Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2007-2017 Nicira, Inc.
4 */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <linux/skbuff.h>
9#include <linux/in.h>
10#include <linux/ip.h>
11#include <linux/openvswitch.h>
12#include <linux/netfilter_ipv6.h>
13#include <linux/sctp.h>
14#include <linux/tcp.h>
15#include <linux/udp.h>
16#include <linux/in6.h>
17#include <linux/if_arp.h>
18#include <linux/if_vlan.h>
19
20#include <net/dst.h>
21#include <net/ip.h>
22#include <net/ipv6.h>
23#include <net/ip6_fib.h>
24#include <net/checksum.h>
25#include <net/dsfield.h>
26#include <net/mpls.h>
27#include <net/sctp/checksum.h>
28
29#include "datapath.h"
30#include "flow.h"
31#include "conntrack.h"
32#include "vport.h"
33#include "flow_netlink.h"
34
35struct deferred_action {
36 struct sk_buff *skb;
37 const struct nlattr *actions;
38 int actions_len;
39
40 /* Store pkt_key clone when creating deferred action. */
41 struct sw_flow_key pkt_key;
42};
43
44#define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
45struct ovs_frag_data {
46 unsigned long dst;
47 struct vport *vport;
48 struct ovs_skb_cb cb;
49 __be16 inner_protocol;
50 u16 network_offset; /* valid only for MPLS */
51 u16 vlan_tci;
52 __be16 vlan_proto;
53 unsigned int l2_len;
54 u8 mac_proto;
55 u8 l2_data[MAX_L2_LEN];
56};
57
58static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
59
60#define DEFERRED_ACTION_FIFO_SIZE 10
61#define OVS_RECURSION_LIMIT 5
62#define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
63struct action_fifo {
64 int head;
65 int tail;
66 /* Deferred action fifo queue storage. */
67 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
68};
69
70struct action_flow_keys {
71 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
72};
73
74static struct action_fifo __percpu *action_fifos;
75static struct action_flow_keys __percpu *flow_keys;
76static DEFINE_PER_CPU(int, exec_actions_level);
77
78/* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
79 * space. Return NULL if out of key spaces.
80 */
81static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
82{
83 struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
84 int level = this_cpu_read(exec_actions_level);
85 struct sw_flow_key *key = NULL;
86
87 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
88 key = &keys->key[level - 1];
89 *key = *key_;
90 }
91
92 return key;
93}
94
95static void action_fifo_init(struct action_fifo *fifo)
96{
97 fifo->head = 0;
98 fifo->tail = 0;
99}
100
101static bool action_fifo_is_empty(const struct action_fifo *fifo)
102{
103 return (fifo->head == fifo->tail);
104}
105
106static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
107{
108 if (action_fifo_is_empty(fifo))
109 return NULL;
110
111 return &fifo->fifo[fifo->tail++];
112}
113
114static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
115{
116 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
117 return NULL;
118
119 return &fifo->fifo[fifo->head++];
120}
121
122/* Return true if fifo is not full */
123static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
124 const struct sw_flow_key *key,
125 const struct nlattr *actions,
126 const int actions_len)
127{
128 struct action_fifo *fifo;
129 struct deferred_action *da;
130
131 fifo = this_cpu_ptr(action_fifos);
132 da = action_fifo_put(fifo);
133 if (da) {
134 da->skb = skb;
135 da->actions = actions;
136 da->actions_len = actions_len;
137 da->pkt_key = *key;
138 }
139
140 return da;
141}
142
143static void invalidate_flow_key(struct sw_flow_key *key)
144{
145 key->mac_proto |= SW_FLOW_KEY_INVALID;
146}
147
148static bool is_flow_key_valid(const struct sw_flow_key *key)
149{
150 return !(key->mac_proto & SW_FLOW_KEY_INVALID);
151}
152
153static int clone_execute(struct datapath *dp, struct sk_buff *skb,
154 struct sw_flow_key *key,
155 u32 recirc_id,
156 const struct nlattr *actions, int len,
157 bool last, bool clone_flow_key);
158
159static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
160 struct sw_flow_key *key,
161 const struct nlattr *attr, int len);
162
163static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
164 const struct ovs_action_push_mpls *mpls)
165{
166 int err;
167
168 err = skb_mpls_push(skb, mpls->mpls_lse, mpls->mpls_ethertype,
169 skb->mac_len);
170 if (err)
171 return err;
172
173 invalidate_flow_key(key);
174 return 0;
175}
176
177static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
178 const __be16 ethertype)
179{
180 int err;
181
182 err = skb_mpls_pop(skb, ethertype, skb->mac_len);
183 if (err)
184 return err;
185
186 invalidate_flow_key(key);
187 return 0;
188}
189
190static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
191 const __be32 *mpls_lse, const __be32 *mask)
192{
193 struct mpls_shim_hdr *stack;
194 __be32 lse;
195 int err;
196
197 stack = mpls_hdr(skb);
198 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
199 err = skb_mpls_update_lse(skb, lse);
200 if (err)
201 return err;
202
203 flow_key->mpls.top_lse = lse;
204 return 0;
205}
206
207static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
208{
209 int err;
210
211 err = skb_vlan_pop(skb);
212 if (skb_vlan_tag_present(skb)) {
213 invalidate_flow_key(key);
214 } else {
215 key->eth.vlan.tci = 0;
216 key->eth.vlan.tpid = 0;
217 }
218 return err;
219}
220
221static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
222 const struct ovs_action_push_vlan *vlan)
223{
224 if (skb_vlan_tag_present(skb)) {
225 invalidate_flow_key(key);
226 } else {
227 key->eth.vlan.tci = vlan->vlan_tci;
228 key->eth.vlan.tpid = vlan->vlan_tpid;
229 }
230 return skb_vlan_push(skb, vlan->vlan_tpid,
231 ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
232}
233
234/* 'src' is already properly masked. */
235static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
236{
237 u16 *dst = (u16 *)dst_;
238 const u16 *src = (const u16 *)src_;
239 const u16 *mask = (const u16 *)mask_;
240
241 OVS_SET_MASKED(dst[0], src[0], mask[0]);
242 OVS_SET_MASKED(dst[1], src[1], mask[1]);
243 OVS_SET_MASKED(dst[2], src[2], mask[2]);
244}
245
246static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
247 const struct ovs_key_ethernet *key,
248 const struct ovs_key_ethernet *mask)
249{
250 int err;
251
252 err = skb_ensure_writable(skb, ETH_HLEN);
253 if (unlikely(err))
254 return err;
255
256 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
257
258 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
259 mask->eth_src);
260 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
261 mask->eth_dst);
262
263 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
264
265 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
266 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
267 return 0;
268}
269
270/* pop_eth does not support VLAN packets as this action is never called
271 * for them.
272 */
273static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
274{
275 skb_pull_rcsum(skb, ETH_HLEN);
276 skb_reset_mac_header(skb);
277 skb_reset_mac_len(skb);
278
279 /* safe right before invalidate_flow_key */
280 key->mac_proto = MAC_PROTO_NONE;
281 invalidate_flow_key(key);
282 return 0;
283}
284
285static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
286 const struct ovs_action_push_eth *ethh)
287{
288 struct ethhdr *hdr;
289
290 /* Add the new Ethernet header */
291 if (skb_cow_head(skb, ETH_HLEN) < 0)
292 return -ENOMEM;
293
294 skb_push(skb, ETH_HLEN);
295 skb_reset_mac_header(skb);
296 skb_reset_mac_len(skb);
297
298 hdr = eth_hdr(skb);
299 ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
300 ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
301 hdr->h_proto = skb->protocol;
302
303 skb_postpush_rcsum(skb, hdr, ETH_HLEN);
304
305 /* safe right before invalidate_flow_key */
306 key->mac_proto = MAC_PROTO_ETHERNET;
307 invalidate_flow_key(key);
308 return 0;
309}
310
311static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
312 const struct nshhdr *nh)
313{
314 int err;
315
316 err = nsh_push(skb, nh);
317 if (err)
318 return err;
319
320 /* safe right before invalidate_flow_key */
321 key->mac_proto = MAC_PROTO_NONE;
322 invalidate_flow_key(key);
323 return 0;
324}
325
326static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
327{
328 int err;
329
330 err = nsh_pop(skb);
331 if (err)
332 return err;
333
334 /* safe right before invalidate_flow_key */
335 if (skb->protocol == htons(ETH_P_TEB))
336 key->mac_proto = MAC_PROTO_ETHERNET;
337 else
338 key->mac_proto = MAC_PROTO_NONE;
339 invalidate_flow_key(key);
340 return 0;
341}
342
343static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
344 __be32 addr, __be32 new_addr)
345{
346 int transport_len = skb->len - skb_transport_offset(skb);
347
348 if (nh->frag_off & htons(IP_OFFSET))
349 return;
350
351 if (nh->protocol == IPPROTO_TCP) {
352 if (likely(transport_len >= sizeof(struct tcphdr)))
353 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
354 addr, new_addr, true);
355 } else if (nh->protocol == IPPROTO_UDP) {
356 if (likely(transport_len >= sizeof(struct udphdr))) {
357 struct udphdr *uh = udp_hdr(skb);
358
359 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
360 inet_proto_csum_replace4(&uh->check, skb,
361 addr, new_addr, true);
362 if (!uh->check)
363 uh->check = CSUM_MANGLED_0;
364 }
365 }
366 }
367}
368
369static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
370 __be32 *addr, __be32 new_addr)
371{
372 update_ip_l4_checksum(skb, nh, *addr, new_addr);
373 csum_replace4(&nh->check, *addr, new_addr);
374 skb_clear_hash(skb);
375 *addr = new_addr;
376}
377
378static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
379 __be32 addr[4], const __be32 new_addr[4])
380{
381 int transport_len = skb->len - skb_transport_offset(skb);
382
383 if (l4_proto == NEXTHDR_TCP) {
384 if (likely(transport_len >= sizeof(struct tcphdr)))
385 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
386 addr, new_addr, true);
387 } else if (l4_proto == NEXTHDR_UDP) {
388 if (likely(transport_len >= sizeof(struct udphdr))) {
389 struct udphdr *uh = udp_hdr(skb);
390
391 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
392 inet_proto_csum_replace16(&uh->check, skb,
393 addr, new_addr, true);
394 if (!uh->check)
395 uh->check = CSUM_MANGLED_0;
396 }
397 }
398 } else if (l4_proto == NEXTHDR_ICMP) {
399 if (likely(transport_len >= sizeof(struct icmp6hdr)))
400 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
401 skb, addr, new_addr, true);
402 }
403}
404
405static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
406 const __be32 mask[4], __be32 masked[4])
407{
408 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
409 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
410 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
411 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
412}
413
414static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
415 __be32 addr[4], const __be32 new_addr[4],
416 bool recalculate_csum)
417{
418 if (recalculate_csum)
419 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
420
421 skb_clear_hash(skb);
422 memcpy(addr, new_addr, sizeof(__be32[4]));
423}
424
425static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
426{
427 /* Bits 21-24 are always unmasked, so this retains their values. */
428 OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
429 OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
430 OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
431}
432
433static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
434 u8 mask)
435{
436 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
437
438 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
439 nh->ttl = new_ttl;
440}
441
442static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
443 const struct ovs_key_ipv4 *key,
444 const struct ovs_key_ipv4 *mask)
445{
446 struct iphdr *nh;
447 __be32 new_addr;
448 int err;
449
450 err = skb_ensure_writable(skb, skb_network_offset(skb) +
451 sizeof(struct iphdr));
452 if (unlikely(err))
453 return err;
454
455 nh = ip_hdr(skb);
456
457 /* Setting an IP addresses is typically only a side effect of
458 * matching on them in the current userspace implementation, so it
459 * makes sense to check if the value actually changed.
