Linux Audio

Check our new training course

Loading...
v5.9
  1/*
  2 *	IDE I/O functions
  3 *
  4 *	Basic PIO and command management functionality.
  5 *
  6 * This code was split off from ide.c. See ide.c for history and original
  7 * copyrights.
  8 *
  9 * This program is free software; you can redistribute it and/or modify it
 10 * under the terms of the GNU General Public License as published by the
 11 * Free Software Foundation; either version 2, or (at your option) any
 12 * later version.
 13 *
 14 * This program is distributed in the hope that it will be useful, but
 15 * WITHOUT ANY WARRANTY; without even the implied warranty of
 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 17 * General Public License for more details.
 18 *
 19 * For the avoidance of doubt the "preferred form" of this code is one which
 20 * is in an open non patent encumbered format. Where cryptographic key signing
 21 * forms part of the process of creating an executable the information
 22 * including keys needed to generate an equivalently functional executable
 23 * are deemed to be part of the source code.
 24 */
 25 
 26 
 27#include <linux/module.h>
 28#include <linux/types.h>
 29#include <linux/string.h>
 30#include <linux/kernel.h>
 31#include <linux/timer.h>
 32#include <linux/mm.h>
 33#include <linux/interrupt.h>
 34#include <linux/major.h>
 35#include <linux/errno.h>
 36#include <linux/genhd.h>
 37#include <linux/blkpg.h>
 38#include <linux/slab.h>
 39#include <linux/init.h>
 40#include <linux/pci.h>
 41#include <linux/delay.h>
 42#include <linux/ide.h>
 43#include <linux/completion.h>
 44#include <linux/reboot.h>
 45#include <linux/cdrom.h>
 46#include <linux/seq_file.h>
 47#include <linux/device.h>
 48#include <linux/kmod.h>
 49#include <linux/scatterlist.h>
 50#include <linux/bitops.h>
 51
 52#include <asm/byteorder.h>
 53#include <asm/irq.h>
 54#include <linux/uaccess.h>
 55#include <asm/io.h>
 56
 57int ide_end_rq(ide_drive_t *drive, struct request *rq, blk_status_t error,
 58	       unsigned int nr_bytes)
 59{
 60	/*
 61	 * decide whether to reenable DMA -- 3 is a random magic for now,
 62	 * if we DMA timeout more than 3 times, just stay in PIO
 63	 */
 64	if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
 65	    drive->retry_pio <= 3) {
 66		drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
 67		ide_dma_on(drive);
 68	}
 69
 70	if (!blk_update_request(rq, error, nr_bytes)) {
 71		if (rq == drive->sense_rq) {
 72			drive->sense_rq = NULL;
 73			drive->sense_rq_active = false;
 74		}
 75
 76		__blk_mq_end_request(rq, error);
 77		return 0;
 78	}
 79
 80	return 1;
 81}
 82EXPORT_SYMBOL_GPL(ide_end_rq);
 83
 84void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
 85{
 86	const struct ide_tp_ops *tp_ops = drive->hwif->tp_ops;
 87	struct ide_taskfile *tf = &cmd->tf;
 88	struct request *rq = cmd->rq;
 89	u8 tf_cmd = tf->command;
 90
 91	tf->error = err;
 92	tf->status = stat;
 93
 94	if (cmd->ftf_flags & IDE_FTFLAG_IN_DATA) {
 95		u8 data[2];
 96
 97		tp_ops->input_data(drive, cmd, data, 2);
 98
 99		cmd->tf.data  = data[0];
100		cmd->hob.data = data[1];
101	}
102
103	ide_tf_readback(drive, cmd);
104
105	if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
106	    tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
107		if (tf->lbal != 0xc4) {
108			printk(KERN_ERR "%s: head unload failed!\n",
109			       drive->name);
110			ide_tf_dump(drive->name, cmd);
111		} else
112			drive->dev_flags |= IDE_DFLAG_PARKED;
113	}
114
115	if (rq && ata_taskfile_request(rq)) {
116		struct ide_cmd *orig_cmd = ide_req(rq)->special;
117
118		if (cmd->tf_flags & IDE_TFLAG_DYN)
119			kfree(orig_cmd);
120		else if (cmd != orig_cmd)
121			memcpy(orig_cmd, cmd, sizeof(*cmd));
122	}
123}
124
125int ide_complete_rq(ide_drive_t *drive, blk_status_t error, unsigned int nr_bytes)
126{
127	ide_hwif_t *hwif = drive->hwif;
128	struct request *rq = hwif->rq;
129	int rc;
130
131	/*
132	 * if failfast is set on a request, override number of sectors
133	 * and complete the whole request right now
134	 */
135	if (blk_noretry_request(rq) && error)
136		nr_bytes = blk_rq_sectors(rq) << 9;
137
138	rc = ide_end_rq(drive, rq, error, nr_bytes);
139	if (rc == 0)
140		hwif->rq = NULL;
141
142	return rc;
143}
144EXPORT_SYMBOL(ide_complete_rq);
145
146void ide_kill_rq(ide_drive_t *drive, struct request *rq)
147{
148	u8 drv_req = ata_misc_request(rq) && rq->rq_disk;
149	u8 media = drive->media;
150
151	drive->failed_pc = NULL;
152
153	if ((media == ide_floppy || media == ide_tape) && drv_req) {
154		scsi_req(rq)->result = 0;
155	} else {
156		if (media == ide_tape)
157			scsi_req(rq)->result = IDE_DRV_ERROR_GENERAL;
158		else if (blk_rq_is_passthrough(rq) && scsi_req(rq)->result == 0)
159			scsi_req(rq)->result = -EIO;
160	}
161
162	ide_complete_rq(drive, BLK_STS_IOERR, blk_rq_bytes(rq));
163}
164
165static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
166{
167	tf->nsect   = drive->sect;
168	tf->lbal    = drive->sect;
169	tf->lbam    = drive->cyl;
170	tf->lbah    = drive->cyl >> 8;
171	tf->device  = (drive->head - 1) | drive->select;
172	tf->command = ATA_CMD_INIT_DEV_PARAMS;
173}
174
175static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
176{
177	tf->nsect   = drive->sect;
178	tf->command = ATA_CMD_RESTORE;
179}
180
181static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
182{
183	tf->nsect   = drive->mult_req;
184	tf->command = ATA_CMD_SET_MULTI;
185}
186
187/**
188 *	do_special		-	issue some special commands
189 *	@drive: drive the command is for
190 *
191 *	do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
192 *	ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
193 */
194
195static ide_startstop_t do_special(ide_drive_t *drive)
196{
197	struct ide_cmd cmd;
198
199#ifdef DEBUG
200	printk(KERN_DEBUG "%s: %s: 0x%02x\n", drive->name, __func__,
201		drive->special_flags);
202#endif
203	if (drive->media != ide_disk) {
204		drive->special_flags = 0;
205		drive->mult_req = 0;
206		return ide_stopped;
207	}
208
209	memset(&cmd, 0, sizeof(cmd));
210	cmd.protocol = ATA_PROT_NODATA;
211
212	if (drive->special_flags & IDE_SFLAG_SET_GEOMETRY) {
213		drive->special_flags &= ~IDE_SFLAG_SET_GEOMETRY;
214		ide_tf_set_specify_cmd(drive, &cmd.tf);
215	} else if (drive->special_flags & IDE_SFLAG_RECALIBRATE) {
216		drive->special_flags &= ~IDE_SFLAG_RECALIBRATE;
217		ide_tf_set_restore_cmd(drive, &cmd.tf);
218	} else if (drive->special_flags & IDE_SFLAG_SET_MULTMODE) {
219		drive->special_flags &= ~IDE_SFLAG_SET_MULTMODE;
220		ide_tf_set_setmult_cmd(drive, &cmd.tf);
221	} else
222		BUG();
223
224	cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
225	cmd.valid.in.tf  = IDE_VALID_IN_TF  | IDE_VALID_DEVICE;
226	cmd.tf_flags = IDE_TFLAG_CUSTOM_HANDLER;
227
228	do_rw_taskfile(drive, &cmd);
229
230	return ide_started;
231}
232
233void ide_map_sg(ide_drive_t *drive, struct ide_cmd *cmd)
234{
235	ide_hwif_t *hwif = drive->hwif;
236	struct scatterlist *sg = hwif->sg_table, *last_sg = NULL;
237	struct request *rq = cmd->rq;
238
239	cmd->sg_nents = __blk_rq_map_sg(drive->queue, rq, sg, &last_sg);
240	if (blk_rq_bytes(rq) && (blk_rq_bytes(rq) & rq->q->dma_pad_mask))
241		last_sg->length +=
242			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
243}
244EXPORT_SYMBOL_GPL(ide_map_sg);
245
246void ide_init_sg_cmd(struct ide_cmd *cmd, unsigned int nr_bytes)
247{
248	cmd->nbytes = cmd->nleft = nr_bytes;
249	cmd->cursg_ofs = 0;
250	cmd->cursg = NULL;
251}
252EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
253
254/**
255 *	execute_drive_command	-	issue special drive command
256 *	@drive: the drive to issue the command on
257 *	@rq: the request structure holding the command
258 *
259 *	execute_drive_cmd() issues a special drive command,  usually 
260 *	initiated by ioctl() from the external hdparm program. The
261 *	command can be a drive command, drive task or taskfile 
262 *	operation. Weirdly you can call it with NULL to wait for
263 *	all commands to finish. Don't do this as that is due to change
264 */
265
266static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
267		struct request *rq)
268{
269	struct ide_cmd *cmd = ide_req(rq)->special;
270
271	if (cmd) {
272		if (cmd->protocol == ATA_PROT_PIO) {
273			ide_init_sg_cmd(cmd, blk_rq_sectors(rq) << 9);
274			ide_map_sg(drive, cmd);
275		}
276
277		return do_rw_taskfile(drive, cmd);
278	}
279
280 	/*
281 	 * NULL is actually a valid way of waiting for
282 	 * all current requests to be flushed from the queue.
283 	 */
284#ifdef DEBUG
285 	printk("%s: DRIVE_CMD (null)\n", drive->name);
286#endif
287	scsi_req(rq)->result = 0;
288	ide_complete_rq(drive, BLK_STS_OK, blk_rq_bytes(rq));
289
290 	return ide_stopped;
291}
292
293static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
294{
295	u8 cmd = scsi_req(rq)->cmd[0];
296
297	switch (cmd) {
298	case REQ_PARK_HEADS:
299	case REQ_UNPARK_HEADS:
300		return ide_do_park_unpark(drive, rq);
301	case REQ_DEVSET_EXEC:
302		return ide_do_devset(drive, rq);
303	case REQ_DRIVE_RESET:
304		return ide_do_reset(drive);
305	default:
306		BUG();
307	}
308}
309
310/**
311 *	start_request	-	start of I/O and command issuing for IDE
312 *
313 *	start_request() initiates handling of a new I/O request. It
314 *	accepts commands and I/O (read/write) requests.
315 *
316 *	FIXME: this function needs a rename
317 */
318 
319static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
320{
321	ide_startstop_t startstop;
322
 
