Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
   4 *
   5 *  Pentium III FXSR, SSE support
   6 *	Gareth Hughes <gareth@valinux.com>, May 2000
   7 */
   8
   9/*
  10 * Handle hardware traps and faults.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/context_tracking.h>
  16#include <linux/interrupt.h>
  17#include <linux/kallsyms.h>
  18#include <linux/spinlock.h>
  19#include <linux/kprobes.h>
  20#include <linux/uaccess.h>
  21#include <linux/kdebug.h>
  22#include <linux/kgdb.h>
  23#include <linux/kernel.h>
  24#include <linux/export.h>
  25#include <linux/ptrace.h>
  26#include <linux/uprobes.h>
  27#include <linux/string.h>
  28#include <linux/delay.h>
  29#include <linux/errno.h>
  30#include <linux/kexec.h>
  31#include <linux/sched.h>
  32#include <linux/sched/task_stack.h>
  33#include <linux/timer.h>
  34#include <linux/init.h>
  35#include <linux/bug.h>
  36#include <linux/nmi.h>
  37#include <linux/mm.h>
  38#include <linux/smp.h>
  39#include <linux/io.h>
  40#include <linux/hardirq.h>
  41#include <linux/atomic.h>
  42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43#include <asm/stacktrace.h>
  44#include <asm/processor.h>
  45#include <asm/debugreg.h>
  46#include <asm/text-patching.h>
  47#include <asm/ftrace.h>
  48#include <asm/traps.h>
  49#include <asm/desc.h>
  50#include <asm/fpu/internal.h>
  51#include <asm/cpu.h>
  52#include <asm/cpu_entry_area.h>
  53#include <asm/mce.h>
  54#include <asm/fixmap.h>
  55#include <asm/mach_traps.h>
  56#include <asm/alternative.h>
  57#include <asm/fpu/xstate.h>
  58#include <asm/vm86.h>
  59#include <asm/umip.h>
  60#include <asm/insn.h>
  61#include <asm/insn-eval.h>
  62
  63#ifdef CONFIG_X86_64
  64#include <asm/x86_init.h>
 
  65#include <asm/proto.h>
  66#else
  67#include <asm/processor-flags.h>
  68#include <asm/setup.h>
  69#include <asm/proto.h>
 
 
 
 
 
 
 
 
 
 
  70#endif
  71
  72DECLARE_BITMAP(system_vectors, NR_VECTORS);
 
 
 
 
 
 
 
 
 
 
  73
  74static inline void cond_local_irq_enable(struct pt_regs *regs)
  75{
  76	if (regs->flags & X86_EFLAGS_IF)
  77		local_irq_enable();
  78}
  79
  80static inline void cond_local_irq_disable(struct pt_regs *regs)
  81{
 
  82	if (regs->flags & X86_EFLAGS_IF)
  83		local_irq_disable();
  84}
  85
  86__always_inline int is_valid_bugaddr(unsigned long addr)
  87{
  88	if (addr < TASK_SIZE_MAX)
  89		return 0;
 
  90
  91	/*
  92	 * We got #UD, if the text isn't readable we'd have gotten
  93	 * a different exception.
  94	 */
  95	return *(unsigned short *)addr == INSN_UD2;
  96}
  97
  98static nokprobe_inline int
  99do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
 100		  struct pt_regs *regs,	long error_code)
 101{
 102	if (v8086_mode(regs)) {
 
 
 
 103		/*
 104		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
 105		 * On nmi (interrupt 2), do_trap should not be called.
 106		 */
 107		if (trapnr < X86_TRAP_UD) {
 108			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
 109						error_code, trapnr))
 110				return 0;
 111		}
 112	} else if (!user_mode(regs)) {
 113		if (fixup_exception(regs, trapnr, error_code, 0))
 114			return 0;
 115
 116		tsk->thread.error_code = error_code;
 117		tsk->thread.trap_nr = trapnr;
 118		die(str, regs, error_code);
 119	}
 
 
 
 
 120
 
 
 
 121	/*
 122	 * We want error_code and trap_nr set for userspace faults and
 123	 * kernelspace faults which result in die(), but not
 124	 * kernelspace faults which are fixed up.  die() gives the
 125	 * process no chance to handle the signal and notice the
 126	 * kernel fault information, so that won't result in polluting
 127	 * the information about previously queued, but not yet
 128	 * delivered, faults.  See also exc_general_protection below.
 129	 */
 130	tsk->thread.error_code = error_code;
 131	tsk->thread.trap_nr = trapnr;
 132
 133	return -1;
 134}
 135
 136static void show_signal(struct task_struct *tsk, int signr,
 137			const char *type, const char *desc,
 138			struct pt_regs *regs, long error_code)
 139{
 140	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
 141	    printk_ratelimit()) {
 142		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
 143			tsk->comm, task_pid_nr(tsk), type, desc,
 144			regs->ip, regs->sp, error_code);
 145		print_vma_addr(KERN_CONT " in ", regs->ip);
 146		pr_cont("\n");
 
 147	}
 148}
 149
 150static void
 151do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
 152	long error_code, int sicode, void __user *addr)
 153{
 154	struct task_struct *tsk = current;
 155
 156	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
 157		return;
 158
 159	show_signal(tsk, signr, "trap ", str, regs, error_code);
 160
 161	if (!sicode)
 162		force_sig(signr);
 163	else
 164		force_sig_fault(signr, sicode, addr);
 165}
 166NOKPROBE_SYMBOL(do_trap);
 167
 168static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
 169	unsigned long trapnr, int signr, int sicode, void __user *addr)
 170{
 171	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 172
 173	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
 174			NOTIFY_STOP) {
 175		cond_local_irq_enable(regs);
 176		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
 177		cond_local_irq_disable(regs);
 178	}
 179}
 180
 181/*
 182 * Posix requires to provide the address of the faulting instruction for
 183 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
 184 *
 185 * This address is usually regs->ip, but when an uprobe moved the code out
 186 * of line then regs->ip points to the XOL code which would confuse
 187 * anything which analyzes the fault address vs. the unmodified binary. If
 188 * a trap happened in XOL code then uprobe maps regs->ip back to the
 189 * original instruction address.
 190 */
 191static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
 192{
 193	return (void __user *)uprobe_get_trap_addr(regs);
 194}
 195
 196DEFINE_IDTENTRY(exc_divide_error)
 197{
 198	do_error_trap(regs, 0, "divide_error", X86_TRAP_DE, SIGFPE,
 199		      FPE_INTDIV, error_get_trap_addr(regs));
 200}
 201
 202DEFINE_IDTENTRY(exc_overflow)
 203{
 204	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
 
 
 
 
 205}
 206
 207#ifdef CONFIG_X86_F00F_BUG
 208void handle_invalid_op(struct pt_regs *regs)
 209#else
 210static inline void handle_invalid_op(struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 211#endif
 
 
 
 
 
 212{
 213	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
 214		      ILL_ILLOPN, error_get_trap_addr(regs));
 
 
 
 
 215}
 216
 217static noinstr bool handle_bug(struct pt_regs *regs)
 218{
 219	bool handled = false;
 220
 221	if (!is_valid_bugaddr(regs->ip))
 222		return handled;
 223
 224	/*
 225	 * All lies, just get the WARN/BUG out.
 226	 */
 227	instrumentation_begin();
 228	/*
 229	 * Since we're emulating a CALL with exceptions, restore the interrupt
 230	 * state to what it was at the exception site.
 231	 */
 232	if (regs->flags & X86_EFLAGS_IF)
 233		raw_local_irq_enable();
 234	if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
 235		regs->ip += LEN_UD2;
 236		handled = true;
 237	}
 238	if (regs->flags & X86_EFLAGS_IF)
 239		raw_local_irq_disable();
 240	instrumentation_end();
 241
 242	return handled;
 243}
 244
 245DEFINE_IDTENTRY_RAW(exc_invalid_op)
 246{
 247	irqentry_state_t state;
 248
 249	/*
 250	 * We use UD2 as a short encoding for 'CALL __WARN', as such
 251	 * handle it before exception entry to avoid recursive WARN
 252	 * in case exception entry is the one triggering WARNs.
 253	 */
 254	if (!user_mode(regs) && handle_bug(regs))
 255		return;
 256
 257	state = irqentry_enter(regs);
 258	instrumentation_begin();
 259	handle_invalid_op(regs);
 260	instrumentation_end();
 261	irqentry_exit(regs, state);
 262}
 
