       int optlen)
332{
333	int value;
334
335	if (optlen < sizeof(int))
336		return -EINVAL;
337	if (copy_from_sockptr(&value, optval, sizeof(int)))
338		return -EFAULT;
339	*optvar = !!value;
340	return 0;
341}
342
343static int rds_cong_monitor(struct rds_sock *rs, sockptr_t optval, int optlen)
 
344{
345	int ret;
346
347	ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
348	if (ret == 0) {
349		if (rs->rs_cong_monitor) {
350			rds_cong_add_socket(rs);
351		} else {
352			rds_cong_remove_socket(rs);
353			rs->rs_cong_mask = 0;
354			rs->rs_cong_notify = 0;
355		}
356	}
357	return ret;
358}
359
360static int rds_set_transport(struct rds_sock *rs, sockptr_t optval, int optlen)
361{
362	int t_type;
363
364	if (rs->rs_transport)
365		return -EOPNOTSUPP; /* previously attached to transport */
366
367	if (optlen != sizeof(int))
368		return -EINVAL;
369
370	if (copy_from_sockptr(&t_type, optval, sizeof(t_type)))
371		return -EFAULT;
372
373	if (t_type < 0 || t_type >= RDS_TRANS_COUNT)
374		return -EINVAL;
375
376	rs->rs_transport = rds_trans_get(t_type);
377
378	return rs->rs_transport ? 0 : -ENOPROTOOPT;
379}
380
381static int rds_enable_recvtstamp(struct sock *sk, sockptr_t optval,
382				 int optlen, int optname)
383{
384	int val, valbool;
385
386	if (optlen != sizeof(int))
387		return -EFAULT;
388
389	if (copy_from_sockptr(&val, optval, sizeof(int)))
390		return -EFAULT;
391
392	valbool = val ? 1 : 0;
393
394	if (optname == SO_TIMESTAMP_NEW)
395		sock_set_flag(sk, SOCK_TSTAMP_NEW);
396
397	if (valbool)
398		sock_set_flag(sk, SOCK_RCVTSTAMP);
399	else
400		sock_reset_flag(sk, SOCK_RCVTSTAMP);
401
402	return 0;
403}
404
405static int rds_recv_track_latency(struct rds_sock *rs, sockptr_t optval,
406				  int optlen)
407{
408	struct rds_rx_trace_so trace;
409	int i;
410
411	if (optlen != sizeof(struct rds_rx_trace_so))
412		return -EFAULT;
413
414	if (copy_from_sockptr(&trace, optval, sizeof(trace)))
415		return -EFAULT;
416
417	if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX)
418		return -EFAULT;
419
420	rs->rs_rx_traces = trace.rx_traces;
421	for (i = 0; i < rs->rs_rx_traces; i++) {
422		if (trace.rx_trace_pos[i] > RDS_MSG_RX_DGRAM_TRACE_MAX) {
423			rs->rs_rx_traces = 0;
424			return -EFAULT;
425		}
426		rs->rs_rx_trace[i] = trace.rx_trace_pos[i];
427	}
428
429	return 0;
430}
431
432static int rds_setsockopt(struct socket *sock, int level, int optname,
433			  sockptr_t optval, unsigned int optlen)
434{
435	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
436	int ret;
437
438	if (level != SOL_RDS) {
439		ret = -ENOPROTOOPT;
440		goto out;
441	}
442
443	switch (optname) {
444	case RDS_CANCEL_SENT_TO:
445		ret = rds_cancel_sent_to(rs, optval, optlen);
446		break;
447	case RDS_GET_MR:
448		ret = rds_get_mr(rs, optval, optlen);
449		break;
450	case RDS_GET_MR_FOR_DEST:
451		ret = rds_get_mr_for_dest(rs, optval, optlen);
452		break;
453	case RDS_FREE_MR:
454		ret = rds_free_mr(rs, optval, optlen);
455		break;
456	case RDS_RECVERR:
457		ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
458		break;
459	case RDS_CONG_MONITOR:
460		ret = rds_cong_monitor(rs, optval, optlen);
461		break;
462	case SO_RDS_TRANSPORT:
463		lock_sock(sock->sk);
464		ret = rds_set_transport(rs, optval, optlen);
465		release_sock(sock->sk);
466		break;
467	case SO_TIMESTAMP_OLD:
468	case SO_TIMESTAMP_NEW:
469		lock_sock(sock->sk);
470		ret = rds_enable_recvtstamp(sock->sk, optval, optlen, optname);
471		release_sock(sock->sk);
472		break;
473	case SO_RDS_MSG_RXPATH_LATENCY:
474		ret = rds_recv_track_latency(rs, optval, optlen);
475		break;
476	default:
477		ret = -ENOPROTOOPT;
478	}
479out:
