Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (c) 2006 ARM Ltd.
   4 * Copyright (c) 2010 ST-Ericsson SA
   5 * Copyirght (c) 2017 Linaro Ltd.
   6 *
   7 * Author: Peter Pearse <peter.pearse@arm.com>
   8 * Author: Linus Walleij <linus.walleij@linaro.org>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 *
  10 * Documentation: ARM DDI 0196G == PL080
  11 * Documentation: ARM DDI 0218E == PL081
  12 * Documentation: S3C6410 User's Manual == PL080S
  13 *
  14 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
  15 * channel.
  16 *
  17 * The PL080 has 8 channels available for simultaneous use, and the PL081
  18 * has only two channels. So on these DMA controllers the number of channels
  19 * and the number of incoming DMA signals are two totally different things.
  20 * It is usually not possible to theoretically handle all physical signals,
  21 * so a multiplexing scheme with possible denial of use is necessary.
  22 *
  23 * The PL080 has a dual bus master, PL081 has a single master.
  24 *
  25 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
  26 * It differs in following aspects:
  27 * - CH_CONFIG register at different offset,
  28 * - separate CH_CONTROL2 register for transfer size,
  29 * - bigger maximum transfer size,
  30 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
  31 * - no support for peripheral flow control.
  32 *
  33 * Memory to peripheral transfer may be visualized as
  34 *	Get data from memory to DMAC
  35 *	Until no data left
  36 *		On burst request from peripheral
  37 *			Destination burst from DMAC to peripheral
  38 *			Clear burst request
  39 *	Raise terminal count interrupt
  40 *
  41 * For peripherals with a FIFO:
  42 * Source      burst size == half the depth of the peripheral FIFO
  43 * Destination burst size == the depth of the peripheral FIFO
  44 *
  45 * (Bursts are irrelevant for mem to mem transfers - there are no burst
  46 * signals, the DMA controller will simply facilitate its AHB master.)
  47 *
  48 * ASSUMES default (little) endianness for DMA transfers
  49 *
  50 * The PL08x has two flow control settings:
  51 *  - DMAC flow control: the transfer size defines the number of transfers
  52 *    which occur for the current LLI entry, and the DMAC raises TC at the
  53 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
  54 *    to both the BREQ and SREQ signals (contrary to documented),
  55 *    transferring data if either is active.  The LBREQ and LSREQ signals
  56 *    are ignored.
  57 *
  58 *  - Peripheral flow control: the transfer size is ignored (and should be
  59 *    zero).  The data is transferred from the current LLI entry, until
  60 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
  61 *    will then move to the next LLI entry. Unsupported by PL080S.
 
 
 
 
 
 
 
 
  62 */
  63#include <linux/amba/bus.h>
  64#include <linux/amba/pl08x.h>
  65#include <linux/debugfs.h>
  66#include <linux/delay.h>
  67#include <linux/device.h>
  68#include <linux/dmaengine.h>
  69#include <linux/dmapool.h>
  70#include <linux/dma-mapping.h>
  71#include <linux/export.h>
  72#include <linux/init.h>
  73#include <linux/interrupt.h>
  74#include <linux/module.h>
  75#include <linux/of.h>
  76#include <linux/of_dma.h>
  77#include <linux/pm_runtime.h>
  78#include <linux/seq_file.h>
  79#include <linux/slab.h>
  80#include <linux/amba/pl080.h>
 
 
 
 
 
 
 
  81
  82#include "dmaengine.h"
  83#include "virt-dma.h"
  84
  85#define DRIVER_NAME	"pl08xdmac"
  86
  87#define PL80X_DMA_BUSWIDTHS \
  88	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
  89	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  90	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  91	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
  92
  93static struct amba_driver pl08x_amba_driver;
  94struct pl08x_driver_data;
  95
  96/**
  97 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
  98 * @config_offset: offset to the configuration register
  99 * @channels: the number of channels available in this variant
 100 * @signals: the number of request signals available from the hardware
 101 * @dualmaster: whether this version supports dual AHB masters or not.
 102 * @nomadik: whether this variant is a ST Microelectronics Nomadik, where the
 103 *	channels have Nomadik security extension bits that need to be checked
 104 *	for permission before use and some registers are missing
 105 * @pl080s: whether this variant is a Samsung PL080S, which has separate
 106 *	register and LLI word for transfer size.
 107 * @ftdmac020: whether this variant is a Faraday Technology FTDMAC020
 108 * @max_transfer_size: the maximum single element transfer size for this
 109 *	PL08x variant.
 110 */
 111struct vendor_data {
 112	u8 config_offset;
 113	u8 channels;
 114	u8 signals;
 115	bool dualmaster;
 116	bool nomadik;
 117	bool pl080s;
 118	bool ftdmac020;
 119	u32 max_transfer_size;
 120};
 121
 122/**
 123 * struct pl08x_bus_data - information of source or destination
 124 * busses for a transfer
 125 * @addr: current address
 126 * @maxwidth: the maximum width of a transfer on this bus
 127 * @buswidth: the width of this bus in bytes: 1, 2 or 4
 128 */
 129struct pl08x_bus_data {
 130	dma_addr_t addr;
 131	u8 maxwidth;
 132	u8 buswidth;
 133};
 134
 135#define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
 136
 137/**
 138 * struct pl08x_phy_chan - holder for the physical channels
 139 * @id: physical index to this channel
 140 * @base: memory base address for this physical channel
 141 * @reg_config: configuration address for this physical channel
 142 * @reg_control: control address for this physical channel
 143 * @reg_src: transfer source address register
 144 * @reg_dst: transfer destination address register
 145 * @reg_lli: transfer LLI address register
 146 * @reg_busy: if the variant has a special per-channel busy register,
 147 * this contains a pointer to it
 148 * @lock: a lock to use when altering an instance of this struct
 149 * @serving: the virtual channel currently being served by this physical
 150 * channel
 151 * @locked: channel unavailable for the system, e.g. dedicated to secure
 152 * world
 153 * @ftdmac020: channel is on a FTDMAC020
 154 * @pl080s: channel is on a PL08s
 155 */
 156struct pl08x_phy_chan {
 157	unsigned int id;
 158	void __iomem *base;
 159	void __iomem *reg_config;
 160	void __iomem *reg_control;
 161	void __iomem *reg_src;
 162	void __iomem *reg_dst;
 163	void __iomem *reg_lli;
 164	void __iomem *reg_busy;
 165	spinlock_t lock;
 166	struct pl08x_dma_chan *serving;
 167	bool locked;
 168	bool ftdmac020;
 169	bool pl080s;
 170};
 171
 172/**
 173 * struct pl08x_sg - structure containing data per sg
 174 * @src_addr: src address of sg
 175 * @dst_addr: dst address of sg
 176 * @len: transfer len in bytes
 177 * @node: node for txd's dsg_list
 178 */
 179struct pl08x_sg {
 180	dma_addr_t src_addr;
 181	dma_addr_t dst_addr;
 182	size_t len;
 183	struct list_head node;
 184};
 185
 186/**
 187 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
 188 * @vd: virtual DMA descriptor
 189 * @dsg_list: list of children sg's
 190 * @llis_bus: DMA memory address (physical) start for the LLIs
 191 * @llis_va: virtual memory address start for the LLIs
 192 * @cctl: control reg values for current txd
 193 * @ccfg: config reg values for current txd
 194 * @done: this marks completed descriptors, which should not have their
 195 *   mux released.
 196 * @cyclic: indicate cyclic transfers
 197 */
 198struct pl08x_txd {
 199	struct virt_dma_desc vd;
 200	struct list_head dsg_list;
 201	dma_addr_t llis_bus;
 202	u32 *llis_va;
 203	/* Default cctl value for LLIs */
 204	u32 cctl;
 205	/*
 206	 * Settings to be put into the physical channel when we
 207	 * trigger this txd.  Other registers are in llis_va[0].
 208	 */
 209	u32 ccfg;
 210	bool done;
 211	bool cyclic;
 212};
 213
 214/**
 215 * enum pl08x_dma_chan_state - holds the PL08x specific virtual channel
 216 * states
 217 * @PL08X_CHAN_IDLE: the channel is idle
 218 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
 219 * channel and is running a transfer on it
 220 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
 221 * channel, but the transfer is currently paused
 222 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
 223 * channel to become available (only pertains to memcpy channels)
 224 */
 225enum pl08x_dma_chan_state {
 226	PL08X_CHAN_IDLE,
 227	PL08X_CHAN_RUNNING,
 228	PL08X_CHAN_PAUSED,
 229	PL08X_CHAN_WAITING,
 230};
 231
 232/**
 233 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
 234 * @vc: wrappped virtual channel
 235 * @phychan: the physical channel utilized by this channel, if there is one
 236 * @name: name of channel
 237 * @cd: channel platform data
 238 * @cfg: slave configuration
 239 * @at: active transaction on this channel
 240 * @host: a pointer to the host (internal use)
 241 * @state: whether the channel is idle, paused, running etc
 242 * @slave: whether this channel is a device (slave) or for memcpy
 243 * @signal: the physical DMA request signal which this channel is using
 244 * @mux_use: count of descriptors using this DMA request signal setting
 245 * @waiting_at: time in jiffies when this channel moved to waiting state
 246 */
 247struct pl08x_dma_chan {
 248	struct virt_dma_chan vc;
 249	struct pl08x_phy_chan *phychan;
 250	const char *name;
 251	struct pl08x_channel_data *cd;
 252	struct dma_slave_config cfg;
 253	struct pl08x_txd *at;
 254	struct pl08x_driver_data *host;
 255	enum pl08x_dma_chan_state state;
 256	bool slave;
 257	int signal;
 258	unsigned mux_use;
 259	unsigned long waiting_at;
 260};
 261
 262/**
 263 * struct pl08x_driver_data - the local state holder for the PL08x
 264 * @slave: optional slave engine for this instance
 265 * @memcpy: memcpy engine for this instance
 266 * @has_slave: the PL08x has a slave engine (routed signals)
 267 * @base: virtual memory base (remapped) for the PL08x
 268 * @adev: the corresponding AMBA (PrimeCell) bus entry
 269 * @vd: vendor data for this PL08x variant
 270 * @pd: platform data passed in from the platform/machine
 271 * @phy_chans: array of data for the physical channels
 272 * @pool: a pool for the LLI descriptors
 273 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
 274 * fetches
 275 * @mem_buses: set to indicate memory transfers on AHB2.
 276 * @lli_words: how many words are used in each LLI item for this variant
 277 */
 278struct pl08x_driver_data {
 279	struct dma_device slave;
 280	struct dma_device memcpy;
 281	bool has_slave;
 282	void __iomem *base;
 283	struct amba_device *adev;
 284	const struct vendor_data *vd;
 285	struct pl08x_platform_data *pd;
 286	struct pl08x_phy_chan *phy_chans;
 287	struct dma_pool *pool;
 
 288	u8 lli_buses;
 289	u8 mem_buses;
 290	u8 lli_words;
 291};
 292
 293/*
 294 * PL08X specific defines
 295 */
 296
 297/* The order of words in an LLI. */
 298#define PL080_LLI_SRC		0
 299#define PL080_LLI_DST		1
 300#define PL080_LLI_LLI		2
 301#define PL080_LLI_CCTL		3
 302#define PL080S_LLI_CCTL2	4
 303
 304/* Total words in an LLI. */
 305#define PL080_LLI_WORDS		4
 306#define PL080S_LLI_WORDS	8
 307
 308/*
 309 * Number of LLIs in each LLI buffer allocated for one transfer
 310 * (maximum times we call dma_pool_alloc on this pool without freeing)
 
 311 */
 312#define MAX_NUM_TSFR_LLIS	512
 
 
 
 
 
 
 
 313#define PL08X_ALIGN		8
 314
 315static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
 316{
 317	return container_of(chan, struct pl08x_dma_chan, vc.chan);
 318}
 319
 320static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
 321{
 322	return container_of(tx, struct pl08x_txd, vd.tx);
 323}
 324
 325/*
 326 * Mux handling.
 327 *
 328 * This gives us the DMA request input to the PL08x primecell which the
 329 * peripheral described by the channel data will be routed to, possibly
 330 * via a board/SoC specific external MUX.  One important point to note
 331 * here is that this does not depend on the physical channel.
 332 */
 333static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
 334{
 335	const struct pl08x_platform_data *pd = plchan->host->pd;
 336	int ret;
 337
 338	if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
 339		ret = pd->get_xfer_signal(plchan->cd);
 340		if (ret < 0) {
 341			plchan->mux_use = 0;
 342			return ret;
 343		}
 344
 345		plchan->signal = ret;
 346	}
 347	return 0;
 348}
 349
 350static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
 351{
 352	const struct pl08x_platform_data *pd = plchan->host->pd;
 353
 354	if (plchan->signal >= 0) {
 355		WARN_ON(plchan->mux_use == 0);
 356
 357		if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
 358			pd->put_xfer_signal(plchan->cd, plchan->signal);
 359			plchan->signal = -1;
 360		}
 361	}
 362}
 363
 364/*
 365 * Physical channel handling
 366 */
 367
 368/* Whether a certain channel is busy or not */
 369static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
 370{
 371	unsigned int val;
 372
 373	/* If we have a special busy register, take a shortcut */
 374	if (ch->reg_busy) {
 375		val = readl(ch->reg_busy);
 376		return !!(val & BIT(ch->id));
 377	}
 378	val = readl(ch->reg_config);
 379	return val & PL080_CONFIG_ACTIVE;
 380}
 381
 382/*
 383 * pl08x_write_lli() - Write an LLI into the DMA controller.
 384 *
 385 * The PL08x derivatives support linked lists, but the first item of the
 386 * list containing the source, destination, control word and next LLI is
 387 * ignored. Instead the driver has to write those values directly into the
 388 * SRC, DST, LLI and control registers. On FTDMAC020 also the SIZE
 389 * register need to be set up for the first transfer.
 390 */
 391static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
 392		struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
 393{
 394	if (pl08x->vd->pl080s)
 395		dev_vdbg(&pl08x->adev->dev,
 396			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 397			"clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
 398			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 399			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
 400			lli[PL080S_LLI_CCTL2], ccfg);
 401	else
 402		dev_vdbg(&pl08x->adev->dev,
 403			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 404			"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
 405			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 406			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
 407
 408	writel_relaxed(lli[PL080_LLI_SRC], phychan->reg_src);
 409	writel_relaxed(lli[PL080_LLI_DST], phychan->reg_dst);
 410	writel_relaxed(lli[PL080_LLI_LLI], phychan->reg_lli);
 411
 412	/*
 413	 * The FTMAC020 has a different layout in the CCTL word of the LLI
 414	 * and the CCTL register which is split in CSR and SIZE registers.
 415	 * Convert the LLI item CCTL into the proper values to write into
 416	 * the CSR and SIZE registers.
 417	 */
 418	if (phychan->ftdmac020) {
 419		u32 llictl = lli[PL080_LLI_CCTL];
 420		u32 val = 0;
 421
 422		/* Write the transfer size (12 bits) to the size register */
 423		writel_relaxed(llictl & FTDMAC020_LLI_TRANSFER_SIZE_MASK,
 424			       phychan->base + FTDMAC020_CH_SIZE);
 425		/*
 426		 * Then write the control bits 28..16 to the control register
 427		 * by shuffleing the bits around to where they are in the
 428		 * main register. The mapping is as follows:
 429		 * Bit 28: TC_MSK - mask on all except last LLI
 430		 * Bit 27..25: SRC_WIDTH
 431		 * Bit 24..22: DST_WIDTH
 432		 * Bit 21..20: SRCAD_CTRL
 433		 * Bit 19..17: DSTAD_CTRL
 434		 * Bit 17: SRC_SEL
 435		 * Bit 16: DST_SEL
 436		 */
 437		if (llictl & FTDMAC020_LLI_TC_MSK)
 438			val |= FTDMAC020_CH_CSR_TC_MSK;
 439		val |= ((llictl  & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
 440			(FTDMAC020_LLI_SRC_WIDTH_SHIFT -
 441			 FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT));
 442		val |= ((llictl  & FTDMAC020_LLI_DST_WIDTH_MSK) >>
 443			(FTDMAC020_LLI_DST_WIDTH_SHIFT -
 444			 FTDMAC020_CH_CSR_DST_WIDTH_SHIFT));
 445		val |= ((llictl  & FTDMAC020_LLI_SRCAD_CTL_MSK) >>
 446			(FTDMAC020_LLI_SRCAD_CTL_SHIFT -
 447			 FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT));
 448		val |= ((llictl  & FTDMAC020_LLI_DSTAD_CTL_MSK) >>
 449			(FTDMAC020_LLI_DSTAD_CTL_SHIFT -
 450			 FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT));
 451		if (llictl & FTDMAC020_LLI_SRC_SEL)
 452			val |= FTDMAC020_CH_CSR_SRC_SEL;
 453		if (llictl & FTDMAC020_LLI_DST_SEL)
 454			val |= FTDMAC020_CH_CSR_DST_SEL;
 455
 456		/*
 457		 * Set up the bits that exist in the CSR but are not
 458		 * part the LLI, i.e. only gets written to the control
 459		 * register right here.
 460		 *
 461		 * FIXME: do not just handle memcpy, also handle slave DMA.
 462		 */
 463		switch (pl08x->pd->memcpy_burst_size) {
 464		default:
 465		case PL08X_BURST_SZ_1:
 466			val |= PL080_BSIZE_1 <<
 467				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 468			break;
 469		case PL08X_BURST_SZ_4:
 470			val |= PL080_BSIZE_4 <<
 471				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 472			break;
 473		case PL08X_BURST_SZ_8:
 474			val |= PL080_BSIZE_8 <<
 475				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 476			break;
 477		case PL08X_BURST_SZ_16:
 478			val |= PL080_BSIZE_16 <<
 479				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 480			break;
 481		case PL08X_BURST_SZ_32:
 482			val |= PL080_BSIZE_32 <<
 483				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 484			break;
 485		case PL08X_BURST_SZ_64:
 486			val |= PL080_BSIZE_64 <<
 487				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 488			break;
 489		case PL08X_BURST_SZ_128:
 490			val |= PL080_BSIZE_128 <<
 491				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 492			break;
 493		case PL08X_BURST_SZ_256:
 494			val |= PL080_BSIZE_256 <<
 495				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 496			break;
 497		}
 498
 499		/* Protection flags */
 500		if (pl08x->pd->memcpy_prot_buff)
 501			val |= FTDMAC020_CH_CSR_PROT2;
 502		if (pl08x->pd->memcpy_prot_cache)
 503			val |= FTDMAC020_CH_CSR_PROT3;
 504		/* We are the kernel, so we are in privileged mode */
 505		val |= FTDMAC020_CH_CSR_PROT1;
 506
 507		writel_relaxed(val, phychan->reg_control);
 508	} else {
 509		/* Bits are just identical */
 510		writel_relaxed(lli[PL080_LLI_CCTL], phychan->reg_control);
 511	}
 512
 513	/* Second control word on the PL080s */
 514	if (pl08x->vd->pl080s)
 515		writel_relaxed(lli[PL080S_LLI_CCTL2],
 516				phychan->base + PL080S_CH_CONTROL2);
 517
 518	writel(ccfg, phychan->reg_config);
 519}
 520
 521/*
 522 * Set the initial DMA register values i.e. those for the first LLI
 523 * The next LLI pointer and the configuration interrupt bit have
 524 * been set when the LLIs were constructed.  Poke them into the hardware
 525 * and start the transfer.
 526 */
 527static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
 
 528{
 529	struct pl08x_driver_data *pl08x = plchan->host;
 530	struct pl08x_phy_chan *phychan = plchan->phychan;
 531	struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
 532	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
 533	u32 val;
 534
 535	list_del(&txd->vd.node);
 536
 537	plchan->at = txd;
 538
 539	/* Wait for channel inactive */
 540	while (pl08x_phy_channel_busy(phychan))
 541		cpu_relax();
 542
 543	pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
 
 
 
 
 
 
 
 
 
