Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2007-2017 Nicira, Inc.
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/skbuff.h>
   9#include <linux/in.h>
  10#include <linux/ip.h>
  11#include <linux/openvswitch.h>
  12#include <linux/netfilter_ipv6.h>
  13#include <linux/sctp.h>
  14#include <linux/tcp.h>
  15#include <linux/udp.h>
  16#include <linux/in6.h>
  17#include <linux/if_arp.h>
  18#include <linux/if_vlan.h>
  19
  20#include <net/dst.h>
 
  21#include <net/ip.h>
  22#include <net/ipv6.h>
  23#include <net/ip6_fib.h>
  24#include <net/checksum.h>
  25#include <net/dsfield.h>
  26#include <net/mpls.h>
  27#include <net/sctp/checksum.h>
  28
  29#include "datapath.h"
 
  30#include "flow.h"
  31#include "conntrack.h"
  32#include "vport.h"
  33#include "flow_netlink.h"
 
  34
  35struct deferred_action {
  36	struct sk_buff *skb;
  37	const struct nlattr *actions;
  38	int actions_len;
  39
  40	/* Store pkt_key clone when creating deferred action. */
  41	struct sw_flow_key pkt_key;
  42};
  43
  44#define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
  45struct ovs_frag_data {
  46	unsigned long dst;
  47	struct vport *vport;
  48	struct ovs_skb_cb cb;
  49	__be16 inner_protocol;
  50	u16 network_offset;	/* valid only for MPLS */
  51	u16 vlan_tci;
  52	__be16 vlan_proto;
  53	unsigned int l2_len;
  54	u8 mac_proto;
  55	u8 l2_data[MAX_L2_LEN];
  56};
  57
  58static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
  59
  60#define DEFERRED_ACTION_FIFO_SIZE 10
  61#define OVS_RECURSION_LIMIT 5
  62#define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
  63struct action_fifo {
  64	int head;
  65	int tail;
  66	/* Deferred action fifo queue storage. */
  67	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
  68};
  69
  70struct action_flow_keys {
  71	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
  72};
  73
  74static struct action_fifo __percpu *action_fifos;
  75static struct action_flow_keys __percpu *flow_keys;
  76static DEFINE_PER_CPU(int, exec_actions_level);
  77
  78/* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
  79 * space. Return NULL if out of key spaces.
  80 */
  81static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
  82{
  83	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
  84	int level = this_cpu_read(exec_actions_level);
  85	struct sw_flow_key *key = NULL;
  86
  87	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
  88		key = &keys->key[level - 1];
  89		*key = *key_;
  90	}
  91
  92	return key;
  93}
  94
  95static void action_fifo_init(struct action_fifo *fifo)
  96{
  97	fifo->head = 0;
  98	fifo->tail = 0;
  99}
 100
 101static bool action_fifo_is_empty(const struct action_fifo *fifo)
 102{
 103	return (fifo->head == fifo->tail);
 104}
 105
 106static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
 107{
 108	if (action_fifo_is_empty(fifo))
 109		return NULL;
 110
 111	return &fifo->fifo[fifo->tail++];
 112}
 113
 114static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
 115{
 116	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
 117		return NULL;
 118
 119	return &fifo->fifo[fifo->head++];
 120}
 121
 122/* Return true if fifo is not full */
 123static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
 124				    const struct sw_flow_key *key,
 125				    const struct nlattr *actions,
 126				    const int actions_len)
 127{
 128	struct action_fifo *fifo;
 129	struct deferred_action *da;
 130
 131	fifo = this_cpu_ptr(action_fifos);
 132	da = action_fifo_put(fifo);
 133	if (da) {
 134		da->skb = skb;
 135		da->actions = actions;
 136		da->actions_len = actions_len;
 137		da->pkt_key = *key;
 138	}
 139
 140	return da;
 141}
 142
 143static void invalidate_flow_key(struct sw_flow_key *key)
 144{
 145	key->mac_proto |= SW_FLOW_KEY_INVALID;
 146}
 147
 148static bool is_flow_key_valid(const struct sw_flow_key *key)
 149{
 150	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
 151}
 152
 153static int clone_execute(struct datapath *dp, struct sk_buff *skb,
 154			 struct sw_flow_key *key,
 155			 u32 recirc_id,
 156			 const struct nlattr *actions, int len,
 157			 bool last, bool clone_flow_key);
 158
 159static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
 160			      struct sw_flow_key *key,
 161			      const struct nlattr *attr, int len);
 162
 163static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 164		     const struct ovs_action_push_mpls *mpls)
 165{
 166	int err;
 167
 168	err = skb_mpls_push(skb, mpls->mpls_lse, mpls->mpls_ethertype,
 169			    skb->mac_len);
 170	if (err)
 171		return err;
 172
 
 
 
 173	invalidate_flow_key(key);
 174	return 0;
 175}
 176
 177static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 178		    const __be16 ethertype)
 179{
 180	int err;
 181
 182	err = skb_mpls_pop(skb, ethertype, skb->mac_len);
 
 183	if (err)
 184		return err;
 185
 
 
 
 186	invalidate_flow_key(key);
 187	return 0;
 188}
 189
 190static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
 191		    const __be32 *mpls_lse, const __be32 *mask)
 192{
 193	struct mpls_shim_hdr *stack;
 194	__be32 lse;
 195	int err;
 196
 
 
 
 197	stack = mpls_hdr(skb);
 198	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
 199	err = skb_mpls_update_lse(skb, lse);
 200	if (err)
 201		return err;
 202
 203	flow_key->mpls.top_lse = lse;
 204	return 0;
 205}
 206
 207static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
 208{
 209	int err;
 210
 211	err = skb_vlan_pop(skb);
 212	if (skb_vlan_tag_present(skb)) {
 213		invalidate_flow_key(key);
 214	} else {
 215		key->eth.vlan.tci = 0;
 216		key->eth.vlan.tpid = 0;
 217	}
 218	return err;
 219}
 220
 221static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
 222		     const struct ovs_action_push_vlan *vlan)
 223{
 224	if (skb_vlan_tag_present(skb)) {
 225		invalidate_flow_key(key);
 226	} else {
 227		key->eth.vlan.tci = vlan->vlan_tci;
 228		key->eth.vlan.tpid = vlan->vlan_tpid;
 229	}
 230	return skb_vlan_push(skb, vlan->vlan_tpid,
 231			     ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
 232}
 233
 234/* 'src' is already properly masked. */
 235static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
 236{
 237	u16 *dst = (u16 *)dst_;
 238	const u16 *src = (const u16 *)src_;
 239	const u16 *mask = (const u16 *)mask_;
 240
 241	OVS_SET_MASKED(dst[0], src[0], mask[0]);
 242	OVS_SET_MASKED(dst[1], src[1], mask[1]);
 243	OVS_SET_MASKED(dst[2], src[2], mask[2]);
 244}
 245
 246static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
 247			const struct ovs_key_ethernet *key,
 248			const struct ovs_key_ethernet *mask)
 249{
 250	int err;
 251
 252	err = skb_ensure_writable(skb, ETH_HLEN);
 253	if (unlikely(err))
 254		return err;
 255
 256	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 257
 258	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
 259			       mask->eth_src);
 260	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
 261			       mask->eth_dst);
 262
 263	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 264
 265	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
 266	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
 267	return 0;
 268}
 269
 270/* pop_eth does not support VLAN packets as this action is never called
 271 * for them.
 272 */
 273static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
 274{
 275	skb_pull_rcsum(skb, ETH_HLEN);
 276	skb_reset_mac_header(skb);
 277	skb_reset_mac_len(skb);
 
 
 278
 279	/* safe right before invalidate_flow_key */
 280	key->mac_proto = MAC_PROTO_NONE;
 281	invalidate_flow_key(key);
 282	return 0;
 283}
 284
 285static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
 286		    const struct ovs_action_push_eth *ethh)
 287{
 288	struct ethhdr *hdr;
 289
 290	/* Add the new Ethernet header */
 291	if (skb_cow_head(skb, ETH_HLEN) < 0)
 292		return -ENOMEM;
 293
 294	skb_push(skb, ETH_HLEN);
 295	skb_reset_mac_header(skb);
 296	skb_reset_mac_len(skb);
 297
 298	hdr = eth_hdr(skb);
 299	ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
 300	ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
 301	hdr->h_proto = skb->protocol;
 302
 303	skb_postpush_rcsum(skb, hdr, ETH_HLEN);
 
 
 
 304
 305	/* safe right before invalidate_flow_key */
 306	key->mac_proto = MAC_PROTO_ETHERNET;
 307	invalidate_flow_key(key);
 308	return 0;
 309}
 310
 311static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
 312		    const struct nshhdr *nh)
 
 313{
 
 
 314	int err;
 315
 
 
 
 
 316	err = nsh_push(skb, nh);
 317	if (err)
 318		return err;
 319
 320	/* safe right before invalidate_flow_key */
 321	key->mac_proto = MAC_PROTO_NONE;
 322	invalidate_flow_key(key);
 323	return 0;
 324}
 325
 326static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
 327{
 328	int err;
 329
 330	err = nsh_pop(skb);
 331	if (err)
 332		return err;
 333
 334	/* safe right before invalidate_flow_key */
 335	if (skb->protocol == htons(ETH_P_TEB))
 336		key->mac_proto = MAC_PROTO_ETHERNET;
 337	else
 338		key->mac_proto = MAC_PROTO_NONE;
 339	invalidate_flow_key(key);
 340	return 0;
 341}
 342
 343static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
 344				  __be32 addr, __be32 new_addr)
 345{
 346	int transport_len = skb->len - skb_transport_offset(skb);
 347
 348	if (nh->frag_off & htons(IP_OFFSET))
 349		return;
 350
 351	if (nh->protocol == IPPROTO_TCP) {
 352		if (likely(transport_len >= sizeof(struct tcphdr)))
 353			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
 354						 addr, new_addr, true);
 355	} else if (nh->protocol == IPPROTO_UDP) {
 356		if (likely(transport_len >= sizeof(struct udphdr))) {
 357			struct udphdr *uh = udp_hdr(skb);
 358
 359			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 360				inet_proto_csum_replace4(&uh->check, skb,
 361							 addr, new_addr, true);
 362				if (!uh->check)
 363					uh->check = CSUM_MANGLED_0;
 364			}
 365		}
 366	}
 367}
 368
 369static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
 370			__be32 *addr, __be32 new_addr)
 371{
 372	update_ip_l4_checksum(skb, nh, *addr, new_addr);
 373	csum_replace4(&nh->check, *addr, new_addr);
 374	skb_clear_hash(skb);
 
 375	*addr = new_addr;
 376}
 377
 378static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
 379				 __be32 addr[4], const __be32 new_addr[4])
 380{
 381	int transport_len = skb->len - skb_transport_offset(skb);
 382
 383	if (l4_proto == NEXTHDR_TCP) {
 384		if (likely(transport_len >= sizeof(struct tcphdr)))
 385			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
 386						  addr, new_addr, true);
 387	} else if (l4_proto == NEXTHDR_UDP) {
 388		if (likely(transport_len >= sizeof(struct udphdr))) {
 389			struct udphdr *uh = udp_hdr(skb);
 390
 391			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 392				inet_proto_csum_replace16(&uh->check, skb,
 393							  addr, new_addr, true);
 394				if (!uh->check)
 395					uh->check = CSUM_MANGLED_0;
 396			}
 397		}
 398	} else if (l4_proto == NEXTHDR_ICMP) {
 399		if (likely(transport_len >= sizeof(struct icmp6hdr)))
 400			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
 401						  skb, addr, new_addr, true);
 402	}
 403}
 404
 405static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
 406			   const __be32 mask[4], __be32 masked[4])
 407{
 408	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
 409	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
 410	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
 411	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
 412}
 413
 414static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
 415			  __be32 addr[4], const __be32 new_addr[4],
 416			  bool recalculate_csum)
 417{
 418	if (recalculate_csum)
 419		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
 420
 421	skb_clear_hash(skb);
 