460 */
461 if (mask->ipv4_src) {
462 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
463
464 if (unlikely(new_addr != nh->saddr)) {
465 set_ip_addr(skb, nh, &nh->saddr, new_addr);
466 flow_key->ipv4.addr.src = new_addr;
467 }
468 }
469 if (mask->ipv4_dst) {
470 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
471
472 if (unlikely(new_addr != nh->daddr)) {
473 set_ip_addr(skb, nh, &nh->daddr, new_addr);
474 flow_key->ipv4.addr.dst = new_addr;
475 }
476 }
477 if (mask->ipv4_tos) {
478 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
479 flow_key->ip.tos = nh->tos;
480 }
481 if (mask->ipv4_ttl) {
482 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
483 flow_key->ip.ttl = nh->ttl;
484 }
485
486 return 0;
487}
488
489static bool is_ipv6_mask_nonzero(const __be32 addr[4])
490{
491 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
492}
493
494static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
495 const struct ovs_key_ipv6 *key,
496 const struct ovs_key_ipv6 *mask)
497{
498 struct ipv6hdr *nh;
499 int err;
500
501 err = skb_ensure_writable(skb, skb_network_offset(skb) +
502 sizeof(struct ipv6hdr));
503 if (unlikely(err))
504 return err;
505
506 nh = ipv6_hdr(skb);
507
508 /* Setting an IP addresses is typically only a side effect of
509 * matching on them in the current userspace implementation, so it
510 * makes sense to check if the value actually changed.
511 */
512 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
513 __be32 *saddr = (__be32 *)&nh->saddr;
514 __be32 masked[4];
515
516 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
517
518 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
519 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
520 true);
521 memcpy(&flow_key->ipv6.addr.src, masked,
522 sizeof(flow_key->ipv6.addr.src));
523 }
524 }
525 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
526 unsigned int offset = 0;
527 int flags = IP6_FH_F_SKIP_RH;
528 bool recalc_csum = true;
529 __be32 *daddr = (__be32 *)&nh->daddr;
530 __be32 masked[4];
531
532 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
533
534 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
535 if (ipv6_ext_hdr(nh->nexthdr))
536 recalc_csum = (ipv6_find_hdr(skb, &offset,
537 NEXTHDR_ROUTING,
538 NULL, &flags)
539 != NEXTHDR_ROUTING);
540
541 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
542 recalc_csum);
543 memcpy(&flow_key->ipv6.addr.dst, masked,
544 sizeof(flow_key->ipv6.addr.dst));
545 }
546 }
547 if (mask->ipv6_tclass) {
548 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
549 flow_key->ip.tos = ipv6_get_dsfield(nh);
550 }
551 if (mask->ipv6_label) {
552 set_ipv6_fl(nh, ntohl(key->ipv6_label),
553 ntohl(mask->ipv6_label));
554 flow_key->ipv6.label =
555 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
556 }
557 if (mask->ipv6_hlimit) {
558 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
559 mask->ipv6_hlimit);
560 flow_key->ip.ttl = nh->hop_limit;
561 }
562 return 0;
563}
564
565static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
566 const struct nlattr *a)
567{
568 struct nshhdr *nh;
569 size_t length;
570 int err;
571 u8 flags;
572 u8 ttl;
573 int i;
574
575 struct ovs_key_nsh key;
576 struct ovs_key_nsh mask;
577
578 err = nsh_key_from_nlattr(a, &key, &mask);
579 if (err)
580 return err;
581
582 /* Make sure the NSH base header is there */
583 if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
584 return -ENOMEM;
585
586 nh = nsh_hdr(skb);
587 length = nsh_hdr_len(nh);
588
589 /* Make sure the whole NSH header is there */
590 err = skb_ensure_writable(skb, skb_network_offset(skb) +
591 length);
592 if (unlikely(err))
593 return err;
594
595 nh = nsh_hdr(skb);
596 skb_postpull_rcsum(skb, nh, length);
597 flags = nsh_get_flags(nh);
598 flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
599 flow_key->nsh.base.flags = flags;
600 ttl = nsh_get_ttl(nh);
601 ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
602 flow_key->nsh.base.ttl = ttl;
603 nsh_set_flags_and_ttl(nh, flags, ttl);
604 nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
605 mask.base.path_hdr);
606 flow_key->nsh.base.path_hdr = nh->path_hdr;
607 switch (nh->mdtype) {
608 case NSH_M_TYPE1:
609 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
610 nh->md1.context[i] =
611 OVS_MASKED(nh->md1.context[i], key.context[i],
612 mask.context[i]);
613 }
614 memcpy(flow_key->nsh.context, nh->md1.context,
615 sizeof(nh->md1.context));
616 break;
617 case NSH_M_TYPE2:
618 memset(flow_key->nsh.context, 0,
619 sizeof(flow_key->nsh.context));
620 break;
621 default:
622 return -EINVAL;
623 }
624 skb_postpush_rcsum(skb, nh, length);
625 return 0;
626}
627
628/* Must follow skb_ensure_writable() since that can move the skb data. */
629static void set_tp_port(struct sk_buff *skb, __be16 *port,
630 __be16 new_port, __sum16 *check)
631{
632 inet_proto_csum_replace2(check, skb, *port, new_port, false);
633 *port = new_port;
634}
635
636static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
637 const struct ovs_key_udp *key,
638 const struct ovs_key_udp *mask)
639{
640 struct udphdr *uh;
641 __be16 src, dst;
642 int err;
643
644 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
645 sizeof(struct udphdr));
646 if (unlikely(err))
647 return err;
648
649 uh = udp_hdr(skb);
650 /* Either of the masks is non-zero, so do not bother checking them. */
651 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
652 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
653
654 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
655 if (likely(src != uh->source)) {
656 set_tp_port(skb, &uh->source, src, &uh->check);
657 flow_key->tp.src = src;
658 }
659 if (likely(dst != uh->dest)) {
660 set_tp_port(skb, &uh->dest, dst, &uh->check);
661 flow_key->tp.dst = dst;
662 }
663
664 if (unlikely(!uh->check))
665 uh->check = CSUM_MANGLED_0;
666 } else {
667 uh->source = src;
668 uh->dest = dst;
669 flow_key->tp.src = src;
670 flow_key->tp.dst = dst;
671 }
672
673 skb_clear_hash(skb);
674
675 return 0;
676}
677
678static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
679 const struct ovs_key_tcp *key,
680 const struct ovs_key_tcp *mask)
681{
682 struct tcphdr *th;
683 __be16 src, dst;
684 int err;
685
686 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
687 sizeof(struct tcphdr));
688 if (unlikely(err))
689 return err;
690
691 th = tcp_hdr(skb);
692 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
693 if (likely(src != th->source)) {
694 set_tp_port(skb, &th->source, src, &th->check);
695 flow_key->tp.src = src;
696 }
697 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
698 if (likely(dst != th->dest)) {
699 set_tp_port(skb, &th->dest, dst, &th->check);
700 flow_key->tp.dst = dst;
701 }
702 skb_clear_hash(skb);
703
704 return 0;
705}
706
707static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
708 const struct ovs_key_sctp *key,
709 const struct ovs_key_sctp *mask)
710{
711 unsigned int sctphoff = skb_transport_offset(skb);
712 struct sctphdr *sh;
713 __le32 old_correct_csum, new_csum, old_csum;
714 int err;
715
716 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
717 if (unlikely(err))
718 return err;
719
720 sh = sctp_hdr(skb);
721 old_csum = sh->checksum;
722 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
723
724 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
725 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
726
727 new_csum = sctp_compute_cksum(skb, sctphoff);
728
729 /* Carry any checksum errors through. */
730 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
731
732 skb_clear_hash(skb);
733 flow_key->tp.src = sh->source;
734 flow_key->tp.dst = sh->dest;
735
736 return 0;
737}
738
739static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
740{
741 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
742 struct vport *vport = data->vport;
743
744 if (skb_cow_head(skb, data->l2_len) < 0) {
745 kfree_skb(skb);
746 return -ENOMEM;
747 }
748
749 __skb_dst_copy(skb, data->dst);
750 *OVS_CB(skb) = data->cb;
751 skb->inner_protocol = data->inner_protocol;
752 if (data->vlan_tci & VLAN_CFI_MASK)
753 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
754 else
755 __vlan_hwaccel_clear_tag(skb);
756
757 /* Reconstruct the MAC header. */
758 skb_push(skb, data->l2_len);
759 memcpy(skb->data, &data->l2_data, data->l2_len);
760 skb_postpush_rcsum(skb, skb->data, data->l2_len);
761 skb_reset_mac_header(skb);
762
763 if (eth_p_mpls(skb->protocol)) {
764 skb->inner_network_header = skb->network_header;
765 skb_set_network_header(skb, data->network_offset);
766 skb_reset_mac_len(skb);
767 }
768
769 ovs_vport_send(vport, skb, data->mac_proto);
770 return 0;
771}
772
773static unsigned int
774ovs_dst_get_mtu(const struct dst_entry *dst)
775{
776 return dst->dev->mtu;
777}
778
779static struct dst_ops ovs_dst_ops = {
780 .family = AF_UNSPEC,
781 .mtu = ovs_dst_get_mtu,
782};
783
784/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
785 * ovs_vport_output(), which is called once per fragmented packet.