 263
 264DEFINE_IDTENTRY(exc_coproc_segment_overrun)
 
 265{
 266	do_error_trap(regs, 0, "coprocessor segment overrun",
 267		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
 268}
 269
 270DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
 271{
 272	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
 273		      0, NULL);
 274}
 275
 276DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
 277{
 278	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
 279		      SIGBUS, 0, NULL);
 280}
 281
 282DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
 283{
 284	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
 285		      0, NULL);
 286}
 287
 288DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
 289{
 290	char *str = "alignment check";
 291
 292	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
 293		return;
 
 
 
 
 
 
 
 294
 295	if (!user_mode(regs))
 296		die("Split lock detected\n", regs, error_code);
 297
 
 
 298	local_irq_enable();
 
 
 
 299
 300	if (handle_user_split_lock(regs, error_code))
 
 301		return;
 302
 303	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
 304		error_code, BUS_ADRALN, NULL);
 305
 306	local_irq_disable();
 
 
 307}
 308
 309#ifdef CONFIG_VMAP_STACK
 310__visible void __noreturn handle_stack_overflow(const char *message,
 311						struct pt_regs *regs,
 312						unsigned long fault_address)
 313{
 314	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
 315		 (void *)fault_address, current->stack,
 316		 (char *)current->stack + THREAD_SIZE - 1);
 317	die(message, regs, 0);
 318
 319	/* Be absolutely certain we don't return. */
 320	panic("%s", message);
 321}
 322#endif
 323
 324/*
 325 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
 326 *
 327 * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
 328 * SDM's warnings about double faults being unrecoverable, returning works as
 329 * expected.  Presumably what the SDM actually means is that the CPU may get
 330 * the register state wrong on entry, so returning could be a bad idea.
 331 *
 332 * Various CPU engineers have promised that double faults due to an IRET fault
 333 * while the stack is read-only are, in fact, recoverable.
 334 *
 335 * On x86_32, this is entered through a task gate, and regs are synthesized
 336 * from the TSS.  Returning is, in principle, okay, but changes to regs will
 337 * be lost.  If, for some reason, we need to return to a context with modified
 338 * regs, the shim code could be adjusted to synchronize the registers.
 339 *
 340 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
 341 * to be read before doing anything else.
 342 */
 343DEFINE_IDTENTRY_DF(exc_double_fault)
 344{
 345	static const char str[] = "double fault";
 346	struct task_struct *tsk = current;
 347
 348#ifdef CONFIG_VMAP_STACK
 349	unsigned long address = read_cr2();
 350#endif
 351
 352#ifdef CONFIG_X86_ESPFIX64
 353	extern unsigned char native_irq_return_iret[];
 354
 355	/*
 356	 * If IRET takes a non-IST fault on the espfix64 stack, then we
 357	 * end up promoting it to a doublefault.  In that case, take
 358	 * advantage of the fact that we're not using the normal (TSS.sp0)
 359	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
 360	 * and then modify our own IRET frame so that, when we return,
 361	 * we land directly at the #GP(0) vector with the stack already
 362	 * set up according to its expectations.
 363	 *
 364	 * The net result is that our #GP handler will think that we
 365	 * entered from usermode with the bad user context.
 366	 *
 367	 * No need for nmi_enter() here because we don't use RCU.
 368	 */
 369	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
 370		regs->cs == __KERNEL_CS &&
 371		regs->ip == (unsigned long)native_irq_return_iret)
 372	{
 373		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 374		unsigned long *p = (unsigned long *)regs->sp;
 375
 376		/*
 377		 * regs->sp points to the failing IRET frame on the
 378		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
 379		 * in gpregs->ss through gpregs->ip.
 380		 *
 381		 */
 382		gpregs->ip	= p[0];
 383		gpregs->cs	= p[1];
 384		gpregs->flags	= p[2];
 385		gpregs->sp	= p[3];
 386		gpregs->ss	= p[4];
 387		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
 388
 389		/*
 390		 * Adjust our frame so that we return straight to the #GP
 391		 * vector with the expected RSP value.  This is safe because
 392		 * we won't enable interupts or schedule before we invoke
 393		 * general_protection, so nothing will clobber the stack
 394		 * frame we just set up.
 395		 *
 396		 * We will enter general_protection with kernel GSBASE,
 397		 * which is what the stub expects, given that the faulting
 398		 * RIP will be the IRET instruction.
 399		 */
 400		regs->ip = (unsigned long)asm_exc_general_protection;
 401		regs->sp = (unsigned long)&gpregs->orig_ax;
 402
 403		return;
 404	}
 405#endif
 406
 407	idtentry_enter_nmi(regs);
 408	instrumentation_begin();
 409	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
 410
 411	tsk->thread.error_code = error_code;
 412	tsk->thread.trap_nr = X86_TRAP_DF;
 413
 414#ifdef CONFIG_VMAP_STACK
 415	/*
 416	 * If we overflow the stack into a guard page, the CPU will fail
 417	 * to deliver #PF and will send #DF instead.  Similarly, if we
 418	 * take any non-IST exception while too close to the bottom of
 419	 * the stack, the processor will get a page fault while
 420	 * delivering the exception and will generate a double fault.
 421	 *
 422	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
 423	 * Page-Fault Exception (#PF):
 424	 *
 425	 *   Processors update CR2 whenever a page fault is detected. If a
 426	 *   second page fault occurs while an earlier page fault is being
 427	 *   delivered, the faulting linear address of the second fault will
 428	 *   overwrite the contents of CR2 (replacing the previous
 429	 *   address). These updates to CR2 occur even if the page fault
 430	 *   results in a double fault or occurs during the delivery of a
 431	 *   double fault.
 432	 *
 433	 * The logic below has a small possibility of incorrectly diagnosing
 434	 * some errors as stack overflows.  For example, if the IDT or GDT
 435	 * gets corrupted such that #GP delivery fails due to a bad descriptor
 436	 * causing #GP and we hit this condition while CR2 coincidentally
 437	 * points to the stack guard page, we'll think we overflowed the
 438	 * stack.  Given that we're going to panic one way or another
 439	 * if this happens, this isn't necessarily worth fixing.
 440	 *
 441	 * If necessary, we could improve the test by only diagnosing
 442	 * a stack overflow if the saved RSP points within 47 bytes of
 443	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
 444	 * take an exception, the stack is already aligned and there
 445	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
 446	 * possible error code, so a stack overflow would *not* double
 447	 * fault.  With any less space left, exception delivery could
 448	 * fail, and, as a practical matter, we've overflowed the
 449	 * stack even if the actual trigger for the double fault was
 450	 * something else.
 451	 */
 452	if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) {
 453		handle_stack_overflow("kernel stack overflow (double-fault)",
 454				      regs, address);
 455	}
 456#endif
 457
 458	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
 459	die("double fault", regs, error_code);
 460	panic("Machine halted.");
 461	instrumentation_end();
 462}
 463
 464DEFINE_IDTENTRY(exc_bounds)
 