480	return ret;
481}
482
483static int rds_getsockopt(struct socket *sock, int level, int optname,
484			  char __user *optval, int __user *optlen)
485{
486	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
487	int ret = -ENOPROTOOPT, len;
488	int trans;
489
490	if (level != SOL_RDS)
491		goto out;
492
493	if (get_user(len, optlen)) {
494		ret = -EFAULT;
495		goto out;
496	}
497
498	switch (optname) {
499	case RDS_INFO_FIRST ... RDS_INFO_LAST:
500		ret = rds_info_getsockopt(sock, optname, optval,
501					  optlen);
502		break;
503
504	case RDS_RECVERR:
505		if (len < sizeof(int))
506			ret = -EINVAL;
507		else
508		if (put_user(rs->rs_recverr, (int __user *) optval) ||
509		    put_user(sizeof(int), optlen))
510			ret = -EFAULT;
511		else
512			ret = 0;
513		break;
514	case SO_RDS_TRANSPORT:
515		if (len < sizeof(int)) {
516			ret = -EINVAL;
517			break;
518		}
519		trans = (rs->rs_transport ? rs->rs_transport->t_type :
520			 RDS_TRANS_NONE); /* unbound */
521		if (put_user(trans, (int __user *)optval) ||
522		    put_user(sizeof(int), optlen))
523			ret = -EFAULT;
524		else
525			ret = 0;
526		break;
527	default:
528		break;
529	}
530
531out:
532	return ret;
533
534}
535
536static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
537		       int addr_len, int flags)
538{
539	struct sock *sk = sock->sk;
540	struct sockaddr_in *sin;
541	struct rds_sock *rs = rds_sk_to_rs(sk);
542	int ret = 0;
543
544	if (addr_len < offsetofend(struct sockaddr, sa_family))
545		return -EINVAL;
546
547	lock_sock(sk);
548
549	switch (uaddr->sa_family) {
550	case AF_INET:
551		sin = (struct sockaddr_in *)uaddr;
552		if (addr_len < sizeof(struct sockaddr_in)) {
553			ret = -EINVAL;
554			break;
555		}
556		if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
557			ret = -EDESTADDRREQ;
558			break;
559		}
560		if (ipv4_is_multicast(sin->sin_addr.s_addr) ||
561		    sin->sin_addr.s_addr == htonl(INADDR_BROADCAST)) {
562			ret = -EINVAL;
563			break;
564		}
565		ipv6_addr_set_v4mapped(sin->sin_addr.s_addr, &rs->rs_conn_addr);
566		rs->rs_conn_port = sin->sin_port;
567		break;
568
569#if IS_ENABLED(CONFIG_IPV6)
570	case AF_INET6: {
571		struct sockaddr_in6 *sin6;
572		int addr_type;
573
574		sin6 = (struct sockaddr_in6 *)uaddr;
575		if (addr_len < sizeof(struct sockaddr_in6)) {
576			ret = -EINVAL;
577			break;
578		}
579		addr_type = ipv6_addr_type(&sin6->sin6_addr);
580		if (!(addr_type & IPV6_ADDR_UNICAST)) {
581			__be32 addr4;
582
583			if (!(addr_type & IPV6_ADDR_MAPPED)) {
584				ret = -EPROTOTYPE;
585				break;
586			}
587
588			/* It is a mapped address.  Need to do some sanity
589			 * checks.
590			 */
591			addr4 = sin6->sin6_addr.s6_addr32[3];
592			if (addr4 == htonl(INADDR_ANY) ||
593			    addr4 == htonl(INADDR_BROADCAST) ||
594			    ipv4_is_multicast(addr4)) {
595				ret = -EPROTOTYPE;
596				break;
597			}
598		}
599
600		if (addr_type & IPV6_ADDR_LINKLOCAL) {
601			/* If socket is arleady bound to a link local address,
602			 * the peer address must be on the same link.
603			 */
604			if (sin6->sin6_scope_id == 0 ||
605			    (!ipv6_addr_any(&rs->rs_bound_addr) &&
606			     rs->rs_bound_scope_id &&
607			     sin6->sin6_scope_id != rs->rs_bound_scope_id)) {
608				ret = -EINVAL;
609				break;
610			}
611			/* Remember the connected address scope ID.  It will
612			 * be checked against the binding local address when
613			 * the socket is bound.
614			 */
615			rs->rs_bound_scope_id = sin6->sin6_scope_id;
616		}
617		rs->rs_conn_addr = sin6->sin6_addr;
618		rs->rs_conn_port = sin6->sin6_port;
619		break;
620	}
621#endif
622
623	default:
624		ret = -EAFNOSUPPORT;
625		break;
626	}
627
 