 
323#ifdef DEBUG
324	printk("%s: start_request: current=0x%08lx\n",
325		drive->hwif->name, (unsigned long) rq);
326#endif
327
328	/* bail early if we've exceeded max_failures */
329	if (drive->max_failures && (drive->failures > drive->max_failures)) {
330		rq->rq_flags |= RQF_FAILED;
331		goto kill_rq;
332	}
333
334	if (drive->prep_rq && !drive->prep_rq(drive, rq))
335		return ide_stopped;
336
337	if (ata_pm_request(rq))
338		ide_check_pm_state(drive, rq);
339
340	drive->hwif->tp_ops->dev_select(drive);
341	if (ide_wait_stat(&startstop, drive, drive->ready_stat,
342			  ATA_BUSY | ATA_DRQ, WAIT_READY)) {
343		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
344		return startstop;
345	}
346
347	if (drive->special_flags == 0) {
348		struct ide_driver *drv;
349
350		/*
351		 * We reset the drive so we need to issue a SETFEATURES.
352		 * Do it _after_ do_special() restored device parameters.
353		 */
354		if (drive->current_speed == 0xff)
355			ide_config_drive_speed(drive, drive->desired_speed);
356
357		if (ata_taskfile_request(rq))
358			return execute_drive_cmd(drive, rq);
359		else if (ata_pm_request(rq)) {
360			struct ide_pm_state *pm = ide_req(rq)->special;
361#ifdef DEBUG_PM
362			printk("%s: start_power_step(step: %d)\n",
363				drive->name, pm->pm_step);
364#endif
365			startstop = ide_start_power_step(drive, rq);
366			if (startstop == ide_stopped &&
367			    pm->pm_step == IDE_PM_COMPLETED)
368				ide_complete_pm_rq(drive, rq);
369			return startstop;
370		} else if (!rq->rq_disk && ata_misc_request(rq))
371			/*
372			 * TODO: Once all ULDs have been modified to
373			 * check for specific op codes rather than
374			 * blindly accepting any special request, the
375			 * check for ->rq_disk above may be replaced
376			 * by a more suitable mechanism or even
377			 * dropped entirely.
378			 */
379			return ide_special_rq(drive, rq);
380
381		drv = *(struct ide_driver **)rq->rq_disk->private_data;
382
383		return drv->do_request(drive, rq, blk_rq_pos(rq));
384	}
385	return do_special(drive);
386kill_rq:
387	ide_kill_rq(drive, rq);
388	return ide_stopped;
389}
390
391/**
392 *	ide_stall_queue		-	pause an IDE device
393 *	@drive: drive to stall
394 *	@timeout: time to stall for (jiffies)
395 *
396 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
397 *	to the port by sleeping for timeout jiffies.
398 */
399 
400void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
401{
402	if (timeout > WAIT_WORSTCASE)
403		timeout = WAIT_WORSTCASE;
404	drive->sleep = timeout + jiffies;
405	drive->dev_flags |= IDE_DFLAG_SLEEPING;
406}
407EXPORT_SYMBOL(ide_stall_queue);
408
409static inline int ide_lock_port(ide_hwif_t *hwif)
410{
411	if (hwif->busy)
412		return 1;
413
414	hwif->busy = 1;
415
416	return 0;
417}
418
419static inline void ide_unlock_port(ide_hwif_t *hwif)
420{
421	hwif->busy = 0;
422}
423
424static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
425{
426	int rc = 0;
427
428	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
429		rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
430		if (rc == 0) {
431			if (host->get_lock)
432				host->get_lock(ide_intr, hwif);
433		}
434	}
435	return rc;
436}
437
438static inline void ide_unlock_host(struct ide_host *host)
439{
440	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
441		if (host->release_lock)
442			host->release_lock();
443		clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
444	}
445}
446
 
 
 
 
 
 
 
 
 
 
447void ide_requeue_and_plug(ide_drive_t *drive, struct request *rq)
448{
449	struct request_queue *q = drive->queue;
 
450
451	/* Use 3ms as that was the old plug delay */
452	if (rq) {
453		blk_mq_requeue_request(rq, false);
454		blk_mq_delay_kick_requeue_list(q, 3);
455	} else
456		blk_mq_delay_run_hw_queue(q->queue_hw_ctx[0], 3);
457}
458
459blk_status_t ide_issue_rq(ide_drive_t *drive, struct request *rq,
460			  bool local_requeue)
 