 465{
 466	if (notify_die(DIE_TRAP, "bounds", regs, 0,
 467			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
 468		return;
 469	cond_local_irq_enable(regs);
 470
 471	if (!user_mode(regs))
 472		die("bounds", regs, 0);
 473
 474	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
 475
 476	cond_local_irq_disable(regs);
 477}
 478
 479enum kernel_gp_hint {
 480	GP_NO_HINT,
 481	GP_NON_CANONICAL,
 482	GP_CANONICAL
 483};
 484
 485/*
 486 * When an uncaught #GP occurs, try to determine the memory address accessed by
 487 * the instruction and return that address to the caller. Also, try to figure
 488 * out whether any part of the access to that address was non-canonical.
 489 */
 490static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
 491						 unsigned long *addr)
 492{
 493	u8 insn_buf[MAX_INSN_SIZE];
 494	struct insn insn;
 495
 496	if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
 497			MAX_INSN_SIZE))
 498		return GP_NO_HINT;
 499
 500	kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
 501	insn_get_modrm(&insn);
 502	insn_get_sib(&insn);
 503
 504	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
 505	if (*addr == -1UL)
 506		return GP_NO_HINT;
 507
 508#ifdef CONFIG_X86_64
 509	/*
 510	 * Check that:
 511	 *  - the operand is not in the kernel half
 512	 *  - the last byte of the operand is not in the user canonical half
 513	 */
 514	if (*addr < ~__VIRTUAL_MASK &&
 515	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
 516		return GP_NON_CANONICAL;
 517#endif
 518
 519	return GP_CANONICAL;
 
 520}
 521
 522#define GPFSTR "general protection fault"
 523
 524DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
 525{
 526	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
 527	enum kernel_gp_hint hint = GP_NO_HINT;
 528	struct task_struct *tsk;
 529	unsigned long gp_addr;
 530	int ret;
 531
 532	cond_local_irq_enable(regs);
 533
 534	if (static_cpu_has(X86_FEATURE_UMIP)) {
 535		if (user_mode(regs) && fixup_umip_exception(regs))
 536			goto exit;
 537	}
 538
 539	if (v8086_mode(regs)) {
 540		local_irq_enable();
 541		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
 542		local_irq_disable();
 543		return;
 544	}
 
 
 
 545
 546	tsk = current;
 547
 548	if (user_mode(regs)) {
 549		tsk->thread.error_code = error_code;
 550		tsk->thread.trap_nr = X86_TRAP_GP;
 551
 552		show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
 553		force_sig(SIGSEGV);
 554		goto exit;
 555	}
 556
 557	if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
 558		goto exit;
 559
 560	tsk->thread.error_code = error_code;
 561	tsk->thread.trap_nr = X86_TRAP_GP;
 
 562
 563	/*
 564	 * To be potentially processing a kprobe fault and to trust the result
 565	 * from kprobe_running(), we have to be non-preemptible.
 
 566	 */
 567	if (!preemptible() &&
 568	    kprobe_running() &&
 569	    kprobe_fault_handler(regs, X86_TRAP_GP))
 570		goto exit;
 571
 572	ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
 573	if (ret == NOTIFY_STOP)
 574		goto exit;
 575
 576	if (error_code)
 577		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
 578	else
 579		hint = get_kernel_gp_address(regs, &gp_addr);
 580
 581	if (hint != GP_NO_HINT)
 582		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
 583			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
 584						    : "maybe for address",
 585			 gp_addr);
 586
 587	/*
 588	 * KASAN is interested only in the non-canonical case, clear it
 589	 * otherwise.
 590	 */
 591	if (hint != GP_NON_CANONICAL)
 592		gp_addr = 0;
 593
 594	die_addr(desc, regs, error_code, gp_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595
 596exit:
 597	cond_local_irq_disable(regs);
 598}
 599
 600static bool do_int3(struct pt_regs *regs)
 
 601{
 602	int res;
 603
 604#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 605	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
 606			 SIGTRAP) == NOTIFY_STOP)
 607		return true;
 608#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 609
 610#ifdef CONFIG_KPROBES
 611	if (kprobe_int3_handler(regs))
 612		return true;
 613#endif
 614	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
 615
 616	return res == NOTIFY_STOP;
 617}
 618
 619static void do_int3_user(struct pt_regs *regs)
 620{
 621	if (do_int3(regs))
 622		return;
 623
 624	cond_local_irq_enable(regs);
 625	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
 626	cond_local_irq_disable(regs);
 627}
 628
 629DEFINE_IDTENTRY_RAW(exc_int3)
 
 630{
 631	/*
 632	 * poke_int3_handler() is completely self contained code; it does (and
 633	 * must) *NOT* call out to anything, lest it hits upon yet another
 634	 * INT3.
 635	 */
 636	if (poke_int3_handler(regs))
 637		return;
 
 
 
 
 
 
 
 
 
 
 638
 639	/*
 640	 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
 641	 * and therefore can trigger INT3, hence poke_int3_handler() must
 642	 * be done before. If the entry came from kernel mode, then use
 643	 * nmi_enter() because the INT3 could have been hit in any context
 644	 * including NMI.
 645	 */
 646	if (user_mode(regs)) {
 647		irqentry_enter_from_user_mode(regs);
 648		instrumentation_begin();
 649		do_int3_user(regs);
 650		instrumentation_end();
 651		irqentry_exit_to_user_mode(regs);
 652	} else {
 653		bool irq_state = idtentry_enter_nmi(regs);
 654		instrumentation_begin();
 655		if (!do_int3(regs))
 656			die("int3", regs, 0);
 657		instrumentation_end();
 658		idtentry_exit_nmi(regs, irq_state);
 659	}
 660}
 661
 662#ifdef CONFIG_X86_64
 663/*
 664 * Help handler running on a per-cpu (IST or entry trampoline) stack
 665 * to switch to the normal thread stack if the interrupted code was in
 666 * user mode. The actual stack switch is done in entry_64.S
 667 */
 668asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
 669{
 670	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
 671	if (regs != eregs)
 
 
 
 
 
 
 
 
 
 
 