 
 544
 545	/* Enable the DMA channel */
 546	/* Do not access config register until channel shows as disabled */
 547	while (readl(pl08x->base + PL080_EN_CHAN) & BIT(phychan->id))
 548		cpu_relax();
 549
 550	/* Do not access config register until channel shows as inactive */
 551	if (phychan->ftdmac020) {
 552		val = readl(phychan->reg_config);
 553		while (val & FTDMAC020_CH_CFG_BUSY)
 554			val = readl(phychan->reg_config);
 555
 556		val = readl(phychan->reg_control);
 557		while (val & FTDMAC020_CH_CSR_EN)
 558			val = readl(phychan->reg_control);
 559
 560		writel(val | FTDMAC020_CH_CSR_EN,
 561		       phychan->reg_control);
 562	} else {
 563		val = readl(phychan->reg_config);
 564		while ((val & PL080_CONFIG_ACTIVE) ||
 565		       (val & PL080_CONFIG_ENABLE))
 566			val = readl(phychan->reg_config);
 567
 568		writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
 569	}
 570}
 571
 572/*
 573 * Pause the channel by setting the HALT bit.
 574 *
 575 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 576 * the FIFO can only drain if the peripheral is still requesting data.
 577 * (note: this can still timeout if the DMAC FIFO never drains of data.)
 578 *
 579 * For P->M transfers, disable the peripheral first to stop it filling
 580 * the DMAC FIFO, and then pause the DMAC.
 581 */
 582static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
 583{
 584	u32 val;
 585	int timeout;
 586
 587	if (ch->ftdmac020) {
 588		/* Use the enable bit on the FTDMAC020 */
 589		val = readl(ch->reg_control);
 590		val &= ~FTDMAC020_CH_CSR_EN;
 591		writel(val, ch->reg_control);
 592		return;
 593	}
 594
 595	/* Set the HALT bit and wait for the FIFO to drain */
 596	val = readl(ch->reg_config);
 597	val |= PL080_CONFIG_HALT;
 598	writel(val, ch->reg_config);
 599
 600	/* Wait for channel inactive */
 601	for (timeout = 1000; timeout; timeout--) {
 602		if (!pl08x_phy_channel_busy(ch))
 603			break;
 604		udelay(1);
 605	}
 606	if (pl08x_phy_channel_busy(ch))
 607		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
 608}
 609
 610static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
 611{
 612	u32 val;
 613
 614	/* Use the enable bit on the FTDMAC020 */
 615	if (ch->ftdmac020) {
 616		val = readl(ch->reg_control);
 617		val |= FTDMAC020_CH_CSR_EN;
 618		writel(val, ch->reg_control);
 619		return;
 620	}
 621
 622	/* Clear the HALT bit */
 623	val = readl(ch->reg_config);
 624	val &= ~PL080_CONFIG_HALT;
 625	writel(val, ch->reg_config);
 626}
 627
 
 628/*
 629 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 630 * clears any pending interrupt status.  This should not be used for
 631 * an on-going transfer, but as a method of shutting down a channel
 632 * (eg, when it's no longer used) or terminating a transfer.
 633 */
 634static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
 635	struct pl08x_phy_chan *ch)
 636{
 637	u32 val;
 638
 639	/* The layout for the FTDMAC020 is different */
 640	if (ch->ftdmac020) {
 641		/* Disable all interrupts */
 642		val = readl(ch->reg_config);
 643		val |= (FTDMAC020_CH_CFG_INT_ABT_MASK |
 644			FTDMAC020_CH_CFG_INT_ERR_MASK |
 645			FTDMAC020_CH_CFG_INT_TC_MASK);
 646		writel(val, ch->reg_config);
 647
 648		/* Abort and disable channel */
 649		val = readl(ch->reg_control);
 650		val &= ~FTDMAC020_CH_CSR_EN;
 651		val |= FTDMAC020_CH_CSR_ABT;
 652		writel(val, ch->reg_control);
 653
 654		/* Clear ABT and ERR interrupt flags */
 655		writel(BIT(ch->id) | BIT(ch->id + 16),
 656		       pl08x->base + PL080_ERR_CLEAR);
 657		writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
 658
 659		return;
 660	}
 661
 662	val = readl(ch->reg_config);
 663	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
 664		 PL080_CONFIG_TC_IRQ_MASK);
 665	writel(val, ch->reg_config);
 666
 667	writel(BIT(ch->id), pl08x->base + PL080_ERR_CLEAR);
 668	writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
 669}
 670
 671static u32 get_bytes_in_phy_channel(struct pl08x_phy_chan *ch)
 672{
 673	u32 val;
 674	u32 bytes;
 675
 676	if (ch->ftdmac020) {
 677		bytes = readl(ch->base + FTDMAC020_CH_SIZE);
 678
 679		val = readl(ch->reg_control);
 680		val &= FTDMAC020_CH_CSR_SRC_WIDTH_MSK;
 681		val >>= FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT;
 682	} else if (ch->pl080s) {
 683		val = readl(ch->base + PL080S_CH_CONTROL2);
 684		bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
 685
 686		val = readl(ch->reg_control);
 687		val &= PL080_CONTROL_SWIDTH_MASK;
 688		val >>= PL080_CONTROL_SWIDTH_SHIFT;
 689	} else {
 690		/* Plain PL08x */
 691		val = readl(ch->reg_control);
 692		bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
 693
 694		val &= PL080_CONTROL_SWIDTH_MASK;
 695		val >>= PL080_CONTROL_SWIDTH_SHIFT;
 696	}
 697
 698	switch (val) {
 699	case PL080_WIDTH_8BIT:
 700		break;
 701	case PL080_WIDTH_16BIT:
 702		bytes *= 2;
 703		break;
 704	case PL080_WIDTH_32BIT:
 705		bytes *= 4;
 706		break;
 707	}
 708	return bytes;
 709}
 710
 711static u32 get_bytes_in_lli(struct pl08x_phy_chan *ch, const u32 *llis_va)
 712{
 713	u32 val;
 714	u32 bytes;
 715
 716	if (ch->ftdmac020) {
 717		val = llis_va[PL080_LLI_CCTL];
 718		bytes = val & FTDMAC020_LLI_TRANSFER_SIZE_MASK;
 719
 720		val = llis_va[PL080_LLI_CCTL];
 721		val &= FTDMAC020_LLI_SRC_WIDTH_MSK;
 722		val >>= FTDMAC020_LLI_SRC_WIDTH_SHIFT;
 723	} else if (ch->pl080s) {
 724		val = llis_va[PL080S_LLI_CCTL2];
 725		bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
 726
 727		val = llis_va[PL080_LLI_CCTL];
 728		val &= PL080_CONTROL_SWIDTH_MASK;
 729		val >>= PL080_CONTROL_SWIDTH_SHIFT;
 730	} else {
 731		/* Plain PL08x */
 732		val = llis_va[PL080_LLI_CCTL];
 733		bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
 734
 735		val &= PL080_CONTROL_SWIDTH_MASK;
 736		val >>= PL080_CONTROL_SWIDTH_SHIFT;
 737	}
 738
 739	switch (val) {
 740	case PL080_WIDTH_8BIT:
 741		break;
 742	case PL080_WIDTH_16BIT:
 743		bytes *= 2;
 744		break;
 745	case PL080_WIDTH_32BIT:
 746		bytes *= 4;
 747		break;
 748	}
 749	return bytes;
 750}
 751
 752/* The channel should be paused when calling this */
 753static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
 754{
 755	struct pl08x_driver_data *pl08x = plchan->host;
 756	const u32 *llis_va, *llis_va_limit;
 757	struct pl08x_phy_chan *ch;
 758	dma_addr_t llis_bus;
 759	struct pl08x_txd *txd;
 760	u32 llis_max_words;
 761	size_t bytes;
 762	u32 clli;
 763
 
 764	ch = plchan->phychan;
 765	txd = plchan->at;
 766
 767	if (!ch || !txd)
 768		return 0;
 769
 770	/*
 771	 * Follow the LLIs to get the number of remaining
 772	 * bytes in the currently active transaction.
 773	 */
 774	clli = readl(ch->reg_lli) & ~PL080_LLI_LM_AHB2;
 
 775
 776	/* First get the remaining bytes in the active transfer */
 777	bytes = get_bytes_in_phy_channel(ch);
 778
 779	if (!clli)
 780		return bytes;
 
 
 781
 782	llis_va = txd->llis_va;
 783	llis_bus = txd->llis_bus;
 784
 785	llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
 786	BUG_ON(clli < llis_bus || clli >= llis_bus +
 787						sizeof(u32) * llis_max_words);
 788
 789	/*
 790	 * Locate the next LLI - as this is an array,
 791	 * it's simple maths to find.
 792	 */
 793	llis_va += (clli - llis_bus) / sizeof(u32);
 794
 795	llis_va_limit = llis_va + llis_max_words;
 
 796
 797	for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
 798		bytes += get_bytes_in_lli(ch, llis_va);
 
 
 
 
 
 
 799
 800		/*
 801		 * A LLI pointer going backward terminates the LLI list
 802		 */
 803		if (llis_va[PL080_LLI_LLI] <= clli)
 804			break;
 
 805	}
 806
 
 
 807	return bytes;
 808}
 809
 810/*
 811 * Allocate a physical channel for a virtual channel
 812 *
 813 * Try to locate a physical channel to be used for this transfer. If all
 814 * are taken return NULL and the requester will have to cope by using
 815 * some fallback PIO mode or retrying later.
 816 */
 817static struct pl08x_phy_chan *
 818pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
 819		      struct pl08x_dma_chan *virt_chan)
 820{
 821	struct pl08x_phy_chan *ch = NULL;
 822	unsigned long flags;
 823	int i;
 824
 825	for (i = 0; i < pl08x->vd->channels; i++) {
 826		ch = &pl08x->phy_chans[i];
 827
 828		spin_lock_irqsave(&ch->lock, flags);
 829
 830		if (!ch->locked && !ch->serving) {
 831			ch->serving = virt_chan;
 
 832			spin_unlock_irqrestore(&ch->lock, flags);
 833			break;
 834		}
 835
 836		spin_unlock_irqrestore(&ch->lock, flags);
 837	}
 838
 839	if (i == pl08x->vd->channels) {
 840		/* No physical channel available, cope with it */
 841		return NULL;
 842	}
 843
 844	return ch;
 845}
 846
 847/* Mark the physical channel as free.  Note, this write is atomic. */
 848static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
 849					 struct pl08x_phy_chan *ch)
 850{
 851	ch->serving = NULL;
 852}
 853
 854/*
 855 * Try to allocate a physical channel.  When successful, assign it to
 856 * this virtual channel, and initiate the next descriptor.  The
 857 * virtual channel lock must be held at this point.
 858 */
 859static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
 860{
 861	struct pl08x_driver_data *pl08x = plchan->host;
 862	struct pl08x_phy_chan *ch;
 863
 864	ch = pl08x_get_phy_channel(pl08x, plchan);
 865	if (!ch) {
 866		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
 867		plchan->state = PL08X_CHAN_WAITING;
 868		plchan->waiting_at = jiffies;
 869		return;
 870	}
 871
 872	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
 873		ch->id, plchan->name);
 874
 875	plchan->phychan = ch;
 876	plchan->state = PL08X_CHAN_RUNNING;
 877	pl08x_start_next_txd(plchan);
 878}
 879
 880static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
 881	struct pl08x_dma_chan *plchan)
 882{
 883	struct pl08x_driver_data *pl08x = plchan->host;
 884
 885	dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
 886		ch->id, plchan->name);
 887
 888	/*
 889	 * We do this without taking the lock; we're really only concerned
 890	 * about whether this pointer is NULL or not, and we're guaranteed
 891	 * that this will only be called when it _already_ is non-NULL.
 892	 */
 893	ch->serving = plchan;
 894	plchan->phychan = ch;
 895	plchan->state = PL08X_CHAN_RUNNING;
 896	pl08x_start_next_txd(plchan);
 897}
 898
 899/*
 900 * Free a physical DMA channel, potentially reallocating it to another
 901 * virtual channel if we have any pending.
 902 */
 903static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
 904{
 905	struct pl08x_driver_data *pl08x = plchan->host;
 906	struct pl08x_dma_chan *p, *next;
 907	unsigned long waiting_at;
 908 retry:
 909	next = NULL;
 910	waiting_at = jiffies;
 911
 912	/*
 913	 * Find a waiting virtual channel for the next transfer.
 914	 * To be fair, time when each channel reached waiting state is compared
 915	 * to select channel that is waiting for the longest time.
 916	 */
 917	list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
 918		if (p->state == PL08X_CHAN_WAITING &&
 919		    p->waiting_at <= waiting_at) {
 920			next = p;
 921			waiting_at = p->waiting_at;
 922		}
 923
 924	if (!next && pl08x->has_slave) {
 925		list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
 926			if (p->state == PL08X_CHAN_WAITING &&
 927			    p->waiting_at <= waiting_at) {
 928				next = p;
 929				waiting_at = p->waiting_at;
 930			}
 931	}
 932
 933	/* Ensure that the physical channel is stopped */
 934	pl08x_terminate_phy_chan(pl08x, plchan->phychan);
 935
 936	if (next) {
 937		bool success;
 938
 939		/*
 940		 * Eww.  We know this isn't going to deadlock
 941		 * but lockdep probably doesn't.
 942		 */
 943		spin_lock(&next->vc.lock);
 944		/* Re-check the state now that we have the lock */
 945		success = next->state == PL08X_CHAN_WAITING;
 946		if (success)
 947			pl08x_phy_reassign_start(plchan->phychan, next);
 948		spin_unlock(&next->vc.lock);
 949
 950		/* If the state changed, try to find another channel */
 951		if (!success)
 952			goto retry;
 953	} else {
 954		/* No more jobs, so free up the physical channel */
 955		pl08x_put_phy_channel(pl08x, plchan->phychan);
 956	}
 957
 958	plchan->phychan = NULL;
 959	plchan->state = PL08X_CHAN_IDLE;
 960}
 961
 962/*
 963 * LLI handling
 964 */
 965
 966static inline unsigned int
 967pl08x_get_bytes_for_lli(struct pl08x_driver_data *pl08x,
 968			u32 cctl,
 969			bool source)
 970{
 971	u32 val;
 972
 973	if (pl08x->vd->ftdmac020) {
 974		if (source)
 975			val = (cctl & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
 976				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
 977		else
 978			val = (cctl & FTDMAC020_LLI_DST_WIDTH_MSK) >>
 979				FTDMAC020_LLI_DST_WIDTH_SHIFT;
 980	} else {
 981		if (source)
 982			val = (cctl & PL080_CONTROL_SWIDTH_MASK) >>
 983				PL080_CONTROL_SWIDTH_SHIFT;
 984		else
 985			val = (cctl & PL080_CONTROL_DWIDTH_MASK) >>
 986				PL080_CONTROL_DWIDTH_SHIFT;
 987	}
 988
 989	switch (val) {
 990	case PL080_WIDTH_8BIT:
 991		return 1;
 992	case PL080_WIDTH_16BIT:
 993		return 2;
 994	case PL080_WIDTH_32BIT:
 995		return 4;
 996	default:
 997		break;
 998	}
 999	BUG();
1000	return 0;
1001}
1002
1003static inline u32 pl08x_lli_control_bits(struct pl08x_driver_data *pl08x,
1004					 u32 cctl,
1005					 u8 srcwidth, u8 dstwidth,
1006					 size_t tsize)
1007{
1008	u32 retbits = cctl;
1009
1010	/*
1011	 * Remove all src, dst and transfer size bits, then set the
1012	 * width and size according to the parameters. The bit offsets
1013	 * are different in the FTDMAC020 so we need to accound for this.
1014	 */
1015	if (pl08x->vd->ftdmac020) {
1016		retbits &= ~FTDMAC020_LLI_DST_WIDTH_MSK;
1017		retbits &= ~FTDMAC020_LLI_SRC_WIDTH_MSK;
1018		retbits &= ~FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1019
1020		switch (srcwidth) {
1021		case 1:
1022			retbits |= PL080_WIDTH_8BIT <<
1023				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1024			break;
1025		case 2:
1026			retbits |= PL080_WIDTH_16BIT <<
1027				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1028			break;
1029		case 4:
1030			retbits |= PL080_WIDTH_32BIT <<
1031				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1032			break;
1033		default:
1034			BUG();
1035			break;
1036		}
1037
1038		switch (dstwidth) {
1039		case 1:
1040			retbits |= PL080_WIDTH_8BIT <<
1041				FTDMAC020_LLI_DST_WIDTH_SHIFT;
1042			break;
1043		case 2:
1044			retbits |= PL080_WIDTH_16BIT <<
1045				FTDMAC020_LLI_DST_WIDTH_SHIFT;
1046			break;
1047		case 4:
1048			retbits |= PL080_WIDTH_32BIT <<
1049				FTDMAC020_LLI_DST_WIDTH_SHIFT;
1050			break;
1051		default:
1052			BUG();
1053			break;
1054		}
1055
1056		tsize &= FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1057		retbits |= tsize << FTDMAC020_LLI_TRANSFER_SIZE_SHIFT;
1058	} else {
1059		retbits &= ~PL080_CONTROL_DWIDTH_MASK;
1060		retbits &= ~PL080_CONTROL_SWIDTH_MASK;
1061		retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
1062
1063		switch (srcwidth) {
1064		case 1:
1065			retbits |= PL080_WIDTH_8BIT <<
1066				PL080_CONTROL_SWIDTH_SHIFT;
1067			break;
1068		case 2:
1069			retbits |= PL080_WIDTH_16BIT <<
1070				PL080_CONTROL_SWIDTH_SHIFT;
1071			break;
1072		case 4:
1073			retbits |= PL080_WIDTH_32BIT <<
1074				PL080_CONTROL_SWIDTH_SHIFT;
1075			break;
1076		default:
1077			BUG();
1078			break;
1079		}
1080
1081		switch (dstwidth) {
1082		case 1:
1083			retbits |= PL080_WIDTH_8BIT <<
1084				PL080_CONTROL_DWIDTH_SHIFT;
1085			break;
1086		case 2:
1087			retbits |= PL080_WIDTH_16BIT <<
1088				PL080_CONTROL_DWIDTH_SHIFT;
1089			break;
1090		case 4:
1091			retbits |= PL080_WIDTH_32BIT <<
1092				PL080_CONTROL_DWIDTH_SHIFT;
1093			break;
1094		default:
1095			BUG();
1096			break;
1097		}
1098
1099		tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
1100		retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
1101	}
1102
 
1103	return retbits;
1104}
1105
1106struct pl08x_lli_build_data {
1107	struct pl08x_txd *txd;
1108	struct pl08x_bus_data srcbus;
1109	struct pl08x_bus_data dstbus;
1110	size_t remainder;
1111	u32 lli_bus;
1112};
1113
1114/*
1115 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
1116 * victim in case src & dest are not similarly aligned. i.e. If after aligning
1117 * masters address with width requirements of transfer (by sending few byte by
1118 * byte data), slave is still not aligned, then its width will be reduced to
1119 * BYTE.
1120 * - prefers the destination bus if both available
1121 * - prefers bus with fixed address (i.e. peripheral)
1122 */
1123static void pl08x_choose_master_bus(struct pl08x_driver_data *pl08x,
1124				    struct pl08x_lli_build_data *bd,
1125				    struct pl08x_bus_data **mbus,
1126				    struct pl08x_bus_data **sbus,
1127				    u32 cctl)
1128{
1129	bool dst_incr;
1130	bool src_incr;
1131
1132	/*
1133	 * The FTDMAC020 only supports memory-to-memory transfer, so
1134	 * source and destination always increase.
1135	 */
1136	if (pl08x->vd->ftdmac020) {
1137		dst_incr = true;
1138		src_incr = true;
1139	} else {
1140		dst_incr = !!(cctl & PL080_CONTROL_DST_INCR);
1141		src_incr = !!(cctl & PL080_CONTROL_SRC_INCR);
1142	}
1143
1144	/*
1145	 * If either bus is not advancing, i.e. it is a peripheral, that
1146	 * one becomes master
1147	 */
1148	if (!dst_incr) {
1149		*mbus = &bd->dstbus;
1150		*sbus = &bd->srcbus;
1151	} else if (!src_incr) {
1152		*mbus = &bd->srcbus;
1153		*sbus = &bd->dstbus;
 
 
 
1154	} else {
1155		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
1156			*mbus = &bd->dstbus;
1157			*sbus = &bd->srcbus;
1158		} else {
1159			*mbus = &bd->srcbus;
1160			*sbus = &bd->dstbus;
 
 
 
 
 
 
 
 
 
 
1161		}
1162	}
1163}
1164
1165/*
1166 * Fills in one LLI for a certain transfer descriptor and advance the counter
1167 */
1168static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
1169				    struct pl08x_lli_build_data *bd,
1170				    int num_llis, int len, u32 cctl, u32 cctl2)
1171{
1172	u32 offset = num_llis * pl08x->lli_words;
1173	u32 *llis_va = bd->txd->llis_va + offset;
1174	dma_addr_t llis_bus = bd->txd->llis_bus;
1175
1176	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
1177
1178	/* Advance the offset to next LLI. */
1179	offset += pl08x->lli_words;
1180
1181	llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
1182	llis_va[PL080_LLI_DST] = bd->dstbus.addr;
1183	llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
1184	llis_va[PL080_LLI_LLI] |= bd->lli_bus;
1185	llis_va[PL080_LLI_CCTL] = cctl;
1186	if (pl08x->vd->pl080s)
1187		llis_va[PL080S_LLI_CCTL2] = cctl2;
1188
1189	if (pl08x->vd->ftdmac020) {
1190		/* FIXME: only memcpy so far so both increase */
1191		bd->srcbus.addr += len;
 
1192		bd->dstbus.addr += len;
1193	} else {
1194		if (cctl & PL080_CONTROL_SRC_INCR)
1195			bd->srcbus.addr += len;
1196		if (cctl & PL080_CONTROL_DST_INCR)
1197			bd->dstbus.addr += len;
1198	}
1199
1200	BUG_ON(bd->remainder < len);
1201
1202	bd->remainder -= len;
1203}
1204
1205static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
1206			struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
1207			int num_llis, size_t *total_bytes)
1208{
1209	*cctl = pl08x_lli_control_bits(pl08x, *cctl, 1, 1, len);
1210	pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
1211	(*total_bytes) += len;
1212}
1213
1214#if 1
1215static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1216			   const u32 *llis_va, int num_llis)
1217{
1218	int i;
 
