Linux Audio

Check our new training course

Loading...
v5.4
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3
   4   Copyright (C) 2014 Intel Corporation
   5
   6   This program is free software; you can redistribute it and/or modify
   7   it under the terms of the GNU General Public License version 2 as
   8   published by the Free Software Foundation;
   9
  10   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  11   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  12   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  13   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  14   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  15   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  16   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  17   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  18
  19   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  20   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  21   SOFTWARE IS DISCLAIMED.
  22*/
  23
  24#include <linux/sched/signal.h>
  25
  26#include <net/bluetooth/bluetooth.h>
  27#include <net/bluetooth/hci_core.h>
  28#include <net/bluetooth/mgmt.h>
  29
  30#include "smp.h"
  31#include "hci_request.h"
  32
  33#define HCI_REQ_DONE	  0
  34#define HCI_REQ_PEND	  1
  35#define HCI_REQ_CANCELED  2
  36
  37void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
  38{
  39	skb_queue_head_init(&req->cmd_q);
  40	req->hdev = hdev;
  41	req->err = 0;
  42}
  43
  44void hci_req_purge(struct hci_request *req)
  45{
  46	skb_queue_purge(&req->cmd_q);
  47}
  48
  49bool hci_req_status_pend(struct hci_dev *hdev)
  50{
  51	return hdev->req_status == HCI_REQ_PEND;
  52}
  53
  54static int req_run(struct hci_request *req, hci_req_complete_t complete,
  55		   hci_req_complete_skb_t complete_skb)
  56{
  57	struct hci_dev *hdev = req->hdev;
  58	struct sk_buff *skb;
  59	unsigned long flags;
  60
  61	BT_DBG("length %u", skb_queue_len(&req->cmd_q));
  62
  63	/* If an error occurred during request building, remove all HCI
  64	 * commands queued on the HCI request queue.
  65	 */
  66	if (req->err) {
  67		skb_queue_purge(&req->cmd_q);
  68		return req->err;
  69	}
  70
  71	/* Do not allow empty requests */
  72	if (skb_queue_empty(&req->cmd_q))
  73		return -ENODATA;
  74
  75	skb = skb_peek_tail(&req->cmd_q);
  76	if (complete) {
  77		bt_cb(skb)->hci.req_complete = complete;
  78	} else if (complete_skb) {
  79		bt_cb(skb)->hci.req_complete_skb = complete_skb;
  80		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
  81	}
  82
  83	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
  84	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
  85	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
  86
  87	queue_work(hdev->workqueue, &hdev->cmd_work);
  88
  89	return 0;
  90}
  91
  92int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
  93{
  94	return req_run(req, complete, NULL);
  95}
  96
  97int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
  98{
  99	return req_run(req, NULL, complete);
 100}
 101
 102static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
 103				  struct sk_buff *skb)
 104{
 105	BT_DBG("%s result 0x%2.2x", hdev->name, result);
 106
 107	if (hdev->req_status == HCI_REQ_PEND) {
 108		hdev->req_result = result;
 109		hdev->req_status = HCI_REQ_DONE;
 110		if (skb)
 
 111			hdev->req_skb = skb_get(skb);
 
 112		wake_up_interruptible(&hdev->req_wait_q);
 113	}
 114}
 115
 116void hci_req_sync_cancel(struct hci_dev *hdev, int err)
 117{
 118	BT_DBG("%s err 0x%2.2x", hdev->name, err);
 119
 120	if (hdev->req_status == HCI_REQ_PEND) {
 121		hdev->req_result = err;
 122		hdev->req_status = HCI_REQ_CANCELED;
 123		wake_up_interruptible(&hdev->req_wait_q);
 124	}
 125}
 126
 127struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
 128				  const void *param, u8 event, u32 timeout)
 129{
 130	struct hci_request req;
 131	struct sk_buff *skb;
 132	int err = 0;
 133
 134	BT_DBG("%s", hdev->name);
 135
 136	hci_req_init(&req, hdev);
 137
 138	hci_req_add_ev(&req, opcode, plen, param, event);
 139
 140	hdev->req_status = HCI_REQ_PEND;
 141
 142	err = hci_req_run_skb(&req, hci_req_sync_complete);
 143	if (err < 0)
 144		return ERR_PTR(err);
 145
 146	err = wait_event_interruptible_timeout(hdev->req_wait_q,
 147			hdev->req_status != HCI_REQ_PEND, timeout);
 148
 149	if (err == -ERESTARTSYS)
 150		return ERR_PTR(-EINTR);
 151
 152	switch (hdev->req_status) {
 153	case HCI_REQ_DONE:
 154		err = -bt_to_errno(hdev->req_result);
 155		break;
 156
 157	case HCI_REQ_CANCELED:
 158		err = -hdev->req_result;
 159		break;
 160
 161	default:
 162		err = -ETIMEDOUT;
 163		break;
 164	}
 165
 166	hdev->req_status = hdev->req_result = 0;
 167	skb = hdev->req_skb;
 168	hdev->req_skb = NULL;
 169
 170	BT_DBG("%s end: err %d", hdev->name, err);
 171
 172	if (err < 0) {
 173		kfree_skb(skb);
 174		return ERR_PTR(err);
 175	}
 176
 177	if (!skb)
 178		return ERR_PTR(-ENODATA);
 179
 180	return skb;
 181}
 182EXPORT_SYMBOL(__hci_cmd_sync_ev);
 183
 184struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
 185			       const void *param, u32 timeout)
 186{
 187	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
 188}
 189EXPORT_SYMBOL(__hci_cmd_sync);
 190
 191/* Execute request and wait for completion. */
 192int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
 193						     unsigned long opt),
 194		   unsigned long opt, u32 timeout, u8 *hci_status)
 195{
 196	struct hci_request req;
 197	int err = 0;
 198
 199	BT_DBG("%s start", hdev->name);
 200
 201	hci_req_init(&req, hdev);
 202
 203	hdev->req_status = HCI_REQ_PEND;
 204
 205	err = func(&req, opt);
 206	if (err) {
 207		if (hci_status)
 208			*hci_status = HCI_ERROR_UNSPECIFIED;
 209		return err;
 210	}
 211
 212	err = hci_req_run_skb(&req, hci_req_sync_complete);
 213	if (err < 0) {
 214		hdev->req_status = 0;
 215
 216		/* ENODATA means the HCI request command queue is empty.
 217		 * This can happen when a request with conditionals doesn't
 218		 * trigger any commands to be sent. This is normal behavior
 219		 * and should not trigger an error return.
 220		 */
 221		if (err == -ENODATA) {
 222			if (hci_status)
 223				*hci_status = 0;
 224			return 0;
 225		}
 226
 227		if (hci_status)
 228			*hci_status = HCI_ERROR_UNSPECIFIED;
 229
 230		return err;
 231	}
 232
 233	err = wait_event_interruptible_timeout(hdev->req_wait_q,
 234			hdev->req_status != HCI_REQ_PEND, timeout);
 235
 236	if (err == -ERESTARTSYS)
 237		return -EINTR;
 238
 239	switch (hdev->req_status) {
 240	case HCI_REQ_DONE:
 241		err = -bt_to_errno(hdev->req_result);
 242		if (hci_status)
 243			*hci_status = hdev->req_result;
 244		break;
 245
 246	case HCI_REQ_CANCELED:
 247		err = -hdev->req_result;
 248		if (hci_status)
 249			*hci_status = HCI_ERROR_UNSPECIFIED;
 250		break;
 251
 252	default:
 253		err = -ETIMEDOUT;
 254		if (hci_status)
 255			*hci_status = HCI_ERROR_UNSPECIFIED;
 256		break;
 257	}
 258
 259	kfree_skb(hdev->req_skb);
 260	hdev->req_skb = NULL;
 261	hdev->req_status = hdev->req_result = 0;
 262
 263	BT_DBG("%s end: err %d", hdev->name, err);
 264
 265	return err;
 266}
 267
 268int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
 269						  unsigned long opt),
 270		 unsigned long opt, u32 timeout, u8 *hci_status)
 271{
 272	int ret;
 273
 274	if (!test_bit(HCI_UP, &hdev->flags))
 275		return -ENETDOWN;
 276
 277	/* Serialize all requests */
 278	hci_req_sync_lock(hdev);
 279	ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
 
 
 
 
 
 
 
 280	hci_req_sync_unlock(hdev);
 281
 282	return ret;
 283}
 284
 285struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
 286				const void *param)
 287{
 288	int len = HCI_COMMAND_HDR_SIZE + plen;
 289	struct hci_command_hdr *hdr;
 290	struct sk_buff *skb;
 291
 292	skb = bt_skb_alloc(len, GFP_ATOMIC);
 293	if (!skb)
 294		return NULL;
 295
 296	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
 297	hdr->opcode = cpu_to_le16(opcode);
 298	hdr->plen   = plen;
 299
 300	if (plen)
 301		skb_put_data(skb, param, plen);
 302
 303	BT_DBG("skb len %d", skb->len);
 304
 305	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
 306	hci_skb_opcode(skb) = opcode;
 307
 308	return skb;
 309}
 310
 311/* Queue a command to an asynchronous HCI request */
 312void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
 313		    const void *param, u8 event)
 314{
 315	struct hci_dev *hdev = req->hdev;
 316	struct sk_buff *skb;
 317
 318	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
 319
 320	/* If an error occurred during request building, there is no point in
 321	 * queueing the HCI command. We can simply return.
 322	 */
 323	if (req->err)
 324		return;
 325
 326	skb = hci_prepare_cmd(hdev, opcode, plen, param);
 327	if (!skb) {
 328		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
 329			   opcode);
 330		req->err = -ENOMEM;
 331		return;
 332	}
 333
 334	if (skb_queue_empty(&req->cmd_q))
 335		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
 336
 337	bt_cb(skb)->hci.req_event = event;
 338
 339	skb_queue_tail(&req->cmd_q, skb);
 340}
 341
 342void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
 343		 const void *param)
 344{
 
 345	hci_req_add_ev(req, opcode, plen, param, 0);
 346}
 347
 348void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
 349{
 350	struct hci_dev *hdev = req->hdev;
 351	struct hci_cp_write_page_scan_activity acp;
 352	u8 type;
 353
 354	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
 355		return;
 356
 357	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 358		return;
 359
 360	if (enable) {
 361		type = PAGE_SCAN_TYPE_INTERLACED;
 362
 363		/* 160 msec page scan interval */
 364		acp.interval = cpu_to_le16(0x0100);
 365	} else {
 366		type = PAGE_SCAN_TYPE_STANDARD;	/* default */
 367
 368		/* default 1.28 sec page scan */
 369		acp.interval = cpu_to_le16(0x0800);
 370	}
 371
 372	acp.window = cpu_to_le16(0x0012);
 373
 374	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
 375	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
 376		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
 377			    sizeof(acp), &acp);
 378
 379	if (hdev->page_scan_type != type)
 380		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
 381}
 382
 383/* This function controls the background scanning based on hdev->pend_le_conns
 384 * list. If there are pending LE connection we start the background scanning,
 385 * otherwise we stop it.
 386 *
 387 * This function requires the caller holds hdev->lock.
 388 */
 389static void __hci_update_background_scan(struct hci_request *req)
 390{
 391	struct hci_dev *hdev = req->hdev;
 392
 393	if (!test_bit(HCI_UP, &hdev->flags) ||
 394	    test_bit(HCI_INIT, &hdev->flags) ||
 395	    hci_dev_test_flag(hdev, HCI_SETUP) ||
 396	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
 397	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
 398	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
 399		return;
 400
 401	/* No point in doing scanning if LE support hasn't been enabled */
 402	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 403		return;
 404
 405	/* If discovery is active don't interfere with it */
 406	if (hdev->discovery.state != DISCOVERY_STOPPED)
 407		return;
 408
 409	/* Reset RSSI and UUID filters when starting background scanning
 410	 * since these filters are meant for service discovery only.
 411	 *
 412	 * The Start Discovery and Start Service Discovery operations
 413	 * ensure to set proper values for RSSI threshold and UUID
 414	 * filter list. So it is safe to just reset them here.
 415	 */
 416	hci_discovery_filter_clear(hdev);
 417
 418	if (list_empty(&hdev->pend_le_conns) &&
 419	    list_empty(&hdev->pend_le_reports)) {
 420		/* If there is no pending LE connections or devices
 421		 * to be scanned for, we should stop the background
 422		 * scanning.
 423		 */
 424
 425		/* If controller is not scanning we are done. */
 426		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
 427			return;
 428
 429		hci_req_add_le_scan_disable(req);
 430
 431		BT_DBG("%s stopping background scanning", hdev->name);
 432	} else {
 433		/* If there is at least one pending LE connection, we should
 434		 * keep the background scan running.
 435		 */
 436
 437		/* If controller is connecting, we should not start scanning
 438		 * since some controllers are not able to scan and connect at
 439		 * the same time.
 440		 */
 441		if (hci_lookup_le_connect(hdev))
 442			return;
 443
 444		/* If controller is currently scanning, we stop it to ensure we
 445		 * don't miss any advertising (due to duplicates filter).
 446		 */
 447		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
 448			hci_req_add_le_scan_disable(req);
 449
 450		hci_req_add_le_passive_scan(req);
 451
 452		BT_DBG("%s starting background scanning", hdev->name);
 453	}
 454}
 455
 456void __hci_req_update_name(struct hci_request *req)
 457{
 458	struct hci_dev *hdev = req->hdev;
 459	struct hci_cp_write_local_name cp;
 460
 461	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
 462
 463	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
 464}
 465
 466#define PNP_INFO_SVCLASS_ID		0x1200
 467
 468static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 
 469{
 470	u8 *ptr = data, *uuids_start = NULL;
 471	struct bt_uuid *uuid;
 472
 473	if (len < 4)
 474		return ptr;
 475
 476	list_for_each_entry(uuid, &hdev->uuids, list) {
 477		u16 uuid16;
 478
 479		if (uuid->size != 16)
 480			continue;
 481
 482		uuid16 = get_unaligned_le16(&uuid->uuid[12]);
 483		if (uuid16 < 0x1100)
 484			continue;
 485
 486		if (uuid16 == PNP_INFO_SVCLASS_ID)
 487			continue;
 488
 489		if (!uuids_start) {
 490			uuids_start = ptr;
 491			uuids_start[0] = 1;
 492			uuids_start[1] = EIR_UUID16_ALL;
 493			ptr += 2;
 494		}
 495
 496		/* Stop if not enough space to put next UUID */
 497		if ((ptr - data) + sizeof(u16) > len) {
 498			uuids_start[1] = EIR_UUID16_SOME;
 499			break;
 500		}
 501
 502		*ptr++ = (uuid16 & 0x00ff);
 503		*ptr++ = (uuid16 & 0xff00) >> 8;
 504		uuids_start[0] += sizeof(uuid16);
 505	}
 506
 507	return ptr;
 508}
 509
 510static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 511{
 512	u8 *ptr = data, *uuids_start = NULL;
 513	struct bt_uuid *uuid;
 514
 515	if (len < 6)
 516		return ptr;
 517
 518	list_for_each_entry(uuid, &hdev->uuids, list) {
 519		if (uuid->size != 32)
 520			continue;
 521
 522		if (!uuids_start) {
 523			uuids_start = ptr;
 524			uuids_start[0] = 1;
 525			uuids_start[1] = EIR_UUID32_ALL;
 526			ptr += 2;
 527		}
 528
 529		/* Stop if not enough space to put next UUID */
 530		if ((ptr - data) + sizeof(u32) > len) {
 531			uuids_start[1] = EIR_UUID32_SOME;
 532			break;
 533		}
 534
 535		memcpy(ptr, &uuid->uuid[12], sizeof(u32));
 536		ptr += sizeof(u32);
 537		uuids_start[0] += sizeof(u32);
 538	}
 539
 540	return ptr;
 541}
 542
 543static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 544{
 545	u8 *ptr = data, *uuids_start = NULL;
 546	struct bt_uuid *uuid;
 547
 548	if (len < 18)
 549		return ptr;
 550
 551	list_for_each_entry(uuid, &hdev->uuids, list) {
 552		if (uuid->size != 128)
 553			continue;
 554
 555		if (!uuids_start) {
 556			uuids_start = ptr;
 557			uuids_start[0] = 1;
 558			uuids_start[1] = EIR_UUID128_ALL;
 559			ptr += 2;
 560		}
 561
 562		/* Stop if not enough space to put next UUID */
 563		if ((ptr - data) + 16 > len) {
 564			uuids_start[1] = EIR_UUID128_SOME;
 565			break;
 566		}
 567
 568		memcpy(ptr, uuid->uuid, 16);
 569		ptr += 16;
 570		uuids_start[0] += 16;
 571	}
 572
 573	return ptr;
 574}
 575
 576static void create_eir(struct hci_dev *hdev, u8 *data)
 577{
 578	u8 *ptr = data;
 579	size_t name_len;
 580
 581	name_len = strlen(hdev->dev_name);
 582
 583	if (name_len > 0) {
 584		/* EIR Data type */
 585		if (name_len > 48) {
 586			name_len = 48;
 587			ptr[1] = EIR_NAME_SHORT;
 588		} else
 589			ptr[1] = EIR_NAME_COMPLETE;
 590
 591		/* EIR Data length */
 592		ptr[0] = name_len + 1;
 593
 594		memcpy(ptr + 2, hdev->dev_name, name_len);
 595
 596		ptr += (name_len + 2);
 597	}
 598
 599	if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
 600		ptr[0] = 2;
 601		ptr[1] = EIR_TX_POWER;
 602		ptr[2] = (u8) hdev->inq_tx_power;
 