786 */
787static void prepare_frag(struct vport *vport, struct sk_buff *skb,
788 u16 orig_network_offset, u8 mac_proto)
789{
790 unsigned int hlen = skb_network_offset(skb);
791 struct ovs_frag_data *data;
792
793 data = this_cpu_ptr(&ovs_frag_data_storage);
794 data->dst = skb->_skb_refdst;
795 data->vport = vport;
796 data->cb = *OVS_CB(skb);
797 data->inner_protocol = skb->inner_protocol;
798 data->network_offset = orig_network_offset;
799 if (skb_vlan_tag_present(skb))
800 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
801 else
802 data->vlan_tci = 0;
803 data->vlan_proto = skb->vlan_proto;
804 data->mac_proto = mac_proto;
805 data->l2_len = hlen;
806 memcpy(&data->l2_data, skb->data, hlen);
807
808 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
809 skb_pull(skb, hlen);
810}
811
812static void ovs_fragment(struct net *net, struct vport *vport,
813 struct sk_buff *skb, u16 mru,
814 struct sw_flow_key *key)
815{
816 u16 orig_network_offset = 0;
817
818 if (eth_p_mpls(skb->protocol)) {
819 orig_network_offset = skb_network_offset(skb);
820 skb->network_header = skb->inner_network_header;
821 }
822
823 if (skb_network_offset(skb) > MAX_L2_LEN) {
824 OVS_NLERR(1, "L2 header too long to fragment");
825 goto err;
826 }
827
828 if (key->eth.type == htons(ETH_P_IP)) {
829 struct dst_entry ovs_dst;
830 unsigned long orig_dst;
831
832 prepare_frag(vport, skb, orig_network_offset,
833 ovs_key_mac_proto(key));
834 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
835 DST_OBSOLETE_NONE, DST_NOCOUNT);
836 ovs_dst.dev = vport->dev;
837
838 orig_dst = skb->_skb_refdst;
839 skb_dst_set_noref(skb, &ovs_dst);
840 IPCB(skb)->frag_max_size = mru;
841
842 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
843 refdst_drop(orig_dst);
844 } else if (key->eth.type == htons(ETH_P_IPV6)) {
845 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
846 unsigned long orig_dst;
847 struct rt6_info ovs_rt;
848
849 if (!v6ops)
850 goto err;
851
852 prepare_frag(vport, skb, orig_network_offset,
853 ovs_key_mac_proto(key));
854 memset(&ovs_rt, 0, sizeof(ovs_rt));
855 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
856 DST_OBSOLETE_NONE, DST_NOCOUNT);
857 ovs_rt.dst.dev = vport->dev;
858
859 orig_dst = skb->_skb_refdst;
860 skb_dst_set_noref(skb, &ovs_rt.dst);
861 IP6CB(skb)->frag_max_size = mru;
862
863 v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
864 refdst_drop(orig_dst);
865 } else {
866 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
867 ovs_vport_name(vport), ntohs(key->eth.type), mru,
868 vport->dev->mtu);
869 goto err;
870 }
871
872 return;
873err:
874 kfree_skb(skb);
875}
876
877static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
878 struct sw_flow_key *key)
879{
880 struct vport *vport = ovs_vport_rcu(dp, out_port);
881
882 if (likely(vport)) {
883 u16 mru = OVS_CB(skb)->mru;
884 u32 cutlen = OVS_CB(skb)->cutlen;
885
886 if (unlikely(cutlen > 0)) {
887 if (skb->len - cutlen > ovs_mac_header_len(key))
888 pskb_trim(skb, skb->len - cutlen);
889 else
890 pskb_trim(skb, ovs_mac_header_len(key));
891 }
892
893 if (likely(!mru ||
894 (skb->len <= mru + vport->dev->hard_header_len))) {
895 ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
896 } else if (mru <= vport->dev->mtu) {
897 struct net *net = read_pnet(&dp->net);
898
899 ovs_fragment(net, vport, skb, mru, key);
900 } else {
901 kfree_skb(skb);
902 }
903 } else {
904 kfree_skb(skb);
905 }
906}
907
908static int output_userspace(struct datapath *dp, struct sk_buff *skb,
909 struct sw_flow_key *key, const struct nlattr *attr,
910 const struct nlattr *actions, int actions_len,
911 uint32_t cutlen)
912{
913 struct dp_upcall_info upcall;
914 const struct nlattr *a;
915 int rem;
916
917 memset(&upcall, 0, sizeof(upcall));
918 upcall.cmd = OVS_PACKET_CMD_ACTION;
919 upcall.mru = OVS_CB(skb)->mru;
920
921 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
922 a = nla_next(a, &rem)) {
923 switch (nla_type(a)) {
924 case OVS_USERSPACE_ATTR_USERDATA:
925 upcall.userdata = a;
926 break;
927
928 case OVS_USERSPACE_ATTR_PID:
929 upcall.portid = nla_get_u32(a);
930 break;
931
932 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
933 /* Get out tunnel info. */
934 struct vport *vport;
935
936 vport = ovs_vport_rcu(dp, nla_get_u32(a));
937 if (vport) {
938 int err;
939
940 err = dev_fill_metadata_dst(vport->dev, skb);
941 if (!err)
942 upcall.egress_tun_info = skb_tunnel_info(skb);
943 }
944
945 break;
946 }
947
948 case OVS_USERSPACE_ATTR_ACTIONS: {
949 /* Include actions. */
950 upcall.actions = actions;
951 upcall.actions_len = actions_len;
952 break;
953 }
954
955 } /* End of switch. */
956 }
957
958 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
959}
960
961/* When 'last' is true, sample() should always consume the 'skb'.
962 * Otherwise, sample() should keep 'skb' intact regardless what
963 * actions are executed within sample().
964 */
965static int sample(struct datapath *dp, struct sk_buff *skb,
966 struct sw_flow_key *key, const struct nlattr *attr,
967 bool last)
968{
969 struct nlattr *actions;
970 struct nlattr *sample_arg;
971 int rem = nla_len(attr);
972 const struct sample_arg *arg;
973 bool clone_flow_key;
974
975 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
976 sample_arg = nla_data(attr);
977 arg = nla_data(sample_arg);
978 actions = nla_next(sample_arg, &rem);
979
980 if ((arg->probability != U32_MAX) &&
981 (!arg->probability || prandom_u32() > arg->probability)) {
982 if (last)
983 consume_skb(skb);
984 return 0;
985 }
986
987 clone_flow_key = !arg->exec;
988 return clone_execute(dp, skb, key, 0, actions, rem, last,
989 clone_flow_key);
990}
991
992/* When 'last' is true, clone() should always consume the 'skb'.
993 * Otherwise, clone() should keep 'skb' intact regardless what
994 * actions are executed within clone().
995 */
996static int clone(struct datapath *dp, struct sk_buff *skb,
997 struct sw_flow_key *key, const struct nlattr *attr,
998 bool last)
999{
1000 struct nlattr *actions;
1001 struct nlattr *clone_arg;
1002 int rem = nla_len(attr);
1003 bool dont_clone_flow_key;
1004
1005 /* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1006 clone_arg = nla_data(attr);
1007 dont_clone_flow_key = nla_get_u32(clone_arg);
1008 actions = nla_next(clone_arg, &rem);
1009
1010 return clone_execute(dp, skb, key, 0, actions, rem, last,
1011 !dont_clone_flow_key);
1012}
1013
1014static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1015 const struct nlattr *attr)
1016{
1017 struct ovs_action_hash *hash_act = nla_data(attr);
1018 u32 hash = 0;
1019
1020 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
1021 hash = skb_get_hash(skb);
1022 hash = jhash_1word(hash, hash_act->hash_basis);
1023 if (!hash)
1024 hash = 0x1;
1025
1026 key->ovs_flow_hash = hash;
1027}
1028
1029static int execute_set_action(struct sk_buff *skb,
1030 struct sw_flow_key *flow_key,
1031 const struct nlattr *a)
1032{
1033 /* Only tunnel set execution is supported without a mask. */
1034 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1035 struct ovs_tunnel_info *tun = nla_data(a);
1036
1037 skb_dst_drop(skb);
1038 dst_hold((struct dst_entry *)tun->tun_dst);
1039 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1040 return 0;
1041 }
1042
1043 return -EINVAL;
1044}
1045
1046/* Mask is at the midpoint of the data. */
1047#define get_mask(a, type) ((const type)nla_data(a) + 1)
1048
1049static int execute_masked_set_action(struct sk_buff *skb,
1050 struct sw_flow_key *flow_key,
1051 const struct nlattr *a)
1052{
1053 int err = 0;
1054
1055 switch (nla_type(a)) {
1056 case OVS_KEY_ATTR_PRIORITY:
1057 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1058 *get_mask(a, u32 *));
1059 flow_key->phy.priority = skb->priority;
1060 break;
1061
1062 case OVS_KEY_ATTR_SKB_MARK:
1063 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1064 flow_key->phy.skb_mark = skb->mark;
1065 break;
1066
1067 case OVS_KEY_ATTR_TUNNEL_INFO:
1068 /* Masked data not supported for tunnel. */
1069 err = -EINVAL;
1070 break;
1071
1072 case OVS_KEY_ATTR_ETHERNET:
1073 err = set_eth_addr(skb, flow_key, nla_data(a),
1074 get_mask(a, struct ovs_key_ethernet *));
1075 break;
1076
1077 case OVS_KEY_ATTR_NSH:
1078 err = set_nsh(skb, flow_key, a);
1079 break;
1080
1081 case OVS_KEY_ATTR_IPV4:
1082 err = set_ipv4(skb, flow_key, nla_data(a),
1083 get_mask(a, struct ovs_key_ipv4 *));
1084 break;
1085
1086 case OVS_KEY_ATTR_IPV6:
1087 err = set_ipv6(skb, flow_key, nla_data(a),
1088 get_mask(a, struct ovs_key_ipv6 *));
1089 break;
1090
1091 case OVS_KEY_ATTR_TCP:
1092 err = set_tcp(skb, flow_key, nla_data(a),
1093 get_mask(a, struct ovs_key_tcp *));
1094 break;
1095
1096 case OVS_KEY_ATTR_UDP:
1097 err = set_udp(skb, flow_key, nla_data(a),
1098 get_mask(a, struct ovs_key_udp *));
1099 break;
1100
1101 case OVS_KEY_ATTR_SCTP:
1102 err = set_sctp(skb, flow_key, nla_data(a),
1103 get_mask(a, struct ovs_key_sctp *));
1104 break;
1105
1106 case OVS_KEY_ATTR_MPLS:
1107 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1108 __be32 *));
1109 break;
1110
1111 case OVS_KEY_ATTR_CT_STATE:
1112 case OVS_KEY_ATTR_CT_ZONE:
1113 case OVS_KEY_ATTR_CT_MARK:
1114 case OVS_KEY_ATTR_CT_LABELS:
1115 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1116 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1117 err = -EINVAL;
1118 break;
1119 }
1120
1121 return err;
1122}
1123
1124static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1125 struct sw_flow_key *key,
1126 const struct nlattr *a, bool last)
1127{
1128 u32 recirc_id;
1129
1130 if (!is_flow_key_valid(key)) {
1131 int err;
1132
1133 err = ovs_flow_key_update(skb, key);
1134 if (err)
1135 return err;
1136 }
1137 BUG_ON(!is_flow_key_valid(key));
1138
1139 recirc_id = nla_get_u32(a);
1140 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1141}
1142
1143static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1144 struct sw_flow_key *key,
1145 const struct nlattr *attr, bool last)
1146{
1147 const struct nlattr *actions, *cpl_arg;
1148 const struct check_pkt_len_arg *arg;
1149 int rem = nla_len(attr);
1150 bool clone_flow_key;
1151
1152 /* The first netlink attribute in 'attr' is always
1153 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1154 */
1155 cpl_arg = nla_data(attr);
1156 arg = nla_data(cpl_arg);
1157
1158 if (skb->len <= arg->pkt_len) {
1159 /* Second netlink attribute in 'attr' is always
1160 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1161 */
1162 actions = nla_next(cpl_arg, &rem);
1163 clone_flow_key = !arg->exec_for_lesser_equal;
1164 } else {
1165 /* Third netlink attribute in 'attr' is always
1166 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1167 */
1168 actions = nla_next(cpl_arg, &rem);
1169 actions = nla_next(actions, &rem);
1170 clone_flow_key = !arg->exec_for_greater;
1171 }
1172
1173 return clone_execute(dp, skb, key, 0, nla_data(actions),
1174 nla_len(actions), last, clone_flow_key);
1175}
1176
1177/* Execute a list of actions against 'skb'. */
1178static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1179 struct sw_flow_key *key,
1180 const struct nlattr *attr, int len)
1181{
1182 const struct nlattr *a;
1183 int rem;
1184
1185 for (a = attr, rem = len; rem > 0;
1186 a = nla_next(a, &rem)) {
1187 int err = 0;
1188
1189 switch (nla_type(a)) {
1190 case OVS_ACTION_ATTR_OUTPUT: {
1191 int port = nla_get_u32(a);
1192 struct sk_buff *clone;
1193
1194 /* Every output action needs a separate clone
1195 * of 'skb', In case the output action is the
1196 * last action, cloning can be avoided.
1197 */
1198 if (nla_is_last(a, rem)) {
1199 do_output(dp, skb, port, key);
1200 /* 'skb' has been used for output.
