Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/net/sunrpc/svc.c
4 *
5 * High-level RPC service routines
6 *
7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
8 *
9 * Multiple threads pools and NUMAisation
10 * Copyright (c) 2006 Silicon Graphics, Inc.
11 * by Greg Banks <gnb@melbourne.sgi.com>
12 */
13
14#include <linux/linkage.h>
15#include <linux/sched/signal.h>
16#include <linux/errno.h>
17#include <linux/net.h>
18#include <linux/in.h>
19#include <linux/mm.h>
20#include <linux/interrupt.h>
21#include <linux/module.h>
22#include <linux/kthread.h>
23#include <linux/slab.h>
24
25#include <linux/sunrpc/types.h>
26#include <linux/sunrpc/xdr.h>
27#include <linux/sunrpc/stats.h>
28#include <linux/sunrpc/svcsock.h>
29#include <linux/sunrpc/clnt.h>
30#include <linux/sunrpc/bc_xprt.h>
31
32#include <trace/events/sunrpc.h>
33
34#define RPCDBG_FACILITY RPCDBG_SVCDSP
35
36static void svc_unregister(const struct svc_serv *serv, struct net *net);
37
38#define svc_serv_is_pooled(serv) ((serv)->sv_ops->svo_function)
39
40#define SVC_POOL_DEFAULT SVC_POOL_GLOBAL
41
42/*
43 * Structure for mapping cpus to pools and vice versa.
44 * Setup once during sunrpc initialisation.
45 */
46struct svc_pool_map svc_pool_map = {
47 .mode = SVC_POOL_DEFAULT
48};
49EXPORT_SYMBOL_GPL(svc_pool_map);
50
51static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
52
53static int
54param_set_pool_mode(const char *val, const struct kernel_param *kp)
55{
56 int *ip = (int *)kp->arg;
57 struct svc_pool_map *m = &svc_pool_map;
58 int err;
59
60 mutex_lock(&svc_pool_map_mutex);
61
62 err = -EBUSY;
63 if (m->count)
64 goto out;
65
66 err = 0;
67 if (!strncmp(val, "auto", 4))
68 *ip = SVC_POOL_AUTO;
69 else if (!strncmp(val, "global", 6))
70 *ip = SVC_POOL_GLOBAL;
71 else if (!strncmp(val, "percpu", 6))
72 *ip = SVC_POOL_PERCPU;
73 else if (!strncmp(val, "pernode", 7))
74 *ip = SVC_POOL_PERNODE;
75 else
76 err = -EINVAL;
77
78out:
79 mutex_unlock(&svc_pool_map_mutex);
80 return err;
81}
82
83static int
84param_get_pool_mode(char *buf, const struct kernel_param *kp)
85{
86 int *ip = (int *)kp->arg;
87
88 switch (*ip)
89 {
90 case SVC_POOL_AUTO:
91 return strlcpy(buf, "auto", 20);
92 case SVC_POOL_GLOBAL:
93 return strlcpy(buf, "global", 20);
94 case SVC_POOL_PERCPU:
95 return strlcpy(buf, "percpu", 20);
96 case SVC_POOL_PERNODE:
97 return strlcpy(buf, "pernode", 20);
98 default:
99 return sprintf(buf, "%d", *ip);
100 }
101}
102
103module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
104 &svc_pool_map.mode, 0644);
105
106/*
107 * Detect best pool mapping mode heuristically,
108 * according to the machine's topology.
109 */
110static int
111svc_pool_map_choose_mode(void)
112{
113 unsigned int node;
114
115 if (nr_online_nodes > 1) {
116 /*
117 * Actually have multiple NUMA nodes,
118 * so split pools on NUMA node boundaries
119 */
120 return SVC_POOL_PERNODE;
121 }
122
123 node = first_online_node;
124 if (nr_cpus_node(node) > 2) {
125 /*
126 * Non-trivial SMP, or CONFIG_NUMA on
127 * non-NUMA hardware, e.g. with a generic
128 * x86_64 kernel on Xeons. In this case we
129 * want to divide the pools on cpu boundaries.