 
461{
462	ide_hwif_t *hwif = drive->hwif;
 
463	struct ide_host *host = hwif->host;
 
464	ide_startstop_t	startstop;
 
465
466	if (!blk_rq_is_passthrough(rq) && !(rq->rq_flags & RQF_DONTPREP)) {
467		rq->rq_flags |= RQF_DONTPREP;
468		ide_req(rq)->special = NULL;
469	}
470
471	/* HLD do_request() callback might sleep, make sure it's okay */
472	might_sleep();
473
474	if (ide_lock_host(host, hwif))
475		return BLK_STS_DEV_RESOURCE;
476
477	spin_lock_irq(&hwif->lock);
478
479	if (!ide_lock_port(hwif)) {
480		ide_hwif_t *prev_port;
481
482		WARN_ON_ONCE(hwif->rq);
483repeat:
484		prev_port = hwif->host->cur_port;
485		if (drive->dev_flags & IDE_DFLAG_SLEEPING &&
486		    time_after(drive->sleep, jiffies)) {
 
 
 
487			ide_unlock_port(hwif);
488			goto plug_device;
489		}
490
491		if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
492		    hwif != prev_port) {
493			ide_drive_t *cur_dev =
494				prev_port ? prev_port->cur_dev : NULL;
495
496			/*
497			 * set nIEN for previous port, drives in the
498			 * quirk list may not like intr setups/cleanups
499			 */
500			if (cur_dev &&
501			    (cur_dev->dev_flags & IDE_DFLAG_NIEN_QUIRK) == 0)
502				prev_port->tp_ops->write_devctl(prev_port,
503								ATA_NIEN |
504								ATA_DEVCTL_OBS);
505
506			hwif->host->cur_port = hwif;
507		}
508		hwif->cur_dev = drive;
509		drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
511		/*
512		 * Sanity: don't accept a request that isn't a PM request
513		 * if we are currently power managed. This is very important as
514		 * blk_stop_queue() doesn't prevent the blk_fetch_request()
515		 * above to return us whatever is in the queue. Since we call
516		 * ide_do_request() ourselves, we end up taking requests while
517		 * the queue is blocked...
518		 * 
519		 * We let requests forced at head of queue with ide-preempt
520		 * though. I hope that doesn't happen too much, hopefully not
521		 * unless the subdriver triggers such a thing in its own PM
522		 * state machine.
523		 */
524		if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
525		    ata_pm_request(rq) == 0 &&
526		    (rq->rq_flags & RQF_PREEMPT) == 0) {
527			/* there should be no pending command at this point */
528			ide_unlock_port(hwif);
529			goto plug_device;
530		}
531
532		scsi_req(rq)->resid_len = blk_rq_bytes(rq);
533		hwif->rq = rq;
534
535		spin_unlock_irq(&hwif->lock);
536		startstop = start_request(drive, rq);
537		spin_lock_irq(&hwif->lock);
538
539		if (startstop == ide_stopped) {
540			rq = hwif->rq;
541			hwif->rq = NULL;
542			if (rq)
543				goto repeat;
544			ide_unlock_port(hwif);
545			goto out;
546		}
547	} else {
548plug_device:
549		if (local_requeue)
550			list_add(&rq->queuelist, &drive->rq_list);
551		spin_unlock_irq(&hwif->lock);
552		ide_unlock_host(host);
553		if (!local_requeue)
554			ide_requeue_and_plug(drive, rq);
555		return BLK_STS_OK;
556	}
557
558out:
559	spin_unlock_irq(&hwif->lock);
560	if (rq == NULL)
561		ide_unlock_host(host);
562	return BLK_STS_OK;
563}
564
565/*
566 * Issue a new request to a device.
567 */
568blk_status_t ide_queue_rq(struct blk_mq_hw_ctx *hctx,
569			  const struct blk_mq_queue_data *bd)
570{
571	ide_drive_t *drive = hctx->queue->queuedata;
572	ide_hwif_t *hwif = drive->hwif;
573
574	spin_lock_irq(&hwif->lock);
575	if (drive->sense_rq_active) {
576		spin_unlock_irq(&hwif->lock);
577		return BLK_STS_DEV_RESOURCE;
578	}
579	spin_unlock_irq(&hwif->lock);
580
581	blk_mq_start_request(bd->rq);
582	return ide_issue_rq(drive, bd->rq, false);
 
583}
584
585static int drive_is_ready(ide_drive_t *drive)
586{
587	ide_hwif_t *hwif = drive->hwif;
588	u8 stat = 0;
589
590	if (drive->waiting_for_dma)
591		return hwif->dma_ops->dma_test_irq(drive);
592
593	if (hwif->io_ports.ctl_addr &&
594	    (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
595		stat = hwif->tp_ops->read_altstatus(hwif);
596	else
597		/* Note: this may clear a pending IRQ!! */
598		stat = hwif->tp_ops->read_status(hwif);
599
600	if (stat & ATA_BUSY)
601		/* drive busy: definitely not interrupting */
602		return 0;
603
604	/* drive ready: *might* be interrupting */
605	return 1;
606}
607
608/**
609 *	ide_timer_expiry	-	handle lack of an IDE interrupt
610 *	@data: timer callback magic (hwif)
611 *
612 *	An IDE command has timed out before the expected drive return
613 *	occurred. At this point we attempt to clean up the current
614 *	mess. If the current handler includes an expiry handler then
615 *	we invoke the expiry handler, and providing it is happy the
616 *	work is done. If that fails we apply generic recovery rules
617 *	invoking the handler and checking the drive DMA status. We
618 *	have an excessively incestuous relationship with the DMA
619 *	logic that wants cleaning up.
620 */
621 
622void ide_timer_expiry (struct timer_list *t)
623{
624	ide_hwif_t	*hwif = from_timer(hwif, t, timer);
625	ide_drive_t	*drive;
626	ide_handler_t	*handler;
627	unsigned long	flags;
628	int		wait = -1;
629	int		plug_device = 0;
630	struct request	*rq_in_flight;
631
632	spin_lock_irqsave(&hwif->lock, flags);
633
634	handler = hwif->handler;
635
636	if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
637		/*
638		 * Either a marginal timeout occurred
639		 * (got the interrupt just as timer expired),
640		 * or we were "sleeping" to give other devices a chance.
641		 * Either way, we don't really want to complain about anything.
642		 */
643	} else {
644		ide_expiry_t *expiry = hwif->expiry;
645		ide_startstop_t startstop = ide_stopped;
646
647		drive = hwif->cur_dev;
648
649		if (expiry) {
650			wait = expiry(drive);
651			if (wait > 0) { /* continue */
652				/* reset timer */
653				hwif->timer.expires = jiffies + wait;
654				hwif->req_gen_timer = hwif->req_gen;
655				add_timer(&hwif->timer);
656				spin_unlock_irqrestore(&hwif->lock, flags);
657				return;
658			}
659		}
660		hwif->handler = NULL;
661		hwif->expiry = NULL;
662		/*
663		 * We need to simulate a real interrupt when invoking
664		 * the handler() function, which means we need to
665		 * globally mask the specific IRQ:
666		 */
667		spin_unlock(&hwif->lock);
668		/* disable_irq_nosync ?? */
669		disable_irq(hwif->irq);
670
 