 
 672		*regs = *eregs;
 673	return regs;
 674}
 675
 676struct bad_iret_stack {
 677	void *error_entry_ret;
 678	struct pt_regs regs;
 679};
 680
 681asmlinkage __visible noinstr
 682struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
 683{
 684	/*
 685	 * This is called from entry_64.S early in handling a fault
 686	 * caused by a bad iret to user mode.  To handle the fault
 687	 * correctly, we want to move our stack frame to where it would
 688	 * be had we entered directly on the entry stack (rather than
 689	 * just below the IRET frame) and we want to pretend that the
 690	 * exception came from the IRET target.
 691	 */
 692	struct bad_iret_stack tmp, *new_stack =
 693		(struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 694
 695	/* Copy the IRET target to the temporary storage. */
 696	__memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
 697
 698	/* Copy the remainder of the stack from the current stack. */
 699	__memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
 700
 701	/* Update the entry stack */
 702	__memcpy(new_stack, &tmp, sizeof(tmp));
 703
 704	BUG_ON(!user_mode(&new_stack->regs));
 705	return new_stack;
 706}
 707#endif
 708
 709static bool is_sysenter_singlestep(struct pt_regs *regs)
 710{
 711	/*
 712	 * We don't try for precision here.  If we're anywhere in the region of
 713	 * code that can be single-stepped in the SYSENTER entry path, then
 714	 * assume that this is a useless single-step trap due to SYSENTER
 715	 * being invoked with TF set.  (We don't know in advance exactly
 716	 * which instructions will be hit because BTF could plausibly
 717	 * be set.)
 718	 */
 719#ifdef CONFIG_X86_32
 720	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
 721		(unsigned long)__end_SYSENTER_singlestep_region -
 722		(unsigned long)__begin_SYSENTER_singlestep_region;
 723#elif defined(CONFIG_IA32_EMULATION)
 724	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
 725		(unsigned long)__end_entry_SYSENTER_compat -
 726		(unsigned long)entry_SYSENTER_compat;
 727#else
 728	return false;
 729#endif
 730}
 731
 732static __always_inline unsigned long debug_read_clear_dr6(void)
 733{
 734	unsigned long dr6;
 735
 736	/*
 737	 * The Intel SDM says:
 738	 *
 739	 *   Certain debug exceptions may clear bits 0-3. The remaining
 740	 *   contents of the DR6 register are never cleared by the
 741	 *   processor. To avoid confusion in identifying debug
 742	 *   exceptions, debug handlers should clear the register before
 743	 *   returning to the interrupted task.
 744	 *
 745	 * Keep it simple: clear DR6 immediately.
 746	 */
 747	get_debugreg(dr6, 6);
 748	set_debugreg(0, 6);
 749	/* Filter out all the reserved bits which are preset to 1 */
 750	dr6 &= ~DR6_RESERVED;
 751
 752	return dr6;
 753}
 754
 755/*
 756 * Our handling of the processor debug registers is non-trivial.
 757 * We do not clear them on entry and exit from the kernel. Therefore
 758 * it is possible to get a watchpoint trap here from inside the kernel.
 759 * However, the code in ./ptrace.c has ensured that the user can
 760 * only set watchpoints on userspace addresses. Therefore the in-kernel
 761 * watchpoint trap can only occur in code which is reading/writing
 762 * from user space. Such code must not hold kernel locks (since it
 763 * can equally take a page fault), therefore it is safe to call
 764 * force_sig_info even though that claims and releases locks.
 765 *
 766 * Code in ./signal.c ensures that the debug control register
 767 * is restored before we deliver any signal, and therefore that
 768 * user code runs with the correct debug control register even though
 769 * we clear it here.
 770 *
 771 * Being careful here means that we don't have to be as careful in a
 772 * lot of more complicated places (task switching can be a bit lazy
 773 * about restoring all the debug state, and ptrace doesn't have to
 774 * find every occurrence of the TF bit that could be saved away even
 775 * by user code)
 776 *
 777 * May run on IST stack.
 778 */
 779static void handle_debug(struct pt_regs *regs, unsigned long dr6, bool user)
 780{
 781	struct task_struct *tsk = current;
 782	bool user_icebp;
 
 783	int si_code;
 784
 785	/*
 786	 * The SDM says "The processor clears the BTF flag when it
 787	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
 788	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
 789	 */
 790	clear_thread_flag(TIF_BLOCKSTEP);
 791
 792	/*
 793	 * If DR6 is zero, no point in trying to handle it. The kernel is
 794	 * not using INT1.
 795	 */
 796	if (!user && !dr6)
 797		return;
 798
 799	/*
 800	 * If dr6 has no reason to give us about the origin of this trap,
 801	 * then it's very likely the result of an icebp/int01 trap.
 802	 * User wants a sigtrap for that.
 803	 */
 804	user_icebp = user && !dr6;
 
 
 
 
 
 
 
 
 
 
 
 
 
 805
 806	/* Store the virtualized DR6 value */
 807	tsk->thread.debugreg6 = dr6;
 808
 809#ifdef CONFIG_KPROBES
 810	if (kprobe_debug_handler(regs)) {
 811		return;
 812	}
 813#endif
 814
 815	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, 0,
 816		       SIGTRAP) == NOTIFY_STOP) {
 817		return;
 818	}
 819
 820	/* It's safe to allow irq's after DR6 has been saved */
 821	cond_local_irq_enable(regs);
 822
 823	if (v8086_mode(regs)) {
 824		handle_vm86_trap((struct kernel_vm86_regs *) regs, 0,
 825				 X86_TRAP_DB);
 826		goto out;
 
 827	}
 828
 829	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
 830		/*
 831		 * Historical junk that used to handle SYSENTER single-stepping.
 832		 * This should be unreachable now.  If we survive for a while
 833		 * without anyone hitting this warning, we'll turn this into
 834		 * an oops.
 835		 */
 
 836		tsk->thread.debugreg6 &= ~DR_STEP;
 837		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
 838		regs->flags &= ~X86_EFLAGS_TF;
 839	}
 840
 841	si_code = get_si_code(tsk->thread.debugreg6);
 842	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
 843		send_sigtrap(regs, 0, si_code);
 
 844
 845out:
 846	cond_local_irq_disable(regs);
 847}
 848
 849static __always_inline void exc_debug_kernel(struct pt_regs *regs,
 850					     unsigned long dr6)
 
 
 
 
 851{
 852	/*
 853	 * Disable breakpoints during exception handling; recursive exceptions
 854	 * are exceedingly 'fun'.
 855	 *
 856	 * Since this function is NOKPROBE, and that also applies to
 857	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
 858	 * HW_BREAKPOINT_W on our stack)
 859	 *
 860	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
 861	 * includes the entry stack is excluded for everything.
 862	 */
 863	unsigned long dr7 = local_db_save();
 864	bool irq_state = idtentry_enter_nmi(regs);
 865	instrumentation_begin();
 866
 867	/*
 868	 * If something gets miswired and we end up here for a user mode
 869	 * #DB, we will malfunction.
 870	 */
 871	WARN_ON_ONCE(user_mode(regs));
 
 
 
 
 
 
 
 
 872
 873	/*
 874	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
 875	 * watchpoint at the same time then that will still be handled.
 876	 */
 877	if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
 878		dr6 &= ~DR_STEP;
 879
 880	handle_debug(regs, dr6, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 881
 882	instrumentation_end();
 883	idtentry_exit_nmi(regs, irq_state);
 
 
 
 
 
 
 
 
 
 884
 885	local_db_restore(dr7);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886}
 887
 888static __always_inline void exc_debug_user(struct pt_regs *regs,
 889					   unsigned long dr6)
 890{
 891	/*
 892	 * If something gets miswired and we end up here for a kernel mode
 893	 * #DB, we will malfunction.
 894	 */
 895	WARN_ON_ONCE(!user_mode(regs));
 896
 897	/*
 898	 * NB: We can't easily clear DR7 here because
 899	 * idtentry_exit_to_usermode() can invoke ptrace, schedule, access
 900	 * user memory, etc.  This means that a recursive #DB is possible.  If
 901	 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
 902	 * Since we're not on the IST stack right now, everything will be
 903	 * fine.
 904	 */
 905
 906	irqentry_enter_from_user_mode(regs);
 907	instrumentation_begin();
 908
 909	handle_debug(regs, dr6, true);
 910
 911	instrumentation_end();
 912	irqentry_exit_to_user_mode(regs);
 913}
 914
 915#ifdef CONFIG_X86_64
 916/* IST stack entry */
 917DEFINE_IDTENTRY_DEBUG(exc_debug)
 918{
 919	exc_debug_kernel(regs, debug_read_clear_dr6());
 920}
 921
 922/* User entry, runs on regular task stack */
 923DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
 924{
 925	exc_debug_user(regs, debug_read_clear_dr6());
 
 
 