130 */
131 return SVC_POOL_PERCPU;
132 }
133
134 /* default: one global pool */
135 return SVC_POOL_GLOBAL;
136}
137
138/*
139 * Allocate the to_pool[] and pool_to[] arrays.
140 * Returns 0 on success or an errno.
141 */
142static int
143svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
144{
145 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
146 if (!m->to_pool)
147 goto fail;
148 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
149 if (!m->pool_to)
150 goto fail_free;
151
152 return 0;
153
154fail_free:
155 kfree(m->to_pool);
156 m->to_pool = NULL;
157fail:
158 return -ENOMEM;
159}
160
161/*
162 * Initialise the pool map for SVC_POOL_PERCPU mode.
163 * Returns number of pools or <0 on error.
164 */
165static int
166svc_pool_map_init_percpu(struct svc_pool_map *m)
167{
168 unsigned int maxpools = nr_cpu_ids;
169 unsigned int pidx = 0;
170 unsigned int cpu;
171 int err;
172
173 err = svc_pool_map_alloc_arrays(m, maxpools);
174 if (err)
175 return err;
176
177 for_each_online_cpu(cpu) {
178 BUG_ON(pidx >= maxpools);
179 m->to_pool[cpu] = pidx;
180 m->pool_to[pidx] = cpu;
181 pidx++;
182 }
183 /* cpus brought online later all get mapped to pool0, sorry */
184
185 return pidx;
186};
187
188
189/*
190 * Initialise the pool map for SVC_POOL_PERNODE mode.
191 * Returns number of pools or <0 on error.
192 */
193static int
194svc_pool_map_init_pernode(struct svc_pool_map *m)
195{
196 unsigned int maxpools = nr_node_ids;
197 unsigned int pidx = 0;
198 unsigned int node;
199 int err;
200
201 err = svc_pool_map_alloc_arrays(m, maxpools);
202 if (err)
203 return err;
204
205 for_each_node_with_cpus(node) {
206 /* some architectures (e.g. SN2) have cpuless nodes */
207 BUG_ON(pidx > maxpools);
208 m->to_pool[node] = pidx;
209 m->pool_to[pidx] = node;
210 pidx++;
211 }
212 /* nodes brought online later all get mapped to pool0, sorry */
213
214 return pidx;
215}
216
217
218/*
219 * Add a reference to the global map of cpus to pools (and
220 * vice versa). Initialise the map if we're the first user.
221 * Returns the number of pools.
222 */
223unsigned int
224svc_pool_map_get(void)
225{
226 struct svc_pool_map *m = &svc_pool_map;
227 int npools = -1;
228
229 mutex_lock(&svc_pool_map_mutex);
230
231 if (m->count++) {
232 mutex_unlock(&svc_pool_map_mutex);
233 return m->npools;
234 }
235
236 if (m->mode == SVC_POOL_AUTO)
237 m->mode = svc_pool_map_choose_mode();
238
239 switch (m->mode) {
240 case SVC_POOL_PERCPU:
241 npools = svc_pool_map_init_percpu(m);
242 break;
243 case SVC_POOL_PERNODE:
244 npools = svc_pool_map_init_pernode(m);
245 break;
246 }
247
248 if (npools < 0) {
249 /* default, or memory allocation failure */
250 npools = 1;
251 m->mode = SVC_POOL_GLOBAL;
252 }
253 m->npools = npools;
254
255 mutex_unlock(&svc_pool_map_mutex);
256 return m->npools;
257}
258EXPORT_SYMBOL_GPL(svc_pool_map_get);
259
260/*
261 * Drop a reference to the global map of cpus to pools.
262 * When the last reference is dropped, the map data is
263 * freed; this allows the sysadmin to change the pool
264 * mode using the pool_mode module option without
265 * rebooting or re-loading sunrpc.ko.