671		if (hwif->polling) {
672			startstop = handler(drive);
673		} else if (drive_is_ready(drive)) {
674			if (drive->waiting_for_dma)
675				hwif->dma_ops->dma_lost_irq(drive);
676			if (hwif->port_ops && hwif->port_ops->clear_irq)
677				hwif->port_ops->clear_irq(drive);
678
679			printk(KERN_WARNING "%s: lost interrupt\n",
680				drive->name);
681			startstop = handler(drive);
682		} else {
683			if (drive->waiting_for_dma)
684				startstop = ide_dma_timeout_retry(drive, wait);
685			else
686				startstop = ide_error(drive, "irq timeout",
687					hwif->tp_ops->read_status(hwif));
688		}
689		/* Disable interrupts again, `handler' might have enabled it */
690		spin_lock_irq(&hwif->lock);
691		enable_irq(hwif->irq);
692		if (startstop == ide_stopped && hwif->polling == 0) {
693			rq_in_flight = hwif->rq;
694			hwif->rq = NULL;
695			ide_unlock_port(hwif);
696			plug_device = 1;
697		}
698	}
699	spin_unlock_irqrestore(&hwif->lock, flags);
700
701	if (plug_device) {
702		ide_unlock_host(hwif->host);
703		ide_requeue_and_plug(drive, rq_in_flight);
704	}
705}
706
707/**
708 *	unexpected_intr		-	handle an unexpected IDE interrupt
709 *	@irq: interrupt line
710 *	@hwif: port being processed
711 *
712 *	There's nothing really useful we can do with an unexpected interrupt,
713 *	other than reading the status register (to clear it), and logging it.
714 *	There should be no way that an irq can happen before we're ready for it,
715 *	so we needn't worry much about losing an "important" interrupt here.
716 *
717 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
718 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
719 *	looks "good", we just ignore the interrupt completely.
720 *
721 *	This routine assumes __cli() is in effect when called.
722 *
723 *	If an unexpected interrupt happens on irq15 while we are handling irq14
724 *	and if the two interfaces are "serialized" (CMD640), then it looks like
725 *	we could screw up by interfering with a new request being set up for 
726 *	irq15.
727 *
728 *	In reality, this is a non-issue.  The new command is not sent unless 
729 *	the drive is ready to accept one, in which case we know the drive is
730 *	not trying to interrupt us.  And ide_set_handler() is always invoked
731 *	before completing the issuance of any new drive command, so we will not
732 *	be accidentally invoked as a result of any valid command completion
733 *	interrupt.
734 */
735
736static void unexpected_intr(int irq, ide_hwif_t *hwif)
737{
738	u8 stat = hwif->tp_ops->read_status(hwif);
739
740	if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
741		/* Try to not flood the console with msgs */
742		static unsigned long last_msgtime, count;
743		++count;
744
745		if (time_after(jiffies, last_msgtime + HZ)) {
746			last_msgtime = jiffies;
747			printk(KERN_ERR "%s: unexpected interrupt, "
748				"status=0x%02x, count=%ld\n",
749				hwif->name, stat, count);
750		}
751	}
752}
753
754/**
755 *	ide_intr	-	default IDE interrupt handler
756 *	@irq: interrupt number
757 *	@dev_id: hwif
758 *	@regs: unused weirdness from the kernel irq layer
759 *
760 *	This is the default IRQ handler for the IDE layer. You should
761 *	not need to override it. If you do be aware it is subtle in
762 *	places
763 *
764 *	hwif is the interface in the group currently performing
765 *	a command. hwif->cur_dev is the drive and hwif->handler is
766 *	the IRQ handler to call. As we issue a command the handlers
767 *	step through multiple states, reassigning the handler to the
768 *	next step in the process. Unlike a smart SCSI controller IDE
769 *	expects the main processor to sequence the various transfer
770 *	stages. We also manage a poll timer to catch up with most
771 *	timeout situations. There are still a few where the handlers
772 *	don't ever decide to give up.
773 *
774 *	The handler eventually returns ide_stopped to indicate the
775 *	request completed. At this point we issue the next request
776 *	on the port and the process begins again.
777 */
778
779irqreturn_t ide_intr (int irq, void *dev_id)
780{
781	ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
782	struct ide_host *host = hwif->host;
783	ide_drive_t *drive;
784	ide_handler_t *handler;
785	unsigned long flags;
786	ide_startstop_t startstop;
787	irqreturn_t irq_ret = IRQ_NONE;
788	int plug_device = 0;
789	struct request *rq_in_flight;
790
791	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
792		if (hwif != host->cur_port)
793			goto out_early;
794	}
795
796	spin_lock_irqsave(&hwif->lock, flags);
797
798	if (hwif->port_ops && hwif->port_ops->test_irq &&
799	    hwif->port_ops->test_irq(hwif) == 0)
800		goto out;
801
802	handler = hwif->handler;
803
804	if (handler == NULL || hwif->polling) {
805		/*
806		 * Not expecting an interrupt from this drive.
807		 * That means this could be:
808		 *	(1) an interrupt from another PCI device
809		 *	sharing the same PCI INT# as us.
810		 * or	(2) a drive just entered sleep or standby mode,
811		 *	and is interrupting to let us know.
812		 * or	(3) a spurious interrupt of unknown origin.
813		 *
814		 * For PCI, we cannot tell the difference,
815		 * so in that case we just ignore it and hope it goes away.
816		 */
817		if ((host->irq_flags & IRQF_SHARED) == 0) {
818			/*
819			 * Probably not a shared PCI interrupt,
820			 * so we can safely try to do something about it:
821			 */
822			unexpected_intr(irq, hwif);
823		} else {
824			/*
825			 * Whack the status register, just in case
826			 * we have a leftover pending IRQ.
827			 */
828			(void)hwif->tp_ops->read_status(hwif);
829		}
830		goto out;
831	}
832
833	drive = hwif->cur_dev;
834
835	if (!drive_is_ready(drive))
836		/*
837		 * This happens regularly when we share a PCI IRQ with
838		 * another device.  Unfortunately, it can also happen
839		 * with some buggy drives that trigger the IRQ before
840		 * their status register is up to date.  Hopefully we have
841		 * enough advance overhead that the latter isn't a problem.
842		 */
843		goto out;
844
845	hwif->handler = NULL;
846	hwif->expiry = NULL;
847	hwif->req_gen++;
848	del_timer(&hwif->timer);
849	spin_unlock(&hwif->lock);
850
851	if (hwif->port_ops && hwif->port_ops->clear_irq)
852		hwif->port_ops->clear_irq(drive);
853
854	if (drive->dev_flags & IDE_DFLAG_UNMASK)
855		local_irq_enable_in_hardirq();
856
857	/* service this interrupt, may set handler for next interrupt */
858	startstop = handler(drive);
859
860	spin_lock_irq(&hwif->lock);
861	/*
862	 * Note that handler() may have set things up for another
863	 * interrupt to occur soon, but it cannot happen until
864	 * we exit from this routine, because it will be the
865	 * same irq as is currently being serviced here, and Linux
866	 * won't allow another of the same (on any CPU) until we return.
867	 */
868	if (startstop == ide_stopped && hwif->polling == 0) {
869		BUG_ON(hwif->handler);
870		rq_in_flight = hwif->rq;
871		hwif->rq = NULL;
872		ide_unlock_port(hwif);
873		plug_device = 1;
874	}
875	irq_ret = IRQ_HANDLED;
876out:
877	spin_unlock_irqrestore(&hwif->lock, flags);
878out_early:
879	if (plug_device) {
880		ide_unlock_host(hwif->host);
881		ide_requeue_and_plug(drive, rq_in_flight);
882	}
883
884	return irq_ret;
885}
886EXPORT_SYMBOL_GPL(ide_intr);
887
888void ide_pad_transfer(ide_drive_t *drive, int write, int len)
889{
890	ide_hwif_t *hwif = drive->hwif;
891	u8 buf[4] = { 0 };
892
893	while (len > 0) {
894		if (write)
895			hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
896		else
897			hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
898		len -= 4;
899	}
900}
901EXPORT_SYMBOL_GPL(ide_pad_transfer);
902
903void ide_insert_request_head(ide_drive_t *drive, struct request *rq)
904{
905	drive->sense_rq_active = true;
906	list_add_tail(&rq->queuelist, &drive->rq_list);
907	kblockd_schedule_work(&drive->rq_work);
908}
909EXPORT_SYMBOL_GPL(ide_insert_request_head);
v3.1
  1/*
  2 *	IDE I/O functions
  3 *
  4 *	Basic PIO and command management functionality.
  5 *
  6 * This code was split off from ide.c. See ide.c for history and original
  7 * copyrights.
  8 *
  9 * This program is free software; you can redistribute it and/or modify it
 10 * under the terms of the GNU General Public License as published by the
 11 * Free Software Foundation; either version 2, or (at your option) any
 12 * later version.
 13 *
 14 * This program is distributed in the hope that it will be useful, but
 15 * WITHOUT ANY WARRANTY; without even the implied warranty of
 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 17 * General Public License for more details.
 18 *
 19 * For the avoidance of doubt the "preferred form" of this code is one which
 20 * is in an open non patent encumbered format. Where cryptographic key signing
 21 * forms part of the process of creating an executable the information
 22 * including keys needed to generate an equivalently functional executable
 23 * are deemed to be part of the source code.
 24 */
 25 
 26 
 27#include <linux/module.h>
 28#include <linux/types.h>
 29#include <linux/string.h>
 30#include <linux/kernel.h>
 31#include <linux/timer.h>
 32#include <linux/mm.h>
 33#include <linux/interrupt.h>
 34#include <linux/major.h>
 35#include <linux/errno.h>
 36#include <linux/genhd.h>
 37#include <linux/blkpg.h>
 38#include <linux/slab.h>
 39#include <linux/init.h>
 40#include <linux/pci.h>
 41#include <linux/delay.h>
 42#include <linux/ide.h>
 43#include <linux/completion.h>
 44#include <linux/reboot.h>
 45#include <linux/cdrom.h>
 46#include <linux/seq_file.h>
 47#include <linux/device.h>
 48#include <linux/kmod.h>
 49#include <linux/scatterlist.h>
 50#include <linux/bitops.h>
 51
 52#include <asm/byteorder.h>
 53#include <asm/irq.h>
 54#include <asm/uaccess.h>
 55#include <asm/io.h>
 56
 57int ide_end_rq(ide_drive_t *drive, struct request *rq, int error,
 58	       unsigned int nr_bytes)
 59{
 60	/*
 61	 * decide whether to reenable DMA -- 3 is a random magic for now,
 62	 * if we DMA timeout more than 3 times, just stay in PIO
 63	 */
 64	if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
 65	    drive->retry_pio <= 3) {
 66		drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
 67		ide_dma_on(drive);
 68	}
 69
 70	return blk_end_request(rq, error, nr_bytes);
 