1201 */
1202 return 0;
1203 }
1204
1205 clone = skb_clone(skb, GFP_ATOMIC);
1206 if (clone)
1207 do_output(dp, clone, port, key);
1208 OVS_CB(skb)->cutlen = 0;
1209 break;
1210 }
1211
1212 case OVS_ACTION_ATTR_TRUNC: {
1213 struct ovs_action_trunc *trunc = nla_data(a);
1214
1215 if (skb->len > trunc->max_len)
1216 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1217 break;
1218 }
1219
1220 case OVS_ACTION_ATTR_USERSPACE:
1221 output_userspace(dp, skb, key, a, attr,
1222 len, OVS_CB(skb)->cutlen);
1223 OVS_CB(skb)->cutlen = 0;
1224 break;
1225
1226 case OVS_ACTION_ATTR_HASH:
1227 execute_hash(skb, key, a);
1228 break;
1229
1230 case OVS_ACTION_ATTR_PUSH_MPLS:
1231 err = push_mpls(skb, key, nla_data(a));
1232 break;
1233
1234 case OVS_ACTION_ATTR_POP_MPLS:
1235 err = pop_mpls(skb, key, nla_get_be16(a));
1236 break;
1237
1238 case OVS_ACTION_ATTR_PUSH_VLAN:
1239 err = push_vlan(skb, key, nla_data(a));
1240 break;
1241
1242 case OVS_ACTION_ATTR_POP_VLAN:
1243 err = pop_vlan(skb, key);
1244 break;
1245
1246 case OVS_ACTION_ATTR_RECIRC: {
1247 bool last = nla_is_last(a, rem);
1248
1249 err = execute_recirc(dp, skb, key, a, last);
1250 if (last) {
1251 /* If this is the last action, the skb has
1252 * been consumed or freed.
1253 * Return immediately.
1254 */
1255 return err;
1256 }
1257 break;
1258 }
1259
1260 case OVS_ACTION_ATTR_SET:
1261 err = execute_set_action(skb, key, nla_data(a));
1262 break;
1263
1264 case OVS_ACTION_ATTR_SET_MASKED:
1265 case OVS_ACTION_ATTR_SET_TO_MASKED:
1266 err = execute_masked_set_action(skb, key, nla_data(a));
1267 break;
1268
1269 case OVS_ACTION_ATTR_SAMPLE: {
1270 bool last = nla_is_last(a, rem);
1271
1272 err = sample(dp, skb, key, a, last);
1273 if (last)
1274 return err;
1275
1276 break;
1277 }
1278
1279 case OVS_ACTION_ATTR_CT:
1280 if (!is_flow_key_valid(key)) {
1281 err = ovs_flow_key_update(skb, key);
1282 if (err)
1283 return err;
1284 }
1285
1286 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1287 nla_data(a));
1288
1289 /* Hide stolen IP fragments from user space. */
1290 if (err)
1291 return err == -EINPROGRESS ? 0 : err;
1292 break;
1293
1294 case OVS_ACTION_ATTR_CT_CLEAR:
1295 err = ovs_ct_clear(skb, key);
1296 break;
1297
1298 case OVS_ACTION_ATTR_PUSH_ETH:
1299 err = push_eth(skb, key, nla_data(a));
1300 break;
1301
1302 case OVS_ACTION_ATTR_POP_ETH:
1303 err = pop_eth(skb, key);
1304 break;
1305
1306 case OVS_ACTION_ATTR_PUSH_NSH: {
1307 u8 buffer[NSH_HDR_MAX_LEN];
1308 struct nshhdr *nh = (struct nshhdr *)buffer;
1309
1310 err = nsh_hdr_from_nlattr(nla_data(a), nh,
1311 NSH_HDR_MAX_LEN);
1312 if (unlikely(err))
1313 break;
1314 err = push_nsh(skb, key, nh);
1315 break;
1316 }
1317
1318 case OVS_ACTION_ATTR_POP_NSH:
1319 err = pop_nsh(skb, key);
1320 break;
1321
1322 case OVS_ACTION_ATTR_METER:
1323 if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1324 consume_skb(skb);
1325 return 0;
1326 }
1327 break;
1328
1329 case OVS_ACTION_ATTR_CLONE: {
1330 bool last = nla_is_last(a, rem);
1331
1332 err = clone(dp, skb, key, a, last);
1333 if (last)
1334 return err;
1335
1336 break;
1337 }
1338
1339 case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1340 bool last = nla_is_last(a, rem);
1341
1342 err = execute_check_pkt_len(dp, skb, key, a, last);
1343 if (last)
1344 return err;
1345
1346 break;
1347 }
1348 }
1349
1350 if (unlikely(err)) {
1351 kfree_skb(skb);
1352 return err;
1353 }
1354 }
1355
1356 consume_skb(skb);
1357 return 0;
1358}
1359
1360/* Execute the actions on the clone of the packet. The effect of the
1361 * execution does not affect the original 'skb' nor the original 'key'.
1362 *
1363 * The execution may be deferred in case the actions can not be executed
1364 * immediately.
1365 */
1366static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1367 struct sw_flow_key *key, u32 recirc_id,
1368 const struct nlattr *actions, int len,
1369 bool last, bool clone_flow_key)
1370{
1371 struct deferred_action *da;
1372 struct sw_flow_key *clone;
1373
1374 skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1375 if (!skb) {
1376 /* Out of memory, skip this action.
1377 */
1378 return 0;
1379 }
1380
1381 /* When clone_flow_key is false, the 'key' will not be change
1382 * by the actions, then the 'key' can be used directly.
1383 * Otherwise, try to clone key from the next recursion level of
1384 * 'flow_keys'. If clone is successful, execute the actions
1385 * without deferring.
1386 */
1387 clone = clone_flow_key ? clone_key(key) : key;
1388 if (clone) {
1389 int err = 0;
1390
1391 if (actions) { /* Sample action */
1392 if (clone_flow_key)
1393 __this_cpu_inc(exec_actions_level);
1394
1395 err = do_execute_actions(dp, skb, clone,
1396 actions, len);
1397
1398 if (clone_flow_key)
1399 __this_cpu_dec(exec_actions_level);
1400 } else { /* Recirc action */
1401 clone->recirc_id = recirc_id;
1402 ovs_dp_process_packet(skb, clone);
1403 }
1404 return err;
1405 }
1406
1407 /* Out of 'flow_keys' space. Defer actions */
1408 da = add_deferred_actions(skb, key, actions, len);
1409 if (da) {
1410 if (!actions) { /* Recirc action */
1411 key = &da->pkt_key;
1412 key->recirc_id = recirc_id;
1413 }
1414 } else {
1415 /* Out of per CPU action FIFO space. Drop the 'skb' and
1416 * log an error.
1417 */
1418 kfree_skb(skb);
1419
1420 if (net_ratelimit()) {
1421 if (actions) { /* Sample action */
1422 pr_warn("%s: deferred action limit reached, drop sample action\n",
1423 ovs_dp_name(dp));
1424 } else { /* Recirc action */
1425 pr_warn("%s: deferred action limit reached, drop recirc action\n",
1426 ovs_dp_name(dp));
1427 }
1428 }
1429 }
1430 return 0;
1431}
1432
1433static void process_deferred_actions(struct datapath *dp)
1434{
1435 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1436
1437 /* Do not touch the FIFO in case there is no deferred actions. */
1438 if (action_fifo_is_empty(fifo))
1439 return;
1440
1441 /* Finishing executing all deferred actions. */
1442 do {
1443 struct deferred_action *da = action_fifo_get(fifo);
1444 struct sk_buff *skb = da->skb;
1445 struct sw_flow_key *key = &da->pkt_key;
1446 const struct nlattr *actions = da->actions;
1447 int actions_len = da->actions_len;
1448
1449 if (actions)
1450 do_execute_actions(dp, skb, key, actions, actions_len);
1451 else
1452 ovs_dp_process_packet(skb, key);
1453 } while (!action_fifo_is_empty(fifo));
1454
1455 /* Reset FIFO for the next packet. */
1456 action_fifo_init(fifo);
1457}
1458
1459/* Execute a list of actions against 'skb'. */
1460int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1461 const struct sw_flow_actions *acts,
1462 struct sw_flow_key *key)
1463{
1464 int err, level;
1465
1466 level = __this_cpu_inc_return(exec_actions_level);
1467 if (unlikely(level > OVS_RECURSION_LIMIT)) {
1468 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1469 ovs_dp_name(dp));
1470 kfree_skb(skb);
1471 err = -ENETDOWN;
1472 goto out;
1473 }
1474
1475 OVS_CB(skb)->acts_origlen = acts->orig_len;
1476 err = do_execute_actions(dp, skb, key,
1477 acts->actions, acts->actions_len);
1478
1479 if (level == 1)
1480 process_deferred_actions(dp);
1481
1482out:
1483 __this_cpu_dec(exec_actions_level);
1484 return err;
1485}
1486
1487int action_fifos_init(void)
1488{
1489 action_fifos = alloc_percpu(struct action_fifo);
1490 if (!action_fifos)
1491 return -ENOMEM;
1492
1493 flow_keys = alloc_percpu(struct action_flow_keys);
1494 if (!flow_keys) {
1495 free_percpu(action_fifos);
1496 return -ENOMEM;
1497 }
1498
1499 return 0;
1500}
1501
1502void action_fifos_exit(void)
1503{
1504 free_percpu(action_fifos);
1505 free_percpu(flow_keys);
1506}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2007-2017 Nicira, Inc.
4 */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <linux/skbuff.h>
9#include <linux/in.h>
10#include <linux/ip.h>
11#include <linux/openvswitch.h>
12#include <linux/sctp.h>
13#include <linux/tcp.h>
14#include <linux/udp.h>
15#include <linux/in6.h>
16#include <linux/if_arp.h>
17#include <linux/if_vlan.h>
18
19#include <net/dst.h>
20#include <net/gso.h>
21#include <net/ip.h>
22#include <net/ipv6.h>
23#include <net/ip6_fib.h>
24#include <net/checksum.h>
25#include <net/dsfield.h>
26#include <net/mpls.h>
27#include <net/sctp/checksum.h>
28
29#include "datapath.h"
30#include "drop.h"
31#include "flow.h"
32#include "conntrack.h"
33#include "vport.h"
34#include "flow_netlink.h"
35#include "openvswitch_trace.h"
36
37struct deferred_action {
38 struct sk_buff *skb;
39 const struct nlattr *actions;
40 int actions_len;
41
42 /* Store pkt_key clone when creating deferred action. */
43 struct sw_flow_key pkt_key;
44};
45
46#define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
47struct ovs_frag_data {
48 unsigned long dst;
49 struct vport *vport;
50 struct ovs_skb_cb cb;
51 __be16 inner_protocol;
52 u16 network_offset; /* valid only for MPLS */
53 u16 vlan_tci;
54 __be16 vlan_proto;
55 unsigned int l2_len;
56 u8 mac_proto;
57 u8 l2_data[MAX_L2_LEN];
58};
59
60static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
61
62#define DEFERRED_ACTION_FIFO_SIZE 10
63#define OVS_RECURSION_LIMIT 5
64#define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
65struct action_fifo {
66 int head;
67 int tail;
68 /* Deferred action fifo queue storage. */
69 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
70};
71
72struct action_flow_keys {
73 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
74};
75
76static struct action_fifo __percpu *action_fifos;
77static struct action_flow_keys __percpu *flow_keys;
78static DEFINE_PER_CPU(int, exec_actions_level);
79
80/* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
81 * space. Return NULL if out of key spaces.