 422	memcpy(addr, new_addr, sizeof(__be32[4]));
 423}
 424
 425static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
 426{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 427	/* Bits 21-24 are always unmasked, so this retains their values. */
 428	OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
 429	OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
 430	OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 431}
 432
 433static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
 434		       u8 mask)
 435{
 436	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
 437
 438	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
 439	nh->ttl = new_ttl;
 440}
 441
 442static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
 443		    const struct ovs_key_ipv4 *key,
 444		    const struct ovs_key_ipv4 *mask)
 445{
 446	struct iphdr *nh;
 447	__be32 new_addr;
 448	int err;
 449
 450	err = skb_ensure_writable(skb, skb_network_offset(skb) +
 451				  sizeof(struct iphdr));
 452	if (unlikely(err))
 453		return err;
 454
 455	nh = ip_hdr(skb);
 456
 457	/* Setting an IP addresses is typically only a side effect of
 458	 * matching on them in the current userspace implementation, so it
 459	 * makes sense to check if the value actually changed.
 460	 */
 461	if (mask->ipv4_src) {
 462		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
 463
 464		if (unlikely(new_addr != nh->saddr)) {
 465			set_ip_addr(skb, nh, &nh->saddr, new_addr);
 466			flow_key->ipv4.addr.src = new_addr;
 467		}
 468	}
 469	if (mask->ipv4_dst) {
 470		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
 471
 472		if (unlikely(new_addr != nh->daddr)) {
 473			set_ip_addr(skb, nh, &nh->daddr, new_addr);
 474			flow_key->ipv4.addr.dst = new_addr;
 475		}
 476	}
 477	if (mask->ipv4_tos) {
 478		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
 479		flow_key->ip.tos = nh->tos;
 480	}
 481	if (mask->ipv4_ttl) {
 482		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
 483		flow_key->ip.ttl = nh->ttl;
 484	}
 485
 486	return 0;
 487}
 488
 489static bool is_ipv6_mask_nonzero(const __be32 addr[4])
 490{
 491	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
 492}
 493
 494static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
 495		    const struct ovs_key_ipv6 *key,
 496		    const struct ovs_key_ipv6 *mask)
 497{
 498	struct ipv6hdr *nh;
 499	int err;
 500
 501	err = skb_ensure_writable(skb, skb_network_offset(skb) +
 502				  sizeof(struct ipv6hdr));
 503	if (unlikely(err))
 504		return err;
 505
 506	nh = ipv6_hdr(skb);
 507
 508	/* Setting an IP addresses is typically only a side effect of
 509	 * matching on them in the current userspace implementation, so it
 510	 * makes sense to check if the value actually changed.
 511	 */
 512	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
 513		__be32 *saddr = (__be32 *)&nh->saddr;
 514		__be32 masked[4];
 515
 516		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
 517
 518		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
 519			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
 520				      true);
 521			memcpy(&flow_key->ipv6.addr.src, masked,
 522			       sizeof(flow_key->ipv6.addr.src));
 523		}
 524	}
 525	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
 526		unsigned int offset = 0;
 527		int flags = IP6_FH_F_SKIP_RH;
 528		bool recalc_csum = true;
 529		__be32 *daddr = (__be32 *)&nh->daddr;
 530		__be32 masked[4];
 531
 532		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
 533
 534		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
 535			if (ipv6_ext_hdr(nh->nexthdr))
 536				recalc_csum = (ipv6_find_hdr(skb, &offset,
 537							     NEXTHDR_ROUTING,
 538							     NULL, &flags)
 539					       != NEXTHDR_ROUTING);
 540
 541			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
 542				      recalc_csum);
 543			memcpy(&flow_key->ipv6.addr.dst, masked,
 544			       sizeof(flow_key->ipv6.addr.dst));
 545		}
 546	}
 547	if (mask->ipv6_tclass) {
 548		ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
 549		flow_key->ip.tos = ipv6_get_dsfield(nh);
 550	}
 551	if (mask->ipv6_label) {
 552		set_ipv6_fl(nh, ntohl(key->ipv6_label),
 553			    ntohl(mask->ipv6_label));
 554		flow_key->ipv6.label =
 555		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
 556	}
 557	if (mask->ipv6_hlimit) {
 558		OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
 559			       mask->ipv6_hlimit);
 560		flow_key->ip.ttl = nh->hop_limit;
 561	}
 562	return 0;
 563}
 564
 565static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
 566		   const struct nlattr *a)
 567{
 568	struct nshhdr *nh;
 569	size_t length;
 570	int err;
 571	u8 flags;
 572	u8 ttl;
 573	int i;
 574
 575	struct ovs_key_nsh key;
 576	struct ovs_key_nsh mask;
 577
 578	err = nsh_key_from_nlattr(a, &key, &mask);
 579	if (err)
 580		return err;
 581
 582	/* Make sure the NSH base header is there */
 583	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
 584		return -ENOMEM;
 585
 586	nh = nsh_hdr(skb);
 587	length = nsh_hdr_len(nh);
 588
 589	/* Make sure the whole NSH header is there */
 590	err = skb_ensure_writable(skb, skb_network_offset(skb) +
 591				       length);
 592	if (unlikely(err))
 593		return err;
 594
 595	nh = nsh_hdr(skb);
 596	skb_postpull_rcsum(skb, nh, length);
 597	flags = nsh_get_flags(nh);
 598	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
 599	flow_key->nsh.base.flags = flags;
 600	ttl = nsh_get_ttl(nh);
 601	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
 602	flow_key->nsh.base.ttl = ttl;
 603	nsh_set_flags_and_ttl(nh, flags, ttl);
 604	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
 605				  mask.base.path_hdr);
 606	flow_key->nsh.base.path_hdr = nh->path_hdr;
 607	switch (nh->mdtype) {
 608	case NSH_M_TYPE1:
 609		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
 610			nh->md1.context[i] =
 611			    OVS_MASKED(nh->md1.context[i], key.context[i],
 612				       mask.context[i]);
 613		}
 614		memcpy(flow_key->nsh.context, nh->md1.context,
 615		       sizeof(nh->md1.context));
 616		break;
 617	case NSH_M_TYPE2:
 618		memset(flow_key->nsh.context, 0,
 619		       sizeof(flow_key->nsh.context));
 620		break;
 621	default:
 622		return -EINVAL;
 623	}
 624	skb_postpush_rcsum(skb, nh, length);
 625	return 0;
 626}
 627
 628/* Must follow skb_ensure_writable() since that can move the skb data. */
 629static void set_tp_port(struct sk_buff *skb, __be16 *port,
 630			__be16 new_port, __sum16 *check)
 631{
 
 632	inet_proto_csum_replace2(check, skb, *port, new_port, false);
 633	*port = new_port;
 634}
 635
 636static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 637		   const struct ovs_key_udp *key,
 638		   const struct ovs_key_udp *mask)
 639{
 640	struct udphdr *uh;
 641	__be16 src, dst;
 642	int err;
 643
 644	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 645				  sizeof(struct udphdr));
 646	if (unlikely(err))
 647		return err;
 648
 649	uh = udp_hdr(skb);
 650	/* Either of the masks is non-zero, so do not bother checking them. */
 651	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
 652	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
 653
 654	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
 655		if (likely(src != uh->source)) {
 656			set_tp_port(skb, &uh->source, src, &uh->check);
 657			flow_key->tp.src = src;
 658		}
 659		if (likely(dst != uh->dest)) {
 660			set_tp_port(skb, &uh->dest, dst, &uh->check);
 661			flow_key->tp.dst = dst;
 662		}
 663
 664		if (unlikely(!uh->check))
 665			uh->check = CSUM_MANGLED_0;
 666	} else {
 667		uh->source = src;
 668		uh->dest = dst;
 669		flow_key->tp.src = src;
 670		flow_key->tp.dst = dst;
 
 671	}
 672
 673	skb_clear_hash(skb);
 674
 675	return 0;
 676}
 677
 678static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 679		   const struct ovs_key_tcp *key,
 680		   const struct ovs_key_tcp *mask)
 681{
 682	struct tcphdr *th;
 683	__be16 src, dst;
 684	int err;
 685
 686	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 687				  sizeof(struct tcphdr));
 688	if (unlikely(err))
 689		return err;
 690
 691	th = tcp_hdr(skb);
 692	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
 693	if (likely(src != th->source)) {
 694		set_tp_port(skb, &th->source, src, &th->check);
 695		flow_key->tp.src = src;
 696	}
 697	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
 698	if (likely(dst != th->dest)) {
 699		set_tp_port(skb, &th->dest, dst, &th->check);
 700		flow_key->tp.dst = dst;
 701	}
 702	skb_clear_hash(skb);
 703
 704	return 0;
 705}
 706
 707static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 708		    const struct ovs_key_sctp *key,
 709		    const struct ovs_key_sctp *mask)
 710{
 711	unsigned int sctphoff = skb_transport_offset(skb);
 712	struct sctphdr *sh;
 713	__le32 old_correct_csum, new_csum, old_csum;
 714	int err;
 715
 716	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
 717	if (unlikely(err))
 718		return err;
 719
 720	sh = sctp_hdr(skb);
 721	old_csum = sh->checksum;
 722	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
 723
 724	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
 725	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
 726
 727	new_csum = sctp_compute_cksum(skb, sctphoff);
 728
 729	/* Carry any checksum errors through. */
 730	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
 731
 732	skb_clear_hash(skb);
 
 
 733	flow_key->tp.src = sh->source;
 734	flow_key->tp.dst = sh->dest;
 735
 736	return 0;
 737}
 738
 739static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 
 740{
 741	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
 742	struct vport *vport = data->vport;
 743
 744	if (skb_cow_head(skb, data->l2_len) < 0) {
 745		kfree_skb(skb);
 746		return -ENOMEM;
 747	}
 748
 749	__skb_dst_copy(skb, data->dst);
 750	*OVS_CB(skb) = data->cb;
 751	skb->inner_protocol = data->inner_protocol;
 752	if (data->vlan_tci & VLAN_CFI_MASK)
 753		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
 754	else
 755		__vlan_hwaccel_clear_tag(skb);
 756
 757	/* Reconstruct the MAC header.  */
 758	skb_push(skb, data->l2_len);
 759	memcpy(skb->data, &data->l2_data, data->l2_len);
 760	skb_postpush_rcsum(skb, skb->data, data->l2_len);
 761	skb_reset_mac_header(skb);
 762
 763	if (eth_p_mpls(skb->protocol)) {
 764		skb->inner_network_header = skb->network_header;
 765		skb_set_network_header(skb, data->network_offset);
 766		skb_reset_mac_len(skb);
 767	}
 768
 769	ovs_vport_send(vport, skb, data->mac_proto);
 770	return 0;
 771}
 772
 773static unsigned int
 774ovs_dst_get_mtu(const struct dst_entry *dst)
 775{
 776	return dst->dev->mtu;
 777}
 778
 779static struct dst_ops ovs_dst_ops = {
 780	.family = AF_UNSPEC,
 781	.mtu = ovs_dst_get_mtu,
 782};
 783
 784/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
 785 * ovs_vport_output(), which is called once per fragmented packet.
 786 */
 787static void prepare_frag(struct vport *vport, struct sk_buff *skb,
 788			 u16 orig_network_offset, u8 mac_proto)
 789{
 790	unsigned int hlen = skb_network_offset(skb);
 791	struct ovs_frag_data *data;
 792
 793	data = this_cpu_ptr(&ovs_frag_data_storage);
 794	data->dst = skb->_skb_refdst;
 795	data->vport = vport;
 796	data->cb = *OVS_CB(skb);
 797	data->inner_protocol = skb->inner_protocol;
 798	data->network_offset = orig_network_offset;
 799	if (skb_vlan_tag_present(skb))
 800		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
 801	else
 802		data->vlan_tci = 0;
 803	data->vlan_proto = skb->vlan_proto;
 804	data->mac_proto = mac_proto;
 805	data->l2_len = hlen;
 806	memcpy(&data->l2_data, skb->data, hlen);
 807
 808	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 809	skb_pull(skb, hlen);
 810}
 811
 812static void ovs_fragment(struct net *net, struct vport *vport,
 813			 struct sk_buff *skb, u16 mru,
 814			 struct sw_flow_key *key)
 815{
 
 816	u16 orig_network_offset = 0;
 817
 818	if (eth_p_mpls(skb->protocol)) {
 819		orig_network_offset = skb_network_offset(skb);
 820		skb->network_header = skb->inner_network_header;
 821	}
 822
 823	if (skb_network_offset(skb) > MAX_L2_LEN) {
 824		OVS_NLERR(1, "L2 header too long to fragment");
 