 
 603
 604		ptr += 3;
 
 
 605	}
 606
 607	if (hdev->devid_source > 0) {
 608		ptr[0] = 9;
 609		ptr[1] = EIR_DEVICE_ID;
 610
 611		put_unaligned_le16(hdev->devid_source, ptr + 2);
 612		put_unaligned_le16(hdev->devid_vendor, ptr + 4);
 613		put_unaligned_le16(hdev->devid_product, ptr + 6);
 614		put_unaligned_le16(hdev->devid_version, ptr + 8);
 615
 616		ptr += 10;
 617	}
 618
 619	ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 620	ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 621	ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 622}
 623
 624void __hci_req_update_eir(struct hci_request *req)
 
 625{
 626	struct hci_dev *hdev = req->hdev;
 627	struct hci_cp_write_eir cp;
 628
 629	if (!hdev_is_powered(hdev))
 630		return;
 631
 632	if (!lmp_ext_inq_capable(hdev))
 633		return;
 634
 635	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
 636		return;
 637
 638	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
 639		return;
 640
 641	memset(&cp, 0, sizeof(cp));
 
 
 642
 643	create_eir(hdev, cp.data);
 
 644
 645	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
 646		return;
 
 647
 648	memcpy(hdev->eir, cp.data, sizeof(cp.data));
 
 649
 650	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 
 
 
 651}
 652
 653void hci_req_add_le_scan_disable(struct hci_request *req)
 
 
 
 654{
 
 655	struct hci_dev *hdev = req->hdev;
 656
 657	if (use_ext_scan(hdev)) {
 658		struct hci_cp_le_set_ext_scan_enable cp;
 
 
 659
 660		memset(&cp, 0, sizeof(cp));
 661		cp.enable = LE_SCAN_DISABLE;
 662		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
 663			    &cp);
 664	} else {
 665		struct hci_cp_le_set_scan_enable cp;
 666
 667		memset(&cp, 0, sizeof(cp));
 668		cp.enable = LE_SCAN_DISABLE;
 669		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
 
 
 670	}
 671}
 672
 673static void add_to_white_list(struct hci_request *req,
 674			      struct hci_conn_params *params)
 675{
 676	struct hci_cp_le_add_to_white_list cp;
 677
 
 678	cp.bdaddr_type = params->addr_type;
 679	bacpy(&cp.bdaddr, &params->addr);
 680
 681	hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 682}
 683
 684static u8 update_white_list(struct hci_request *req)
 685{
 686	struct hci_dev *hdev = req->hdev;
 687	struct hci_conn_params *params;
 688	struct bdaddr_list *b;
 689	uint8_t white_list_entries = 0;
 
 
 
 
 
 
 
 
 
 
 690
 691	/* Go through the current white list programmed into the
 692	 * controller one by one and check if that address is still
 693	 * in the list of pending connections or list of devices to
 694	 * report. If not present in either list, then queue the
 695	 * command to remove it from the controller.
 696	 */
 697	list_for_each_entry(b, &hdev->le_white_list, list) {
 698		/* If the device is neither in pend_le_conns nor
 699		 * pend_le_reports then remove it from the whitelist.
 700		 */
 701		if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
 702					       &b->bdaddr, b->bdaddr_type) &&
 703		    !hci_pend_le_action_lookup(&hdev->pend_le_reports,
 704					       &b->bdaddr, b->bdaddr_type)) {
 705			struct hci_cp_le_del_from_white_list cp;
 706
 707			cp.bdaddr_type = b->bdaddr_type;
 708			bacpy(&cp.bdaddr, &b->bdaddr);
 709
 710			hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
 711				    sizeof(cp), &cp);
 
 
 
 712			continue;
 713		}
 714
 715		if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
 716			/* White list can not be used with RPAs */
 
 
 717			return 0x00;
 718		}
 719
 720		white_list_entries++;
 721	}
 722
 723	/* Since all no longer valid white list entries have been
 724	 * removed, walk through the list of pending connections
 725	 * and ensure that any new device gets programmed into
 726	 * the controller.
 727	 *
 728	 * If the list of the devices is larger than the list of
 729	 * available white list entries in the controller, then
 730	 * just abort and return filer policy value to not use the
 731	 * white list.
 732	 */
 733	list_for_each_entry(params, &hdev->pend_le_conns, action) {
 734		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
 735					   &params->addr, params->addr_type))
 736			continue;
 737
 738		if (white_list_entries >= hdev->le_white_list_size) {
 739			/* Select filter policy to accept all advertising */
 740			return 0x00;
 741		}
 742
 743		if (hci_find_irk_by_addr(hdev, &params->addr,
 744					 params->addr_type)) {
 745			/* White list can not be used with RPAs */
 746			return 0x00;
 747		}
 748
 749		white_list_entries++;
 750		add_to_white_list(req, params);
 751	}
 752
 753	/* After adding all new pending connections, walk through
 754	 * the list of pending reports and also add these to the
 755	 * white list if there is still space.
 756	 */
 757	list_for_each_entry(params, &hdev->pend_le_reports, action) {
 758		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
 759					   &params->addr, params->addr_type))
 760			continue;
 761
 762		if (white_list_entries >= hdev->le_white_list_size) {
 763			/* Select filter policy to accept all advertising */
 764			return 0x00;
 765		}
 766
 767		if (hci_find_irk_by_addr(hdev, &params->addr,
 768					 params->addr_type)) {
 769			/* White list can not be used with RPAs */
 770			return 0x00;
 771		}
 772
 773		white_list_entries++;
 774		add_to_white_list(req, params);
 775	}
 776
 777	/* Select filter policy to use white list */
 
 
 
 
 
 
 
 
 
 
 778	return 0x01;
 779}
 780
 781static bool scan_use_rpa(struct hci_dev *hdev)
 782{
 783	return hci_dev_test_flag(hdev, HCI_PRIVACY);
 784}
 785
 786static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
 787			       u16 window, u8 own_addr_type, u8 filter_policy)
 
 788{
 789	struct hci_dev *hdev = req->hdev;
 790
 
 
 
 
 
 
 
 
 
 
 