82 */
83static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
84{
85 struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
86 int level = this_cpu_read(exec_actions_level);
87 struct sw_flow_key *key = NULL;
88
89 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
90 key = &keys->key[level - 1];
91 *key = *key_;
92 }
93
94 return key;
95}
96
97static void action_fifo_init(struct action_fifo *fifo)
98{
99 fifo->head = 0;
100 fifo->tail = 0;
101}
102
103static bool action_fifo_is_empty(const struct action_fifo *fifo)
104{
105 return (fifo->head == fifo->tail);
106}
107
108static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
109{
110 if (action_fifo_is_empty(fifo))
111 return NULL;
112
113 return &fifo->fifo[fifo->tail++];
114}
115
116static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
117{
118 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
119 return NULL;
120
121 return &fifo->fifo[fifo->head++];
122}
123
124/* Return true if fifo is not full */
125static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
126 const struct sw_flow_key *key,
127 const struct nlattr *actions,
128 const int actions_len)
129{
130 struct action_fifo *fifo;
131 struct deferred_action *da;
132
133 fifo = this_cpu_ptr(action_fifos);
134 da = action_fifo_put(fifo);
135 if (da) {
136 da->skb = skb;
137 da->actions = actions;
138 da->actions_len = actions_len;
139 da->pkt_key = *key;
140 }
141
142 return da;
143}
144
145static void invalidate_flow_key(struct sw_flow_key *key)
146{
147 key->mac_proto |= SW_FLOW_KEY_INVALID;
148}
149
150static bool is_flow_key_valid(const struct sw_flow_key *key)
151{
152 return !(key->mac_proto & SW_FLOW_KEY_INVALID);
153}
154
155static int clone_execute(struct datapath *dp, struct sk_buff *skb,
156 struct sw_flow_key *key,
157 u32 recirc_id,
158 const struct nlattr *actions, int len,
159 bool last, bool clone_flow_key);
160
161static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
162 struct sw_flow_key *key,
163 const struct nlattr *attr, int len);
164
165static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
166 __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
167{
168 int err;
169
170 err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
171 if (err)
172 return err;
173
174 if (!mac_len)
175 key->mac_proto = MAC_PROTO_NONE;
176
177 invalidate_flow_key(key);
178 return 0;
179}
180
181static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
182 const __be16 ethertype)
183{
184 int err;
185
186 err = skb_mpls_pop(skb, ethertype, skb->mac_len,
187 ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
188 if (err)
189 return err;
190
191 if (ethertype == htons(ETH_P_TEB))
192 key->mac_proto = MAC_PROTO_ETHERNET;
193
194 invalidate_flow_key(key);
195 return 0;
196}
197
198static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
199 const __be32 *mpls_lse, const __be32 *mask)
200{
201 struct mpls_shim_hdr *stack;
202 __be32 lse;
203 int err;
204
205 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
206 return -ENOMEM;
207
208 stack = mpls_hdr(skb);
209 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
210 err = skb_mpls_update_lse(skb, lse);
211 if (err)
212 return err;
213
214 flow_key->mpls.lse[0] = lse;
215 return 0;
216}
217
218static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
219{
220 int err;
221
222 err = skb_vlan_pop(skb);
223 if (skb_vlan_tag_present(skb)) {
224 invalidate_flow_key(key);
225 } else {
226 key->eth.vlan.tci = 0;
227 key->eth.vlan.tpid = 0;
228 }
229 return err;
230}
231
232static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
233 const struct ovs_action_push_vlan *vlan)
234{
235 if (skb_vlan_tag_present(skb)) {
236 invalidate_flow_key(key);
237 } else {
238 key->eth.vlan.tci = vlan->vlan_tci;
239 key->eth.vlan.tpid = vlan->vlan_tpid;
240 }
241 return skb_vlan_push(skb, vlan->vlan_tpid,
242 ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
243}
244
245/* 'src' is already properly masked. */
246static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
247{
248 u16 *dst = (u16 *)dst_;
249 const u16 *src = (const u16 *)src_;
250 const u16 *mask = (const u16 *)mask_;
251
252 OVS_SET_MASKED(dst[0], src[0], mask[0]);
253 OVS_SET_MASKED(dst[1], src[1], mask[1]);
254 OVS_SET_MASKED(dst[2], src[2], mask[2]);
255}
256
257static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
258 const struct ovs_key_ethernet *key,
259 const struct ovs_key_ethernet *mask)
260{
261 int err;
262
263 err = skb_ensure_writable(skb, ETH_HLEN);
264 if (unlikely(err))
265 return err;
266
267 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
268
269 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
270 mask->eth_src);
271 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
272 mask->eth_dst);
273
274 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
275
276 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
277 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
278 return 0;
279}
280
281/* pop_eth does not support VLAN packets as this action is never called
282 * for them.
283 */
284static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
285{
286 int err;
287
288 err = skb_eth_pop(skb);
289 if (err)
290 return err;
291
292 /* safe right before invalidate_flow_key */
293 key->mac_proto = MAC_PROTO_NONE;
294 invalidate_flow_key(key);
295 return 0;
296}
297
298static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
299 const struct ovs_action_push_eth *ethh)
300{
301 int err;
302
303 err = skb_eth_push(skb, ethh->addresses.eth_dst,
304 ethh->addresses.eth_src);
305 if (err)
306 return err;
307
308 /* safe right before invalidate_flow_key */
309 key->mac_proto = MAC_PROTO_ETHERNET;
310 invalidate_flow_key(key);
311 return 0;
312}
313
314static noinline_for_stack int push_nsh(struct sk_buff *skb,
315 struct sw_flow_key *key,
316 const struct nlattr *a)
317{
318 u8 buffer[NSH_HDR_MAX_LEN];
319 struct nshhdr *nh = (struct nshhdr *)buffer;
320 int err;
321
322 err = nsh_hdr_from_nlattr(a, nh, NSH_HDR_MAX_LEN);
323 if (err)
324 return err;
325
326 err = nsh_push(skb, nh);
327 if (err)
328 return err;
329
330 /* safe right before invalidate_flow_key */
331 key->mac_proto = MAC_PROTO_NONE;
332 invalidate_flow_key(key);
333 return 0;
334}
335
336static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
337{
338 int err;
339
340 err = nsh_pop(skb);
341 if (err)
342 return err;
343
344 /* safe right before invalidate_flow_key */
345 if (skb->protocol == htons(ETH_P_TEB))
346 key->mac_proto = MAC_PROTO_ETHERNET;
347 else
348 key->mac_proto = MAC_PROTO_NONE;
349 invalidate_flow_key(key);
350 return 0;
351}
352
353static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
354 __be32 addr, __be32 new_addr)
355{
356 int transport_len = skb->len - skb_transport_offset(skb);
357
358 if (nh->frag_off & htons(IP_OFFSET))
359 return;
360
361 if (nh->protocol == IPPROTO_TCP) {
362 if (likely(transport_len >= sizeof(struct tcphdr)))
363 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
364 addr, new_addr, true);
365 } else if (nh->protocol == IPPROTO_UDP) {
366 if (likely(transport_len >= sizeof(struct udphdr))) {
367 struct udphdr *uh = udp_hdr(skb);
368
369 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
370 inet_proto_csum_replace4(&uh->check, skb,
371 addr, new_addr, true);
372 if (!uh->check)
373 uh->check = CSUM_MANGLED_0;
374 }
375 }
376 }
377}
378
379static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
380 __be32 *addr, __be32 new_addr)
381{
382 update_ip_l4_checksum(skb, nh, *addr, new_addr);
383 csum_replace4(&nh->check, *addr, new_addr);
384 skb_clear_hash(skb);
385 ovs_ct_clear(skb, NULL);
386 *addr = new_addr;
387}
388
389static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
390 __be32 addr[4], const __be32 new_addr[4])
391{
392 int transport_len = skb->len - skb_transport_offset(skb);
393
394 if (l4_proto == NEXTHDR_TCP) {
395 if (likely(transport_len >= sizeof(struct tcphdr)))
396 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
397 addr, new_addr, true);
398 } else if (l4_proto == NEXTHDR_UDP) {
399 if (likely(transport_len >= sizeof(struct udphdr))) {
400 struct udphdr *uh = udp_hdr(skb);
401
402 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
403 inet_proto_csum_replace16(&uh->check, skb,
404 addr, new_addr, true);
405 if (!uh->check)
406 uh->check = CSUM_MANGLED_0;
407 }
408 }
409 } else if (l4_proto == NEXTHDR_ICMP) {
410 if (likely(transport_len >= sizeof(struct icmp6hdr)))
411 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
412 skb, addr, new_addr, true);
413 }
414}
415
416static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
417 const __be32 mask[4], __be32 masked[4])
418{
419 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
420 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
421 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
422 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
423}
424
425static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
426 __be32 addr[4], const __be32 new_addr[4],
427 bool recalculate_csum)
428{
429 if (recalculate_csum)
430 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
431
432 skb_clear_hash(skb);
433 ovs_ct_clear(skb, NULL);
434 memcpy(addr, new_addr, sizeof(__be32[4]));
435}
436
437static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
438{
439 u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
440
441 ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
442
443 if (skb->ip_summed == CHECKSUM_COMPLETE)
444 csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
445 (__force __wsum)(ipv6_tclass << 12));
446
447 ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
448}
449
450static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
451{
452 u32 ofl;
453
454 ofl = nh->flow_lbl[0] << 16 | nh->flow_lbl[1] << 8 | nh->flow_lbl[2];
455 fl = OVS_MASKED(ofl, fl, mask);
456
457 /* Bits 21-24 are always unmasked, so this retains their values. */
458 nh->flow_lbl[0] = (u8)(fl >> 16);
459 nh->flow_lbl[1] = (u8)(fl >> 8);
460 nh->flow_lbl[2] = (u8)fl;
461
462 if (skb->ip_summed == CHECKSUM_COMPLETE)
463 csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
464}
465
466static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
467{
468 new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
469
470 if (skb->ip_summed == CHECKSUM_COMPLETE)
471 csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
472 (__force __wsum)(new_ttl << 8));
473 nh->hop_limit = new_ttl;
474}
475
476static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
477 u8 mask)
478{
479 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
480
481 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
482 nh->ttl = new_ttl;
483}
484
485static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
486 const struct ovs_key_ipv4 *key,
487 const struct ovs_key_ipv4 *mask)
488{
489 struct iphdr *nh;
490 __be32 new_addr;
491 int err;
492
493 err = skb_ensure_writable(skb, skb_network_offset(skb) +
494 sizeof(struct iphdr));
495 if (unlikely(err))
496 return err;
497
498 nh = ip_hdr(skb);
499
500 /* Setting an IP addresses is typically only a side effect of
501 * matching on them in the current userspace implementation, so it
502 * makes sense to check if the value actually changed.
503 */
504 if (mask->ipv4_src) {
505 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
506
507 if (unlikely(new_addr != nh->saddr)) {
508 set_ip_addr(skb, nh, &nh->saddr, new_addr);
509 flow_key->ipv4.addr.src = new_addr;
510 }
511 }
512 if (mask->ipv4_dst) {
513 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
514
515 if (unlikely(new_addr != nh->daddr)) {
516 set_ip_addr(skb, nh, &nh->daddr, new_addr);
517 flow_key->ipv4.addr.dst = new_addr;
518 }
519 }
520 if (mask->ipv4_tos) {
521 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
522 flow_key->ip.tos = nh->tos;
523 }
524 if (mask->ipv4_ttl) {
525 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
526 flow_key->ip.ttl = nh->ttl;
527 }
528
529 return 0;
530}
531
532static bool is_ipv6_mask_nonzero(const __be32 addr[4])
533{
534 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
535}
536
537static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
538 const struct ovs_key_ipv6 *key,
539 const struct ovs_key_ipv6 *mask)
540{
541 struct ipv6hdr *nh;
542 int err;
543
544 err = skb_ensure_writable(skb, skb_network_offset(skb) +
545 sizeof(struct ipv6hdr));
546 if (unlikely(err))
547 return err;
548
549 nh = ipv6_hdr(skb);
550
551 /* Setting an IP addresses is typically only a side effect of
552 * matching on them in the current userspace implementation, so it
553 * makes sense to check if the value actually changed.