 825		goto err;
 826	}
 827
 828	if (key->eth.type == htons(ETH_P_IP)) {
 829		struct dst_entry ovs_dst;
 830		unsigned long orig_dst;
 831
 832		prepare_frag(vport, skb, orig_network_offset,
 833			     ovs_key_mac_proto(key));
 834		dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
 835			 DST_OBSOLETE_NONE, DST_NOCOUNT);
 836		ovs_dst.dev = vport->dev;
 837
 838		orig_dst = skb->_skb_refdst;
 839		skb_dst_set_noref(skb, &ovs_dst);
 840		IPCB(skb)->frag_max_size = mru;
 841
 842		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
 843		refdst_drop(orig_dst);
 844	} else if (key->eth.type == htons(ETH_P_IPV6)) {
 845		const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
 846		unsigned long orig_dst;
 847		struct rt6_info ovs_rt;
 848
 849		if (!v6ops)
 850			goto err;
 851
 852		prepare_frag(vport, skb, orig_network_offset,
 853			     ovs_key_mac_proto(key));
 854		memset(&ovs_rt, 0, sizeof(ovs_rt));
 855		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
 856			 DST_OBSOLETE_NONE, DST_NOCOUNT);
 857		ovs_rt.dst.dev = vport->dev;
 858
 859		orig_dst = skb->_skb_refdst;
 860		skb_dst_set_noref(skb, &ovs_rt.dst);
 861		IP6CB(skb)->frag_max_size = mru;
 862
 863		v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
 864		refdst_drop(orig_dst);
 865	} else {
 866		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
 867			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
 868			  vport->dev->mtu);
 
 869		goto err;
 870	}
 871
 872	return;
 873err:
 874	kfree_skb(skb);
 875}
 876
 877static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
 878		      struct sw_flow_key *key)
 879{
 880	struct vport *vport = ovs_vport_rcu(dp, out_port);
 881
 882	if (likely(vport)) {
 883		u16 mru = OVS_CB(skb)->mru;
 884		u32 cutlen = OVS_CB(skb)->cutlen;
 885
 886		if (unlikely(cutlen > 0)) {
 887			if (skb->len - cutlen > ovs_mac_header_len(key))
 888				pskb_trim(skb, skb->len - cutlen);
 889			else
 890				pskb_trim(skb, ovs_mac_header_len(key));
 891		}
 892
 
 
 
 
 
 
 893		if (likely(!mru ||
 894		           (skb->len <= mru + vport->dev->hard_header_len))) {
 895			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
 896		} else if (mru <= vport->dev->mtu) {
 897			struct net *net = read_pnet(&dp->net);
 898
 899			ovs_fragment(net, vport, skb, mru, key);
 900		} else {
 901			kfree_skb(skb);
 902		}
 903	} else {
 904		kfree_skb(skb);
 905	}
 906}
 907
 908static int output_userspace(struct datapath *dp, struct sk_buff *skb,
 909			    struct sw_flow_key *key, const struct nlattr *attr,
 910			    const struct nlattr *actions, int actions_len,
 911			    uint32_t cutlen)
 912{
 913	struct dp_upcall_info upcall;
 914	const struct nlattr *a;
 915	int rem;
 916
 917	memset(&upcall, 0, sizeof(upcall));
 918	upcall.cmd = OVS_PACKET_CMD_ACTION;
 919	upcall.mru = OVS_CB(skb)->mru;
 920
 921	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
 922		 a = nla_next(a, &rem)) {
 923		switch (nla_type(a)) {
 924		case OVS_USERSPACE_ATTR_USERDATA:
 925			upcall.userdata = a;
 926			break;
 927
 928		case OVS_USERSPACE_ATTR_PID:
 929			upcall.portid = nla_get_u32(a);
 
 
 
 
 
 
 930			break;
 931
 932		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
 933			/* Get out tunnel info. */
 934			struct vport *vport;
 935
 936			vport = ovs_vport_rcu(dp, nla_get_u32(a));
 937			if (vport) {
 938				int err;
 939
 940				err = dev_fill_metadata_dst(vport->dev, skb);
 941				if (!err)
 942					upcall.egress_tun_info = skb_tunnel_info(skb);
 943			}
 944
 945			break;
 946		}
 947
 948		case OVS_USERSPACE_ATTR_ACTIONS: {
 949			/* Include actions. */
 950			upcall.actions = actions;
 951			upcall.actions_len = actions_len;
 952			break;
 953		}
 954
 955		} /* End of switch. */
 956	}
 957
 958	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
 959}
 960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 961/* When 'last' is true, sample() should always consume the 'skb'.
 962 * Otherwise, sample() should keep 'skb' intact regardless what
 963 * actions are executed within sample().
 964 */
 965static int sample(struct datapath *dp, struct sk_buff *skb,
 966		  struct sw_flow_key *key, const struct nlattr *attr,
 967		  bool last)
 968{
 969	struct nlattr *actions;
 970	struct nlattr *sample_arg;
 971	int rem = nla_len(attr);
 972	const struct sample_arg *arg;
 973	bool clone_flow_key;
 974
 975	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
 976	sample_arg = nla_data(attr);
 977	arg = nla_data(sample_arg);
 978	actions = nla_next(sample_arg, &rem);
 979
 980	if ((arg->probability != U32_MAX) &&
 981	    (!arg->probability || prandom_u32() > arg->probability)) {
 982		if (last)
 983			consume_skb(skb);
 984		return 0;
 985	}
 986
 987	clone_flow_key = !arg->exec;
 988	return clone_execute(dp, skb, key, 0, actions, rem, last,
 989			     clone_flow_key);
 990}
 991
 992/* When 'last' is true, clone() should always consume the 'skb'.
 993 * Otherwise, clone() should keep 'skb' intact regardless what
 994 * actions are executed within clone().
 995 */
 996static int clone(struct datapath *dp, struct sk_buff *skb,
 997		 struct sw_flow_key *key, const struct nlattr *attr,
 998		 bool last)
 999{
1000	struct nlattr *actions;
1001	struct nlattr *clone_arg;
1002	int rem = nla_len(attr);
1003	bool dont_clone_flow_key;
1004
1005	/* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1006	clone_arg = nla_data(attr);
1007	dont_clone_flow_key = nla_get_u32(clone_arg);
1008	actions = nla_next(clone_arg, &rem);
1009
1010	return clone_execute(dp, skb, key, 0, actions, rem, last,
1011			     !dont_clone_flow_key);
1012}
1013
1014static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1015			 const struct nlattr *attr)
1016{
1017	struct ovs_action_hash *hash_act = nla_data(attr);
1018	u32 hash = 0;
1019
1020	/* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
1021	hash = skb_get_hash(skb);
 
 
 
 
 
 
 
 
1022	hash = jhash_1word(hash, hash_act->hash_basis);
1023	if (!hash)
1024		hash = 0x1;
1025
1026	key->ovs_flow_hash = hash;
1027}
1028
1029static int execute_set_action(struct sk_buff *skb,
1030			      struct sw_flow_key *flow_key,
1031			      const struct nlattr *a)
1032{
1033	/* Only tunnel set execution is supported without a mask. */
1034	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1035		struct ovs_tunnel_info *tun = nla_data(a);
1036
1037		skb_dst_drop(skb);
1038		dst_hold((struct dst_entry *)tun->tun_dst);
1039		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1040		return 0;
1041	}
1042
1043	return -EINVAL;
1044}
1045
1046/* Mask is at the midpoint of the data. */
1047#define get_mask(a, type) ((const type)nla_data(a) + 1)
1048
1049static int execute_masked_set_action(struct sk_buff *skb,
1050				     struct sw_flow_key *flow_key,
1051				     const struct nlattr *a)
1052{
1053	int err = 0;
1054
1055	switch (nla_type(a)) {
1056	case OVS_KEY_ATTR_PRIORITY:
1057		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1058			       *get_mask(a, u32 *));
1059		flow_key->phy.priority = skb->priority;
1060		break;
1061
1062	case OVS_KEY_ATTR_SKB_MARK:
1063		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1064		flow_key->phy.skb_mark = skb->mark;
1065		break;
1066
1067	case OVS_KEY_ATTR_TUNNEL_INFO:
1068		/* Masked data not supported for tunnel. */
1069		err = -EINVAL;
1070		break;
1071
1072	case OVS_KEY_ATTR_ETHERNET:
1073		err = set_eth_addr(skb, flow_key, nla_data(a),
1074				   get_mask(a, struct ovs_key_ethernet *));
1075		break;
1076
1077	case OVS_KEY_ATTR_NSH:
1078		err = set_nsh(skb, flow_key, a);
1079		break;
1080
1081	case OVS_KEY_ATTR_IPV4:
1082		err = set_ipv4(skb, flow_key, nla_data(a),
1083			       get_mask(a, struct ovs_key_ipv4 *));
1084		break;
1085
1086	case OVS_KEY_ATTR_IPV6:
1087		err = set_ipv6(skb, flow_key, nla_data(a),
1088			       get_mask(a, struct ovs_key_ipv6 *));
1089		break;
1090
1091	case OVS_KEY_ATTR_TCP:
1092		err = set_tcp(skb, flow_key, nla_data(a),
1093			      get_mask(a, struct ovs_key_tcp *));
1094		break;
1095
1096	case OVS_KEY_ATTR_UDP:
1097		err = set_udp(skb, flow_key, nla_data(a),
1098			      get_mask(a, struct ovs_key_udp *));
1099		break;
1100
1101	case OVS_KEY_ATTR_SCTP:
1102		err = set_sctp(skb, flow_key, nla_data(a),
1103			       get_mask(a, struct ovs_key_sctp *));
1104		break;
1105
1106	case OVS_KEY_ATTR_MPLS:
1107		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1108								    __be32 *));
1109		break;
1110
1111	case OVS_KEY_ATTR_CT_STATE:
1112	case OVS_KEY_ATTR_CT_ZONE:
1113	case OVS_KEY_ATTR_CT_MARK:
1114	case OVS_KEY_ATTR_CT_LABELS:
1115	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1116	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1117		err = -EINVAL;
1118		break;
1119	}
1120
1121	return err;
1122}
1123
1124static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1125			  struct sw_flow_key *key,
1126			  const struct nlattr *a, bool last)
1127{
1128	u32 recirc_id;
1129
1130	if (!is_flow_key_valid(key)) {
1131		int err;
1132
1133		err = ovs_flow_key_update(skb, key);
1134		if (err)
1135			return err;
1136	}
1137	BUG_ON(!is_flow_key_valid(key));
1138
1139	recirc_id = nla_get_u32(a);
1140	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1141}
1142
1143static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1144				 struct sw_flow_key *key,
1145				 const struct nlattr *attr, bool last)
1146{
 
1147	const struct nlattr *actions, *cpl_arg;
 
1148	const struct check_pkt_len_arg *arg;
1149	int rem = nla_len(attr);
1150	bool clone_flow_key;
1151
1152	/* The first netlink attribute in 'attr' is always
1153	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1154	 */
1155	cpl_arg = nla_data(attr);
1156	arg = nla_data(cpl_arg);
1157
1158	if (skb->len <= arg->pkt_len) {
 
 
 
 
1159		/* Second netlink attribute in 'attr' is always
1160		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1161		 */
1162		actions = nla_next(cpl_arg, &rem);
1163		clone_flow_key = !arg->exec_for_lesser_equal;
1164	} else {
1165		/* Third netlink attribute in 'attr' is always
1166		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1167		 */
1168		actions = nla_next(cpl_arg, &rem);
1169		actions = nla_next(actions, &rem);
1170		clone_flow_key = !arg->exec_for_greater;
1171	}
1172
1173	return clone_execute(dp, skb, key, 0, nla_data(actions),
1174			     nla_len(actions), last, clone_flow_key);
1175}
1176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1177/* Execute a list of actions against 'skb'. */
1178static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1179			      struct sw_flow_key *key,
1180			      const struct nlattr *attr, int len)
1181{
1182	const struct nlattr *a;
1183	int rem;
1184
1185	for (a = attr, rem = len; rem > 0;
1186	     a = nla_next(a, &rem)) {
1187		int err = 0;
1188
 
 
 
 
 