 
 
 
 
 
 
 
 
628	release_sock(sk);
629	return ret;
630}
631
632static struct proto rds_proto = {
633	.name	  = "RDS",
634	.owner	  = THIS_MODULE,
635	.obj_size = sizeof(struct rds_sock),
636};
637
638static const struct proto_ops rds_proto_ops = {
639	.family =	AF_RDS,
640	.owner =	THIS_MODULE,
641	.release =	rds_release,
642	.bind =		rds_bind,
643	.connect =	rds_connect,
644	.socketpair =	sock_no_socketpair,
645	.accept =	sock_no_accept,
646	.getname =	rds_getname,
647	.poll =		rds_poll,
648	.ioctl =	rds_ioctl,
649	.listen =	sock_no_listen,
650	.shutdown =	sock_no_shutdown,
651	.setsockopt =	rds_setsockopt,
652	.getsockopt =	rds_getsockopt,
653	.sendmsg =	rds_sendmsg,
654	.recvmsg =	rds_recvmsg,
655	.mmap =		sock_no_mmap,
656	.sendpage =	sock_no_sendpage,
657};
658
659static void rds_sock_destruct(struct sock *sk)
660{
661	struct rds_sock *rs = rds_sk_to_rs(sk);
662
663	WARN_ON((&rs->rs_item != rs->rs_item.next ||
664		 &rs->rs_item != rs->rs_item.prev));
665}
666
667static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
668{
 
669	struct rds_sock *rs;
670
671	sock_init_data(sock, sk);
672	sock->ops		= &rds_proto_ops;
673	sk->sk_protocol		= protocol;
674	sk->sk_destruct		= rds_sock_destruct;
675
676	rs = rds_sk_to_rs(sk);
677	spin_lock_init(&rs->rs_lock);
678	rwlock_init(&rs->rs_recv_lock);
679	INIT_LIST_HEAD(&rs->rs_send_queue);
680	INIT_LIST_HEAD(&rs->rs_recv_queue);
681	INIT_LIST_HEAD(&rs->rs_notify_queue);
682	INIT_LIST_HEAD(&rs->rs_cong_list);
683	rds_message_zcopy_queue_init(&rs->rs_zcookie_queue);
684	spin_lock_init(&rs->rs_rdma_lock);
685	rs->rs_rdma_keys = RB_ROOT;
686	rs->rs_rx_traces = 0;
687	rs->rs_tos = 0;
688	rs->rs_conn = NULL;
689
690	spin_lock_bh(&rds_sock_lock);
691	list_add_tail(&rs->rs_item, &rds_sock_list);
692	rds_sock_count++;
693	spin_unlock_bh(&rds_sock_lock);
694
695	return 0;
696}
697
698static int rds_create(struct net *net, struct socket *sock, int protocol,
699		      int kern)
700{
701	struct sock *sk;
702
703	if (sock->type != SOCK_SEQPACKET || protocol)
704		return -ESOCKTNOSUPPORT;
705
706	sk = sk_alloc(net, AF_RDS, GFP_KERNEL, &rds_proto, kern);
707	if (!sk)
708		return -ENOMEM;
709
710	return __rds_create(sock, sk, protocol);
711}
712
713void rds_sock_addref(struct rds_sock *rs)
714{
715	sock_hold(rds_rs_to_sk(rs));
716}
717
718void rds_sock_put(struct rds_sock *rs)
719{
720	sock_put(rds_rs_to_sk(rs));
721}
722
723static const struct net_proto_family rds_family_ops = {
724	.family =	AF_RDS,
725	.create =	rds_create,
726	.owner	=	THIS_MODULE,
727};
728
729static void rds_sock_inc_info(struct socket *sock, unsigned int len,
730			      struct rds_info_iterator *iter,
731			      struct rds_info_lengths *lens)
732{
733	struct rds_sock *rs;
734	struct rds_incoming *inc;
 
735	unsigned int total = 0;
736
737	len /= sizeof(struct rds_info_message);
738
739	spin_lock_bh(&rds_sock_lock);
740
741	list_for_each_entry(rs, &rds_sock_list, rs_item) {
742		/* This option only supports IPv4 sockets. */
743		if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
744			continue;
745
746		read_lock(&rs->rs_recv_lock);
747
748		/* XXX too lazy to maintain counts.. */
749		list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
750			total++;
751			if (total <= len)
752				rds_inc_info_copy(inc, iter,
753						  inc->i_saddr.s6_addr32[3],
754						  rs->rs_bound_addr_v4,
755						  1);
756		}
757
758		read_unlock(&rs->rs_recv_lock);
759	}
760
761	spin_unlock_bh(&rds_sock_lock);
762
763	lens->nr = total;
764	lens->each = sizeof(struct rds_info_message);
765}
766
767#if IS_ENABLED(CONFIG_IPV6)
768static void rds6_sock_inc_info(struct socket *sock, unsigned int len,
769			       struct rds_info_iterator *iter,
770			       struct rds_info_lengths *lens)
771{
772	struct rds_incoming *inc;
773	unsigned int total = 0;
774	struct rds_sock *rs;
775
776	len /= sizeof(struct rds6_info_message);
777
778	spin_lock_bh(&rds_sock_lock);
779
780	list_for_each_entry(rs, &rds_sock_list, rs_item) {
781		read_lock(&rs->rs_recv_lock);
782
783		list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
784			total++;
785			if (total <= len)
786				rds6_inc_info_copy(inc, iter, &inc->i_saddr,
787						   &rs->rs_bound_addr, 1);
788		}
789
790		read_unlock(&rs->rs_recv_lock);
791	}
792
793	spin_unlock_bh(&rds_sock_lock);
794
795	lens->nr = total;
796	lens->each = sizeof(struct rds6_info_message);
797}
798#endif
799
800static void rds_sock_info(struct socket *sock, unsigned int len,
801			  struct rds_info_iterator *iter,
802			  struct rds_info_lengths *lens)
803{
804	struct rds_info_socket sinfo;
805	unsigned int cnt = 0;
806	struct rds_sock *rs;
 