1219
1220	if (pl08x->vd->pl080s) {
1221		dev_vdbg(&pl08x->adev->dev,
1222			"%-3s %-9s  %-10s %-10s %-10s %-10s %s\n",
1223			"lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
1224		for (i = 0; i < num_llis; i++) {
1225			dev_vdbg(&pl08x->adev->dev,
1226				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
1227				i, llis_va, llis_va[PL080_LLI_SRC],
1228				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1229				llis_va[PL080_LLI_CCTL],
1230				llis_va[PL080S_LLI_CCTL2]);
1231			llis_va += pl08x->lli_words;
1232		}
1233	} else {
1234		dev_vdbg(&pl08x->adev->dev,
1235			"%-3s %-9s  %-10s %-10s %-10s %s\n",
1236			"lli", "", "csrc", "cdst", "clli", "cctl");
1237		for (i = 0; i < num_llis; i++) {
1238			dev_vdbg(&pl08x->adev->dev,
1239				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1240				i, llis_va, llis_va[PL080_LLI_SRC],
1241				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1242				llis_va[PL080_LLI_CCTL]);
1243			llis_va += pl08x->lli_words;
1244		}
1245	}
1246}
1247#else
1248static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1249				  const u32 *llis_va, int num_llis) {}
1250#endif
1251
1252/*
1253 * This fills in the table of LLIs for the transfer descriptor
1254 * Note that we assume we never have to change the burst sizes
1255 * Return 0 for error
1256 */
1257static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
1258			      struct pl08x_txd *txd)
1259{
1260	struct pl08x_bus_data *mbus, *sbus;
1261	struct pl08x_lli_build_data bd;
1262	int num_llis = 0;
1263	u32 cctl, early_bytes = 0;
1264	size_t max_bytes_per_lli, total_bytes;
1265	u32 *llis_va, *last_lli;
1266	struct pl08x_sg *dsg;
1267
1268	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
 
1269	if (!txd->llis_va) {
1270		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
1271		return 0;
1272	}
1273
 
 
 
 
 
1274	bd.txd = txd;
 
 
1275	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
1276	cctl = txd->cctl;
1277
1278	/* Find maximum width of the source bus */
1279	bd.srcbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, true);
 
 
1280
1281	/* Find maximum width of the destination bus */
1282	bd.dstbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, false);
 
 
 
 
 
 
1283
1284	list_for_each_entry(dsg, &txd->dsg_list, node) {
1285		total_bytes = 0;
1286		cctl = txd->cctl;
1287
1288		bd.srcbus.addr = dsg->src_addr;
1289		bd.dstbus.addr = dsg->dst_addr;
1290		bd.remainder = dsg->len;
1291		bd.srcbus.buswidth = bd.srcbus.maxwidth;
1292		bd.dstbus.buswidth = bd.dstbus.maxwidth;
1293
1294		pl08x_choose_master_bus(pl08x, &bd, &mbus, &sbus, cctl);
 
1295
1296		dev_vdbg(&pl08x->adev->dev,
1297			"src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
1298			(u64)bd.srcbus.addr,
1299			cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
1300			bd.srcbus.buswidth,
1301			(u64)bd.dstbus.addr,
1302			cctl & PL080_CONTROL_DST_INCR ? "+" : "",
1303			bd.dstbus.buswidth,
1304			bd.remainder);
1305		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
1306			mbus == &bd.srcbus ? "src" : "dst",
1307			sbus == &bd.srcbus ? "src" : "dst");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1308
1309		/*
1310		 * Zero length is only allowed if all these requirements are
1311		 * met:
1312		 * - flow controller is peripheral.
1313		 * - src.addr is aligned to src.width
1314		 * - dst.addr is aligned to dst.width
1315		 *
1316		 * sg_len == 1 should be true, as there can be two cases here:
1317		 *
1318		 * - Memory addresses are contiguous and are not scattered.
1319		 *   Here, Only one sg will be passed by user driver, with
1320		 *   memory address and zero length. We pass this to controller
1321		 *   and after the transfer it will receive the last burst
1322		 *   request from peripheral and so transfer finishes.
1323		 *
1324		 * - Memory addresses are scattered and are not contiguous.
1325		 *   Here, Obviously as DMA controller doesn't know when a lli's
1326		 *   transfer gets over, it can't load next lli. So in this
1327		 *   case, there has to be an assumption that only one lli is
1328		 *   supported. Thus, we can't have scattered addresses.
1329		 */
1330		if (!bd.remainder) {
1331			u32 fc;
1332
1333			/* FTDMAC020 only does memory-to-memory */
1334			if (pl08x->vd->ftdmac020)
1335				fc = PL080_FLOW_MEM2MEM;
1336			else
1337				fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1338					PL080_CONFIG_FLOW_CONTROL_SHIFT;
1339			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1340					(fc <= PL080_FLOW_SRC2DST_SRC))) {
1341				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1342					__func__);
1343				return 0;
1344			}
1345
1346			if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1347				!IS_BUS_ALIGNED(&bd.dstbus)) {
1348				dev_err(&pl08x->adev->dev,
1349					"%s src & dst address must be aligned to src"
1350					" & dst width if peripheral is flow controller",
1351					__func__);
1352				return 0;
1353			}
1354
1355			cctl = pl08x_lli_control_bits(pl08x, cctl,
1356					bd.srcbus.buswidth, bd.dstbus.buswidth,
1357					0);
1358			pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1359					0, cctl, 0);
1360			break;
1361		}
1362
1363		/*
1364		 * Send byte by byte for following cases
1365		 * - Less than a bus width available
1366		 * - until master bus is aligned
1367		 */
1368		if (bd.remainder < mbus->buswidth)
1369			early_bytes = bd.remainder;
1370		else if (!IS_BUS_ALIGNED(mbus)) {
1371			early_bytes = mbus->buswidth -
1372				(mbus->addr & (mbus->buswidth - 1));
1373			if ((bd.remainder - early_bytes) < mbus->buswidth)
1374				early_bytes = bd.remainder;
1375		}
1376
1377		if (early_bytes) {
1378			dev_vdbg(&pl08x->adev->dev,
1379				"%s byte width LLIs (remain 0x%08zx)\n",
1380				__func__, bd.remainder);
1381			prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1382				num_llis++, &total_bytes);
1383		}
1384
1385		if (bd.remainder) {
1386			/*
1387			 * Master now aligned
1388			 * - if slave is not then we must set its width down
1389			 */
1390			if (!IS_BUS_ALIGNED(sbus)) {
1391				dev_dbg(&pl08x->adev->dev,
1392					"%s set down bus width to one byte\n",
1393					__func__);
1394
1395				sbus->buswidth = 1;
1396			}
1397
1398			/*
1399			 * Bytes transferred = tsize * src width, not
1400			 * MIN(buswidths)
 
1401			 */
1402			max_bytes_per_lli = bd.srcbus.buswidth *
1403						pl08x->vd->max_transfer_size;
1404			dev_vdbg(&pl08x->adev->dev,
1405				"%s max bytes per lli = %zu\n",
1406				__func__, max_bytes_per_lli);
 
1407
1408			/*
1409			 * Make largest possible LLIs until less than one bus
1410			 * width left
1411			 */
1412			while (bd.remainder > (mbus->buswidth - 1)) {
1413				size_t lli_len, tsize, width;
 
 
 
 
 
 
 
 
 
 
 
 
 
1414
 
 
 
 
 
 
 
 
 
1415				/*
1416				 * If enough left try to send max possible,
1417				 * otherwise try to send the remainder
 
 
 
 
 
1418				 */
1419				lli_len = min(bd.remainder, max_bytes_per_lli);
 
1420
 
 
 
1421				/*
1422				 * Check against maximum bus alignment:
1423				 * Calculate actual transfer size in relation to
1424				 * bus width an get a maximum remainder of the
1425				 * highest bus width - 1
1426				 */
1427				width = max(mbus->buswidth, sbus->buswidth);
1428				lli_len = (lli_len / width) * width;
1429				tsize = lli_len / bd.srcbus.buswidth;
 
 
 
 
 
 
 
 
 
 
 
 
 
1430
1431				dev_vdbg(&pl08x->adev->dev,
1432					"%s fill lli with single lli chunk of "
1433					"size 0x%08zx (remainder 0x%08zx)\n",
1434					__func__, lli_len, bd.remainder);
1435
1436				cctl = pl08x_lli_control_bits(pl08x, cctl,
1437					bd.srcbus.buswidth, bd.dstbus.buswidth,
1438					tsize);
1439				pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1440						lli_len, cctl, tsize);
1441				total_bytes += lli_len;
1442			}
1443
1444			/*
1445			 * Send any odd bytes
1446			 */
1447			if (bd.remainder) {
1448				dev_vdbg(&pl08x->adev->dev,
1449					"%s align with boundary, send odd bytes (remain %zu)\n",
1450					__func__, bd.remainder);
1451				prep_byte_width_lli(pl08x, &bd, &cctl,
1452					bd.remainder, num_llis++, &total_bytes);
 
 
 
 
 
 
 
 
1453			}
1454		}
1455
1456		if (total_bytes != dsg->len) {
1457			dev_err(&pl08x->adev->dev,
1458				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1459				__func__, total_bytes, dsg->len);
1460			return 0;
 
 
 
 
 
1461		}
 
 
 
 
 
 
 
1462
1463		if (num_llis >= MAX_NUM_TSFR_LLIS) {
1464			dev_err(&pl08x->adev->dev,
1465				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1466				__func__, MAX_NUM_TSFR_LLIS);
1467			return 0;
1468		}
1469	}
1470
1471	llis_va = txd->llis_va;
1472	last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
 
 
 
1473
1474	if (txd->cyclic) {
1475		/* Link back to the first LLI. */
1476		last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1477	} else {
1478		/* The final LLI terminates the LLI. */
1479		last_lli[PL080_LLI_LLI] = 0;
1480		/* The final LLI element shall also fire an interrupt. */
1481		if (pl08x->vd->ftdmac020)
1482			last_lli[PL080_LLI_CCTL] &= ~FTDMAC020_LLI_TC_MSK;
1483		else
1484			last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1485	}
1486
1487	pl08x_dump_lli(pl08x, llis_va, num_llis);
 
 
 
 
 
 
 
 
 
 
 
1488
1489	return num_llis;
1490}
1491
 
1492static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1493			   struct pl08x_txd *txd)
1494{
1495	struct pl08x_sg *dsg, *_dsg;
 
1496
1497	if (txd->llis_va)
1498		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1499
1500	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1501		list_del(&dsg->node);
1502		kfree(dsg);
1503	}
1504
1505	kfree(txd);
1506}
1507
1508static void pl08x_desc_free(struct virt_dma_desc *vd)
1509{
1510	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1511	struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1512
1513	dma_descriptor_unmap(&vd->tx);
1514	if (!txd->done)
1515		pl08x_release_mux(plchan);
1516
1517	pl08x_free_txd(plchan->host, txd);
1518}
1519
1520static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1521				struct pl08x_dma_chan *plchan)
1522{
1523	LIST_HEAD(head);
 
1524
1525	vchan_get_all_descriptors(&plchan->vc, &head);
1526	vchan_dma_desc_free_list(&plchan->vc, &head);
 
 
 
 
 
1527}
1528
1529/*
1530 * The DMA ENGINE API
1531 */
 
 
 
 
 
1532static void pl08x_free_chan_resources(struct dma_chan *chan)
1533{
1534	/* Ensure all queued descriptors are freed */
1535	vchan_free_chan_resources(to_virt_chan(chan));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1536}
1537
1538static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1539		struct dma_chan *chan, unsigned long flags)
1540{
1541	struct dma_async_tx_descriptor *retval = NULL;
1542
1543	return retval;
1544}
1545
1546/*
1547 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1548 * If slaves are relying on interrupts to signal completion this function
1549 * must not be called with interrupts disabled.
1550 */
1551static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1552		dma_cookie_t cookie, struct dma_tx_state *txstate)
 
 
1553{
1554	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1555	struct virt_dma_desc *vd;
1556	unsigned long flags;
1557	enum dma_status ret;
1558	size_t bytes = 0;
1559
1560	ret = dma_cookie_status(chan, cookie, txstate);
1561	if (ret == DMA_COMPLETE)
1562		return ret;
1563
1564	/*
1565	 * There's no point calculating the residue if there's
1566	 * no txstate to store the value.
1567	 */
1568	if (!txstate) {
1569		if (plchan->state == PL08X_CHAN_PAUSED)
1570			ret = DMA_PAUSED;
1571		return ret;
1572	}
1573
1574	spin_lock_irqsave(&plchan->vc.lock, flags);
1575	ret = dma_cookie_status(chan, cookie, txstate);
1576	if (ret != DMA_COMPLETE) {
1577		vd = vchan_find_desc(&plchan->vc, cookie);
1578		if (vd) {
1579			/* On the issued list, so hasn't been processed yet */
1580			struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1581			struct pl08x_sg *dsg;
1582
1583			list_for_each_entry(dsg, &txd->dsg_list, node)
1584				bytes += dsg->len;
1585		} else {
1586			bytes = pl08x_getbytes_chan(plchan);
1587		}
1588	}
1589	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1590
1591	/*
1592	 * This cookie not complete yet
1593	 * Get number of bytes left in the active transactions and queue
1594	 */
1595	dma_set_residue(txstate, bytes);
 
 
 
 
1596
1597	if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1598		ret = DMA_PAUSED;
 
 
 
1599
1600	/* Whether waiting or running, we're in progress */
1601	return ret;
1602}
1603
1604/* PrimeCell DMA extension */
1605struct burst_table {
1606	u32 burstwords;
1607	u32 reg;
1608};
1609
1610static const struct burst_table burst_sizes[] = {
1611	{
1612		.burstwords = 256,
1613		.reg = PL080_BSIZE_256,
1614	},
1615	{
1616		.burstwords = 128,
1617		.reg = PL080_BSIZE_128,
1618	},
1619	{
1620		.burstwords = 64,
1621		.reg = PL080_BSIZE_64,
1622	},
1623	{
1624		.burstwords = 32,
1625		.reg = PL080_BSIZE_32,
1626	},
1627	{
1628		.burstwords = 16,
1629		.reg = PL080_BSIZE_16,
1630	},
1631	{
1632		.burstwords = 8,
1633		.reg = PL080_BSIZE_8,
1634	},
1635	{
1636		.burstwords = 4,
1637		.reg = PL080_BSIZE_4,
1638	},
1639	{
1640		.burstwords = 0,
1641		.reg = PL080_BSIZE_1,
1642	},
1643};
1644
1645/*
1646 * Given the source and destination available bus masks, select which
1647 * will be routed to each port.  We try to have source and destination
1648 * on separate ports, but always respect the allowable settings.
1649 */
1650static u32 pl08x_select_bus(bool ftdmac020, u8 src, u8 dst)
1651{
1652	u32 cctl = 0;
1653	u32 dst_ahb2;
1654	u32 src_ahb2;
1655
1656	/* The FTDMAC020 use different bits to indicate src/dst bus */
1657	if (ftdmac020) {
1658		dst_ahb2 = FTDMAC020_LLI_DST_SEL;
1659		src_ahb2 = FTDMAC020_LLI_SRC_SEL;
1660	} else {
1661		dst_ahb2 = PL080_CONTROL_DST_AHB2;
1662		src_ahb2 = PL080_CONTROL_SRC_AHB2;
1663	}
1664
1665	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1666		cctl |= dst_ahb2;
1667	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1668		cctl |= src_ahb2;
1669
1670	return cctl;
1671}
1672
1673static u32 pl08x_cctl(u32 cctl)
1674{
1675	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1676		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1677		  PL080_CONTROL_PROT_MASK);
1678
1679	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
1680	return cctl | PL080_CONTROL_PROT_SYS;
1681}
1682
1683static u32 pl08x_width(enum dma_slave_buswidth width)
1684{
1685	switch (width) {
1686	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1687		return PL080_WIDTH_8BIT;
1688	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1689		return PL080_WIDTH_16BIT;
1690	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1691		return PL080_WIDTH_32BIT;
1692	default:
1693		return ~0;
1694	}
1695}
1696
1697static u32 pl08x_burst(u32 maxburst)
1698{
1699	int i;
1700
1701	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1702		if (burst_sizes[i].burstwords <= maxburst)
1703			break;
1704
1705	return burst_sizes[i].reg;
1706}
1707
1708static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1709	enum dma_slave_buswidth addr_width, u32 maxburst)
1710{
1711	u32 width, burst, cctl = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1712
1713	width = pl08x_width(addr_width);
1714	if (width == ~0)
1715		return ~0;
 
 
 
1716
1717	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1718	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1719
1720	/*
1721	 * If this channel will only request single transfers, set this
1722	 * down to ONE element.  Also select one element if no maxburst
1723	 * is specified.
1724	 */
1725	if (plchan->cd->single)
1726		maxburst = 1;
1727
1728	burst = pl08x_burst(maxburst);
1729	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1730	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1731
1732	return pl08x_cctl(cctl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1733}
1734
1735/*
1736 * Slave transactions callback to the slave device to allow
1737 * synchronization of slave DMA signals with the DMAC enable
1738 */
1739static void pl08x_issue_pending(struct dma_chan *chan)
1740{
1741	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1742	unsigned long flags;
1743
1744	spin_lock_irqsave(&plchan->vc.lock, flags);
1745	if (vchan_issue_pending(&plchan->vc)) {
1746		if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1747			pl08x_phy_alloc_and_start(plchan);
 
1748	}
1749	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1750}
1751
1752static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1753{
1754	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1755
1756	if (txd)
1757		INIT_LIST_HEAD(&txd->dsg_list);
1758	return txd;
 
 
 
 
 
 
 
1759}
1760
1761static u32 pl08x_memcpy_cctl(struct pl08x_driver_data *pl08x)
 
1762{
1763	u32 cctl = 0;
1764
1765	/* Conjure cctl */
1766	switch (pl08x->pd->memcpy_burst_size) {
1767	default:
1768		dev_err(&pl08x->adev->dev,
1769			"illegal burst size for memcpy, set to 1\n");
1770		fallthrough;
1771	case PL08X_BURST_SZ_1:
1772		cctl |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
1773			PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
1774		break;
1775	case PL08X_BURST_SZ_4:
1776		cctl |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
1777			PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
1778		break;
1779	case PL08X_BURST_SZ_8:
1780		cctl |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
1781			PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
1782		break;
1783	case PL08X_BURST_SZ_16:
1784		cctl |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
1785			PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
1786		break;
1787	case PL08X_BURST_SZ_32:
1788		cctl |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
1789			PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
1790		break;
1791	case PL08X_BURST_SZ_64:
1792		cctl |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
1793			PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
1794		break;
1795	case PL08X_BURST_SZ_128:
1796		cctl |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
1797			PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
1798		break;
1799	case PL08X_BURST_SZ_256:
1800		cctl |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
1801			PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
1802		break;
1803	}
1804
1805	switch (pl08x->pd->memcpy_bus_width) {
1806	default:
1807		dev_err(&pl08x->adev->dev,
1808			"illegal bus width for memcpy, set to 8 bits\n");
1809		fallthrough;
1810	case PL08X_BUS_WIDTH_8_BITS:
1811		cctl |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
1812			PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
1813		break;
1814	case PL08X_BUS_WIDTH_16_BITS:
1815		cctl |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
1816			PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
1817		break;
1818	case PL08X_BUS_WIDTH_32_BITS:
1819		cctl |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
1820			PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
1821		break;
1822	}
1823
1824	/* Protection flags */
1825	if (pl08x->pd->memcpy_prot_buff)
1826		cctl |= PL080_CONTROL_PROT_BUFF;
1827	if (pl08x->pd->memcpy_prot_cache)
1828		cctl |= PL080_CONTROL_PROT_CACHE;
1829
1830	/* We are the kernel, so we are in privileged mode */
1831	cctl |= PL080_CONTROL_PROT_SYS;
1832
1833	/* Both to be incremented or the code will break */
1834	cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1835
1836	if (pl08x->vd->dualmaster)
1837		cctl |= pl08x_select_bus(false,
1838					 pl08x->mem_buses,
1839					 pl08x->mem_buses);
1840
1841	return cctl;
1842}
1843
1844static u32 pl08x_ftdmac020_memcpy_cctl(struct pl08x_driver_data *pl08x)
 
1845{
1846	u32 cctl = 0;
1847
1848	/* Conjure cctl */
1849	switch (pl08x->pd->memcpy_bus_width) {
1850	default:
1851		dev_err(&pl08x->adev->dev,
1852			"illegal bus width for memcpy, set to 8 bits\n");
1853		fallthrough;
1854	case PL08X_BUS_WIDTH_8_BITS:
1855		cctl |= PL080_WIDTH_8BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1856			PL080_WIDTH_8BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1857		break;
1858	case PL08X_BUS_WIDTH_16_BITS:
1859		cctl |= PL080_WIDTH_16BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1860			PL080_WIDTH_16BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1861		break;
1862	case PL08X_BUS_WIDTH_32_BITS:
1863		cctl |= PL080_WIDTH_32BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1864			PL080_WIDTH_32BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1865		break;
1866	}
1867
1868	/*
1869	 * By default mask the TC IRQ on all LLIs, it will be unmasked on
1870	 * the last LLI item by other code.
1871	 */
1872	cctl |= FTDMAC020_LLI_TC_MSK;
1873
1874	/*
1875	 * Both to be incremented so leave bits FTDMAC020_LLI_SRCAD_CTL
1876	 * and FTDMAC020_LLI_DSTAD_CTL as zero
1877	 */
1878	if (pl08x->vd->dualmaster)
1879		cctl |= pl08x_select_bus(true,
1880					 pl08x->mem_buses,
1881					 pl08x->mem_buses);
1882
1883	return cctl;
1884}
1885
1886/*
1887 * Initialize a descriptor to be used by memcpy submit
1888 */
1889static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1890		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1891		size_t len, unsigned long flags)
1892{
1893	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1894	struct pl08x_driver_data *pl08x = plchan->host;
1895	struct pl08x_txd *txd;
1896	struct pl08x_sg *dsg;
1897	int ret;
1898
1899	txd = pl08x_get_txd(plchan);
1900	if (!txd) {
1901		dev_err(&pl08x->adev->dev,
1902			"%s no memory for descriptor\n", __func__);
1903		return NULL;
1904	}
1905
1906	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1907	if (!dsg) {
1908		pl08x_free_txd(pl08x, txd);
1909		return NULL;
1910	}
1911	list_add_tail(&dsg->node, &txd->dsg_list);
 