 
1189		switch (nla_type(a)) {
1190		case OVS_ACTION_ATTR_OUTPUT: {
1191			int port = nla_get_u32(a);
1192			struct sk_buff *clone;
1193
1194			/* Every output action needs a separate clone
1195			 * of 'skb', In case the output action is the
1196			 * last action, cloning can be avoided.
1197			 */
1198			if (nla_is_last(a, rem)) {
1199				do_output(dp, skb, port, key);
1200				/* 'skb' has been used for output.
1201				 */
1202				return 0;
1203			}
1204
1205			clone = skb_clone(skb, GFP_ATOMIC);
1206			if (clone)
1207				do_output(dp, clone, port, key);
1208			OVS_CB(skb)->cutlen = 0;
1209			break;
1210		}
1211
1212		case OVS_ACTION_ATTR_TRUNC: {
1213			struct ovs_action_trunc *trunc = nla_data(a);
1214
1215			if (skb->len > trunc->max_len)
1216				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1217			break;
1218		}
1219
1220		case OVS_ACTION_ATTR_USERSPACE:
1221			output_userspace(dp, skb, key, a, attr,
1222						     len, OVS_CB(skb)->cutlen);
1223			OVS_CB(skb)->cutlen = 0;
 
 
 
 
1224			break;
1225
1226		case OVS_ACTION_ATTR_HASH:
1227			execute_hash(skb, key, a);
1228			break;
1229
1230		case OVS_ACTION_ATTR_PUSH_MPLS:
1231			err = push_mpls(skb, key, nla_data(a));
 
 
 
1232			break;
 
 
 
 
 
 
 
1233
 
 
 
 
1234		case OVS_ACTION_ATTR_POP_MPLS:
1235			err = pop_mpls(skb, key, nla_get_be16(a));
1236			break;
1237
1238		case OVS_ACTION_ATTR_PUSH_VLAN:
1239			err = push_vlan(skb, key, nla_data(a));
1240			break;
1241
1242		case OVS_ACTION_ATTR_POP_VLAN:
1243			err = pop_vlan(skb, key);
1244			break;
1245
1246		case OVS_ACTION_ATTR_RECIRC: {
1247			bool last = nla_is_last(a, rem);
1248
1249			err = execute_recirc(dp, skb, key, a, last);
1250			if (last) {
1251				/* If this is the last action, the skb has
1252				 * been consumed or freed.
1253				 * Return immediately.
1254				 */
1255				return err;
1256			}
1257			break;
1258		}
1259
1260		case OVS_ACTION_ATTR_SET:
1261			err = execute_set_action(skb, key, nla_data(a));
1262			break;
1263
1264		case OVS_ACTION_ATTR_SET_MASKED:
1265		case OVS_ACTION_ATTR_SET_TO_MASKED:
1266			err = execute_masked_set_action(skb, key, nla_data(a));
1267			break;
1268
1269		case OVS_ACTION_ATTR_SAMPLE: {
1270			bool last = nla_is_last(a, rem);
1271
1272			err = sample(dp, skb, key, a, last);
1273			if (last)
1274				return err;
1275
1276			break;
1277		}
1278
1279		case OVS_ACTION_ATTR_CT:
1280			if (!is_flow_key_valid(key)) {
1281				err = ovs_flow_key_update(skb, key);
1282				if (err)
1283					return err;
1284			}
1285
1286			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1287					     nla_data(a));
1288
1289			/* Hide stolen IP fragments from user space. */
1290			if (err)
1291				return err == -EINPROGRESS ? 0 : err;
1292			break;
1293
1294		case OVS_ACTION_ATTR_CT_CLEAR:
1295			err = ovs_ct_clear(skb, key);
1296			break;
1297
1298		case OVS_ACTION_ATTR_PUSH_ETH:
1299			err = push_eth(skb, key, nla_data(a));
1300			break;
1301
1302		case OVS_ACTION_ATTR_POP_ETH:
1303			err = pop_eth(skb, key);
1304			break;
1305
1306		case OVS_ACTION_ATTR_PUSH_NSH: {
1307			u8 buffer[NSH_HDR_MAX_LEN];
1308			struct nshhdr *nh = (struct nshhdr *)buffer;
1309
1310			err = nsh_hdr_from_nlattr(nla_data(a), nh,
1311						  NSH_HDR_MAX_LEN);
1312			if (unlikely(err))
1313				break;
1314			err = push_nsh(skb, key, nh);
1315			break;
1316		}
1317
1318		case OVS_ACTION_ATTR_POP_NSH:
1319			err = pop_nsh(skb, key);
1320			break;
1321
1322		case OVS_ACTION_ATTR_METER:
1323			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1324				consume_skb(skb);
1325				return 0;
1326			}
1327			break;
1328
1329		case OVS_ACTION_ATTR_CLONE: {
1330			bool last = nla_is_last(a, rem);
1331
1332			err = clone(dp, skb, key, a, last);
1333			if (last)
1334				return err;
1335
1336			break;
1337		}
1338
1339		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1340			bool last = nla_is_last(a, rem);
1341
1342			err = execute_check_pkt_len(dp, skb, key, a, last);
1343			if (last)
1344				return err;
1345
1346			break;
1347		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1348		}
1349
1350		if (unlikely(err)) {
1351			kfree_skb(skb);
1352			return err;
1353		}
1354	}
1355
1356	consume_skb(skb);
1357	return 0;
1358}
1359
1360/* Execute the actions on the clone of the packet. The effect of the
1361 * execution does not affect the original 'skb' nor the original 'key'.
1362 *
1363 * The execution may be deferred in case the actions can not be executed
1364 * immediately.
1365 */
1366static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1367			 struct sw_flow_key *key, u32 recirc_id,
1368			 const struct nlattr *actions, int len,
1369			 bool last, bool clone_flow_key)
1370{
1371	struct deferred_action *da;
1372	struct sw_flow_key *clone;
1373
1374	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1375	if (!skb) {
1376		/* Out of memory, skip this action.
1377		 */
1378		return 0;
1379	}
1380
1381	/* When clone_flow_key is false, the 'key' will not be change
1382	 * by the actions, then the 'key' can be used directly.
1383	 * Otherwise, try to clone key from the next recursion level of
1384	 * 'flow_keys'. If clone is successful, execute the actions
1385	 * without deferring.
1386	 */
1387	clone = clone_flow_key ? clone_key(key) : key;
1388	if (clone) {
1389		int err = 0;
1390
1391		if (actions) { /* Sample action */
1392			if (clone_flow_key)
1393				__this_cpu_inc(exec_actions_level);
1394
1395			err = do_execute_actions(dp, skb, clone,
1396						 actions, len);
1397
1398			if (clone_flow_key)
1399				__this_cpu_dec(exec_actions_level);
1400		} else { /* Recirc action */
1401			clone->recirc_id = recirc_id;
1402			ovs_dp_process_packet(skb, clone);
1403		}
1404		return err;
1405	}
1406
1407	/* Out of 'flow_keys' space. Defer actions */
1408	da = add_deferred_actions(skb, key, actions, len);
1409	if (da) {
1410		if (!actions) { /* Recirc action */
1411			key = &da->pkt_key;
1412			key->recirc_id = recirc_id;
1413		}
1414	} else {
1415		/* Out of per CPU action FIFO space. Drop the 'skb' and
1416		 * log an error.
1417		 */
1418		kfree_skb(skb);
1419
1420		if (net_ratelimit()) {
1421			if (actions) { /* Sample action */
1422				pr_warn("%s: deferred action limit reached, drop sample action\n",
1423					ovs_dp_name(dp));
1424			} else {  /* Recirc action */
1425				pr_warn("%s: deferred action limit reached, drop recirc action\n",
1426					ovs_dp_name(dp));
1427			}
1428		}
1429	}
1430	return 0;
1431}
1432
1433static void process_deferred_actions(struct datapath *dp)
1434{
1435	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1436
1437	/* Do not touch the FIFO in case there is no deferred actions. */
1438	if (action_fifo_is_empty(fifo))
1439		return;
1440
1441	/* Finishing executing all deferred actions. */
1442	do {
1443		struct deferred_action *da = action_fifo_get(fifo);
1444		struct sk_buff *skb = da->skb;
1445		struct sw_flow_key *key = &da->pkt_key;
1446		const struct nlattr *actions = da->actions;
1447		int actions_len = da->actions_len;
1448
1449		if (actions)
1450			do_execute_actions(dp, skb, key, actions, actions_len);
1451		else
1452			ovs_dp_process_packet(skb, key);
1453	} while (!action_fifo_is_empty(fifo));
1454
1455	/* Reset FIFO for the next packet.  */
1456	action_fifo_init(fifo);
1457}
1458
1459/* Execute a list of actions against 'skb'. */
1460int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1461			const struct sw_flow_actions *acts,
1462			struct sw_flow_key *key)
1463{
1464	int err, level;
1465
1466	level = __this_cpu_inc_return(exec_actions_level);
1467	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1468		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1469				     ovs_dp_name(dp));
1470		kfree_skb(skb);
1471		err = -ENETDOWN;
1472		goto out;
1473	}
1474
1475	OVS_CB(skb)->acts_origlen = acts->orig_len;
1476	err = do_execute_actions(dp, skb, key,
1477				 acts->actions, acts->actions_len);
1478
1479	if (level == 1)
1480		process_deferred_actions(dp);
1481
1482out:
1483	__this_cpu_dec(exec_actions_level);
1484	return err;
1485}
1486
1487int action_fifos_init(void)
1488{
1489	action_fifos = alloc_percpu(struct action_fifo);
1490	if (!action_fifos)
1491		return -ENOMEM;
1492
1493	flow_keys = alloc_percpu(struct action_flow_keys);
1494	if (!flow_keys) {
1495		free_percpu(action_fifos);
1496		return -ENOMEM;
1497	}
1498
1499	return 0;
1500}
1501
1502void action_fifos_exit(void)
1503{
1504	free_percpu(action_fifos);
1505	free_percpu(flow_keys);
1506}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2007-2017 Nicira, Inc.
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/skbuff.h>
   9#include <linux/in.h>
  10#include <linux/ip.h>
  11#include <linux/openvswitch.h>
 
  12#include <linux/sctp.h>
  13#include <linux/tcp.h>
  14#include <linux/udp.h>
  15#include <linux/in6.h>
  16#include <linux/if_arp.h>
  17#include <linux/if_vlan.h>
  18
  19#include <net/dst.h>
  20#include <net/gso.h>
  21#include <net/ip.h>
  22#include <net/ipv6.h>
  23#include <net/ip6_fib.h>
  24#include <net/checksum.h>
  25#include <net/dsfield.h>
  26#include <net/mpls.h>
  27#include <net/sctp/checksum.h>
  28
  29#include "datapath.h"
  30#include "drop.h"
  31#include "flow.h"
  32#include "conntrack.h"
  33#include "vport.h"
  34#include "flow_netlink.h"
  35#include "openvswitch_trace.h"
  36
  37struct deferred_action {
  38	struct sk_buff *skb;
  39	const struct nlattr *actions;
  40	int actions_len;
  41
  42	/* Store pkt_key clone when creating deferred action. */
  43	struct sw_flow_key pkt_key;
  44};
  45
  46#define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
  47struct ovs_frag_data {
  48	unsigned long dst;
  49	struct vport *vport;
  50	struct ovs_skb_cb cb;
  51	__be16 inner_protocol;
  52	u16 network_offset;	/* valid only for MPLS */
  53	u16 vlan_tci;
  54	__be16 vlan_proto;
  55	unsigned int l2_len;
  56	u8 mac_proto;
  57	u8 l2_data[MAX_L2_LEN];
  58};
  59
  60static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
  61
  62#define DEFERRED_ACTION_FIFO_SIZE 10
  63#define OVS_RECURSION_LIMIT 5
  64#define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
  65struct action_fifo {
  66	int head;
  67	int tail;
  68	/* Deferred action fifo queue storage. */
  69	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
  70};
  71
  72struct action_flow_keys {
  73	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
  74};
  75
  76static struct action_fifo __percpu *action_fifos;
  77static struct action_flow_keys __percpu *flow_keys;
  78static DEFINE_PER_CPU(int, exec_actions_level);
  79
  80/* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
  81 * space. Return NULL if out of key spaces.
  82 */
  83static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
  84{
  85	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
  86	int level = this_cpu_read(exec_actions_level);
  87	struct sw_flow_key *key = NULL;
  88
  89	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
  90		key = &keys->key[level - 1];
  91		*key = *key_;
  92	}
  93
  94	return key;
  95}
  96
  97static void action_fifo_init(struct action_fifo *fifo)
  98{
  99	fifo->head = 0;
 100	fifo->tail = 0;
 101}
 102
 103static bool action_fifo_is_empty(const struct action_fifo *fifo)
 104{
 105	return (fifo->head == fifo->tail);
 106}
 107
 108static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
 109{
 110	if (action_fifo_is_empty(fifo))
 111		return NULL;
 112
 113	return &fifo->fifo[fifo->tail++];
 114}
 115
 116static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
 117{
 118	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
 119		return NULL;
 120
 121	return &fifo->fifo[fifo->head++];
 122}
 123
 124/* Return true if fifo is not full */
 125static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
 126				    const struct sw_flow_key *key,
 127				    const struct nlattr *actions,
 128				    const int actions_len)
 129{
 130	struct action_fifo *fifo;
 131	struct deferred_action *da;
 132
 133	fifo = this_cpu_ptr(action_fifos);
 134	da = action_fifo_put(fifo);
 135	if (da) {
 136		da->skb = skb;
 137		da->actions = actions;
 138		da->actions_len = actions_len;
 139		da->pkt_key = *key;
 140	}
 141
 142	return da;
 143}
 144
 145static void invalidate_flow_key(struct sw_flow_key *key)
 146{
 147	key->mac_proto |= SW_FLOW_KEY_INVALID;
 148}
 149
 150static bool is_flow_key_valid(const struct sw_flow_key *key)
 151{
 152	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
 153}
 154
 155static int clone_execute(struct datapath *dp, struct sk_buff *skb,
 156			 struct sw_flow_key *key,
 157			 u32 recirc_id,
 158			 const struct nlattr *actions, int len,
 159			 bool last, bool clone_flow_key);
 160
 161static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
 162			      struct sw_flow_key *key,
 163			      const struct nlattr *attr, int len);
 164
 165static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 166		     __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
 167{
 168	int err;
 169
 170	err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
 