554 */
555 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
556 __be32 *saddr = (__be32 *)&nh->saddr;
557 __be32 masked[4];
558
559 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
560
561 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
562 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
563 true);
564 memcpy(&flow_key->ipv6.addr.src, masked,
565 sizeof(flow_key->ipv6.addr.src));
566 }
567 }
568 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
569 unsigned int offset = 0;
570 int flags = IP6_FH_F_SKIP_RH;
571 bool recalc_csum = true;
572 __be32 *daddr = (__be32 *)&nh->daddr;
573 __be32 masked[4];
574
575 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
576
577 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
578 if (ipv6_ext_hdr(nh->nexthdr))
579 recalc_csum = (ipv6_find_hdr(skb, &offset,
580 NEXTHDR_ROUTING,
581 NULL, &flags)
582 != NEXTHDR_ROUTING);
583
584 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
585 recalc_csum);
586 memcpy(&flow_key->ipv6.addr.dst, masked,
587 sizeof(flow_key->ipv6.addr.dst));
588 }
589 }
590 if (mask->ipv6_tclass) {
591 set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
592 flow_key->ip.tos = ipv6_get_dsfield(nh);
593 }
594 if (mask->ipv6_label) {
595 set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
596 ntohl(mask->ipv6_label));
597 flow_key->ipv6.label =
598 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
599 }
600 if (mask->ipv6_hlimit) {
601 set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
602 flow_key->ip.ttl = nh->hop_limit;
603 }
604 return 0;
605}
606
607static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
608 const struct nlattr *a)
609{
610 struct nshhdr *nh;
611 size_t length;
612 int err;
613 u8 flags;
614 u8 ttl;
615 int i;
616
617 struct ovs_key_nsh key;
618 struct ovs_key_nsh mask;
619
620 err = nsh_key_from_nlattr(a, &key, &mask);
621 if (err)
622 return err;
623
624 /* Make sure the NSH base header is there */
625 if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
626 return -ENOMEM;
627
628 nh = nsh_hdr(skb);
629 length = nsh_hdr_len(nh);
630
631 /* Make sure the whole NSH header is there */
632 err = skb_ensure_writable(skb, skb_network_offset(skb) +
633 length);
634 if (unlikely(err))
635 return err;
636
637 nh = nsh_hdr(skb);
638 skb_postpull_rcsum(skb, nh, length);
639 flags = nsh_get_flags(nh);
640 flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
641 flow_key->nsh.base.flags = flags;
642 ttl = nsh_get_ttl(nh);
643 ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
644 flow_key->nsh.base.ttl = ttl;
645 nsh_set_flags_and_ttl(nh, flags, ttl);
646 nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
647 mask.base.path_hdr);
648 flow_key->nsh.base.path_hdr = nh->path_hdr;
649 switch (nh->mdtype) {
650 case NSH_M_TYPE1:
651 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
652 nh->md1.context[i] =
653 OVS_MASKED(nh->md1.context[i], key.context[i],
654 mask.context[i]);
655 }
656 memcpy(flow_key->nsh.context, nh->md1.context,
657 sizeof(nh->md1.context));
658 break;
659 case NSH_M_TYPE2:
660 memset(flow_key->nsh.context, 0,
661 sizeof(flow_key->nsh.context));
662 break;
663 default:
664 return -EINVAL;
665 }
666 skb_postpush_rcsum(skb, nh, length);
667 return 0;
668}
669
670/* Must follow skb_ensure_writable() since that can move the skb data. */
671static void set_tp_port(struct sk_buff *skb, __be16 *port,
672 __be16 new_port, __sum16 *check)
673{
674 ovs_ct_clear(skb, NULL);
675 inet_proto_csum_replace2(check, skb, *port, new_port, false);
676 *port = new_port;
677}
678
679static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
680 const struct ovs_key_udp *key,
681 const struct ovs_key_udp *mask)
682{
683 struct udphdr *uh;
684 __be16 src, dst;
685 int err;
686
687 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
688 sizeof(struct udphdr));
689 if (unlikely(err))
690 return err;
691
692 uh = udp_hdr(skb);
693 /* Either of the masks is non-zero, so do not bother checking them. */
694 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
695 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
696
697 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
698 if (likely(src != uh->source)) {
699 set_tp_port(skb, &uh->source, src, &uh->check);
700 flow_key->tp.src = src;
701 }
702 if (likely(dst != uh->dest)) {
703 set_tp_port(skb, &uh->dest, dst, &uh->check);
704 flow_key->tp.dst = dst;
705 }
706
707 if (unlikely(!uh->check))
708 uh->check = CSUM_MANGLED_0;
709 } else {
710 uh->source = src;
711 uh->dest = dst;
712 flow_key->tp.src = src;
713 flow_key->tp.dst = dst;
714 ovs_ct_clear(skb, NULL);
715 }
716
717 skb_clear_hash(skb);
718
719 return 0;
720}
721
722static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
723 const struct ovs_key_tcp *key,
724 const struct ovs_key_tcp *mask)
725{
726 struct tcphdr *th;
727 __be16 src, dst;
728 int err;
729
730 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
731 sizeof(struct tcphdr));
732 if (unlikely(err))
733 return err;
734
735 th = tcp_hdr(skb);
736 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
737 if (likely(src != th->source)) {
738 set_tp_port(skb, &th->source, src, &th->check);
739 flow_key->tp.src = src;
740 }
741 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
742 if (likely(dst != th->dest)) {
743 set_tp_port(skb, &th->dest, dst, &th->check);
744 flow_key->tp.dst = dst;
745 }
746 skb_clear_hash(skb);
747
748 return 0;
749}
750
751static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
752 const struct ovs_key_sctp *key,
753 const struct ovs_key_sctp *mask)
754{
755 unsigned int sctphoff = skb_transport_offset(skb);
756 struct sctphdr *sh;
757 __le32 old_correct_csum, new_csum, old_csum;
758 int err;
759
760 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
761 if (unlikely(err))
762 return err;
763
764 sh = sctp_hdr(skb);
765 old_csum = sh->checksum;
766 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
767
768 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
769 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
770
771 new_csum = sctp_compute_cksum(skb, sctphoff);
772
773 /* Carry any checksum errors through. */
774 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
775
776 skb_clear_hash(skb);
777 ovs_ct_clear(skb, NULL);
778
779 flow_key->tp.src = sh->source;
780 flow_key->tp.dst = sh->dest;
781
782 return 0;
783}
784
785static int ovs_vport_output(struct net *net, struct sock *sk,
786 struct sk_buff *skb)
787{
788 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
789 struct vport *vport = data->vport;
790
791 if (skb_cow_head(skb, data->l2_len) < 0) {
792 kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM);
793 return -ENOMEM;
794 }
795
796 __skb_dst_copy(skb, data->dst);
797 *OVS_CB(skb) = data->cb;
798 skb->inner_protocol = data->inner_protocol;
799 if (data->vlan_tci & VLAN_CFI_MASK)
800 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
801 else
802 __vlan_hwaccel_clear_tag(skb);
803
804 /* Reconstruct the MAC header. */
805 skb_push(skb, data->l2_len);
806 memcpy(skb->data, &data->l2_data, data->l2_len);
807 skb_postpush_rcsum(skb, skb->data, data->l2_len);
808 skb_reset_mac_header(skb);
809
810 if (eth_p_mpls(skb->protocol)) {
811 skb->inner_network_header = skb->network_header;
812 skb_set_network_header(skb, data->network_offset);
813 skb_reset_mac_len(skb);
814 }
815
816 ovs_vport_send(vport, skb, data->mac_proto);
817 return 0;
818}
819
820static unsigned int
821ovs_dst_get_mtu(const struct dst_entry *dst)
822{
823 return dst->dev->mtu;
824}
825
826static struct dst_ops ovs_dst_ops = {
827 .family = AF_UNSPEC,
828 .mtu = ovs_dst_get_mtu,
829};
830
831/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
832 * ovs_vport_output(), which is called once per fragmented packet.
833 */
834static void prepare_frag(struct vport *vport, struct sk_buff *skb,
835 u16 orig_network_offset, u8 mac_proto)
836{
837 unsigned int hlen = skb_network_offset(skb);
838 struct ovs_frag_data *data;
839
840 data = this_cpu_ptr(&ovs_frag_data_storage);
841 data->dst = skb->_skb_refdst;
842 data->vport = vport;
843 data->cb = *OVS_CB(skb);
844 data->inner_protocol = skb->inner_protocol;
845 data->network_offset = orig_network_offset;
846 if (skb_vlan_tag_present(skb))
847 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
848 else
849 data->vlan_tci = 0;
850 data->vlan_proto = skb->vlan_proto;
851 data->mac_proto = mac_proto;
852 data->l2_len = hlen;
853 memcpy(&data->l2_data, skb->data, hlen);
854
855 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
856 skb_pull(skb, hlen);
857}
858
859static void ovs_fragment(struct net *net, struct vport *vport,
860 struct sk_buff *skb, u16 mru,
861 struct sw_flow_key *key)
862{
863 enum ovs_drop_reason reason;
864 u16 orig_network_offset = 0;
865
866 if (eth_p_mpls(skb->protocol)) {
867 orig_network_offset = skb_network_offset(skb);
868 skb->network_header = skb->inner_network_header;
869 }
870
871 if (skb_network_offset(skb) > MAX_L2_LEN) {
872 OVS_NLERR(1, "L2 header too long to fragment");
873 reason = OVS_DROP_FRAG_L2_TOO_LONG;
874 goto err;
875 }
876
877 if (key->eth.type == htons(ETH_P_IP)) {
878 struct rtable ovs_rt = { 0 };
879 unsigned long orig_dst;
880
881 prepare_frag(vport, skb, orig_network_offset,
882 ovs_key_mac_proto(key));
883 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
884 DST_OBSOLETE_NONE, DST_NOCOUNT);
885 ovs_rt.dst.dev = vport->dev;
886
887 orig_dst = skb->_skb_refdst;
888 skb_dst_set_noref(skb, &ovs_rt.dst);
889 IPCB(skb)->frag_max_size = mru;
890
891 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
892 refdst_drop(orig_dst);
893 } else if (key->eth.type == htons(ETH_P_IPV6)) {
894 unsigned long orig_dst;
895 struct rt6_info ovs_rt;
896
897 prepare_frag(vport, skb, orig_network_offset,
898 ovs_key_mac_proto(key));
899 memset(&ovs_rt, 0, sizeof(ovs_rt));
900 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
901 DST_OBSOLETE_NONE, DST_NOCOUNT);
902 ovs_rt.dst.dev = vport->dev;
903
904 orig_dst = skb->_skb_refdst;
905 skb_dst_set_noref(skb, &ovs_rt.dst);
906 IP6CB(skb)->frag_max_size = mru;
907
908 ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
909 refdst_drop(orig_dst);
910 } else {
911 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
912 ovs_vport_name(vport), ntohs(key->eth.type), mru,
913 vport->dev->mtu);
914 reason = OVS_DROP_FRAG_INVALID_PROTO;
915 goto err;
916 }
917
918 return;
919err:
920 ovs_kfree_skb_reason(skb, reason);
921}
922
923static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
924 struct sw_flow_key *key)
925{
926 struct vport *vport = ovs_vport_rcu(dp, out_port);
927
928 if (likely(vport && netif_carrier_ok(vport->dev))) {
929 u16 mru = OVS_CB(skb)->mru;
930 u32 cutlen = OVS_CB(skb)->cutlen;
931
932 if (unlikely(cutlen > 0)) {
933 if (skb->len - cutlen > ovs_mac_header_len(key))
934 pskb_trim(skb, skb->len - cutlen);
935 else
936 pskb_trim(skb, ovs_mac_header_len(key));
937 }
938
939 /* Need to set the pkt_type to involve the routing layer. The
940 * packet movement through the OVS datapath doesn't generally
941 * use routing, but this is needed for tunnel cases.