266 */
267void
268svc_pool_map_put(void)
269{
270 struct svc_pool_map *m = &svc_pool_map;
271
272 mutex_lock(&svc_pool_map_mutex);
273
274 if (!--m->count) {
275 kfree(m->to_pool);
276 m->to_pool = NULL;
277 kfree(m->pool_to);
278 m->pool_to = NULL;
279 m->npools = 0;
280 }
281
282 mutex_unlock(&svc_pool_map_mutex);
283}
284EXPORT_SYMBOL_GPL(svc_pool_map_put);
285
286static int svc_pool_map_get_node(unsigned int pidx)
287{
288 const struct svc_pool_map *m = &svc_pool_map;
289
290 if (m->count) {
291 if (m->mode == SVC_POOL_PERCPU)
292 return cpu_to_node(m->pool_to[pidx]);
293 if (m->mode == SVC_POOL_PERNODE)
294 return m->pool_to[pidx];
295 }
296 return NUMA_NO_NODE;
297}
298/*
299 * Set the given thread's cpus_allowed mask so that it
300 * will only run on cpus in the given pool.
301 */
302static inline void
303svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
304{
305 struct svc_pool_map *m = &svc_pool_map;
306 unsigned int node = m->pool_to[pidx];
307
308 /*
309 * The caller checks for sv_nrpools > 1, which
310 * implies that we've been initialized.
311 */
312 WARN_ON_ONCE(m->count == 0);
313 if (m->count == 0)
314 return;
315
316 switch (m->mode) {
317 case SVC_POOL_PERCPU:
318 {
319 set_cpus_allowed_ptr(task, cpumask_of(node));
320 break;
321 }
322 case SVC_POOL_PERNODE:
323 {
324 set_cpus_allowed_ptr(task, cpumask_of_node(node));
325 break;
326 }
327 }
328}
329
330/*
331 * Use the mapping mode to choose a pool for a given CPU.
332 * Used when enqueueing an incoming RPC. Always returns
333 * a non-NULL pool pointer.
334 */
335struct svc_pool *
336svc_pool_for_cpu(struct svc_serv *serv, int cpu)
337{
338 struct svc_pool_map *m = &svc_pool_map;
339 unsigned int pidx = 0;
340
341 /*
342 * An uninitialised map happens in a pure client when
343 * lockd is brought up, so silently treat it the
344 * same as SVC_POOL_GLOBAL.
345 */
346 if (svc_serv_is_pooled(serv)) {
347 switch (m->mode) {
348 case SVC_POOL_PERCPU:
349 pidx = m->to_pool[cpu];
350 break;
351 case SVC_POOL_PERNODE:
352 pidx = m->to_pool[cpu_to_node(cpu)];
353 break;
354 }
355 }
356 return &serv->sv_pools[pidx % serv->sv_nrpools];
357}
358
359int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
360{
361 int err;
362
363 err = rpcb_create_local(net);
364 if (err)
365 return err;
366
367 /* Remove any stale portmap registrations */
368 svc_unregister(serv, net);
369 return 0;
370}
371EXPORT_SYMBOL_GPL(svc_rpcb_setup);
372
373void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
374{
375 svc_unregister(serv, net);
376 rpcb_put_local(net);
377}
378EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
379
380static int svc_uses_rpcbind(struct svc_serv *serv)
381{
382 struct svc_program *progp;
383 unsigned int i;
384
385 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
386 for (i = 0; i < progp->pg_nvers; i++) {
387 if (progp->pg_vers[i] == NULL)
388 continue;
389 if (!progp->pg_vers[i]->vs_hidden)
390 return 1;
391 }
392 }
393
394 return 0;
395}
396
397int svc_bind(struct svc_serv *serv, struct net *net)
398{
399 if (!svc_uses_rpcbind(serv))
400 return 0;
401 return svc_rpcb_setup(serv, net);
402}
403EXPORT_SYMBOL_GPL(svc_bind);
404