 171	if (err)
 172		return err;
 173
 174	if (!mac_len)
 175		key->mac_proto = MAC_PROTO_NONE;
 176
 177	invalidate_flow_key(key);
 178	return 0;
 179}
 180
 181static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 182		    const __be16 ethertype)
 183{
 184	int err;
 185
 186	err = skb_mpls_pop(skb, ethertype, skb->mac_len,
 187			   ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
 188	if (err)
 189		return err;
 190
 191	if (ethertype == htons(ETH_P_TEB))
 192		key->mac_proto = MAC_PROTO_ETHERNET;
 193
 194	invalidate_flow_key(key);
 195	return 0;
 196}
 197
 198static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
 199		    const __be32 *mpls_lse, const __be32 *mask)
 200{
 201	struct mpls_shim_hdr *stack;
 202	__be32 lse;
 203	int err;
 204
 205	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
 206		return -ENOMEM;
 207
 208	stack = mpls_hdr(skb);
 209	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
 210	err = skb_mpls_update_lse(skb, lse);
 211	if (err)
 212		return err;
 213
 214	flow_key->mpls.lse[0] = lse;
 215	return 0;
 216}
 217
 218static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
 219{
 220	int err;
 221
 222	err = skb_vlan_pop(skb);
 223	if (skb_vlan_tag_present(skb)) {
 224		invalidate_flow_key(key);
 225	} else {
 226		key->eth.vlan.tci = 0;
 227		key->eth.vlan.tpid = 0;
 228	}
 229	return err;
 230}
 231
 232static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
 233		     const struct ovs_action_push_vlan *vlan)
 234{
 235	if (skb_vlan_tag_present(skb)) {
 236		invalidate_flow_key(key);
 237	} else {
 238		key->eth.vlan.tci = vlan->vlan_tci;
 239		key->eth.vlan.tpid = vlan->vlan_tpid;
 240	}
 241	return skb_vlan_push(skb, vlan->vlan_tpid,
 242			     ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
 243}
 244
 245/* 'src' is already properly masked. */
 246static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
 247{
 248	u16 *dst = (u16 *)dst_;
 249	const u16 *src = (const u16 *)src_;
 250	const u16 *mask = (const u16 *)mask_;
 251
 252	OVS_SET_MASKED(dst[0], src[0], mask[0]);
 253	OVS_SET_MASKED(dst[1], src[1], mask[1]);
 254	OVS_SET_MASKED(dst[2], src[2], mask[2]);
 255}
 256
 257static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
 258			const struct ovs_key_ethernet *key,
 259			const struct ovs_key_ethernet *mask)
 260{
 261	int err;
 262
 263	err = skb_ensure_writable(skb, ETH_HLEN);
 264	if (unlikely(err))
 265		return err;
 266
 267	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 268
 269	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
 270			       mask->eth_src);
 271	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
 272			       mask->eth_dst);
 273
 274	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 275
 276	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
 277	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
 278	return 0;
 279}
 280
 281/* pop_eth does not support VLAN packets as this action is never called
 282 * for them.
 283 */
 284static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
 285{
 286	int err;
 287
 288	err = skb_eth_pop(skb);
 289	if (err)
 290		return err;
 291
 292	/* safe right before invalidate_flow_key */
 293	key->mac_proto = MAC_PROTO_NONE;
 294	invalidate_flow_key(key);
 295	return 0;
 296}
 297
 298static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
 299		    const struct ovs_action_push_eth *ethh)
 300{
 301	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 302
 303	err = skb_eth_push(skb, ethh->addresses.eth_dst,
 304			   ethh->addresses.eth_src);
 305	if (err)
 306		return err;
 307
 308	/* safe right before invalidate_flow_key */
 309	key->mac_proto = MAC_PROTO_ETHERNET;
 310	invalidate_flow_key(key);
 311	return 0;
 312}
 313
 314static noinline_for_stack int push_nsh(struct sk_buff *skb,
 315				       struct sw_flow_key *key,
 316				       const struct nlattr *a)
 317{
 318	u8 buffer[NSH_HDR_MAX_LEN];
 319	struct nshhdr *nh = (struct nshhdr *)buffer;
 320	int err;
 321
 322	err = nsh_hdr_from_nlattr(a, nh, NSH_HDR_MAX_LEN);
 323	if (err)
 324		return err;
 325
 326	err = nsh_push(skb, nh);
 327	if (err)
 328		return err;
 329
 330	/* safe right before invalidate_flow_key */
 331	key->mac_proto = MAC_PROTO_NONE;
 332	invalidate_flow_key(key);
 333	return 0;
 334}
 335
 336static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
 337{
 338	int err;
 339
 340	err = nsh_pop(skb);
 341	if (err)
 342		return err;
 343
 344	/* safe right before invalidate_flow_key */
 345	if (skb->protocol == htons(ETH_P_TEB))
 346		key->mac_proto = MAC_PROTO_ETHERNET;
 347	else
 348		key->mac_proto = MAC_PROTO_NONE;
 349	invalidate_flow_key(key);
 350	return 0;
 351}
 352
 353static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
 354				  __be32 addr, __be32 new_addr)
 355{
 356	int transport_len = skb->len - skb_transport_offset(skb);
 357
 358	if (nh->frag_off & htons(IP_OFFSET))
 359		return;
 360
 361	if (nh->protocol == IPPROTO_TCP) {
 362		if (likely(transport_len >= sizeof(struct tcphdr)))
 363			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
 364						 addr, new_addr, true);
 365	} else if (nh->protocol == IPPROTO_UDP) {
 366		if (likely(transport_len >= sizeof(struct udphdr))) {
 367			struct udphdr *uh = udp_hdr(skb);
 368
 369			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 370				inet_proto_csum_replace4(&uh->check, skb,
 371							 addr, new_addr, true);
 372				if (!uh->check)
 373					uh->check = CSUM_MANGLED_0;
 374			}
 375		}
 376	}
 377}
 378
 379static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
 380			__be32 *addr, __be32 new_addr)
 381{
 382	update_ip_l4_checksum(skb, nh, *addr, new_addr);
 383	csum_replace4(&nh->check, *addr, new_addr);
 384	skb_clear_hash(skb);
 385	ovs_ct_clear(skb, NULL);
 386	*addr = new_addr;
 387}
 388
 389static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
 390				 __be32 addr[4], const __be32 new_addr[4])
 391{
 392	int transport_len = skb->len - skb_transport_offset(skb);
 393
 394	if (l4_proto == NEXTHDR_TCP) {
 395		if (likely(transport_len >= sizeof(struct tcphdr)))
 396			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
 397						  addr, new_addr, true);
 398	} else if (l4_proto == NEXTHDR_UDP) {
 399		if (likely(transport_len >= sizeof(struct udphdr))) {
 400			struct udphdr *uh = udp_hdr(skb);
 401
 402			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 403				inet_proto_csum_replace16(&uh->check, skb,
 404							  addr, new_addr, true);
 405				if (!uh->check)
 406					uh->check = CSUM_MANGLED_0;
 407			}
 408		}
 409	} else if (l4_proto == NEXTHDR_ICMP) {
 410		if (likely(transport_len >= sizeof(struct icmp6hdr)))
 411			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
 412						  skb, addr, new_addr, true);
 413	}
 414}
 415
 416static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
 417			   const __be32 mask[4], __be32 masked[4])
 418{
 419	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
 420	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
 421	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
 422	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
 423}
 424
 425static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
 426			  __be32 addr[4], const __be32 new_addr[4],
 427			  bool recalculate_csum)
 428{
 429	if (recalculate_csum)
 430		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
 431
 432	skb_clear_hash(skb);
 433	ovs_ct_clear(skb, NULL);
 434	memcpy(addr, new_addr, sizeof(__be32[4]));
 435}
 436
 437static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
 438{
 439	u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
 440
 441	ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
 442
 443	if (skb->ip_summed == CHECKSUM_COMPLETE)
 444		csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
 445			     (__force __wsum)(ipv6_tclass << 12));
 446
 447	ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
 448}
 449
 450static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
 451{
 452	u32 ofl;
 453
 454	ofl = nh->flow_lbl[0] << 16 |  nh->flow_lbl[1] << 8 |  nh->flow_lbl[2];
 455	fl = OVS_MASKED(ofl, fl, mask);
 456
 457	/* Bits 21-24 are always unmasked, so this retains their values. */
 458	nh->flow_lbl[0] = (u8)(fl >> 16);
 459	nh->flow_lbl[1] = (u8)(fl >> 8);
 460	nh->flow_lbl[2] = (u8)fl;
 461
 462	if (skb->ip_summed == CHECKSUM_COMPLETE)
 463		csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
 464}
 465
 466static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
 467{
 468	new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
 469
 470	if (skb->ip_summed == CHECKSUM_COMPLETE)
 471		csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
 472			     (__force __wsum)(new_ttl << 8));
 473	nh->hop_limit = new_ttl;
 474}
 475
 476static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
 477		       u8 mask)
 478{
 479	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
 480
 481	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
 482	nh->ttl = new_ttl;
 483}
 484
 485static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
 486		    const struct ovs_key_ipv4 *key,
 487		    const struct ovs_key_ipv4 *mask)
 488{
 489	struct iphdr *nh;
 490	__be32 new_addr;
 491	int err;
 492
 493	err = skb_ensure_writable(skb, skb_network_offset(skb) +
 494				  sizeof(struct iphdr));
 495	if (unlikely(err))
 496		return err;
 497
 498	nh = ip_hdr(skb);
 499
 500	/* Setting an IP addresses is typically only a side effect of
 501	 * matching on them in the current userspace implementation, so it
 502	 * makes sense to check if the value actually changed.
 503	 */
 504	if (mask->ipv4_src) {
 505		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
 506
 507		if (unlikely(new_addr != nh->saddr)) {
 508			set_ip_addr(skb, nh, &nh->saddr, new_addr);
 509			flow_key->ipv4.addr.src = new_addr;
 510		}
 511	}
 512	if (mask->ipv4_dst) {
 513		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
 514
 515		if (unlikely(new_addr != nh->daddr)) {
 516			set_ip_addr(skb, nh, &nh->daddr, new_addr);
 517			flow_key->ipv4.addr.dst = new_addr;
 518		}
 519	}
 520	if (mask->ipv4_tos) {
 521		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
 522		flow_key->ip.tos = nh->tos;
 523	}
 524	if (mask->ipv4_ttl) {
 525		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
 526		flow_key->ip.ttl = nh->ttl;
 527	}
 528
 529	return 0;
 530}
 531
 532static bool is_ipv6_mask_nonzero(const __be32 addr[4])
 533{
 534	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
 535}
 536
 537static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
 538		    const struct ovs_key_ipv6 *key,
 539		    const struct ovs_key_ipv6 *mask)
 540{
 541	struct ipv6hdr *nh;
 542	int err;
 543
 544	err = skb_ensure_writable(skb, skb_network_offset(skb) +
 545				  sizeof(struct ipv6hdr));
 546	if (unlikely(err))
 547		return err;
 548
 549	nh = ipv6_hdr(skb);
 550
 551	/* Setting an IP addresses is typically only a side effect of
 552	 * matching on them in the current userspace implementation, so it
 553	 * makes sense to check if the value actually changed.
 554	 */
 555	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
 556		__be32 *saddr = (__be32 *)&nh->saddr;
 557		__be32 masked[4];
 558
 559		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
 560
 561		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
 562			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
 563				      true);
 564			memcpy(&flow_key->ipv6.addr.src, masked,
 565			       sizeof(flow_key->ipv6.addr.src));
 566		}
 567	}
 568	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
 569		unsigned int offset = 0;
 570		int flags = IP6_FH_F_SKIP_RH;
 571		bool recalc_csum = true;
 572		__be32 *daddr = (__be32 *)&nh->daddr;
 573		__be32 masked[4];
 574
 575		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
 576
 577		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
 578			if (ipv6_ext_hdr(nh->nexthdr))
 579				recalc_csum = (ipv6_find_hdr(skb, &offset,
 580							     NEXTHDR_ROUTING,
 581							     NULL, &flags)
 582					       != NEXTHDR_ROUTING);
 583
 584			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
 585				      recalc_csum);
 586			memcpy(&flow_key->ipv6.addr.dst, masked,
 587			       sizeof(flow_key->ipv6.addr.dst));
 588		}
 589	}
 590	if (mask->ipv6_tclass) {
 591		set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
 592		flow_key->ip.tos = ipv6_get_dsfield(nh);
 593	}
 594	if (mask->ipv6_label) {
 595		set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
 596			    ntohl(mask->ipv6_label));
 597		flow_key->ipv6.label =
 598		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
 599	}
 600	if (mask->ipv6_hlimit) {
 601		set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
 