807
808	len /= sizeof(struct rds_info_socket);
809
810	spin_lock_bh(&rds_sock_lock);
811
812	if (len < rds_sock_count) {
813		cnt = rds_sock_count;
814		goto out;
815	}
816
817	list_for_each_entry(rs, &rds_sock_list, rs_item) {
818		/* This option only supports IPv4 sockets. */
819		if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
820			continue;
821		sinfo.sndbuf = rds_sk_sndbuf(rs);
822		sinfo.rcvbuf = rds_sk_rcvbuf(rs);
823		sinfo.bound_addr = rs->rs_bound_addr_v4;
824		sinfo.connected_addr = rs->rs_conn_addr_v4;
825		sinfo.bound_port = rs->rs_bound_port;
826		sinfo.connected_port = rs->rs_conn_port;
827		sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
828
829		rds_info_copy(iter, &sinfo, sizeof(sinfo));
830		cnt++;
831	}
832
833out:
834	lens->nr = cnt;
835	lens->each = sizeof(struct rds_info_socket);
836
837	spin_unlock_bh(&rds_sock_lock);
838}
839
840#if IS_ENABLED(CONFIG_IPV6)
841static void rds6_sock_info(struct socket *sock, unsigned int len,
842			   struct rds_info_iterator *iter,
843			   struct rds_info_lengths *lens)
844{
845	struct rds6_info_socket sinfo6;
846	struct rds_sock *rs;
847
848	len /= sizeof(struct rds6_info_socket);
849
850	spin_lock_bh(&rds_sock_lock);
851
852	if (len < rds_sock_count)
853		goto out;
854
855	list_for_each_entry(rs, &rds_sock_list, rs_item) {
856		sinfo6.sndbuf = rds_sk_sndbuf(rs);
857		sinfo6.rcvbuf = rds_sk_rcvbuf(rs);
858		sinfo6.bound_addr = rs->rs_bound_addr;
859		sinfo6.connected_addr = rs->rs_conn_addr;
860		sinfo6.bound_port = rs->rs_bound_port;
861		sinfo6.connected_port = rs->rs_conn_port;
862		sinfo6.inum = sock_i_ino(rds_rs_to_sk(rs));
863
864		rds_info_copy(iter, &sinfo6, sizeof(sinfo6));
865	}
866
867 out:
868	lens->nr = rds_sock_count;
869	lens->each = sizeof(struct rds6_info_socket);
870
871	spin_unlock_bh(&rds_sock_lock);
872}
873#endif
874
875static void rds_exit(void)
876{
877	sock_unregister(rds_family_ops.family);
878	proto_unregister(&rds_proto);
879	rds_conn_exit();
880	rds_cong_exit();
881	rds_sysctl_exit();
882	rds_threads_exit();
883	rds_stats_exit();
884	rds_page_exit();
885	rds_bind_lock_destroy();
886	rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
887	rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
888#if IS_ENABLED(CONFIG_IPV6)
889	rds_info_deregister_func(RDS6_INFO_SOCKETS, rds6_sock_info);
890	rds_info_deregister_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
891#endif
892}
893module_exit(rds_exit);
894
895u32 rds_gen_num;
896
897static int rds_init(void)
898{
899	int ret;
900
901	net_get_random_once(&rds_gen_num, sizeof(rds_gen_num));
902
903	ret = rds_bind_lock_init();
904	if (ret)
905		goto out;
906
907	ret = rds_conn_init();
908	if (ret)
909		goto out_bind;
910
911	ret = rds_threads_init();
912	if (ret)
913		goto out_conn;
914	ret = rds_sysctl_init();
915	if (ret)
916		goto out_threads;
917	ret = rds_stats_init();
918	if (ret)
919		goto out_sysctl;
920	ret = proto_register(&rds_proto, 1);
921	if (ret)
922		goto out_stats;
923	ret = sock_register(&rds_family_ops);
924	if (ret)
925		goto out_proto;
926
927	rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
928	rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
929#if IS_ENABLED(CONFIG_IPV6)
930	rds_info_register_func(RDS6_INFO_SOCKETS, rds6_sock_info);
931	rds_info_register_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
932#endif
933
934	goto out;
935
936out_proto:
937	proto_unregister(&rds_proto);
938out_stats:
939	rds_stats_exit();
940out_sysctl:
941	rds_sysctl_exit();
942out_threads:
943	rds_threads_exit();
944out_conn:
945	rds_conn_exit();
946	rds_cong_exit();
947	rds_page_exit();
948out_bind:
949	rds_bind_lock_destroy();
950out:
951	return ret;
952}
953module_init(rds_init);
954
955#define DRV_VERSION     "4.0"
956#define DRV_RELDATE     "Feb 12, 2009"
957
958MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
959MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
960		   " v" DRV_VERSION " (" DRV_RELDATE ")");
961MODULE_VERSION(DRV_VERSION);
962MODULE_LICENSE("Dual BSD/GPL");
963MODULE_ALIAS_NETPROTO(PF_RDS);
v3.1
  1/*
  2 * Copyright (c) 2006 Oracle.  All rights reserved.
  3 *
  4 * This software is available to you under a choice of one of two
  5 * licenses.  You may choose to be licensed under the terms of the GNU
  6 * General Public License (GPL) Version 2, available from the file
  7 * COPYING in the main directory of this source tree, or the
  8 * OpenIB.org BSD license below:
  9 *
 10 *     Redistribution and use in source and binary forms, with or
 11 *     without modification, are permitted provided that the following
 12 *     conditions are met:
 13 *
 14 *      - Redistributions of source code must retain the above
 15 *        copyright notice, this list of conditions and the following
 16 *        disclaimer.
 17 *
 18 *      - Redistributions in binary form must reproduce the above
 19 *        copyright notice, this list of conditions and the following
 20 *        disclaimer in the documentation and/or other materials
 21 *        provided with the distribution.
 22 *
 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 30 * SOFTWARE.
 31 *
 32 */
 33#include <linux/module.h>
 34#include <linux/errno.h>
 35#include <linux/kernel.h>
 36#include <linux/gfp.h>
 37#include <linux/in.h>
 