 
 
1912
1913	dsg->src_addr = src;
1914	dsg->dst_addr = dest;
1915	dsg->len = len;
1916	if (pl08x->vd->ftdmac020) {
1917		/* Writing CCFG zero ENABLES all interrupts */
1918		txd->ccfg = 0;
1919		txd->cctl = pl08x_ftdmac020_memcpy_cctl(pl08x);
1920	} else {
1921		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1922			PL080_CONFIG_TC_IRQ_MASK |
1923			PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1924		txd->cctl = pl08x_memcpy_cctl(pl08x);
1925	}
1926
1927	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1928	if (!ret) {
1929		pl08x_free_txd(pl08x, txd);
 
 
 
1930		return NULL;
1931	}
1932
1933	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1934}
1935
1936static struct pl08x_txd *pl08x_init_txd(
1937		struct dma_chan *chan,
1938		enum dma_transfer_direction direction,
1939		dma_addr_t *slave_addr)
1940{
1941	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1942	struct pl08x_driver_data *pl08x = plchan->host;
1943	struct pl08x_txd *txd;
1944	enum dma_slave_buswidth addr_width;
1945	int ret, tmp;
1946	u8 src_buses, dst_buses;
1947	u32 maxburst, cctl;
1948
1949	txd = pl08x_get_txd(plchan);
 
 
 
 
 
 
 
 
 
 
 
 
1950	if (!txd) {
1951		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1952		return NULL;
1953	}
1954
 
 
 
 
 
1955	/*
1956	 * Set up addresses, the PrimeCell configured address
1957	 * will take precedence since this may configure the
1958	 * channel target address dynamically at runtime.
1959	 */
1960	if (direction == DMA_MEM_TO_DEV) {
1961		cctl = PL080_CONTROL_SRC_INCR;
1962		*slave_addr = plchan->cfg.dst_addr;
1963		addr_width = plchan->cfg.dst_addr_width;
1964		maxburst = plchan->cfg.dst_maxburst;
1965		src_buses = pl08x->mem_buses;
1966		dst_buses = plchan->cd->periph_buses;
1967	} else if (direction == DMA_DEV_TO_MEM) {
1968		cctl = PL080_CONTROL_DST_INCR;
1969		*slave_addr = plchan->cfg.src_addr;
1970		addr_width = plchan->cfg.src_addr_width;
1971		maxburst = plchan->cfg.src_maxburst;
1972		src_buses = plchan->cd->periph_buses;
1973		dst_buses = pl08x->mem_buses;
1974	} else {
1975		pl08x_free_txd(pl08x, txd);
1976		dev_err(&pl08x->adev->dev,
1977			"%s direction unsupported\n", __func__);
1978		return NULL;
1979	}
1980
1981	cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1982	if (cctl == ~0) {
1983		pl08x_free_txd(pl08x, txd);
1984		dev_err(&pl08x->adev->dev,
1985			"DMA slave configuration botched?\n");
1986		return NULL;
1987	}
1988
1989	txd->cctl = cctl | pl08x_select_bus(false, src_buses, dst_buses);
1990
1991	if (plchan->cfg.device_fc)
1992		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1993			PL080_FLOW_PER2MEM_PER;
1994	else
1995		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1996			PL080_FLOW_PER2MEM;
1997
1998	txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1999		PL080_CONFIG_TC_IRQ_MASK |
2000		tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
2001
2002	ret = pl08x_request_mux(plchan);
2003	if (ret < 0) {
2004		pl08x_free_txd(pl08x, txd);
2005		dev_dbg(&pl08x->adev->dev,
2006			"unable to mux for transfer on %s due to platform restrictions\n",
2007			plchan->name);
2008		return NULL;
2009	}
2010
2011	dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
2012		 plchan->signal, plchan->name);
2013
2014	/* Assign the flow control signal to this channel */
2015	if (direction == DMA_MEM_TO_DEV)
2016		txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
2017	else
2018		txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
2019
2020	return txd;
2021}
2022
2023static int pl08x_tx_add_sg(struct pl08x_txd *txd,
2024			   enum dma_transfer_direction direction,
2025			   dma_addr_t slave_addr,
2026			   dma_addr_t buf_addr,
2027			   unsigned int len)
2028{
2029	struct pl08x_sg *dsg;
2030
2031	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
2032	if (!dsg)
2033		return -ENOMEM;
2034
2035	list_add_tail(&dsg->node, &txd->dsg_list);
2036
2037	dsg->len = len;
2038	if (direction == DMA_MEM_TO_DEV) {
2039		dsg->src_addr = buf_addr;
2040		dsg->dst_addr = slave_addr;
2041	} else {
2042		dsg->src_addr = slave_addr;
2043		dsg->dst_addr = buf_addr;
2044	}
2045
2046	return 0;
2047}
2048
2049static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
2050		struct dma_chan *chan, struct scatterlist *sgl,
2051		unsigned int sg_len, enum dma_transfer_direction direction,
2052		unsigned long flags, void *context)
2053{
2054	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2055	struct pl08x_driver_data *pl08x = plchan->host;
2056	struct pl08x_txd *txd;
2057	struct scatterlist *sg;
2058	int ret, tmp;
2059	dma_addr_t slave_addr;
2060
2061	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
2062			__func__, sg_dma_len(sgl), plchan->name);
2063
2064	txd = pl08x_init_txd(chan, direction, &slave_addr);
2065	if (!txd)
2066		return NULL;
2067
2068	for_each_sg(sgl, sg, sg_len, tmp) {
2069		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2070				      sg_dma_address(sg),
2071				      sg_dma_len(sg));
2072		if (ret) {
2073			pl08x_release_mux(plchan);
2074			pl08x_free_txd(pl08x, txd);
2075			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
2076					__func__);
2077			return NULL;
2078		}
2079	}
2080
2081	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2082	if (!ret) {
2083		pl08x_release_mux(plchan);
2084		pl08x_free_txd(pl08x, txd);
2085		return NULL;
 
 
 
2086	}
2087
2088	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2089}
 
2090
2091static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
2092		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
2093		size_t period_len, enum dma_transfer_direction direction,
2094		unsigned long flags)
2095{
2096	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2097	struct pl08x_driver_data *pl08x = plchan->host;
2098	struct pl08x_txd *txd;
2099	int ret, tmp;
2100	dma_addr_t slave_addr;
2101
2102	dev_dbg(&pl08x->adev->dev,
2103		"%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
2104		__func__, period_len, buf_len,
2105		direction == DMA_MEM_TO_DEV ? "to" : "from",
2106		plchan->name);
2107
2108	txd = pl08x_init_txd(chan, direction, &slave_addr);
2109	if (!txd)
2110		return NULL;
2111
2112	txd->cyclic = true;
2113	txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
2114	for (tmp = 0; tmp < buf_len; tmp += period_len) {
2115		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2116				      buf_addr + tmp, period_len);
2117		if (ret) {
2118			pl08x_release_mux(plchan);
2119			pl08x_free_txd(pl08x, txd);
2120			return NULL;
2121		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2122	}
2123
2124	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2125	if (!ret) {
2126		pl08x_release_mux(plchan);
2127		pl08x_free_txd(pl08x, txd);
2128		return NULL;
2129	}
2130
2131	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2132}
2133
2134static int pl08x_config(struct dma_chan *chan,
2135			struct dma_slave_config *config)
2136{
2137	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2138	struct pl08x_driver_data *pl08x = plchan->host;
2139
2140	if (!plchan->slave)
2141		return -EINVAL;
2142
2143	/* Reject definitely invalid configurations */
2144	if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
2145	    config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
2146		return -EINVAL;
2147
2148	if (config->device_fc && pl08x->vd->pl080s) {
2149		dev_err(&pl08x->adev->dev,
2150			"%s: PL080S does not support peripheral flow control\n",
2151			__func__);
2152		return -EINVAL;
2153	}
2154
2155	plchan->cfg = *config;
2156
2157	return 0;
2158}
2159
2160static int pl08x_terminate_all(struct dma_chan *chan)
2161{
2162	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2163	struct pl08x_driver_data *pl08x = plchan->host;
2164	unsigned long flags;
2165
2166	spin_lock_irqsave(&plchan->vc.lock, flags);
2167	if (!plchan->phychan && !plchan->at) {
2168		spin_unlock_irqrestore(&plchan->vc.lock, flags);
2169		return 0;
2170	}
2171
2172	plchan->state = PL08X_CHAN_IDLE;
2173
2174	if (plchan->phychan) {
2175		/*
2176		 * Mark physical channel as free and free any slave
2177		 * signal
2178		 */
2179		pl08x_phy_free(plchan);
2180	}
2181	/* Dequeue jobs and free LLIs */
2182	if (plchan->at) {
2183		vchan_terminate_vdesc(&plchan->at->vd);
2184		plchan->at = NULL;
2185	}
2186	/* Dequeue jobs not yet fired as well */
2187	pl08x_free_txd_list(pl08x, plchan);
2188
2189	spin_unlock_irqrestore(&plchan->vc.lock, flags);
 
 
2190
2191	return 0;
2192}
2193
2194static void pl08x_synchronize(struct dma_chan *chan)
 
 
 
 
 
 
2195{
2196	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2197
2198	vchan_synchronize(&plchan->vc);
 
 
 
 
2199}
2200
2201static int pl08x_pause(struct dma_chan *chan)
2202{
2203	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2204	unsigned long flags;
2205
2206	/*
2207	 * Anything succeeds on channels with no physical allocation and
2208	 * no queued transfers.
2209	 */
2210	spin_lock_irqsave(&plchan->vc.lock, flags);
2211	if (!plchan->phychan && !plchan->at) {
2212		spin_unlock_irqrestore(&plchan->vc.lock, flags);
2213		return 0;
 
 
 
 
 
 
 
2214	}
2215
2216	pl08x_pause_phy_chan(plchan->phychan);
2217	plchan->state = PL08X_CHAN_PAUSED;
2218
2219	spin_unlock_irqrestore(&plchan->vc.lock, flags);
2220
2221	return 0;
2222}
2223
2224static int pl08x_resume(struct dma_chan *chan)
2225{
2226	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
 
 
2227	unsigned long flags;
2228
2229	/*
2230	 * Anything succeeds on channels with no physical allocation and
2231	 * no queued transfers.
2232	 */
2233	spin_lock_irqsave(&plchan->vc.lock, flags);
2234	if (!plchan->phychan && !plchan->at) {
2235		spin_unlock_irqrestore(&plchan->vc.lock, flags);
2236		return 0;
2237	}
2238
2239	pl08x_resume_phy_chan(plchan->phychan);
2240	plchan->state = PL08X_CHAN_RUNNING;
2241
2242	spin_unlock_irqrestore(&plchan->vc.lock, flags);
 
 
 
2243
2244	return 0;
2245}
 
2246
2247bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
2248{
2249	struct pl08x_dma_chan *plchan;
2250	char *name = chan_id;
2251
2252	/* Reject channels for devices not bound to this driver */
2253	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
2254		return false;
 
 
 
 
 
 
2255
2256	plchan = to_pl08x_chan(chan);
 
 
 
 
 
2257
2258	/* Check that the channel is not taken! */
2259	if (!strcmp(plchan->name, name))
2260		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2261
2262	return false;
2263}
2264EXPORT_SYMBOL_GPL(pl08x_filter_id);
2265
2266static bool pl08x_filter_fn(struct dma_chan *chan, void *chan_id)
2267{
2268	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
 
 
 
 
2269
2270	return plchan->cd == chan_id;
2271}
 
 
2272
2273/*
2274 * Just check that the device is there and active
2275 * TODO: turn this bit on/off depending on the number of physical channels
2276 * actually used, if it is zero... well shut it off. That will save some
2277 * power. Cut the clock at the same time.
2278 */
2279static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
2280{
2281	/* The Nomadik variant does not have the config register */
2282	if (pl08x->vd->nomadik)
2283		return;
2284	/* The FTDMAC020 variant does this in another register */
2285	if (pl08x->vd->ftdmac020) {
2286		writel(PL080_CONFIG_ENABLE, pl08x->base + FTDMAC020_CSR);
2287		return;
2288	}
2289	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
2290}
2291
2292static irqreturn_t pl08x_irq(int irq, void *dev)
2293{
2294	struct pl08x_driver_data *pl08x = dev;
2295	u32 mask = 0, err, tc, i;
2296
2297	/* check & clear - ERR & TC interrupts */
2298	err = readl(pl08x->base + PL080_ERR_STATUS);
2299	if (err) {
2300		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
2301			__func__, err);
2302		writel(err, pl08x->base + PL080_ERR_CLEAR);
2303	}
2304	tc = readl(pl08x->base + PL080_TC_STATUS);
2305	if (tc)
2306		writel(tc, pl08x->base + PL080_TC_CLEAR);
2307
2308	if (!err && !tc)
2309		return IRQ_NONE;
2310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2311	for (i = 0; i < pl08x->vd->channels; i++) {
2312		if ((BIT(i) & err) || (BIT(i) & tc)) {
2313			/* Locate physical channel */
2314			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
2315			struct pl08x_dma_chan *plchan = phychan->serving;
2316			struct pl08x_txd *tx;
2317
2318			if (!plchan) {
2319				dev_err(&pl08x->adev->dev,
2320					"%s Error TC interrupt on unused channel: 0x%08x\n",
2321					__func__, i);
2322				continue;
2323			}
2324
2325			spin_lock(&plchan->vc.lock);
2326			tx = plchan->at;
2327			if (tx && tx->cyclic) {
2328				vchan_cyclic_callback(&tx->vd);
2329			} else if (tx) {
2330				plchan->at = NULL;
2331				/*
2332				 * This descriptor is done, release its mux
2333				 * reservation.
2334				 */
2335				pl08x_release_mux(plchan);
2336				tx->done = true;
2337				vchan_cookie_complete(&tx->vd);
2338
2339				/*
2340				 * And start the next descriptor (if any),
2341				 * otherwise free this channel.
2342				 */
2343				if (vchan_next_desc(&plchan->vc))
2344					pl08x_start_next_txd(plchan);
2345				else
2346					pl08x_phy_free(plchan);
2347			}
2348			spin_unlock(&plchan->vc.lock);
2349
2350			mask |= BIT(i);
2351		}
2352	}
 
 
2353
2354	return mask ? IRQ_HANDLED : IRQ_NONE;
2355}
2356
2357static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
2358{
 
 
2359	chan->slave = true;
2360	chan->name = chan->cd->bus_id;
2361	chan->cfg.src_addr = chan->cd->addr;
2362	chan->cfg.dst_addr = chan->cd->addr;
 
 
 
 
2363}
2364
2365/*
2366 * Initialise the DMAC memcpy/slave channels.
2367 * Make a local wrapper to hold required data
2368 */
2369static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
2370		struct dma_device *dmadev, unsigned int channels, bool slave)
 
 
2371{
2372	struct pl08x_dma_chan *chan;
2373	int i;
2374
2375	INIT_LIST_HEAD(&dmadev->channels);
2376
2377	/*
2378	 * Register as many many memcpy as we have physical channels,
2379	 * we won't always be able to use all but the code will have
2380	 * to cope with that situation.
2381	 */
2382	for (i = 0; i < channels; i++) {
2383		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
2384		if (!chan)
 
 
2385			return -ENOMEM;
 
2386
2387		chan->host = pl08x;
2388		chan->state = PL08X_CHAN_IDLE;
2389		chan->signal = -1;
2390
2391		if (slave) {
2392			chan->cd = &pl08x->pd->slave_channels[i];
2393			/*
2394			 * Some implementations have muxed signals, whereas some
2395			 * use a mux in front of the signals and need dynamic
2396			 * assignment of signals.
2397			 */
2398			chan->signal = i;
2399			pl08x_dma_slave_init(chan);
2400		} else {
2401			chan->cd = kzalloc(sizeof(*chan->cd), GFP_KERNEL);
2402			if (!chan->cd) {
2403				kfree(chan);
2404				return -ENOMEM;
2405			}
2406			chan->cd->bus_id = "memcpy";
2407			chan->cd->periph_buses = pl08x->pd->mem_buses;
2408			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
2409			if (!chan->name) {
2410				kfree(chan->cd);
2411				kfree(chan);
2412				return -ENOMEM;
2413			}
2414		}
2415		dev_dbg(&pl08x->adev->dev,
 
 
 
 
 
 
 
2416			 "initialize virtual channel \"%s\"\n",
2417			 chan->name);
2418
2419		chan->vc.desc_free = pl08x_desc_free;
2420		vchan_init(&chan->vc, dmadev);
 
 
 
 
 
 
 
 
2421	}
2422	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
2423		 i, slave ? "slave" : "memcpy");
2424	return i;
2425}
2426
2427static void pl08x_free_virtual_channels(struct dma_device *dmadev)
2428{
2429	struct pl08x_dma_chan *chan = NULL;
2430	struct pl08x_dma_chan *next;
2431
2432	list_for_each_entry_safe(chan,
2433				 next, &dmadev->channels, vc.chan.device_node) {
2434		list_del(&chan->vc.chan.device_node);
2435		kfree(chan);
2436	}
2437}
2438
2439#ifdef CONFIG_DEBUG_FS
2440static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
2441{
2442	switch (state) {
2443	case PL08X_CHAN_IDLE:
2444		return "idle";
2445	case PL08X_CHAN_RUNNING:
2446		return "running";
2447	case PL08X_CHAN_PAUSED:
2448		return "paused";
2449	case PL08X_CHAN_WAITING:
2450		return "waiting";
2451	default:
2452		break;
2453	}
2454	return "UNKNOWN STATE";
2455}
2456
2457static int pl08x_debugfs_show(struct seq_file *s, void *data)
2458{
2459	struct pl08x_driver_data *pl08x = s->private;
2460	struct pl08x_dma_chan *chan;
2461	struct pl08x_phy_chan *ch;
2462	unsigned long flags;
2463	int i;
2464
2465	seq_printf(s, "PL08x physical channels:\n");
2466	seq_printf(s, "CHANNEL:\tUSER:\n");
2467	seq_printf(s, "--------\t-----\n");
2468	for (i = 0; i < pl08x->vd->channels; i++) {
2469		struct pl08x_dma_chan *virt_chan;
2470
2471		ch = &pl08x->phy_chans[i];
2472
2473		spin_lock_irqsave(&ch->lock, flags);
2474		virt_chan = ch->serving;
2475
2476		seq_printf(s, "%d\t\t%s%s\n",
2477			   ch->id,
2478			   virt_chan ? virt_chan->name : "(none)",
2479			   ch->locked ? " LOCKED" : "");
2480
2481		spin_unlock_irqrestore(&ch->lock, flags);
2482	}
2483
2484	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
2485	seq_printf(s, "CHANNEL:\tSTATE:\n");
2486	seq_printf(s, "--------\t------\n");
2487	list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
2488		seq_printf(s, "%s\t\t%s\n", chan->name,
2489			   pl08x_state_str(chan->state));
2490	}
2491
2492	if (pl08x->has_slave) {
2493		seq_printf(s, "\nPL08x virtual slave channels:\n");
2494		seq_printf(s, "CHANNEL:\tSTATE:\n");
2495		seq_printf(s, "--------\t------\n");
2496		list_for_each_entry(chan, &pl08x->slave.channels,
2497				    vc.chan.device_node) {
2498			seq_printf(s, "%s\t\t%s\n", chan->name,
2499				   pl08x_state_str(chan->state));
2500		}
2501	}
2502
2503	return 0;
2504}
2505
2506DEFINE_SHOW_ATTRIBUTE(pl08x_debugfs);
2507
2508static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2509{
2510	/* Expose a simple debugfs interface to view all clocks */
2511	debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
2512			    NULL, pl08x, &pl08x_debugfs_fops);
2513}
2514
2515#else
2516static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2517{
 