405#if defined(CONFIG_SUNRPC_BACKCHANNEL)
406static void
407__svc_init_bc(struct svc_serv *serv)
408{
409 INIT_LIST_HEAD(&serv->sv_cb_list);
410 spin_lock_init(&serv->sv_cb_lock);
411 init_waitqueue_head(&serv->sv_cb_waitq);
412}
413#else
414static void
415__svc_init_bc(struct svc_serv *serv)
416{
417}
418#endif
419
420/*
421 * Create an RPC service
422 */
423static struct svc_serv *
424__svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
425 const struct svc_serv_ops *ops)
426{
427 struct svc_serv *serv;
428 unsigned int vers;
429 unsigned int xdrsize;
430 unsigned int i;
431
432 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
433 return NULL;
434 serv->sv_name = prog->pg_name;
435 serv->sv_program = prog;
436 serv->sv_nrthreads = 1;
437 serv->sv_stats = prog->pg_stats;
438 if (bufsize > RPCSVC_MAXPAYLOAD)
439 bufsize = RPCSVC_MAXPAYLOAD;
440 serv->sv_max_payload = bufsize? bufsize : 4096;
441 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
442 serv->sv_ops = ops;
443 xdrsize = 0;
444 while (prog) {
445 prog->pg_lovers = prog->pg_nvers-1;
446 for (vers=0; vers<prog->pg_nvers ; vers++)
447 if (prog->pg_vers[vers]) {
448 prog->pg_hivers = vers;
449 if (prog->pg_lovers > vers)
450 prog->pg_lovers = vers;
451 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
452 xdrsize = prog->pg_vers[vers]->vs_xdrsize;
453 }
454 prog = prog->pg_next;
455 }
456 serv->sv_xdrsize = xdrsize;
457 INIT_LIST_HEAD(&serv->sv_tempsocks);
458 INIT_LIST_HEAD(&serv->sv_permsocks);
459 timer_setup(&serv->sv_temptimer, NULL, 0);
460 spin_lock_init(&serv->sv_lock);
461
462 __svc_init_bc(serv);
463
464 serv->sv_nrpools = npools;
465 serv->sv_pools =
466 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
467 GFP_KERNEL);
468 if (!serv->sv_pools) {
469 kfree(serv);
470 return NULL;
471 }
472
473 for (i = 0; i < serv->sv_nrpools; i++) {
474 struct svc_pool *pool = &serv->sv_pools[i];
475
476 dprintk("svc: initialising pool %u for %s\n",
477 i, serv->sv_name);
478
479 pool->sp_id = i;
480 INIT_LIST_HEAD(&pool->sp_sockets);
481 INIT_LIST_HEAD(&pool->sp_all_threads);
482 spin_lock_init(&pool->sp_lock);
483 }
484
485 return serv;
486}
487
488struct svc_serv *
489svc_create(struct svc_program *prog, unsigned int bufsize,
490 const struct svc_serv_ops *ops)
491{
492 return __svc_create(prog, bufsize, /*npools*/1, ops);
493}
494EXPORT_SYMBOL_GPL(svc_create);
495
496struct svc_serv *
497svc_create_pooled(struct svc_program *prog, unsigned int bufsize,
498 const struct svc_serv_ops *ops)
499{
500 struct svc_serv *serv;
501 unsigned int npools = svc_pool_map_get();
502
503 serv = __svc_create(prog, bufsize, npools, ops);
504 if (!serv)
505 goto out_err;
506 return serv;
507out_err:
508 svc_pool_map_put();
509 return NULL;
510}
511EXPORT_SYMBOL_GPL(svc_create_pooled);
512
513void svc_shutdown_net(struct svc_serv *serv, struct net *net)
514{
515 svc_close_net(serv, net);
516
517 if (serv->sv_ops->svo_shutdown)
518 serv->sv_ops->svo_shutdown(serv, net);
519}
520EXPORT_SYMBOL_GPL(svc_shutdown_net);
521
522/*
523 * Destroy an RPC service. Should be called with appropriate locking to
524 * protect the sv_nrthreads, sv_permsocks and sv_tempsocks.