 38#include <linux/poll.h>
 39#include <net/sock.h>
 40
 41#include "rds.h"
 42
 43char *rds_str_array(char **array, size_t elements, size_t index)
 44{
 45	if ((index < elements) && array[index])
 46		return array[index];
 47	else
 48		return "unknown";
 49}
 50EXPORT_SYMBOL(rds_str_array);
 51
 52/* this is just used for stats gathering :/ */
 53static DEFINE_SPINLOCK(rds_sock_lock);
 54static unsigned long rds_sock_count;
 55static LIST_HEAD(rds_sock_list);
 56DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
 57
 58/*
 59 * This is called as the final descriptor referencing this socket is closed.
 60 * We have to unbind the socket so that another socket can be bound to the
 61 * address it was using.
 62 *
 63 * We have to be careful about racing with the incoming path.  sock_orphan()
 64 * sets SOCK_DEAD and we use that as an indicator to the rx path that new
 65 * messages shouldn't be queued.
 66 */
 67static int rds_release(struct socket *sock)
 68{
 69	struct sock *sk = sock->sk;
 70	struct rds_sock *rs;
 71	unsigned long flags;
 72
 73	if (!sk)
 74		goto out;
 75
 76	rs = rds_sk_to_rs(sk);
 77
 78	sock_orphan(sk);
 79	/* Note - rds_clear_recv_queue grabs rs_recv_lock, so
 80	 * that ensures the recv path has completed messing
 81	 * with the socket. */
 82	rds_clear_recv_queue(rs);
 83	rds_cong_remove_socket(rs);
 84
 85	/*
 86	 * the binding lookup hash uses rcu, we need to
 87	 * make sure we sychronize_rcu before we free our
 88	 * entry
 89	 */
 90	rds_remove_bound(rs);
 91	synchronize_rcu();
 92
 93	rds_send_drop_to(rs, NULL);
 94	rds_rdma_drop_keys(rs);
 95	rds_notify_queue_get(rs, NULL);
 
 96
 97	spin_lock_irqsave(&rds_sock_lock, flags);
 98	list_del_init(&rs->rs_item);
 99	rds_sock_count--;
100	spin_unlock_irqrestore(&rds_sock_lock, flags);
101
102	rds_trans_put(rs->rs_transport);
103
104	sock->sk = NULL;
105	sock_put(sk);
106out:
107	return 0;
108}
109
110/*
111 * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
112 * _bh() isn't OK here, we're called from interrupt handlers.  It's probably OK
113 * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
114 * this seems more conservative.
115 * NB - normally, one would use sk_callback_lock for this, but we can
116 * get here from interrupts, whereas the network code grabs sk_callback_lock
117 * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
118 */
119void rds_wake_sk_sleep(struct rds_sock *rs)
120{
121	unsigned long flags;
122
123	read_lock_irqsave(&rs->rs_recv_lock, flags);
124	__rds_wake_sk_sleep(rds_rs_to_sk(rs));
125	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
126}
127
128static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
129		       int *uaddr_len, int peer)
130{
131	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
132	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
133
134	memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
 
