Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Resource Director Technology (RDT)
   4 *
   5 * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
   6 *
   7 * Copyright (C) 2018 Intel Corporation
   8 *
   9 * Author: Reinette Chatre <reinette.chatre@intel.com>
  10 */
  11
  12#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
  13
  14#include <linux/cacheinfo.h>
  15#include <linux/cpu.h>
  16#include <linux/cpumask.h>
  17#include <linux/debugfs.h>
  18#include <linux/kthread.h>
  19#include <linux/mman.h>
  20#include <linux/perf_event.h>
  21#include <linux/pm_qos.h>
  22#include <linux/slab.h>
  23#include <linux/uaccess.h>
  24
  25#include <asm/cacheflush.h>
  26#include <asm/intel-family.h>
  27#include <asm/resctrl_sched.h>
  28#include <asm/perf_event.h>
  29
  30#include "../../events/perf_event.h" /* For X86_CONFIG() */
  31#include "internal.h"
  32
  33#define CREATE_TRACE_POINTS
  34#include "pseudo_lock_event.h"
  35
  36/*
  37 * The bits needed to disable hardware prefetching varies based on the
  38 * platform. During initialization we will discover which bits to use.
  39 */
  40static u64 prefetch_disable_bits;
  41
  42/*
  43 * Major number assigned to and shared by all devices exposing
  44 * pseudo-locked regions.
  45 */
  46static unsigned int pseudo_lock_major;
  47static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
  48static struct class *pseudo_lock_class;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  49
  50/**
  51 * get_prefetch_disable_bits - prefetch disable bits of supported platforms
 
  52 *
  53 * Capture the list of platforms that have been validated to support
  54 * pseudo-locking. This includes testing to ensure pseudo-locked regions
  55 * with low cache miss rates can be created under variety of load conditions
  56 * as well as that these pseudo-locked regions can maintain their low cache
  57 * miss rates under variety of load conditions for significant lengths of time.
  58 *
  59 * After a platform has been validated to support pseudo-locking its
  60 * hardware prefetch disable bits are included here as they are documented
  61 * in the SDM.
  62 *
  63 * When adding a platform here also add support for its cache events to
  64 * measure_cycles_perf_fn()
  65 *
  66 * Return:
  67 * If platform is supported, the bits to disable hardware prefetchers, 0
  68 * if platform is not supported.
  69 */
  70static u64 get_prefetch_disable_bits(void)
  71{
  72	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
  73	    boot_cpu_data.x86 != 6)
  74		return 0;
  75
  76	switch (boot_cpu_data.x86_model) {
  77	case INTEL_FAM6_BROADWELL_X:
  78		/*
  79		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
  80		 * as:
  81		 * 0    L2 Hardware Prefetcher Disable (R/W)
  82		 * 1    L2 Adjacent Cache Line Prefetcher Disable (R/W)
  83		 * 2    DCU Hardware Prefetcher Disable (R/W)
  84		 * 3    DCU IP Prefetcher Disable (R/W)
  85		 * 63:4 Reserved
  86		 */
  87		return 0xF;
  88	case INTEL_FAM6_ATOM_GOLDMONT:
  89	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
  90		/*
  91		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
  92		 * as:
  93		 * 0     L2 Hardware Prefetcher Disable (R/W)
  94		 * 1     Reserved
  95		 * 2     DCU Hardware Prefetcher Disable (R/W)
  96		 * 63:3  Reserved
  97		 */
  98		return 0x5;
  99	}
 100
 101	return 0;
 102}
 103
 104/**
 105 * pseudo_lock_minor_get - Obtain available minor number
 106 * @minor: Pointer to where new minor number will be stored
 107 *
 108 * A bitmask is used to track available minor numbers. Here the next free
 109 * minor number is marked as unavailable and returned.
 110 *
 111 * Return: 0 on success, <0 on failure.
 112 */
 113static int pseudo_lock_minor_get(unsigned int *minor)
 114{
 115	unsigned long first_bit;
 116
 117	first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
 118
 119	if (first_bit == MINORBITS)
 120		return -ENOSPC;
 121
 122	__clear_bit(first_bit, &pseudo_lock_minor_avail);
 123	*minor = first_bit;
 124
 125	return 0;
 126}
 127
 128/**
 129 * pseudo_lock_minor_release - Return minor number to available
 130 * @minor: The minor number made available
 131 */
 132static void pseudo_lock_minor_release(unsigned int minor)
 133{
 134	__set_bit(minor, &pseudo_lock_minor_avail);
 135}
 136
 137/**
 138 * region_find_by_minor - Locate a pseudo-lock region by inode minor number
 139 * @minor: The minor number of the device representing pseudo-locked region
 140 *
 141 * When the character device is accessed we need to determine which
 142 * pseudo-locked region it belongs to. This is done by matching the minor
 143 * number of the device to the pseudo-locked region it belongs.
 144 *
 145 * Minor numbers are assigned at the time a pseudo-locked region is associated
 146 * with a cache instance.
 147 *
 148 * Return: On success return pointer to resource group owning the pseudo-locked
 149 *         region, NULL on failure.
 150 */
 151static struct rdtgroup *region_find_by_minor(unsigned int minor)
 152{
 153	struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
 154
 155	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
 156		if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
 157			rdtgrp_match = rdtgrp;
 158			break;
 159		}
 160	}
 161	return rdtgrp_match;
 162}
 163
 164/**
 165 * pseudo_lock_pm_req - A power management QoS request list entry
 166 * @list:	Entry within the @pm_reqs list for a pseudo-locked region
 167 * @req:	PM QoS request
 168 */
 169struct pseudo_lock_pm_req {
 170	struct list_head list;
 171	struct dev_pm_qos_request req;
 172};
 173
 174static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
 175{
 176	struct pseudo_lock_pm_req *pm_req, *next;
 177
 178	list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
 179		dev_pm_qos_remove_request(&pm_req->req);
 180		list_del(&pm_req->list);
 181		kfree(pm_req);
 182	}
 183}
 184
 185/**
 186 * pseudo_lock_cstates_constrain - Restrict cores from entering C6
 
 187 *
 188 * To prevent the cache from being affected by power management entering
 189 * C6 has to be avoided. This is accomplished by requesting a latency
 190 * requirement lower than lowest C6 exit latency of all supported
 191 * platforms as found in the cpuidle state tables in the intel_idle driver.
 192 * At this time it is possible to do so with a single latency requirement
 193 * for all supported platforms.
 194 *
 195 * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
 196 * the ACPI latencies need to be considered while keeping in mind that C2
 197 * may be set to map to deeper sleep states. In this case the latency
 198 * requirement needs to prevent entering C2 also.
 
 
 199 */
 200static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
 201{
 202	struct pseudo_lock_pm_req *pm_req;
 203	int cpu;
 204	int ret;
 205
 206	for_each_cpu(cpu, &plr->d->cpu_mask) {
 207		pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
 208		if (!pm_req) {
 209			rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n");
 210			ret = -ENOMEM;
 211			goto out_err;
 212		}
 213		ret = dev_pm_qos_add_request(get_cpu_device(cpu),
 214					     &pm_req->req,
 215					     DEV_PM_QOS_RESUME_LATENCY,
 216					     30);
 217		if (ret < 0) {
 218			rdt_last_cmd_printf("Failed to add latency req CPU%d\n",
 219					    cpu);
 220			kfree(pm_req);
 221			ret = -1;
 222			goto out_err;
 223		}
 224		list_add(&pm_req->list, &plr->pm_reqs);
 225	}
 226
 227	return 0;
 228
 229out_err:
 230	pseudo_lock_cstates_relax(plr);
 231	return ret;
 232}
 233
 234/**
 235 * pseudo_lock_region_clear - Reset pseudo-lock region data
 236 * @plr: pseudo-lock region
 237 *
 238 * All content of the pseudo-locked region is reset - any memory allocated
 239 * freed.
 240 *
 241 * Return: void
 242 */
 243static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
 244{
 245	plr->size = 0;
 246	plr->line_size = 0;
 247	kfree(plr->kmem);
 248	plr->kmem = NULL;
 249	plr->r = NULL;
 250	if (plr->d)
 251		plr->d->plr = NULL;
 252	plr->d = NULL;
 253	plr->cbm = 0;
 254	plr->debugfs_dir = NULL;
 255}
 256
 257/**
 258 * pseudo_lock_region_init - Initialize pseudo-lock region information
 259 * @plr: pseudo-lock region
 260 *
 261 * Called after user provided a schemata to be pseudo-locked. From the
 262 * schemata the &struct pseudo_lock_region is on entry already initialized
 263 * with the resource, domain, and capacity bitmask. Here the information
 264 * required for pseudo-locking is deduced from this data and &struct
 265 * pseudo_lock_region initialized further. This information includes:
 266 * - size in bytes of the region to be pseudo-locked
 267 * - cache line size to know the stride with which data needs to be accessed
 268 *   to be pseudo-locked
 269 * - a cpu associated with the cache instance on which the pseudo-locking
 270 *   flow can be executed
 271 *
 272 * Return: 0 on success, <0 on failure. Descriptive error will be written
 273 * to last_cmd_status buffer.
 274 */
 275static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
 276{
 277	struct cpu_cacheinfo *ci;
 278	int ret;
 279	int i;
 280
 281	/* Pick the first cpu we find that is associated with the cache. */
 282	plr->cpu = cpumask_first(&plr->d->cpu_mask);
 283
 284	if (!cpu_online(plr->cpu)) {
 285		rdt_last_cmd_printf("CPU %u associated with cache not online\n",
 286				    plr->cpu);
 287		ret = -ENODEV;
 288		goto out_region;
 289	}
 290
 291	ci = get_cpu_cacheinfo(plr->cpu);
 292
 293	plr->size = rdtgroup_cbm_to_size(plr->r, plr->d, plr->cbm);
 294
 295	for (i = 0; i < ci->num_leaves; i++) {
 296		if (ci->info_list[i].level == plr->r->cache_level) {
 297			plr->line_size = ci->info_list[i].coherency_line_size;
 298			return 0;
 299		}
 300	}
 301
 302	ret = -1;
 303	rdt_last_cmd_puts("Unable to determine cache line size\n");
 304out_region:
 305	pseudo_lock_region_clear(plr);
 306	return ret;
 307}
 308
 309/**
 310 * pseudo_lock_init - Initialize a pseudo-lock region
 311 * @rdtgrp: resource group to which new pseudo-locked region will belong
 312 *
 313 * A pseudo-locked region is associated with a resource group. When this
 314 * association is created the pseudo-locked region is initialized. The
 315 * details of the pseudo-locked region are not known at this time so only
 316 * allocation is done and association established.
 317 *
 318 * Return: 0 on success, <0 on failure
 319 */
 320static int pseudo_lock_init(struct rdtgroup *rdtgrp)
 321{
 322	struct pseudo_lock_region *plr;
 323
 324	plr = kzalloc(sizeof(*plr), GFP_KERNEL);
 325	if (!plr)
 326		return -ENOMEM;
 327
 328	init_waitqueue_head(&plr->lock_thread_wq);
 329	INIT_LIST_HEAD(&plr->pm_reqs);
 330	rdtgrp->plr = plr;
 331	return 0;
 332}
 333
 334/**
 335 * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
 336 * @plr: pseudo-lock region
 337 *
 338 * Initialize the details required to set up the pseudo-locked region and
 339 * allocate the contiguous memory that will be pseudo-locked to the cache.
 340 *
 341 * Return: 0 on success, <0 on failure.  Descriptive error will be written
 342 * to last_cmd_status buffer.
 343 */
 344static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
 345{
 346	int ret;
 347
 348	ret = pseudo_lock_region_init(plr);
 349	if (ret < 0)
 350		return ret;
 351
 352	/*
 353	 * We do not yet support contiguous regions larger than
 354	 * KMALLOC_MAX_SIZE.
 355	 */
 356	if (plr->size > KMALLOC_MAX_SIZE) {
 357		rdt_last_cmd_puts("Requested region exceeds maximum size\n");
 358		ret = -E2BIG;
 359		goto out_region;
 360	}
 361
 362	plr->kmem = kzalloc(plr->size, GFP_KERNEL);
 363	if (!plr->kmem) {
 364		rdt_last_cmd_puts("Unable to allocate memory\n");
 365		ret = -ENOMEM;
 366		goto out_region;
 367	}
 368
 369	ret = 0;
 370	goto out;
 371out_region:
 372	pseudo_lock_region_clear(plr);
 373out:
 374	return ret;
 375}
 376
 377/**
 378 * pseudo_lock_free - Free a pseudo-locked region
 379 * @rdtgrp: resource group to which pseudo-locked region belonged
 380 *
 381 * The pseudo-locked region's resources have already been released, or not
 382 * yet created at this point. Now it can be freed and disassociated from the
 383 * resource group.
 384 *
 385 * Return: void
 386 */
 387static void pseudo_lock_free(struct rdtgroup *rdtgrp)
 388{
 389	pseudo_lock_region_clear(rdtgrp->plr);
 390	kfree(rdtgrp->plr);
 391	rdtgrp->plr = NULL;
 392}
 393
 394/**
 395 * pseudo_lock_fn - Load kernel memory into cache
 396 * @_rdtgrp: resource group to which pseudo-lock region belongs
 397 *
 398 * This is the core pseudo-locking flow.
 399 *
 400 * First we ensure that the kernel memory cannot be found in the cache.
 401 * Then, while taking care that there will be as little interference as
 402 * possible, the memory to be loaded is accessed while core is running
 403 * with class of service set to the bitmask of the pseudo-locked region.
 404 * After this is complete no future CAT allocations will be allowed to
 405 * overlap with this bitmask.
 406 *
 407 * Local register variables are utilized to ensure that the memory region
 408 * to be locked is the only memory access made during the critical locking
 409 * loop.
 410 *
 411 * Return: 0. Waiter on waitqueue will be woken on completion.
 412 */
 413static int pseudo_lock_fn(void *_rdtgrp)
 414{
 415	struct rdtgroup *rdtgrp = _rdtgrp;
 416	struct pseudo_lock_region *plr = rdtgrp->plr;
 417	u32 rmid_p, closid_p;
 418	unsigned long i;
 