 791	/* Use ext scanning if set ext scan param and ext scan enable is
 792	 * supported
 793	 */
 794	if (use_ext_scan(hdev)) {
 795		struct hci_cp_le_set_ext_scan_params *ext_param_cp;
 796		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
 797		struct hci_cp_le_scan_phy_params *phy_params;
 798		u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
 799		u32 plen;
 800
 801		ext_param_cp = (void *)data;
 802		phy_params = (void *)ext_param_cp->data;
 803
 804		memset(ext_param_cp, 0, sizeof(*ext_param_cp));
 805		ext_param_cp->own_addr_type = own_addr_type;
 806		ext_param_cp->filter_policy = filter_policy;
 807
 808		plen = sizeof(*ext_param_cp);
 809
 810		if (scan_1m(hdev) || scan_2m(hdev)) {
 811			ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;
 812
 813			memset(phy_params, 0, sizeof(*phy_params));
 814			phy_params->type = type;
 815			phy_params->interval = cpu_to_le16(interval);
 816			phy_params->window = cpu_to_le16(window);
 817
 818			plen += sizeof(*phy_params);
 819			phy_params++;
 820		}
 821
 822		if (scan_coded(hdev)) {
 823			ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;
 824
 825			memset(phy_params, 0, sizeof(*phy_params));
 826			phy_params->type = type;
 827			phy_params->interval = cpu_to_le16(interval);
 828			phy_params->window = cpu_to_le16(window);
 829
 830			plen += sizeof(*phy_params);
 831			phy_params++;
 832		}
 833
 834		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
 835			    plen, ext_param_cp);
 836
 837		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
 838		ext_enable_cp.enable = LE_SCAN_ENABLE;
 839		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
 840
 841		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
 842			    sizeof(ext_enable_cp), &ext_enable_cp);
 843	} else {
 844		struct hci_cp_le_set_scan_param param_cp;
 845		struct hci_cp_le_set_scan_enable enable_cp;
 846
 847		memset(&param_cp, 0, sizeof(param_cp));
 848		param_cp.type = type;
 849		param_cp.interval = cpu_to_le16(interval);
 850		param_cp.window = cpu_to_le16(window);
 851		param_cp.own_address_type = own_addr_type;
 852		param_cp.filter_policy = filter_policy;
 853		hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
 854			    &param_cp);
 855
 856		memset(&enable_cp, 0, sizeof(enable_cp));
 857		enable_cp.enable = LE_SCAN_ENABLE;
 858		enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
 859		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
 860			    &enable_cp);
 861	}
 862}
 863
 864void hci_req_add_le_passive_scan(struct hci_request *req)
 865{
 866	struct hci_dev *hdev = req->hdev;
 867	u8 own_addr_type;
 868	u8 filter_policy;
 869
 870	/* Set require_privacy to false since no SCAN_REQ are send
 871	 * during passive scanning. Not using an non-resolvable address
 872	 * here is important so that peer devices using direct
 873	 * advertising with our address will be correctly reported
 874	 * by the controller.
 875	 */
 876	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
 877				      &own_addr_type))
 878		return;
 879
 880	/* Adding or removing entries from the white list must
 881	 * happen before enabling scanning. The controller does
 882	 * not allow white list modification while scanning.
 883	 */
 884	filter_policy = update_white_list(req);
 885
 886	/* When the controller is using random resolvable addresses and
 887	 * with that having LE privacy enabled, then controllers with
 888	 * Extended Scanner Filter Policies support can now enable support
 889	 * for handling directed advertising.
 890	 *
 891	 * So instead of using filter polices 0x00 (no whitelist)
 892	 * and 0x01 (whitelist enabled) use the new filter policies
 893	 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
 894	 */
 895	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
 896	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
 897		filter_policy |= 0x02;
 898
 899	hci_req_start_scan(req, LE_SCAN_PASSIVE, hdev->le_scan_interval,
 900			   hdev->le_scan_window, own_addr_type, filter_policy);
 901}
 902
 903static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance)
 904{
 905	struct adv_info *adv_instance;
 906
 907	/* Ignore instance 0 */
 908	if (instance == 0x00)
 909		return 0;
 910
 911	adv_instance = hci_find_adv_instance(hdev, instance);
 912	if (!adv_instance)
 913		return 0;
 914
 915	/* TODO: Take into account the "appearance" and "local-name" flags here.
 916	 * These are currently being ignored as they are not supported.
 917	 */
 918	return adv_instance->scan_rsp_len;
 919}
 920
 921static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
 922{
 923	u8 instance = hdev->cur_adv_instance;
 924	struct adv_info *adv_instance;
 925
 926	/* Ignore instance 0 */
 927	if (instance == 0x00)
 928		return 0;
 929
 930	adv_instance = hci_find_adv_instance(hdev, instance);
 931	if (!adv_instance)
 932		return 0;
 933
 934	/* TODO: Take into account the "appearance" and "local-name" flags here.
 935	 * These are currently being ignored as they are not supported.
 936	 */
 937	return adv_instance->scan_rsp_len;
 938}
 939
 940void __hci_req_disable_advertising(struct hci_request *req)
 941{
 942	if (ext_adv_capable(req->hdev)) {
 943		struct hci_cp_le_set_ext_adv_enable cp;
 944
 945		cp.enable = 0x00;
 946		/* Disable all sets since we only support one set at the moment */
 947		cp.num_of_sets = 0x00;
 948
 949		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), &cp);
 950	} else {
 951		u8 enable = 0x00;
 952
 953		hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
 954	}
 955}
 956
 957static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
 958{
 959	u32 flags;
 960	struct adv_info *adv_instance;
 961
 962	if (instance == 0x00) {
 963		/* Instance 0 always manages the "Tx Power" and "Flags"
 964		 * fields
 965		 */
 966		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
 967
 968		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
 969		 * corresponds to the "connectable" instance flag.
 970		 */
 971		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
 972			flags |= MGMT_ADV_FLAG_CONNECTABLE;
 973
 974		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
 975			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
 976		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
 977			flags |= MGMT_ADV_FLAG_DISCOV;
 978
 979		return flags;
 980	}
 981
 982	adv_instance = hci_find_adv_instance(hdev, instance);
 983
 984	/* Return 0 when we got an invalid instance identifier. */
 985	if (!adv_instance)
 986		return 0;
 987
 988	return adv_instance->flags;
 989}
 990
 991static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
 992{
 993	/* If privacy is not enabled don't use RPA */
 994	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
 995		return false;
 996
 997	/* If basic privacy mode is enabled use RPA */
 998	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
 999		return true;
1000
1001	/* If limited privacy mode is enabled don't use RPA if we're
1002	 * both discoverable and bondable.
1003	 */
1004	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
1005	    hci_dev_test_flag(hdev, HCI_BONDABLE))
1006		return false;
1007
1008	/* We're neither bondable nor discoverable in the limited
1009	 * privacy mode, therefore use RPA.
1010	 */
1011	return true;
1012}
1013
1014static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
1015{
1016	/* If there is no connection we are OK to advertise. */
1017	if (hci_conn_num(hdev, LE_LINK) == 0)
1018		return true;
1019
1020	/* Check le_states if there is any connection in slave role. */
1021	if (hdev->conn_hash.le_num_slave > 0) {
1022		/* Slave connection state and non connectable mode bit 20. */
1023		if (!connectable && !(hdev->le_states[2] & 0x10))
1024			return false;
1025
1026		/* Slave connection state and connectable mode bit 38
1027		 * and scannable bit 21.
1028		 */
1029		if (connectable && (!(hdev->le_states[4] & 0x40) ||
1030				    !(hdev->le_states[2] & 0x20)))
1031			return false;
1032	}
1033
1034	/* Check le_states if there is any connection in master role. */
1035	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) {
1036		/* Master connection state and non connectable mode bit 18. */
1037		if (!connectable && !(hdev->le_states[2] & 0x02))
1038			return false;
1039
1040		/* Master connection state and connectable mode bit 35 and
1041		 * scannable 19.
1042		 */
1043		if (connectable && (!(hdev->le_states[4] & 0x08) ||
1044				    !(hdev->le_states[2] & 0x08)))
1045			return false;
1046	}
1047
1048	return true;
1049}
1050
1051void __hci_req_enable_advertising(struct hci_request *req)
1052{
1053	struct hci_dev *hdev = req->hdev;
1054	struct hci_cp_le_set_adv_param cp;
1055	u8 own_addr_type, enable = 0x01;
1056	bool connectable;
1057	u16 adv_min_interval, adv_max_interval;
1058	u32 flags;
1059
1060	flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
1061
1062	/* If the "connectable" instance flag was not set, then choose between
1063	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1064	 */
1065	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1066		      mgmt_get_connectable(hdev);
1067
1068	if (!is_advertising_allowed(hdev, connectable))
1069		return;
1070
1071	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1072		__hci_req_disable_advertising(req);
1073
1074	/* Clear the HCI_LE_ADV bit temporarily so that the
1075	 * hci_update_random_address knows that it's safe to go ahead
1076	 * and write a new random address. The flag will be set back on
1077	 * as soon as the SET_ADV_ENABLE HCI command completes.
1078	 */
1079	hci_dev_clear_flag(hdev, HCI_LE_ADV);
1080
1081	/* Set require_privacy to true only when non-connectable
1082	 * advertising is used. In that case it is fine to use a
1083	 * non-resolvable private address.
1084	 */
1085	if (hci_update_random_address(req, !connectable,
1086				      adv_use_rpa(hdev, flags),
1087				      &own_addr_type) < 0)
1088		return;
1089
1090	memset(&cp, 0, sizeof(cp));
1091
1092	if (connectable) {
1093		cp.type = LE_ADV_IND;
1094
1095		adv_min_interval = hdev->le_adv_min_interval;
1096		adv_max_interval = hdev->le_adv_max_interval;
1097	} else {
1098		if (get_cur_adv_instance_scan_rsp_len(hdev))
1099			cp.type = LE_ADV_SCAN_IND;
1100		else
1101			cp.type = LE_ADV_NONCONN_IND;
1102
1103		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1104		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1105			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1106			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1107		} else {
1108			adv_min_interval = hdev->le_adv_min_interval;
1109			adv_max_interval = hdev->le_adv_max_interval;
1110		}
1111	}
1112
1113	cp.min_interval = cpu_to_le16(adv_min_interval);
1114	cp.max_interval = cpu_to_le16(adv_max_interval);
1115	cp.own_address_type = own_addr_type;
1116	cp.channel_map = hdev->le_adv_channel_map;
1117
1118	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1119
1120	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1121}
1122
1123u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1124{
1125	size_t short_len;
1126	size_t complete_len;
1127
1128	/* no space left for name (+ NULL + type + len) */
1129	if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
1130		return ad_len;
1131
1132	/* use complete name if present and fits */
1133	complete_len = strlen(hdev->dev_name);
1134	if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
1135		return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
1136				       hdev->dev_name, complete_len + 1);
1137
1138	/* use short name if present */
1139	short_len = strlen(hdev->short_name);
1140	if (short_len)
1141		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
1142				       hdev->short_name, short_len + 1);
1143
1144	/* use shortened full name if present, we already know that name
1145	 * is longer then HCI_MAX_SHORT_NAME_LENGTH
1146	 */
1147	if (complete_len) {
1148		u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
1149
1150		memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1151		name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1152
1153		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1154				       sizeof(name));
1155	}
1156
1157	return ad_len;
1158}
1159
1160static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1161{
1162	return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1163}
1164
1165static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1166{
1167	u8 scan_rsp_len = 0;
1168
1169	if (hdev->appearance) {
1170		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1171	}
1172
1173	return append_local_name(hdev, ptr, scan_rsp_len);
1174}
1175
1176static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1177					u8 *ptr)
1178{
1179	struct adv_info *adv_instance;
1180	u32 instance_flags;
1181	u8 scan_rsp_len = 0;
1182
1183	adv_instance = hci_find_adv_instance(hdev, instance);
1184	if (!adv_instance)
1185		return 0;
1186
1187	instance_flags = adv_instance->flags;
1188
1189	if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1190		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1191	}
1192
1193	memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1194	       adv_instance->scan_rsp_len);
1195
1196	scan_rsp_len += adv_instance->scan_rsp_len;
1197
1198	if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1199		scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1200
1201	return scan_rsp_len;
1202}
1203
1204void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1205{
1206	struct hci_dev *hdev = req->hdev;
1207	u8 len;
1208
1209	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1210		return;
1211
1212	if (ext_adv_capable(hdev)) {
1213		struct hci_cp_le_set_ext_scan_rsp_data cp;
1214
1215		memset(&cp, 0, sizeof(cp));
1216
1217		if (instance)
1218			len = create_instance_scan_rsp_data(hdev, instance,
1219							    cp.data);
1220		else
1221			len = create_default_scan_rsp_data(hdev, cp.data);
1222
1223		if (hdev->scan_rsp_data_len == len &&
1224		    !memcmp(cp.data, hdev->scan_rsp_data, len))
1225			return;
1226
1227		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1228		hdev->scan_rsp_data_len = len;
1229
1230		cp.handle = 0;
1231		cp.length = len;
1232		cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1233		cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1234
1235		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp),
1236			    &cp);
1237	} else {
1238		struct hci_cp_le_set_scan_rsp_data cp;
1239
1240		memset(&cp, 0, sizeof(cp));
1241
1242		if (instance)
1243			len = create_instance_scan_rsp_data(hdev, instance,
1244							    cp.data);
1245		else
1246			len = create_default_scan_rsp_data(hdev, cp.data);
1247
1248		if (hdev->scan_rsp_data_len == len &&
1249		    !memcmp(cp.data, hdev->scan_rsp_data, len))
1250			return;
1251
1252		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1253		hdev->scan_rsp_data_len = len;
1254
1255		cp.length = len;
1256
1257		hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1258	}
1259}
1260
1261static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1262{
1263	struct adv_info *adv_instance = NULL;
1264	u8 ad_len = 0, flags = 0;
1265	u32 instance_flags;
1266
1267	/* Return 0 when the current instance identifier is invalid. */
1268	if (instance) {
1269		adv_instance = hci_find_adv_instance(hdev, instance);
1270		if (!adv_instance)
1271			return 0;
1272	}
1273
1274	instance_flags = get_adv_instance_flags(hdev, instance);
1275
1276	/* The Add Advertising command allows userspace to set both the general
1277	 * and limited discoverable flags.
1278	 */
1279	if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1280		flags |= LE_AD_GENERAL;
1281
1282	if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1283		flags |= LE_AD_LIMITED;
1284
1285	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1286		flags |= LE_AD_NO_BREDR;
1287
1288	if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1289		/* If a discovery flag wasn't provided, simply use the global
1290		 * settings.
1291		 */
1292		if (!flags)
1293			flags |= mgmt_get_adv_discov_flags(hdev);
1294
1295		/* If flags would still be empty, then there is no need to
1296		 * include the "Flags" AD field".
1297		 */
1298		if (flags) {
1299			ptr[0] = 0x02;
1300			ptr[1] = EIR_FLAGS;
1301			ptr[2] = flags;
1302
1303			ad_len += 3;
1304			ptr += 3;
1305		}
1306	}
1307
1308	if (adv_instance) {
1309		memcpy(ptr, adv_instance->adv_data,
1310		       adv_instance->adv_data_len);
1311		ad_len += adv_instance->adv_data_len;
1312		ptr += adv_instance->adv_data_len;
1313	}
1314
1315	if (instance_flags & MGMT_ADV_FLAG_TX_POWER) {
1316		s8 adv_tx_power;
1317
1318		if (ext_adv_capable(hdev)) {
1319			if (adv_instance)
1320				adv_tx_power = adv_instance->tx_power;
1321			else
1322				adv_tx_power = hdev->adv_tx_power;
1323		} else {
1324			adv_tx_power = hdev->adv_tx_power;
1325		}
1326
1327		/* Provide Tx Power only if we can provide a valid value for it */
1328		if (adv_tx_power != HCI_TX_POWER_INVALID) {