2518}
2519#endif
2520
2521#ifdef CONFIG_OF
2522static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2523					 u32 id)
2524{
2525	struct pl08x_dma_chan *chan;
2526
2527	/* Trying to get a slave channel from something with no slave support */
2528	if (!pl08x->has_slave)
2529		return NULL;
2530
2531	list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2532		if (chan->signal == id)
2533			return &chan->vc.chan;
2534	}
2535
2536	return NULL;
2537}
2538
2539static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2540				       struct of_dma *ofdma)
2541{
2542	struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2543	struct dma_chan *dma_chan;
2544	struct pl08x_dma_chan *plchan;
2545
2546	if (!pl08x)
2547		return NULL;
2548
2549	if (dma_spec->args_count != 2) {
2550		dev_err(&pl08x->adev->dev,
2551			"DMA channel translation requires two cells\n");
2552		return NULL;
2553	}
2554
2555	dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2556	if (!dma_chan) {
2557		dev_err(&pl08x->adev->dev,
2558			"DMA slave channel not found\n");
2559		return NULL;
2560	}
2561
2562	plchan = to_pl08x_chan(dma_chan);
2563	dev_dbg(&pl08x->adev->dev,
2564		"translated channel for signal %d\n",
2565		dma_spec->args[0]);
2566
2567	/* Augment channel data for applicable AHB buses */
2568	plchan->cd->periph_buses = dma_spec->args[1];
2569	return dma_get_slave_channel(dma_chan);
2570}
2571
2572static int pl08x_of_probe(struct amba_device *adev,
2573			  struct pl08x_driver_data *pl08x,
2574			  struct device_node *np)
2575{
2576	struct pl08x_platform_data *pd;
2577	struct pl08x_channel_data *chanp = NULL;
2578	u32 val;
2579	int ret;
2580	int i;
2581
2582	pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2583	if (!pd)
2584		return -ENOMEM;
2585
2586	/* Eligible bus masters for fetching LLIs */
2587	if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2588		pd->lli_buses |= PL08X_AHB1;
2589	if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2590		pd->lli_buses |= PL08X_AHB2;
2591	if (!pd->lli_buses) {
2592		dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2593		pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2594	}
2595
2596	/* Eligible bus masters for memory access */
2597	if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2598		pd->mem_buses |= PL08X_AHB1;
2599	if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2600		pd->mem_buses |= PL08X_AHB2;
2601	if (!pd->mem_buses) {
2602		dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2603		pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2604	}
2605
2606	/* Parse the memcpy channel properties */
2607	ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2608	if (ret) {
2609		dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2610		val = 1;
2611	}
2612	switch (val) {
2613	default:
2614		dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2615		fallthrough;
2616	case 1:
2617		pd->memcpy_burst_size = PL08X_BURST_SZ_1;
2618		break;
2619	case 4:
2620		pd->memcpy_burst_size = PL08X_BURST_SZ_4;
2621		break;
2622	case 8:
2623		pd->memcpy_burst_size = PL08X_BURST_SZ_8;
2624		break;
2625	case 16:
2626		pd->memcpy_burst_size = PL08X_BURST_SZ_16;
2627		break;
2628	case 32:
2629		pd->memcpy_burst_size = PL08X_BURST_SZ_32;
2630		break;
2631	case 64:
2632		pd->memcpy_burst_size = PL08X_BURST_SZ_64;
2633		break;
2634	case 128:
2635		pd->memcpy_burst_size = PL08X_BURST_SZ_128;
2636		break;
2637	case 256:
2638		pd->memcpy_burst_size = PL08X_BURST_SZ_256;
2639		break;
2640	}
2641
2642	ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2643	if (ret) {
2644		dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2645		val = 8;
2646	}
2647	switch (val) {
2648	default:
2649		dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2650		fallthrough;
2651	case 8:
2652		pd->memcpy_bus_width = PL08X_BUS_WIDTH_8_BITS;
2653		break;
2654	case 16:
2655		pd->memcpy_bus_width = PL08X_BUS_WIDTH_16_BITS;
2656		break;
2657	case 32:
2658		pd->memcpy_bus_width = PL08X_BUS_WIDTH_32_BITS;
2659		break;
2660	}
2661
2662	/*
2663	 * Allocate channel data for all possible slave channels (one
2664	 * for each possible signal), channels will then be allocated
2665	 * for a device and have it's AHB interfaces set up at
2666	 * translation time.
2667	 */
2668	if (pl08x->vd->signals) {
2669		chanp = devm_kcalloc(&adev->dev,
2670				     pl08x->vd->signals,
2671				     sizeof(struct pl08x_channel_data),
2672				     GFP_KERNEL);
2673		if (!chanp)
2674			return -ENOMEM;
2675
2676		pd->slave_channels = chanp;
2677		for (i = 0; i < pl08x->vd->signals; i++) {
2678			/*
2679			 * chanp->periph_buses will be assigned at translation
2680			 */
2681			chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i);
2682			chanp++;
2683		}
2684		pd->num_slave_channels = pl08x->vd->signals;
2685	}
2686
2687	pl08x->pd = pd;
2688
2689	return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2690					  pl08x);
2691}
2692#else
2693static inline int pl08x_of_probe(struct amba_device *adev,
2694				 struct pl08x_driver_data *pl08x,
2695				 struct device_node *np)
2696{
2697	return -EINVAL;
2698}
2699#endif
2700
2701static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2702{
2703	struct pl08x_driver_data *pl08x;
2704	struct vendor_data *vd = id->data;
2705	struct device_node *np = adev->dev.of_node;
2706	u32 tsfr_size;
2707	int ret = 0;
2708	int i;
2709
2710	ret = amba_request_regions(adev, NULL);
2711	if (ret)
2712		return ret;
2713
2714	/* Ensure that we can do DMA */
2715	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2716	if (ret)
2717		goto out_no_pl08x;
2718
2719	/* Create the driver state holder */
2720	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2721	if (!pl08x) {
2722		ret = -ENOMEM;
2723		goto out_no_pl08x;
2724	}
2725
2726	/* Assign useful pointers to the driver state */
2727	pl08x->adev = adev;
2728	pl08x->vd = vd;
2729
2730	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2731	if (!pl08x->base) {
2732		ret = -ENOMEM;
2733		goto out_no_ioremap;
2734	}
2735
2736	if (vd->ftdmac020) {
2737		u32 val;
2738
2739		val = readl(pl08x->base + FTDMAC020_REVISION);
2740		dev_info(&pl08x->adev->dev, "FTDMAC020 %d.%d rel %d\n",
2741			 (val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff);
2742		val = readl(pl08x->base + FTDMAC020_FEATURE);
2743		dev_info(&pl08x->adev->dev, "FTDMAC020 %d channels, "
2744			 "%s built-in bridge, %s, %s linked lists\n",
2745			 (val >> 12) & 0x0f,
2746			 (val & BIT(10)) ? "no" : "has",
2747			 (val & BIT(9)) ? "AHB0 and AHB1" : "AHB0",
2748			 (val & BIT(8)) ? "supports" : "does not support");
2749
2750		/* Vendor data from feature register */
2751		if (!(val & BIT(8)))
2752			dev_warn(&pl08x->adev->dev,
2753				 "linked lists not supported, required\n");
2754		vd->channels = (val >> 12) & 0x0f;
2755		vd->dualmaster = !!(val & BIT(9));
2756	}
2757
2758	/* Initialize memcpy engine */
2759	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2760	pl08x->memcpy.dev = &adev->dev;
 
2761	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2762	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2763	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2764	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2765	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2766	pl08x->memcpy.device_config = pl08x_config;
2767	pl08x->memcpy.device_pause = pl08x_pause;
2768	pl08x->memcpy.device_resume = pl08x_resume;
2769	pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2770	pl08x->memcpy.device_synchronize = pl08x_synchronize;
2771	pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2772	pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2773	pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2774	pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2775	if (vd->ftdmac020)
2776		pl08x->memcpy.copy_align = DMAENGINE_ALIGN_4_BYTES;
2777
2778
2779	/*
2780	 * Initialize slave engine, if the block has no signals, that means
2781	 * we have no slave support.
2782	 */
2783	if (vd->signals) {
2784		pl08x->has_slave = true;
2785		dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2786		dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2787		pl08x->slave.dev = &adev->dev;
2788		pl08x->slave.device_free_chan_resources =
2789			pl08x_free_chan_resources;
2790		pl08x->slave.device_prep_dma_interrupt =
2791			pl08x_prep_dma_interrupt;
2792		pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2793		pl08x->slave.device_issue_pending = pl08x_issue_pending;
2794		pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2795		pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2796		pl08x->slave.device_config = pl08x_config;
2797		pl08x->slave.device_pause = pl08x_pause;
2798		pl08x->slave.device_resume = pl08x_resume;
2799		pl08x->slave.device_terminate_all = pl08x_terminate_all;
2800		pl08x->slave.device_synchronize = pl08x_synchronize;
2801		pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2802		pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2803		pl08x->slave.directions =
2804			BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2805		pl08x->slave.residue_granularity =
2806			DMA_RESIDUE_GRANULARITY_SEGMENT;
2807	}
2808
2809	/* Get the platform data */
2810	pl08x->pd = dev_get_platdata(&adev->dev);
2811	if (!pl08x->pd) {
2812		if (np) {
2813			ret = pl08x_of_probe(adev, pl08x, np);
2814			if (ret)
2815				goto out_no_platdata;
2816		} else {
2817			dev_err(&adev->dev, "no platform data supplied\n");
2818			ret = -EINVAL;
2819			goto out_no_platdata;
2820		}
2821	} else {
2822		pl08x->slave.filter.map = pl08x->pd->slave_map;
2823		pl08x->slave.filter.mapcnt = pl08x->pd->slave_map_len;
2824		pl08x->slave.filter.fn = pl08x_filter_fn;
2825	}
2826
 
 
 
 
2827	/* By default, AHB1 only.  If dualmaster, from platform */
2828	pl08x->lli_buses = PL08X_AHB1;
2829	pl08x->mem_buses = PL08X_AHB1;
2830	if (pl08x->vd->dualmaster) {
2831		pl08x->lli_buses = pl08x->pd->lli_buses;
2832		pl08x->mem_buses = pl08x->pd->mem_buses;
2833	}
2834
2835	if (vd->pl080s)
2836		pl08x->lli_words = PL080S_LLI_WORDS;
2837	else
2838		pl08x->lli_words = PL080_LLI_WORDS;
2839	tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2840
2841	/* A DMA memory pool for LLIs, align on 1-byte boundary */
2842	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2843						tsfr_size, PL08X_ALIGN, 0);
2844	if (!pl08x->pool) {
2845		ret = -ENOMEM;
2846		goto out_no_lli_pool;
2847	}
2848
 
 
 
 
 
 
 
 
2849	/* Turn on the PL08x */
2850	pl08x_ensure_on(pl08x);
2851
2852	/* Clear any pending interrupts */
2853	if (vd->ftdmac020)
2854		/* This variant has error IRQs in bits 16-19 */
2855		writel(0x0000FFFF, pl08x->base + PL080_ERR_CLEAR);
2856	else
2857		writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2858	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2859
2860	/* Attach the interrupt handler */
2861	ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2862	if (ret) {
2863		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2864			__func__, adev->irq[0]);
2865		goto out_no_irq;
2866	}
2867
2868	/* Initialize physical channels */
2869	pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2870			GFP_KERNEL);
2871	if (!pl08x->phy_chans) {
2872		ret = -ENOMEM;
 
 
2873		goto out_no_phychans;
2874	}
2875
2876	for (i = 0; i < vd->channels; i++) {
2877		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2878
2879		ch->id = i;
2880		ch->base = pl08x->base + PL080_Cx_BASE(i);
2881		if (vd->ftdmac020) {
2882			/* FTDMA020 has a special channel busy register */
2883			ch->reg_busy = ch->base + FTDMAC020_CH_BUSY;
2884			ch->reg_config = ch->base + FTDMAC020_CH_CFG;
2885			ch->reg_control = ch->base + FTDMAC020_CH_CSR;
2886			ch->reg_src = ch->base + FTDMAC020_CH_SRC_ADDR;
2887			ch->reg_dst = ch->base + FTDMAC020_CH_DST_ADDR;
2888			ch->reg_lli = ch->base + FTDMAC020_CH_LLP;
2889			ch->ftdmac020 = true;
2890		} else {
2891			ch->reg_config = ch->base + vd->config_offset;
2892			ch->reg_control = ch->base + PL080_CH_CONTROL;
2893			ch->reg_src = ch->base + PL080_CH_SRC_ADDR;
2894			ch->reg_dst = ch->base + PL080_CH_DST_ADDR;
2895			ch->reg_lli = ch->base + PL080_CH_LLI;
2896		}
2897		if (vd->pl080s)
2898			ch->pl080s = true;
2899
2900		spin_lock_init(&ch->lock);
2901
2902		/*
2903		 * Nomadik variants can have channels that are locked
2904		 * down for the secure world only. Lock up these channels
2905		 * by perpetually serving a dummy virtual channel.
2906		 */
2907		if (vd->nomadik) {
2908			u32 val;
2909
2910			val = readl(ch->reg_config);
2911			if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2912				dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2913				ch->locked = true;
2914			}
2915		}
2916
2917		dev_dbg(&adev->dev, "physical channel %d is %s\n",
2918			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2919	}
2920
2921	/* Register as many memcpy channels as there are physical channels */
2922	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2923					      pl08x->vd->channels, false);
2924	if (ret <= 0) {
2925		dev_warn(&pl08x->adev->dev,
2926			 "%s failed to enumerate memcpy channels - %d\n",
2927			 __func__, ret);
2928		goto out_no_memcpy;
2929	}
 
2930
2931	/* Register slave channels */
2932	if (pl08x->has_slave) {
2933		ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2934					pl08x->pd->num_slave_channels, true);
2935		if (ret < 0) {
2936			dev_warn(&pl08x->adev->dev,
2937				 "%s failed to enumerate slave channels - %d\n",
2938				 __func__, ret);
2939			goto out_no_slave;
2940		}
2941	}
 
2942
2943	ret = dma_async_device_register(&pl08x->memcpy);
2944	if (ret) {
2945		dev_warn(&pl08x->adev->dev,
2946			"%s failed to register memcpy as an async device - %d\n",
2947			__func__, ret);
2948		goto out_no_memcpy_reg;
2949	}
2950
2951	if (pl08x->has_slave) {
2952		ret = dma_async_device_register(&pl08x->slave);
2953		if (ret) {
2954			dev_warn(&pl08x->adev->dev,
2955			"%s failed to register slave as an async device - %d\n",
2956			__func__, ret);
2957			goto out_no_slave_reg;
2958		}
2959	}
2960
2961	amba_set_drvdata(adev, pl08x);
2962	init_pl08x_debugfs(pl08x);
2963	dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2964		 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2965		 (unsigned long long)adev->res.start, adev->irq[0]);
2966
2967	return 0;
2968
2969out_no_slave_reg:
2970	dma_async_device_unregister(&pl08x->memcpy);
2971out_no_memcpy_reg:
2972	if (pl08x->has_slave)
2973		pl08x_free_virtual_channels(&pl08x->slave);
2974out_no_slave:
2975	pl08x_free_virtual_channels(&pl08x->memcpy);
2976out_no_memcpy:
2977	kfree(pl08x->phy_chans);
2978out_no_phychans:
2979	free_irq(adev->irq[0], pl08x);
2980out_no_irq:
 
 
2981	dma_pool_destroy(pl08x->pool);
2982out_no_lli_pool:
2983out_no_platdata:
2984	iounmap(pl08x->base);
2985out_no_ioremap:
2986	kfree(pl08x);
2987out_no_pl08x:
2988	amba_release_regions(adev);
2989	return ret;
2990}
2991
2992/* PL080 has 8 channels and the PL080 have just 2 */
2993static struct vendor_data vendor_pl080 = {
2994	.config_offset = PL080_CH_CONFIG,
2995	.channels = 8,
2996	.signals = 16,
2997	.dualmaster = true,
2998	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2999};
3000
3001static struct vendor_data vendor_nomadik = {
3002	.config_offset = PL080_CH_CONFIG,
3003	.channels = 8,
3004	.signals = 32,
3005	.dualmaster = true,
3006	.nomadik = true,
3007	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3008};
3009
3010static struct vendor_data vendor_pl080s = {
3011	.config_offset = PL080S_CH_CONFIG,
3012	.channels = 8,
3013	.signals = 32,
3014	.pl080s = true,
3015	.max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
3016};
3017
3018static struct vendor_data vendor_pl081 = {
3019	.config_offset = PL080_CH_CONFIG,
3020	.channels = 2,
3021	.signals = 16,
3022	.dualmaster = false,
3023	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3024};
3025
3026static struct vendor_data vendor_ftdmac020 = {
3027	.config_offset = PL080_CH_CONFIG,
3028	.ftdmac020 = true,
3029	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3030};
3031
3032static const struct amba_id pl08x_ids[] = {
3033	/* Samsung PL080S variant */
3034	{
3035		.id	= 0x0a141080,
3036		.mask	= 0xffffffff,
3037		.data	= &vendor_pl080s,
3038	},
3039	/* PL080 */
3040	{
3041		.id	= 0x00041080,
3042		.mask	= 0x000fffff,
3043		.data	= &vendor_pl080,
3044	},
3045	/* PL081 */
3046	{
3047		.id	= 0x00041081,
3048		.mask	= 0x000fffff,
3049		.data	= &vendor_pl081,
3050	},
3051	/* Nomadik 8815 PL080 variant */
3052	{
3053		.id	= 0x00280080,
3054		.mask	= 0x00ffffff,
3055		.data	= &vendor_nomadik,
3056	},
3057	/* Faraday Technology FTDMAC020 */
3058	{
3059		.id	= 0x0003b080,
3060		.mask	= 0x000fffff,
3061		.data	= &vendor_ftdmac020,
3062	},
3063	{ 0, 0 },
3064};
3065
3066MODULE_DEVICE_TABLE(amba, pl08x_ids);
3067
3068static struct amba_driver pl08x_amba_driver = {
3069	.drv.name	= DRIVER_NAME,
3070	.id_table	= pl08x_ids,
3071	.probe		= pl08x_probe,
3072};
3073
3074static int __init pl08x_init(void)
3075{
3076	int retval;
3077	retval = amba_driver_register(&pl08x_amba_driver);
3078	if (retval)
3079		printk(KERN_WARNING DRIVER_NAME
3080		       "failed to register as an AMBA device (%d)\n",
3081		       retval);
3082	return retval;
3083}
3084subsys_initcall(pl08x_init);
v3.1
 
   1/*
   2 * Copyright (c) 2006 ARM Ltd.
   3 * Copyright (c) 2010 ST-Ericsson SA
 
   4 *
   5 * Author: Peter Pearse <peter.pearse@arm.com>
   6 * Author: Linus Walleij <linus.walleij@stericsson.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify it
   9 * under the terms of the GNU General Public License as published by the Free
  10 * Software Foundation; either version 2 of the License, or (at your option)
  11 * any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful, but WITHOUT
  14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  16 * more details.
  17 *
  18 * You should have received a copy of the GNU General Public License along with
  19 * this program; if not, write to the Free Software Foundation, Inc., 59
  20 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  21 *
  22 * The full GNU General Public License is in this distribution in the file
  23 * called COPYING.
  24 *
  25 * Documentation: ARM DDI 0196G == PL080
  26 * Documentation: ARM DDI 0218E == PL081
 
  27 *
  28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
  29 * channel.
  30 *
  31 * The PL080 has 8 channels available for simultaneous use, and the PL081
  32 * has only two channels. So on these DMA controllers the number of channels
  33 * and the number of incoming DMA signals are two totally different things.
  34 * It is usually not possible to theoretically handle all physical signals,
  35 * so a multiplexing scheme with possible denial of use is necessary.
  36 *
  37 * The PL080 has a dual bus master, PL081 has a single master.
  38 *
 
 
 
 
 
 
 
 
  39 * Memory to peripheral transfer may be visualized as
  40 *	Get data from memory to DMAC
  41 *	Until no data left
  42 *		On burst request from peripheral
  43 *			Destination burst from DMAC to peripheral
  44 *			Clear burst request
  45 *	Raise terminal count interrupt
  46 *
  47 * For peripherals with a FIFO:
  48 * Source      burst size == half the depth of the peripheral FIFO
  49 * Destination burst size == the depth of the peripheral FIFO
  50 *
  51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
  52 * signals, the DMA controller will simply facilitate its AHB master.)
  53 *
  54 * ASSUMES default (little) endianness for DMA transfers
  55 *
  56 * The PL08x has two flow control settings:
  57 *  - DMAC flow control: the transfer size defines the number of transfers
  58 *    which occur for the current LLI entry, and the DMAC raises TC at the
  59 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
  60 *    to both the BREQ and SREQ signals (contrary to documented),
  61 *    transferring data if either is active.  The LBREQ and LSREQ signals
  62 *    are ignored.
  63 *
  64 *  - Peripheral flow control: the transfer size is ignored (and should be
  65 *    zero).  The data is transferred from the current LLI entry, until
  66 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
  67 *    will then move to the next LLI entry.
  68 *
  69 * Only the former works sanely with scatter lists, so we only implement
  70 * the DMAC flow control method.  However, peripherals which use the LBREQ
  71 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
  72 * these hardware restrictions prevents them from using scatter DMA.
  73 *
  74 * Global TODO:
  75 * - Break out common code from arch/arm/mach-s3c64xx and share
  76 */
 
 
 
 
  77#include <linux/device.h>
 
 
 
 
  78#include <linux/init.h>
 
  79#include <linux/module.h>
  80#include <linux/interrupt.h>
 
 
 
  81#include <linux/slab.h>
  82#include <linux/delay.h>
  83#include <linux/dma-mapping.h>
  84#include <linux/dmapool.h>
  85#include <linux/dmaengine.h>
  86#include <linux/amba/bus.h>
  87#include <linux/amba/pl08x.h>
  88#include <linux/debugfs.h>
  89#include <linux/seq_file.h>
  90
  91#include <asm/hardware/pl080.h>
 
  92
  93#define DRIVER_NAME	"pl08xdmac"
  94
 
 
 
 
 
 
 
 
 
  95/**
  96 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
 
  97 * @channels: the number of channels available in this variant
 
  98 * @dualmaster: whether this version supports dual AHB masters or not.
 