 419#ifdef CONFIG_KASAN
 420	/*
 421	 * The registers used for local register variables are also used
 422	 * when KASAN is active. When KASAN is active we use a regular
 423	 * variable to ensure we always use a valid pointer, but the cost
 424	 * is that this variable will enter the cache through evicting the
 425	 * memory we are trying to lock into the cache. Thus expect lower
 426	 * pseudo-locking success rate when KASAN is active.
 427	 */
 428	unsigned int line_size;
 429	unsigned int size;
 430	void *mem_r;
 431#else
 432	register unsigned int line_size asm("esi");
 433	register unsigned int size asm("edi");
 434	register void *mem_r asm(_ASM_BX);
 435#endif /* CONFIG_KASAN */
 436
 437	/*
 438	 * Make sure none of the allocated memory is cached. If it is we
 439	 * will get a cache hit in below loop from outside of pseudo-locked
 440	 * region.
 441	 * wbinvd (as opposed to clflush/clflushopt) is required to
 442	 * increase likelihood that allocated cache portion will be filled
 443	 * with associated memory.
 444	 */
 445	native_wbinvd();
 446
 447	/*
 448	 * Always called with interrupts enabled. By disabling interrupts
 449	 * ensure that we will not be preempted during this critical section.
 450	 */
 451	local_irq_disable();
 452
 453	/*
 454	 * Call wrmsr and rdmsr as directly as possible to avoid tracing
 455	 * clobbering local register variables or affecting cache accesses.
 456	 *
 457	 * Disable the hardware prefetcher so that when the end of the memory
 458	 * being pseudo-locked is reached the hardware will not read beyond
 459	 * the buffer and evict pseudo-locked memory read earlier from the
 460	 * cache.
 461	 */
 
 462	__wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
 463	closid_p = this_cpu_read(pqr_state.cur_closid);
 464	rmid_p = this_cpu_read(pqr_state.cur_rmid);
 465	mem_r = plr->kmem;
 466	size = plr->size;
 467	line_size = plr->line_size;
 468	/*
 469	 * Critical section begin: start by writing the closid associated
 470	 * with the capacity bitmask of the cache region being
 471	 * pseudo-locked followed by reading of kernel memory to load it
 472	 * into the cache.
 473	 */
 474	__wrmsr(IA32_PQR_ASSOC, rmid_p, rdtgrp->closid);
 475	/*
 476	 * Cache was flushed earlier. Now access kernel memory to read it
 477	 * into cache region associated with just activated plr->closid.
 478	 * Loop over data twice:
 479	 * - In first loop the cache region is shared with the page walker
 480	 *   as it populates the paging structure caches (including TLB).
 481	 * - In the second loop the paging structure caches are used and
 482	 *   cache region is populated with the memory being referenced.
 483	 */
 484	for (i = 0; i < size; i += PAGE_SIZE) {
 485		/*
 486		 * Add a barrier to prevent speculative execution of this
 487		 * loop reading beyond the end of the buffer.
 488		 */
 489		rmb();
 490		asm volatile("mov (%0,%1,1), %%eax\n\t"
 491			:
 492			: "r" (mem_r), "r" (i)
 493			: "%eax", "memory");
 494	}
 495	for (i = 0; i < size; i += line_size) {
 496		/*
 497		 * Add a barrier to prevent speculative execution of this
 498		 * loop reading beyond the end of the buffer.
 499		 */
 500		rmb();
 501		asm volatile("mov (%0,%1,1), %%eax\n\t"
 502			:
 503			: "r" (mem_r), "r" (i)
 504			: "%eax", "memory");
 505	}
 506	/*
 507	 * Critical section end: restore closid with capacity bitmask that
 508	 * does not overlap with pseudo-locked region.
 509	 */
 510	__wrmsr(IA32_PQR_ASSOC, rmid_p, closid_p);
 511
 512	/* Re-enable the hardware prefetcher(s) */
 513	wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
 514	local_irq_enable();
 515
 516	plr->thread_done = 1;
 517	wake_up_interruptible(&plr->lock_thread_wq);
 518	return 0;
 519}
 520
 521/**
 522 * rdtgroup_monitor_in_progress - Test if monitoring in progress
 523 * @r: resource group being queried
 524 *
 525 * Return: 1 if monitor groups have been created for this resource
 526 * group, 0 otherwise.
 527 */
 528static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
 529{
 530	return !list_empty(&rdtgrp->mon.crdtgrp_list);
 531}
 532
 533/**
 534 * rdtgroup_locksetup_user_restrict - Restrict user access to group
 535 * @rdtgrp: resource group needing access restricted
 536 *
 537 * A resource group used for cache pseudo-locking cannot have cpus or tasks
 538 * assigned to it. This is communicated to the user by restricting access
 539 * to all the files that can be used to make such changes.
 540 *
 541 * Permissions restored with rdtgroup_locksetup_user_restore()
 542 *
 543 * Return: 0 on success, <0 on failure. If a failure occurs during the
 544 * restriction of access an attempt will be made to restore permissions but
 545 * the state of the mode of these files will be uncertain when a failure
 546 * occurs.
 547 */
 548static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
 549{
 550	int ret;
 551
 552	ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
 553	if (ret)
 554		return ret;
 555
 556	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
 557	if (ret)
 558		goto err_tasks;
 559
 560	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
 561	if (ret)
 562		goto err_cpus;
 563
 564	if (rdt_mon_capable) {
 565		ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
 566		if (ret)
 567			goto err_cpus_list;
 568	}
 569
 570	ret = 0;
 571	goto out;
 572
 573err_cpus_list:
 574	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
 575err_cpus:
 576	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
 577err_tasks:
 578	rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
 579out:
 580	return ret;
 581}
 582
 583/**
 584 * rdtgroup_locksetup_user_restore - Restore user access to group
 585 * @rdtgrp: resource group needing access restored
 586 *
 587 * Restore all file access previously removed using
 588 * rdtgroup_locksetup_user_restrict()
 589 *
 590 * Return: 0 on success, <0 on failure.  If a failure occurs during the
 591 * restoration of access an attempt will be made to restrict permissions
 592 * again but the state of the mode of these files will be uncertain when
 593 * a failure occurs.
 594 */
 595static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
 596{
 597	int ret;
 598
 599	ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
 600	if (ret)
 601		return ret;
 602
 603	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
 604	if (ret)
 605		goto err_tasks;
 606
 607	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
 608	if (ret)
 609		goto err_cpus;
 610
 611	if (rdt_mon_capable) {
 612		ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
 613		if (ret)
 614			goto err_cpus_list;
 615	}
 616
 617	ret = 0;
 618	goto out;
 619
 620err_cpus_list:
 621	rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
 622err_cpus:
 623	rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
 624err_tasks:
 625	rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
 626out:
 627	return ret;
 628}
 629
 630/**
 631 * rdtgroup_locksetup_enter - Resource group enters locksetup mode
 632 * @rdtgrp: resource group requested to enter locksetup mode
 633 *
 634 * A resource group enters locksetup mode to reflect that it would be used
 635 * to represent a pseudo-locked region and is in the process of being set
 636 * up to do so. A resource group used for a pseudo-locked region would
 637 * lose the closid associated with it so we cannot allow it to have any
 638 * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
 639 * future. Monitoring of a pseudo-locked region is not allowed either.
 640 *
 641 * The above and more restrictions on a pseudo-locked region are checked
 642 * for and enforced before the resource group enters the locksetup mode.
 643 *
 644 * Returns: 0 if the resource group successfully entered locksetup mode, <0
 645 * on failure. On failure the last_cmd_status buffer is updated with text to
 646 * communicate details of failure to the user.
 647 */
 648int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
 649{
 650	int ret;
 651
 652	/*
 653	 * The default resource group can neither be removed nor lose the
 654	 * default closid associated with it.
 655	 */
 656	if (rdtgrp == &rdtgroup_default) {
 657		rdt_last_cmd_puts("Cannot pseudo-lock default group\n");
 658		return -EINVAL;
 659	}
 660
 661	/*
 662	 * Cache Pseudo-locking not supported when CDP is enabled.
 663	 *
 664	 * Some things to consider if you would like to enable this
 665	 * support (using L3 CDP as example):
 666	 * - When CDP is enabled two separate resources are exposed,
 667	 *   L3DATA and L3CODE, but they are actually on the same cache.
 668	 *   The implication for pseudo-locking is that if a
 669	 *   pseudo-locked region is created on a domain of one
 670	 *   resource (eg. L3CODE), then a pseudo-locked region cannot
 671	 *   be created on that same domain of the other resource
 672	 *   (eg. L3DATA). This is because the creation of a
 673	 *   pseudo-locked region involves a call to wbinvd that will
 674	 *   affect all cache allocations on particular domain.
 675	 * - Considering the previous, it may be possible to only
 676	 *   expose one of the CDP resources to pseudo-locking and
 677	 *   hide the other. For example, we could consider to only
 678	 *   expose L3DATA and since the L3 cache is unified it is
 679	 *   still possible to place instructions there are execute it.
 680	 * - If only one region is exposed to pseudo-locking we should
 681	 *   still keep in mind that availability of a portion of cache
 682	 *   for pseudo-locking should take into account both resources.
 683	 *   Similarly, if a pseudo-locked region is created in one
 684	 *   resource, the portion of cache used by it should be made
 685	 *   unavailable to all future allocations from both resources.
 686	 */
 687	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled ||
 688	    rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) {
 689		rdt_last_cmd_puts("CDP enabled\n");
 690		return -EINVAL;
 691	}
 692
 693	/*
 694	 * Not knowing the bits to disable prefetching implies that this
 695	 * platform does not support Cache Pseudo-Locking.
 696	 */
 697	prefetch_disable_bits = get_prefetch_disable_bits();
 698	if (prefetch_disable_bits == 0) {
 699		rdt_last_cmd_puts("Pseudo-locking not supported\n");
 700		return -EINVAL;
 701	}
 702
 703	if (rdtgroup_monitor_in_progress(rdtgrp)) {
 704		rdt_last_cmd_puts("Monitoring in progress\n");
 705		return -EINVAL;
 706	}
 707
 708	if (rdtgroup_tasks_assigned(rdtgrp)) {
 709		rdt_last_cmd_puts("Tasks assigned to resource group\n");
 710		return -EINVAL;
 711	}
 712
 713	if (!cpumask_empty(&rdtgrp->cpu_mask)) {
 714		rdt_last_cmd_puts("CPUs assigned to resource group\n");
 715		return -EINVAL;
 716	}
 717
 718	if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
 719		rdt_last_cmd_puts("Unable to modify resctrl permissions\n");
 720		return -EIO;
 721	}
 722
 723	ret = pseudo_lock_init(rdtgrp);
 724	if (ret) {
 725		rdt_last_cmd_puts("Unable to init pseudo-lock region\n");
 726		goto out_release;
 727	}
 728
 729	/*
 730	 * If this system is capable of monitoring a rmid would have been
 731	 * allocated when the control group was created. This is not needed
 732	 * anymore when this group would be used for pseudo-locking. This
 733	 * is safe to call on platforms not capable of monitoring.
 734	 */
 735	free_rmid(rdtgrp->mon.rmid);
 736
 737	ret = 0;
 738	goto out;
 739
 740out_release:
 741	rdtgroup_locksetup_user_restore(rdtgrp);
 742out:
 743	return ret;
 744}
 745
 746/**
 747 * rdtgroup_locksetup_exit - resource group exist locksetup mode
 748 * @rdtgrp: resource group
 749 *
 750 * When a resource group exits locksetup mode the earlier restrictions are
 751 * lifted.
 752 *
 753 * Return: 0 on success, <0 on failure
 754 */
 755int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
 756{
 757	int ret;
 758
 759	if (rdt_mon_capable) {
 760		ret = alloc_rmid();
 761		if (ret < 0) {
 762			rdt_last_cmd_puts("Out of RMIDs\n");
 763			return ret;
 764		}
 765		rdtgrp->mon.rmid = ret;
 766	}
 767
 768	ret = rdtgroup_locksetup_user_restore(rdtgrp);
 769	if (ret) {
 770		free_rmid(rdtgrp->mon.rmid);
 771		return ret;
 772	}
 773
 774	pseudo_lock_free(rdtgrp);
 775	return 0;
 776}
 777
 778/**
 779 * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
 780 * @d: RDT domain
 781 * @cbm: CBM to test
 782 *
 783 * @d represents a cache instance and @cbm a capacity bitmask that is
 784 * considered for it. Determine if @cbm overlaps with any existing
 785 * pseudo-locked region on @d.
 786 *
 787 * @cbm is unsigned long, even if only 32 bits are used, to make the
 788 * bitmap functions work correctly.
 789 *
 790 * Return: true if @cbm overlaps with pseudo-locked region on @d, false
 791 * otherwise.
 792 */
 793bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm)
 794{
 795	unsigned int cbm_len;
 796	unsigned long cbm_b;
 797
 798	if (d->plr) {
 799		cbm_len = d->plr->r->cache.cbm_len;
 800		cbm_b = d->plr->cbm;
 801		if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
 802			return true;
 803	}
 804	return false;
 805}
 806
 807/**
 808 * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
 809 * @d: RDT domain under test
 810 *
 811 * The setup of a pseudo-locked region affects all cache instances within
 812 * the hierarchy of the region. It is thus essential to know if any
 813 * pseudo-locked regions exist within a cache hierarchy to prevent any
 814 * attempts to create new pseudo-locked regions in the same hierarchy.
 815 *
 816 * Return: true if a pseudo-locked region exists in the hierarchy of @d or
 817 *         if it is not possible to test due to memory allocation issue,
 818 *         false otherwise.
 819 */
 820bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d)
 821{
 822	cpumask_var_t cpu_with_psl;
 823	struct rdt_resource *r;
 824	struct rdt_domain *d_i;
 825	bool ret = false;
 826
 