1329			ptr[0] = 0x02;
1330			ptr[1] = EIR_TX_POWER;
1331			ptr[2] = (u8)adv_tx_power;
1332
1333			ad_len += 3;
1334			ptr += 3;
1335		}
1336	}
1337
1338	return ad_len;
1339}
1340
1341void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1342{
1343	struct hci_dev *hdev = req->hdev;
1344	u8 len;
1345
1346	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1347		return;
1348
1349	if (ext_adv_capable(hdev)) {
1350		struct hci_cp_le_set_ext_adv_data cp;
1351
1352		memset(&cp, 0, sizeof(cp));
1353
1354		len = create_instance_adv_data(hdev, instance, cp.data);
1355
1356		/* There's nothing to do if the data hasn't changed */
1357		if (hdev->adv_data_len == len &&
1358		    memcmp(cp.data, hdev->adv_data, len) == 0)
1359			return;
1360
1361		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1362		hdev->adv_data_len = len;
1363
1364		cp.length = len;
1365		cp.handle = 0;
1366		cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1367		cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1368
1369		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp);
1370	} else {
1371		struct hci_cp_le_set_adv_data cp;
1372
1373		memset(&cp, 0, sizeof(cp));
1374
1375		len = create_instance_adv_data(hdev, instance, cp.data);
1376
1377		/* There's nothing to do if the data hasn't changed */
1378		if (hdev->adv_data_len == len &&
1379		    memcmp(cp.data, hdev->adv_data, len) == 0)
1380			return;
1381
1382		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1383		hdev->adv_data_len = len;
1384
1385		cp.length = len;
1386
1387		hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1388	}
1389}
1390
1391int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1392{
1393	struct hci_request req;
1394
1395	hci_req_init(&req, hdev);
1396	__hci_req_update_adv_data(&req, instance);
1397
1398	return hci_req_run(&req, NULL);
1399}
1400
1401static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1402{
1403	BT_DBG("%s status %u", hdev->name, status);
1404}
1405
1406void hci_req_reenable_advertising(struct hci_dev *hdev)
1407{
1408	struct hci_request req;
1409
1410	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1411	    list_empty(&hdev->adv_instances))
1412		return;
1413
1414	hci_req_init(&req, hdev);
1415
1416	if (hdev->cur_adv_instance) {
1417		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1418						true);
1419	} else {
1420		if (ext_adv_capable(hdev)) {
1421			__hci_req_start_ext_adv(&req, 0x00);
1422		} else {
1423			__hci_req_update_adv_data(&req, 0x00);
1424			__hci_req_update_scan_rsp_data(&req, 0x00);
1425			__hci_req_enable_advertising(&req);
1426		}
1427	}
1428
1429	hci_req_run(&req, adv_enable_complete);
1430}
1431
1432static void adv_timeout_expire(struct work_struct *work)
1433{
1434	struct hci_dev *hdev = container_of(work, struct hci_dev,
1435					    adv_instance_expire.work);
1436
1437	struct hci_request req;
1438	u8 instance;
1439
1440	BT_DBG("%s", hdev->name);
1441
1442	hci_dev_lock(hdev);
1443
1444	hdev->adv_instance_timeout = 0;
1445
1446	instance = hdev->cur_adv_instance;
1447	if (instance == 0x00)
1448		goto unlock;
1449
1450	hci_req_init(&req, hdev);
1451
1452	hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1453
1454	if (list_empty(&hdev->adv_instances))
1455		__hci_req_disable_advertising(&req);
1456
1457	hci_req_run(&req, NULL);
1458
1459unlock:
1460	hci_dev_unlock(hdev);
1461}
1462
1463int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
1464			   bool use_rpa, struct adv_info *adv_instance,
1465			   u8 *own_addr_type, bdaddr_t *rand_addr)
1466{
1467	int err;
1468
1469	bacpy(rand_addr, BDADDR_ANY);
1470
1471	/* If privacy is enabled use a resolvable private address. If
1472	 * current RPA has expired then generate a new one.
1473	 */
1474	if (use_rpa) {
1475		int to;
1476
1477		*own_addr_type = ADDR_LE_DEV_RANDOM;
1478
1479		if (adv_instance) {
1480			if (!adv_instance->rpa_expired &&
1481			    !bacmp(&adv_instance->random_addr, &hdev->rpa))
1482				return 0;
1483
1484			adv_instance->rpa_expired = false;
1485		} else {
1486			if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1487			    !bacmp(&hdev->random_addr, &hdev->rpa))
1488				return 0;
1489		}
1490
1491		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1492		if (err < 0) {
1493			BT_ERR("%s failed to generate new RPA", hdev->name);
1494			return err;
1495		}
1496
1497		bacpy(rand_addr, &hdev->rpa);
1498
1499		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1500		if (adv_instance)
1501			queue_delayed_work(hdev->workqueue,
1502					   &adv_instance->rpa_expired_cb, to);
1503		else
1504			queue_delayed_work(hdev->workqueue,
1505					   &hdev->rpa_expired, to);
1506
1507		return 0;
1508	}
1509
1510	/* In case of required privacy without resolvable private address,
1511	 * use an non-resolvable private address. This is useful for
1512	 * non-connectable advertising.
1513	 */
1514	if (require_privacy) {
1515		bdaddr_t nrpa;
1516
1517		while (true) {
1518			/* The non-resolvable private address is generated
1519			 * from random six bytes with the two most significant
1520			 * bits cleared.
1521			 */
1522			get_random_bytes(&nrpa, 6);
1523			nrpa.b[5] &= 0x3f;
1524
1525			/* The non-resolvable private address shall not be
1526			 * equal to the public address.
1527			 */
1528			if (bacmp(&hdev->bdaddr, &nrpa))
1529				break;
1530		}
1531
1532		*own_addr_type = ADDR_LE_DEV_RANDOM;
1533		bacpy(rand_addr, &nrpa);
1534
1535		return 0;
1536	}
1537
1538	/* No privacy so use a public address. */
1539	*own_addr_type = ADDR_LE_DEV_PUBLIC;
1540
1541	return 0;
1542}
1543
1544void __hci_req_clear_ext_adv_sets(struct hci_request *req)
1545{
1546	hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
1547}
1548
1549int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1550{
1551	struct hci_cp_le_set_ext_adv_params cp;
1552	struct hci_dev *hdev = req->hdev;
1553	bool connectable;
1554	u32 flags;
1555	bdaddr_t random_addr;
1556	u8 own_addr_type;
1557	int err;
1558	struct adv_info *adv_instance;
1559	bool secondary_adv;
1560	/* In ext adv set param interval is 3 octets */
1561	const u8 adv_interval[3] = { 0x00, 0x08, 0x00 };
1562
1563	if (instance > 0) {
1564		adv_instance = hci_find_adv_instance(hdev, instance);
1565		if (!adv_instance)
1566			return -EINVAL;
1567	} else {
1568		adv_instance = NULL;
1569	}
1570
1571	flags = get_adv_instance_flags(hdev, instance);
1572
1573	/* If the "connectable" instance flag was not set, then choose between
1574	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1575	 */
1576	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1577		      mgmt_get_connectable(hdev);
1578
1579	if (!is_advertising_allowed(hdev, connectable))
1580		return -EPERM;
1581
1582	/* Set require_privacy to true only when non-connectable
1583	 * advertising is used. In that case it is fine to use a
1584	 * non-resolvable private address.
1585	 */
1586	err = hci_get_random_address(hdev, !connectable,
1587				     adv_use_rpa(hdev, flags), adv_instance,
1588				     &own_addr_type, &random_addr);
1589	if (err < 0)
1590		return err;
1591
1592	memset(&cp, 0, sizeof(cp));
1593
1594	memcpy(cp.min_interval, adv_interval, sizeof(cp.min_interval));
1595	memcpy(cp.max_interval, adv_interval, sizeof(cp.max_interval));
1596
1597	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1598
1599	if (connectable) {
1600		if (secondary_adv)
1601			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1602		else
1603			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1604	} else if (get_adv_instance_scan_rsp_len(hdev, instance)) {
1605		if (secondary_adv)
1606			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1607		else
1608			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1609	} else {
1610		if (secondary_adv)
1611			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1612		else
1613			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1614	}
1615
1616	cp.own_addr_type = own_addr_type;
1617	cp.channel_map = hdev->le_adv_channel_map;
1618	cp.tx_power = 127;
1619	cp.handle = instance;
1620
1621	if (flags & MGMT_ADV_FLAG_SEC_2M) {
1622		cp.primary_phy = HCI_ADV_PHY_1M;
1623		cp.secondary_phy = HCI_ADV_PHY_2M;
1624	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1625		cp.primary_phy = HCI_ADV_PHY_CODED;
1626		cp.secondary_phy = HCI_ADV_PHY_CODED;
1627	} else {
1628		/* In all other cases use 1M */
1629		cp.primary_phy = HCI_ADV_PHY_1M;
1630		cp.secondary_phy = HCI_ADV_PHY_1M;
1631	}
1632
1633	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
1634
1635	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
1636	    bacmp(&random_addr, BDADDR_ANY)) {
1637		struct hci_cp_le_set_adv_set_rand_addr cp;
1638
1639		/* Check if random address need to be updated */
1640		if (adv_instance) {
1641			if (!bacmp(&random_addr, &adv_instance->random_addr))
1642				return 0;
1643		} else {
1644			if (!bacmp(&random_addr, &hdev->random_addr))
1645				return 0;
1646		}
1647
1648		memset(&cp, 0, sizeof(cp));
1649
1650		cp.handle = 0;
1651		bacpy(&cp.bdaddr, &random_addr);
1652
1653		hci_req_add(req,
1654			    HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1655			    sizeof(cp), &cp);
1656	}
1657
1658	return 0;
1659}
1660
1661int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
1662{
1663	struct hci_dev *hdev = req->hdev;
1664	struct hci_cp_le_set_ext_adv_enable *cp;
1665	struct hci_cp_ext_adv_set *adv_set;
1666	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
1667	struct adv_info *adv_instance;
1668
1669	if (instance > 0) {
1670		adv_instance = hci_find_adv_instance(hdev, instance);
1671		if (!adv_instance)
1672			return -EINVAL;
1673	} else {
1674		adv_instance = NULL;
1675	}
1676
1677	cp = (void *) data;
1678	adv_set = (void *) cp->data;
1679
1680	memset(cp, 0, sizeof(*cp));
1681
1682	cp->enable = 0x01;
1683	cp->num_of_sets = 0x01;
1684
1685	memset(adv_set, 0, sizeof(*adv_set));
1686
1687	adv_set->handle = instance;
1688
1689	/* Set duration per instance since controller is responsible for
1690	 * scheduling it.
1691	 */
1692	if (adv_instance && adv_instance->duration) {
1693		u16 duration = adv_instance->duration * MSEC_PER_SEC;
1694
1695		/* Time = N * 10 ms */
1696		adv_set->duration = cpu_to_le16(duration / 10);
1697	}
1698
1699	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1700		    sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
1701		    data);
1702
1703	return 0;
1704}
1705
1706int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
1707{
1708	struct hci_dev *hdev = req->hdev;
1709	int err;
1710
1711	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1712		__hci_req_disable_advertising(req);
1713
1714	err = __hci_req_setup_ext_adv_instance(req, instance);
1715	if (err < 0)
1716		return err;
1717
1718	__hci_req_update_scan_rsp_data(req, instance);
1719	__hci_req_enable_ext_advertising(req, instance);
1720
1721	return 0;
1722}
1723
1724int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1725				    bool force)
1726{
1727	struct hci_dev *hdev = req->hdev;
1728	struct adv_info *adv_instance = NULL;
1729	u16 timeout;
1730
1731	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1732	    list_empty(&hdev->adv_instances))
1733		return -EPERM;
1734
1735	if (hdev->adv_instance_timeout)
1736		return -EBUSY;
1737
1738	adv_instance = hci_find_adv_instance(hdev, instance);
1739	if (!adv_instance)
1740		return -ENOENT;
1741
1742	/* A zero timeout means unlimited advertising. As long as there is
1743	 * only one instance, duration should be ignored. We still set a timeout
1744	 * in case further instances are being added later on.
1745	 *
1746	 * If the remaining lifetime of the instance is more than the duration
1747	 * then the timeout corresponds to the duration, otherwise it will be
1748	 * reduced to the remaining instance lifetime.
1749	 */
1750	if (adv_instance->timeout == 0 ||
1751	    adv_instance->duration <= adv_instance->remaining_time)
1752		timeout = adv_instance->duration;
1753	else
1754		timeout = adv_instance->remaining_time;
1755
1756	/* The remaining time is being reduced unless the instance is being
1757	 * advertised without time limit.
1758	 */
1759	if (adv_instance->timeout)
1760		adv_instance->remaining_time =
1761				adv_instance->remaining_time - timeout;
1762
1763	/* Only use work for scheduling instances with legacy advertising */
1764	if (!ext_adv_capable(hdev)) {
1765		hdev->adv_instance_timeout = timeout;
1766		queue_delayed_work(hdev->req_workqueue,
1767			   &hdev->adv_instance_expire,
1768			   msecs_to_jiffies(timeout * 1000));
1769	}
1770
1771	/* If we're just re-scheduling the same instance again then do not
1772	 * execute any HCI commands. This happens when a single instance is
1773	 * being advertised.
1774	 */
1775	if (!force && hdev->cur_adv_instance == instance &&
1776	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1777		return 0;
1778
1779	hdev->cur_adv_instance = instance;
1780	if (ext_adv_capable(hdev)) {
1781		__hci_req_start_ext_adv(req, instance);
1782	} else {
1783		__hci_req_update_adv_data(req, instance);
1784		__hci_req_update_scan_rsp_data(req, instance);
1785		__hci_req_enable_advertising(req);
1786	}
1787
1788	return 0;
1789}
1790
1791static void cancel_adv_timeout(struct hci_dev *hdev)
1792{
1793	if (hdev->adv_instance_timeout) {
1794		hdev->adv_instance_timeout = 0;
1795		cancel_delayed_work(&hdev->adv_instance_expire);
1796	}
1797}
1798
1799/* For a single instance:
1800 * - force == true: The instance will be removed even when its remaining
1801 *   lifetime is not zero.
1802 * - force == false: the instance will be deactivated but kept stored unless
1803 *   the remaining lifetime is zero.
1804 *
1805 * For instance == 0x00:
1806 * - force == true: All instances will be removed regardless of their timeout
1807 *   setting.
1808 * - force == false: Only instances that have a timeout will be removed.
1809 */
1810void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
1811				struct hci_request *req, u8 instance,
1812				bool force)
1813{
1814	struct adv_info *adv_instance, *n, *next_instance = NULL;
1815	int err;
1816	u8 rem_inst;
1817
1818	/* Cancel any timeout concerning the removed instance(s). */
1819	if (!instance || hdev->cur_adv_instance == instance)
1820		cancel_adv_timeout(hdev);
1821
1822	/* Get the next instance to advertise BEFORE we remove
1823	 * the current one. This can be the same instance again
1824	 * if there is only one instance.
1825	 */
1826	if (instance && hdev->cur_adv_instance == instance)
1827		next_instance = hci_get_next_instance(hdev, instance);
1828
1829	if (instance == 0x00) {
1830		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
1831					 list) {
1832			if (!(force || adv_instance->timeout))
1833				continue;
1834
1835			rem_inst = adv_instance->instance;
1836			err = hci_remove_adv_instance(hdev, rem_inst);
1837			if (!err)
1838				mgmt_advertising_removed(sk, hdev, rem_inst);
1839		}
1840	} else {
1841		adv_instance = hci_find_adv_instance(hdev, instance);
1842
1843		if (force || (adv_instance && adv_instance->timeout &&
1844			      !adv_instance->remaining_time)) {
1845			/* Don't advertise a removed instance. */
1846			if (next_instance &&
1847			    next_instance->instance == instance)
1848				next_instance = NULL;
1849
1850			err = hci_remove_adv_instance(hdev, instance);
1851			if (!err)
1852				mgmt_advertising_removed(sk, hdev, instance);
1853		}
1854	}
1855
1856	if (!req || !hdev_is_powered(hdev) ||
1857	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
1858		return;
1859
1860	if (next_instance)
1861		__hci_req_schedule_adv_instance(req, next_instance->instance,
1862						false);
1863}
1864
1865static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
1866{
1867	struct hci_dev *hdev = req->hdev;
1868
1869	/* If we're advertising or initiating an LE connection we can't
1870	 * go ahead and change the random address at this time. This is
1871	 * because the eventual initiator address used for the
1872	 * subsequently created connection will be undefined (some
1873	 * controllers use the new address and others the one we had
1874	 * when the operation started).
1875	 *
1876	 * In this kind of scenario skip the update and let the random
1877	 * address be updated at the next cycle.
1878	 */
1879	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1880	    hci_lookup_le_connect(hdev)) {
1881		BT_DBG("Deferring random address update");
1882		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1883		return;
1884	}
1885
1886	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
1887}
1888
1889int hci_update_random_address(struct hci_request *req, bool require_privacy,
1890			      bool use_rpa, u8 *own_addr_type)
1891{
1892	struct hci_dev *hdev = req->hdev;
1893	int err;
1894
1895	/* If privacy is enabled use a resolvable private address. If
1896	 * current RPA has expired or there is something else than
1897	 * the current RPA in use, then generate a new one.
1898	 */
1899	if (use_rpa) {
1900		int to;
1901
1902		*own_addr_type = ADDR_LE_DEV_RANDOM;
 