 
 926}
 927#else
 928/* 32 bit does not have separate entry points. */
 929DEFINE_IDTENTRY_RAW(exc_debug)
 930{
 931	unsigned long dr6 = debug_read_clear_dr6();
 932
 933	if (user_mode(regs))
 934		exc_debug_user(regs, dr6);
 935	else
 936		exc_debug_kernel(regs, dr6);
 937}
 938#endif
 939
 940/*
 941 * Note that we play around with the 'TS' bit in an attempt to get
 942 * the correct behaviour even in the presence of the asynchronous
 943 * IRQ13 behaviour
 944 */
 945static void math_error(struct pt_regs *regs, int trapnr)
 946{
 947	struct task_struct *task = current;
 948	struct fpu *fpu = &task->thread.fpu;
 949	int si_code;
 950	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
 951						"simd exception";
 952
 953	cond_local_irq_enable(regs);
 954
 955	if (!user_mode(regs)) {
 956		if (fixup_exception(regs, trapnr, 0, 0))
 957			goto exit;
 958
 959		task->thread.error_code = 0;
 960		task->thread.trap_nr = trapnr;
 961
 962		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
 963			       SIGFPE) != NOTIFY_STOP)
 964			die(str, regs, 0);
 965		goto exit;
 966	}
 967
 968	/*
 969	 * Save the info for the exception handler and clear the error.
 970	 */
 971	fpu__save(fpu);
 972
 973	task->thread.trap_nr	= trapnr;
 974	task->thread.error_code = 0;
 975
 976	si_code = fpu__exception_code(fpu, trapnr);
 977	/* Retry when we get spurious exceptions: */
 978	if (!si_code)
 979		goto exit;
 980
 981	force_sig_fault(SIGFPE, si_code,
 982			(void __user *)uprobe_get_trap_addr(regs));
 983exit:
 984	cond_local_irq_disable(regs);
 985}
 986
 987DEFINE_IDTENTRY(exc_coprocessor_error)
 
 
 
 
 
 
 
 
 
 
 988{
 989	math_error(regs, X86_TRAP_MF);
 990}
 991
 992DEFINE_IDTENTRY(exc_simd_coprocessor_error)
 993{
 994	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
 995		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
 996		if (!static_cpu_has(X86_FEATURE_XMM)) {
 997			__exc_general_protection(regs, 0);
 
 
 
 
 998			return;
 999		}
 
1000	}
1001	math_error(regs, X86_TRAP_XF);
1002}
1003
1004DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1005{
1006	/*
1007	 * This addresses a Pentium Pro Erratum:
1008	 *
1009	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1010	 * Virtual Wire mode implemented through the local APIC, an
1011	 * interrupt vector of 0Fh (Intel reserved encoding) may be
1012	 * generated by the local APIC (Int 15).  This vector may be
1013	 * generated upon receipt of a spurious interrupt (an interrupt
1014	 * which is removed before the system receives the INTA sequence)
1015	 * instead of the programmed 8259 spurious interrupt vector.
1016	 *
1017	 * IMPLICATION: The spurious interrupt vector programmed in the
1018	 * 8259 is normally handled by an operating system's spurious
1019	 * interrupt handler. However, a vector of 0Fh is unknown to some
1020	 * operating systems, which would crash if this erratum occurred.
1021	 *
1022	 * In theory this could be limited to 32bit, but the handler is not
1023	 * hurting and who knows which other CPUs suffer from this.
1024	 */
1025}
 
1026
1027DEFINE_IDTENTRY(exc_device_not_available)
 
1028{
1029	unsigned long cr0 = read_cr0();
1030
1031#ifdef CONFIG_MATH_EMULATION
1032	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1033		struct math_emu_info info = { };
1034
1035		cond_local_irq_enable(regs);
1036
1037		info.regs = regs;
1038		math_emulate(&info);
1039
1040		cond_local_irq_disable(regs);
1041		return;
1042	}
1043#endif
1044
1045	/* This should not happen. */
1046	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1047		/* Try to fix it up and carry on. */
1048		write_cr0(cr0 & ~X86_CR0_TS);
1049	} else {
1050		/*
1051		 * Something terrible happened, and we're better off trying
1052		 * to kill the task than getting stuck in a never-ending
1053		 * loop of #NM faults.
1054		 */
1055		die("unexpected #NM exception", regs, 0);
1056	}
1057}
1058
1059#ifdef CONFIG_X86_32
1060DEFINE_IDTENTRY_SW(iret_error)
1061{
 
1062	local_irq_enable();
1063	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1064			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1065		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1066			ILL_BADSTK, (void __user *)NULL);
1067	}
1068	local_irq_disable();
 
 
 
1069}
1070#endif
1071
 
 
 
 
 
 
 
 
 
 
1072void __init trap_init(void)
1073{
1074	/* Init cpu_entry_area before IST entries are set up */
1075	setup_cpu_entry_areas();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076
1077	idt_setup_traps();
 
 
 
1078
1079	/*
1080	 * Should be a barrier for any external CPU state:
1081	 */
1082	cpu_init();
1083
1084	idt_setup_ist_traps();
1085}
v3.1
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 */
  8
  9/*
 10 * Handle hardware traps and faults.
 11 */
 
 
 
 
 12#include <linux/interrupt.h>
 13#include <linux/kallsyms.h>
 14#include <linux/spinlock.h>
 15#include <linux/kprobes.h>
 16#include <linux/uaccess.h>
 17#include <linux/kdebug.h>
 18#include <linux/kgdb.h>
 19#include <linux/kernel.h>
 20#include <linux/module.h>
 21#include <linux/ptrace.h>
 
 22#include <linux/string.h>
 23#include <linux/delay.h>
 24#include <linux/errno.h>
 25#include <linux/kexec.h>
 26#include <linux/sched.h>
 
 27#include <linux/timer.h>
 28#include <linux/init.h>
 29#include <linux/bug.h>
 30#include <linux/nmi.h>
 31#include <linux/mm.h>
 32#include <linux/smp.h>
 33#include <linux/io.h>
 
 
 34
 35#ifdef CONFIG_EISA
 36#include <linux/ioport.h>
 37#include <linux/eisa.h>
 38#endif
 39
 40#ifdef CONFIG_MCA
 41#include <linux/mca.h>
 42#endif
 43
 44#if defined(CONFIG_EDAC)
 45#include <linux/edac.h>
 46#endif
 47
 48#include <asm/kmemcheck.h>
 49#include <asm/stacktrace.h>
 50#include <asm/processor.h>
 51#include <asm/debugreg.h>
 52#include <linux/atomic.h>
 53#include <asm/system.h>
 54#include <asm/traps.h>
 55#include <asm/desc.h>
 56#include <asm/i387.h>
 
 
 57#include <asm/mce.h>
 58
 59#include <asm/mach_traps.h>
 
 
 
 
 
 
 60
 61#ifdef CONFIG_X86_64
 62#include <asm/x86_init.h>
 63#include <asm/pgalloc.h>
 64#include <asm/proto.h>
 65#else
 66#include <asm/processor-flags.h>
 67#include <asm/setup.h>
 68
 69asmlinkage int system_call(void);
 70
 71/* Do we ignore FPU interrupts ? */
 72char ignore_fpu_irq;
 73
 74/*
 75 * The IDT has to be page-aligned to simplify the Pentium
 76 * F0 0F bug workaround.
 77 */
 78gate_desc idt_table[NR_VECTORS] __page_aligned_data = { { { { 0, 0 } } }, };
 79#endif
 80
 81DECLARE_BITMAP(used_vectors, NR_VECTORS);
 82EXPORT_SYMBOL_GPL(used_vectors);
 83
 84static int ignore_nmis;
 85
 86int unknown_nmi_panic;
 87/*
 88 * Prevent NMI reason port (0x61) being accessed simultaneously, can
 89 * only be used in NMI handler.
 90 */
 91static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
 92
 93static inline void conditional_sti(struct pt_regs *regs)
 94{
 95	if (regs->flags & X86_EFLAGS_IF)
 96		local_irq_enable();
 97}
 98
 99static inline void preempt_conditional_sti(struct pt_regs *regs)
100{
101	inc_preempt_count();
102	if (regs->flags & X86_EFLAGS_IF)
103		local_irq_enable();
104}
105
106static inline void conditional_cli(struct pt_regs *regs)
107{
108	if (regs->flags & X86_EFLAGS_IF)
109		local_irq_disable();
110}
111
112static inline void preempt_conditional_cli(struct pt_regs *regs)
113{
114	if (regs->flags & X86_EFLAGS_IF)
115		local_irq_disable();
116	dec_preempt_count();
117}
118
119static void __kprobes
120do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
121	long error_code, siginfo_t *info)
122{
123	struct task_struct *tsk = current;
124
125#ifdef CONFIG_X86_32
126	if (regs->flags & X86_VM_MASK) {
127		/*
128		 * traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
129		 * On nmi (interrupt 2), do_trap should not be called.
130		 */
131		if (trapnr < 6)
132			goto vm86_trap;
133		goto trap_signal;
 