135
136	/* racey, don't care */
137	if (peer) {
138		if (!rs->rs_conn_addr)
139			return -ENOTCONN;
140
141		sin->sin_port = rs->rs_conn_port;
142		sin->sin_addr.s_addr = rs->rs_conn_addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143	} else {
144		sin->sin_port = rs->rs_bound_port;
145		sin->sin_addr.s_addr = rs->rs_bound_addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146	}
147
148	sin->sin_family = AF_INET;
149
150	*uaddr_len = sizeof(*sin);
151	return 0;
152}
153
154/*
155 * RDS' poll is without a doubt the least intuitive part of the interface,
156 * as POLLIN and POLLOUT do not behave entirely as you would expect from
157 * a network protocol.
158 *
159 * POLLIN is asserted if
160 *  -	there is data on the receive queue.
161 *  -	to signal that a previously congested destination may have become
162 *	uncongested
163 *  -	A notification has been queued to the socket (this can be a congestion
164 *	update, or a RDMA completion).
165 *
166 * POLLOUT is asserted if there is room on the send queue. This does not mean
167 * however, that the next sendmsg() call will succeed. If the application tries
168 * to send to a congested destination, the system call may still fail (and
169 * return ENOBUFS).
170 */
171static unsigned int rds_poll(struct file *file, struct socket *sock,
172			     poll_table *wait)
173{
174	struct sock *sk = sock->sk;
175	struct rds_sock *rs = rds_sk_to_rs(sk);
176	unsigned int mask = 0;
177	unsigned long flags;
178
179	poll_wait(file, sk_sleep(sk), wait);
180
181	if (rs->rs_seen_congestion)
182		poll_wait(file, &rds_poll_waitq, wait);
183
184	read_lock_irqsave(&rs->rs_recv_lock, flags);
185	if (!rs->rs_cong_monitor) {
186		/* When a congestion map was updated, we signal POLLIN for
187		 * "historical" reasons. Applications can also poll for
188		 * WRBAND instead. */
189		if (rds_cong_updated_since(&rs->rs_cong_track))
190			mask |= (POLLIN | POLLRDNORM | POLLWRBAND);
191	} else {
192		spin_lock(&rs->rs_lock);
193		if (rs->rs_cong_notify)
194			mask |= (POLLIN | POLLRDNORM);
195		spin_unlock(&rs->rs_lock);
196	}
197	if (!list_empty(&rs->rs_recv_queue) ||
198	    !list_empty(&rs->rs_notify_queue))
199		mask |= (POLLIN | POLLRDNORM);
 
200	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
201		mask |= (POLLOUT | POLLWRNORM);
 
 
202	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
203
204	/* clear state any time we wake a seen-congested socket */
205	if (mask)
206		rs->rs_seen_congestion = 0;
207
208	return mask;
209}
210
211static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
212{
213	return -ENOIOCTLCMD;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214}
215
216static int rds_cancel_sent_to(struct rds_sock *rs, char __user *optval,
217			      int len)
218{
 
219	struct sockaddr_in sin;
220	int ret = 0;
221
222	/* racing with another thread binding seems ok here */
223	if (rs->rs_bound_addr == 0) {
224		ret = -ENOTCONN; /* XXX not a great errno */
225		goto out;
226	}
227
228	if (len < sizeof(struct sockaddr_in)) {
229		ret = -EINVAL;
230		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231	}
232
233	if (copy_from_user(&sin, optval, sizeof(sin))) {
234		ret = -EFAULT;
235		goto out;
236	}
237
238	rds_send_drop_to(rs, &sin);
239out:
240	return ret;
241}
242
243static int rds_set_bool_option(unsigned char *optvar, char __user *optval,
244			       int optlen)
245{
246	int value;
247
248	if (optlen < sizeof(int))
249		return -EINVAL;
250	if (get_user(value, (int __user *) optval))
251		return -EFAULT;
252	*optvar = !!value;
253	return 0;
254}
255
256static int rds_cong_monitor(struct rds_sock *rs, char __user *optval,
257			    int optlen)
258{
259	int ret;
260
261	ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
262	if (ret == 0) {
263		if (rs->rs_cong_monitor) {
264			rds_cong_add_socket(rs);
265		} else {
266			rds_cong_remove_socket(rs);
267			rs->rs_cong_mask = 0;
268			rs->rs_cong_notify = 0;
269		}
270	}
271	return ret;
272}
273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274static int rds_setsockopt(struct socket *sock, int level, int optname,
275			  char __user *optval, unsigned int optlen)
276{
277	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
278	int ret;
279
280	if (level != SOL_RDS) {
281		ret = -ENOPROTOOPT;
282		goto out;
283	}
284
285	switch (optname) {
286	case RDS_CANCEL_SENT_TO:
287		ret = rds_cancel_sent_to(rs, optval, optlen);
288		break;
289	case RDS_GET_MR:
290		ret = rds_get_mr(rs, optval, optlen);
291		break;
292	case RDS_GET_MR_FOR_DEST:
293		ret = rds_get_mr_for_dest(rs, optval, optlen);
294		break;
295	case RDS_FREE_MR:
296		ret = rds_free_mr(rs, optval, optlen);
297		break;
298	case RDS_RECVERR:
299		ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
300		break;
301	case RDS_CONG_MONITOR:
302		ret = rds_cong_monitor(rs, optval, optlen);
303		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304	default:
305		ret = -ENOPROTOOPT;
306	}
307out:
308	return ret;
309}
310
311static int rds_getsockopt(struct socket *sock, int level, int optname,
312			  char __user *optval, int __user *optlen)
313{
314	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
315	int ret = -ENOPROTOOPT, len;
 