525 */
526void
527svc_destroy(struct svc_serv *serv)
528{
529 dprintk("svc: svc_destroy(%s, %d)\n",
530 serv->sv_program->pg_name,
531 serv->sv_nrthreads);
532
533 if (serv->sv_nrthreads) {
534 if (--(serv->sv_nrthreads) != 0) {
535 svc_sock_update_bufs(serv);
536 return;
537 }
538 } else
539 printk("svc_destroy: no threads for serv=%p!\n", serv);
540
541 del_timer_sync(&serv->sv_temptimer);
542
543 /*
544 * The last user is gone and thus all sockets have to be destroyed to
545 * the point. Check this.
546 */
547 BUG_ON(!list_empty(&serv->sv_permsocks));
548 BUG_ON(!list_empty(&serv->sv_tempsocks));
549
550 cache_clean_deferred(serv);
551
552 if (svc_serv_is_pooled(serv))
553 svc_pool_map_put();
554
555 kfree(serv->sv_pools);
556 kfree(serv);
557}
558EXPORT_SYMBOL_GPL(svc_destroy);
559
560/*
561 * Allocate an RPC server's buffer space.
562 * We allocate pages and place them in rq_argpages.
563 */
564static int
565svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
566{
567 unsigned int pages, arghi;
568
569 /* bc_xprt uses fore channel allocated buffers */
570 if (svc_is_backchannel(rqstp))
571 return 1;
572
573 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
574 * We assume one is at most one page
575 */
576 arghi = 0;
577 WARN_ON_ONCE(pages > RPCSVC_MAXPAGES);
578 if (pages > RPCSVC_MAXPAGES)
579 pages = RPCSVC_MAXPAGES;
580 while (pages) {
581 struct page *p = alloc_pages_node(node, GFP_KERNEL, 0);
582 if (!p)
583 break;
584 rqstp->rq_pages[arghi++] = p;
585 pages--;
586 }
587 return pages == 0;
588}
589
590/*
591 * Release an RPC server buffer
592 */
593static void
594svc_release_buffer(struct svc_rqst *rqstp)
595{
596 unsigned int i;
597
598 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
599 if (rqstp->rq_pages[i])
600 put_page(rqstp->rq_pages[i]);
601}
602
603struct svc_rqst *
604svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node)
605{
606 struct svc_rqst *rqstp;
607
608 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
609 if (!rqstp)
610 return rqstp;
611
612 __set_bit(RQ_BUSY, &rqstp->rq_flags);
613 spin_lock_init(&rqstp->rq_lock);
614 rqstp->rq_server = serv;
615 rqstp->rq_pool = pool;
616
617 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
618 if (!rqstp->rq_argp)
619 goto out_enomem;
620
621 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
622 if (!rqstp->rq_resp)
623 goto out_enomem;
624
625 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
626 goto out_enomem;
627
628 return rqstp;
629out_enomem:
630 svc_rqst_free(rqstp);
631 return NULL;
632}
633EXPORT_SYMBOL_GPL(svc_rqst_alloc);
634
635struct svc_rqst *
636svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
637{
638 struct svc_rqst *rqstp;
639
640 rqstp = svc_rqst_alloc(serv, pool, node);
641 if (!rqstp)
642 return ERR_PTR(-ENOMEM);
643
644 serv->sv_nrthreads++;
645 spin_lock_bh(&pool->sp_lock);
646 pool->sp_nrthreads++;
647 list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads);
648 spin_unlock_bh(&pool->sp_lock);
649 return rqstp;
650}
651EXPORT_SYMBOL_GPL(svc_prepare_thread);
652
653/*
654 * Choose a pool in which to create a new thread, for svc_set_num_threads
655 */
656static inline struct svc_pool *
657choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
658{
659 if (pool != NULL)
660 return pool;
661
662 return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
663}
664
665/*
666 * Choose a thread to kill, for svc_set_num_threads
667 */
668static inline struct task_struct *
669choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
670{
671 unsigned int i;
672 struct task_struct *task = NULL;
673
674 if (pool != NULL) {
675 spin_lock_bh(&pool->sp_lock);
676 } else {
677 /* choose a pool in round-robin fashion */
678 for (i = 0; i < serv->sv_nrpools; i++) {
679 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
680 spin_lock_bh(&pool->sp_lock);
681 if (!list_empty(&pool->sp_all_threads))
682 goto found_pool;
683 spin_unlock_bh(&pool->sp_lock);
684 }
685 return NULL;
686 }
687
688found_pool:
689 if (!list_empty(&pool->sp_all_threads)) {
690 struct svc_rqst *rqstp;
691
692 /*
693 * Remove from the pool->sp_all_threads list
694 * so we don't try to kill it again.