 
 
 
 
 
 
 
  99 */
 100struct vendor_data {
 
 101	u8 channels;
 
 102	bool dualmaster;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103};
 104
 105/*
 106 * PL08X private data structures
 107 * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit,
 108 * start & end do not - their bus bit info is in cctl.  Also note that these
 109 * are fixed 32-bit quantities.
 110 */
 111struct pl08x_lli {
 112	u32 src;
 113	u32 dst;
 114	u32 lli;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115	u32 cctl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 116};
 117
 118/**
 119 * struct pl08x_driver_data - the local state holder for the PL08x
 120 * @slave: slave engine for this instance
 121 * @memcpy: memcpy engine for this instance
 
 122 * @base: virtual memory base (remapped) for the PL08x
 123 * @adev: the corresponding AMBA (PrimeCell) bus entry
 124 * @vd: vendor data for this PL08x variant
 125 * @pd: platform data passed in from the platform/machine
 126 * @phy_chans: array of data for the physical channels
 127 * @pool: a pool for the LLI descriptors
 128 * @pool_ctr: counter of LLIs in the pool
 129 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
 130 * @mem_buses: set to indicate memory transfers on AHB2.
 131 * @lock: a spinlock for this struct
 132 */
 133struct pl08x_driver_data {
 134	struct dma_device slave;
 135	struct dma_device memcpy;
 
 136	void __iomem *base;
 137	struct amba_device *adev;
 138	const struct vendor_data *vd;
 139	struct pl08x_platform_data *pd;
 140	struct pl08x_phy_chan *phy_chans;
 141	struct dma_pool *pool;
 142	int pool_ctr;
 143	u8 lli_buses;
 144	u8 mem_buses;
 145	spinlock_t lock;
 146};
 147
 148/*
 149 * PL08X specific defines
 150 */
 151
 
 
 
 
 
 
 
 
 
 
 
 152/*
 153 * Memory boundaries: the manual for PL08x says that the controller
 154 * cannot read past a 1KiB boundary, so these defines are used to
 155 * create transfer LLIs that do not cross such boundaries.
 156 */
 157#define PL08X_BOUNDARY_SHIFT		(10)	/* 1KB 0x400 */
 158#define PL08X_BOUNDARY_SIZE		(1 << PL08X_BOUNDARY_SHIFT)
 159
 160/* Size (bytes) of each LLI buffer allocated for one transfer */
 161# define PL08X_LLI_TSFR_SIZE	0x2000
 162
 163/* Maximum times we call dma_pool_alloc on this pool without freeing */
 164#define MAX_NUM_TSFR_LLIS	(PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
 165#define PL08X_ALIGN		8
 166
 167static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
 168{
 169	return container_of(chan, struct pl08x_dma_chan, chan);
 170}
 171
 172static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
 173{
 174	return container_of(tx, struct pl08x_txd, tx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175}
 176
 177/*
 178 * Physical channel handling
 179 */
 180
 181/* Whether a certain channel is busy or not */
 182static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
 183{
 184	unsigned int val;
 185
 186	val = readl(ch->base + PL080_CH_CONFIG);
 
 
 
 
 
 187	return val & PL080_CONFIG_ACTIVE;
 188}
 189
 190/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191 * Set the initial DMA register values i.e. those for the first LLI
 192 * The next LLI pointer and the configuration interrupt bit have
 193 * been set when the LLIs were constructed.  Poke them into the hardware
 194 * and start the transfer.
 195 */
 196static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
 197	struct pl08x_txd *txd)
 198{
 199	struct pl08x_driver_data *pl08x = plchan->host;
 200	struct pl08x_phy_chan *phychan = plchan->phychan;
 201	struct pl08x_lli *lli = &txd->llis_va[0];
 
 202	u32 val;
 203
 
 
 204	plchan->at = txd;
 205
 206	/* Wait for channel inactive */
 207	while (pl08x_phy_channel_busy(phychan))
 208		cpu_relax();
 209
 210	dev_vdbg(&pl08x->adev->dev,
 211		"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 212		"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
 213		phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
 214		txd->ccfg);
 215
 216	writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
 217	writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
 218	writel(lli->lli, phychan->base + PL080_CH_LLI);
 219	writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
 220	writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
 221
 222	/* Enable the DMA channel */
 223	/* Do not access config register until channel shows as disabled */
 224	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
 225		cpu_relax();
 226
 227	/* Do not access config register until channel shows as inactive */
 228	val = readl(phychan->base + PL080_CH_CONFIG);
 229	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
 230		val = readl(phychan->base + PL080_CH_CONFIG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 231
 232	writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
 
 233}
 234
 235/*
 236 * Pause the channel by setting the HALT bit.
 237 *
 238 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 239 * the FIFO can only drain if the peripheral is still requesting data.
 240 * (note: this can still timeout if the DMAC FIFO never drains of data.)
 241 *
 242 * For P->M transfers, disable the peripheral first to stop it filling
 243 * the DMAC FIFO, and then pause the DMAC.
 244 */
 245static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
 246{
 247	u32 val;
 248	int timeout;
 249
 
 
 
 
 
 
 
 
 250	/* Set the HALT bit and wait for the FIFO to drain */
 251	val = readl(ch->base + PL080_CH_CONFIG);
 252	val |= PL080_CONFIG_HALT;
 253	writel(val, ch->base + PL080_CH_CONFIG);
 254
 255	/* Wait for channel inactive */
 256	for (timeout = 1000; timeout; timeout--) {
 257		if (!pl08x_phy_channel_busy(ch))
 258			break;
 259		udelay(1);
 260	}
 261	if (pl08x_phy_channel_busy(ch))
 262		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
 263}
 264
 265static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
 266{
 267	u32 val;
 268
 
 
 
 
 
 
 
 
 269	/* Clear the HALT bit */
 270	val = readl(ch->base + PL080_CH_CONFIG);
 271	val &= ~PL080_CONFIG_HALT;
 272	writel(val, ch->base + PL080_CH_CONFIG);
 273}
 274
 275
 276/*
 277 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 278 * clears any pending interrupt status.  This should not be used for
 279 * an on-going transfer, but as a method of shutting down a channel
 280 * (eg, when it's no longer used) or terminating a transfer.
 281 */
 282static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
 283	struct pl08x_phy_chan *ch)
 284{
 285	u32 val = readl(ch->base + PL080_CH_CONFIG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 286
 
 
 
 
 287	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
 288	         PL080_CONFIG_TC_IRQ_MASK);
 
 289
 290	writel(val, ch->base + PL080_CH_CONFIG);
 
 
 291
 292	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
 293	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 294}
 295
 296static inline u32 get_bytes_in_cctl(u32 cctl)
 297{
 298	/* The source width defines the number of bytes */
 299	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 300
 301	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
 
 
 
 
 302	case PL080_WIDTH_8BIT:
 303		break;
 304	case PL080_WIDTH_16BIT:
 305		bytes *= 2;
 306		break;
 307	case PL080_WIDTH_32BIT:
 308		bytes *= 4;
 309		break;
 310	}
 311	return bytes;
 312}
 313
 314/* The channel should be paused when calling this */
 315static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
 316{
 
 
 317	struct pl08x_phy_chan *ch;
 
 318	struct pl08x_txd *txd;
 319	unsigned long flags;
 320	size_t bytes = 0;
 
 321
 322	spin_lock_irqsave(&plchan->lock, flags);
 323	ch = plchan->phychan;
 324	txd = plchan->at;
 325
 
 
 
 326	/*
 327	 * Follow the LLIs to get the number of remaining
 328	 * bytes in the currently active transaction.
 329	 */
 330	if (ch && txd) {
 331		u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
 332
 333		/* First get the remaining bytes in the active transfer */
 334		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
 335
 336		if (clli) {
 337			struct pl08x_lli *llis_va = txd->llis_va;
 338			dma_addr_t llis_bus = txd->llis_bus;
 339			int index;
 340
 341			BUG_ON(clli < llis_bus || clli >= llis_bus +
 342				sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
 343
 344			/*
 345			 * Locate the next LLI - as this is an array,
 346			 * it's simple maths to find.
 347			 */
 348			index = (clli - llis_bus) / sizeof(struct pl08x_lli);
 
 
 
 
 349
 350			for (; index < MAX_NUM_TSFR_LLIS; index++) {
 351				bytes += get_bytes_in_cctl(llis_va[index].cctl);
 352
 353				/*
 354				 * A LLI pointer of 0 terminates the LLI list
 355				 */
 356				if (!llis_va[index].lli)
 357					break;
 358			}
 359		}
 360	}
 361
 362	/* Sum up all queued transactions */
 363	if (!list_empty(&plchan->pend_list)) {
 364		struct pl08x_txd *txdi;
 365		list_for_each_entry(txdi, &plchan->pend_list, node) {
 366			bytes += txdi->len;
 367		}
 368	}
 369
 370	spin_unlock_irqrestore(&plchan->lock, flags);
 371
 372	return bytes;
 373}
 374
 375/*
 376 * Allocate a physical channel for a virtual channel
 377 *
 378 * Try to locate a physical channel to be used for this transfer. If all
 379 * are taken return NULL and the requester will have to cope by using
 380 * some fallback PIO mode or retrying later.
 381 */
 382static struct pl08x_phy_chan *
 383pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
 384		      struct pl08x_dma_chan *virt_chan)
 385{
 386	struct pl08x_phy_chan *ch = NULL;
 387	unsigned long flags;
 388	int i;
 389
 390	for (i = 0; i < pl08x->vd->channels; i++) {
 391		ch = &pl08x->phy_chans[i];
 392
 393		spin_lock_irqsave(&ch->lock, flags);
 394
 395		if (!ch->serving) {
 396			ch->serving = virt_chan;
 397			ch->signal = -1;
 398			spin_unlock_irqrestore(&ch->lock, flags);
 399			break;
 400		}
 401
 402		spin_unlock_irqrestore(&ch->lock, flags);
 403	}
 404
 405	if (i == pl08x->vd->channels) {
 406		/* No physical channel available, cope with it */
 407		return NULL;
 408	}
 409
 410	return ch;
 411}
 412
 
 413static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
 414					 struct pl08x_phy_chan *ch)
 415{
 416	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 417
 418	spin_lock_irqsave(&ch->lock, flags);
 
 419
 420	/* Stop the channel and clear its interrupts */
 421	pl08x_terminate_phy_chan(pl08x, ch);
 422
 423	/* Mark it as free */
 424	ch->serving = NULL;
 425	spin_unlock_irqrestore(&ch->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 426}
 427
 428/*
 429 * LLI handling
 430 */
 431
 432static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
 
 
 
 433{
 434	switch (coded) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 435	case PL080_WIDTH_8BIT:
 436		return 1;
 437	case PL080_WIDTH_16BIT:
 438		return 2;
 439	case PL080_WIDTH_32BIT:
 440		return 4;
 441	default:
 442		break;
 443	}
 444	BUG();
 445	return 0;
 446}
 447
 448static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
 449				  size_t tsize)
 
 
 450{
 451	u32 retbits = cctl;
 452
 453	/* Remove all src, dst and transfer size bits */
 454	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
 455	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
 456	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 457
 458	/* Then set the bits according to the parameters */
 459	switch (srcwidth) {
 460	case 1:
 461		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
 462		break;
 463	case 2:
 464		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
 465		break;
 466	case 4:
 467		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
 468		break;
 469	default:
 470		BUG();
 471		break;
 472	}
 
 
 473
 474	switch (dstwidth) {
 475	case 1:
 476		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
 477		break;
 478	case 2:
 479		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
 480		break;
 481	case 4:
 482		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
 483		break;
 484	default:
 485		BUG();
 486		break;
 487	}
 488
 489	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
 490	return retbits;
 491}
 492
 493struct pl08x_lli_build_data {
 494	struct pl08x_txd *txd;
 495	struct pl08x_bus_data srcbus;
 496	struct pl08x_bus_data dstbus;
 497	size_t remainder;
 498	u32 lli_bus;
 499};
 500
 501/*
 502 * Autoselect a master bus to use for the transfer this prefers the
 503 * destination bus if both available if fixed address on one bus the
 504 * other will be chosen
 505 */
 506static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
 507	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
 
 
 
 
 
 
 
 508{
 509	if (!(cctl & PL080_CONTROL_DST_INCR)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 510		*mbus = &bd->srcbus;
 511		*sbus = &bd->dstbus;
 512	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
 513		*mbus = &bd->dstbus;
 514		*sbus = &bd->srcbus;
 515	} else {
 516		if (bd->dstbus.buswidth == 4) {
 517			*mbus = &bd->dstbus;
 518			*sbus = &bd->srcbus;
 519		} else if (bd->srcbus.buswidth == 4) {
 520			*mbus = &bd->srcbus;
 521			*sbus = &bd->dstbus;
 522		} else if (bd->dstbus.buswidth == 2) {
 523			*mbus = &bd->dstbus;
 524			*sbus = &bd->srcbus;
 525		} else if (bd->srcbus.buswidth == 2) {
 526			*mbus = &bd->srcbus;
 527			*sbus = &bd->dstbus;
 528		} else {
 529			/* bd->srcbus.buswidth == 1 */
 530			*mbus = &bd->dstbus;
 531			*sbus = &bd->srcbus;
 532		}
 533	}
 534}
 535
 536/*
 537 * Fills in one LLI for a certain transfer descriptor and advance the counter
 538 */
 539static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
 540	int num_llis, int len, u32 cctl)
 
 541{
 542	struct pl08x_lli *llis_va = bd->txd->llis_va;
 
 543	dma_addr_t llis_bus = bd->txd->llis_bus;
 544
 545	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
 546
 547	llis_va[num_llis].cctl = cctl;
 548	llis_va[num_llis].src = bd->srcbus.addr;
 549	llis_va[num_llis].dst = bd->dstbus.addr;
 550	llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
 551	llis_va[num_llis].lli |= bd->lli_bus;
 
 
 
 
 
 552
 553	if (cctl & PL080_CONTROL_SRC_INCR)
 
 554		bd->srcbus.addr += len;
 555	if (cctl & PL080_CONTROL_DST_INCR)
 556		bd->dstbus.addr += len;
 
 
 
 
 
 
 557
 558	BUG_ON(bd->remainder < len);
 559
 560	bd->remainder -= len;
 561}
 562
 563/*
 564 * Return number of bytes to fill to boundary, or len.
 565 * This calculation works for any value of addr.
 566 */
 567static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
 
 
 
 
 
 
 
 568{
 569	size_t boundary_len = PL08X_BOUNDARY_SIZE -
 570			(addr & (PL08X_BOUNDARY_SIZE - 1));
 571
 572	return min(boundary_len, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 573}
 
 
 
 
 574
 575/*
 576 * This fills in the table of LLIs for the transfer descriptor
 577 * Note that we assume we never have to change the burst sizes
 578 * Return 0 for error
 579 */
 580static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
 581			      struct pl08x_txd *txd)
 582{
 583	struct pl08x_bus_data *mbus, *sbus;
 584	struct pl08x_lli_build_data bd;
 585	int num_llis = 0;
 586	u32 cctl;
 587	size_t max_bytes_per_lli;
 588	size_t total_bytes = 0;
 589	struct pl08x_lli *llis_va;
 590
 591	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
 592				      &txd->llis_bus);
 593	if (!txd->llis_va) {
 594		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
 595		return 0;
 596	}
 597
 598	pl08x->pool_ctr++;
 599
 600	/* Get the default CCTL */
 601	cctl = txd->cctl;
 602
 603	bd.txd = txd;
 604	bd.srcbus.addr = txd->src_addr;
 605	bd.dstbus.addr = txd->dst_addr;
 606	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
 
 607
 608	/* Find maximum width of the source bus */
 609	bd.srcbus.maxwidth =
 610		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
 611				       PL080_CONTROL_SWIDTH_SHIFT);
 612
 613	/* Find maximum width of the destination bus */
 614	bd.dstbus.maxwidth =
 615		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
 616				       PL080_CONTROL_DWIDTH_SHIFT);
 617
 618	/* Set up the bus widths to the maximum */
 619	bd.srcbus.buswidth = bd.srcbus.maxwidth;
 620	bd.dstbus.buswidth = bd.dstbus.maxwidth;
 621
 622	/*
 623	 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
 624	 */
 625	max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) *
 626		PL080_CONTROL_TRANSFER_SIZE_MASK;
 
 
 
 
 627
 628	/* We need to count this down to zero */
 629	bd.remainder = txd->len;
 630
 631	/*
 632	 * Choose bus to align to
 633	 * - prefers destination bus if both available
 634	 * - if fixed address on one bus chooses other
 635	 */
 636	pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
 637
 638	dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu llimax=%zu\n",
 639		 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
 640		 bd.srcbus.buswidth,
 641		 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
 642		 bd.dstbus.buswidth,
 643		 bd.remainder, max_bytes_per_lli);
 644	dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
 645		 mbus == &bd.srcbus ? "src" : "dst",
 646		 sbus == &bd.srcbus ? "src" : "dst");
 647
 648	if (txd->len < mbus->buswidth) {
 649		/* Less than a bus width available - send as single bytes */
 650		while (bd.remainder) {
 651			dev_vdbg(&pl08x->adev->dev,
 652				 "%s single byte LLIs for a transfer of "
 653				 "less than a bus width (remain 0x%08x)\n",
 654				 __func__, bd.remainder);
 655			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
 656			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
 657			total_bytes++;
 658		}
 659	} else {
 660		/* Make one byte LLIs until master bus is aligned */
 661		while ((mbus->addr) % (mbus->buswidth)) {
 662			dev_vdbg(&pl08x->adev->dev,
 663				"%s adjustment lli for less than bus width "
 664				 "(remain 0x%08x)\n",
 665				 __func__, bd.remainder);
 666			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
 667			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
 668			total_bytes++;
 669		}
 670
 671		/*
 672		 * Master now aligned
 673		 * - if slave is not then we must set its width down
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 674		 */
 675		if (sbus->addr % sbus->buswidth) {
 676			dev_dbg(&pl08x->adev->dev,
 677				"%s set down bus width to one byte\n",
 678				 __func__);
 
 
 
 
 
 
 
 
 
 
 
 679
 680			sbus->buswidth = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 681		}
 682
 683		/*
 684		 * Make largest possible LLIs until less than one bus
 685		 * width left
 
 686		 */
 687		while (bd.remainder > (mbus->buswidth - 1)) {
 688			size_t lli_len, target_len, tsize, odd_bytes;
 
 
 
 
 
 
 689
 
 
 
 
 
 
 
 
 
 690			/*
 691			 * If enough left try to send max possible,
 692			 * otherwise try to send the remainder
 693			 */
 694			target_len = min(bd.remainder, max_bytes_per_lli);
 
 
 
 
 
 
 695
 696			/*
 697			 * Set bus lengths for incrementing buses to the
 698			 * number of bytes which fill to next memory boundary,
 699			 * limiting on the target length calculated above.
 700			 */
 701			if (cctl & PL080_CONTROL_SRC_INCR)
 702				bd.srcbus.fill_bytes =
 703					pl08x_pre_boundary(bd.srcbus.addr,
 704						target_len);
 705			else
 706				bd.srcbus.fill_bytes = target_len;
 707
 708			if (cctl & PL080_CONTROL_DST_INCR)
 709				bd.dstbus.fill_bytes =
 710					pl08x_pre_boundary(bd.dstbus.addr,
 711						target_len);
 712			else
 713				bd.dstbus.fill_bytes = target_len;
 714
 715			/* Find the nearest */
 716			lli_len	= min(bd.srcbus.fill_bytes,
 717				      bd.dstbus.fill_bytes);
 718
 719			BUG_ON(lli_len > bd.remainder);
 720
 721			if (lli_len <= 0) {
 722				dev_err(&pl08x->adev->dev,
 723					"%s lli_len is %zu, <= 0\n",
 724						__func__, lli_len);
 725				return 0;
 726			}
 727
 728			if (lli_len == target_len) {
 729				/*
 730				 * Can send what we wanted.
 731				 * Maintain alignment
 732				 */
 733				lli_len	= (lli_len/mbus->buswidth) *
 734							mbus->buswidth;
 735				odd_bytes = 0;
 736			} else {
 737				/*
 738				 * So now we know how many bytes to transfer
 739				 * to get to the nearest boundary.  The next
 740				 * LLI will past the boundary.  However, we
 741				 * may be working to a boundary on the slave
 742				 * bus.  We need to ensure the master stays
 743				 * aligned, and that we are working in
 744				 * multiples of the bus widths.
 745				 */
 746				odd_bytes = lli_len % mbus->buswidth;
 747				lli_len -= odd_bytes;
 748
 749			}
 750
 751			if (lli_len) {
 752				/*
 753				 * Check against minimum bus alignment:
 754				 * Calculate actual transfer size in relation
 755				 * to bus width an get a maximum remainder of
 756				 * the smallest bus width - 1
 757				 */
 758				/* FIXME: use round_down()? */
 759				tsize = lli_len / min(mbus->buswidth,
 760						      sbus->buswidth);
 761				lli_len	= tsize * min(mbus->buswidth,
 762						      sbus->buswidth);
 763
 764				if (target_len != lli_len) {
 765					dev_vdbg(&pl08x->adev->dev,
 766					"%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
 767					__func__, target_len, lli_len, txd->len);
 768				}
 769
 770				cctl = pl08x_cctl_bits(cctl,
 771						       bd.srcbus.buswidth,
 772						       bd.dstbus.buswidth,
 773						       tsize);
 774
 775				dev_vdbg(&pl08x->adev->dev,
 776					"%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
 