316
317	if (level != SOL_RDS)
318		goto out;
319
320	if (get_user(len, optlen)) {
321		ret = -EFAULT;
322		goto out;
323	}
324
325	switch (optname) {
326	case RDS_INFO_FIRST ... RDS_INFO_LAST:
327		ret = rds_info_getsockopt(sock, optname, optval,
328					  optlen);
329		break;
330
331	case RDS_RECVERR:
332		if (len < sizeof(int))
333			ret = -EINVAL;
334		else
335		if (put_user(rs->rs_recverr, (int __user *) optval) ||
336		    put_user(sizeof(int), optlen))
337			ret = -EFAULT;
338		else
339			ret = 0;
340		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
341	default:
342		break;
343	}
344
345out:
346	return ret;
347
348}
349
350static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
351		       int addr_len, int flags)
352{
353	struct sock *sk = sock->sk;
354	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
355	struct rds_sock *rs = rds_sk_to_rs(sk);
356	int ret = 0;
357
 
 
 
358	lock_sock(sk);
359
360	if (addr_len != sizeof(struct sockaddr_in)) {
361		ret = -EINVAL;
362		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
363	}
 
364
365	if (sin->sin_family != AF_INET) {
366		ret = -EAFNOSUPPORT;
367		goto out;
368	}
369
370	if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
371		ret = -EDESTADDRREQ;
372		goto out;
373	}
374
375	rs->rs_conn_addr = sin->sin_addr.s_addr;
376	rs->rs_conn_port = sin->sin_port;
377
378out:
379	release_sock(sk);
380	return ret;
381}
382
383static struct proto rds_proto = {
384	.name	  = "RDS",
385	.owner	  = THIS_MODULE,
386	.obj_size = sizeof(struct rds_sock),
387};
388
389static const struct proto_ops rds_proto_ops = {
390	.family =	AF_RDS,
391	.owner =	THIS_MODULE,
392	.release =	rds_release,
393	.bind =		rds_bind,
394	.connect =	rds_connect,
395	.socketpair =	sock_no_socketpair,
396	.accept =	sock_no_accept,
397	.getname =	rds_getname,
398	.poll =		rds_poll,
399	.ioctl =	rds_ioctl,
400	.listen =	sock_no_listen,
401	.shutdown =	sock_no_shutdown,
402	.setsockopt =	rds_setsockopt,
403	.getsockopt =	rds_getsockopt,
404	.sendmsg =	rds_sendmsg,
405	.recvmsg =	rds_recvmsg,
406	.mmap =		sock_no_mmap,
407	.sendpage =	sock_no_sendpage,
408};
409
 
 
 
 
 
 
 
 
410static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
411{
412	unsigned long flags;
413	struct rds_sock *rs;
414
415	sock_init_data(sock, sk);
416	sock->ops		= &rds_proto_ops;
417	sk->sk_protocol		= protocol;
 
418
419	rs = rds_sk_to_rs(sk);
420	spin_lock_init(&rs->rs_lock);
421	rwlock_init(&rs->rs_recv_lock);
422	INIT_LIST_HEAD(&rs->rs_send_queue);
423	INIT_LIST_HEAD(&rs->rs_recv_queue);
424	INIT_LIST_HEAD(&rs->rs_notify_queue);
425	INIT_LIST_HEAD(&rs->rs_cong_list);
 
426	spin_lock_init(&rs->rs_rdma_lock);
427	rs->rs_rdma_keys = RB_ROOT;
 
 
 