695 */
696 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
697 set_bit(RQ_VICTIM, &rqstp->rq_flags);
698 list_del_rcu(&rqstp->rq_all);
699 task = rqstp->rq_task;
700 }
701 spin_unlock_bh(&pool->sp_lock);
702
703 return task;
704}
705
706/* create new threads */
707static int
708svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
709{
710 struct svc_rqst *rqstp;
711 struct task_struct *task;
712 struct svc_pool *chosen_pool;
713 unsigned int state = serv->sv_nrthreads-1;
714 int node;
715
716 do {
717 nrservs--;
718 chosen_pool = choose_pool(serv, pool, &state);
719
720 node = svc_pool_map_get_node(chosen_pool->sp_id);
721 rqstp = svc_prepare_thread(serv, chosen_pool, node);
722 if (IS_ERR(rqstp))
723 return PTR_ERR(rqstp);
724
725 __module_get(serv->sv_ops->svo_module);
726 task = kthread_create_on_node(serv->sv_ops->svo_function, rqstp,
727 node, "%s", serv->sv_name);
728 if (IS_ERR(task)) {
729 module_put(serv->sv_ops->svo_module);
730 svc_exit_thread(rqstp);
731 return PTR_ERR(task);
732 }
733
734 rqstp->rq_task = task;
735 if (serv->sv_nrpools > 1)
736 svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
737
738 svc_sock_update_bufs(serv);
739 wake_up_process(task);
740 } while (nrservs > 0);
741
742 return 0;
743}
744
745
746/* destroy old threads */
747static int
748svc_signal_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
749{
750 struct task_struct *task;
751 unsigned int state = serv->sv_nrthreads-1;
752
753 /* destroy old threads */
754 do {
755 task = choose_victim(serv, pool, &state);
756 if (task == NULL)
757 break;
758 send_sig(SIGINT, task, 1);
759 nrservs++;
760 } while (nrservs < 0);
761
762 return 0;
763}
764
765/*
766 * Create or destroy enough new threads to make the number
767 * of threads the given number. If `pool' is non-NULL, applies
768 * only to threads in that pool, otherwise round-robins between
769 * all pools. Caller must ensure that mutual exclusion between this and
770 * server startup or shutdown.
771 *
772 * Destroying threads relies on the service threads filling in
773 * rqstp->rq_task, which only the nfs ones do. Assumes the serv
774 * has been created using svc_create_pooled().
775 *
776 * Based on code that used to be in nfsd_svc() but tweaked
777 * to be pool-aware.