 
 
 
1903
1904		if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1905		    !bacmp(&hdev->random_addr, &hdev->rpa))
1906			return 0;
1907
1908		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1909		if (err < 0) {
1910			bt_dev_err(hdev, "failed to generate new RPA");
1911			return err;
1912		}
1913
1914		set_random_addr(req, &hdev->rpa);
1915
1916		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1917		queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
1918
1919		return 0;
1920	}
1921
1922	/* In case of required privacy without resolvable private address,
1923	 * use an non-resolvable private address. This is useful for active
1924	 * scanning and non-connectable advertising.
1925	 */
1926	if (require_privacy) {
1927		bdaddr_t nrpa;
1928
1929		while (true) {
1930			/* The non-resolvable private address is generated
1931			 * from random six bytes with the two most significant
1932			 * bits cleared.
1933			 */
1934			get_random_bytes(&nrpa, 6);
1935			nrpa.b[5] &= 0x3f;
1936
1937			/* The non-resolvable private address shall not be
1938			 * equal to the public address.
1939			 */
1940			if (bacmp(&hdev->bdaddr, &nrpa))
1941				break;
1942		}
1943
1944		*own_addr_type = ADDR_LE_DEV_RANDOM;
1945		set_random_addr(req, &nrpa);
1946		return 0;
1947	}
1948
1949	/* If forcing static address is in use or there is no public
1950	 * address use the static address as random address (but skip
1951	 * the HCI command if the current random address is already the
1952	 * static one.
1953	 *
1954	 * In case BR/EDR has been disabled on a dual-mode controller
1955	 * and a static address has been configured, then use that
1956	 * address instead of the public BR/EDR address.
1957	 */
1958	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1959	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1960	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1961	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
1962		*own_addr_type = ADDR_LE_DEV_RANDOM;
1963		if (bacmp(&hdev->static_addr, &hdev->random_addr))
1964			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
1965				    &hdev->static_addr);
1966		return 0;
1967	}
1968
1969	/* Neither privacy nor static address is being used so use a
1970	 * public address.
1971	 */
1972	*own_addr_type = ADDR_LE_DEV_PUBLIC;
1973
1974	return 0;
1975}
1976
1977static bool disconnected_whitelist_entries(struct hci_dev *hdev)
1978{
1979	struct bdaddr_list *b;
1980
1981	list_for_each_entry(b, &hdev->whitelist, list) {
1982		struct hci_conn *conn;
1983
1984		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
1985		if (!conn)
1986			return true;
1987
1988		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
1989			return true;
1990	}
1991
1992	return false;
1993}
1994
1995void __hci_req_update_scan(struct hci_request *req)
1996{
1997	struct hci_dev *hdev = req->hdev;
1998	u8 scan;
1999
2000	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2001		return;
2002
2003	if (!hdev_is_powered(hdev))
2004		return;
2005
2006	if (mgmt_powering_down(hdev))
2007		return;
2008
2009	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2010	    disconnected_whitelist_entries(hdev))
2011		scan = SCAN_PAGE;
2012	else
2013		scan = SCAN_DISABLED;
2014
2015	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2016		scan |= SCAN_INQUIRY;
2017
2018	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
2019	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
2020		return;
2021
2022	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
2023}
2024
2025static int update_scan(struct hci_request *req, unsigned long opt)
2026{
2027	hci_dev_lock(req->hdev);
2028	__hci_req_update_scan(req);
2029	hci_dev_unlock(req->hdev);
2030	return 0;
2031}
2032
2033static void scan_update_work(struct work_struct *work)
2034{
2035	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
2036
2037	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
2038}
2039
2040static int connectable_update(struct hci_request *req, unsigned long opt)
2041{
2042	struct hci_dev *hdev = req->hdev;
2043
2044	hci_dev_lock(hdev);
2045
2046	__hci_req_update_scan(req);
2047
2048	/* If BR/EDR is not enabled and we disable advertising as a
2049	 * by-product of disabling connectable, we need to update the
2050	 * advertising flags.
2051	 */
2052	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2053		__hci_req_update_adv_data(req, hdev->cur_adv_instance);
2054
2055	/* Update the advertising parameters if necessary */
2056	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2057	    !list_empty(&hdev->adv_instances)) {
2058		if (ext_adv_capable(hdev))
2059			__hci_req_start_ext_adv(req, hdev->cur_adv_instance);
2060		else
2061			__hci_req_enable_advertising(req);
2062	}
2063
2064	__hci_update_background_scan(req);
2065
2066	hci_dev_unlock(hdev);
2067
2068	return 0;
2069}
2070
2071static void connectable_update_work(struct work_struct *work)
2072{
2073	struct hci_dev *hdev = container_of(work, struct hci_dev,
2074					    connectable_update);
2075	u8 status;
2076
2077	hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
2078	mgmt_set_connectable_complete(hdev, status);
2079}
2080
2081static u8 get_service_classes(struct hci_dev *hdev)
2082{
2083	struct bt_uuid *uuid;
2084	u8 val = 0;
2085
2086	list_for_each_entry(uuid, &hdev->uuids, list)
2087		val |= uuid->svc_hint;
2088
2089	return val;
2090}
2091
2092void __hci_req_update_class(struct hci_request *req)
2093{
2094	struct hci_dev *hdev = req->hdev;
2095	u8 cod[3];
2096
2097	BT_DBG("%s", hdev->name);
2098
2099	if (!hdev_is_powered(hdev))
2100		return;
2101
2102	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2103		return;
2104
2105	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
2106		return;
2107
2108	cod[0] = hdev->minor_class;
2109	cod[1] = hdev->major_class;
2110	cod[2] = get_service_classes(hdev);
2111
2112	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
2113		cod[1] |= 0x20;
2114
2115	if (memcmp(cod, hdev->dev_class, 3) == 0)
2116		return;
2117
2118	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
2119}
 
 
 
 
2120
2121static void write_iac(struct hci_request *req)
2122{
2123	struct hci_dev *hdev = req->hdev;
2124	struct hci_cp_write_current_iac_lap cp;
 
 
 
 
 
 
 
 
2125
2126	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2127		return;
 
 
 
 
 
 
 
2128
2129	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
2130		/* Limited discoverable mode */
2131		cp.num_iac = min_t(u8, hdev->num_iac, 2);
2132		cp.iac_lap[0] = 0x00;	/* LIAC */
2133		cp.iac_lap[1] = 0x8b;
2134		cp.iac_lap[2] = 0x9e;
2135		cp.iac_lap[3] = 0x33;	/* GIAC */
2136		cp.iac_lap[4] = 0x8b;
2137		cp.iac_lap[5] = 0x9e;
 
 
 
 
2138	} else {
2139		/* General discoverable mode */
2140		cp.num_iac = 1;
2141		cp.iac_lap[0] = 0x33;	/* GIAC */
2142		cp.iac_lap[1] = 0x8b;
2143		cp.iac_lap[2] = 0x9e;
2144	}
2145
2146	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
2147		    (cp.num_iac * 3) + 1, &cp);
 
 
 
2148}
2149
2150static int discoverable_update(struct hci_request *req, unsigned long opt)
 
2151{
2152	struct hci_dev *hdev = req->hdev;
 
2153
2154	hci_dev_lock(hdev);
2155
2156	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2157		write_iac(req);
2158		__hci_req_update_scan(req);
2159		__hci_req_update_class(req);
2160	}
2161
2162	/* Advertising instances don't use the global discoverable setting, so
2163	 * only update AD if advertising was enabled using Set Advertising.
2164	 */
2165	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2166		__hci_req_update_adv_data(req, 0x00);
2167
2168		/* Discoverable mode affects the local advertising
2169		 * address in limited privacy mode.
2170		 */
2171		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
2172			if (ext_adv_capable(hdev))
2173				__hci_req_start_ext_adv(req, 0x00);
2174			else
2175				__hci_req_enable_advertising(req);
2176		}
2177	}
2178
2179	hci_dev_unlock(hdev);
2180
2181	return 0;
2182}
2183
2184static void discoverable_update_work(struct work_struct *work)
2185{
2186	struct hci_dev *hdev = container_of(work, struct hci_dev,
2187					    discoverable_update);
2188	u8 status;
2189
2190	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
2191	mgmt_set_discoverable_complete(hdev, status);
2192}
2193
2194void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
2195		      u8 reason)
2196{
2197	switch (conn->state) {
2198	case BT_CONNECTED:
2199	case BT_CONFIG:
2200		if (conn->type == AMP_LINK) {
2201			struct hci_cp_disconn_phy_link cp;
2202
2203			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
2204			cp.reason = reason;
2205			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
2206				    &cp);
2207		} else {
2208			struct hci_cp_disconnect dc;
2209
2210			dc.handle = cpu_to_le16(conn->handle);
2211			dc.reason = reason;
2212			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
2213		}
2214
2215		conn->state = BT_DISCONN;
2216
2217		break;
2218	case BT_CONNECT:
2219		if (conn->type == LE_LINK) {
2220			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
2221				break;
2222			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
2223				    0, NULL);
2224		} else if (conn->type == ACL_LINK) {
2225			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
2226				break;
2227			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
2228				    6, &conn->dst);
2229		}
2230		break;
2231	case BT_CONNECT2:
2232		if (conn->type == ACL_LINK) {
2233			struct hci_cp_reject_conn_req rej;
2234
2235			bacpy(&rej.bdaddr, &conn->dst);
2236			rej.reason = reason;
2237
2238			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
2239				    sizeof(rej), &rej);
2240		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
2241			struct hci_cp_reject_sync_conn_req rej;
2242
2243			bacpy(&rej.bdaddr, &conn->dst);
2244
2245			/* SCO rejection has its own limited set of
2246			 * allowed error values (0x0D-0x0F) which isn't
2247			 * compatible with most values passed to this
2248			 * function. To be safe hard-code one of the
2249			 * values that's suitable for SCO.
2250			 */
2251			rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2252
2253			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
2254				    sizeof(rej), &rej);
2255		}
2256		break;
2257	default:
2258		conn->state = BT_CLOSED;
2259		break;
2260	}
2261}
2262
2263static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
2264{
2265	if (status)
2266		BT_DBG("Failed to abort connection: status 0x%2.2x", status);
2267}
2268
2269int hci_abort_conn(struct hci_conn *conn, u8 reason)
2270{
2271	struct hci_request req;
2272	int err;
2273
2274	hci_req_init(&req, conn->hdev);
2275
2276	__hci_abort_conn(&req, conn, reason);
2277
2278	err = hci_req_run(&req, abort_conn_complete);
2279	if (err && err != -ENODATA) {
2280		bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2281		return err;
 
 
 
 
 
 
 
 
2282	}
2283
2284	return 0;
2285}
2286
2287static int update_bg_scan(struct hci_request *req, unsigned long opt)
2288{
2289	hci_dev_lock(req->hdev);
2290	__hci_update_background_scan(req);
2291	hci_dev_unlock(req->hdev);
2292	return 0;
2293}
2294
2295static void bg_scan_update(struct work_struct *work)
2296{
2297	struct hci_dev *hdev = container_of(work, struct hci_dev,
2298					    bg_scan_update);
2299	struct hci_conn *conn;
2300	u8 status;
2301	int err;
2302
2303	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
2304	if (!err)
2305		return;
2306
2307	hci_dev_lock(hdev);
2308
2309	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
2310	if (conn)
2311		hci_le_conn_failed(conn, status);
2312
2313	hci_dev_unlock(hdev);
2314}
2315
2316static int le_scan_disable(struct hci_request *req, unsigned long opt)
2317{
2318	hci_req_add_le_scan_disable(req);
2319	return 0;
2320}
2321
2322static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2323{
2324	u8 length = opt;
2325	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
2326	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2327	struct hci_cp_inquiry cp;
2328
2329	BT_DBG("%s", req->hdev->name);
2330
2331	hci_dev_lock(req->hdev);
2332	hci_inquiry_cache_flush(req->hdev);
2333	hci_dev_unlock(req->hdev);
2334
2335	memset(&cp, 0, sizeof(cp));
2336
2337	if (req->hdev->discovery.limited)
2338		memcpy(&cp.lap, liac, sizeof(cp.lap));
2339	else
2340		memcpy(&cp.lap, giac, sizeof(cp.lap));
2341
2342	cp.length = length;
2343
2344	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2345
2346	return 0;
2347}
2348
2349static void le_scan_disable_work(struct work_struct *work)
2350{
2351	struct hci_dev *hdev = container_of(work, struct hci_dev,
2352					    le_scan_disable.work);
2353	u8 status;
 