 
 
 827	if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
 828		return true;
 829
 830	/*
 831	 * First determine which cpus have pseudo-locked regions
 832	 * associated with them.
 833	 */
 834	for_each_alloc_enabled_rdt_resource(r) {
 835		list_for_each_entry(d_i, &r->domains, list) {
 836			if (d_i->plr)
 837				cpumask_or(cpu_with_psl, cpu_with_psl,
 838					   &d_i->cpu_mask);
 839		}
 840	}
 841
 842	/*
 843	 * Next test if new pseudo-locked region would intersect with
 844	 * existing region.
 845	 */
 846	if (cpumask_intersects(&d->cpu_mask, cpu_with_psl))
 847		ret = true;
 848
 849	free_cpumask_var(cpu_with_psl);
 850	return ret;
 851}
 852
 853/**
 854 * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
 855 * @_plr: pseudo-lock region to measure
 856 *
 857 * There is no deterministic way to test if a memory region is cached. One
 858 * way is to measure how long it takes to read the memory, the speed of
 859 * access is a good way to learn how close to the cpu the data was. Even
 860 * more, if the prefetcher is disabled and the memory is read at a stride
 861 * of half the cache line, then a cache miss will be easy to spot since the
 862 * read of the first half would be significantly slower than the read of
 863 * the second half.
 864 *
 865 * Return: 0. Waiter on waitqueue will be woken on completion.
 866 */
 867static int measure_cycles_lat_fn(void *_plr)
 868{
 869	struct pseudo_lock_region *plr = _plr;
 
 870	unsigned long i;
 871	u64 start, end;
 872	void *mem_r;
 873
 874	local_irq_disable();
 875	/*
 876	 * Disable hardware prefetchers.
 877	 */
 
 878	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
 879	mem_r = READ_ONCE(plr->kmem);
 880	/*
 881	 * Dummy execute of the time measurement to load the needed
 882	 * instructions into the L1 instruction cache.
 883	 */
 884	start = rdtsc_ordered();
 885	for (i = 0; i < plr->size; i += 32) {
 886		start = rdtsc_ordered();
 887		asm volatile("mov (%0,%1,1), %%eax\n\t"
 888			     :
 889			     : "r" (mem_r), "r" (i)
 890			     : "%eax", "memory");
 891		end = rdtsc_ordered();
 892		trace_pseudo_lock_mem_latency((u32)(end - start));
 893	}
 894	wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
 895	local_irq_enable();
 896	plr->thread_done = 1;
 897	wake_up_interruptible(&plr->lock_thread_wq);
 898	return 0;
 899}
 900
 901/*
 902 * Create a perf_event_attr for the hit and miss perf events that will
 903 * be used during the performance measurement. A perf_event maintains
 904 * a pointer to its perf_event_attr so a unique attribute structure is
 905 * created for each perf_event.
 906 *
 907 * The actual configuration of the event is set right before use in order
 908 * to use the X86_CONFIG macro.
 909 */
 910static struct perf_event_attr perf_miss_attr = {
 911	.type		= PERF_TYPE_RAW,
 912	.size		= sizeof(struct perf_event_attr),
 913	.pinned		= 1,
 914	.disabled	= 0,
 915	.exclude_user	= 1,
 916};
 917
 918static struct perf_event_attr perf_hit_attr = {
 919	.type		= PERF_TYPE_RAW,
 920	.size		= sizeof(struct perf_event_attr),
 921	.pinned		= 1,
 922	.disabled	= 0,
 923	.exclude_user	= 1,
 924};
 925
 926struct residency_counts {
 927	u64 miss_before, hits_before;
 928	u64 miss_after,  hits_after;
 929};
 930
 931static int measure_residency_fn(struct perf_event_attr *miss_attr,
 932				struct perf_event_attr *hit_attr,
 933				struct pseudo_lock_region *plr,
 934				struct residency_counts *counts)
 935{
 936	u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0;
 937	struct perf_event *miss_event, *hit_event;
 938	int hit_pmcnum, miss_pmcnum;
 
 939	unsigned int line_size;
 940	unsigned int size;
 941	unsigned long i;
 942	void *mem_r;
 943	u64 tmp;
 944
 945	miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu,
 946						      NULL, NULL, NULL);
 947	if (IS_ERR(miss_event))
 948		goto out;
 949
 950	hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu,
 951						     NULL, NULL, NULL);
 952	if (IS_ERR(hit_event))
 953		goto out_miss;
 954
 955	local_irq_disable();
 956	/*
 957	 * Check any possible error state of events used by performing
 958	 * one local read.
 959	 */
 960	if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) {
 961		local_irq_enable();
 962		goto out_hit;
 963	}
 964	if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) {
 965		local_irq_enable();
 966		goto out_hit;
 967	}
 968
 969	/*
 970	 * Disable hardware prefetchers.
 971	 */
 
 972	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
 973
 974	/* Initialize rest of local variables */
 975	/*
 976	 * Performance event has been validated right before this with
 977	 * interrupts disabled - it is thus safe to read the counter index.
 978	 */
 979	miss_pmcnum = x86_perf_rdpmc_index(miss_event);
 980	hit_pmcnum = x86_perf_rdpmc_index(hit_event);
 981	line_size = READ_ONCE(plr->line_size);
 982	mem_r = READ_ONCE(plr->kmem);
 983	size = READ_ONCE(plr->size);
 984
 985	/*
 986	 * Read counter variables twice - first to load the instructions
 987	 * used in L1 cache, second to capture accurate value that does not
 988	 * include cache misses incurred because of instruction loads.
 989	 */
 990	rdpmcl(hit_pmcnum, hits_before);
 991	rdpmcl(miss_pmcnum, miss_before);
 992	/*
 993	 * From SDM: Performing back-to-back fast reads are not guaranteed
 994	 * to be monotonic.
 995	 * Use LFENCE to ensure all previous instructions are retired
 996	 * before proceeding.
 997	 */
 998	rmb();
 999	rdpmcl(hit_pmcnum, hits_before);
1000	rdpmcl(miss_pmcnum, miss_before);
1001	/*
1002	 * Use LFENCE to ensure all previous instructions are retired
1003	 * before proceeding.
1004	 */
1005	rmb();
1006	for (i = 0; i < size; i += line_size) {
1007		/*
1008		 * Add a barrier to prevent speculative execution of this
1009		 * loop reading beyond the end of the buffer.
1010		 */
1011		rmb();
1012		asm volatile("mov (%0,%1,1), %%eax\n\t"
1013			     :
1014			     : "r" (mem_r), "r" (i)
1015			     : "%eax", "memory");
1016	}
1017	/*
1018	 * Use LFENCE to ensure all previous instructions are retired
1019	 * before proceeding.
1020	 */
1021	rmb();
1022	rdpmcl(hit_pmcnum, hits_after);
1023	rdpmcl(miss_pmcnum, miss_after);
1024	/*
1025	 * Use LFENCE to ensure all previous instructions are retired
1026	 * before proceeding.
1027	 */
1028	rmb();
1029	/* Re-enable hardware prefetchers */
1030	wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
1031	local_irq_enable();
1032out_hit:
1033	perf_event_release_kernel(hit_event);
1034out_miss:
1035	perf_event_release_kernel(miss_event);
1036out:
1037	/*
1038	 * All counts will be zero on failure.
1039	 */
1040	counts->miss_before = miss_before;
1041	counts->hits_before = hits_before;
1042	counts->miss_after  = miss_after;
1043	counts->hits_after  = hits_after;
1044	return 0;
1045}
1046
1047static int measure_l2_residency(void *_plr)
1048{
1049	struct pseudo_lock_region *plr = _plr;
1050	struct residency_counts counts = {0};
1051
1052	/*
1053	 * Non-architectural event for the Goldmont Microarchitecture
1054	 * from Intel x86 Architecture Software Developer Manual (SDM):
1055	 * MEM_LOAD_UOPS_RETIRED D1H (event number)
1056	 * Umask values:
1057	 *     L2_HIT   02H
1058	 *     L2_MISS  10H
1059	 */
1060	switch (boot_cpu_data.x86_model) {
1061	case INTEL_FAM6_ATOM_GOLDMONT:
1062	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
1063		perf_miss_attr.config = X86_CONFIG(.event = 0xd1,
1064						   .umask = 0x10);
1065		perf_hit_attr.config = X86_CONFIG(.event = 0xd1,
1066						  .umask = 0x2);
1067		break;
1068	default:
1069		goto out;
1070	}
1071
1072	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1073	/*
1074	 * If a failure prevented the measurements from succeeding
1075	 * tracepoints will still be written and all counts will be zero.
1076	 */
1077	trace_pseudo_lock_l2(counts.hits_after - counts.hits_before,
1078			     counts.miss_after - counts.miss_before);
1079out:
1080	plr->thread_done = 1;
1081	wake_up_interruptible(&plr->lock_thread_wq);
1082	return 0;
1083}
1084
1085static int measure_l3_residency(void *_plr)
1086{
1087	struct pseudo_lock_region *plr = _plr;
1088	struct residency_counts counts = {0};
1089
1090	/*
1091	 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
1092	 * has two "no fix" errata associated with it: BDM35 and BDM100. On
1093	 * this platform the following events are used instead:
1094	 * LONGEST_LAT_CACHE 2EH (Documented in SDM)
1095	 *       REFERENCE 4FH
1096	 *       MISS      41H
1097	 */
1098
1099	switch (boot_cpu_data.x86_model) {
1100	case INTEL_FAM6_BROADWELL_X:
1101		/* On BDW the hit event counts references, not hits */
1102		perf_hit_attr.config = X86_CONFIG(.event = 0x2e,
1103						  .umask = 0x4f);
1104		perf_miss_attr.config = X86_CONFIG(.event = 0x2e,
1105						   .umask = 0x41);
1106		break;
1107	default:
1108		goto out;
1109	}
1110
1111	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1112	/*
1113	 * If a failure prevented the measurements from succeeding
1114	 * tracepoints will still be written and all counts will be zero.
1115	 */
1116
1117	counts.miss_after -= counts.miss_before;
1118	if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X) {
1119		/*
1120		 * On BDW references and misses are counted, need to adjust.
1121		 * Sometimes the "hits" counter is a bit more than the
1122		 * references, for example, x references but x + 1 hits.
1123		 * To not report invalid hit values in this case we treat
1124		 * that as misses equal to references.
1125		 */
1126		/* First compute the number of cache references measured */
1127		counts.hits_after -= counts.hits_before;
1128		/* Next convert references to cache hits */
1129		counts.hits_after -= min(counts.miss_after, counts.hits_after);
1130	} else {
1131		counts.hits_after -= counts.hits_before;
1132	}
1133
1134	trace_pseudo_lock_l3(counts.hits_after, counts.miss_after);
1135out:
1136	plr->thread_done = 1;
1137	wake_up_interruptible(&plr->lock_thread_wq);
1138	return 0;
1139}
1140
1141/**
1142 * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
 
