Linux Audio

Check our new training course

Loading...
v5.4
 1/* SPDX-License-Identifier: GPL-2.0 */
 2
 3#ifndef BTRFS_MISC_H
 4#define BTRFS_MISC_H
 5
 
 
 6#include <linux/sched.h>
 7#include <linux/wait.h>
 8#include <asm/div64.h>
 
 9
10#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
 
 
 
 
 
 
11
12static inline void cond_wake_up(struct wait_queue_head *wq)
13{
14	/*
15	 * This implies a full smp_mb barrier, see comments for
16	 * waitqueue_active why.
17	 */
18	if (wq_has_sleeper(wq))
19		wake_up(wq);
20}
21
22static inline void cond_wake_up_nomb(struct wait_queue_head *wq)
23{
24	/*
25	 * Special case for conditional wakeup where the barrier required for
26	 * waitqueue_active is implied by some of the preceding code. Eg. one
27	 * of such atomic operations (atomic_dec_and_return, ...), or a
28	 * unlock/lock sequence, etc.
29	 */
30	if (waitqueue_active(wq))
31		wake_up(wq);
32}
33
34static inline u64 div_factor(u64 num, int factor)
35{
36	if (factor == 10)
37		return num;
38	num *= factor;
39	return div_u64(num, 10);
40}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
42static inline u64 div_factor_fine(u64 num, int factor)
43{
44	if (factor == 100)
45		return num;
46	num *= factor;
47	return div_u64(num, 100);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48}
49
50#endif
v6.9.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2
  3#ifndef BTRFS_MISC_H
  4#define BTRFS_MISC_H
  5
  6#include <linux/types.h>
  7#include <linux/bitmap.h>
  8#include <linux/sched.h>
  9#include <linux/wait.h>
 10#include <linux/math64.h>
 11#include <linux/rbtree.h>
 12
 13/*
 14 * Enumerate bits using enum autoincrement. Define the @name as the n-th bit.
 15 */
 16#define ENUM_BIT(name)                                  \
 17	__ ## name ## _BIT,                             \
 18	name = (1U << __ ## name ## _BIT),              \
 19	__ ## name ## _SEQ = __ ## name ## _BIT
 20
 21static inline void cond_wake_up(struct wait_queue_head *wq)
 22{
 23	/*
 24	 * This implies a full smp_mb barrier, see comments for
 25	 * waitqueue_active why.
 26	 */
 27	if (wq_has_sleeper(wq))
 28		wake_up(wq);
 29}
 30
 31static inline void cond_wake_up_nomb(struct wait_queue_head *wq)
 32{
 33	/*
 34	 * Special case for conditional wakeup where the barrier required for
 35	 * waitqueue_active is implied by some of the preceding code. Eg. one
 36	 * of such atomic operations (atomic_dec_and_return, ...), or a
 37	 * unlock/lock sequence, etc.
 38	 */
 39	if (waitqueue_active(wq))
 40		wake_up(wq);
 41}
 42
 43static inline u64 mult_perc(u64 num, u32 percent)
 44{
 45	return div_u64(num * percent, 100);
 
 
 
 46}
 47/* Copy of is_power_of_two that is 64bit safe */
 48static inline bool is_power_of_two_u64(u64 n)
 49{
 50	return n != 0 && (n & (n - 1)) == 0;
 51}
 52
 53static inline bool has_single_bit_set(u64 n)
 54{
 55	return is_power_of_two_u64(n);
 56}
 57
 58/*
 59 * Simple bytenr based rb_tree relate structures
 60 *
 61 * Any structure wants to use bytenr as single search index should have their
 62 * structure start with these members.
 63 */
 64struct rb_simple_node {
 65	struct rb_node rb_node;
 66	u64 bytenr;
 67};
 68
 69static inline struct rb_node *rb_simple_search(struct rb_root *root, u64 bytenr)
 70{
 71	struct rb_node *node = root->rb_node;
 72	struct rb_simple_node *entry;
 73
 74	while (node) {
 75		entry = rb_entry(node, struct rb_simple_node, rb_node);
 76
 77		if (bytenr < entry->bytenr)
 78			node = node->rb_left;
 79		else if (bytenr > entry->bytenr)
 80			node = node->rb_right;
 81		else
 82			return node;
 83	}
 84	return NULL;
 85}
 86
 87/*
 88 * Search @root from an entry that starts or comes after @bytenr.
 89 *
 90 * @root:	the root to search.
 91 * @bytenr:	bytenr to search from.
 92 *
 93 * Return the rb_node that start at or after @bytenr.  If there is no entry at
 94 * or after @bytner return NULL.
 95 */
 96static inline struct rb_node *rb_simple_search_first(struct rb_root *root,
 97						     u64 bytenr)
 98{
 99	struct rb_node *node = root->rb_node, *ret = NULL;
100	struct rb_simple_node *entry, *ret_entry = NULL;
101
102	while (node) {
103		entry = rb_entry(node, struct rb_simple_node, rb_node);
104
105		if (bytenr < entry->bytenr) {
106			if (!ret || entry->bytenr < ret_entry->bytenr) {
107				ret = node;
108				ret_entry = entry;
109			}
110
111			node = node->rb_left;
112		} else if (bytenr > entry->bytenr) {
113			node = node->rb_right;
114		} else {
115			return node;
116		}
117	}
118
119	return ret;
120}
121
122static inline struct rb_node *rb_simple_insert(struct rb_root *root, u64 bytenr,
123					       struct rb_node *node)
124{
125	struct rb_node **p = &root->rb_node;
126	struct rb_node *parent = NULL;
127	struct rb_simple_node *entry;
128
129	while (*p) {
130		parent = *p;
131		entry = rb_entry(parent, struct rb_simple_node, rb_node);
132
133		if (bytenr < entry->bytenr)
134			p = &(*p)->rb_left;
135		else if (bytenr > entry->bytenr)
136			p = &(*p)->rb_right;
137		else
138			return parent;
139	}
140
141	rb_link_node(node, parent, p);
142	rb_insert_color(node, root);
143	return NULL;
144}
145
146static inline bool bitmap_test_range_all_set(const unsigned long *addr,
147					     unsigned long start,
148					     unsigned long nbits)
149{
150	unsigned long found_zero;
151
152	found_zero = find_next_zero_bit(addr, start + nbits, start);
153	return (found_zero == start + nbits);
154}
155
156static inline bool bitmap_test_range_all_zero(const unsigned long *addr,
157					      unsigned long start,
158					      unsigned long nbits)
159{
160	unsigned long found_set;
161
162	found_set = find_next_bit(addr, start + nbits, start);
163	return (found_set == start + nbits);
164}
165
166#endif