2354
2355	BT_DBG("%s", hdev->name);
2356
2357	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2358		return;
2359
2360	cancel_delayed_work(&hdev->le_scan_restart);
2361
2362	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
2363	if (status) {
2364		bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
2365			   status);
2366		return;
2367	}
2368
2369	hdev->discovery.scan_start = 0;
2370
2371	/* If we were running LE only scan, change discovery state. If
2372	 * we were running both LE and BR/EDR inquiry simultaneously,
2373	 * and BR/EDR inquiry is already finished, stop discovery,
2374	 * otherwise BR/EDR inquiry will stop discovery when finished.
2375	 * If we will resolve remote device name, do not change
2376	 * discovery state.
2377	 */
2378
2379	if (hdev->discovery.type == DISCOV_TYPE_LE)
2380		goto discov_stopped;
2381
2382	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2383		return;
2384
2385	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
2386		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
2387		    hdev->discovery.state != DISCOVERY_RESOLVING)
2388			goto discov_stopped;
2389
2390		return;
2391	}
2392
2393	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
2394		     HCI_CMD_TIMEOUT, &status);
2395	if (status) {
2396		bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2397		goto discov_stopped;
2398	}
2399
2400	return;
2401
2402discov_stopped:
2403	hci_dev_lock(hdev);
2404	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2405	hci_dev_unlock(hdev);
2406}
2407
2408static int le_scan_restart(struct hci_request *req, unsigned long opt)
2409{
2410	struct hci_dev *hdev = req->hdev;
2411
2412	/* If controller is not scanning we are done. */
2413	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2414		return 0;
2415
2416	hci_req_add_le_scan_disable(req);
2417
2418	if (use_ext_scan(hdev)) {
2419		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
2420
2421		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
2422		ext_enable_cp.enable = LE_SCAN_ENABLE;
2423		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2424
2425		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
2426			    sizeof(ext_enable_cp), &ext_enable_cp);
2427	} else {
2428		struct hci_cp_le_set_scan_enable cp;
2429
2430		memset(&cp, 0, sizeof(cp));
2431		cp.enable = LE_SCAN_ENABLE;
2432		cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2433		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2434	}
2435
2436	return 0;
2437}
2438
2439static void le_scan_restart_work(struct work_struct *work)
2440{
2441	struct hci_dev *hdev = container_of(work, struct hci_dev,
2442					    le_scan_restart.work);
2443	unsigned long timeout, duration, scan_start, now;
2444	u8 status;
2445
2446	BT_DBG("%s", hdev->name);
2447
2448	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2449	if (status) {
2450		bt_dev_err(hdev, "failed to restart LE scan: status %d",
2451			   status);
2452		return;
2453	}
2454
2455	hci_dev_lock(hdev);
2456
2457	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
2458	    !hdev->discovery.scan_start)
2459		goto unlock;
2460
2461	/* When the scan was started, hdev->le_scan_disable has been queued
2462	 * after duration from scan_start. During scan restart this job
2463	 * has been canceled, and we need to queue it again after proper
2464	 * timeout, to make sure that scan does not run indefinitely.
2465	 */
2466	duration = hdev->discovery.scan_duration;
2467	scan_start = hdev->discovery.scan_start;
2468	now = jiffies;
2469	if (now - scan_start <= duration) {
2470		int elapsed;
2471
2472		if (now >= scan_start)
2473			elapsed = now - scan_start;
2474		else
2475			elapsed = ULONG_MAX - scan_start + now;
2476
2477		timeout = duration - elapsed;
2478	} else {
2479		timeout = 0;
2480	}
2481
2482	queue_delayed_work(hdev->req_workqueue,
2483			   &hdev->le_scan_disable, timeout);
2484
2485unlock:
2486	hci_dev_unlock(hdev);
 
 
2487}
2488
2489static int active_scan(struct hci_request *req, unsigned long opt)
2490{
2491	uint16_t interval = opt;
2492	struct hci_dev *hdev = req->hdev;
2493	u8 own_addr_type;
2494	int err;
2495
2496	BT_DBG("%s", hdev->name);
2497
2498	if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
2499		hci_dev_lock(hdev);
2500
2501		/* Don't let discovery abort an outgoing connection attempt
2502		 * that's using directed advertising.
2503		 */
2504		if (hci_lookup_le_connect(hdev)) {
2505			hci_dev_unlock(hdev);
2506			return -EBUSY;
2507		}
2508
2509		cancel_adv_timeout(hdev);
2510		hci_dev_unlock(hdev);
2511
2512		__hci_req_disable_advertising(req);
2513	}
2514
2515	/* If controller is scanning, it means the background scanning is
2516	 * running. Thus, we should temporarily stop it in order to set the
2517	 * discovery scanning parameters.
2518	 */
2519	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2520		hci_req_add_le_scan_disable(req);
2521
2522	/* All active scans will be done with either a resolvable private
2523	 * address (when privacy feature has been enabled) or non-resolvable
2524	 * private address.
2525	 */
2526	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2527					&own_addr_type);
2528	if (err < 0)
2529		own_addr_type = ADDR_LE_DEV_PUBLIC;
2530
2531	hci_req_start_scan(req, LE_SCAN_ACTIVE, interval, DISCOV_LE_SCAN_WIN,
2532			   own_addr_type, 0);
2533	return 0;
2534}
2535
2536static int interleaved_discov(struct hci_request *req, unsigned long opt)
2537{
2538	int err;
2539
2540	BT_DBG("%s", req->hdev->name);
2541
2542	err = active_scan(req, opt);
2543	if (err)
2544		return err;
2545
2546	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2547}
2548
2549static void start_discovery(struct hci_dev *hdev, u8 *status)
2550{
2551	unsigned long timeout;
2552
2553	BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2554
2555	switch (hdev->discovery.type) {
2556	case DISCOV_TYPE_BREDR:
2557		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2558			hci_req_sync(hdev, bredr_inquiry,
2559				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2560				     status);
2561		return;
2562	case DISCOV_TYPE_INTERLEAVED:
2563		/* When running simultaneous discovery, the LE scanning time
2564		 * should occupy the whole discovery time sine BR/EDR inquiry
2565		 * and LE scanning are scheduled by the controller.
2566		 *
2567		 * For interleaving discovery in comparison, BR/EDR inquiry
2568		 * and LE scanning are done sequentially with separate
2569		 * timeouts.
2570		 */
2571		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2572			     &hdev->quirks)) {
2573			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2574			/* During simultaneous discovery, we double LE scan
2575			 * interval. We must leave some time for the controller
2576			 * to do BR/EDR inquiry.
2577			 */
2578			hci_req_sync(hdev, interleaved_discov,
2579				     DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2580				     status);
2581			break;
2582		}
2583
2584		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2585		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2586			     HCI_CMD_TIMEOUT, status);
2587		break;
2588	case DISCOV_TYPE_LE:
2589		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2590		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2591			     HCI_CMD_TIMEOUT, status);
2592		break;
2593	default:
2594		*status = HCI_ERROR_UNSPECIFIED;
2595		return;
2596	}
2597
2598	if (*status)
2599		return;
2600
2601	BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2602
2603	/* When service discovery is used and the controller has a
2604	 * strict duplicate filter, it is important to remember the
2605	 * start and duration of the scan. This is required for
2606	 * restarting scanning during the discovery phase.
2607	 */
2608	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2609		     hdev->discovery.result_filtering) {
2610		hdev->discovery.scan_start = jiffies;
2611		hdev->discovery.scan_duration = timeout;
2612	}
2613
2614	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2615			   timeout);
2616}
2617
2618bool hci_req_stop_discovery(struct hci_request *req)
2619{
2620	struct hci_dev *hdev = req->hdev;
2621	struct discovery_state *d = &hdev->discovery;
2622	struct hci_cp_remote_name_req_cancel cp;
2623	struct inquiry_entry *e;
2624	bool ret = false;
2625
2626	BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2627
2628	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2629		if (test_bit(HCI_INQUIRY, &hdev->flags))
2630			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2631
2632		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2633			cancel_delayed_work(&hdev->le_scan_disable);
2634			hci_req_add_le_scan_disable(req);
2635		}
2636
2637		ret = true;
2638	} else {
2639		/* Passive scanning */
2640		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2641			hci_req_add_le_scan_disable(req);
2642			ret = true;
2643		}
2644	}
2645
2646	/* No further actions needed for LE-only discovery */
2647	if (d->type == DISCOV_TYPE_LE)
2648		return ret;
2649
2650	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2651		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2652						     NAME_PENDING);
2653		if (!e)
2654			return ret;
2655
2656		bacpy(&cp.bdaddr, &e->data.bdaddr);
2657		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2658			    &cp);
2659		ret = true;
2660	}
2661
2662	return ret;
2663}
2664
2665static int stop_discovery(struct hci_request *req, unsigned long opt)
2666{
2667	hci_dev_lock(req->hdev);
2668	hci_req_stop_discovery(req);
2669	hci_dev_unlock(req->hdev);
2670
2671	return 0;
2672}
2673
2674static void discov_update(struct work_struct *work)
2675{
2676	struct hci_dev *hdev = container_of(work, struct hci_dev,
2677					    discov_update);
2678	u8 status = 0;
2679
2680	switch (hdev->discovery.state) {
2681	case DISCOVERY_STARTING:
2682		start_discovery(hdev, &status);
2683		mgmt_start_discovery_complete(hdev, status);
2684		if (status)
2685			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2686		else
2687			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2688		break;
2689	case DISCOVERY_STOPPING:
2690		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2691		mgmt_stop_discovery_complete(hdev, status);
2692		if (!status)
2693			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2694		break;
2695	case DISCOVERY_STOPPED:
2696	default:
2697		return;
2698	}
2699}
2700
2701static void discov_off(struct work_struct *work)
2702{
2703	struct hci_dev *hdev = container_of(work, struct hci_dev,
2704					    discov_off.work);
2705
2706	BT_DBG("%s", hdev->name);
2707
2708	hci_dev_lock(hdev);
2709
2710	/* When discoverable timeout triggers, then just make sure
2711	 * the limited discoverable flag is cleared. Even in the case
2712	 * of a timeout triggered from general discoverable, it is
2713	 * safe to unconditionally clear the flag.
2714	 */
2715	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2716	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2717	hdev->discov_timeout = 0;
2718
2719	hci_dev_unlock(hdev);
2720
2721	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2722	mgmt_new_settings(hdev);
2723}
2724
2725static int powered_update_hci(struct hci_request *req, unsigned long opt)
2726{
2727	struct hci_dev *hdev = req->hdev;
2728	u8 link_sec;
2729
2730	hci_dev_lock(hdev);
2731
2732	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2733	    !lmp_host_ssp_capable(hdev)) {
2734		u8 mode = 0x01;
2735
2736		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2737
2738		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2739			u8 support = 0x01;
2740
2741			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2742				    sizeof(support), &support);
2743		}
2744	}
2745
2746	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2747	    lmp_bredr_capable(hdev)) {
2748		struct hci_cp_write_le_host_supported cp;
2749
2750		cp.le = 0x01;
2751		cp.simul = 0x00;
2752
2753		/* Check first if we already have the right
2754		 * host state (host features set)
2755		 */
2756		if (cp.le != lmp_host_le_capable(hdev) ||
2757		    cp.simul != lmp_host_le_br_capable(hdev))
2758			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2759				    sizeof(cp), &cp);
2760	}
2761
2762	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2763		/* Make sure the controller has a good default for
2764		 * advertising data. This also applies to the case
2765		 * where BR/EDR was toggled during the AUTO_OFF phase.
2766		 */
2767		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2768		    list_empty(&hdev->adv_instances)) {
2769			int err;
2770
2771			if (ext_adv_capable(hdev)) {
2772				err = __hci_req_setup_ext_adv_instance(req,
2773								       0x00);
2774				if (!err)
2775					__hci_req_update_scan_rsp_data(req,
2776								       0x00);
2777			} else {
2778				err = 0;
2779				__hci_req_update_adv_data(req, 0x00);
2780				__hci_req_update_scan_rsp_data(req, 0x00);
2781			}
2782
2783			if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2784				if (!ext_adv_capable(hdev))
2785					__hci_req_enable_advertising(req);
2786				else if (!err)
2787					__hci_req_enable_ext_advertising(req,
2788									 0x00);
2789			}
2790		} else if (!list_empty(&hdev->adv_instances)) {
2791			struct adv_info *adv_instance;
2792
2793			adv_instance = list_first_entry(&hdev->adv_instances,
2794							struct adv_info, list);
2795			__hci_req_schedule_adv_instance(req,
2796							adv_instance->instance,
2797							true);
2798		}
2799	}
2800
2801	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2802	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
2803		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
2804			    sizeof(link_sec), &link_sec);
2805
2806	if (lmp_bredr_capable(hdev)) {
2807		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2808			__hci_req_write_fast_connectable(req, true);
2809		else
2810			__hci_req_write_fast_connectable(req, false);
2811		__hci_req_update_scan(req);
2812		__hci_req_update_class(req);
2813		__hci_req_update_name(req);
2814		__hci_req_update_eir(req);
2815	}
2816
2817	hci_dev_unlock(hdev);
2818	return 0;
2819}
2820
2821int __hci_req_hci_power_on(struct hci_dev *hdev)
2822{
2823	/* Register the available SMP channels (BR/EDR and LE) only when
2824	 * successfully powering on the controller. This late
2825	 * registration is required so that LE SMP can clearly decide if
2826	 * the public address or static address is used.
2827	 */
2828	smp_register(hdev);
2829
2830	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
2831			      NULL);
2832}
2833
2834void hci_request_setup(struct hci_dev *hdev)
2835{
2836	INIT_WORK(&hdev->discov_update, discov_update);
2837	INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2838	INIT_WORK(&hdev->scan_update, scan_update_work);
2839	INIT_WORK(&hdev->connectable_update, connectable_update_work);
2840	INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
2841	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2842	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2843	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2844	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2845}
2846
2847void hci_request_cancel_all(struct hci_dev *hdev)
2848{
2849	hci_req_sync_cancel(hdev, ENODEV);
2850
2851	cancel_work_sync(&hdev->discov_update);
2852	cancel_work_sync(&hdev->bg_scan_update);
2853	cancel_work_sync(&hdev->scan_update);
2854	cancel_work_sync(&hdev->connectable_update);
2855	cancel_work_sync(&hdev->discoverable_update);
2856	cancel_delayed_work_sync(&hdev->discov_off);
2857	cancel_delayed_work_sync(&hdev->le_scan_disable);
2858	cancel_delayed_work_sync(&hdev->le_scan_restart);
2859
2860	if (hdev->adv_instance_timeout) {
2861		cancel_delayed_work_sync(&hdev->adv_instance_expire);
2862		hdev->adv_instance_timeout = 0;
2863	}
2864}
v6.9.4
  1/*
  2   BlueZ - Bluetooth protocol stack for Linux
  3
  4   Copyright (C) 2014 Intel Corporation
  5
  6   This program is free software; you can redistribute it and/or modify
  7   it under the terms of the GNU General Public License version 2 as
  8   published by the Free Software Foundation;
  9
 10   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 11   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 12   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
 13   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
 14   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
 15   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 16   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 17   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 18
 19   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
 20   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
 21   SOFTWARE IS DISCLAIMED.
 22*/
 23
 24#include <linux/sched/signal.h>
 25
 26#include <net/bluetooth/bluetooth.h>
 27#include <net/bluetooth/hci_core.h>
 28#include <net/bluetooth/mgmt.h>
 29
 30#include "smp.h"
 31#include "hci_request.h"
 32#include "msft.h"
 33#include "eir.h"
 