 
1143 *
1144 * The measurement of latency to access a pseudo-locked region should be
1145 * done from a cpu that is associated with that pseudo-locked region.
1146 * Determine which cpu is associated with this region and start a thread on
1147 * that cpu to perform the measurement, wait for that thread to complete.
1148 *
1149 * Return: 0 on success, <0 on failure
1150 */
1151static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
1152{
1153	struct pseudo_lock_region *plr = rdtgrp->plr;
1154	struct task_struct *thread;
1155	unsigned int cpu;
1156	int ret = -1;
1157
1158	cpus_read_lock();
1159	mutex_lock(&rdtgroup_mutex);
1160
1161	if (rdtgrp->flags & RDT_DELETED) {
1162		ret = -ENODEV;
1163		goto out;
1164	}
1165
1166	if (!plr->d) {
1167		ret = -ENODEV;
1168		goto out;
1169	}
1170
1171	plr->thread_done = 0;
1172	cpu = cpumask_first(&plr->d->cpu_mask);
1173	if (!cpu_online(cpu)) {
1174		ret = -ENODEV;
1175		goto out;
1176	}
1177
1178	plr->cpu = cpu;
1179
1180	if (sel == 1)
1181		thread = kthread_create_on_node(measure_cycles_lat_fn, plr,
1182						cpu_to_node(cpu),
1183						"pseudo_lock_measure/%u",
1184						cpu);
1185	else if (sel == 2)
1186		thread = kthread_create_on_node(measure_l2_residency, plr,
1187						cpu_to_node(cpu),
1188						"pseudo_lock_measure/%u",
1189						cpu);
1190	else if (sel == 3)
1191		thread = kthread_create_on_node(measure_l3_residency, plr,
1192						cpu_to_node(cpu),
1193						"pseudo_lock_measure/%u",
1194						cpu);
1195	else
1196		goto out;
1197
1198	if (IS_ERR(thread)) {
1199		ret = PTR_ERR(thread);
1200		goto out;
1201	}
1202	kthread_bind(thread, cpu);
1203	wake_up_process(thread);
1204
1205	ret = wait_event_interruptible(plr->lock_thread_wq,
1206				       plr->thread_done == 1);
1207	if (ret < 0)
1208		goto out;
1209
1210	ret = 0;
1211
1212out:
1213	mutex_unlock(&rdtgroup_mutex);
1214	cpus_read_unlock();
1215	return ret;
1216}
1217
1218static ssize_t pseudo_lock_measure_trigger(struct file *file,
1219					   const char __user *user_buf,
1220					   size_t count, loff_t *ppos)
1221{
1222	struct rdtgroup *rdtgrp = file->private_data;
1223	size_t buf_size;
1224	char buf[32];
1225	int ret;
1226	int sel;
1227
1228	buf_size = min(count, (sizeof(buf) - 1));
1229	if (copy_from_user(buf, user_buf, buf_size))
1230		return -EFAULT;
1231
1232	buf[buf_size] = '\0';
1233	ret = kstrtoint(buf, 10, &sel);
1234	if (ret == 0) {
1235		if (sel != 1 && sel != 2 && sel != 3)
1236			return -EINVAL;
1237		ret = debugfs_file_get(file->f_path.dentry);
1238		if (ret)
1239			return ret;
1240		ret = pseudo_lock_measure_cycles(rdtgrp, sel);
1241		if (ret == 0)
1242			ret = count;
1243		debugfs_file_put(file->f_path.dentry);
1244	}
1245
1246	return ret;
1247}
1248
1249static const struct file_operations pseudo_measure_fops = {
1250	.write = pseudo_lock_measure_trigger,
1251	.open = simple_open,
1252	.llseek = default_llseek,
1253};
1254
1255/**
1256 * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
1257 * @rdtgrp: resource group to which pseudo-lock region belongs
1258 *
1259 * Called when a resource group in the pseudo-locksetup mode receives a
1260 * valid schemata that should be pseudo-locked. Since the resource group is
1261 * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
1262 * allocated and initialized with the essential information. If a failure
1263 * occurs the resource group remains in the pseudo-locksetup mode with the
1264 * &struct pseudo_lock_region associated with it, but cleared from all
1265 * information and ready for the user to re-attempt pseudo-locking by
1266 * writing the schemata again.
1267 *
1268 * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
1269 * on failure. Descriptive error will be written to last_cmd_status buffer.
1270 */
1271int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
1272{
1273	struct pseudo_lock_region *plr = rdtgrp->plr;
1274	struct task_struct *thread;
1275	unsigned int new_minor;
1276	struct device *dev;
1277	int ret;
1278
1279	ret = pseudo_lock_region_alloc(plr);
1280	if (ret < 0)
1281		return ret;
1282
1283	ret = pseudo_lock_cstates_constrain(plr);
1284	if (ret < 0) {
1285		ret = -EINVAL;
1286		goto out_region;
1287	}
1288
1289	plr->thread_done = 0;
1290
1291	thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp,
1292					cpu_to_node(plr->cpu),
1293					"pseudo_lock/%u", plr->cpu);
1294	if (IS_ERR(thread)) {
1295		ret = PTR_ERR(thread);
1296		rdt_last_cmd_printf("Locking thread returned error %d\n", ret);
1297		goto out_cstates;
1298	}
1299
1300	kthread_bind(thread, plr->cpu);
1301	wake_up_process(thread);
1302
1303	ret = wait_event_interruptible(plr->lock_thread_wq,
1304				       plr->thread_done == 1);
1305	if (ret < 0) {
1306		/*
1307		 * If the thread does not get on the CPU for whatever
1308		 * reason and the process which sets up the region is
1309		 * interrupted then this will leave the thread in runnable
1310		 * state and once it gets on the CPU it will derefence
1311		 * the cleared, but not freed, plr struct resulting in an
1312		 * empty pseudo-locking loop.
1313		 */
1314		rdt_last_cmd_puts("Locking thread interrupted\n");
1315		goto out_cstates;
1316	}
1317
1318	ret = pseudo_lock_minor_get(&new_minor);
1319	if (ret < 0) {
1320		rdt_last_cmd_puts("Unable to obtain a new minor number\n");
1321		goto out_cstates;
1322	}
1323
1324	/*
1325	 * Unlock access but do not release the reference. The
1326	 * pseudo-locked region will still be here on return.
1327	 *
1328	 * The mutex has to be released temporarily to avoid a potential
1329	 * deadlock with the mm->mmap_sem semaphore which is obtained in
1330	 * the device_create() and debugfs_create_dir() callpath below
1331	 * as well as before the mmap() callback is called.
1332	 */
1333	mutex_unlock(&rdtgroup_mutex);
1334
1335	if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
1336		plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name,
1337						      debugfs_resctrl);
1338		if (!IS_ERR_OR_NULL(plr->debugfs_dir))
1339			debugfs_create_file("pseudo_lock_measure", 0200,
1340					    plr->debugfs_dir, rdtgrp,
1341					    &pseudo_measure_fops);
1342	}
1343
1344	dev = device_create(pseudo_lock_class, NULL,
1345			    MKDEV(pseudo_lock_major, new_minor),
1346			    rdtgrp, "%s", rdtgrp->kn->name);
1347
1348	mutex_lock(&rdtgroup_mutex);
1349
1350	if (IS_ERR(dev)) {
1351		ret = PTR_ERR(dev);
1352		rdt_last_cmd_printf("Failed to create character device: %d\n",
1353				    ret);
1354		goto out_debugfs;
1355	}
1356
1357	/* We released the mutex - check if group was removed while we did so */
1358	if (rdtgrp->flags & RDT_DELETED) {
1359		ret = -ENODEV;
1360		goto out_device;
1361	}
1362
1363	plr->minor = new_minor;
1364
1365	rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
1366	closid_free(rdtgrp->closid);
1367	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
1368	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
1369
1370	ret = 0;
1371	goto out;
1372
1373out_device:
1374	device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
1375out_debugfs:
1376	debugfs_remove_recursive(plr->debugfs_dir);
1377	pseudo_lock_minor_release(new_minor);
1378out_cstates:
1379	pseudo_lock_cstates_relax(plr);
1380out_region:
1381	pseudo_lock_region_clear(plr);
1382out:
1383	return ret;
1384}
1385
1386/**
1387 * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
1388 * @rdtgrp: resource group to which the pseudo-locked region belongs
1389 *
1390 * The removal of a pseudo-locked region can be initiated when the resource
1391 * group is removed from user space via a "rmdir" from userspace or the
1392 * unmount of the resctrl filesystem. On removal the resource group does
1393 * not go back to pseudo-locksetup mode before it is removed, instead it is
1394 * removed directly. There is thus assymmetry with the creation where the
1395 * &struct pseudo_lock_region is removed here while it was not created in
1396 * rdtgroup_pseudo_lock_create().
1397 *
1398 * Return: void
1399 */
1400void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
1401{
1402	struct pseudo_lock_region *plr = rdtgrp->plr;
1403
1404	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1405		/*
1406		 * Default group cannot be a pseudo-locked region so we can
1407		 * free closid here.
1408		 */
1409		closid_free(rdtgrp->closid);
1410		goto free;
1411	}
1412
1413	pseudo_lock_cstates_relax(plr);
1414	debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
1415	device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
1416	pseudo_lock_minor_release(plr->minor);
1417
1418free:
1419	pseudo_lock_free(rdtgrp);
1420}
1421
1422static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
1423{
1424	struct rdtgroup *rdtgrp;
1425
1426	mutex_lock(&rdtgroup_mutex);
1427
1428	rdtgrp = region_find_by_minor(iminor(inode));
1429	if (!rdtgrp) {
1430		mutex_unlock(&rdtgroup_mutex);
1431		return -ENODEV;
1432	}
1433
1434	filp->private_data = rdtgrp;
1435	atomic_inc(&rdtgrp->waitcount);
1436	/* Perform a non-seekable open - llseek is not supported */
1437	filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
1438
1439	mutex_unlock(&rdtgroup_mutex);
1440
1441	return 0;
1442}
1443
1444static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
1445{
1446	struct rdtgroup *rdtgrp;
1447
1448	mutex_lock(&rdtgroup_mutex);
1449	rdtgrp = filp->private_data;
1450	WARN_ON(!rdtgrp);
1451	if (!rdtgrp) {
1452		mutex_unlock(&rdtgroup_mutex);
1453		return -ENODEV;
1454	}
1455	filp->private_data = NULL;
1456	atomic_dec(&rdtgrp->waitcount);
1457	mutex_unlock(&rdtgroup_mutex);
1458	return 0;
1459}
1460
1461static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
1462{
1463	/* Not supported */
1464	return -EINVAL;
1465}
1466
1467static const struct vm_operations_struct pseudo_mmap_ops = {
1468	.mremap = pseudo_lock_dev_mremap,
1469};
1470
1471static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
1472{
1473	unsigned long vsize = vma->vm_end - vma->vm_start;
1474	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
1475	struct pseudo_lock_region *plr;
1476	struct rdtgroup *rdtgrp;
1477	unsigned long physical;
1478	unsigned long psize;
1479
1480	mutex_lock(&rdtgroup_mutex);
1481
1482	rdtgrp = filp->private_data;
1483	WARN_ON(!rdtgrp);
1484	if (!rdtgrp) {
1485		mutex_unlock(&rdtgroup_mutex);
1486		return -ENODEV;
1487	}
1488
1489	plr = rdtgrp->plr;
1490
1491	if (!plr->d) {
1492		mutex_unlock(&rdtgroup_mutex);
1493		return -ENODEV;
1494	}
1495
1496	/*
1497	 * Task is required to run with affinity to the cpus associated
1498	 * with the pseudo-locked region. If this is not the case the task
1499	 * may be scheduled elsewhere and invalidate entries in the
1500	 * pseudo-locked region.
1501	 */
1502	if (!cpumask_subset(current->cpus_ptr, &plr->d->cpu_mask)) {
1503		mutex_unlock(&rdtgroup_mutex);
1504		return -EINVAL;
1505	}
1506
1507	physical = __pa(plr->kmem) >> PAGE_SHIFT;
1508	psize = plr->size - off;
1509
1510	if (off > plr->size) {
1511		mutex_unlock(&rdtgroup_mutex);
1512		return -ENOSPC;
1513	}
1514
1515	/*
1516	 * Ensure changes are carried directly to the memory being mapped,
1517	 * do not allow copy-on-write mapping.
1518	 */
1519	if (!(vma->vm_flags & VM_SHARED)) {
1520		mutex_unlock(&rdtgroup_mutex);
1521		return -EINVAL;
1522	}
1523
1524	if (vsize > psize) {
1525		mutex_unlock(&rdtgroup_mutex);
1526		return -ENOSPC;
1527	}
1528
1529	memset(plr->kmem + off, 0, vsize);
1530
1531	if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
1532			    vsize, vma->vm_page_prot)) {
1533		mutex_unlock(&rdtgroup_mutex);
1534		return -EAGAIN;
1535	}
1536	vma->vm_ops = &pseudo_mmap_ops;
1537	mutex_unlock(&rdtgroup_mutex);
1538	return 0;
1539}
1540
1541static const struct file_operations pseudo_lock_dev_fops = {
1542	.owner =	THIS_MODULE,
1543	.llseek =	no_llseek,
1544	.read =		NULL,
1545	.write =	NULL,
1546	.open =		pseudo_lock_dev_open,
1547	.release =	pseudo_lock_dev_release,
1548	.mmap =		pseudo_lock_dev_mmap,
1549};
1550
1551static char *pseudo_lock_devnode(struct device *dev, umode_t *mode)
1552{
1553	struct rdtgroup *rdtgrp;
1554
1555	rdtgrp = dev_get_drvdata(dev);
1556	if (mode)
1557		*mode = 0600;
1558	return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name);
1559}
1560
1561int rdt_pseudo_lock_init(void)
1562{
1563	int ret;
1564
1565	ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
1566	if (ret < 0)
1567		return ret;
1568
1569	pseudo_lock_major = ret;
1570
1571	pseudo_lock_class = class_create(THIS_MODULE, "pseudo_lock");
1572	if (IS_ERR(pseudo_lock_class)) {
1573		ret = PTR_ERR(pseudo_lock_class);
1574		unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1575		return ret;
1576	}
1577
1578	pseudo_lock_class->devnode = pseudo_lock_devnode;
1579	return 0;
1580}
1581
1582void rdt_pseudo_lock_release(void)
1583{
1584	class_destroy(pseudo_lock_class);