 
 
 
 
 
 
 
 
 
 71}
 72EXPORT_SYMBOL_GPL(ide_end_rq);
 73
 74void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
 75{
 76	const struct ide_tp_ops *tp_ops = drive->hwif->tp_ops;
 77	struct ide_taskfile *tf = &cmd->tf;
 78	struct request *rq = cmd->rq;
 79	u8 tf_cmd = tf->command;
 80
 81	tf->error = err;
 82	tf->status = stat;
 83
 84	if (cmd->ftf_flags & IDE_FTFLAG_IN_DATA) {
 85		u8 data[2];
 86
 87		tp_ops->input_data(drive, cmd, data, 2);
 88
 89		cmd->tf.data  = data[0];
 90		cmd->hob.data = data[1];
 91	}
 92
 93	ide_tf_readback(drive, cmd);
 94
 95	if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
 96	    tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
 97		if (tf->lbal != 0xc4) {
 98			printk(KERN_ERR "%s: head unload failed!\n",
 99			       drive->name);
100			ide_tf_dump(drive->name, cmd);
101		} else
102			drive->dev_flags |= IDE_DFLAG_PARKED;
103	}
104
105	if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
106		struct ide_cmd *orig_cmd = rq->special;
107
108		if (cmd->tf_flags & IDE_TFLAG_DYN)
109			kfree(orig_cmd);
110		else
111			memcpy(orig_cmd, cmd, sizeof(*cmd));
112	}
113}
114
115int ide_complete_rq(ide_drive_t *drive, int error, unsigned int nr_bytes)
116{
117	ide_hwif_t *hwif = drive->hwif;
118	struct request *rq = hwif->rq;
119	int rc;
120
121	/*
122	 * if failfast is set on a request, override number of sectors
123	 * and complete the whole request right now
124	 */
125	if (blk_noretry_request(rq) && error <= 0)
126		nr_bytes = blk_rq_sectors(rq) << 9;
127
128	rc = ide_end_rq(drive, rq, error, nr_bytes);
129	if (rc == 0)
130		hwif->rq = NULL;
131
132	return rc;
133}
134EXPORT_SYMBOL(ide_complete_rq);
135
136void ide_kill_rq(ide_drive_t *drive, struct request *rq)
137{
138	u8 drv_req = (rq->cmd_type == REQ_TYPE_SPECIAL) && rq->rq_disk;
139	u8 media = drive->media;
140
141	drive->failed_pc = NULL;
142
143	if ((media == ide_floppy || media == ide_tape) && drv_req) {
144		rq->errors = 0;
145	} else {
146		if (media == ide_tape)
147			rq->errors = IDE_DRV_ERROR_GENERAL;
148		else if (rq->cmd_type != REQ_TYPE_FS && rq->errors == 0)
149			rq->errors = -EIO;
150	}
151
152	ide_complete_rq(drive, -EIO, blk_rq_bytes(rq));
153}
154
155static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
156{
157	tf->nsect   = drive->sect;
158	tf->lbal    = drive->sect;
159	tf->lbam    = drive->cyl;
160	tf->lbah    = drive->cyl >> 8;
161	tf->device  = (drive->head - 1) | drive->select;
162	tf->command = ATA_CMD_INIT_DEV_PARAMS;
163}
164
165static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
166{
167	tf->nsect   = drive->sect;
168	tf->command = ATA_CMD_RESTORE;
169}
170
171static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
172{
173	tf->nsect   = drive->mult_req;
174	tf->command = ATA_CMD_SET_MULTI;
175}
176
177/**
178 *	do_special		-	issue some special commands
179 *	@drive: drive the command is for
180 *
181 *	do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
182 *	ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
183 */
184
185static ide_startstop_t do_special(ide_drive_t *drive)
186{
187	struct ide_cmd cmd;
188
189#ifdef DEBUG
190	printk(KERN_DEBUG "%s: %s: 0x%02x\n", drive->name, __func__,
191		drive->special_flags);
192#endif
193	if (drive->media != ide_disk) {
194		drive->special_flags = 0;
195		drive->mult_req = 0;
196		return ide_stopped;
197	}
198
199	memset(&cmd, 0, sizeof(cmd));
200	cmd.protocol = ATA_PROT_NODATA;
201
202	if (drive->special_flags & IDE_SFLAG_SET_GEOMETRY) {
203		drive->special_flags &= ~IDE_SFLAG_SET_GEOMETRY;
204		ide_tf_set_specify_cmd(drive, &cmd.tf);
205	} else if (drive->special_flags & IDE_SFLAG_RECALIBRATE) {
206		drive->special_flags &= ~IDE_SFLAG_RECALIBRATE;
207		ide_tf_set_restore_cmd(drive, &cmd.tf);
208	} else if (drive->special_flags & IDE_SFLAG_SET_MULTMODE) {
209		drive->special_flags &= ~IDE_SFLAG_SET_MULTMODE;
210		ide_tf_set_setmult_cmd(drive, &cmd.tf);
211	} else
212		BUG();
213
214	cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
215	cmd.valid.in.tf  = IDE_VALID_IN_TF  | IDE_VALID_DEVICE;
216	cmd.tf_flags = IDE_TFLAG_CUSTOM_HANDLER;
217
218	do_rw_taskfile(drive, &cmd);
219
220	return ide_started;
221}
222
223void ide_map_sg(ide_drive_t *drive, struct ide_cmd *cmd)
224{
225	ide_hwif_t *hwif = drive->hwif;
226	struct scatterlist *sg = hwif->sg_table;
227	struct request *rq = cmd->rq;
228
229	cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
 