942 */
943 skb->pkt_type = PACKET_OUTGOING;
944
945 if (likely(!mru ||
946 (skb->len <= mru + vport->dev->hard_header_len))) {
947 ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
948 } else if (mru <= vport->dev->mtu) {
949 struct net *net = read_pnet(&dp->net);
950
951 ovs_fragment(net, vport, skb, mru, key);
952 } else {
953 kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
954 }
955 } else {
956 kfree_skb_reason(skb, SKB_DROP_REASON_DEV_READY);
957 }
958}
959
960static int output_userspace(struct datapath *dp, struct sk_buff *skb,
961 struct sw_flow_key *key, const struct nlattr *attr,
962 const struct nlattr *actions, int actions_len,
963 uint32_t cutlen)
964{
965 struct dp_upcall_info upcall;
966 const struct nlattr *a;
967 int rem;
968
969 memset(&upcall, 0, sizeof(upcall));
970 upcall.cmd = OVS_PACKET_CMD_ACTION;
971 upcall.mru = OVS_CB(skb)->mru;
972
973 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
974 a = nla_next(a, &rem)) {
975 switch (nla_type(a)) {
976 case OVS_USERSPACE_ATTR_USERDATA:
977 upcall.userdata = a;
978 break;
979
980 case OVS_USERSPACE_ATTR_PID:
981 if (dp->user_features &
982 OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
983 upcall.portid =
984 ovs_dp_get_upcall_portid(dp,
985 smp_processor_id());
986 else
987 upcall.portid = nla_get_u32(a);
988 break;
989
990 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
991 /* Get out tunnel info. */
992 struct vport *vport;
993
994 vport = ovs_vport_rcu(dp, nla_get_u32(a));
995 if (vport) {
996 int err;
997
998 err = dev_fill_metadata_dst(vport->dev, skb);
999 if (!err)
1000 upcall.egress_tun_info = skb_tunnel_info(skb);
1001 }
1002
1003 break;
1004 }
1005
1006 case OVS_USERSPACE_ATTR_ACTIONS: {
1007 /* Include actions. */
1008 upcall.actions = actions;
1009 upcall.actions_len = actions_len;
1010 break;
1011 }
1012
1013 } /* End of switch. */
1014 }
1015
1016 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1017}
1018
1019static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
1020 struct sw_flow_key *key,
1021 const struct nlattr *attr)
1022{
1023 /* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
1024 struct nlattr *actions = nla_data(attr);
1025
1026 if (nla_len(actions))
1027 return clone_execute(dp, skb, key, 0, nla_data(actions),
1028 nla_len(actions), true, false);
1029
1030 ovs_kfree_skb_reason(skb, OVS_DROP_IP_TTL);
1031 return 0;
1032}
1033
1034/* When 'last' is true, sample() should always consume the 'skb'.
1035 * Otherwise, sample() should keep 'skb' intact regardless what
1036 * actions are executed within sample().
1037 */
1038static int sample(struct datapath *dp, struct sk_buff *skb,
1039 struct sw_flow_key *key, const struct nlattr *attr,
1040 bool last)
1041{
1042 struct nlattr *actions;
1043 struct nlattr *sample_arg;
1044 int rem = nla_len(attr);
1045 const struct sample_arg *arg;
1046 bool clone_flow_key;
1047
1048 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1049 sample_arg = nla_data(attr);
1050 arg = nla_data(sample_arg);
1051 actions = nla_next(sample_arg, &rem);
1052
1053 if ((arg->probability != U32_MAX) &&
1054 (!arg->probability || get_random_u32() > arg->probability)) {
1055 if (last)
1056 ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1057 return 0;
1058 }
1059
1060 clone_flow_key = !arg->exec;
1061 return clone_execute(dp, skb, key, 0, actions, rem, last,
1062 clone_flow_key);
1063}
1064
1065/* When 'last' is true, clone() should always consume the 'skb'.
1066 * Otherwise, clone() should keep 'skb' intact regardless what
1067 * actions are executed within clone().
1068 */
1069static int clone(struct datapath *dp, struct sk_buff *skb,
1070 struct sw_flow_key *key, const struct nlattr *attr,
1071 bool last)
1072{
1073 struct nlattr *actions;
1074 struct nlattr *clone_arg;
1075 int rem = nla_len(attr);
1076 bool dont_clone_flow_key;
1077
1078 /* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
1079 clone_arg = nla_data(attr);
1080 dont_clone_flow_key = nla_get_u32(clone_arg);
1081 actions = nla_next(clone_arg, &rem);
1082
1083 return clone_execute(dp, skb, key, 0, actions, rem, last,
1084 !dont_clone_flow_key);
1085}
1086
1087static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1088 const struct nlattr *attr)
1089{
1090 struct ovs_action_hash *hash_act = nla_data(attr);
1091 u32 hash = 0;
1092
1093 if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
1094 /* OVS_HASH_ALG_L4 hasing type. */
1095 hash = skb_get_hash(skb);
1096 } else if (hash_act->hash_alg == OVS_HASH_ALG_SYM_L4) {
1097 /* OVS_HASH_ALG_SYM_L4 hashing type. NOTE: this doesn't
1098 * extend past an encapsulated header.
1099 */
1100 hash = __skb_get_hash_symmetric(skb);
1101 }
1102
1103 hash = jhash_1word(hash, hash_act->hash_basis);
1104 if (!hash)
1105 hash = 0x1;
1106
1107 key->ovs_flow_hash = hash;
1108}
1109
1110static int execute_set_action(struct sk_buff *skb,
1111 struct sw_flow_key *flow_key,
1112 const struct nlattr *a)
1113{
1114 /* Only tunnel set execution is supported without a mask. */
1115 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1116 struct ovs_tunnel_info *tun = nla_data(a);
1117
1118 skb_dst_drop(skb);
1119 dst_hold((struct dst_entry *)tun->tun_dst);
1120 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1121 return 0;
1122 }
1123
1124 return -EINVAL;
1125}
1126
1127/* Mask is at the midpoint of the data. */
1128#define get_mask(a, type) ((const type)nla_data(a) + 1)
1129
1130static int execute_masked_set_action(struct sk_buff *skb,
1131 struct sw_flow_key *flow_key,
1132 const struct nlattr *a)
1133{
1134 int err = 0;
1135
1136 switch (nla_type(a)) {
1137 case OVS_KEY_ATTR_PRIORITY:
1138 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1139 *get_mask(a, u32 *));
1140 flow_key->phy.priority = skb->priority;
1141 break;
1142
1143 case OVS_KEY_ATTR_SKB_MARK:
1144 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1145 flow_key->phy.skb_mark = skb->mark;
1146 break;
1147
1148 case OVS_KEY_ATTR_TUNNEL_INFO:
1149 /* Masked data not supported for tunnel. */
1150 err = -EINVAL;
1151 break;
1152
1153 case OVS_KEY_ATTR_ETHERNET:
1154 err = set_eth_addr(skb, flow_key, nla_data(a),
1155 get_mask(a, struct ovs_key_ethernet *));
1156 break;
1157
1158 case OVS_KEY_ATTR_NSH:
1159 err = set_nsh(skb, flow_key, a);
1160 break;
1161
1162 case OVS_KEY_ATTR_IPV4:
1163 err = set_ipv4(skb, flow_key, nla_data(a),
1164 get_mask(a, struct ovs_key_ipv4 *));
1165 break;
1166
1167 case OVS_KEY_ATTR_IPV6:
1168 err = set_ipv6(skb, flow_key, nla_data(a),
1169 get_mask(a, struct ovs_key_ipv6 *));
1170 break;
1171
1172 case OVS_KEY_ATTR_TCP:
1173 err = set_tcp(skb, flow_key, nla_data(a),
1174 get_mask(a, struct ovs_key_tcp *));
1175 break;
1176
1177 case OVS_KEY_ATTR_UDP:
1178 err = set_udp(skb, flow_key, nla_data(a),
1179 get_mask(a, struct ovs_key_udp *));
1180 break;
1181
1182 case OVS_KEY_ATTR_SCTP:
1183 err = set_sctp(skb, flow_key, nla_data(a),
1184 get_mask(a, struct ovs_key_sctp *));
1185 break;
1186
1187 case OVS_KEY_ATTR_MPLS:
1188 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1189 __be32 *));
1190 break;
1191
1192 case OVS_KEY_ATTR_CT_STATE:
1193 case OVS_KEY_ATTR_CT_ZONE:
1194 case OVS_KEY_ATTR_CT_MARK:
1195 case OVS_KEY_ATTR_CT_LABELS:
1196 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1197 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1198 err = -EINVAL;
1199 break;
1200 }
1201
1202 return err;
1203}
1204
1205static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1206 struct sw_flow_key *key,
1207 const struct nlattr *a, bool last)
1208{
1209 u32 recirc_id;
1210
1211 if (!is_flow_key_valid(key)) {
1212 int err;
1213
1214 err = ovs_flow_key_update(skb, key);
1215 if (err)
1216 return err;
1217 }
1218 BUG_ON(!is_flow_key_valid(key));
1219
1220 recirc_id = nla_get_u32(a);
1221 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1222}
1223
1224static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1225 struct sw_flow_key *key,
1226 const struct nlattr *attr, bool last)
1227{
1228 struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1229 const struct nlattr *actions, *cpl_arg;
1230 int len, max_len, rem = nla_len(attr);
1231 const struct check_pkt_len_arg *arg;
1232 bool clone_flow_key;
1233
1234 /* The first netlink attribute in 'attr' is always
1235 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1236 */
1237 cpl_arg = nla_data(attr);
1238 arg = nla_data(cpl_arg);
1239
1240 len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1241 max_len = arg->pkt_len;
1242
1243 if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1244 len <= max_len) {
1245 /* Second netlink attribute in 'attr' is always
1246 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1247 */
1248 actions = nla_next(cpl_arg, &rem);
1249 clone_flow_key = !arg->exec_for_lesser_equal;
1250 } else {
1251 /* Third netlink attribute in 'attr' is always
1252 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1253 */
1254 actions = nla_next(cpl_arg, &rem);
1255 actions = nla_next(actions, &rem);
1256 clone_flow_key = !arg->exec_for_greater;
1257 }
1258
1259 return clone_execute(dp, skb, key, 0, nla_data(actions),
1260 nla_len(actions), last, clone_flow_key);
1261}
1262
1263static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1264{
1265 int err;
1266
1267 if (skb->protocol == htons(ETH_P_IPV6)) {
1268 struct ipv6hdr *nh;
1269
1270 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1271 sizeof(*nh));
1272 if (unlikely(err))
1273 return err;
1274
1275 nh = ipv6_hdr(skb);
1276
1277 if (nh->hop_limit <= 1)
1278 return -EHOSTUNREACH;
1279
1280 key->ip.ttl = --nh->hop_limit;
1281 } else if (skb->protocol == htons(ETH_P_IP)) {
1282 struct iphdr *nh;
1283 u8 old_ttl;
1284
1285 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1286 sizeof(*nh));
1287 if (unlikely(err))
1288 return err;
1289
1290 nh = ip_hdr(skb);
1291 if (nh->ttl <= 1)
1292 return -EHOSTUNREACH;
1293
1294 old_ttl = nh->ttl--;
1295 csum_replace2(&nh->check, htons(old_ttl << 8),
1296 htons(nh->ttl << 8));
1297 key->ip.ttl = nh->ttl;
1298 }
1299 return 0;
1300}
1301
1302/* Execute a list of actions against 'skb'. */
1303static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1304 struct sw_flow_key *key,
1305 const struct nlattr *attr, int len)
1306{
1307 const struct nlattr *a;
1308 int rem;
1309
1310 for (a = attr, rem = len; rem > 0;
1311 a = nla_next(a, &rem)) {
1312 int err = 0;
1313
1314 if (trace_ovs_do_execute_action_enabled())
1315 trace_ovs_do_execute_action(dp, skb, key, a, rem);
1316
1317 /* Actions that rightfully have to consume the skb should do it
1318 * and return directly.