1585	pseudo_lock_class = NULL;
1586	unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1587	pseudo_lock_major = 0;
1588}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Resource Director Technology (RDT)
   4 *
   5 * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
   6 *
   7 * Copyright (C) 2018 Intel Corporation
   8 *
   9 * Author: Reinette Chatre <reinette.chatre@intel.com>
  10 */
  11
  12#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
  13
  14#include <linux/cacheinfo.h>
  15#include <linux/cpu.h>
  16#include <linux/cpumask.h>
  17#include <linux/debugfs.h>
  18#include <linux/kthread.h>
  19#include <linux/mman.h>
  20#include <linux/perf_event.h>
  21#include <linux/pm_qos.h>
  22#include <linux/slab.h>
  23#include <linux/uaccess.h>
  24
  25#include <asm/cacheflush.h>
  26#include <asm/intel-family.h>
  27#include <asm/resctrl.h>
  28#include <asm/perf_event.h>
  29
  30#include "../../events/perf_event.h" /* For X86_CONFIG() */
  31#include "internal.h"
  32
  33#define CREATE_TRACE_POINTS
  34#include "pseudo_lock_event.h"
  35
  36/*
  37 * The bits needed to disable hardware prefetching varies based on the
  38 * platform. During initialization we will discover which bits to use.
  39 */
  40static u64 prefetch_disable_bits;
  41
  42/*
  43 * Major number assigned to and shared by all devices exposing
  44 * pseudo-locked regions.
  45 */
  46static unsigned int pseudo_lock_major;
  47static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
  48
  49static char *pseudo_lock_devnode(const struct device *dev, umode_t *mode)
  50{
  51	const struct rdtgroup *rdtgrp;
  52
  53	rdtgrp = dev_get_drvdata(dev);
  54	if (mode)
  55		*mode = 0600;
  56	return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name);
  57}
  58
  59static const struct class pseudo_lock_class = {
  60	.name = "pseudo_lock",
  61	.devnode = pseudo_lock_devnode,
  62};
  63
  64/**
  65 * get_prefetch_disable_bits - prefetch disable bits of supported platforms
  66 * @void: It takes no parameters.
  67 *
  68 * Capture the list of platforms that have been validated to support
  69 * pseudo-locking. This includes testing to ensure pseudo-locked regions
  70 * with low cache miss rates can be created under variety of load conditions
  71 * as well as that these pseudo-locked regions can maintain their low cache
  72 * miss rates under variety of load conditions for significant lengths of time.
  73 *
  74 * After a platform has been validated to support pseudo-locking its
  75 * hardware prefetch disable bits are included here as they are documented
  76 * in the SDM.
  77 *
  78 * When adding a platform here also add support for its cache events to
  79 * measure_cycles_perf_fn()
  80 *
  81 * Return:
  82 * If platform is supported, the bits to disable hardware prefetchers, 0
  83 * if platform is not supported.
  84 */
  85static u64 get_prefetch_disable_bits(void)
  86{
  87	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
  88	    boot_cpu_data.x86 != 6)
  89		return 0;
  90
  91	switch (boot_cpu_data.x86_model) {
  92	case INTEL_FAM6_BROADWELL_X:
  93		/*
  94		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
  95		 * as:
  96		 * 0    L2 Hardware Prefetcher Disable (R/W)
  97		 * 1    L2 Adjacent Cache Line Prefetcher Disable (R/W)
  98		 * 2    DCU Hardware Prefetcher Disable (R/W)
  99		 * 3    DCU IP Prefetcher Disable (R/W)
 100		 * 63:4 Reserved
 101		 */
 102		return 0xF;
 103	case INTEL_FAM6_ATOM_GOLDMONT:
 104	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
 105		/*
 106		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
 107		 * as:
 108		 * 0     L2 Hardware Prefetcher Disable (R/W)
 109		 * 1     Reserved
 110		 * 2     DCU Hardware Prefetcher Disable (R/W)
 111		 * 63:3  Reserved
 112		 */
 113		return 0x5;
 114	}
 115
 116	return 0;
 117}
 118
 119/**
 120 * pseudo_lock_minor_get - Obtain available minor number
 121 * @minor: Pointer to where new minor number will be stored
 122 *
 123 * A bitmask is used to track available minor numbers. Here the next free
 124 * minor number is marked as unavailable and returned.
 125 *
 126 * Return: 0 on success, <0 on failure.
 127 */
 128static int pseudo_lock_minor_get(unsigned int *minor)
 129{
 130	unsigned long first_bit;
 131
 132	first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
 133
 134	if (first_bit == MINORBITS)
 135		return -ENOSPC;
 136
 137	__clear_bit(first_bit, &pseudo_lock_minor_avail);
 138	*minor = first_bit;
 139
 140	return 0;
 141}
 142
 143/**
 144 * pseudo_lock_minor_release - Return minor number to available
 145 * @minor: The minor number made available
 146 */
 147static void pseudo_lock_minor_release(unsigned int minor)
 148{
 149	__set_bit(minor, &pseudo_lock_minor_avail);
 150}
 151
 152/**
 153 * region_find_by_minor - Locate a pseudo-lock region by inode minor number
 154 * @minor: The minor number of the device representing pseudo-locked region
 155 *
 156 * When the character device is accessed we need to determine which
 157 * pseudo-locked region it belongs to. This is done by matching the minor
 158 * number of the device to the pseudo-locked region it belongs.
 159 *
 160 * Minor numbers are assigned at the time a pseudo-locked region is associated
 161 * with a cache instance.
 162 *
 163 * Return: On success return pointer to resource group owning the pseudo-locked
 164 *         region, NULL on failure.
 165 */
 166static struct rdtgroup *region_find_by_minor(unsigned int minor)
 167{
 168	struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
 169
 170	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
 171		if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
 172			rdtgrp_match = rdtgrp;
 173			break;
 174		}
 175	}
 176	return rdtgrp_match;
 177}
 178
 179/**
 180 * struct pseudo_lock_pm_req - A power management QoS request list entry
 181 * @list:	Entry within the @pm_reqs list for a pseudo-locked region
 182 * @req:	PM QoS request
 183 */
 184struct pseudo_lock_pm_req {
 185	struct list_head list;
 186	struct dev_pm_qos_request req;
 187};
 188
 189static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
 190{
 191	struct pseudo_lock_pm_req *pm_req, *next;
 192
 193	list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
 194		dev_pm_qos_remove_request(&pm_req->req);
 195		list_del(&pm_req->list);
 196		kfree(pm_req);
 197	}
 198}
 199
 200/**
 201 * pseudo_lock_cstates_constrain - Restrict cores from entering C6
 202 * @plr: Pseudo-locked region
 203 *
 204 * To prevent the cache from being affected by power management entering
 205 * C6 has to be avoided. This is accomplished by requesting a latency
 206 * requirement lower than lowest C6 exit latency of all supported
 207 * platforms as found in the cpuidle state tables in the intel_idle driver.
 208 * At this time it is possible to do so with a single latency requirement
 209 * for all supported platforms.
 210 *
 211 * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
 212 * the ACPI latencies need to be considered while keeping in mind that C2
 213 * may be set to map to deeper sleep states. In this case the latency
 214 * requirement needs to prevent entering C2 also.
 215 *
 216 * Return: 0 on success, <0 on failure
 217 */
 218static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
 219{
 220	struct pseudo_lock_pm_req *pm_req;
 221	int cpu;
 222	int ret;
 223
 224	for_each_cpu(cpu, &plr->d->cpu_mask) {
 225		pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
 226		if (!pm_req) {
 227			rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n");
 228			ret = -ENOMEM;
 229			goto out_err;
 230		}
 231		ret = dev_pm_qos_add_request(get_cpu_device(cpu),
 232					     &pm_req->req,
 233					     DEV_PM_QOS_RESUME_LATENCY,
 234					     30);
 235		if (ret < 0) {
 236			rdt_last_cmd_printf("Failed to add latency req CPU%d\n",
 237					    cpu);
 238			kfree(pm_req);
 239			ret = -1;
 240			goto out_err;
 241		}
 242		list_add(&pm_req->list, &plr->pm_reqs);
 243	}
 244
 245	return 0;
 246
 247out_err:
 248	pseudo_lock_cstates_relax(plr);
 249	return ret;
 250}
 251
 252/**
 253 * pseudo_lock_region_clear - Reset pseudo-lock region data
 254 * @plr: pseudo-lock region
 255 *
 256 * All content of the pseudo-locked region is reset - any memory allocated
 257 * freed.
 258 *
 259 * Return: void
 260 */
 261static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
 262{
 263	plr->size = 0;
 264	plr->line_size = 0;
 265	kfree(plr->kmem);
 266	plr->kmem = NULL;
 267	plr->s = NULL;
 268	if (plr->d)
 269		plr->d->plr = NULL;
 270	plr->d = NULL;
 271	plr->cbm = 0;
 272	plr->debugfs_dir = NULL;
 273}
 274
 275/**
 276 * pseudo_lock_region_init - Initialize pseudo-lock region information
 277 * @plr: pseudo-lock region
 278 *
 279 * Called after user provided a schemata to be pseudo-locked. From the
 280 * schemata the &struct pseudo_lock_region is on entry already initialized
 281 * with the resource, domain, and capacity bitmask. Here the information
 282 * required for pseudo-locking is deduced from this data and &struct
 283 * pseudo_lock_region initialized further. This information includes:
 284 * - size in bytes of the region to be pseudo-locked
 285 * - cache line size to know the stride with which data needs to be accessed
 286 *   to be pseudo-locked
 287 * - a cpu associated with the cache instance on which the pseudo-locking
 288 *   flow can be executed
 289 *
 290 * Return: 0 on success, <0 on failure. Descriptive error will be written
 291 * to last_cmd_status buffer.
 292 */
 293static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
 294{
 295	struct cpu_cacheinfo *ci;
 296	int ret;
 297	int i;
 298
 299	/* Pick the first cpu we find that is associated with the cache. */
 300	plr->cpu = cpumask_first(&plr->d->cpu_mask);
 301
 302	if (!cpu_online(plr->cpu)) {
 303		rdt_last_cmd_printf("CPU %u associated with cache not online\n",
 304				    plr->cpu);
 305		ret = -ENODEV;
 306		goto out_region;
 307	}
 308
 309	ci = get_cpu_cacheinfo(plr->cpu);
 310
 311	plr->size = rdtgroup_cbm_to_size(plr->s->res, plr->d, plr->cbm);
 312
 313	for (i = 0; i < ci->num_leaves; i++) {
 314		if (ci->info_list[i].level == plr->s->res->cache_level) {
 315			plr->line_size = ci->info_list[i].coherency_line_size;
 316			return 0;
 317		}
 318	}
 319
 320	ret = -1;
 321	rdt_last_cmd_puts("Unable to determine cache line size\n");
 322out_region:
 323	pseudo_lock_region_clear(plr);
 324	return ret;
 325}
 326
 327/**
 328 * pseudo_lock_init - Initialize a pseudo-lock region
 329 * @rdtgrp: resource group to which new pseudo-locked region will belong
 330 *
 331 * A pseudo-locked region is associated with a resource group. When this
 332 * association is created the pseudo-locked region is initialized. The
 333 * details of the pseudo-locked region are not known at this time so only
 334 * allocation is done and association established.
 335 *
 336 * Return: 0 on success, <0 on failure
 337 */
 338static int pseudo_lock_init(struct rdtgroup *rdtgrp)
 339{
 340	struct pseudo_lock_region *plr;
 341
 342	plr = kzalloc(sizeof(*plr), GFP_KERNEL);
 343	if (!plr)
 344		return -ENOMEM;
 345
 346	init_waitqueue_head(&plr->lock_thread_wq);
 347	INIT_LIST_HEAD(&plr->pm_reqs);
 348	rdtgrp->plr = plr;
 349	return 0;
 350}
 351
 352/**
 353 * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
 354 * @plr: pseudo-lock region
 355 *
 356 * Initialize the details required to set up the pseudo-locked region and
 357 * allocate the contiguous memory that will be pseudo-locked to the cache.
 358 *
 359 * Return: 0 on success, <0 on failure.  Descriptive error will be written
 360 * to last_cmd_status buffer.
 361 */
 362static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
 363{
 364	int ret;
 365
 366	ret = pseudo_lock_region_init(plr);
 367	if (ret < 0)
 368		return ret;
 369
 370	/*
 371	 * We do not yet support contiguous regions larger than
 372	 * KMALLOC_MAX_SIZE.
 373	 */
 374	if (plr->size > KMALLOC_MAX_SIZE) {
 375		rdt_last_cmd_puts("Requested region exceeds maximum size\n");
 376		ret = -E2BIG;
 377		goto out_region;
 378	}
 379
 380	plr->kmem = kzalloc(plr->size, GFP_KERNEL);
 381	if (!plr->kmem) {
 382		rdt_last_cmd_puts("Unable to allocate memory\n");
 383		ret = -ENOMEM;
 384		goto out_region;
 385	}
 386
 387	ret = 0;
 388	goto out;
 389out_region:
 390	pseudo_lock_region_clear(plr);
 391out:
 392	return ret;
 393}
 394
 395/**
 396 * pseudo_lock_free - Free a pseudo-locked region
 397 * @rdtgrp: resource group to which pseudo-locked region belonged
 398 *
 399 * The pseudo-locked region's resources have already been released, or not
 400 * yet created at this point. Now it can be freed and disassociated from the
 401 * resource group.
 402 *