428
429	spin_lock_irqsave(&rds_sock_lock, flags);
430	list_add_tail(&rs->rs_item, &rds_sock_list);
431	rds_sock_count++;
432	spin_unlock_irqrestore(&rds_sock_lock, flags);
433
434	return 0;
435}
436
437static int rds_create(struct net *net, struct socket *sock, int protocol,
438		      int kern)
439{
440	struct sock *sk;
441
442	if (sock->type != SOCK_SEQPACKET || protocol)
443		return -ESOCKTNOSUPPORT;
444
445	sk = sk_alloc(net, AF_RDS, GFP_ATOMIC, &rds_proto);
446	if (!sk)
447		return -ENOMEM;
448
449	return __rds_create(sock, sk, protocol);
450}
451
452void rds_sock_addref(struct rds_sock *rs)
453{
454	sock_hold(rds_rs_to_sk(rs));
455}
456
457void rds_sock_put(struct rds_sock *rs)
458{
459	sock_put(rds_rs_to_sk(rs));
460}
461
462static const struct net_proto_family rds_family_ops = {
463	.family =	AF_RDS,
464	.create =	rds_create,
465	.owner	=	THIS_MODULE,
466};
467
468static void rds_sock_inc_info(struct socket *sock, unsigned int len,
469			      struct rds_info_iterator *iter,
470			      struct rds_info_lengths *lens)
471{
472	struct rds_sock *rs;
473	struct rds_incoming *inc;
474	unsigned long flags;
475	unsigned int total = 0;
476
477	len /= sizeof(struct rds_info_message);
478
479	spin_lock_irqsave(&rds_sock_lock, flags);
480
481	list_for_each_entry(rs, &rds_sock_list, rs_item) {
 
 
 
 
482		read_lock(&rs->rs_recv_lock);
483
484		/* XXX too lazy to maintain counts.. */
485		list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
486			total++;
487			if (total <= len)
488				rds_inc_info_copy(inc, iter, inc->i_saddr,
489						  rs->rs_bound_addr, 1);
 
 
490		}
491
492		read_unlock(&rs->rs_recv_lock);
493	}
494
495	spin_unlock_irqrestore(&rds_sock_lock, flags);
496
497	lens->nr = total;
498	lens->each = sizeof(struct rds_info_message);
499}
500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
501static void rds_sock_info(struct socket *sock, unsigned int len,
502			  struct rds_info_iterator *iter,
503			  struct rds_info_lengths *lens)
504{
505	struct rds_info_socket sinfo;
 
506	struct rds_sock *rs;
507	unsigned long flags;
508
509	len /= sizeof(struct rds_info_socket);
510
511	spin_lock_irqsave(&rds_sock_lock, flags);
512
513	if (len < rds_sock_count)
 
514		goto out;
 
515
516	list_for_each_entry(rs, &rds_sock_list, rs_item) {
 
 
 
517		sinfo.sndbuf = rds_sk_sndbuf(rs);
518		sinfo.rcvbuf = rds_sk_rcvbuf(rs);
519		sinfo.bound_addr = rs->rs_bound_addr;
520		sinfo.connected_addr = rs->rs_conn_addr;
521		sinfo.bound_port = rs->rs_bound_port;
522		sinfo.connected_port = rs->rs_conn_port;
523		sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
524
525		rds_info_copy(iter, &sinfo, sizeof(sinfo));
 
526	}
527
528out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
529	lens->nr = rds_sock_count;
530	lens->each = sizeof(struct rds_info_socket);
531
532	spin_unlock_irqrestore(&rds_sock_lock, flags);
533}
 
534
535static void rds_exit(void)
536{
537	sock_unregister(rds_family_ops.family);
538	proto_unregister(&rds_proto);
539	rds_conn_exit();
540	rds_cong_exit();
541	rds_sysctl_exit();
542	rds_threads_exit();
543	rds_stats_exit();
544	rds_page_exit();
 
545	rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
546	rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
 
 
 
 
547}
548module_exit(rds_exit);
549
 
 
550static int rds_init(void)
551{
552	int ret;
553
 
 
 
 
 
 
554	ret = rds_conn_init();
555	if (ret)
556		goto out;
 
557	ret = rds_threads_init();
558	if (ret)
559		goto out_conn;
560	ret = rds_sysctl_init();
561	if (ret)
562		goto out_threads;
563	ret = rds_stats_init();
564	if (ret)
565		goto out_sysctl;
566	ret = proto_register(&rds_proto, 1);
567	if (ret)
568		goto out_stats;
569	ret = sock_register(&rds_family_ops);
570	if (ret)
571		goto out_proto;
572
573	rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
574	rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
 
 
 
 
575
576	goto out;
577
578out_proto:
579	proto_unregister(&rds_proto);
580out_stats:
581	rds_stats_exit();
582out_sysctl:
583	rds_sysctl_exit();
584out_threads:
585	rds_threads_exit();
586out_conn:
587	rds_conn_exit();
588	rds_cong_exit();
589	rds_page_exit();
 
 
590out:
591	return ret;
592}
593module_init(rds_init);
594
595#define DRV_VERSION     "4.0"
596#define DRV_RELDATE     "Feb 12, 2009"
597
598MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
599MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
600		   " v" DRV_VERSION " (" DRV_RELDATE ")");
601MODULE_VERSION(DRV_VERSION);
602MODULE_LICENSE("Dual BSD/GPL");
603MODULE_ALIAS_NETPROTO(PF_RDS);