 
 
230}
231EXPORT_SYMBOL_GPL(ide_map_sg);
232
233void ide_init_sg_cmd(struct ide_cmd *cmd, unsigned int nr_bytes)
234{
235	cmd->nbytes = cmd->nleft = nr_bytes;
236	cmd->cursg_ofs = 0;
237	cmd->cursg = NULL;
238}
239EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
240
241/**
242 *	execute_drive_command	-	issue special drive command
243 *	@drive: the drive to issue the command on
244 *	@rq: the request structure holding the command
245 *
246 *	execute_drive_cmd() issues a special drive command,  usually 
247 *	initiated by ioctl() from the external hdparm program. The
248 *	command can be a drive command, drive task or taskfile 
249 *	operation. Weirdly you can call it with NULL to wait for
250 *	all commands to finish. Don't do this as that is due to change
251 */
252
253static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
254		struct request *rq)
255{
256	struct ide_cmd *cmd = rq->special;
257
258	if (cmd) {
259		if (cmd->protocol == ATA_PROT_PIO) {
260			ide_init_sg_cmd(cmd, blk_rq_sectors(rq) << 9);
261			ide_map_sg(drive, cmd);
262		}
263
264		return do_rw_taskfile(drive, cmd);
265	}
266
267 	/*
268 	 * NULL is actually a valid way of waiting for
269 	 * all current requests to be flushed from the queue.
270 	 */
271#ifdef DEBUG
272 	printk("%s: DRIVE_CMD (null)\n", drive->name);
273#endif
274	rq->errors = 0;
275	ide_complete_rq(drive, 0, blk_rq_bytes(rq));
276
277 	return ide_stopped;
278}
279
280static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
281{
282	u8 cmd = rq->cmd[0];
283
284	switch (cmd) {
285	case REQ_PARK_HEADS:
286	case REQ_UNPARK_HEADS:
287		return ide_do_park_unpark(drive, rq);
288	case REQ_DEVSET_EXEC:
289		return ide_do_devset(drive, rq);
290	case REQ_DRIVE_RESET:
291		return ide_do_reset(drive);
292	default:
293		BUG();
294	}
295}
296
297/**
298 *	start_request	-	start of I/O and command issuing for IDE
299 *
300 *	start_request() initiates handling of a new I/O request. It
301 *	accepts commands and I/O (read/write) requests.
302 *
303 *	FIXME: this function needs a rename
304 */
305 
306static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
307{
308	ide_startstop_t startstop;
309
310	BUG_ON(!(rq->cmd_flags & REQ_STARTED));
311
312#ifdef DEBUG
313	printk("%s: start_request: current=0x%08lx\n",
314		drive->hwif->name, (unsigned long) rq);
315#endif
316
317	/* bail early if we've exceeded max_failures */
318	if (drive->max_failures && (drive->failures > drive->max_failures)) {
319		rq->cmd_flags |= REQ_FAILED;
320		goto kill_rq;
321	}
322
323	if (blk_pm_request(rq))
 
 
 
324		ide_check_pm_state(drive, rq);
325
326	drive->hwif->tp_ops->dev_select(drive);
327	if (ide_wait_stat(&startstop, drive, drive->ready_stat,
328			  ATA_BUSY | ATA_DRQ, WAIT_READY)) {
329		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
330		return startstop;
331	}
332
333	if (drive->special_flags == 0) {
334		struct ide_driver *drv;
335
336		/*
337		 * We reset the drive so we need to issue a SETFEATURES.
338		 * Do it _after_ do_special() restored device parameters.
339		 */
340		if (drive->current_speed == 0xff)
341			ide_config_drive_speed(drive, drive->desired_speed);
342
343		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
344			return execute_drive_cmd(drive, rq);
345		else if (blk_pm_request(rq)) {
346			struct request_pm_state *pm = rq->special;
347#ifdef DEBUG_PM
348			printk("%s: start_power_step(step: %d)\n",
349				drive->name, pm->pm_step);
350#endif
351			startstop = ide_start_power_step(drive, rq);
352			if (startstop == ide_stopped &&
353			    pm->pm_step == IDE_PM_COMPLETED)
354				ide_complete_pm_rq(drive, rq);
355			return startstop;
356		} else if (!rq->rq_disk && rq->cmd_type == REQ_TYPE_SPECIAL)
357			/*
358			 * TODO: Once all ULDs have been modified to
359			 * check for specific op codes rather than
360			 * blindly accepting any special request, the
361			 * check for ->rq_disk above may be replaced
362			 * by a more suitable mechanism or even
363			 * dropped entirely.
364			 */
365			return ide_special_rq(drive, rq);
366
367		drv = *(struct ide_driver **)rq->rq_disk->private_data;
368
369		return drv->do_request(drive, rq, blk_rq_pos(rq));
370	}
371	return do_special(drive);
372kill_rq:
373	ide_kill_rq(drive, rq);
374	return ide_stopped;
375}
376
377/**
378 *	ide_stall_queue		-	pause an IDE device
379 *	@drive: drive to stall
380 *	@timeout: time to stall for (jiffies)
381 *
382 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
383 *	to the port by sleeping for timeout jiffies.
384 */
385 
386void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
387{
388	if (timeout > WAIT_WORSTCASE)
389		timeout = WAIT_WORSTCASE;
390	drive->sleep = timeout + jiffies;
391	drive->dev_flags |= IDE_DFLAG_SLEEPING;
392}
393EXPORT_SYMBOL(ide_stall_queue);
394
395static inline int ide_lock_port(ide_hwif_t *hwif)
396{
397	if (hwif->busy)
398		return 1;
399
400	hwif->busy = 1;
401
402	return 0;
403}
404
405static inline void ide_unlock_port(ide_hwif_t *hwif)
406{
407	hwif->busy = 0;
408}
409
410static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
411{
412	int rc = 0;
413
414	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
415		rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
416		if (rc == 0) {
417			if (host->get_lock)
418				host->get_lock(ide_intr, hwif);
419		}
420	}
421	return rc;
422}
423
424static inline void ide_unlock_host(struct ide_host *host)
425{
426	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
427		if (host->release_lock)
428			host->release_lock();
429		clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
430	}
431}
432
433static void __ide_requeue_and_plug(struct request_queue *q, struct request *rq)
434{
435	if (rq)
436		blk_requeue_request(q, rq);
437	if (rq || blk_peek_request(q)) {
438		/* Use 3ms as that was the old plug delay */
439		blk_delay_queue(q, 3);
440	}
441}
442
443void ide_requeue_and_plug(ide_drive_t *drive, struct request *rq)
444{
445	struct request_queue *q = drive->queue;
446	unsigned long flags;
447
448	spin_lock_irqsave(q->queue_lock, flags);
449	__ide_requeue_and_plug(q, rq);
450	spin_unlock_irqrestore(q->queue_lock, flags);
 
 
 