 602		flow_key->ip.ttl = nh->hop_limit;
 603	}
 604	return 0;
 605}
 606
 607static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
 608		   const struct nlattr *a)
 609{
 610	struct nshhdr *nh;
 611	size_t length;
 612	int err;
 613	u8 flags;
 614	u8 ttl;
 615	int i;
 616
 617	struct ovs_key_nsh key;
 618	struct ovs_key_nsh mask;
 619
 620	err = nsh_key_from_nlattr(a, &key, &mask);
 621	if (err)
 622		return err;
 623
 624	/* Make sure the NSH base header is there */
 625	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
 626		return -ENOMEM;
 627
 628	nh = nsh_hdr(skb);
 629	length = nsh_hdr_len(nh);
 630
 631	/* Make sure the whole NSH header is there */
 632	err = skb_ensure_writable(skb, skb_network_offset(skb) +
 633				       length);
 634	if (unlikely(err))
 635		return err;
 636
 637	nh = nsh_hdr(skb);
 638	skb_postpull_rcsum(skb, nh, length);
 639	flags = nsh_get_flags(nh);
 640	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
 641	flow_key->nsh.base.flags = flags;
 642	ttl = nsh_get_ttl(nh);
 643	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
 644	flow_key->nsh.base.ttl = ttl;
 645	nsh_set_flags_and_ttl(nh, flags, ttl);
 646	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
 647				  mask.base.path_hdr);
 648	flow_key->nsh.base.path_hdr = nh->path_hdr;
 649	switch (nh->mdtype) {
 650	case NSH_M_TYPE1:
 651		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
 652			nh->md1.context[i] =
 653			    OVS_MASKED(nh->md1.context[i], key.context[i],
 654				       mask.context[i]);
 655		}
 656		memcpy(flow_key->nsh.context, nh->md1.context,
 657		       sizeof(nh->md1.context));
 658		break;
 659	case NSH_M_TYPE2:
 660		memset(flow_key->nsh.context, 0,
 661		       sizeof(flow_key->nsh.context));
 662		break;
 663	default:
 664		return -EINVAL;
 665	}
 666	skb_postpush_rcsum(skb, nh, length);
 667	return 0;
 668}
 669
 670/* Must follow skb_ensure_writable() since that can move the skb data. */
 671static void set_tp_port(struct sk_buff *skb, __be16 *port,
 672			__be16 new_port, __sum16 *check)
 673{
 674	ovs_ct_clear(skb, NULL);
 675	inet_proto_csum_replace2(check, skb, *port, new_port, false);
 676	*port = new_port;
 677}
 678
 679static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 680		   const struct ovs_key_udp *key,
 681		   const struct ovs_key_udp *mask)
 682{
 683	struct udphdr *uh;
 684	__be16 src, dst;
 685	int err;
 686
 687	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 688				  sizeof(struct udphdr));
 689	if (unlikely(err))
 690		return err;
 691
 692	uh = udp_hdr(skb);
 693	/* Either of the masks is non-zero, so do not bother checking them. */
 694	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
 695	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
 696
 697	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
 698		if (likely(src != uh->source)) {
 699			set_tp_port(skb, &uh->source, src, &uh->check);
 700			flow_key->tp.src = src;
 701		}
 702		if (likely(dst != uh->dest)) {
 703			set_tp_port(skb, &uh->dest, dst, &uh->check);
 704			flow_key->tp.dst = dst;
 705		}
 706
 707		if (unlikely(!uh->check))
 708			uh->check = CSUM_MANGLED_0;
 709	} else {
 710		uh->source = src;
 711		uh->dest = dst;
 712		flow_key->tp.src = src;
 713		flow_key->tp.dst = dst;
 714		ovs_ct_clear(skb, NULL);
 715	}
 716
 717	skb_clear_hash(skb);
 718
 719	return 0;
 720}
 721
 722static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 723		   const struct ovs_key_tcp *key,
 724		   const struct ovs_key_tcp *mask)
 725{
 726	struct tcphdr *th;
 727	__be16 src, dst;
 728	int err;
 729
 730	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 731				  sizeof(struct tcphdr));
 732	if (unlikely(err))
 733		return err;
 734
 735	th = tcp_hdr(skb);
 736	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
 737	if (likely(src != th->source)) {
 738		set_tp_port(skb, &th->source, src, &th->check);
 739		flow_key->tp.src = src;
 740	}
 741	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
 742	if (likely(dst != th->dest)) {
 743		set_tp_port(skb, &th->dest, dst, &th->check);
 744		flow_key->tp.dst = dst;
 745	}
 746	skb_clear_hash(skb);
 747
 748	return 0;
 749}
 750
 751static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 752		    const struct ovs_key_sctp *key,
 753		    const struct ovs_key_sctp *mask)
 754{
 755	unsigned int sctphoff = skb_transport_offset(skb);
 756	struct sctphdr *sh;
 757	__le32 old_correct_csum, new_csum, old_csum;
 758	int err;
 759
 760	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
 761	if (unlikely(err))
 762		return err;
 763
 764	sh = sctp_hdr(skb);
 765	old_csum = sh->checksum;
 766	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
 767
 768	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
 769	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
 770
 771	new_csum = sctp_compute_cksum(skb, sctphoff);
 772
 773	/* Carry any checksum errors through. */
 774	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
 775
 776	skb_clear_hash(skb);
 777	ovs_ct_clear(skb, NULL);
 778
 779	flow_key->tp.src = sh->source;
 780	flow_key->tp.dst = sh->dest;
 781
 782	return 0;
 783}
 784
 785static int ovs_vport_output(struct net *net, struct sock *sk,
 786			    struct sk_buff *skb)
 787{
 788	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
 789	struct vport *vport = data->vport;
 790
 791	if (skb_cow_head(skb, data->l2_len) < 0) {
 792		kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM);
 793		return -ENOMEM;
 794	}
 795
 796	__skb_dst_copy(skb, data->dst);
 797	*OVS_CB(skb) = data->cb;
 798	skb->inner_protocol = data->inner_protocol;
 799	if (data->vlan_tci & VLAN_CFI_MASK)
 800		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
 801	else
 802		__vlan_hwaccel_clear_tag(skb);
 803
 804	/* Reconstruct the MAC header.  */
 805	skb_push(skb, data->l2_len);
 806	memcpy(skb->data, &data->l2_data, data->l2_len);
 807	skb_postpush_rcsum(skb, skb->data, data->l2_len);
 808	skb_reset_mac_header(skb);
 809
 810	if (eth_p_mpls(skb->protocol)) {
 811		skb->inner_network_header = skb->network_header;
 812		skb_set_network_header(skb, data->network_offset);
 813		skb_reset_mac_len(skb);
 814	}
 815
 816	ovs_vport_send(vport, skb, data->mac_proto);
 817	return 0;
 818}
 819
 820static unsigned int
 821ovs_dst_get_mtu(const struct dst_entry *dst)
 822{
 823	return dst->dev->mtu;
 824}
 825
 826static struct dst_ops ovs_dst_ops = {
 827	.family = AF_UNSPEC,
 828	.mtu = ovs_dst_get_mtu,
 829};
 830
 831/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
 832 * ovs_vport_output(), which is called once per fragmented packet.
 833 */
 834static void prepare_frag(struct vport *vport, struct sk_buff *skb,
 835			 u16 orig_network_offset, u8 mac_proto)
 836{
 837	unsigned int hlen = skb_network_offset(skb);
 838	struct ovs_frag_data *data;
 839
 840	data = this_cpu_ptr(&ovs_frag_data_storage);
 841	data->dst = skb->_skb_refdst;
 842	data->vport = vport;
 843	data->cb = *OVS_CB(skb);
 844	data->inner_protocol = skb->inner_protocol;
 845	data->network_offset = orig_network_offset;
 846	if (skb_vlan_tag_present(skb))
 847		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
 848	else
 849		data->vlan_tci = 0;
 850	data->vlan_proto = skb->vlan_proto;
 851	data->mac_proto = mac_proto;
 852	data->l2_len = hlen;
 853	memcpy(&data->l2_data, skb->data, hlen);
 854
 855	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 856	skb_pull(skb, hlen);
 857}
 858
 859static void ovs_fragment(struct net *net, struct vport *vport,
 860			 struct sk_buff *skb, u16 mru,
 861			 struct sw_flow_key *key)
 862{
 863	enum ovs_drop_reason reason;
 864	u16 orig_network_offset = 0;
 865
 866	if (eth_p_mpls(skb->protocol)) {
 867		orig_network_offset = skb_network_offset(skb);
 868		skb->network_header = skb->inner_network_header;
 869	}
 870
 871	if (skb_network_offset(skb) > MAX_L2_LEN) {
 872		OVS_NLERR(1, "L2 header too long to fragment");
 873		reason = OVS_DROP_FRAG_L2_TOO_LONG;
 874		goto err;
 875	}
 876
 877	if (key->eth.type == htons(ETH_P_IP)) {
 878		struct rtable ovs_rt = { 0 };
 879		unsigned long orig_dst;
 880
 881		prepare_frag(vport, skb, orig_network_offset,
 882			     ovs_key_mac_proto(key));
 883		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
 884			 DST_OBSOLETE_NONE, DST_NOCOUNT);
 885		ovs_rt.dst.dev = vport->dev;
 886
 887		orig_dst = skb->_skb_refdst;
 888		skb_dst_set_noref(skb, &ovs_rt.dst);
 889		IPCB(skb)->frag_max_size = mru;
 890
 891		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
 892		refdst_drop(orig_dst);
 893	} else if (key->eth.type == htons(ETH_P_IPV6)) {
 
 894		unsigned long orig_dst;
 895		struct rt6_info ovs_rt;
 896
 
 
 
