Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | /* * Copyright (c) 2017 Oracle and/or its affiliates. All rights reserved. */ /* * This file is included up to twice from vdso2c.c. It generates code for * 32-bit and 64-bit vDSOs. We will eventually need both for 64-bit builds, * since 32-bit vDSOs will then be built for 32-bit userspace. */ static void BITSFUNC(go)(void *raw_addr, size_t raw_len, void *stripped_addr, size_t stripped_len, FILE *outfile, const char *name) { int found_load = 0; unsigned long load_size = -1; /* Work around bogus warning */ unsigned long mapping_size; int i; unsigned long j; ELF(Shdr) *symtab_hdr = NULL, *strtab_hdr; ELF(Ehdr) *hdr = (ELF(Ehdr) *)raw_addr; ELF(Dyn) *dyn = 0, *dyn_end = 0; INT_BITS syms[NSYMS] = {}; ELF(Phdr) *pt = (ELF(Phdr) *)(raw_addr + GET_BE(&hdr->e_phoff)); /* Walk the segment table. */ for (i = 0; i < GET_BE(&hdr->e_phnum); i++) { if (GET_BE(&pt[i].p_type) == PT_LOAD) { if (found_load) fail("multiple PT_LOAD segs\n"); if (GET_BE(&pt[i].p_offset) != 0 || GET_BE(&pt[i].p_vaddr) != 0) fail("PT_LOAD in wrong place\n"); if (GET_BE(&pt[i].p_memsz) != GET_BE(&pt[i].p_filesz)) fail("cannot handle memsz != filesz\n"); load_size = GET_BE(&pt[i].p_memsz); found_load = 1; } else if (GET_BE(&pt[i].p_type) == PT_DYNAMIC) { dyn = raw_addr + GET_BE(&pt[i].p_offset); dyn_end = raw_addr + GET_BE(&pt[i].p_offset) + GET_BE(&pt[i].p_memsz); } } if (!found_load) fail("no PT_LOAD seg\n"); if (stripped_len < load_size) fail("stripped input is too short\n"); /* Walk the dynamic table */ for (i = 0; dyn + i < dyn_end && GET_BE(&dyn[i].d_tag) != DT_NULL; i++) { typeof(dyn[i].d_tag) tag = GET_BE(&dyn[i].d_tag); typeof(dyn[i].d_un.d_val) val = GET_BE(&dyn[i].d_un.d_val); if ((tag == DT_RELSZ || tag == DT_RELASZ) && (val != 0)) fail("vdso image contains dynamic relocations\n"); } /* Walk the section table */ for (i = 0; i < GET_BE(&hdr->e_shnum); i++) { ELF(Shdr) *sh = raw_addr + GET_BE(&hdr->e_shoff) + GET_BE(&hdr->e_shentsize) * i; if (GET_BE(&sh->sh_type) == SHT_SYMTAB) symtab_hdr = sh; } if (!symtab_hdr) fail("no symbol table\n"); strtab_hdr = raw_addr + GET_BE(&hdr->e_shoff) + GET_BE(&hdr->e_shentsize) * GET_BE(&symtab_hdr->sh_link); /* Walk the symbol table */ for (i = 0; i < GET_BE(&symtab_hdr->sh_size) / GET_BE(&symtab_hdr->sh_entsize); i++) { int k; ELF(Sym) *sym = raw_addr + GET_BE(&symtab_hdr->sh_offset) + GET_BE(&symtab_hdr->sh_entsize) * i; const char *name = raw_addr + GET_BE(&strtab_hdr->sh_offset) + GET_BE(&sym->st_name); for (k = 0; k < NSYMS; k++) { if (!strcmp(name, required_syms[k].name)) { if (syms[k]) { fail("duplicate symbol %s\n", required_syms[k].name); } /* * Careful: we use negative addresses, but * st_value is unsigned, so we rely * on syms[k] being a signed type of the * correct width. */ syms[k] = GET_BE(&sym->st_value); } } } /* Validate mapping addresses. */ if (syms[sym_vvar_start] % 8192) fail("vvar_begin must be a multiple of 8192\n"); if (!name) { fwrite(stripped_addr, stripped_len, 1, outfile); return; } mapping_size = (stripped_len + 8191) / 8192 * 8192; fprintf(outfile, "/* AUTOMATICALLY GENERATED -- DO NOT EDIT */\n\n"); fprintf(outfile, "#include <linux/cache.h>\n"); fprintf(outfile, "#include <asm/vdso.h>\n"); fprintf(outfile, "\n"); fprintf(outfile, "static unsigned char raw_data[%lu] __ro_after_init __aligned(8192)= {", mapping_size); for (j = 0; j < stripped_len; j++) { if (j % 10 == 0) fprintf(outfile, "\n\t"); fprintf(outfile, "0x%02X, ", (int)((unsigned char *)stripped_addr)[j]); } fprintf(outfile, "\n};\n\n"); fprintf(outfile, "const struct vdso_image %s_builtin = {\n", name); fprintf(outfile, "\t.data = raw_data,\n"); fprintf(outfile, "\t.size = %lu,\n", mapping_size); for (i = 0; i < NSYMS; i++) { if (required_syms[i].export && syms[i]) fprintf(outfile, "\t.sym_%s = %" PRIi64 ",\n", required_syms[i].name, (int64_t)syms[i]); } fprintf(outfile, "};\n"); } |