 403 * Return: void
 404 */
 405static void pseudo_lock_free(struct rdtgroup *rdtgrp)
 406{
 407	pseudo_lock_region_clear(rdtgrp->plr);
 408	kfree(rdtgrp->plr);
 409	rdtgrp->plr = NULL;
 410}
 411
 412/**
 413 * pseudo_lock_fn - Load kernel memory into cache
 414 * @_rdtgrp: resource group to which pseudo-lock region belongs
 415 *
 416 * This is the core pseudo-locking flow.
 417 *
 418 * First we ensure that the kernel memory cannot be found in the cache.
 419 * Then, while taking care that there will be as little interference as
 420 * possible, the memory to be loaded is accessed while core is running
 421 * with class of service set to the bitmask of the pseudo-locked region.
 422 * After this is complete no future CAT allocations will be allowed to
 423 * overlap with this bitmask.
 424 *
 425 * Local register variables are utilized to ensure that the memory region
 426 * to be locked is the only memory access made during the critical locking
 427 * loop.
 428 *
 429 * Return: 0. Waiter on waitqueue will be woken on completion.
 430 */
 431static int pseudo_lock_fn(void *_rdtgrp)
 432{
 433	struct rdtgroup *rdtgrp = _rdtgrp;
 434	struct pseudo_lock_region *plr = rdtgrp->plr;
 435	u32 rmid_p, closid_p;
 436	unsigned long i;
 437	u64 saved_msr;
 438#ifdef CONFIG_KASAN
 439	/*
 440	 * The registers used for local register variables are also used
 441	 * when KASAN is active. When KASAN is active we use a regular
 442	 * variable to ensure we always use a valid pointer, but the cost
 443	 * is that this variable will enter the cache through evicting the
 444	 * memory we are trying to lock into the cache. Thus expect lower
 445	 * pseudo-locking success rate when KASAN is active.
 446	 */
 447	unsigned int line_size;
 448	unsigned int size;
 449	void *mem_r;
 450#else
 451	register unsigned int line_size asm("esi");
 452	register unsigned int size asm("edi");
 453	register void *mem_r asm(_ASM_BX);
 454#endif /* CONFIG_KASAN */
 455
 456	/*
 457	 * Make sure none of the allocated memory is cached. If it is we
 458	 * will get a cache hit in below loop from outside of pseudo-locked
 459	 * region.
 460	 * wbinvd (as opposed to clflush/clflushopt) is required to
 461	 * increase likelihood that allocated cache portion will be filled
 462	 * with associated memory.
 463	 */
 464	native_wbinvd();
 465
 466	/*
 467	 * Always called with interrupts enabled. By disabling interrupts
 468	 * ensure that we will not be preempted during this critical section.
 469	 */
 470	local_irq_disable();
 471
 472	/*
 473	 * Call wrmsr and rdmsr as directly as possible to avoid tracing
 474	 * clobbering local register variables or affecting cache accesses.
 475	 *
 476	 * Disable the hardware prefetcher so that when the end of the memory
 477	 * being pseudo-locked is reached the hardware will not read beyond
 478	 * the buffer and evict pseudo-locked memory read earlier from the
 479	 * cache.
 480	 */
 481	saved_msr = __rdmsr(MSR_MISC_FEATURE_CONTROL);
 482	__wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
 483	closid_p = this_cpu_read(pqr_state.cur_closid);
 484	rmid_p = this_cpu_read(pqr_state.cur_rmid);
 485	mem_r = plr->kmem;
 486	size = plr->size;
 487	line_size = plr->line_size;
 488	/*
 489	 * Critical section begin: start by writing the closid associated
 490	 * with the capacity bitmask of the cache region being
 491	 * pseudo-locked followed by reading of kernel memory to load it
 492	 * into the cache.
 493	 */
 494	__wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, rdtgrp->closid);
 495	/*
 496	 * Cache was flushed earlier. Now access kernel memory to read it
 497	 * into cache region associated with just activated plr->closid.
 498	 * Loop over data twice:
 499	 * - In first loop the cache region is shared with the page walker
 500	 *   as it populates the paging structure caches (including TLB).
 501	 * - In the second loop the paging structure caches are used and
 502	 *   cache region is populated with the memory being referenced.
 503	 */
 504	for (i = 0; i < size; i += PAGE_SIZE) {
 505		/*
 506		 * Add a barrier to prevent speculative execution of this
 507		 * loop reading beyond the end of the buffer.
 508		 */
 509		rmb();
 510		asm volatile("mov (%0,%1,1), %%eax\n\t"
 511			:
 512			: "r" (mem_r), "r" (i)
 513			: "%eax", "memory");
 514	}
 515	for (i = 0; i < size; i += line_size) {
 516		/*
 517		 * Add a barrier to prevent speculative execution of this
 518		 * loop reading beyond the end of the buffer.
 519		 */
 520		rmb();
 521		asm volatile("mov (%0,%1,1), %%eax\n\t"
 522			:
 523			: "r" (mem_r), "r" (i)
 524			: "%eax", "memory");
 525	}
 526	/*
 527	 * Critical section end: restore closid with capacity bitmask that
 528	 * does not overlap with pseudo-locked region.
 529	 */
 530	__wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, closid_p);
 531
 532	/* Re-enable the hardware prefetcher(s) */
 533	wrmsrl(MSR_MISC_FEATURE_CONTROL, saved_msr);
 534	local_irq_enable();
 535
 536	plr->thread_done = 1;
 537	wake_up_interruptible(&plr->lock_thread_wq);
 538	return 0;
 539}
 540
 541/**
 542 * rdtgroup_monitor_in_progress - Test if monitoring in progress
 543 * @rdtgrp: resource group being queried
 544 *
 545 * Return: 1 if monitor groups have been created for this resource
 546 * group, 0 otherwise.
 547 */
 548static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
 549{
 550	return !list_empty(&rdtgrp->mon.crdtgrp_list);
 551}
 552
 553/**
 554 * rdtgroup_locksetup_user_restrict - Restrict user access to group
 555 * @rdtgrp: resource group needing access restricted
 556 *
 557 * A resource group used for cache pseudo-locking cannot have cpus or tasks
 558 * assigned to it. This is communicated to the user by restricting access
 559 * to all the files that can be used to make such changes.
 560 *
 561 * Permissions restored with rdtgroup_locksetup_user_restore()
 562 *
 563 * Return: 0 on success, <0 on failure. If a failure occurs during the
 564 * restriction of access an attempt will be made to restore permissions but
 565 * the state of the mode of these files will be uncertain when a failure
 566 * occurs.
 567 */
 568static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
 569{
 570	int ret;
 571
 572	ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
 573	if (ret)
 574		return ret;
 575
 576	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
 577	if (ret)
 578		goto err_tasks;
 579
 580	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
 581	if (ret)
 582		goto err_cpus;
 583
 584	if (resctrl_arch_mon_capable()) {
 585		ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
 586		if (ret)
 587			goto err_cpus_list;
 588	}
 589
 590	ret = 0;
 591	goto out;
 592
 593err_cpus_list:
 594	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
 595err_cpus:
 596	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
 597err_tasks:
 598	rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
 599out:
 600	return ret;
 601}
 602
 603/**
 604 * rdtgroup_locksetup_user_restore - Restore user access to group
 605 * @rdtgrp: resource group needing access restored
 606 *
 607 * Restore all file access previously removed using
 608 * rdtgroup_locksetup_user_restrict()
 609 *
 610 * Return: 0 on success, <0 on failure.  If a failure occurs during the
 611 * restoration of access an attempt will be made to restrict permissions
 612 * again but the state of the mode of these files will be uncertain when
 613 * a failure occurs.
 614 */
 615static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
 616{
 617	int ret;
 618
 619	ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
 620	if (ret)
 621		return ret;
 622
 623	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
 624	if (ret)
 625		goto err_tasks;
 626
 627	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
 628	if (ret)
 629		goto err_cpus;
 630
 631	if (resctrl_arch_mon_capable()) {
 632		ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
 633		if (ret)
 634			goto err_cpus_list;
 635	}
 636
 637	ret = 0;
 638	goto out;
 639
 640err_cpus_list:
 641	rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
 642err_cpus:
 643	rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
 644err_tasks:
 645	rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
 646out:
 647	return ret;
 648}
 649
 650/**
 651 * rdtgroup_locksetup_enter - Resource group enters locksetup mode
 652 * @rdtgrp: resource group requested to enter locksetup mode
 653 *
 654 * A resource group enters locksetup mode to reflect that it would be used
 655 * to represent a pseudo-locked region and is in the process of being set
 656 * up to do so. A resource group used for a pseudo-locked region would
 657 * lose the closid associated with it so we cannot allow it to have any
 658 * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
 659 * future. Monitoring of a pseudo-locked region is not allowed either.
 660 *
 661 * The above and more restrictions on a pseudo-locked region are checked
 662 * for and enforced before the resource group enters the locksetup mode.
 663 *
 664 * Returns: 0 if the resource group successfully entered locksetup mode, <0
 665 * on failure. On failure the last_cmd_status buffer is updated with text to
 666 * communicate details of failure to the user.
 667 */
 668int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
 669{
 670	int ret;
 671
 672	/*
 673	 * The default resource group can neither be removed nor lose the
 674	 * default closid associated with it.
 675	 */
 676	if (rdtgrp == &rdtgroup_default) {
 677		rdt_last_cmd_puts("Cannot pseudo-lock default group\n");
 678		return -EINVAL;
 679	}
 680
 681	/*
 682	 * Cache Pseudo-locking not supported when CDP is enabled.
 683	 *
 684	 * Some things to consider if you would like to enable this
 685	 * support (using L3 CDP as example):
 686	 * - When CDP is enabled two separate resources are exposed,
 687	 *   L3DATA and L3CODE, but they are actually on the same cache.
 688	 *   The implication for pseudo-locking is that if a
 689	 *   pseudo-locked region is created on a domain of one
 690	 *   resource (eg. L3CODE), then a pseudo-locked region cannot
 691	 *   be created on that same domain of the other resource
 692	 *   (eg. L3DATA). This is because the creation of a
 693	 *   pseudo-locked region involves a call to wbinvd that will
 694	 *   affect all cache allocations on particular domain.
 695	 * - Considering the previous, it may be possible to only
 696	 *   expose one of the CDP resources to pseudo-locking and
 697	 *   hide the other. For example, we could consider to only
 698	 *   expose L3DATA and since the L3 cache is unified it is
 699	 *   still possible to place instructions there are execute it.
 700	 * - If only one region is exposed to pseudo-locking we should
 701	 *   still keep in mind that availability of a portion of cache
 702	 *   for pseudo-locking should take into account both resources.
 703	 *   Similarly, if a pseudo-locked region is created in one
 704	 *   resource, the portion of cache used by it should be made
 705	 *   unavailable to all future allocations from both resources.
 706	 */
 707	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3) ||
 708	    resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) {
 709		rdt_last_cmd_puts("CDP enabled\n");
 710		return -EINVAL;
 711	}
 712
 713	/*
 714	 * Not knowing the bits to disable prefetching implies that this
 715	 * platform does not support Cache Pseudo-Locking.
 716	 */
 717	prefetch_disable_bits = get_prefetch_disable_bits();
 718	if (prefetch_disable_bits == 0) {
 719		rdt_last_cmd_puts("Pseudo-locking not supported\n");
 720		return -EINVAL;
 721	}
 722
 723	if (rdtgroup_monitor_in_progress(rdtgrp)) {
 724		rdt_last_cmd_puts("Monitoring in progress\n");
 725		return -EINVAL;
 726	}
 727
 728	if (rdtgroup_tasks_assigned(rdtgrp)) {
 729		rdt_last_cmd_puts("Tasks assigned to resource group\n");
 730		return -EINVAL;
 731	}
 732
 733	if (!cpumask_empty(&rdtgrp->cpu_mask)) {
 734		rdt_last_cmd_puts("CPUs assigned to resource group\n");
 735		return -EINVAL;
 736	}
 737
 738	if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
 739		rdt_last_cmd_puts("Unable to modify resctrl permissions\n");
 740		return -EIO;
 741	}
 742
 743	ret = pseudo_lock_init(rdtgrp);
 744	if (ret) {
 745		rdt_last_cmd_puts("Unable to init pseudo-lock region\n");
 746		goto out_release;
 747	}
 748
 749	/*
 750	 * If this system is capable of monitoring a rmid would have been
 751	 * allocated when the control group was created. This is not needed
 752	 * anymore when this group would be used for pseudo-locking. This
 753	 * is safe to call on platforms not capable of monitoring.
 754	 */
 755	free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