 
 34
 35void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
 36{
 37	skb_queue_head_init(&req->cmd_q);
 38	req->hdev = hdev;
 39	req->err = 0;
 40}
 41
 42void hci_req_purge(struct hci_request *req)
 43{
 44	skb_queue_purge(&req->cmd_q);
 45}
 46
 47bool hci_req_status_pend(struct hci_dev *hdev)
 48{
 49	return hdev->req_status == HCI_REQ_PEND;
 50}
 51
 52static int req_run(struct hci_request *req, hci_req_complete_t complete,
 53		   hci_req_complete_skb_t complete_skb)
 54{
 55	struct hci_dev *hdev = req->hdev;
 56	struct sk_buff *skb;
 57	unsigned long flags;
 58
 59	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
 60
 61	/* If an error occurred during request building, remove all HCI
 62	 * commands queued on the HCI request queue.
 63	 */
 64	if (req->err) {
 65		skb_queue_purge(&req->cmd_q);
 66		return req->err;
 67	}
 68
 69	/* Do not allow empty requests */
 70	if (skb_queue_empty(&req->cmd_q))
 71		return -ENODATA;
 72
 73	skb = skb_peek_tail(&req->cmd_q);
 74	if (complete) {
 75		bt_cb(skb)->hci.req_complete = complete;
 76	} else if (complete_skb) {
 77		bt_cb(skb)->hci.req_complete_skb = complete_skb;
 78		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
 79	}
 80
 81	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
 82	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
 83	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
 84
 85	queue_work(hdev->workqueue, &hdev->cmd_work);
 86
 87	return 0;
 88}
 89
 90int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
 91{
 92	return req_run(req, complete, NULL);
 93}
 94
 95int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
 96{
 97	return req_run(req, NULL, complete);
 98}
 99
100void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
101			   struct sk_buff *skb)
102{
103	bt_dev_dbg(hdev, "result 0x%2.2x", result);
104
105	if (hdev->req_status == HCI_REQ_PEND) {
106		hdev->req_result = result;
107		hdev->req_status = HCI_REQ_DONE;
108		if (skb) {
109			kfree_skb(hdev->req_skb);
110			hdev->req_skb = skb_get(skb);
111		}
112		wake_up_interruptible(&hdev->req_wait_q);
113	}
114}
115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116/* Execute request and wait for completion. */
117int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
118						     unsigned long opt),
119		   unsigned long opt, u32 timeout, u8 *hci_status)
120{
121	struct hci_request req;
122	int err = 0;
123
124	bt_dev_dbg(hdev, "start");
125
126	hci_req_init(&req, hdev);
127
128	hdev->req_status = HCI_REQ_PEND;
129
130	err = func(&req, opt);
131	if (err) {
132		if (hci_status)
133			*hci_status = HCI_ERROR_UNSPECIFIED;
134		return err;
135	}
136
137	err = hci_req_run_skb(&req, hci_req_sync_complete);
138	if (err < 0) {
139		hdev->req_status = 0;
140
141		/* ENODATA means the HCI request command queue is empty.
142		 * This can happen when a request with conditionals doesn't
143		 * trigger any commands to be sent. This is normal behavior
144		 * and should not trigger an error return.
145		 */
146		if (err == -ENODATA) {
147			if (hci_status)
148				*hci_status = 0;
149			return 0;
150		}
151
152		if (hci_status)
153			*hci_status = HCI_ERROR_UNSPECIFIED;
154
155		return err;
156	}
157
158	err = wait_event_interruptible_timeout(hdev->req_wait_q,
159			hdev->req_status != HCI_REQ_PEND, timeout);
160
161	if (err == -ERESTARTSYS)
162		return -EINTR;
163
164	switch (hdev->req_status) {
165	case HCI_REQ_DONE:
166		err = -bt_to_errno(hdev->req_result);
167		if (hci_status)
168			*hci_status = hdev->req_result;
169		break;
170
171	case HCI_REQ_CANCELED:
172		err = -hdev->req_result;
173		if (hci_status)
174			*hci_status = HCI_ERROR_UNSPECIFIED;
175		break;
176
177	default:
178		err = -ETIMEDOUT;
179		if (hci_status)
180			*hci_status = HCI_ERROR_UNSPECIFIED;
181		break;
182	}
183
184	kfree_skb(hdev->req_skb);
185	hdev->req_skb = NULL;
186	hdev->req_status = hdev->req_result = 0;
187
188	bt_dev_dbg(hdev, "end: err %d", err);
189
190	return err;
191}
192
193int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
194						  unsigned long opt),
195		 unsigned long opt, u32 timeout, u8 *hci_status)
196{
197	int ret;
198
 
 
 
199	/* Serialize all requests */
200	hci_req_sync_lock(hdev);
201	/* check the state after obtaing the lock to protect the HCI_UP
202	 * against any races from hci_dev_do_close when the controller
203	 * gets removed.
204	 */
205	if (test_bit(HCI_UP, &hdev->flags))
206		ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
207	else
208		ret = -ENETDOWN;
209	hci_req_sync_unlock(hdev);
210
211	return ret;
212}
213
214struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
215				const void *param)
216{
217	int len = HCI_COMMAND_HDR_SIZE + plen;
218	struct hci_command_hdr *hdr;
219	struct sk_buff *skb;
220
221	skb = bt_skb_alloc(len, GFP_ATOMIC);
222	if (!skb)
223		return NULL;
224
225	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
226	hdr->opcode = cpu_to_le16(opcode);
227	hdr->plen   = plen;
228
229	if (plen)
230		skb_put_data(skb, param, plen);
231
232	bt_dev_dbg(hdev, "skb len %d", skb->len);
233
234	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
235	hci_skb_opcode(skb) = opcode;
236
237	return skb;
238}
239
240/* Queue a command to an asynchronous HCI request */
241void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
242		    const void *param, u8 event)
243{
244	struct hci_dev *hdev = req->hdev;
245	struct sk_buff *skb;
246
247	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
248
249	/* If an error occurred during request building, there is no point in
250	 * queueing the HCI command. We can simply return.
251	 */
252	if (req->err)
253		return;
254
255	skb = hci_prepare_cmd(hdev, opcode, plen, param);
256	if (!skb) {
257		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
258			   opcode);
259		req->err = -ENOMEM;
260		return;
261	}
262
263	if (skb_queue_empty(&req->cmd_q))
264		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
265
266	hci_skb_event(skb) = event;
267
268	skb_queue_tail(&req->cmd_q, skb);
269}
270
271void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
272		 const void *param)
273{
274	bt_dev_dbg(req->hdev, "HCI_REQ-0x%4.4x", opcode);
275	hci_req_add_ev(req, opcode, plen, param, 0);
276}
277
278static void start_interleave_scan(struct hci_dev *hdev)
279{
280	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
281	queue_delayed_work(hdev->req_workqueue,
282			   &hdev->interleave_scan, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
283}
284
285static bool is_interleave_scanning(struct hci_dev *hdev)
 
 
 
 
 
 
286{
287	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
288}
289
290static void cancel_interleave_scan(struct hci_dev *hdev)
291{
292	bt_dev_dbg(hdev, "cancelling interleave scan");
 
293
294	cancel_delayed_work_sync(&hdev->interleave_scan);
295
296	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
297}
298
299/* Return true if interleave_scan wasn't started until exiting this function,
300 * otherwise, return false
301 */
302static bool __hci_update_interleaved_scan(struct hci_dev *hdev)
303{
304	/* Do interleaved scan only if all of the following are true:
305	 * - There is at least one ADV monitor
306	 * - At least one pending LE connection or one device to be scanned for
307	 * - Monitor offloading is not supported
308	 * If so, we should alternate between allowlist scan and one without
309	 * any filters to save power.
310	 */
311	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
312				!(list_empty(&hdev->pend_le_conns) &&
313				  list_empty(&hdev->pend_le_reports)) &&
314				hci_get_adv_monitor_offload_ext(hdev) ==
315				    HCI_ADV_MONITOR_EXT_NONE;
316	bool is_interleaving = is_interleave_scanning(hdev);
317
318	if (use_interleaving && !is_interleaving) {
319		start_interleave_scan(hdev);
320		bt_dev_dbg(hdev, "starting interleave scan");
321		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322	}
323
324	if (!use_interleaving && is_interleaving)
325		cancel_interleave_scan(hdev);
326
327	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328}
329
330void hci_req_add_le_scan_disable(struct hci_request *req, bool rpa_le_conn)
331{
332	struct hci_dev *hdev = req->hdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333
334	if (hdev->scanning_paused) {
335		bt_dev_dbg(hdev, "Scanning is paused for suspend");
336		return;
337	}
338
339	if (use_ext_scan(hdev)) {
340		struct hci_cp_le_set_ext_scan_enable cp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341
342		memset(&cp, 0, sizeof(cp));
343		cp.enable = LE_SCAN_DISABLE;
344		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
345			    &cp);
346	} else {
347		struct hci_cp_le_set_scan_enable cp;
348
349		memset(&cp, 0, sizeof(cp));
350		cp.enable = LE_SCAN_DISABLE;
351		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
352	}
353
354	/* Disable address resolution */
355	if (hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION) && !rpa_le_conn) {
356		__u8 enable = 0x00;
357
358		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
 
 
 
 
 
359	}
 
 
 
 
360}
361
362static void del_from_accept_list(struct hci_request *req, bdaddr_t *bdaddr,
363				 u8 bdaddr_type)
364{
365	struct hci_cp_le_del_from_accept_list cp;
 
 
 
 
 
 
 
 
 
 
366
367	cp.bdaddr_type = bdaddr_type;
368	bacpy(&cp.bdaddr, bdaddr);
369
370	bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from accept list", &cp.bdaddr,
371		   cp.bdaddr_type);
372	hci_req_add(req, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, sizeof(cp), &cp);
373
374	if (use_ll_privacy(req->hdev)) {
375		struct smp_irk *irk;
376
377		irk = hci_find_irk_by_addr(req->hdev, bdaddr, bdaddr_type);
378		if (irk) {
379			struct hci_cp_le_del_from_resolv_list cp;
380
381			cp.bdaddr_type = bdaddr_type;
382			bacpy(&cp.bdaddr, bdaddr);
383
384			hci_req_add(req, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
385				    sizeof(cp), &cp);
386		}
387	}
388}
389
390/* Adds connection to accept list if needed. On error, returns -1. */
391static int add_to_accept_list(struct hci_request *req,
392			      struct hci_conn_params *params, u8 *num_entries,
393			      bool allow_rpa)
394{
395	struct hci_cp_le_add_to_accept_list cp;
396	struct hci_dev *hdev = req->hdev;
397
398	/* Already in accept list */
399	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
400				   params->addr_type))
401		return 0;
402
403	/* Select filter policy to accept all advertising */
404	if (*num_entries >= hdev->le_accept_list_size)
405		return -1;
 
 
 
406
407	/* Accept list can not be used with RPAs */
408	if (!allow_rpa &&
409	    !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
410	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type)) {
411		return -1;
412	}
 
413
414	/* During suspend, only wakeable devices can be in accept list */
415	if (hdev->suspended &&
416	    !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
417		return 0;
418
419	*num_entries += 1;
420	cp.bdaddr_type = params->addr_type;
421	bacpy(&cp.bdaddr, &params->addr);
422
423	bt_dev_dbg(hdev, "Add %pMR (0x%x) to accept list", &cp.bdaddr,
424		   cp.bdaddr_type);
425	hci_req_add(req, HCI_OP_LE_ADD_TO_ACCEPT_LIST, sizeof(cp), &cp);
426
427	if (use_ll_privacy(hdev)) {
428		struct smp_irk *irk;
429
430		irk = hci_find_irk_by_addr(hdev, &params->addr,
431					   params->addr_type);
432		if (irk) {
433			struct hci_cp_le_add_to_resolv_list cp;
434
435			cp.bdaddr_type = params->addr_type;
436			bacpy(&cp.bdaddr, &params->addr);
437			memcpy(cp.peer_irk, irk->val, 16);
438
439			if (hci_dev_test_flag(hdev, HCI_PRIVACY))
440				memcpy(cp.local_irk, hdev->irk, 16);
441			else
442				memset(cp.local_irk, 0, 16);
443
444			hci_req_add(req, HCI_OP_LE_ADD_TO_RESOLV_LIST,
445				    sizeof(cp), &cp);
446		}
447	}
448
449	return 0;
450}
451
452static u8 update_accept_list(struct hci_request *req)
453{
454	struct hci_dev *hdev = req->hdev;
455	struct hci_conn_params *params;
456	struct bdaddr_list *b;
457	u8 num_entries = 0;
458	bool pend_conn, pend_report;
459	/* We allow usage of accept list even with RPAs in suspend. In the worst
460	 * case, we won't be able to wake from devices that use the privacy1.2
461	 * features. Additionally, once we support privacy1.2 and IRK
462	 * offloading, we can update this to also check for those conditions.
463	 */
464	bool allow_rpa = hdev->suspended;
465
466	if (use_ll_privacy(hdev))
467		allow_rpa = true;
468
469	/* Go through the current accept list programmed into the
470	 * controller one by one and check if that address is still
471	 * in the list of pending connections or list of devices to
472	 * report. If not present in either list, then queue the
473	 * command to remove it from the controller.
474	 */
475	list_for_each_entry(b, &hdev->le_accept_list, list) {
476		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
477						      &b->bdaddr,
478						      b->bdaddr_type);
479		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
480							&b->bdaddr,
481							b->bdaddr_type);
 