 
 
 
 
 
 
 
 
134	}
135#endif
136
137	if (!user_mode(regs))
138		goto kernel_trap;
139
140#ifdef CONFIG_X86_32
141trap_signal:
142#endif
143	/*
144	 * We want error_code and trap_no set for userspace faults and
145	 * kernelspace faults which result in die(), but not
146	 * kernelspace faults which are fixed up.  die() gives the
147	 * process no chance to handle the signal and notice the
148	 * kernel fault information, so that won't result in polluting
149	 * the information about previously queued, but not yet
150	 * delivered, faults.  See also do_general_protection below.
151	 */
152	tsk->thread.error_code = error_code;
153	tsk->thread.trap_no = trapnr;
 
 
 
154
155#ifdef CONFIG_X86_64
 
 
 
156	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
157	    printk_ratelimit()) {
158		printk(KERN_INFO
159		       "%s[%d] trap %s ip:%lx sp:%lx error:%lx",
160		       tsk->comm, tsk->pid, str,
161		       regs->ip, regs->sp, error_code);
162		print_vma_addr(" in ", regs->ip);
163		printk("\n");
164	}
165#endif
 
 
 
 
 
 
 
 
 
 
 
166
167	if (info)
168		force_sig_info(signr, info, tsk);
169	else
170		force_sig(signr, tsk);
171	return;
 
 
 
 
 
 
172
173kernel_trap:
174	if (!fixup_exception(regs)) {
175		tsk->thread.error_code = error_code;
176		tsk->thread.trap_no = trapnr;
177		die(str, regs, error_code);
178	}
179	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180
181#ifdef CONFIG_X86_32
182vm86_trap:
183	if (handle_vm86_trap((struct kernel_vm86_regs *) regs,
184						error_code, trapnr))
185		goto trap_signal;
186	return;
187#endif
188}
189
190#define DO_ERROR(trapnr, signr, str, name)				\
191dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
192{									\
193	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
194							== NOTIFY_STOP)	\
195		return;							\
196	conditional_sti(regs);						\
197	do_trap(trapnr, signr, str, regs, error_code, NULL);		\
198}
199
200#define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr)		\
201dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
202{									\
203	siginfo_t info;							\
204	info.si_signo = signr;						\
205	info.si_errno = 0;						\
206	info.si_code = sicode;						\
207	info.si_addr = (void __user *)siaddr;				\
208	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
209							== NOTIFY_STOP)	\
210		return;							\
211	conditional_sti(regs);						\
212	do_trap(trapnr, signr, str, regs, error_code, &info);		\
213}
214
215DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
216DO_ERROR(4, SIGSEGV, "overflow", overflow)
217DO_ERROR(5, SIGSEGV, "bounds", bounds)
218DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip)
219DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
220DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
221DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
222#ifdef CONFIG_X86_32
223DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
224#endif
225DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
226
227#ifdef CONFIG_X86_64
228/* Runs on IST stack */
229dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code)
230{
231	if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
232			12, SIGBUS) == NOTIFY_STOP)
233		return;
234	preempt_conditional_sti(regs);
235	do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
236	preempt_conditional_cli(regs);
237}
238
239dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
240{
241	static const char str[] = "double fault";
242	struct task_struct *tsk = current;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243
244	/* Return not checked because double check cannot be ignored */
245	notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
246
247	tsk->thread.error_code = error_code;
248	tsk->thread.trap_no = 8;
 
249
250	/*
251	 * This is always a kernel trap and never fixable (and thus must
252	 * never return).
 
253	 */
254	for (;;)
255		die(str, regs, error_code);
 
 
 
 
 
 
256}
257#endif
258
259dotraplinkage void __kprobes
260do_general_protection(struct pt_regs *regs, long error_code)
261{
262	struct task_struct *tsk;
 
 
263
264	conditional_sti(regs);
 
 
 
 
265
266#ifdef CONFIG_X86_32
267	if (regs->flags & X86_VM_MASK)
268		goto gp_in_vm86;
269#endif
 
270
271	tsk = current;
272	if (!user_mode(regs))
273		goto gp_in_kernel;
 
 
274
275	tsk->thread.error_code = error_code;
276	tsk->thread.trap_no = 13;
 
277
278	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
279			printk_ratelimit()) {
280		printk(KERN_INFO
281			"%s[%d] general protection ip:%lx sp:%lx error:%lx",
282			tsk->comm, task_pid_nr(tsk),
283			regs->ip, regs->sp, error_code);
284		print_vma_addr(" in ", regs->ip);
285		printk("\n");
286	}
287
288	force_sig(SIGSEGV, tsk);
289	return;
290
291#ifdef CONFIG_X86_32
292gp_in_vm86:
293	local_irq_enable();
294	handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
295	return;
296#endif
297
298gp_in_kernel:
299	if (fixup_exception(regs))
300		return;
301
302	tsk->thread.error_code = error_code;
303	tsk->thread.trap_no = 13;
304	if (notify_die(DIE_GPF, "general protection fault", regs,
305				error_code, 13, SIGSEGV) == NOTIFY_STOP)
306		return;
307	die("general protection fault", regs, error_code);
308}
309
310static int __init setup_unknown_nmi_panic(char *str)
 
 
 
311{
312	unknown_nmi_panic = 1;
313	return 1;
 
 
 
 
 
314}
315__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
316
317static notrace __kprobes void
318pci_serr_error(unsigned char reason, struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319{
320	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
321		 reason, smp_processor_id());
 
 
 
 
 
 
 
322
323	/*
324	 * On some machines, PCI SERR line is used to report memory
325	 * errors. EDAC makes use of it.
 
 
 
 
 
 
 
 
 
 
326	 */
327#if defined(CONFIG_EDAC)
328	if (edac_handler_set()) {
329		edac_atomic_assert_error();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
330		return;
331	}
332#endif
333
334	if (panic_on_unrecovered_nmi)
335		panic("NMI: Not continuing");
 
 
 
 
336
337	pr_emerg("Dazed and confused, but trying to continue\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
338
339	/* Clear and disable the PCI SERR error line. */
340	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
341	outb(reason, NMI_REASON_PORT);
 
342}
343
344static notrace __kprobes void
345io_check_error(unsigned char reason, struct pt_regs *regs)
346{
347	unsigned long i;
 
 
 
348
349	pr_emerg(
350	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
351		 reason, smp_processor_id());
352	show_registers(regs);
 
 
 
 
 
 
 
 
 
353
354	if (panic_on_io_nmi)
355		panic("NMI IOCK error: Not continuing");
 
 
 
 
 
 
 
 
356
357	/* Re-enable the IOCK line, wait for a few seconds */
358	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
359	outb(reason, NMI_REASON_PORT);
 
 
 
 
 
 
 
 
360
361	i = 20000;
362	while (--i) {
363		touch_nmi_watchdog();
364		udelay(100);
365	}
 
 
 
 
 
366
367	reason &= ~NMI_REASON_CLEAR_IOCHK;
368	outb(reason, NMI_REASON_PORT);
369}
370
371static notrace __kprobes void
372unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
 
373{
374	if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) ==
375			NOTIFY_STOP)
376		return;
377#ifdef CONFIG_MCA
378	/*
379	 * Might actually be able to figure out what the guilty party
380	 * is:
381	 */
382	if (MCA_bus) {
383		mca_handle_nmi();
 
 
 
 
 
 
 