778 */
779int
780svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
781{
782 if (pool == NULL) {
783 /* The -1 assumes caller has done a svc_get() */
784 nrservs -= (serv->sv_nrthreads-1);
785 } else {
786 spin_lock_bh(&pool->sp_lock);
787 nrservs -= pool->sp_nrthreads;
788 spin_unlock_bh(&pool->sp_lock);
789 }
790
791 if (nrservs > 0)
792 return svc_start_kthreads(serv, pool, nrservs);
793 if (nrservs < 0)
794 return svc_signal_kthreads(serv, pool, nrservs);
795 return 0;
796}
797EXPORT_SYMBOL_GPL(svc_set_num_threads);
798
799/* destroy old threads */
800static int
801svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
802{
803 struct task_struct *task;
804 unsigned int state = serv->sv_nrthreads-1;
805
806 /* destroy old threads */
807 do {
808 task = choose_victim(serv, pool, &state);
809 if (task == NULL)
810 break;
811 kthread_stop(task);
812 nrservs++;
813 } while (nrservs < 0);
814 return 0;
815}
816
817int
818svc_set_num_threads_sync(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
819{
820 if (pool == NULL) {
821 /* The -1 assumes caller has done a svc_get() */
822 nrservs -= (serv->sv_nrthreads-1);
823 } else {
824 spin_lock_bh(&pool->sp_lock);
825 nrservs -= pool->sp_nrthreads;
826 spin_unlock_bh(&pool->sp_lock);
827 }
828
829 if (nrservs > 0)
830 return svc_start_kthreads(serv, pool, nrservs);
831 if (nrservs < 0)
832 return svc_stop_kthreads(serv, pool, nrservs);
833 return 0;
834}
835EXPORT_SYMBOL_GPL(svc_set_num_threads_sync);
836
837/*
838 * Called from a server thread as it's exiting. Caller must hold the "service
839 * mutex" for the service.
840 */
841void
842svc_rqst_free(struct svc_rqst *rqstp)
843{
844 svc_release_buffer(rqstp);
845 kfree(rqstp->rq_resp);
846 kfree(rqstp->rq_argp);
847 kfree(rqstp->rq_auth_data);
848 kfree_rcu(rqstp, rq_rcu_head);
849}
850EXPORT_SYMBOL_GPL(svc_rqst_free);
851
852void
853svc_exit_thread(struct svc_rqst *rqstp)
854{
855 struct svc_serv *serv = rqstp->rq_server;
856 struct svc_pool *pool = rqstp->rq_pool;
857
858 spin_lock_bh(&pool->sp_lock);
859 pool->sp_nrthreads--;
860 if (!test_and_set_bit(RQ_VICTIM, &rqstp->rq_flags))
861 list_del_rcu(&rqstp->rq_all);
862 spin_unlock_bh(&pool->sp_lock);
863
864 svc_rqst_free(rqstp);
865
866 /* Release the server */
867 if (serv)
868 svc_destroy(serv);
869}
870EXPORT_SYMBOL_GPL(svc_exit_thread);
871
872/*
873 * Register an "inet" protocol family netid with the local
874 * rpcbind daemon via an rpcbind v4 SET request.
875 *
876 * No netconfig infrastructure is available in the kernel, so
877 * we map IP_ protocol numbers to netids by hand.
878 *
879 * Returns zero on success; a negative errno value is returned
880 * if any error occurs.
881 */
882static int __svc_rpcb_register4(struct net *net, const u32 program,
883 const u32 version,
884 const unsigned short protocol,
885 const unsigned short port)
886{
887 const struct sockaddr_in sin = {
888 .sin_family = AF_INET,
889 .sin_addr.s_addr = htonl(INADDR_ANY),
890 .sin_port = htons(port),
891 };
892 const char *netid;
893 int error;
894
895 switch (protocol) {
896 case IPPROTO_UDP:
897 netid = RPCBIND_NETID_UDP;
898 break;
899 case IPPROTO_TCP:
900 netid = RPCBIND_NETID_TCP;
901 break;
902 default:
903 return -ENOPROTOOPT;
904 }
905
906 error = rpcb_v4_register(net, program, version,
907 (const struct sockaddr *)&sin, netid);
908
909 /*
910 * User space didn't support rpcbind v4, so retry this
911 * registration request with the legacy rpcbind v2 protocol.
912 */
913 if (error == -EPROTONOSUPPORT)
914 error = rpcb_register(net, program, version, protocol, port);
915
916 return error;
917}
918
919#if IS_ENABLED(CONFIG_IPV6)
920/*
921 * Register an "inet6" protocol family netid with the local
922 * rpcbind daemon via an rpcbind v4 SET request.