 
 
 
 
482
483		/* If the device is not likely to connect or report,
484		 * remove it from the accept list.
485		 */
486		if (!pend_conn && !pend_report) {
487			del_from_accept_list(req, &b->bdaddr, b->bdaddr_type);
488			continue;
489		}
490
491		/* Accept list can not be used with RPAs */
492		if (!allow_rpa &&
493		    !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
494		    hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
495			return 0x00;
496		}
497
498		num_entries++;
499	}
500
501	/* Since all no longer valid accept list entries have been
502	 * removed, walk through the list of pending connections
503	 * and ensure that any new device gets programmed into
504	 * the controller.
505	 *
506	 * If the list of the devices is larger than the list of
507	 * available accept list entries in the controller, then
508	 * just abort and return filer policy value to not use the
509	 * accept list.
510	 */
511	list_for_each_entry(params, &hdev->pend_le_conns, action) {
512		if (add_to_accept_list(req, params, &num_entries, allow_rpa))
 
 
 
 
 
513			return 0x00;
 
 
 
 
 
 
 
 
 
 
514	}
515
516	/* After adding all new pending connections, walk through
517	 * the list of pending reports and also add these to the
518	 * accept list if there is still space. Abort if space runs out.
519	 */
520	list_for_each_entry(params, &hdev->pend_le_reports, action) {
521		if (add_to_accept_list(req, params, &num_entries, allow_rpa))
 
 
 
 
 
 
 
 
 
 
 
522			return 0x00;
 
 
 
 
523	}
524
525	/* Use the allowlist unless the following conditions are all true:
526	 * - We are not currently suspending
527	 * - There are 1 or more ADV monitors registered and it's not offloaded
528	 * - Interleaved scanning is not currently using the allowlist
529	 */
530	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
531	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
532	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
533		return 0x00;
534
535	/* Select filter policy to use accept list */
536	return 0x01;
537}
538
539static bool scan_use_rpa(struct hci_dev *hdev)
540{
541	return hci_dev_test_flag(hdev, HCI_PRIVACY);
542}
543
544static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
545			       u16 window, u8 own_addr_type, u8 filter_policy,
546			       bool filter_dup, bool addr_resolv)
547{
548	struct hci_dev *hdev = req->hdev;
549
550	if (hdev->scanning_paused) {
551		bt_dev_dbg(hdev, "Scanning is paused for suspend");
552		return;
553	}
554
555	if (use_ll_privacy(hdev) && addr_resolv) {
556		u8 enable = 0x01;
557
558		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
559	}
560
561	/* Use ext scanning if set ext scan param and ext scan enable is
562	 * supported
563	 */
564	if (use_ext_scan(hdev)) {
565		struct hci_cp_le_set_ext_scan_params *ext_param_cp;
566		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
567		struct hci_cp_le_scan_phy_params *phy_params;
568		u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
569		u32 plen;
570
571		ext_param_cp = (void *)data;
572		phy_params = (void *)ext_param_cp->data;
573
574		memset(ext_param_cp, 0, sizeof(*ext_param_cp));
575		ext_param_cp->own_addr_type = own_addr_type;
576		ext_param_cp->filter_policy = filter_policy;
577
578		plen = sizeof(*ext_param_cp);
579
580		if (scan_1m(hdev) || scan_2m(hdev)) {
581			ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;
582
583			memset(phy_params, 0, sizeof(*phy_params));
584			phy_params->type = type;
585			phy_params->interval = cpu_to_le16(interval);
586			phy_params->window = cpu_to_le16(window);
587
588			plen += sizeof(*phy_params);
589			phy_params++;
590		}
591
592		if (scan_coded(hdev)) {
593			ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;
594
595			memset(phy_params, 0, sizeof(*phy_params));
596			phy_params->type = type;
597			phy_params->interval = cpu_to_le16(interval);
598			phy_params->window = cpu_to_le16(window);
599
600			plen += sizeof(*phy_params);
601			phy_params++;
602		}
603
604		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
605			    plen, ext_param_cp);
606
607		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
608		ext_enable_cp.enable = LE_SCAN_ENABLE;
609		ext_enable_cp.filter_dup = filter_dup;
610
611		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
612			    sizeof(ext_enable_cp), &ext_enable_cp);
613	} else {
614		struct hci_cp_le_set_scan_param param_cp;
615		struct hci_cp_le_set_scan_enable enable_cp;
616
617		memset(&param_cp, 0, sizeof(param_cp));
618		param_cp.type = type;
619		param_cp.interval = cpu_to_le16(interval);
620		param_cp.window = cpu_to_le16(window);
621		param_cp.own_address_type = own_addr_type;
622		param_cp.filter_policy = filter_policy;
623		hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
624			    &param_cp);
625
626		memset(&enable_cp, 0, sizeof(enable_cp));
627		enable_cp.enable = LE_SCAN_ENABLE;
628		enable_cp.filter_dup = filter_dup;
629		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
630			    &enable_cp);
631	}
632}
633
634static void set_random_addr(struct hci_request *req, bdaddr_t *rpa);
635static int hci_update_random_address(struct hci_request *req,
636				     bool require_privacy, bool use_rpa,
637				     u8 *own_addr_type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
638{
639	struct hci_dev *hdev = req->hdev;
640	int err;
641
642	/* If privacy is enabled use a resolvable private address. If
643	 * current RPA has expired or there is something else than
644	 * the current RPA in use, then generate a new one.
645	 */
646	if (use_rpa) {
647		/* If Controller supports LL Privacy use own address type is
648		 * 0x03
649		 */
650		if (use_ll_privacy(hdev))
651			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
652		else
653			*own_addr_type = ADDR_LE_DEV_RANDOM;
654
655		if (rpa_valid(hdev))
 
656			return 0;
657
658		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
659		if (err < 0) {
660			bt_dev_err(hdev, "failed to generate new RPA");
661			return err;
662		}
663
664		set_random_addr(req, &hdev->rpa);
665
 
 
 
666		return 0;
667	}
668
669	/* In case of required privacy without resolvable private address,
670	 * use an non-resolvable private address. This is useful for active
671	 * scanning and non-connectable advertising.
672	 */
673	if (require_privacy) {
674		bdaddr_t nrpa;
675
676		while (true) {
677			/* The non-resolvable private address is generated
678			 * from random six bytes with the two most significant
679			 * bits cleared.
680			 */
681			get_random_bytes(&nrpa, 6);
682			nrpa.b[5] &= 0x3f;
683
684			/* The non-resolvable private address shall not be
685			 * equal to the public address.
686			 */
687			if (bacmp(&hdev->bdaddr, &nrpa))
688				break;
689		}
690
691		*own_addr_type = ADDR_LE_DEV_RANDOM;
692		set_random_addr(req, &nrpa);
693		return 0;
694	}
695
696	/* If forcing static address is in use or there is no public
697	 * address use the static address as random address (but skip
698	 * the HCI command if the current random address is already the
699	 * static one.
700	 *
701	 * In case BR/EDR has been disabled on a dual-mode controller
702	 * and a static address has been configured, then use that
703	 * address instead of the public BR/EDR address.
704	 */
705	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
706	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
707	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
708	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
709		*own_addr_type = ADDR_LE_DEV_RANDOM;
710		if (bacmp(&hdev->static_addr, &hdev->random_addr))
711			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
712				    &hdev->static_addr);
713		return 0;
714	}
715
716	/* Neither privacy nor static address is being used so use a
717	 * public address.
718	 */
719	*own_addr_type = ADDR_LE_DEV_PUBLIC;
720
721	return 0;
722}
723
724/* Ensure to call hci_req_add_le_scan_disable() first to disable the
725 * controller based address resolution to be able to reconfigure
726 * resolving list.
727 */
728void hci_req_add_le_passive_scan(struct hci_request *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729{
730	struct hci_dev *hdev = req->hdev;
731	u8 own_addr_type;
732	u8 filter_policy;
733	u16 window, interval;
734	/* Default is to enable duplicates filter */
735	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
736	/* Background scanning should run with address resolution */
737	bool addr_resolv = true;
 
 
 
 
 
 
 
 
 
 
 
 
738
739	if (hdev->scanning_paused) {
740		bt_dev_dbg(hdev, "Scanning is paused for suspend");
741		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
742	}
743
744	/* Set require_privacy to false since no SCAN_REQ are send
745	 * during passive scanning. Not using an non-resolvable address
746	 * here is important so that peer devices using direct
747	 * advertising with our address will be correctly reported
748	 * by the controller.
749	 */
750	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
751				      &own_addr_type))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
752		return;
753
754	if (hdev->enable_advmon_interleave_scan &&
755	    __hci_update_interleaved_scan(hdev))
 
 
 
 
 
 
756		return;
757
758	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
759	/* Adding or removing entries from the accept list must
760	 * happen before enabling scanning. The controller does
761	 * not allow accept list modification while scanning.
762	 */
763	filter_policy = update_accept_list(req);
764
765	/* When the controller is using random resolvable addresses and
766	 * with that having LE privacy enabled, then controllers with
767	 * Extended Scanner Filter Policies support can now enable support
768	 * for handling directed advertising.
769	 *
770	 * So instead of using filter polices 0x00 (no accept list)
771	 * and 0x01 (accept list enabled) use the new filter policies
772	 * 0x02 (no accept list) and 0x03 (accept list enabled).
773	 */
774	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
775	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
776		filter_policy |= 0x02;
777
778	if (hdev->suspended) {
779		window = hdev->le_scan_window_suspend;
780		interval = hdev->le_scan_int_suspend;
781	} else if (hci_is_le_conn_scanning(hdev)) {
782		window = hdev->le_scan_window_connect;
783		interval = hdev->le_scan_int_connect;
784	} else if (hci_is_adv_monitoring(hdev)) {
785		window = hdev->le_scan_window_adv_monitor;
786		interval = hdev->le_scan_int_adv_monitor;
787
788		/* Disable duplicates filter when scanning for advertisement
789		 * monitor for the following reasons.
790		 *
791		 * For HW pattern filtering (ex. MSFT), Realtek and Qualcomm
792		 * controllers ignore RSSI_Sampling_Period when the duplicates
793		 * filter is enabled.
794		 *
795		 * For SW pattern filtering, when we're not doing interleaved
796		 * scanning, it is necessary to disable duplicates filter,
797		 * otherwise hosts can only receive one advertisement and it's
798		 * impossible to know if a peer is still in range.
799		 */
800		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
801	} else {
802		window = hdev->le_scan_window;
803		interval = hdev->le_scan_interval;
 
 
 
804	}
805
806	bt_dev_dbg(hdev, "LE passive scan with accept list = %d",
807		   filter_policy);
808	hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window,
809			   own_addr_type, filter_policy, filter_dup,
810			   addr_resolv);
811}
812
813static int hci_req_add_le_interleaved_scan(struct hci_request *req,
814					   unsigned long opt)
815{
816	struct hci_dev *hdev = req->hdev;
817	int ret = 0;
818
819	hci_dev_lock(hdev);
820
821	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
822		hci_req_add_le_scan_disable(req, false);
823	hci_req_add_le_passive_scan(req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
824
825	switch (hdev->interleave_scan_state) {
826	case INTERLEAVE_SCAN_ALLOWLIST:
827		bt_dev_dbg(hdev, "next state: allowlist");
828		hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
829		break;
830	case INTERLEAVE_SCAN_NO_FILTER:
831		bt_dev_dbg(hdev, "next state: no filter");
832		hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST;
833		break;
834	case INTERLEAVE_SCAN_NONE:
835		BT_ERR("unexpected error");
836		ret = -1;
837	}
838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
839	hci_dev_unlock(hdev);
 
 
 
 
 
 
 
840
841	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
842}
843
844static void interleave_scan_work(struct work_struct *work)
845{
846	struct hci_dev *hdev = container_of(work, struct hci_dev,
847					    interleave_scan.work);
848	u8 status;
849	unsigned long timeout;
850
851	if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) {
852		timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration);
853	} else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) {
854		timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
855	} else {
856		bt_dev_err(hdev, "unexpected error");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
857		return;
858	}
859
860	hci_req_sync(hdev, hci_req_add_le_interleaved_scan, 0,
861		     HCI_CMD_TIMEOUT, &status);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
862
863	/* Don't continue interleaving if it was canceled */
864	if (is_interleave_scanning(hdev))
865		queue_delayed_work(hdev->req_workqueue,
866				   &hdev->interleave_scan, timeout);
867}
868
869static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
870{
 
871	struct hci_dev *hdev = req->hdev;
 
 
 
 
872
873	/* If we're advertising or initiating an LE connection we can't
874	 * go ahead and change the random address at this time. This is
875	 * because the eventual initiator address used for the
876	 * subsequently created connection will be undefined (some
877	 * controllers use the new address and others the one we had
878	 * when the operation started).
879	 *
880	 * In this kind of scenario skip the update and let the random
881	 * address be updated at the next cycle.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
882	 */
883	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
884	    hci_lookup_le_connect(hdev)) {
885		bt_dev_dbg(hdev, "Deferring random address update");
886		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
887		return;
888	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
889
890	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
891}
892
893void hci_request_setup(struct hci_dev *hdev)
894{
895	INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work);
 
 
 
 
 
 
 
 
896}
897
898void hci_request_cancel_all(struct hci_dev *hdev)
899{
900	hci_cmd_sync_cancel_sync(hdev, ENODEV);
901
902	cancel_interleave_scan(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
903}