 777					__func__, lli_len, bd.remainder);
 778				pl08x_fill_lli_for_desc(&bd, num_llis++,
 779					lli_len, cctl);
 
 
 
 
 780				total_bytes += lli_len;
 781			}
 782
 783
 784			if (odd_bytes) {
 785				/*
 786				 * Creep past the boundary, maintaining
 787				 * master alignment
 788				 */
 789				int j;
 790				for (j = 0; (j < mbus->buswidth)
 791						&& (bd.remainder); j++) {
 792					cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
 793					dev_vdbg(&pl08x->adev->dev,
 794						"%s align with boundary, single byte (remain 0x%08zx)\n",
 795						__func__, bd.remainder);
 796					pl08x_fill_lli_for_desc(&bd,
 797						num_llis++, 1, cctl);
 798					total_bytes++;
 799				}
 800			}
 801		}
 802
 803		/*
 804		 * Send any odd bytes
 805		 */
 806		while (bd.remainder) {
 807			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
 808			dev_vdbg(&pl08x->adev->dev,
 809				"%s align with boundary, single odd byte (remain %zu)\n",
 810				__func__, bd.remainder);
 811			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
 812			total_bytes++;
 813		}
 814	}
 815	if (total_bytes != txd->len) {
 816		dev_err(&pl08x->adev->dev,
 817			"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
 818			__func__, total_bytes, txd->len);
 819		return 0;
 820	}
 821
 822	if (num_llis >= MAX_NUM_TSFR_LLIS) {
 823		dev_err(&pl08x->adev->dev,
 824			"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
 825			__func__, (u32) MAX_NUM_TSFR_LLIS);
 826		return 0;
 
 827	}
 828
 829	llis_va = txd->llis_va;
 830	/* The final LLI terminates the LLI. */
 831	llis_va[num_llis - 1].lli = 0;
 832	/* The final LLI element shall also fire an interrupt. */
 833	llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
 834
 835#ifdef VERBOSE_DEBUG
 836	{
 837		int i;
 
 
 
 
 
 
 
 
 
 838
 839		dev_vdbg(&pl08x->adev->dev,
 840			 "%-3s %-9s  %-10s %-10s %-10s %s\n",
 841			 "lli", "", "csrc", "cdst", "clli", "cctl");
 842		for (i = 0; i < num_llis; i++) {
 843			dev_vdbg(&pl08x->adev->dev,
 844				 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
 845				 i, &llis_va[i], llis_va[i].src,
 846				 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
 847				);
 848		}
 849	}
 850#endif
 851
 852	return num_llis;
 853}
 854
 855/* You should call this with the struct pl08x lock held */
 856static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
 857			   struct pl08x_txd *txd)
 858{
 859	/* Free the LLI */
 860	dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
 861
 862	pl08x->pool_ctr--;
 
 
 
 
 
 
 863
 864	kfree(txd);
 865}
 866
 
 
 
 
 
 
 
 
 
 
 
 
 867static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
 868				struct pl08x_dma_chan *plchan)
 869{
 870	struct pl08x_txd *txdi = NULL;
 871	struct pl08x_txd *next;
 872
 873	if (!list_empty(&plchan->pend_list)) {
 874		list_for_each_entry_safe(txdi,
 875					 next, &plchan->pend_list, node) {
 876			list_del(&txdi->node);
 877			pl08x_free_txd(pl08x, txdi);
 878		}
 879	}
 880}
 881
 882/*
 883 * The DMA ENGINE API
 884 */
 885static int pl08x_alloc_chan_resources(struct dma_chan *chan)
 886{
 887	return 0;
 888}
 889
 890static void pl08x_free_chan_resources(struct dma_chan *chan)
 891{
 892}
 893
 894/*
 895 * This should be called with the channel plchan->lock held
 896 */
 897static int prep_phy_channel(struct pl08x_dma_chan *plchan,
 898			    struct pl08x_txd *txd)
 899{
 900	struct pl08x_driver_data *pl08x = plchan->host;
 901	struct pl08x_phy_chan *ch;
 902	int ret;
 903
 904	/* Check if we already have a channel */
 905	if (plchan->phychan)
 906		return 0;
 907
 908	ch = pl08x_get_phy_channel(pl08x, plchan);
 909	if (!ch) {
 910		/* No physical channel available, cope with it */
 911		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
 912		return -EBUSY;
 913	}
 914
 915	/*
 916	 * OK we have a physical channel: for memcpy() this is all we
 917	 * need, but for slaves the physical signals may be muxed!
 918	 * Can the platform allow us to use this channel?
 919	 */
 920	if (plchan->slave &&
 921	    ch->signal < 0 &&
 922	    pl08x->pd->get_signal) {
 923		ret = pl08x->pd->get_signal(plchan);
 924		if (ret < 0) {
 925			dev_dbg(&pl08x->adev->dev,
 926				"unable to use physical channel %d for transfer on %s due to platform restrictions\n",
 927				ch->id, plchan->name);
 928			/* Release physical channel & return */
 929			pl08x_put_phy_channel(pl08x, ch);
 930			return -EBUSY;
 931		}
 932		ch->signal = ret;
 933
 934		/* Assign the flow control signal to this channel */
 935		if (txd->direction == DMA_TO_DEVICE)
 936			txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
 937		else if (txd->direction == DMA_FROM_DEVICE)
 938			txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
 939	}
 940
 941	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
 942		 ch->id,
 943		 ch->signal,
 944		 plchan->name);
 945
 946	plchan->phychan_hold++;
 947	plchan->phychan = ch;
 948
 949	return 0;
 950}
 951
 952static void release_phy_channel(struct pl08x_dma_chan *plchan)
 953{
 954	struct pl08x_driver_data *pl08x = plchan->host;
 955
 956	if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
 957		pl08x->pd->put_signal(plchan);
 958		plchan->phychan->signal = -1;
 959	}
 960	pl08x_put_phy_channel(pl08x, plchan->phychan);
 961	plchan->phychan = NULL;
 962}
 963
 964static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
 965{
 966	struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
 967	struct pl08x_txd *txd = to_pl08x_txd(tx);
 968	unsigned long flags;
 969
 970	spin_lock_irqsave(&plchan->lock, flags);
 971
 972	plchan->chan.cookie += 1;
 973	if (plchan->chan.cookie < 0)
 974		plchan->chan.cookie = 1;
 975	tx->cookie = plchan->chan.cookie;
 976
 977	/* Put this onto the pending list */
 978	list_add_tail(&txd->node, &plchan->pend_list);
 979
 980	/*
 981	 * If there was no physical channel available for this memcpy,
 982	 * stack the request up and indicate that the channel is waiting
 983	 * for a free physical channel.
 984	 */
 985	if (!plchan->slave && !plchan->phychan) {
 986		/* Do this memcpy whenever there is a channel ready */
 987		plchan->state = PL08X_CHAN_WAITING;
 988		plchan->waiting = txd;
 989	} else {
 990		plchan->phychan_hold--;
 991	}
 992
 993	spin_unlock_irqrestore(&plchan->lock, flags);
 994
 995	return tx->cookie;
 996}
 997
 998static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
 999		struct dma_chan *chan, unsigned long flags)
1000{
1001	struct dma_async_tx_descriptor *retval = NULL;
1002
1003	return retval;
1004}
1005
1006/*
1007 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1008 * If slaves are relying on interrupts to signal completion this function
1009 * must not be called with interrupts disabled.
1010 */
1011static enum dma_status
1012pl08x_dma_tx_status(struct dma_chan *chan,
1013		    dma_cookie_t cookie,
1014		    struct dma_tx_state *txstate)
1015{
1016	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1017	dma_cookie_t last_used;
1018	dma_cookie_t last_complete;
1019	enum dma_status ret;
1020	u32 bytesleft = 0;
1021
1022	last_used = plchan->chan.cookie;
1023	last_complete = plchan->lc;
 
1024
1025	ret = dma_async_is_complete(cookie, last_complete, last_used);
1026	if (ret == DMA_SUCCESS) {
1027		dma_set_tx_state(txstate, last_complete, last_used, 0);
 
 
 
 
1028		return ret;
1029	}
1030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1031	/*
1032	 * This cookie not complete yet
 
1033	 */
1034	last_used = plchan->chan.cookie;
1035	last_complete = plchan->lc;
1036
1037	/* Get number of bytes left in the active transactions and queue */
1038	bytesleft = pl08x_getbytes_chan(plchan);
1039
1040	dma_set_tx_state(txstate, last_complete, last_used,
1041			 bytesleft);
1042
1043	if (plchan->state == PL08X_CHAN_PAUSED)
1044		return DMA_PAUSED;
1045
1046	/* Whether waiting or running, we're in progress */
1047	return DMA_IN_PROGRESS;
1048}
1049
1050/* PrimeCell DMA extension */
1051struct burst_table {
1052	u32 burstwords;
1053	u32 reg;
1054};
1055
1056static const struct burst_table burst_sizes[] = {
1057	{
1058		.burstwords = 256,
1059		.reg = PL080_BSIZE_256,
1060	},
1061	{
1062		.burstwords = 128,
1063		.reg = PL080_BSIZE_128,
1064	},
1065	{
1066		.burstwords = 64,
1067		.reg = PL080_BSIZE_64,
1068	},
1069	{
1070		.burstwords = 32,
1071		.reg = PL080_BSIZE_32,
1072	},
1073	{
1074		.burstwords = 16,
1075		.reg = PL080_BSIZE_16,
1076	},
1077	{
1078		.burstwords = 8,
1079		.reg = PL080_BSIZE_8,
1080	},
1081	{
1082		.burstwords = 4,
1083		.reg = PL080_BSIZE_4,
1084	},
1085	{
1086		.burstwords = 0,
1087		.reg = PL080_BSIZE_1,
1088	},
1089};
1090
1091/*
1092 * Given the source and destination available bus masks, select which
1093 * will be routed to each port.  We try to have source and destination
1094 * on separate ports, but always respect the allowable settings.
1095 */
1096static u32 pl08x_select_bus(u8 src, u8 dst)
1097{
1098	u32 cctl = 0;
 
 
 
 
 
 
 
 
 
 
 
1099
1100	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1101		cctl |= PL080_CONTROL_DST_AHB2;
1102	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1103		cctl |= PL080_CONTROL_SRC_AHB2;
1104
1105	return cctl;
1106}
1107
1108static u32 pl08x_cctl(u32 cctl)
1109{
1110	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1111		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1112		  PL080_CONTROL_PROT_MASK);
1113
1114	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
1115	return cctl | PL080_CONTROL_PROT_SYS;
1116}
1117
1118static u32 pl08x_width(enum dma_slave_buswidth width)
1119{
1120	switch (width) {
1121	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1122		return PL080_WIDTH_8BIT;
1123	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1124		return PL080_WIDTH_16BIT;
1125	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1126		return PL080_WIDTH_32BIT;
1127	default:
1128		return ~0;
1129	}
1130}
1131
1132static u32 pl08x_burst(u32 maxburst)
1133{
1134	int i;
1135
1136	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1137		if (burst_sizes[i].burstwords <= maxburst)
1138			break;
1139
1140	return burst_sizes[i].reg;
1141}
1142
1143static int dma_set_runtime_config(struct dma_chan *chan,
1144				  struct dma_slave_config *config)
1145{
1146	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1147	struct pl08x_driver_data *pl08x = plchan->host;
1148	enum dma_slave_buswidth addr_width;
1149	u32 width, burst, maxburst;
1150	u32 cctl = 0;
1151
1152	if (!plchan->slave)
1153		return -EINVAL;
1154
1155	/* Transfer direction */
1156	plchan->runtime_direction = config->direction;
1157	if (config->direction == DMA_TO_DEVICE) {
1158		addr_width = config->dst_addr_width;
1159		maxburst = config->dst_maxburst;
1160	} else if (config->direction == DMA_FROM_DEVICE) {
1161		addr_width = config->src_addr_width;
1162		maxburst = config->src_maxburst;
1163	} else {
1164		dev_err(&pl08x->adev->dev,
1165			"bad runtime_config: alien transfer direction\n");
1166		return -EINVAL;
1167	}
1168
1169	width = pl08x_width(addr_width);
1170	if (width == ~0) {
1171		dev_err(&pl08x->adev->dev,
1172			"bad runtime_config: alien address width\n");
1173		return -EINVAL;
1174	}
1175
1176	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1177	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1178
1179	/*
1180	 * If this channel will only request single transfers, set this
1181	 * down to ONE element.  Also select one element if no maxburst
1182	 * is specified.
1183	 */
1184	if (plchan->cd->single)
1185		maxburst = 1;
1186
1187	burst = pl08x_burst(maxburst);
1188	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1189	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1190
1191	if (plchan->runtime_direction == DMA_FROM_DEVICE) {
1192		plchan->src_addr = config->src_addr;
1193		plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
1194			pl08x_select_bus(plchan->cd->periph_buses,
1195					 pl08x->mem_buses);
1196	} else {
1197		plchan->dst_addr = config->dst_addr;
1198		plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
1199			pl08x_select_bus(pl08x->mem_buses,
1200					 plchan->cd->periph_buses);
1201	}
1202
1203	dev_dbg(&pl08x->adev->dev,
1204		"configured channel %s (%s) for %s, data width %d, "
1205		"maxburst %d words, LE, CCTL=0x%08x\n",
1206		dma_chan_name(chan), plchan->name,
1207		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1208		addr_width,
1209		maxburst,
1210		cctl);
1211
1212	return 0;
1213}
1214
1215/*
1216 * Slave transactions callback to the slave device to allow
1217 * synchronization of slave DMA signals with the DMAC enable
1218 */
1219static void pl08x_issue_pending(struct dma_chan *chan)
1220{
1221	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1222	unsigned long flags;
1223
1224	spin_lock_irqsave(&plchan->lock, flags);
1225	/* Something is already active, or we're waiting for a channel... */
1226	if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1227		spin_unlock_irqrestore(&plchan->lock, flags);
1228		return;
1229	}
 
 
1230
1231	/* Take the first element in the queue and execute it */
1232	if (!list_empty(&plchan->pend_list)) {
1233		struct pl08x_txd *next;
1234
1235		next = list_first_entry(&plchan->pend_list,
1236					struct pl08x_txd,
1237					node);
1238		list_del(&next->node);
1239		plchan->state = PL08X_CHAN_RUNNING;
1240
1241		pl08x_start_txd(plchan, next);
1242	}
1243
1244	spin_unlock_irqrestore(&plchan->lock, flags);
1245}
1246
1247static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1248					struct pl08x_txd *txd)
1249{
1250	struct pl08x_driver_data *pl08x = plchan->host;
1251	unsigned long flags;
1252	int num_llis, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1253
1254	num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1255	if (!num_llis) {
1256		kfree(txd);
1257		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
1258	}
1259
1260	spin_lock_irqsave(&plchan->lock, flags);
 
 
 
 
1261
1262	/*
1263	 * See if we already have a physical channel allocated,
1264	 * else this is the time to try to get one.
1265	 */
1266	ret = prep_phy_channel(plchan, txd);
1267	if (ret) {
1268		/*
1269		 * No physical channel was available.
1270		 *
1271		 * memcpy transfers can be sorted out at submission time.
1272		 *
1273		 * Slave transfers may have been denied due to platform
1274		 * channel muxing restrictions.  Since there is no guarantee
1275		 * that this will ever be resolved, and the signal must be
1276		 * acquired AFTER acquiring the physical channel, we will let
1277		 * them be NACK:ed with -EBUSY here. The drivers can retry
1278		 * the prep() call if they are eager on doing this using DMA.
1279		 */
1280		if (plchan->slave) {
1281			pl08x_free_txd_list(pl08x, plchan);
1282			pl08x_free_txd(pl08x, txd);
1283			spin_unlock_irqrestore(&plchan->lock, flags);
1284			return -EBUSY;
1285		}
1286	} else
1287		/*
1288		 * Else we're all set, paused and ready to roll, status
1289		 * will switch to PL08X_CHAN_RUNNING when we call
1290		 * issue_pending(). If there is something running on the
1291		 * channel already we don't change its state.
1292		 */
1293		if (plchan->state == PL08X_CHAN_IDLE)
1294			plchan->state = PL08X_CHAN_PAUSED;
1295
1296	spin_unlock_irqrestore(&plchan->lock, flags);
 
 
 
1297
1298	return 0;
1299}
1300
1301static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1302	unsigned long flags)
1303{
1304	struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1305
1306	if (txd) {
1307		dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1308		txd->tx.flags = flags;
1309		txd->tx.tx_submit = pl08x_tx_submit;
1310		INIT_LIST_HEAD(&txd->node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1311
1312		/* Always enable error and terminal interrupts */
1313		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1314			    PL080_CONFIG_TC_IRQ_MASK;
1315	}
1316	return txd;
 
 
 
 
 
1317}
1318
1319/*
1320 * Initialize a descriptor to be used by memcpy submit
1321 */
1322static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1323		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1324		size_t len, unsigned long flags)
1325{
1326	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1327	struct pl08x_driver_data *pl08x = plchan->host;
1328	struct pl08x_txd *txd;
 
1329	int ret;
1330
1331	txd = pl08x_get_txd(plchan, flags);
1332	if (!txd) {
1333		dev_err(&pl08x->adev->dev,
1334			"%s no memory for descriptor\n", __func__);
1335		return NULL;
1336	}
1337
1338	txd->direction = DMA_NONE;
1339	txd->src_addr = src;
1340	txd->dst_addr = dest;
1341	txd->len = len;
1342
1343	/* Set platform data for m2m */
1344	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1345	txd->cctl = pl08x->pd->memcpy_channel.cctl &
1346			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1347
1348	/* Both to be incremented or the code will break */
1349	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
 
 
 
 
 
 
 
 
 
 
 
1350
1351	if (pl08x->vd->dualmaster)
1352		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1353					      pl08x->mem_buses);
1354
1355	ret = pl08x_prep_channel_resources(plchan, txd);
1356	if (ret)
1357		return NULL;
 
1358
1359	return &txd->tx;
1360}
1361
1362static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1363		struct dma_chan *chan, struct scatterlist *sgl,
1364		unsigned int sg_len, enum dma_data_direction direction,
1365		unsigned long flags)
1366{
1367	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1368	struct pl08x_driver_data *pl08x = plchan->host;
1369	struct pl08x_txd *txd;
1370	int ret;
 
 
 
1371
1372	/*
1373	 * Current implementation ASSUMES only one sg
1374	 */
1375	if (sg_len != 1) {
1376		dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1377			__func__);
1378		BUG();
1379	}
1380
1381	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1382		__func__, sgl->length, plchan->name);
1383
1384	txd = pl08x_get_txd(plchan, flags);
1385	if (!txd) {
1386		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1387		return NULL;
1388	}
1389
1390	if (direction != plchan->runtime_direction)
1391		dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1392			"the direction configured for the PrimeCell\n",
1393			__func__);
1394
1395	/*
1396	 * Set up addresses, the PrimeCell configured address
1397	 * will take precedence since this may configure the
1398	 * channel target address dynamically at runtime.
1399	 */
1400	txd->direction = direction;
1401	txd->len = sgl->length;
1402
1403	if (direction == DMA_TO_DEVICE) {
1404		txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1405		txd->cctl = plchan->dst_cctl;
1406		txd->src_addr = sgl->dma_address;
1407		txd->dst_addr = plchan->dst_addr;
1408	} else if (direction == DMA_FROM_DEVICE) {
1409		txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1410		txd->cctl = plchan->src_cctl;
1411		txd->src_addr = plchan->src_addr;
1412		txd->dst_addr = sgl->dma_address;
 
1413	} else {
 
1414		dev_err(&pl08x->adev->dev,
1415			"%s direction unsupported\n", __func__);
1416		return NULL;
1417	}
1418
1419	ret = pl08x_prep_channel_resources(plchan, txd);
1420	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1421		return NULL;
 
1422
1423	return &txd->tx;
 
 
 
 
 
 
 
 
 
1424}
1425
1426static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1427			 unsigned long arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1428{
1429	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1430	struct pl08x_driver_data *pl08x = plchan->host;
1431	unsigned long flags;
1432	int ret = 0;
 
 
 
 
 
 
 
 
 
1433
1434	/* Controls applicable to inactive channels */
1435	if (cmd == DMA_SLAVE_CONFIG) {
1436		return dma_set_runtime_config(chan,
1437					      (struct dma_slave_config *)arg);
 
 
 
 
 
 
 