 756
 757	ret = 0;
 758	goto out;
 759
 760out_release:
 761	rdtgroup_locksetup_user_restore(rdtgrp);
 762out:
 763	return ret;
 764}
 765
 766/**
 767 * rdtgroup_locksetup_exit - resource group exist locksetup mode
 768 * @rdtgrp: resource group
 769 *
 770 * When a resource group exits locksetup mode the earlier restrictions are
 771 * lifted.
 772 *
 773 * Return: 0 on success, <0 on failure
 774 */
 775int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
 776{
 777	int ret;
 778
 779	if (resctrl_arch_mon_capable()) {
 780		ret = alloc_rmid(rdtgrp->closid);
 781		if (ret < 0) {
 782			rdt_last_cmd_puts("Out of RMIDs\n");
 783			return ret;
 784		}
 785		rdtgrp->mon.rmid = ret;
 786	}
 787
 788	ret = rdtgroup_locksetup_user_restore(rdtgrp);
 789	if (ret) {
 790		free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
 791		return ret;
 792	}
 793
 794	pseudo_lock_free(rdtgrp);
 795	return 0;
 796}
 797
 798/**
 799 * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
 800 * @d: RDT domain
 801 * @cbm: CBM to test
 802 *
 803 * @d represents a cache instance and @cbm a capacity bitmask that is
 804 * considered for it. Determine if @cbm overlaps with any existing
 805 * pseudo-locked region on @d.
 806 *
 807 * @cbm is unsigned long, even if only 32 bits are used, to make the
 808 * bitmap functions work correctly.
 809 *
 810 * Return: true if @cbm overlaps with pseudo-locked region on @d, false
 811 * otherwise.
 812 */
 813bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm)
 814{
 815	unsigned int cbm_len;
 816	unsigned long cbm_b;
 817
 818	if (d->plr) {
 819		cbm_len = d->plr->s->res->cache.cbm_len;
 820		cbm_b = d->plr->cbm;
 821		if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
 822			return true;
 823	}
 824	return false;
 825}
 826
 827/**
 828 * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
 829 * @d: RDT domain under test
 830 *
 831 * The setup of a pseudo-locked region affects all cache instances within
 832 * the hierarchy of the region. It is thus essential to know if any
 833 * pseudo-locked regions exist within a cache hierarchy to prevent any
 834 * attempts to create new pseudo-locked regions in the same hierarchy.
 835 *
 836 * Return: true if a pseudo-locked region exists in the hierarchy of @d or
 837 *         if it is not possible to test due to memory allocation issue,
 838 *         false otherwise.
 839 */
 840bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d)
 841{
 842	cpumask_var_t cpu_with_psl;
 843	struct rdt_resource *r;
 844	struct rdt_domain *d_i;
 845	bool ret = false;
 846
 847	/* Walking r->domains, ensure it can't race with cpuhp */
 848	lockdep_assert_cpus_held();
 849
 850	if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
 851		return true;
 852
 853	/*
 854	 * First determine which cpus have pseudo-locked regions
 855	 * associated with them.
 856	 */
 857	for_each_alloc_capable_rdt_resource(r) {
 858		list_for_each_entry(d_i, &r->domains, list) {
 859			if (d_i->plr)
 860				cpumask_or(cpu_with_psl, cpu_with_psl,
 861					   &d_i->cpu_mask);
 862		}
 863	}
 864
 865	/*
 866	 * Next test if new pseudo-locked region would intersect with
 867	 * existing region.
 868	 */
 869	if (cpumask_intersects(&d->cpu_mask, cpu_with_psl))
 870		ret = true;
 871
 872	free_cpumask_var(cpu_with_psl);
 873	return ret;
 874}
 875
 876/**
 877 * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
 878 * @_plr: pseudo-lock region to measure
 879 *
 880 * There is no deterministic way to test if a memory region is cached. One
 881 * way is to measure how long it takes to read the memory, the speed of
 882 * access is a good way to learn how close to the cpu the data was. Even
 883 * more, if the prefetcher is disabled and the memory is read at a stride
 884 * of half the cache line, then a cache miss will be easy to spot since the
 885 * read of the first half would be significantly slower than the read of
 886 * the second half.
 887 *
 888 * Return: 0. Waiter on waitqueue will be woken on completion.
 889 */
 890static int measure_cycles_lat_fn(void *_plr)
 891{
 892	struct pseudo_lock_region *plr = _plr;
 893	u32 saved_low, saved_high;
 894	unsigned long i;
 895	u64 start, end;
 896	void *mem_r;
 897
 898	local_irq_disable();
 899	/*
 900	 * Disable hardware prefetchers.
 901	 */
 902	rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
 903	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
 904	mem_r = READ_ONCE(plr->kmem);
 905	/*
 906	 * Dummy execute of the time measurement to load the needed
 907	 * instructions into the L1 instruction cache.
 908	 */
 909	start = rdtsc_ordered();
 910	for (i = 0; i < plr->size; i += 32) {
 911		start = rdtsc_ordered();
 912		asm volatile("mov (%0,%1,1), %%eax\n\t"
 913			     :
 914			     : "r" (mem_r), "r" (i)
 915			     : "%eax", "memory");
 916		end = rdtsc_ordered();
 917		trace_pseudo_lock_mem_latency((u32)(end - start));
 918	}
 919	wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
 920	local_irq_enable();
 921	plr->thread_done = 1;
 922	wake_up_interruptible(&plr->lock_thread_wq);
 923	return 0;
 924}
 925
 926/*
 927 * Create a perf_event_attr for the hit and miss perf events that will
 928 * be used during the performance measurement. A perf_event maintains
 929 * a pointer to its perf_event_attr so a unique attribute structure is
 930 * created for each perf_event.
 931 *
 932 * The actual configuration of the event is set right before use in order
 933 * to use the X86_CONFIG macro.
 934 */
 935static struct perf_event_attr perf_miss_attr = {
 936	.type		= PERF_TYPE_RAW,
 937	.size		= sizeof(struct perf_event_attr),
 938	.pinned		= 1,
 939	.disabled	= 0,
 940	.exclude_user	= 1,
 941};
 942
 943static struct perf_event_attr perf_hit_attr = {
 944	.type		= PERF_TYPE_RAW,
 945	.size		= sizeof(struct perf_event_attr),
 946	.pinned		= 1,
 947	.disabled	= 0,
 948	.exclude_user	= 1,
 949};
 950
 951struct residency_counts {
 952	u64 miss_before, hits_before;
 953	u64 miss_after,  hits_after;
 954};
 955
 956static int measure_residency_fn(struct perf_event_attr *miss_attr,
 957				struct perf_event_attr *hit_attr,
 958				struct pseudo_lock_region *plr,
 959				struct residency_counts *counts)
 960{
 961	u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0;
 962	struct perf_event *miss_event, *hit_event;
 963	int hit_pmcnum, miss_pmcnum;
 964	u32 saved_low, saved_high;
 965	unsigned int line_size;
 966	unsigned int size;
 967	unsigned long i;
 968	void *mem_r;
 969	u64 tmp;
 970
 971	miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu,
 972						      NULL, NULL, NULL);
 973	if (IS_ERR(miss_event))
 974		goto out;
 975
 976	hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu,
 977						     NULL, NULL, NULL);
 978	if (IS_ERR(hit_event))
 979		goto out_miss;
 980
 981	local_irq_disable();
 982	/*
 983	 * Check any possible error state of events used by performing
 984	 * one local read.
 985	 */
 986	if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) {
 987		local_irq_enable();
 988		goto out_hit;
 989	}
 990	if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) {
 991		local_irq_enable();
 992		goto out_hit;
 993	}
 994
 995	/*
 996	 * Disable hardware prefetchers.
 997	 */
 998	rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
 999	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
1000
1001	/* Initialize rest of local variables */
1002	/*
1003	 * Performance event has been validated right before this with
1004	 * interrupts disabled - it is thus safe to read the counter index.
1005	 */
1006	miss_pmcnum = x86_perf_rdpmc_index(miss_event);
1007	hit_pmcnum = x86_perf_rdpmc_index(hit_event);
1008	line_size = READ_ONCE(plr->line_size);
1009	mem_r = READ_ONCE(plr->kmem);
1010	size = READ_ONCE(plr->size);
1011
1012	/*
1013	 * Read counter variables twice - first to load the instructions
1014	 * used in L1 cache, second to capture accurate value that does not
1015	 * include cache misses incurred because of instruction loads.
1016	 */
1017	rdpmcl(hit_pmcnum, hits_before);
1018	rdpmcl(miss_pmcnum, miss_before);
1019	/*
1020	 * From SDM: Performing back-to-back fast reads are not guaranteed
1021	 * to be monotonic.
1022	 * Use LFENCE to ensure all previous instructions are retired
1023	 * before proceeding.
1024	 */
1025	rmb();
1026	rdpmcl(hit_pmcnum, hits_before);
1027	rdpmcl(miss_pmcnum, miss_before);
1028	/*
1029	 * Use LFENCE to ensure all previous instructions are retired
1030	 * before proceeding.
1031	 */
1032	rmb();
1033	for (i = 0; i < size; i += line_size) {
1034		/*
1035		 * Add a barrier to prevent speculative execution of this
1036		 * loop reading beyond the end of the buffer.
1037		 */
1038		rmb();
1039		asm volatile("mov (%0,%1,1), %%eax\n\t"
1040			     :
1041			     : "r" (mem_r), "r" (i)
1042			     : "%eax", "memory");
1043	}
1044	/*
1045	 * Use LFENCE to ensure all previous instructions are retired
1046	 * before proceeding.
1047	 */
1048	rmb();
1049	rdpmcl(hit_pmcnum, hits_after);
1050	rdpmcl(miss_pmcnum, miss_after);
1051	/*
1052	 * Use LFENCE to ensure all previous instructions are retired
1053	 * before proceeding.
1054	 */
1055	rmb();
1056	/* Re-enable hardware prefetchers */
1057	wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
1058	local_irq_enable();
1059out_hit:
1060	perf_event_release_kernel(hit_event);
1061out_miss:
1062	perf_event_release_kernel(miss_event);
1063out:
1064	/*
1065	 * All counts will be zero on failure.
1066	 */
1067	counts->miss_before = miss_before;
1068	counts->hits_before = hits_before;
1069	counts->miss_after  = miss_after;
1070	counts->hits_after  = hits_after;
1071	return 0;
1072}
1073
1074static int measure_l2_residency(void *_plr)
1075{
1076	struct pseudo_lock_region *plr = _plr;
1077	struct residency_counts counts = {0};
1078
1079	/*
1080	 * Non-architectural event for the Goldmont Microarchitecture
1081	 * from Intel x86 Architecture Software Developer Manual (SDM):
1082	 * MEM_LOAD_UOPS_RETIRED D1H (event number)
1083	 * Umask values:
1084	 *     L2_HIT   02H
1085	 *     L2_MISS  10H
1086	 */
1087	switch (boot_cpu_data.x86_model) {
1088	case INTEL_FAM6_ATOM_GOLDMONT:
1089	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
1090		perf_miss_attr.config = X86_CONFIG(.event = 0xd1,
1091						   .umask = 0x10);
1092		perf_hit_attr.config = X86_CONFIG(.event = 0xd1,
1093						  .umask = 0x2);
1094		break;
1095	default:
1096		goto out;
1097	}
1098
1099	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1100	/*
1101	 * If a failure prevented the measurements from succeeding
1102	 * tracepoints will still be written and all counts will be zero.
1103	 */
1104	trace_pseudo_lock_l2(counts.hits_after - counts.hits_before,
1105			     counts.miss_after - counts.miss_before);
1106out:
1107	plr->thread_done = 1;
1108	wake_up_interruptible(&plr->lock_thread_wq);
1109	return 0;
1110}
1111
1112static int measure_l3_residency(void *_plr)
1113{
1114	struct pseudo_lock_region *plr = _plr;
1115	struct residency_counts counts = {0};
1116
1117	/*
1118	 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
1119	 * has two "no fix" errata associated with it: BDM35 and BDM100. On
1120	 * this platform the following events are used instead:
1121	 * LONGEST_LAT_CACHE 2EH (Documented in SDM)
1122	 *       REFERENCE 4FH
1123	 *       MISS      41H
1124	 */
1125
1126	switch (boot_cpu_data.x86_model) {
1127	case INTEL_FAM6_BROADWELL_X:
1128		/* On BDW the hit event counts references, not hits */
1129		perf_hit_attr.config = X86_CONFIG(.event = 0x2e,
1130						  .umask = 0x4f);
1131		perf_miss_attr.config = X86_CONFIG(.event = 0x2e,
1132						   .umask = 0x41);
1133		break;
1134	default:
1135		goto out;
1136	}
1137
1138	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1139	/*
1140	 * If a failure prevented the measurements from succeeding
1141	 * tracepoints will still be written and all counts will be zero.
1142	 */
1143
1144	counts.miss_after -= counts.miss_before;
1145	if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X) {
1146		/*
1147		 * On BDW references and misses are counted, need to adjust.
1148		 * Sometimes the "hits" counter is a bit more than the
1149		 * references, for example, x references but x + 1 hits.
1150		 * To not report invalid hit values in this case we treat
1151		 * that as misses equal to references.
1152		 */
1153		/* First compute the number of cache references measured */
1154		counts.hits_after -= counts.hits_before;
1155		/* Next convert references to cache hits */
1156		counts.hits_after -= min(counts.miss_after, counts.hits_after);
1157	} else {
1158		counts.hits_after -= counts.hits_before;
1159	}
1160
1161	trace_pseudo_lock_l3(counts.hits_after, counts.miss_after);
1162out:
1163	plr->thread_done = 1;