384		return;
385	}
386#endif
387	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
388		 reason, smp_processor_id());
389
390	pr_emerg("Do you have a strange power saving mode enabled?\n");
391	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
392		panic("NMI: Not continuing");
 
 
 
 
 
 
 
393
394	pr_emerg("Dazed and confused, but trying to continue\n");
395}
396
397static notrace __kprobes void default_do_nmi(struct pt_regs *regs)
398{
399	unsigned char reason = 0;
400
401	/*
402	 * CPU-specific NMI must be processed before non-CPU-specific
403	 * NMI, otherwise we may lose it, because the CPU-specific
404	 * NMI can not be detected/processed on other CPUs.
405	 */
406	if (notify_die(DIE_NMI, "nmi", regs, 0, 2, SIGINT) == NOTIFY_STOP)
407		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408
409	/* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
410	raw_spin_lock(&nmi_reason_lock);
411	reason = get_nmi_reason();
 
 
 
412
413	if (reason & NMI_REASON_MASK) {
414		if (reason & NMI_REASON_SERR)
415			pci_serr_error(reason, regs);
416		else if (reason & NMI_REASON_IOCHK)
417			io_check_error(reason, regs);
418#ifdef CONFIG_X86_32
419		/*
420		 * Reassert NMI in case it became active
421		 * meanwhile as it's edge-triggered:
422		 */
423		reassert_nmi();
424#endif
425		raw_spin_unlock(&nmi_reason_lock);
426		return;
427	}
428	raw_spin_unlock(&nmi_reason_lock);
429
430	unknown_nmi_error(reason, regs);
 
431}
432
433dotraplinkage notrace __kprobes void
434do_nmi(struct pt_regs *regs, long error_code)
435{
436	nmi_enter();
437
438	inc_irq_stat(__nmi_count);
 
 
 
 
439
440	if (!ignore_nmis)
441		default_do_nmi(regs);
 
 
 
442
443	nmi_exit();
444}
445
446void stop_nmi(void)
447{
448	ignore_nmis++;
449}
450
451void restart_nmi(void)
452{
453	ignore_nmis--;
454}
455
456/* May run on IST stack. */
457dotraplinkage void __kprobes do_int3(struct pt_regs *regs, long error_code)
458{
459#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
460	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
461			== NOTIFY_STOP)
 
 
 
462		return;
463#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
464#ifdef CONFIG_KPROBES
465	if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
466			== NOTIFY_STOP)
467		return;
468#else
469	if (notify_die(DIE_TRAP, "int3", regs, error_code, 3, SIGTRAP)
470			== NOTIFY_STOP)
471		return;
472#endif
473
474	preempt_conditional_sti(regs);
475	do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
476	preempt_conditional_cli(regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477}
478
479#ifdef CONFIG_X86_64
480/*
481 * Help handler running on IST stack to switch back to user stack
482 * for scheduling or signal handling. The actual stack switch is done in
483 * entry.S
484 */
485asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
486{
487	struct pt_regs *regs = eregs;
488	/* Did already sync */
489	if (eregs == (struct pt_regs *)eregs->sp)
490		;
491	/* Exception from user space */
492	else if (user_mode(eregs))
493		regs = task_pt_regs(current);
494	/*
495	 * Exception from kernel and interrupts are enabled. Move to
496	 * kernel process stack.
497	 */
498	else if (eregs->flags & X86_EFLAGS_IF)
499		regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
500	if (eregs != regs)
501		*regs = *eregs;
502	return regs;
503}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
504#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
505
506/*
507 * Our handling of the processor debug registers is non-trivial.
508 * We do not clear them on entry and exit from the kernel. Therefore
509 * it is possible to get a watchpoint trap here from inside the kernel.
510 * However, the code in ./ptrace.c has ensured that the user can
511 * only set watchpoints on userspace addresses. Therefore the in-kernel
512 * watchpoint trap can only occur in code which is reading/writing
513 * from user space. Such code must not hold kernel locks (since it
514 * can equally take a page fault), therefore it is safe to call
515 * force_sig_info even though that claims and releases locks.
516 *
517 * Code in ./signal.c ensures that the debug control register
518 * is restored before we deliver any signal, and therefore that
519 * user code runs with the correct debug control register even though
520 * we clear it here.
521 *
522 * Being careful here means that we don't have to be as careful in a
523 * lot of more complicated places (task switching can be a bit lazy
524 * about restoring all the debug state, and ptrace doesn't have to
525 * find every occurrence of the TF bit that could be saved away even
526 * by user code)
527 *
528 * May run on IST stack.
529 */
530dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code)
531{
532	struct task_struct *tsk = current;
533	int user_icebp = 0;
534	unsigned long dr6;
535	int si_code;
536
537	get_debugreg(dr6, 6);
 
 
 
 
 
538
539	/* Filter out all the reserved bits which are preset to 1 */
540	dr6 &= ~DR6_RESERVED;
 
 
 
 
541
542	/*
543	 * If dr6 has no reason to give us about the origin of this trap,
544	 * then it's very likely the result of an icebp/int01 trap.
545	 * User wants a sigtrap for that.
546	 */
547	if (!dr6 && user_mode(regs))
548		user_icebp = 1;
549
550	/* Catch kmemcheck conditions first of all! */
551	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
552		return;
553
554	/* DR6 may or may not be cleared by the CPU */
555	set_debugreg(0, 6);
556
557	/*
558	 * The processor cleared BTF, so don't mark that we need it set.
559	 */
560	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
561
562	/* Store the virtualized DR6 value */
563	tsk->thread.debugreg6 = dr6;
564
565	if (notify_die(DIE_DEBUG, "debug", regs, PTR_ERR(&dr6), error_code,
566							SIGTRAP) == NOTIFY_STOP)
 
 
 
 
 
 
567		return;
 
568
569	/* It's safe to allow irq's after DR6 has been saved */
570	preempt_conditional_sti(regs);
571
572	if (regs->flags & X86_VM_MASK) {
573		handle_vm86_trap((struct kernel_vm86_regs *) regs,
574				error_code, 1);
575		preempt_conditional_cli(regs);
576		return;
577	}
578
579	/*
580	 * Single-stepping through system calls: ignore any exceptions in
581	 * kernel space, but re-enable TF when returning to user mode.
582	 *
583	 * We already checked v86 mode above, so we can check for kernel mode
584	 * by just checking the CPL of CS.
585	 */
586	if ((dr6 & DR_STEP) && !user_mode(regs)) {
587		tsk->thread.debugreg6 &= ~DR_STEP;
588		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
589		regs->flags &= ~X86_EFLAGS_TF;
590	}
 
591	si_code = get_si_code(tsk->thread.debugreg6);
592	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
593		send_sigtrap(tsk, regs, error_code, si_code);
594	preempt_conditional_cli(regs);
595
596	return;
 
597}
598
599/*
600 * Note that we play around with the 'TS' bit in an attempt to get
601 * the correct behaviour even in the presence of the asynchronous
602 * IRQ13 behaviour
603 */
604void math_error(struct pt_regs *regs, int error_code, int trapnr)
605{
606	struct task_struct *task = current;
607	siginfo_t info;
608	unsigned short err;
609	char *str = (trapnr == 16) ? "fpu exception" : "simd exception";
 
 
 
 
 
 
 
 
 
 
610
611	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
612		return;
613	conditional_sti(regs);
614
615	if (!user_mode_vm(regs))
616	{
617		if (!fixup_exception(regs)) {
618			task->thread.error_code = error_code;
619			task->thread.trap_no = trapnr;
620			die(str, regs, error_code);
621		}
622		return;
623	}
624
625	/*
626	 * Save the info for the exception handler and clear the error.
 