1438	}
1439
1440	/*
1441	 * Anything succeeds on channels with no physical allocation and
1442	 * no queued transfers.
1443	 */
1444	spin_lock_irqsave(&plchan->lock, flags);
1445	if (!plchan->phychan && !plchan->at) {
1446		spin_unlock_irqrestore(&plchan->lock, flags);
1447		return 0;
1448	}
1449
1450	switch (cmd) {
1451	case DMA_TERMINATE_ALL:
1452		plchan->state = PL08X_CHAN_IDLE;
1453
1454		if (plchan->phychan) {
1455			pl08x_terminate_phy_chan(pl08x, plchan->phychan);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1456
1457			/*
1458			 * Mark physical channel as free and free any slave
1459			 * signal
1460			 */
1461			release_phy_channel(plchan);
 
 
 
 
 
 
 
 
1462		}
1463		/* Dequeue jobs and free LLIs */
1464		if (plchan->at) {
1465			pl08x_free_txd(pl08x, plchan->at);
1466			plchan->at = NULL;
1467		}
1468		/* Dequeue jobs not yet fired as well */
1469		pl08x_free_txd_list(pl08x, plchan);
1470		break;
1471	case DMA_PAUSE:
1472		pl08x_pause_phy_chan(plchan->phychan);
1473		plchan->state = PL08X_CHAN_PAUSED;
1474		break;
1475	case DMA_RESUME:
1476		pl08x_resume_phy_chan(plchan->phychan);
1477		plchan->state = PL08X_CHAN_RUNNING;
1478		break;
1479	default:
1480		/* Unknown command */
1481		ret = -ENXIO;
1482		break;
1483	}
1484
1485	spin_unlock_irqrestore(&plchan->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1486
1487	return ret;
1488}
1489
1490bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1491{
1492	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1493	char *name = chan_id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1494
1495	/* Check that the channel is not taken! */
1496	if (!strcmp(plchan->name, name))
1497		return true;
1498
1499	return false;
1500}
1501
1502/*
1503 * Just check that the device is there and active
1504 * TODO: turn this bit on/off depending on the number of physical channels
1505 * actually used, if it is zero... well shut it off. That will save some
1506 * power. Cut the clock at the same time.
1507 */
1508static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1509{
1510	u32 val;
1511
1512	val = readl(pl08x->base + PL080_CONFIG);
1513	val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1514	/* We implicitly clear bit 1 and that means little-endian mode */
1515	val |= PL080_CONFIG_ENABLE;
1516	writel(val, pl08x->base + PL080_CONFIG);
1517}
1518
1519static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1520{
1521	struct device *dev = txd->tx.chan->device->dev;
 
1522
1523	if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1524		if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1525			dma_unmap_single(dev, txd->src_addr, txd->len,
1526				DMA_TO_DEVICE);
1527		else
1528			dma_unmap_page(dev, txd->src_addr, txd->len,
1529				DMA_TO_DEVICE);
1530	}
1531	if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1532		if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1533			dma_unmap_single(dev, txd->dst_addr, txd->len,
1534				DMA_FROM_DEVICE);
1535		else
1536			dma_unmap_page(dev, txd->dst_addr, txd->len,
1537				DMA_FROM_DEVICE);
1538	}
 
 
 
 
 
 
 
1539}
1540
1541static void pl08x_tasklet(unsigned long data)
1542{
1543	struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1544	struct pl08x_driver_data *pl08x = plchan->host;
1545	struct pl08x_txd *txd;
1546	unsigned long flags;
1547
1548	spin_lock_irqsave(&plchan->lock, flags);
 
 
 
 
 
 
 
 
1549
1550	txd = plchan->at;
1551	plchan->at = NULL;
1552
1553	if (txd) {
1554		/* Update last completed */
1555		plchan->lc = txd->tx.cookie;
1556	}
1557
1558	/* If a new descriptor is queued, set it up plchan->at is NULL here */
1559	if (!list_empty(&plchan->pend_list)) {
1560		struct pl08x_txd *next;
1561
1562		next = list_first_entry(&plchan->pend_list,
1563					struct pl08x_txd,
1564					node);
1565		list_del(&next->node);
1566
1567		pl08x_start_txd(plchan, next);
1568	} else if (plchan->phychan_hold) {
1569		/*
1570		 * This channel is still in use - we have a new txd being
1571		 * prepared and will soon be queued.  Don't give up the
1572		 * physical channel.
1573		 */
1574	} else {
1575		struct pl08x_dma_chan *waiting = NULL;
1576
1577		/*
1578		 * No more jobs, so free up the physical channel
1579		 * Free any allocated signal on slave transfers too
1580		 */
1581		release_phy_channel(plchan);
1582		plchan->state = PL08X_CHAN_IDLE;
1583
1584		/*
1585		 * And NOW before anyone else can grab that free:d up
1586		 * physical channel, see if there is some memcpy pending
1587		 * that seriously needs to start because of being stacked
1588		 * up while we were choking the physical channels with data.
1589		 */
1590		list_for_each_entry(waiting, &pl08x->memcpy.channels,
1591				    chan.device_node) {
1592		  if (waiting->state == PL08X_CHAN_WAITING &&
1593			    waiting->waiting != NULL) {
1594				int ret;
1595
1596				/* This should REALLY not fail now */
1597				ret = prep_phy_channel(waiting,
1598						       waiting->waiting);
1599				BUG_ON(ret);
1600				waiting->phychan_hold--;
1601				waiting->state = PL08X_CHAN_RUNNING;
1602				waiting->waiting = NULL;
1603				pl08x_issue_pending(&waiting->chan);
1604				break;
1605			}
1606		}
1607	}
1608
1609	spin_unlock_irqrestore(&plchan->lock, flags);
 
 
1610
1611	if (txd) {
1612		dma_async_tx_callback callback = txd->tx.callback;
1613		void *callback_param = txd->tx.callback_param;
1614
1615		/* Don't try to unmap buffers on slave channels */
1616		if (!plchan->slave)
1617			pl08x_unmap_buffers(txd);
1618
1619		/* Free the descriptor */
1620		spin_lock_irqsave(&plchan->lock, flags);
1621		pl08x_free_txd(pl08x, txd);
1622		spin_unlock_irqrestore(&plchan->lock, flags);
1623
1624		/* Callback to signal completion */
1625		if (callback)
1626			callback(callback_param);
 
 
 
 
 
 
 
 
 
 
 
 
1627	}
 
1628}
1629
1630static irqreturn_t pl08x_irq(int irq, void *dev)
1631{
1632	struct pl08x_driver_data *pl08x = dev;
1633	u32 mask = 0;
1634	u32 val;
1635	int i;
 
 
 
 
 
 
 
 
 
 
 
 
1636
1637	val = readl(pl08x->base + PL080_ERR_STATUS);
1638	if (val) {
1639		/* An error interrupt (on one or more channels) */
1640		dev_err(&pl08x->adev->dev,
1641			"%s error interrupt, register value 0x%08x\n",
1642				__func__, val);
1643		/*
1644		 * Simply clear ALL PL08X error interrupts,
1645		 * regardless of channel and cause
1646		 * FIXME: should be 0x00000003 on PL081 really.
1647		 */
1648		writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1649	}
1650	val = readl(pl08x->base + PL080_INT_STATUS);
1651	for (i = 0; i < pl08x->vd->channels; i++) {
1652		if ((1 << i) & val) {
1653			/* Locate physical channel */
1654			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1655			struct pl08x_dma_chan *plchan = phychan->serving;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1656
1657			/* Schedule tasklet on this channel */
1658			tasklet_schedule(&plchan->tasklet);
 
 
 
 
 
 
 
 
1659
1660			mask |= (1 << i);
1661		}
1662	}
1663	/* Clear only the terminal interrupts on channels we processed */
1664	writel(mask, pl08x->base + PL080_TC_CLEAR);
1665
1666	return mask ? IRQ_HANDLED : IRQ_NONE;
1667}
1668
1669static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1670{
1671	u32 cctl = pl08x_cctl(chan->cd->cctl);
1672
1673	chan->slave = true;
1674	chan->name = chan->cd->bus_id;
1675	chan->src_addr = chan->cd->addr;
1676	chan->dst_addr = chan->cd->addr;
1677	chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
1678		pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
1679	chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
1680		pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
1681}
1682
1683/*
1684 * Initialise the DMAC memcpy/slave channels.
1685 * Make a local wrapper to hold required data
1686 */
1687static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1688					   struct dma_device *dmadev,
1689					   unsigned int channels,
1690					   bool slave)
1691{
1692	struct pl08x_dma_chan *chan;
1693	int i;
1694
1695	INIT_LIST_HEAD(&dmadev->channels);
1696
1697	/*
1698	 * Register as many many memcpy as we have physical channels,
1699	 * we won't always be able to use all but the code will have
1700	 * to cope with that situation.
1701	 */
1702	for (i = 0; i < channels; i++) {
1703		chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
1704		if (!chan) {
1705			dev_err(&pl08x->adev->dev,
1706				"%s no memory for channel\n", __func__);
1707			return -ENOMEM;
1708		}
1709
1710		chan->host = pl08x;
1711		chan->state = PL08X_CHAN_IDLE;
 
1712
1713		if (slave) {
1714			chan->cd = &pl08x->pd->slave_channels[i];
 
 
 
 
 
 
1715			pl08x_dma_slave_init(chan);
1716		} else {
1717			chan->cd = &pl08x->pd->memcpy_channel;
 
 
 
 
 
 
1718			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1719			if (!chan->name) {
 
1720				kfree(chan);
1721				return -ENOMEM;
1722			}
1723		}
1724		if (chan->cd->circular_buffer) {
1725			dev_err(&pl08x->adev->dev,
1726				"channel %s: circular buffers not supported\n",
1727				chan->name);
1728			kfree(chan);
1729			continue;
1730		}
1731		dev_info(&pl08x->adev->dev,
1732			 "initialize virtual channel \"%s\"\n",
1733			 chan->name);
1734
1735		chan->chan.device = dmadev;
1736		chan->chan.cookie = 0;
1737		chan->lc = 0;
1738
1739		spin_lock_init(&chan->lock);
1740		INIT_LIST_HEAD(&chan->pend_list);
1741		tasklet_init(&chan->tasklet, pl08x_tasklet,
1742			     (unsigned long) chan);
1743
1744		list_add_tail(&chan->chan.device_node, &dmadev->channels);
1745	}
1746	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1747		 i, slave ? "slave" : "memcpy");
1748	return i;
1749}
1750
1751static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1752{
1753	struct pl08x_dma_chan *chan = NULL;
1754	struct pl08x_dma_chan *next;
1755
1756	list_for_each_entry_safe(chan,
1757				 next, &dmadev->channels, chan.device_node) {
1758		list_del(&chan->chan.device_node);
1759		kfree(chan);
1760	}
1761}
1762
1763#ifdef CONFIG_DEBUG_FS
1764static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1765{
1766	switch (state) {
1767	case PL08X_CHAN_IDLE:
1768		return "idle";
1769	case PL08X_CHAN_RUNNING:
1770		return "running";
1771	case PL08X_CHAN_PAUSED:
1772		return "paused";
1773	case PL08X_CHAN_WAITING:
1774		return "waiting";
1775	default:
1776		break;
1777	}
1778	return "UNKNOWN STATE";
1779}
1780
1781static int pl08x_debugfs_show(struct seq_file *s, void *data)
1782{
1783	struct pl08x_driver_data *pl08x = s->private;
1784	struct pl08x_dma_chan *chan;
1785	struct pl08x_phy_chan *ch;
1786	unsigned long flags;
1787	int i;
1788
1789	seq_printf(s, "PL08x physical channels:\n");
1790	seq_printf(s, "CHANNEL:\tUSER:\n");
1791	seq_printf(s, "--------\t-----\n");
1792	for (i = 0; i < pl08x->vd->channels; i++) {
1793		struct pl08x_dma_chan *virt_chan;
1794
1795		ch = &pl08x->phy_chans[i];
1796
1797		spin_lock_irqsave(&ch->lock, flags);
1798		virt_chan = ch->serving;
1799
1800		seq_printf(s, "%d\t\t%s\n",
1801			   ch->id, virt_chan ? virt_chan->name : "(none)");
 
 
1802
1803		spin_unlock_irqrestore(&ch->lock, flags);
1804	}
1805
1806	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1807	seq_printf(s, "CHANNEL:\tSTATE:\n");
1808	seq_printf(s, "--------\t------\n");
1809	list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1810		seq_printf(s, "%s\t\t%s\n", chan->name,
1811			   pl08x_state_str(chan->state));
1812	}
1813
1814	seq_printf(s, "\nPL08x virtual slave channels:\n");
1815	seq_printf(s, "CHANNEL:\tSTATE:\n");
1816	seq_printf(s, "--------\t------\n");
1817	list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1818		seq_printf(s, "%s\t\t%s\n", chan->name,
1819			   pl08x_state_str(chan->state));
 
 
 
1820	}
1821
1822	return 0;
1823}
1824
1825static int pl08x_debugfs_open(struct inode *inode, struct file *file)
 
 
 
 
 
 
 
 
 
 
1826{
1827	return single_open(file, pl08x_debugfs_show, inode->i_private);
1828}
 
 
 
 
 
 
 
 
 
 
 
1829
1830static const struct file_operations pl08x_debugfs_operations = {
1831	.open		= pl08x_debugfs_open,
1832	.read		= seq_read,
1833	.llseek		= seq_lseek,
1834	.release	= single_release,
1835};
 
1836
1837static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
 
1838{
1839	/* Expose a simple debugfs interface to view all clocks */
1840	(void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
1841				   NULL, pl08x,
1842				   &pl08x_debugfs_operations);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1843}
1844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1845#else
1846static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
 
 
1847{
 
1848}
1849#endif
1850
1851static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1852{
1853	struct pl08x_driver_data *pl08x;
1854	const struct vendor_data *vd = id->data;
 
 
1855	int ret = 0;
1856	int i;
1857
1858	ret = amba_request_regions(adev, NULL);
1859	if (ret)
1860		return ret;
1861
 
 
 
 
 
1862	/* Create the driver state holder */
1863	pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
1864	if (!pl08x) {
1865		ret = -ENOMEM;
1866		goto out_no_pl08x;
1867	}
1868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1869	/* Initialize memcpy engine */
1870	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1871	pl08x->memcpy.dev = &adev->dev;
1872	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1873	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1874	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1875	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1876	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1877	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1878	pl08x->memcpy.device_control = pl08x_control;
 
 
 
 
 
 
 
 
 
 
1879
1880	/* Initialize slave engine */
1881	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1882	pl08x->slave.dev = &adev->dev;
1883	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1884	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1885	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1886	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1887	pl08x->slave.device_issue_pending = pl08x_issue_pending;
1888	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1889	pl08x->slave.device_control = pl08x_control;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1890
1891	/* Get the platform data */
1892	pl08x->pd = dev_get_platdata(&adev->dev);
1893	if (!pl08x->pd) {
1894		dev_err(&adev->dev, "no platform data supplied\n");
1895		goto out_no_platdata;
 
 
 
 
 
 
 
 
 
 
 
1896	}
1897
1898	/* Assign useful pointers to the driver state */
1899	pl08x->adev = adev;
1900	pl08x->vd = vd;
1901
1902	/* By default, AHB1 only.  If dualmaster, from platform */
1903	pl08x->lli_buses = PL08X_AHB1;
1904	pl08x->mem_buses = PL08X_AHB1;
1905	if (pl08x->vd->dualmaster) {
1906		pl08x->lli_buses = pl08x->pd->lli_buses;
1907		pl08x->mem_buses = pl08x->pd->mem_buses;
1908	}
1909
 
 
 
 
 
 
1910	/* A DMA memory pool for LLIs, align on 1-byte boundary */
1911	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1912			PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1913	if (!pl08x->pool) {
1914		ret = -ENOMEM;
1915		goto out_no_lli_pool;
1916	}
1917
1918	spin_lock_init(&pl08x->lock);
1919
1920	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1921	if (!pl08x->base) {
1922		ret = -ENOMEM;
1923		goto out_no_ioremap;
1924	}
1925
1926	/* Turn on the PL08x */
1927	pl08x_ensure_on(pl08x);
1928
1929	/* Attach the interrupt handler */
1930	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
 
 
 
 
1931	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1932
1933	ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1934			  DRIVER_NAME, pl08x);
1935	if (ret) {
1936		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1937			__func__, adev->irq[0]);
1938		goto out_no_irq;
1939	}
1940
1941	/* Initialize physical channels */
1942	pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
1943			GFP_KERNEL);
1944	if (!pl08x->phy_chans) {
1945		dev_err(&adev->dev, "%s failed to allocate "
1946			"physical channel holders\n",
1947			__func__);
1948		goto out_no_phychans;
1949	}
1950
1951	for (i = 0; i < vd->channels; i++) {
1952		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1953
1954		ch->id = i;
1955		ch->base = pl08x->base + PL080_Cx_BASE(i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1956		spin_lock_init(&ch->lock);
1957		ch->serving = NULL;
1958		ch->signal = -1;
1959		dev_info(&adev->dev,
1960			 "physical channel %d is %s\n", i,
1961			 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
 
 
 
 
 
 
 
 
 
 
 
 
 
1962	}
1963
1964	/* Register as many memcpy channels as there are physical channels */
1965	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1966					      pl08x->vd->channels, false);
1967	if (ret <= 0) {
1968		dev_warn(&pl08x->adev->dev,
1969			 "%s failed to enumerate memcpy channels - %d\n",
1970			 __func__, ret);
1971		goto out_no_memcpy;
1972	}
1973	pl08x->memcpy.chancnt = ret;
1974
1975	/* Register slave channels */
1976	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1977					      pl08x->pd->num_slave_channels,
1978					      true);
1979	if (ret <= 0) {
1980		dev_warn(&pl08x->adev->dev,
1981			"%s failed to enumerate slave channels - %d\n",
1982				__func__, ret);
1983		goto out_no_slave;
 
1984	}
1985	pl08x->slave.chancnt = ret;
1986
1987	ret = dma_async_device_register(&pl08x->memcpy);
1988	if (ret) {
1989		dev_warn(&pl08x->adev->dev,
1990			"%s failed to register memcpy as an async device - %d\n",
1991			__func__, ret);
1992		goto out_no_memcpy_reg;
1993	}
1994
1995	ret = dma_async_device_register(&pl08x->slave);
1996	if (ret) {
1997		dev_warn(&pl08x->adev->dev,
 
1998			"%s failed to register slave as an async device - %d\n",
1999			__func__, ret);
2000		goto out_no_slave_reg;
 
2001	}
2002
2003	amba_set_drvdata(adev, pl08x);
2004	init_pl08x_debugfs(pl08x);
2005	dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2006		 amba_part(adev), amba_rev(adev),
2007		 (unsigned long long)adev->res.start, adev->irq[0]);
 
2008	return 0;
2009
2010out_no_slave_reg:
2011	dma_async_device_unregister(&pl08x->memcpy);
2012out_no_memcpy_reg:
2013	pl08x_free_virtual_channels(&pl08x->slave);
 
2014out_no_slave:
2015	pl08x_free_virtual_channels(&pl08x->memcpy);
2016out_no_memcpy:
2017	kfree(pl08x->phy_chans);
2018out_no_phychans:
2019	free_irq(adev->irq[0], pl08x);
2020out_no_irq:
2021	iounmap(pl08x->base);
2022out_no_ioremap:
2023	dma_pool_destroy(pl08x->pool);
2024out_no_lli_pool:
2025out_no_platdata:
 
 
2026	kfree(pl08x);
2027out_no_pl08x:
2028	amba_release_regions(adev);
2029	return ret;
2030}
2031
2032/* PL080 has 8 channels and the PL080 have just 2 */
2033static struct vendor_data vendor_pl080 = {
 
 
 
 
 
 
 
 
 
2034	.channels = 8,
 
2035	.dualmaster = true,
 
 
 
 
 
 
 
 
 
 
2036};
2037
2038static struct vendor_data vendor_pl081 = {
 
2039	.channels = 2,
 
2040	.dualmaster = false,
 
 
 
 
 
 
 
2041};
2042
2043static struct amba_id pl08x_ids[] = {
 
 
 
 
 
 
2044	/* PL080 */
2045	{
2046		.id	= 0x00041080,
2047		.mask	= 0x000fffff,
2048		.data	= &vendor_pl080,
2049	},
2050	/* PL081 */
2051	{
2052		.id	= 0x00041081,
2053		.mask	= 0x000fffff,
2054		.data	= &vendor_pl081,
2055	},
2056	/* Nomadik 8815 PL080 variant */
2057	{
2058		.id	= 0x00280880,
2059		.mask	= 0x00ffffff,
2060		.data	= &vendor_pl080,
 
 
 
 
 
 
2061	},
2062	{ 0, 0 },
2063};
 
 
2064
2065static struct amba_driver pl08x_amba_driver = {
2066	.drv.name	= DRIVER_NAME,
2067	.id_table	= pl08x_ids,
2068	.probe		= pl08x_probe,
2069};
2070
2071static int __init pl08x_init(void)
2072{
2073	int retval;
2074	retval = amba_driver_register(&pl08x_amba_driver);
2075	if (retval)
2076		printk(KERN_WARNING DRIVER_NAME
2077		       "failed to register as an AMBA device (%d)\n",
2078		       retval);
2079	return retval;
2080}
2081subsys_initcall(pl08x_init);