451}
452
453/*
454 * Issue a new request to a device.
455 */
456void do_ide_request(struct request_queue *q)
457{
458	ide_drive_t	*drive = q->queuedata;
459	ide_hwif_t	*hwif = drive->hwif;
460	struct ide_host *host = hwif->host;
461	struct request	*rq = NULL;
462	ide_startstop_t	startstop;
463	unsigned long queue_run_ms = 3; /* old plug delay */
464
465	spin_unlock_irq(q->queue_lock);
 
 
 
466
467	/* HLD do_request() callback might sleep, make sure it's okay */
468	might_sleep();
469
470	if (ide_lock_host(host, hwif))
471		goto plug_device_2;
472
473	spin_lock_irq(&hwif->lock);
474
475	if (!ide_lock_port(hwif)) {
476		ide_hwif_t *prev_port;
477
478		WARN_ON_ONCE(hwif->rq);
479repeat:
480		prev_port = hwif->host->cur_port;
481		if (drive->dev_flags & IDE_DFLAG_SLEEPING &&
482		    time_after(drive->sleep, jiffies)) {
483			unsigned long left = jiffies - drive->sleep;
484
485			queue_run_ms = jiffies_to_msecs(left + 1);
486			ide_unlock_port(hwif);
487			goto plug_device;
488		}
489
490		if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
491		    hwif != prev_port) {
492			ide_drive_t *cur_dev =
493				prev_port ? prev_port->cur_dev : NULL;
494
495			/*
496			 * set nIEN for previous port, drives in the
497			 * quirk list may not like intr setups/cleanups
498			 */
499			if (cur_dev &&
500			    (cur_dev->dev_flags & IDE_DFLAG_NIEN_QUIRK) == 0)
501				prev_port->tp_ops->write_devctl(prev_port,
502								ATA_NIEN |
503								ATA_DEVCTL_OBS);
504
505			hwif->host->cur_port = hwif;
506		}
507		hwif->cur_dev = drive;
508		drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
509
510		spin_unlock_irq(&hwif->lock);
511		spin_lock_irq(q->queue_lock);
512		/*
513		 * we know that the queue isn't empty, but this can happen
514		 * if the q->prep_rq_fn() decides to kill a request
515		 */
516		if (!rq)
517			rq = blk_fetch_request(drive->queue);
518
519		spin_unlock_irq(q->queue_lock);
520		spin_lock_irq(&hwif->lock);
521
522		if (!rq) {
523			ide_unlock_port(hwif);
524			goto out;
525		}
526
527		/*
528		 * Sanity: don't accept a request that isn't a PM request
529		 * if we are currently power managed. This is very important as
530		 * blk_stop_queue() doesn't prevent the blk_fetch_request()
531		 * above to return us whatever is in the queue. Since we call
532		 * ide_do_request() ourselves, we end up taking requests while
533		 * the queue is blocked...
534		 * 
535		 * We let requests forced at head of queue with ide-preempt
536		 * though. I hope that doesn't happen too much, hopefully not
537		 * unless the subdriver triggers such a thing in its own PM
538		 * state machine.
539		 */
540		if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
541		    blk_pm_request(rq) == 0 &&
542		    (rq->cmd_flags & REQ_PREEMPT) == 0) {
543			/* there should be no pending command at this point */
544			ide_unlock_port(hwif);
545			goto plug_device;
546		}
547
 
548		hwif->rq = rq;
549
550		spin_unlock_irq(&hwif->lock);
551		startstop = start_request(drive, rq);
552		spin_lock_irq(&hwif->lock);
553
554		if (startstop == ide_stopped) {
555			rq = hwif->rq;
556			hwif->rq = NULL;
557			goto repeat;
 
 
 
558		}
559	} else
560		goto plug_device;
 
 
 
 
 
 
 
 
 
561out:
562	spin_unlock_irq(&hwif->lock);
563	if (rq == NULL)
564		ide_unlock_host(host);
565	spin_lock_irq(q->queue_lock);
566	return;
 
 
 
 
 
 
 
 
 
567
568plug_device:
 
 
 
 
569	spin_unlock_irq(&hwif->lock);
570	ide_unlock_host(host);
571plug_device_2:
572	spin_lock_irq(q->queue_lock);
573	__ide_requeue_and_plug(q, rq);
574}
575
576static int drive_is_ready(ide_drive_t *drive)
577{
578	ide_hwif_t *hwif = drive->hwif;
579	u8 stat = 0;
580
581	if (drive->waiting_for_dma)
582		return hwif->dma_ops->dma_test_irq(drive);
583
584	if (hwif->io_ports.ctl_addr &&
585	    (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
586		stat = hwif->tp_ops->read_altstatus(hwif);
587	else
588		/* Note: this may clear a pending IRQ!! */
589		stat = hwif->tp_ops->read_status(hwif);
590
591	if (stat & ATA_BUSY)
592		/* drive busy: definitely not interrupting */
593		return 0;
594
595	/* drive ready: *might* be interrupting */
596	return 1;
597}
598
599/**
600 *	ide_timer_expiry	-	handle lack of an IDE interrupt
601 *	@data: timer callback magic (hwif)
602 *
603 *	An IDE command has timed out before the expected drive return
604 *	occurred. At this point we attempt to clean up the current
605 *	mess. If the current handler includes an expiry handler then
606 *	we invoke the expiry handler, and providing it is happy the
607 *	work is done. If that fails we apply generic recovery rules
608 *	invoking the handler and checking the drive DMA status. We
609 *	have an excessively incestuous relationship with the DMA
610 *	logic that wants cleaning up.
611 */
612 
613void ide_timer_expiry (unsigned long data)
614{
615	ide_hwif_t	*hwif = (ide_hwif_t *)data;
616	ide_drive_t	*uninitialized_var(drive);
617	ide_handler_t	*handler;
618	unsigned long	flags;
619	int		wait = -1;
620	int		plug_device = 0;
621	struct request	*uninitialized_var(rq_in_flight);
622
623	spin_lock_irqsave(&hwif->lock, flags);
624
625	handler = hwif->handler;
626
627	if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
628		/*
629		 * Either a marginal timeout occurred
630		 * (got the interrupt just as timer expired),
631		 * or we were "sleeping" to give other devices a chance.
632		 * Either way, we don't really want to complain about anything.
633		 */
634	} else {
635		ide_expiry_t *expiry = hwif->expiry;
636		ide_startstop_t startstop = ide_stopped;
637
638		drive = hwif->cur_dev;
639
640		if (expiry) {
641			wait = expiry(drive);
642			if (wait > 0) { /* continue */
643				/* reset timer */
644				hwif->timer.expires = jiffies + wait;
645				hwif->req_gen_timer = hwif->req_gen;
646				add_timer(&hwif->timer);
647				spin_unlock_irqrestore(&hwif->lock, flags);
648				return;
649			}
650		}
651		hwif->handler = NULL;
652		hwif->expiry = NULL;
653		/*
654		 * We need to simulate a real interrupt when invoking
655		 * the handler() function, which means we need to
656		 * globally mask the specific IRQ:
657		 */
658		spin_unlock(&hwif->lock);
659		/* disable_irq_nosync ?? */
660		disable_irq(hwif->irq);
661		/* local CPU only, as if we were handling an interrupt */
662		local_irq_disable();
663		if (hwif->polling) {
664			startstop = handler(drive);
665		} else if (drive_is_ready(drive)) {
666			if (drive->waiting_for_dma)
667				hwif->dma_ops->dma_lost_irq(drive);
668			if (hwif->port_ops && hwif->port_ops->clear_irq)
669				hwif->port_ops->clear_irq(drive);
670
671			printk(KERN_WARNING "%s: lost interrupt\n",
672				drive->name);
673			startstop = handler(drive);
674		} else {
675			if (drive->waiting_for_dma)
676				startstop = ide_dma_timeout_retry(drive, wait);
677			else
678				startstop = ide_error(drive, "irq timeout",
679					hwif->tp_ops->read_status(hwif));
680		}
 