 897		prepare_frag(vport, skb, orig_network_offset,
 898			     ovs_key_mac_proto(key));
 899		memset(&ovs_rt, 0, sizeof(ovs_rt));
 900		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
 901			 DST_OBSOLETE_NONE, DST_NOCOUNT);
 902		ovs_rt.dst.dev = vport->dev;
 903
 904		orig_dst = skb->_skb_refdst;
 905		skb_dst_set_noref(skb, &ovs_rt.dst);
 906		IP6CB(skb)->frag_max_size = mru;
 907
 908		ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
 909		refdst_drop(orig_dst);
 910	} else {
 911		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
 912			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
 913			  vport->dev->mtu);
 914		reason = OVS_DROP_FRAG_INVALID_PROTO;
 915		goto err;
 916	}
 917
 918	return;
 919err:
 920	ovs_kfree_skb_reason(skb, reason);
 921}
 922
 923static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
 924		      struct sw_flow_key *key)
 925{
 926	struct vport *vport = ovs_vport_rcu(dp, out_port);
 927
 928	if (likely(vport && netif_carrier_ok(vport->dev))) {
 929		u16 mru = OVS_CB(skb)->mru;
 930		u32 cutlen = OVS_CB(skb)->cutlen;
 931
 932		if (unlikely(cutlen > 0)) {
 933			if (skb->len - cutlen > ovs_mac_header_len(key))
 934				pskb_trim(skb, skb->len - cutlen);
 935			else
 936				pskb_trim(skb, ovs_mac_header_len(key));
 937		}
 938
 939		/* Need to set the pkt_type to involve the routing layer.  The
 940		 * packet movement through the OVS datapath doesn't generally
 941		 * use routing, but this is needed for tunnel cases.
 942		 */
 943		skb->pkt_type = PACKET_OUTGOING;
 944
 945		if (likely(!mru ||
 946		           (skb->len <= mru + vport->dev->hard_header_len))) {
 947			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
 948		} else if (mru <= vport->dev->mtu) {
 949			struct net *net = read_pnet(&dp->net);
 950
 951			ovs_fragment(net, vport, skb, mru, key);
 952		} else {
 953			kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
 954		}
 955	} else {
 956		kfree_skb_reason(skb, SKB_DROP_REASON_DEV_READY);
 957	}
 958}
 959
 960static int output_userspace(struct datapath *dp, struct sk_buff *skb,
 961			    struct sw_flow_key *key, const struct nlattr *attr,
 962			    const struct nlattr *actions, int actions_len,
 963			    uint32_t cutlen)
 964{
 965	struct dp_upcall_info upcall;
 966	const struct nlattr *a;
 967	int rem;
 968
 969	memset(&upcall, 0, sizeof(upcall));
 970	upcall.cmd = OVS_PACKET_CMD_ACTION;
 971	upcall.mru = OVS_CB(skb)->mru;
 972
 973	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
 974	     a = nla_next(a, &rem)) {
 975		switch (nla_type(a)) {
 976		case OVS_USERSPACE_ATTR_USERDATA:
 977			upcall.userdata = a;
 978			break;
 979
 980		case OVS_USERSPACE_ATTR_PID:
 981			if (dp->user_features &
 982			    OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
 983				upcall.portid =
 984				  ovs_dp_get_upcall_portid(dp,
 985							   smp_processor_id());
 986			else
 987				upcall.portid = nla_get_u32(a);
 988			break;
 989
 990		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
 991			/* Get out tunnel info. */
 992			struct vport *vport;
 993
 994			vport = ovs_vport_rcu(dp, nla_get_u32(a));
 995			if (vport) {
 996				int err;
 997
 998				err = dev_fill_metadata_dst(vport->dev, skb);
 999				if (!err)
1000					upcall.egress_tun_info = skb_tunnel_info(skb);
1001			}
1002
1003			break;
1004		}
1005
1006		case OVS_USERSPACE_ATTR_ACTIONS: {
1007			/* Include actions. */
1008			upcall.actions = actions;
1009			upcall.actions_len = actions_len;
1010			break;
1011		}
1012
1013		} /* End of switch. */
1014	}
1015
1016	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1017}
1018
1019static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
1020				     struct sw_flow_key *key,
1021				     const struct nlattr *attr)
1022{
1023	/* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
1024	struct nlattr *actions = nla_data(attr);
1025
1026	if (nla_len(actions))
1027		return clone_execute(dp, skb, key, 0, nla_data(actions),
1028				     nla_len(actions), true, false);
1029
1030	ovs_kfree_skb_reason(skb, OVS_DROP_IP_TTL);
1031	return 0;
1032}
1033
1034/* When 'last' is true, sample() should always consume the 'skb'.
1035 * Otherwise, sample() should keep 'skb' intact regardless what
1036 * actions are executed within sample().
1037 */
1038static int sample(struct datapath *dp, struct sk_buff *skb,
1039		  struct sw_flow_key *key, const struct nlattr *attr,
1040		  bool last)
1041{
1042	struct nlattr *actions;
1043	struct nlattr *sample_arg;
1044	int rem = nla_len(attr);
1045	const struct sample_arg *arg;
1046	bool clone_flow_key;
1047
1048	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1049	sample_arg = nla_data(attr);
1050	arg = nla_data(sample_arg);
1051	actions = nla_next(sample_arg, &rem);
1052
1053	if ((arg->probability != U32_MAX) &&
1054	    (!arg->probability || get_random_u32() > arg->probability)) {
1055		if (last)
1056			ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1057		return 0;
1058	}
1059
1060	clone_flow_key = !arg->exec;
1061	return clone_execute(dp, skb, key, 0, actions, rem, last,
1062			     clone_flow_key);
1063}
1064
1065/* When 'last' is true, clone() should always consume the 'skb'.
1066 * Otherwise, clone() should keep 'skb' intact regardless what
1067 * actions are executed within clone().
1068 */
1069static int clone(struct datapath *dp, struct sk_buff *skb,
1070		 struct sw_flow_key *key, const struct nlattr *attr,
1071		 bool last)
1072{
1073	struct nlattr *actions;
1074	struct nlattr *clone_arg;
1075	int rem = nla_len(attr);
1076	bool dont_clone_flow_key;
1077
1078	/* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
1079	clone_arg = nla_data(attr);
1080	dont_clone_flow_key = nla_get_u32(clone_arg);
1081	actions = nla_next(clone_arg, &rem);
1082
1083	return clone_execute(dp, skb, key, 0, actions, rem, last,
1084			     !dont_clone_flow_key);
1085}
1086
1087static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1088			 const struct nlattr *attr)
1089{
1090	struct ovs_action_hash *hash_act = nla_data(attr);
1091	u32 hash = 0;
1092
1093	if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
1094		/* OVS_HASH_ALG_L4 hasing type. */
1095		hash = skb_get_hash(skb);
1096	} else if (hash_act->hash_alg == OVS_HASH_ALG_SYM_L4) {
1097		/* OVS_HASH_ALG_SYM_L4 hashing type.  NOTE: this doesn't
1098		 * extend past an encapsulated header.
1099		 */
1100		hash = __skb_get_hash_symmetric(skb);
1101	}
1102
1103	hash = jhash_1word(hash, hash_act->hash_basis);
1104	if (!hash)
1105		hash = 0x1;
1106
1107	key->ovs_flow_hash = hash;
1108}
1109
1110static int execute_set_action(struct sk_buff *skb,
1111			      struct sw_flow_key *flow_key,
1112			      const struct nlattr *a)
1113{
1114	/* Only tunnel set execution is supported without a mask. */
1115	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1116		struct ovs_tunnel_info *tun = nla_data(a);
1117
1118		skb_dst_drop(skb);
1119		dst_hold((struct dst_entry *)tun->tun_dst);
1120		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1121		return 0;
1122	}
1123
1124	return -EINVAL;
1125}
1126
1127/* Mask is at the midpoint of the data. */
1128#define get_mask(a, type) ((const type)nla_data(a) + 1)
1129
1130static int execute_masked_set_action(struct sk_buff *skb,
1131				     struct sw_flow_key *flow_key,
1132				     const struct nlattr *a)
1133{
1134	int err = 0;
1135
1136	switch (nla_type(a)) {
1137	case OVS_KEY_ATTR_PRIORITY:
1138		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1139			       *get_mask(a, u32 *));
1140		flow_key->phy.priority = skb->priority;
1141		break;
1142
1143	case OVS_KEY_ATTR_SKB_MARK:
1144		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1145		flow_key->phy.skb_mark = skb->mark;
1146		break;
1147
1148	case OVS_KEY_ATTR_TUNNEL_INFO:
1149		/* Masked data not supported for tunnel. */
1150		err = -EINVAL;
1151		break;
1152
1153	case OVS_KEY_ATTR_ETHERNET:
1154		err = set_eth_addr(skb, flow_key, nla_data(a),
1155				   get_mask(a, struct ovs_key_ethernet *));
1156		break;
1157
1158	case OVS_KEY_ATTR_NSH:
1159		err = set_nsh(skb, flow_key, a);
1160		break;
1161
1162	case OVS_KEY_ATTR_IPV4:
1163		err = set_ipv4(skb, flow_key, nla_data(a),
1164			       get_mask(a, struct ovs_key_ipv4 *));
1165		break;
1166
1167	case OVS_KEY_ATTR_IPV6:
1168		err = set_ipv6(skb, flow_key, nla_data(a),
1169			       get_mask(a, struct ovs_key_ipv6 *));
1170		break;
1171
1172	case OVS_KEY_ATTR_TCP:
1173		err = set_tcp(skb, flow_key, nla_data(a),
1174			      get_mask(a, struct ovs_key_tcp *));
1175		break;
1176
1177	case OVS_KEY_ATTR_UDP:
1178		err = set_udp(skb, flow_key, nla_data(a),
1179			      get_mask(a, struct ovs_key_udp *));
1180		break;
1181
1182	case OVS_KEY_ATTR_SCTP:
1183		err = set_sctp(skb, flow_key, nla_data(a),
1184			       get_mask(a, struct ovs_key_sctp *));
1185		break;
1186
1187	case OVS_KEY_ATTR_MPLS:
1188		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1189								    __be32 *));
1190		break;
1191
1192	case OVS_KEY_ATTR_CT_STATE:
1193	case OVS_KEY_ATTR_CT_ZONE:
1194	case OVS_KEY_ATTR_CT_MARK:
1195	case OVS_KEY_ATTR_CT_LABELS:
1196	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1197	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1198		err = -EINVAL;
1199		break;
1200	}
1201
1202	return err;
1203}
1204
1205static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1206			  struct sw_flow_key *key,
1207			  const struct nlattr *a, bool last)
1208{
1209	u32 recirc_id;
1210
1211	if (!is_flow_key_valid(key)) {
1212		int err;
1213
1214		err = ovs_flow_key_update(skb, key);
1215		if (err)
1216			return err;
1217	}
1218	BUG_ON(!is_flow_key_valid(key));
1219
1220	recirc_id = nla_get_u32(a);
1221	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1222}
1223
1224static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1225				 struct sw_flow_key *key,
1226				 const struct nlattr *attr, bool last)
1227{
1228	struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1229	const struct nlattr *actions, *cpl_arg;
1230	int len, max_len, rem = nla_len(attr);
1231	const struct check_pkt_len_arg *arg;
 