627	 */
628	save_init_fpu(task);
629	task->thread.trap_no = trapnr;
630	task->thread.error_code = error_code;
631	info.si_signo = SIGFPE;
632	info.si_errno = 0;
633	info.si_addr = (void __user *)regs->ip;
634	if (trapnr == 16) {
635		unsigned short cwd, swd;
636		/*
637		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
638		 * status.  0x3f is the exception bits in these regs, 0x200 is the
639		 * C1 reg you need in case of a stack fault, 0x040 is the stack
640		 * fault bit.  We should only be taking one exception at a time,
641		 * so if this combination doesn't produce any single exception,
642		 * then we have a bad program that isn't synchronizing its FPU usage
643		 * and it will suffer the consequences since we won't be able to
644		 * fully reproduce the context of the exception
645		 */
646		cwd = get_fpu_cwd(task);
647		swd = get_fpu_swd(task);
648
649		err = swd & ~cwd;
650	} else {
651		/*
652		 * The SIMD FPU exceptions are handled a little differently, as there
653		 * is only a single status/control register.  Thus, to determine which
654		 * unmasked exception was caught we must mask the exception mask bits
655		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
656		 */
657		unsigned short mxcsr = get_fpu_mxcsr(task);
658		err = ~(mxcsr >> 7) & mxcsr;
659	}
660
661	if (err & 0x001) {	/* Invalid op */
662		/*
663		 * swd & 0x240 == 0x040: Stack Underflow
664		 * swd & 0x240 == 0x240: Stack Overflow
665		 * User must clear the SF bit (0x40) if set
666		 */
667		info.si_code = FPE_FLTINV;
668	} else if (err & 0x004) { /* Divide by Zero */
669		info.si_code = FPE_FLTDIV;
670	} else if (err & 0x008) { /* Overflow */
671		info.si_code = FPE_FLTOVF;
672	} else if (err & 0x012) { /* Denormal, Underflow */
673		info.si_code = FPE_FLTUND;
674	} else if (err & 0x020) { /* Precision */
675		info.si_code = FPE_FLTRES;
676	} else {
677		/*
678		 * If we're using IRQ 13, or supposedly even some trap 16
679		 * implementations, it's possible we get a spurious trap...
680		 */
681		return;		/* Spurious trap, no error */
682	}
683	force_sig_info(SIGFPE, &info, task);
684}
685
686dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
 
687{
688#ifdef CONFIG_X86_32
689	ignore_fpu_irq = 1;
690#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
691
692	math_error(regs, error_code, 16);
 
693}
694
695dotraplinkage void
696do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
 
697{
698	math_error(regs, error_code, 19);
699}
700
701dotraplinkage void
702do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
703{
704	conditional_sti(regs);
705#if 0
706	/* No need to warn about this any longer. */
707	printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
708#endif
709}
710
711asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
 
712{
713}
714
715asmlinkage void __attribute__((weak)) smp_threshold_interrupt(void)
716{
 
 
717}
 
718
719/*
720 * __math_state_restore assumes that cr0.TS is already clear and the
721 * fpu state is all ready for use.  Used during context switch.
 
722 */
723void __math_state_restore(void)
724{
725	struct thread_info *thread = current_thread_info();
726	struct task_struct *tsk = thread->task;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
727
728	/*
729	 * Paranoid restore. send a SIGSEGV if we fail to restore the state.
730	 */
731	if (unlikely(restore_fpu_checking(tsk))) {
732		stts();
733		force_sig(SIGSEGV, tsk);
734		return;
735	}
 
 
 
 
736
737	thread->status |= TS_USEDFPU;	/* So we fnsave on switch_to() */
738	tsk->fpu_counter++;
 
 
739}
740
741/*
742 * 'math_state_restore()' saves the current math information in the
743 * old math state array, and gets the new ones from the current task
744 *
745 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
746 * Don't touch unless you *really* know how it works.
747 *
748 * Must be called with kernel preemption disabled (in this case,
749 * local interrupts are disabled at the call-site in entry.S).
750 */
751asmlinkage void math_state_restore(void)
752{
753	struct thread_info *thread = current_thread_info();
754	struct task_struct *tsk = thread->task;
755
756	if (!tsk_used_math(tsk)) {
757		local_irq_enable();
758		/*
759		 * does a slab alloc which can sleep
760		 */
761		if (init_fpu(tsk)) {
762			/*
763			 * ran out of memory!
764			 */
765			do_group_exit(SIGKILL);
766			return;
767		}
768		local_irq_disable();
769	}
 
 
770
771	clts();				/* Allow maths ops (or we recurse) */
772
773	__math_state_restore();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
774}
775EXPORT_SYMBOL_GPL(math_state_restore);
776
777dotraplinkage void __kprobes
778do_device_not_available(struct pt_regs *regs, long error_code)
779{
 
 
780#ifdef CONFIG_MATH_EMULATION
781	if (read_cr0() & X86_CR0_EM) {
782		struct math_emu_info info = { };
783
784		conditional_sti(regs);
785
786		info.regs = regs;
787		math_emulate(&info);
 
 
788		return;
789	}
790#endif
791	math_state_restore(); /* interrupts still off */
792#ifdef CONFIG_X86_32
793	conditional_sti(regs);
794#endif
 
 
 
 
 
 
 
 
 
795}
796
797#ifdef CONFIG_X86_32
798dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
799{
800	siginfo_t info;
801	local_irq_enable();
802
803	info.si_signo = SIGILL;
804	info.si_errno = 0;
805	info.si_code = ILL_BADSTK;
806	info.si_addr = NULL;
807	if (notify_die(DIE_TRAP, "iret exception",
808			regs, error_code, 32, SIGILL) == NOTIFY_STOP)
809		return;
810	do_trap(32, SIGILL, "iret exception", regs, error_code, &info);
811}
812#endif
813
814/* Set of traps needed for early debugging. */
815void __init early_trap_init(void)
816{
817	set_intr_gate_ist(1, &debug, DEBUG_STACK);
818	/* int3 can be called from all */
819	set_system_intr_gate_ist(3, &int3, DEBUG_STACK);
820	set_intr_gate(14, &page_fault);
821	load_idt(&idt_descr);
822}
823
824void __init trap_init(void)
825{
826	int i;
827
828#ifdef CONFIG_EISA
829	void __iomem *p = early_ioremap(0x0FFFD9, 4);
830
831	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
832		EISA_bus = 1;
833	early_iounmap(p, 4);
834#endif
835
836	set_intr_gate(0, &divide_error);
837	set_intr_gate_ist(2, &nmi, NMI_STACK);
838	/* int4 can be called from all */
839	set_system_intr_gate(4, &overflow);
840	set_intr_gate(5, &bounds);
841	set_intr_gate(6, &invalid_op);
842	set_intr_gate(7, &device_not_available);
843#ifdef CONFIG_X86_32
844	set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS);
845#else
846	set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK);
847#endif
848	set_intr_gate(9, &coprocessor_segment_overrun);
849	set_intr_gate(10, &invalid_TSS);
850	set_intr_gate(11, &segment_not_present);
851	set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK);
852	set_intr_gate(13, &general_protection);
853	set_intr_gate(15, &spurious_interrupt_bug);
854	set_intr_gate(16, &coprocessor_error);
855	set_intr_gate(17, &alignment_check);
856#ifdef CONFIG_X86_MCE
857	set_intr_gate_ist(18, &machine_check, MCE_STACK);
858#endif
859	set_intr_gate(19, &simd_coprocessor_error);
860
861	/* Reserve all the builtin and the syscall vector: */
862	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
863		set_bit(i, used_vectors);
864
865#ifdef CONFIG_IA32_EMULATION
866	set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
867	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
868#endif
869
870#ifdef CONFIG_X86_32
871	set_system_trap_gate(SYSCALL_VECTOR, &system_call);
872	set_bit(SYSCALL_VECTOR, used_vectors);
873#endif
874
875	/*
876	 * Should be a barrier for any external CPU state:
877	 */
878	cpu_init();
879
880	x86_init.irqs.trap_init();
881}