681		spin_lock_irq(&hwif->lock);
682		enable_irq(hwif->irq);
683		if (startstop == ide_stopped && hwif->polling == 0) {
684			rq_in_flight = hwif->rq;
685			hwif->rq = NULL;
686			ide_unlock_port(hwif);
687			plug_device = 1;
688		}
689	}
690	spin_unlock_irqrestore(&hwif->lock, flags);
691
692	if (plug_device) {
693		ide_unlock_host(hwif->host);
694		ide_requeue_and_plug(drive, rq_in_flight);
695	}
696}
697
698/**
699 *	unexpected_intr		-	handle an unexpected IDE interrupt
700 *	@irq: interrupt line
701 *	@hwif: port being processed
702 *
703 *	There's nothing really useful we can do with an unexpected interrupt,
704 *	other than reading the status register (to clear it), and logging it.
705 *	There should be no way that an irq can happen before we're ready for it,
706 *	so we needn't worry much about losing an "important" interrupt here.
707 *
708 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
709 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
710 *	looks "good", we just ignore the interrupt completely.
711 *
712 *	This routine assumes __cli() is in effect when called.
713 *
714 *	If an unexpected interrupt happens on irq15 while we are handling irq14
715 *	and if the two interfaces are "serialized" (CMD640), then it looks like
716 *	we could screw up by interfering with a new request being set up for 
717 *	irq15.
718 *
719 *	In reality, this is a non-issue.  The new command is not sent unless 
720 *	the drive is ready to accept one, in which case we know the drive is
721 *	not trying to interrupt us.  And ide_set_handler() is always invoked
722 *	before completing the issuance of any new drive command, so we will not
723 *	be accidentally invoked as a result of any valid command completion
724 *	interrupt.
725 */
726
727static void unexpected_intr(int irq, ide_hwif_t *hwif)
728{
729	u8 stat = hwif->tp_ops->read_status(hwif);
730
731	if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
732		/* Try to not flood the console with msgs */
733		static unsigned long last_msgtime, count;
734		++count;
735
736		if (time_after(jiffies, last_msgtime + HZ)) {
737			last_msgtime = jiffies;
738			printk(KERN_ERR "%s: unexpected interrupt, "
739				"status=0x%02x, count=%ld\n",
740				hwif->name, stat, count);
741		}
742	}
743}
744
745/**
746 *	ide_intr	-	default IDE interrupt handler
747 *	@irq: interrupt number
748 *	@dev_id: hwif
749 *	@regs: unused weirdness from the kernel irq layer
750 *
751 *	This is the default IRQ handler for the IDE layer. You should
752 *	not need to override it. If you do be aware it is subtle in
753 *	places
754 *
755 *	hwif is the interface in the group currently performing
756 *	a command. hwif->cur_dev is the drive and hwif->handler is
757 *	the IRQ handler to call. As we issue a command the handlers
758 *	step through multiple states, reassigning the handler to the
759 *	next step in the process. Unlike a smart SCSI controller IDE
760 *	expects the main processor to sequence the various transfer
761 *	stages. We also manage a poll timer to catch up with most
762 *	timeout situations. There are still a few where the handlers
763 *	don't ever decide to give up.
764 *
765 *	The handler eventually returns ide_stopped to indicate the
766 *	request completed. At this point we issue the next request
767 *	on the port and the process begins again.
768 */
769
770irqreturn_t ide_intr (int irq, void *dev_id)
771{
772	ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
773	struct ide_host *host = hwif->host;
774	ide_drive_t *uninitialized_var(drive);
775	ide_handler_t *handler;
776	unsigned long flags;
777	ide_startstop_t startstop;
778	irqreturn_t irq_ret = IRQ_NONE;
779	int plug_device = 0;
780	struct request *uninitialized_var(rq_in_flight);
781
782	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
783		if (hwif != host->cur_port)
784			goto out_early;
785	}
786
787	spin_lock_irqsave(&hwif->lock, flags);
788
789	if (hwif->port_ops && hwif->port_ops->test_irq &&
790	    hwif->port_ops->test_irq(hwif) == 0)
791		goto out;
792
793	handler = hwif->handler;
794
795	if (handler == NULL || hwif->polling) {
796		/*
797		 * Not expecting an interrupt from this drive.
798		 * That means this could be:
799		 *	(1) an interrupt from another PCI device
800		 *	sharing the same PCI INT# as us.
801		 * or	(2) a drive just entered sleep or standby mode,
802		 *	and is interrupting to let us know.
803		 * or	(3) a spurious interrupt of unknown origin.
804		 *
805		 * For PCI, we cannot tell the difference,
806		 * so in that case we just ignore it and hope it goes away.
807		 */
808		if ((host->irq_flags & IRQF_SHARED) == 0) {
809			/*
810			 * Probably not a shared PCI interrupt,
811			 * so we can safely try to do something about it:
812			 */
813			unexpected_intr(irq, hwif);
814		} else {
815			/*
816			 * Whack the status register, just in case
817			 * we have a leftover pending IRQ.
818			 */
819			(void)hwif->tp_ops->read_status(hwif);
820		}
821		goto out;
822	}
823
824	drive = hwif->cur_dev;
825
826	if (!drive_is_ready(drive))
827		/*
828		 * This happens regularly when we share a PCI IRQ with
829		 * another device.  Unfortunately, it can also happen
830		 * with some buggy drives that trigger the IRQ before
831		 * their status register is up to date.  Hopefully we have
832		 * enough advance overhead that the latter isn't a problem.
833		 */
834		goto out;
835
836	hwif->handler = NULL;
837	hwif->expiry = NULL;
838	hwif->req_gen++;
839	del_timer(&hwif->timer);
840	spin_unlock(&hwif->lock);
841
842	if (hwif->port_ops && hwif->port_ops->clear_irq)
843		hwif->port_ops->clear_irq(drive);
844
845	if (drive->dev_flags & IDE_DFLAG_UNMASK)
846		local_irq_enable_in_hardirq();
847
848	/* service this interrupt, may set handler for next interrupt */
849	startstop = handler(drive);
850
851	spin_lock_irq(&hwif->lock);
852	/*
853	 * Note that handler() may have set things up for another
854	 * interrupt to occur soon, but it cannot happen until
855	 * we exit from this routine, because it will be the
856	 * same irq as is currently being serviced here, and Linux
857	 * won't allow another of the same (on any CPU) until we return.
858	 */
859	if (startstop == ide_stopped && hwif->polling == 0) {
860		BUG_ON(hwif->handler);
861		rq_in_flight = hwif->rq;
862		hwif->rq = NULL;
863		ide_unlock_port(hwif);
864		plug_device = 1;
865	}
866	irq_ret = IRQ_HANDLED;
867out:
868	spin_unlock_irqrestore(&hwif->lock, flags);
869out_early:
870	if (plug_device) {
871		ide_unlock_host(hwif->host);
872		ide_requeue_and_plug(drive, rq_in_flight);
873	}
874
875	return irq_ret;
876}
877EXPORT_SYMBOL_GPL(ide_intr);
878
879void ide_pad_transfer(ide_drive_t *drive, int write, int len)
880{
881	ide_hwif_t *hwif = drive->hwif;
882	u8 buf[4] = { 0 };
883
884	while (len > 0) {
885		if (write)
886			hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
887		else
888			hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
889		len -= 4;
890	}
891}
892EXPORT_SYMBOL_GPL(ide_pad_transfer);