1232	bool clone_flow_key;
1233
1234	/* The first netlink attribute in 'attr' is always
1235	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1236	 */
1237	cpl_arg = nla_data(attr);
1238	arg = nla_data(cpl_arg);
1239
1240	len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1241	max_len = arg->pkt_len;
1242
1243	if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1244	    len <= max_len) {
1245		/* Second netlink attribute in 'attr' is always
1246		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1247		 */
1248		actions = nla_next(cpl_arg, &rem);
1249		clone_flow_key = !arg->exec_for_lesser_equal;
1250	} else {
1251		/* Third netlink attribute in 'attr' is always
1252		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1253		 */
1254		actions = nla_next(cpl_arg, &rem);
1255		actions = nla_next(actions, &rem);
1256		clone_flow_key = !arg->exec_for_greater;
1257	}
1258
1259	return clone_execute(dp, skb, key, 0, nla_data(actions),
1260			     nla_len(actions), last, clone_flow_key);
1261}
1262
1263static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1264{
1265	int err;
1266
1267	if (skb->protocol == htons(ETH_P_IPV6)) {
1268		struct ipv6hdr *nh;
1269
1270		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1271					  sizeof(*nh));
1272		if (unlikely(err))
1273			return err;
1274
1275		nh = ipv6_hdr(skb);
1276
1277		if (nh->hop_limit <= 1)
1278			return -EHOSTUNREACH;
1279
1280		key->ip.ttl = --nh->hop_limit;
1281	} else if (skb->protocol == htons(ETH_P_IP)) {
1282		struct iphdr *nh;
1283		u8 old_ttl;
1284
1285		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1286					  sizeof(*nh));
1287		if (unlikely(err))
1288			return err;
1289
1290		nh = ip_hdr(skb);
1291		if (nh->ttl <= 1)
1292			return -EHOSTUNREACH;
1293
1294		old_ttl = nh->ttl--;
1295		csum_replace2(&nh->check, htons(old_ttl << 8),
1296			      htons(nh->ttl << 8));
1297		key->ip.ttl = nh->ttl;
1298	}
1299	return 0;
1300}
1301
1302/* Execute a list of actions against 'skb'. */
1303static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1304			      struct sw_flow_key *key,
1305			      const struct nlattr *attr, int len)
1306{
1307	const struct nlattr *a;
1308	int rem;
1309
1310	for (a = attr, rem = len; rem > 0;
1311	     a = nla_next(a, &rem)) {
1312		int err = 0;
1313
1314		if (trace_ovs_do_execute_action_enabled())
1315			trace_ovs_do_execute_action(dp, skb, key, a, rem);
1316
1317		/* Actions that rightfully have to consume the skb should do it
1318		 * and return directly.
1319		 */
1320		switch (nla_type(a)) {
1321		case OVS_ACTION_ATTR_OUTPUT: {
1322			int port = nla_get_u32(a);
1323			struct sk_buff *clone;
1324
1325			/* Every output action needs a separate clone
1326			 * of 'skb', In case the output action is the
1327			 * last action, cloning can be avoided.
1328			 */
1329			if (nla_is_last(a, rem)) {
1330				do_output(dp, skb, port, key);
1331				/* 'skb' has been used for output.
1332				 */
1333				return 0;
1334			}
1335
1336			clone = skb_clone(skb, GFP_ATOMIC);
1337			if (clone)
1338				do_output(dp, clone, port, key);
1339			OVS_CB(skb)->cutlen = 0;
1340			break;
1341		}
1342
1343		case OVS_ACTION_ATTR_TRUNC: {
1344			struct ovs_action_trunc *trunc = nla_data(a);
1345
1346			if (skb->len > trunc->max_len)
1347				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1348			break;
1349		}
1350
1351		case OVS_ACTION_ATTR_USERSPACE:
1352			output_userspace(dp, skb, key, a, attr,
1353						     len, OVS_CB(skb)->cutlen);
1354			OVS_CB(skb)->cutlen = 0;
1355			if (nla_is_last(a, rem)) {
1356				consume_skb(skb);
1357				return 0;
1358			}
1359			break;
1360
1361		case OVS_ACTION_ATTR_HASH:
1362			execute_hash(skb, key, a);
1363			break;
1364
1365		case OVS_ACTION_ATTR_PUSH_MPLS: {
1366			struct ovs_action_push_mpls *mpls = nla_data(a);
1367
1368			err = push_mpls(skb, key, mpls->mpls_lse,
1369					mpls->mpls_ethertype, skb->mac_len);
1370			break;
1371		}
1372		case OVS_ACTION_ATTR_ADD_MPLS: {
1373			struct ovs_action_add_mpls *mpls = nla_data(a);
1374			__u16 mac_len = 0;
1375
1376			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1377				mac_len = skb->mac_len;
1378
1379			err = push_mpls(skb, key, mpls->mpls_lse,
1380					mpls->mpls_ethertype, mac_len);
1381			break;
1382		}
1383		case OVS_ACTION_ATTR_POP_MPLS:
1384			err = pop_mpls(skb, key, nla_get_be16(a));
1385			break;
1386
1387		case OVS_ACTION_ATTR_PUSH_VLAN:
1388			err = push_vlan(skb, key, nla_data(a));
1389			break;
1390
1391		case OVS_ACTION_ATTR_POP_VLAN:
1392			err = pop_vlan(skb, key);
1393			break;
1394
1395		case OVS_ACTION_ATTR_RECIRC: {
1396			bool last = nla_is_last(a, rem);
1397
1398			err = execute_recirc(dp, skb, key, a, last);
1399			if (last) {
1400				/* If this is the last action, the skb has
1401				 * been consumed or freed.
1402				 * Return immediately.
1403				 */
1404				return err;
1405			}
1406			break;
1407		}
1408
1409		case OVS_ACTION_ATTR_SET:
1410			err = execute_set_action(skb, key, nla_data(a));
1411			break;
1412
1413		case OVS_ACTION_ATTR_SET_MASKED:
1414		case OVS_ACTION_ATTR_SET_TO_MASKED:
1415			err = execute_masked_set_action(skb, key, nla_data(a));
1416			break;
1417
1418		case OVS_ACTION_ATTR_SAMPLE: {
1419			bool last = nla_is_last(a, rem);
1420
1421			err = sample(dp, skb, key, a, last);
1422			if (last)
1423				return err;
1424
1425			break;
1426		}
1427
1428		case OVS_ACTION_ATTR_CT:
1429			if (!is_flow_key_valid(key)) {
1430				err = ovs_flow_key_update(skb, key);
1431				if (err)
1432					return err;
1433			}
1434
1435			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1436					     nla_data(a));
1437
1438			/* Hide stolen IP fragments from user space. */
1439			if (err)
1440				return err == -EINPROGRESS ? 0 : err;
1441			break;
1442
1443		case OVS_ACTION_ATTR_CT_CLEAR:
1444			err = ovs_ct_clear(skb, key);
1445			break;
1446
1447		case OVS_ACTION_ATTR_PUSH_ETH:
1448			err = push_eth(skb, key, nla_data(a));
1449			break;
1450
1451		case OVS_ACTION_ATTR_POP_ETH:
1452			err = pop_eth(skb, key);
1453			break;
1454
1455		case OVS_ACTION_ATTR_PUSH_NSH:
1456			err = push_nsh(skb, key, nla_data(a));
 
 
 
 
 
 
 
1457			break;
 
1458
1459		case OVS_ACTION_ATTR_POP_NSH:
1460			err = pop_nsh(skb, key);
1461			break;
1462
1463		case OVS_ACTION_ATTR_METER:
1464			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1465				ovs_kfree_skb_reason(skb, OVS_DROP_METER);
1466				return 0;
1467			}
1468			break;
1469
1470		case OVS_ACTION_ATTR_CLONE: {
1471			bool last = nla_is_last(a, rem);
1472
1473			err = clone(dp, skb, key, a, last);
1474			if (last)
1475				return err;
1476
1477			break;
1478		}
1479
1480		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1481			bool last = nla_is_last(a, rem);
1482
1483			err = execute_check_pkt_len(dp, skb, key, a, last);
1484			if (last)
1485				return err;
1486
1487			break;
1488		}
1489
1490		case OVS_ACTION_ATTR_DEC_TTL:
1491			err = execute_dec_ttl(skb, key);
1492			if (err == -EHOSTUNREACH)
1493				return dec_ttl_exception_handler(dp, skb,
1494								 key, a);
1495			break;
1496
1497		case OVS_ACTION_ATTR_DROP: {
1498			enum ovs_drop_reason reason = nla_get_u32(a)
1499				? OVS_DROP_EXPLICIT_WITH_ERROR
1500				: OVS_DROP_EXPLICIT;
1501
1502			ovs_kfree_skb_reason(skb, reason);
1503			return 0;
1504		}
1505		}
1506
1507		if (unlikely(err)) {
1508			ovs_kfree_skb_reason(skb, OVS_DROP_ACTION_ERROR);
1509			return err;
1510		}
1511	}
1512
1513	ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1514	return 0;
1515}
1516
1517/* Execute the actions on the clone of the packet. The effect of the
1518 * execution does not affect the original 'skb' nor the original 'key'.
1519 *
1520 * The execution may be deferred in case the actions can not be executed
1521 * immediately.
1522 */
1523static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1524			 struct sw_flow_key *key, u32 recirc_id,
1525			 const struct nlattr *actions, int len,
1526			 bool last, bool clone_flow_key)
1527{
1528	struct deferred_action *da;
1529	struct sw_flow_key *clone;
1530
1531	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1532	if (!skb) {
1533		/* Out of memory, skip this action.
1534		 */
1535		return 0;
1536	}
1537
1538	/* When clone_flow_key is false, the 'key' will not be change
1539	 * by the actions, then the 'key' can be used directly.
1540	 * Otherwise, try to clone key from the next recursion level of
1541	 * 'flow_keys'. If clone is successful, execute the actions
1542	 * without deferring.
1543	 */
1544	clone = clone_flow_key ? clone_key(key) : key;
1545	if (clone) {
1546		int err = 0;
1547
1548		if (actions) { /* Sample action */
1549			if (clone_flow_key)
1550				__this_cpu_inc(exec_actions_level);
1551
1552			err = do_execute_actions(dp, skb, clone,
1553						 actions, len);
1554
1555			if (clone_flow_key)
1556				__this_cpu_dec(exec_actions_level);
1557		} else { /* Recirc action */
1558			clone->recirc_id = recirc_id;
1559			ovs_dp_process_packet(skb, clone);
1560		}
1561		return err;
1562	}
1563
1564	/* Out of 'flow_keys' space. Defer actions */
1565	da = add_deferred_actions(skb, key, actions, len);
1566	if (da) {
1567		if (!actions) { /* Recirc action */
1568			key = &da->pkt_key;
1569			key->recirc_id = recirc_id;
1570		}
1571	} else {
1572		/* Out of per CPU action FIFO space. Drop the 'skb' and
1573		 * log an error.
1574		 */
1575		ovs_kfree_skb_reason(skb, OVS_DROP_DEFERRED_LIMIT);
1576
1577		if (net_ratelimit()) {
1578			if (actions) { /* Sample action */
1579				pr_warn("%s: deferred action limit reached, drop sample action\n",
1580					ovs_dp_name(dp));
1581			} else {  /* Recirc action */
1582				pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
1583					ovs_dp_name(dp), recirc_id);
1584			}
1585		}
1586	}
1587	return 0;
1588}
1589
1590static void process_deferred_actions(struct datapath *dp)
1591{
1592	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1593
1594	/* Do not touch the FIFO in case there is no deferred actions. */
1595	if (action_fifo_is_empty(fifo))
1596		return;
1597
1598	/* Finishing executing all deferred actions. */
1599	do {
1600		struct deferred_action *da = action_fifo_get(fifo);
1601		struct sk_buff *skb = da->skb;
1602		struct sw_flow_key *key = &da->pkt_key;
1603		const struct nlattr *actions = da->actions;
1604		int actions_len = da->actions_len;
1605
1606		if (actions)
1607			do_execute_actions(dp, skb, key, actions, actions_len);
1608		else
1609			ovs_dp_process_packet(skb, key);
1610	} while (!action_fifo_is_empty(fifo));
1611
1612	/* Reset FIFO for the next packet.  */
1613	action_fifo_init(fifo);
1614}
1615
1616/* Execute a list of actions against 'skb'. */
1617int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1618			const struct sw_flow_actions *acts,
1619			struct sw_flow_key *key)
1620{
1621	int err, level;
1622
1623	level = __this_cpu_inc_return(exec_actions_level);
1624	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1625		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1626				     ovs_dp_name(dp));
1627		ovs_kfree_skb_reason(skb, OVS_DROP_RECURSION_LIMIT);
1628		err = -ENETDOWN;
1629		goto out;
1630	}
1631
1632	OVS_CB(skb)->acts_origlen = acts->orig_len;
1633	err = do_execute_actions(dp, skb, key,
1634				 acts->actions, acts->actions_len);
1635
1636	if (level == 1)
1637		process_deferred_actions(dp);
1638
1639out:
1640	__this_cpu_dec(exec_actions_level);
1641	return err;
1642}
1643
1644int action_fifos_init(void)
1645{
1646	action_fifos = alloc_percpu(struct action_fifo);
1647	if (!action_fifos)
1648		return -ENOMEM;
1649
1650	flow_keys = alloc_percpu(struct action_flow_keys);
1651	if (!flow_keys) {
1652		free_percpu(action_fifos);
1653		return -ENOMEM;
1654	}
1655
1656	return 0;
1657}
1658
1659void action_fifos_exit(void)
1660{
1661	free_percpu(action_fifos);
1662	free_percpu(flow_keys);
1663}