1319 */
1320 switch (nla_type(a)) {
1321 case OVS_ACTION_ATTR_OUTPUT: {
1322 int port = nla_get_u32(a);
1323 struct sk_buff *clone;
1324
1325 /* Every output action needs a separate clone
1326 * of 'skb', In case the output action is the
1327 * last action, cloning can be avoided.
1328 */
1329 if (nla_is_last(a, rem)) {
1330 do_output(dp, skb, port, key);
1331 /* 'skb' has been used for output.
1332 */
1333 return 0;
1334 }
1335
1336 clone = skb_clone(skb, GFP_ATOMIC);
1337 if (clone)
1338 do_output(dp, clone, port, key);
1339 OVS_CB(skb)->cutlen = 0;
1340 break;
1341 }
1342
1343 case OVS_ACTION_ATTR_TRUNC: {
1344 struct ovs_action_trunc *trunc = nla_data(a);
1345
1346 if (skb->len > trunc->max_len)
1347 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1348 break;
1349 }
1350
1351 case OVS_ACTION_ATTR_USERSPACE:
1352 output_userspace(dp, skb, key, a, attr,
1353 len, OVS_CB(skb)->cutlen);
1354 OVS_CB(skb)->cutlen = 0;
1355 if (nla_is_last(a, rem)) {
1356 consume_skb(skb);
1357 return 0;
1358 }
1359 break;
1360
1361 case OVS_ACTION_ATTR_HASH:
1362 execute_hash(skb, key, a);
1363 break;
1364
1365 case OVS_ACTION_ATTR_PUSH_MPLS: {
1366 struct ovs_action_push_mpls *mpls = nla_data(a);
1367
1368 err = push_mpls(skb, key, mpls->mpls_lse,
1369 mpls->mpls_ethertype, skb->mac_len);
1370 break;
1371 }
1372 case OVS_ACTION_ATTR_ADD_MPLS: {
1373 struct ovs_action_add_mpls *mpls = nla_data(a);
1374 __u16 mac_len = 0;
1375
1376 if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1377 mac_len = skb->mac_len;
1378
1379 err = push_mpls(skb, key, mpls->mpls_lse,
1380 mpls->mpls_ethertype, mac_len);
1381 break;
1382 }
1383 case OVS_ACTION_ATTR_POP_MPLS:
1384 err = pop_mpls(skb, key, nla_get_be16(a));
1385 break;
1386
1387 case OVS_ACTION_ATTR_PUSH_VLAN:
1388 err = push_vlan(skb, key, nla_data(a));
1389 break;
1390
1391 case OVS_ACTION_ATTR_POP_VLAN:
1392 err = pop_vlan(skb, key);
1393 break;
1394
1395 case OVS_ACTION_ATTR_RECIRC: {
1396 bool last = nla_is_last(a, rem);
1397
1398 err = execute_recirc(dp, skb, key, a, last);
1399 if (last) {
1400 /* If this is the last action, the skb has
1401 * been consumed or freed.
1402 * Return immediately.
1403 */
1404 return err;
1405 }
1406 break;
1407 }
1408
1409 case OVS_ACTION_ATTR_SET:
1410 err = execute_set_action(skb, key, nla_data(a));
1411 break;
1412
1413 case OVS_ACTION_ATTR_SET_MASKED:
1414 case OVS_ACTION_ATTR_SET_TO_MASKED:
1415 err = execute_masked_set_action(skb, key, nla_data(a));
1416 break;
1417
1418 case OVS_ACTION_ATTR_SAMPLE: {
1419 bool last = nla_is_last(a, rem);
1420
1421 err = sample(dp, skb, key, a, last);
1422 if (last)
1423 return err;
1424
1425 break;
1426 }
1427
1428 case OVS_ACTION_ATTR_CT:
1429 if (!is_flow_key_valid(key)) {
1430 err = ovs_flow_key_update(skb, key);
1431 if (err)
1432 return err;
1433 }
1434
1435 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1436 nla_data(a));
1437
1438 /* Hide stolen IP fragments from user space. */
1439 if (err)
1440 return err == -EINPROGRESS ? 0 : err;
1441 break;
1442
1443 case OVS_ACTION_ATTR_CT_CLEAR:
1444 err = ovs_ct_clear(skb, key);
1445 break;
1446
1447 case OVS_ACTION_ATTR_PUSH_ETH:
1448 err = push_eth(skb, key, nla_data(a));
1449 break;
1450
1451 case OVS_ACTION_ATTR_POP_ETH:
1452 err = pop_eth(skb, key);
1453 break;
1454
1455 case OVS_ACTION_ATTR_PUSH_NSH:
1456 err = push_nsh(skb, key, nla_data(a));
1457 break;
1458
1459 case OVS_ACTION_ATTR_POP_NSH:
1460 err = pop_nsh(skb, key);
1461 break;
1462
1463 case OVS_ACTION_ATTR_METER:
1464 if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1465 ovs_kfree_skb_reason(skb, OVS_DROP_METER);
1466 return 0;
1467 }
1468 break;
1469
1470 case OVS_ACTION_ATTR_CLONE: {
1471 bool last = nla_is_last(a, rem);
1472
1473 err = clone(dp, skb, key, a, last);
1474 if (last)
1475 return err;
1476
1477 break;
1478 }
1479
1480 case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1481 bool last = nla_is_last(a, rem);
1482
1483 err = execute_check_pkt_len(dp, skb, key, a, last);
1484 if (last)
1485 return err;
1486
1487 break;
1488 }
1489
1490 case OVS_ACTION_ATTR_DEC_TTL:
1491 err = execute_dec_ttl(skb, key);
1492 if (err == -EHOSTUNREACH)
1493 return dec_ttl_exception_handler(dp, skb,
1494 key, a);
1495 break;
1496
1497 case OVS_ACTION_ATTR_DROP: {
1498 enum ovs_drop_reason reason = nla_get_u32(a)
1499 ? OVS_DROP_EXPLICIT_WITH_ERROR
1500 : OVS_DROP_EXPLICIT;
1501
1502 ovs_kfree_skb_reason(skb, reason);
1503 return 0;
1504 }
1505 }
1506
1507 if (unlikely(err)) {
1508 ovs_kfree_skb_reason(skb, OVS_DROP_ACTION_ERROR);
1509 return err;
1510 }
1511 }
1512
1513 ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1514 return 0;
1515}
1516
1517/* Execute the actions on the clone of the packet. The effect of the
1518 * execution does not affect the original 'skb' nor the original 'key'.
1519 *
1520 * The execution may be deferred in case the actions can not be executed
1521 * immediately.
1522 */
1523static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1524 struct sw_flow_key *key, u32 recirc_id,
1525 const struct nlattr *actions, int len,
1526 bool last, bool clone_flow_key)
1527{
1528 struct deferred_action *da;
1529 struct sw_flow_key *clone;
1530
1531 skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1532 if (!skb) {
1533 /* Out of memory, skip this action.
1534 */
1535 return 0;
1536 }
1537
1538 /* When clone_flow_key is false, the 'key' will not be change
1539 * by the actions, then the 'key' can be used directly.
1540 * Otherwise, try to clone key from the next recursion level of
1541 * 'flow_keys'. If clone is successful, execute the actions
1542 * without deferring.
1543 */
1544 clone = clone_flow_key ? clone_key(key) : key;
1545 if (clone) {
1546 int err = 0;
1547
1548 if (actions) { /* Sample action */
1549 if (clone_flow_key)
1550 __this_cpu_inc(exec_actions_level);
1551
1552 err = do_execute_actions(dp, skb, clone,
1553 actions, len);
1554
1555 if (clone_flow_key)
1556 __this_cpu_dec(exec_actions_level);
1557 } else { /* Recirc action */
1558 clone->recirc_id = recirc_id;
1559 ovs_dp_process_packet(skb, clone);
1560 }
1561 return err;
1562 }
1563
1564 /* Out of 'flow_keys' space. Defer actions */
1565 da = add_deferred_actions(skb, key, actions, len);
1566 if (da) {
1567 if (!actions) { /* Recirc action */
1568 key = &da->pkt_key;
1569 key->recirc_id = recirc_id;
1570 }
1571 } else {
1572 /* Out of per CPU action FIFO space. Drop the 'skb' and
1573 * log an error.
1574 */
1575 ovs_kfree_skb_reason(skb, OVS_DROP_DEFERRED_LIMIT);
1576
1577 if (net_ratelimit()) {
1578 if (actions) { /* Sample action */
1579 pr_warn("%s: deferred action limit reached, drop sample action\n",
1580 ovs_dp_name(dp));
1581 } else { /* Recirc action */
1582 pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
1583 ovs_dp_name(dp), recirc_id);
1584 }
1585 }
1586 }
1587 return 0;
1588}
1589
1590static void process_deferred_actions(struct datapath *dp)
1591{
1592 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1593
1594 /* Do not touch the FIFO in case there is no deferred actions. */
1595 if (action_fifo_is_empty(fifo))
1596 return;
1597
1598 /* Finishing executing all deferred actions. */
1599 do {
1600 struct deferred_action *da = action_fifo_get(fifo);
1601 struct sk_buff *skb = da->skb;
1602 struct sw_flow_key *key = &da->pkt_key;
1603 const struct nlattr *actions = da->actions;
1604 int actions_len = da->actions_len;
1605
1606 if (actions)
1607 do_execute_actions(dp, skb, key, actions, actions_len);
1608 else
1609 ovs_dp_process_packet(skb, key);
1610 } while (!action_fifo_is_empty(fifo));
1611
1612 /* Reset FIFO for the next packet. */
1613 action_fifo_init(fifo);
1614}
1615
1616/* Execute a list of actions against 'skb'. */
1617int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1618 const struct sw_flow_actions *acts,
1619 struct sw_flow_key *key)
1620{
1621 int err, level;
1622
1623 level = __this_cpu_inc_return(exec_actions_level);
1624 if (unlikely(level > OVS_RECURSION_LIMIT)) {
1625 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1626 ovs_dp_name(dp));
1627 ovs_kfree_skb_reason(skb, OVS_DROP_RECURSION_LIMIT);
1628 err = -ENETDOWN;
1629 goto out;
1630 }
1631
1632 OVS_CB(skb)->acts_origlen = acts->orig_len;
1633 err = do_execute_actions(dp, skb, key,
1634 acts->actions, acts->actions_len);
1635
1636 if (level == 1)
1637 process_deferred_actions(dp);
1638
1639out:
1640 __this_cpu_dec(exec_actions_level);
1641 return err;
1642}
1643
1644int action_fifos_init(void)
1645{
1646 action_fifos = alloc_percpu(struct action_fifo);
1647 if (!action_fifos)
1648 return -ENOMEM;
1649
1650 flow_keys = alloc_percpu(struct action_flow_keys);
1651 if (!flow_keys) {
1652 free_percpu(action_fifos);
1653 return -ENOMEM;
1654 }
1655
1656 return 0;
1657}
1658
1659void action_fifos_exit(void)
1660{
1661 free_percpu(action_fifos);
1662 free_percpu(flow_keys);
1663}