1164	wake_up_interruptible(&plr->lock_thread_wq);
1165	return 0;
1166}
1167
1168/**
1169 * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
1170 * @rdtgrp: Resource group to which the pseudo-locked region belongs.
1171 * @sel: Selector of which measurement to perform on a pseudo-locked region.
1172 *
1173 * The measurement of latency to access a pseudo-locked region should be
1174 * done from a cpu that is associated with that pseudo-locked region.
1175 * Determine which cpu is associated with this region and start a thread on
1176 * that cpu to perform the measurement, wait for that thread to complete.
1177 *
1178 * Return: 0 on success, <0 on failure
1179 */
1180static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
1181{
1182	struct pseudo_lock_region *plr = rdtgrp->plr;
1183	struct task_struct *thread;
1184	unsigned int cpu;
1185	int ret = -1;
1186
1187	cpus_read_lock();
1188	mutex_lock(&rdtgroup_mutex);
1189
1190	if (rdtgrp->flags & RDT_DELETED) {
1191		ret = -ENODEV;
1192		goto out;
1193	}
1194
1195	if (!plr->d) {
1196		ret = -ENODEV;
1197		goto out;
1198	}
1199
1200	plr->thread_done = 0;
1201	cpu = cpumask_first(&plr->d->cpu_mask);
1202	if (!cpu_online(cpu)) {
1203		ret = -ENODEV;
1204		goto out;
1205	}
1206
1207	plr->cpu = cpu;
1208
1209	if (sel == 1)
1210		thread = kthread_create_on_node(measure_cycles_lat_fn, plr,
1211						cpu_to_node(cpu),
1212						"pseudo_lock_measure/%u",
1213						cpu);
1214	else if (sel == 2)
1215		thread = kthread_create_on_node(measure_l2_residency, plr,
1216						cpu_to_node(cpu),
1217						"pseudo_lock_measure/%u",
1218						cpu);
1219	else if (sel == 3)
1220		thread = kthread_create_on_node(measure_l3_residency, plr,
1221						cpu_to_node(cpu),
1222						"pseudo_lock_measure/%u",
1223						cpu);
1224	else
1225		goto out;
1226
1227	if (IS_ERR(thread)) {
1228		ret = PTR_ERR(thread);
1229		goto out;
1230	}
1231	kthread_bind(thread, cpu);
1232	wake_up_process(thread);
1233
1234	ret = wait_event_interruptible(plr->lock_thread_wq,
1235				       plr->thread_done == 1);
1236	if (ret < 0)
1237		goto out;
1238
1239	ret = 0;
1240
1241out:
1242	mutex_unlock(&rdtgroup_mutex);
1243	cpus_read_unlock();
1244	return ret;
1245}
1246
1247static ssize_t pseudo_lock_measure_trigger(struct file *file,
1248					   const char __user *user_buf,
1249					   size_t count, loff_t *ppos)
1250{
1251	struct rdtgroup *rdtgrp = file->private_data;
1252	size_t buf_size;
1253	char buf[32];
1254	int ret;
1255	int sel;
1256
1257	buf_size = min(count, (sizeof(buf) - 1));
1258	if (copy_from_user(buf, user_buf, buf_size))
1259		return -EFAULT;
1260
1261	buf[buf_size] = '\0';
1262	ret = kstrtoint(buf, 10, &sel);
1263	if (ret == 0) {
1264		if (sel != 1 && sel != 2 && sel != 3)
1265			return -EINVAL;
1266		ret = debugfs_file_get(file->f_path.dentry);
1267		if (ret)
1268			return ret;
1269		ret = pseudo_lock_measure_cycles(rdtgrp, sel);
1270		if (ret == 0)
1271			ret = count;
1272		debugfs_file_put(file->f_path.dentry);
1273	}
1274
1275	return ret;
1276}
1277
1278static const struct file_operations pseudo_measure_fops = {
1279	.write = pseudo_lock_measure_trigger,
1280	.open = simple_open,
1281	.llseek = default_llseek,
1282};
1283
1284/**
1285 * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
1286 * @rdtgrp: resource group to which pseudo-lock region belongs
1287 *
1288 * Called when a resource group in the pseudo-locksetup mode receives a
1289 * valid schemata that should be pseudo-locked. Since the resource group is
1290 * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
1291 * allocated and initialized with the essential information. If a failure
1292 * occurs the resource group remains in the pseudo-locksetup mode with the
1293 * &struct pseudo_lock_region associated with it, but cleared from all
1294 * information and ready for the user to re-attempt pseudo-locking by
1295 * writing the schemata again.
1296 *
1297 * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
1298 * on failure. Descriptive error will be written to last_cmd_status buffer.
1299 */
1300int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
1301{
1302	struct pseudo_lock_region *plr = rdtgrp->plr;
1303	struct task_struct *thread;
1304	unsigned int new_minor;
1305	struct device *dev;
1306	int ret;
1307
1308	ret = pseudo_lock_region_alloc(plr);
1309	if (ret < 0)
1310		return ret;
1311
1312	ret = pseudo_lock_cstates_constrain(plr);
1313	if (ret < 0) {
1314		ret = -EINVAL;
1315		goto out_region;
1316	}
1317
1318	plr->thread_done = 0;
1319
1320	thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp,
1321					cpu_to_node(plr->cpu),
1322					"pseudo_lock/%u", plr->cpu);
1323	if (IS_ERR(thread)) {
1324		ret = PTR_ERR(thread);
1325		rdt_last_cmd_printf("Locking thread returned error %d\n", ret);
1326		goto out_cstates;
1327	}
1328
1329	kthread_bind(thread, plr->cpu);
1330	wake_up_process(thread);
1331
1332	ret = wait_event_interruptible(plr->lock_thread_wq,
1333				       plr->thread_done == 1);
1334	if (ret < 0) {
1335		/*
1336		 * If the thread does not get on the CPU for whatever
1337		 * reason and the process which sets up the region is
1338		 * interrupted then this will leave the thread in runnable
1339		 * state and once it gets on the CPU it will dereference
1340		 * the cleared, but not freed, plr struct resulting in an
1341		 * empty pseudo-locking loop.
1342		 */
1343		rdt_last_cmd_puts("Locking thread interrupted\n");
1344		goto out_cstates;
1345	}
1346
1347	ret = pseudo_lock_minor_get(&new_minor);
1348	if (ret < 0) {
1349		rdt_last_cmd_puts("Unable to obtain a new minor number\n");
1350		goto out_cstates;
1351	}
1352
1353	/*
1354	 * Unlock access but do not release the reference. The
1355	 * pseudo-locked region will still be here on return.
1356	 *
1357	 * The mutex has to be released temporarily to avoid a potential
1358	 * deadlock with the mm->mmap_lock which is obtained in the
1359	 * device_create() and debugfs_create_dir() callpath below as well as
1360	 * before the mmap() callback is called.
1361	 */
1362	mutex_unlock(&rdtgroup_mutex);
1363
1364	if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
1365		plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name,
1366						      debugfs_resctrl);
1367		if (!IS_ERR_OR_NULL(plr->debugfs_dir))
1368			debugfs_create_file("pseudo_lock_measure", 0200,
1369					    plr->debugfs_dir, rdtgrp,
1370					    &pseudo_measure_fops);
1371	}
1372
1373	dev = device_create(&pseudo_lock_class, NULL,
1374			    MKDEV(pseudo_lock_major, new_minor),
1375			    rdtgrp, "%s", rdtgrp->kn->name);
1376
1377	mutex_lock(&rdtgroup_mutex);
1378
1379	if (IS_ERR(dev)) {
1380		ret = PTR_ERR(dev);
1381		rdt_last_cmd_printf("Failed to create character device: %d\n",
1382				    ret);
1383		goto out_debugfs;
1384	}
1385
1386	/* We released the mutex - check if group was removed while we did so */
1387	if (rdtgrp->flags & RDT_DELETED) {
1388		ret = -ENODEV;
1389		goto out_device;
1390	}
1391
1392	plr->minor = new_minor;
1393
1394	rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
1395	closid_free(rdtgrp->closid);
1396	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
1397	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
1398
1399	ret = 0;
1400	goto out;
1401
1402out_device:
1403	device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
1404out_debugfs:
1405	debugfs_remove_recursive(plr->debugfs_dir);
1406	pseudo_lock_minor_release(new_minor);
1407out_cstates:
1408	pseudo_lock_cstates_relax(plr);
1409out_region:
1410	pseudo_lock_region_clear(plr);
1411out:
1412	return ret;
1413}
1414
1415/**
1416 * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
1417 * @rdtgrp: resource group to which the pseudo-locked region belongs
1418 *
1419 * The removal of a pseudo-locked region can be initiated when the resource
1420 * group is removed from user space via a "rmdir" from userspace or the
1421 * unmount of the resctrl filesystem. On removal the resource group does
1422 * not go back to pseudo-locksetup mode before it is removed, instead it is
1423 * removed directly. There is thus asymmetry with the creation where the
1424 * &struct pseudo_lock_region is removed here while it was not created in
1425 * rdtgroup_pseudo_lock_create().
1426 *
1427 * Return: void
1428 */
1429void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
1430{
1431	struct pseudo_lock_region *plr = rdtgrp->plr;
1432
1433	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1434		/*
1435		 * Default group cannot be a pseudo-locked region so we can
1436		 * free closid here.
1437		 */
1438		closid_free(rdtgrp->closid);
1439		goto free;
1440	}
1441
1442	pseudo_lock_cstates_relax(plr);
1443	debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
1444	device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
1445	pseudo_lock_minor_release(plr->minor);
1446
1447free:
1448	pseudo_lock_free(rdtgrp);
1449}
1450
1451static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
1452{
1453	struct rdtgroup *rdtgrp;
1454
1455	mutex_lock(&rdtgroup_mutex);
1456
1457	rdtgrp = region_find_by_minor(iminor(inode));
1458	if (!rdtgrp) {
1459		mutex_unlock(&rdtgroup_mutex);
1460		return -ENODEV;
1461	}
1462
1463	filp->private_data = rdtgrp;
1464	atomic_inc(&rdtgrp->waitcount);
1465	/* Perform a non-seekable open - llseek is not supported */
1466	filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
1467
1468	mutex_unlock(&rdtgroup_mutex);
1469
1470	return 0;
1471}
1472
1473static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
1474{
1475	struct rdtgroup *rdtgrp;
1476
1477	mutex_lock(&rdtgroup_mutex);
1478	rdtgrp = filp->private_data;
1479	WARN_ON(!rdtgrp);
1480	if (!rdtgrp) {
1481		mutex_unlock(&rdtgroup_mutex);
1482		return -ENODEV;
1483	}
1484	filp->private_data = NULL;
1485	atomic_dec(&rdtgrp->waitcount);
1486	mutex_unlock(&rdtgroup_mutex);
1487	return 0;
1488}
1489
1490static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
1491{
1492	/* Not supported */
1493	return -EINVAL;
1494}
1495
1496static const struct vm_operations_struct pseudo_mmap_ops = {
1497	.mremap = pseudo_lock_dev_mremap,
1498};
1499
1500static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
1501{
1502	unsigned long vsize = vma->vm_end - vma->vm_start;
1503	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
1504	struct pseudo_lock_region *plr;
1505	struct rdtgroup *rdtgrp;
1506	unsigned long physical;
1507	unsigned long psize;
1508
1509	mutex_lock(&rdtgroup_mutex);
1510
1511	rdtgrp = filp->private_data;
1512	WARN_ON(!rdtgrp);
1513	if (!rdtgrp) {
1514		mutex_unlock(&rdtgroup_mutex);
1515		return -ENODEV;
1516	}
1517
1518	plr = rdtgrp->plr;
1519
1520	if (!plr->d) {
1521		mutex_unlock(&rdtgroup_mutex);
1522		return -ENODEV;
1523	}
1524
1525	/*
1526	 * Task is required to run with affinity to the cpus associated
1527	 * with the pseudo-locked region. If this is not the case the task
1528	 * may be scheduled elsewhere and invalidate entries in the
1529	 * pseudo-locked region.
1530	 */
1531	if (!cpumask_subset(current->cpus_ptr, &plr->d->cpu_mask)) {
1532		mutex_unlock(&rdtgroup_mutex);
1533		return -EINVAL;
1534	}
1535
1536	physical = __pa(plr->kmem) >> PAGE_SHIFT;
1537	psize = plr->size - off;
1538
1539	if (off > plr->size) {
1540		mutex_unlock(&rdtgroup_mutex);
1541		return -ENOSPC;
1542	}
1543
1544	/*
1545	 * Ensure changes are carried directly to the memory being mapped,
1546	 * do not allow copy-on-write mapping.
1547	 */
1548	if (!(vma->vm_flags & VM_SHARED)) {
1549		mutex_unlock(&rdtgroup_mutex);
1550		return -EINVAL;
1551	}
1552
1553	if (vsize > psize) {
1554		mutex_unlock(&rdtgroup_mutex);
1555		return -ENOSPC;
1556	}
1557
1558	memset(plr->kmem + off, 0, vsize);
1559
1560	if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
1561			    vsize, vma->vm_page_prot)) {
1562		mutex_unlock(&rdtgroup_mutex);
1563		return -EAGAIN;
1564	}
1565	vma->vm_ops = &pseudo_mmap_ops;
1566	mutex_unlock(&rdtgroup_mutex);
1567	return 0;
1568}
1569
1570static const struct file_operations pseudo_lock_dev_fops = {
1571	.owner =	THIS_MODULE,
1572	.llseek =	no_llseek,
1573	.read =		NULL,
1574	.write =	NULL,
1575	.open =		pseudo_lock_dev_open,
1576	.release =	pseudo_lock_dev_release,
1577	.mmap =		pseudo_lock_dev_mmap,
1578};
1579
 
 
 
 
 
 
 
 
 
 
1580int rdt_pseudo_lock_init(void)
1581{
1582	int ret;
1583
1584	ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
1585	if (ret < 0)
1586		return ret;
1587
1588	pseudo_lock_major = ret;
1589
1590	ret = class_register(&pseudo_lock_class);
1591	if (ret) {
 
1592		unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1593		return ret;
1594	}
1595
 
1596	return 0;
1597}
1598
1599void rdt_pseudo_lock_release(void)
1600{
1601	class_unregister(&pseudo_lock_class);
 
1602	unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1603	pseudo_lock_major = 0;
1604}