923 *
924 * No netconfig infrastructure is available in the kernel, so
925 * we map IP_ protocol numbers to netids by hand.
926 *
927 * Returns zero on success; a negative errno value is returned
928 * if any error occurs.
929 */
930static int __svc_rpcb_register6(struct net *net, const u32 program,
931 const u32 version,
932 const unsigned short protocol,
933 const unsigned short port)
934{
935 const struct sockaddr_in6 sin6 = {
936 .sin6_family = AF_INET6,
937 .sin6_addr = IN6ADDR_ANY_INIT,
938 .sin6_port = htons(port),
939 };
940 const char *netid;
941 int error;
942
943 switch (protocol) {
944 case IPPROTO_UDP:
945 netid = RPCBIND_NETID_UDP6;
946 break;
947 case IPPROTO_TCP:
948 netid = RPCBIND_NETID_TCP6;
949 break;
950 default:
951 return -ENOPROTOOPT;
952 }
953
954 error = rpcb_v4_register(net, program, version,
955 (const struct sockaddr *)&sin6, netid);
956
957 /*
958 * User space didn't support rpcbind version 4, so we won't
959 * use a PF_INET6 listener.
960 */
961 if (error == -EPROTONOSUPPORT)
962 error = -EAFNOSUPPORT;
963
964 return error;
965}
966#endif /* IS_ENABLED(CONFIG_IPV6) */
967
968/*
969 * Register a kernel RPC service via rpcbind version 4.
970 *
971 * Returns zero on success; a negative errno value is returned
972 * if any error occurs.
973 */
974static int __svc_register(struct net *net, const char *progname,
975 const u32 program, const u32 version,
976 const int family,
977 const unsigned short protocol,
978 const unsigned short port)
979{
980 int error = -EAFNOSUPPORT;
981
982 switch (family) {
983 case PF_INET:
984 error = __svc_rpcb_register4(net, program, version,
985 protocol, port);
986 break;
987#if IS_ENABLED(CONFIG_IPV6)
988 case PF_INET6:
989 error = __svc_rpcb_register6(net, program, version,
990 protocol, port);
991#endif
992 }
993
994 return error;
995}
996
997int svc_rpcbind_set_version(struct net *net,
998 const struct svc_program *progp,
999 u32 version, int family,
1000 unsigned short proto,
1001 unsigned short port)
1002{
1003 dprintk("svc: svc_register(%sv%d, %s, %u, %u)\n",
1004 progp->pg_name, version,
1005 proto == IPPROTO_UDP? "udp" : "tcp",
1006 port, family);
1007
1008 return __svc_register(net, progp->pg_name, progp->pg_prog,
1009 version, family, proto, port);
1010
1011}
1012EXPORT_SYMBOL_GPL(svc_rpcbind_set_version);
1013
1014int svc_generic_rpcbind_set(struct net *net,
1015 const struct svc_program *progp,
1016 u32 version, int family,
1017 unsigned short proto,
1018 unsigned short port)
1019{
1020 const struct svc_version *vers = progp->pg_vers[version];
1021 int error;
1022
1023 if (vers == NULL)
1024 return 0;
1025
1026 if (vers->vs_hidden) {
1027 dprintk("svc: svc_register(%sv%d, %s, %u, %u)"
1028 " (but not telling portmap)\n",
1029 progp->pg_name, version,
1030 proto == IPPROTO_UDP? "udp" : "tcp",
1031 port, family);
1032 return 0;
1033 }
1034
1035 /*
1036 * Don't register a UDP port if we need congestion
1037 * control.
1038 */
1039 if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP)
1040 return 0;
1041
1042 error = svc_rpcbind_set_version(net, progp, version,
1043 family, proto, port);
1044
1045 return (vers->vs_rpcb_optnl) ? 0 : error;
1046}
1047EXPORT_SYMBOL_GPL(svc_generic_rpcbind_set);
1048
1049/**
1050 * svc_register - register an RPC service with the local portmapper
1051 * @serv: svc_serv struct for the service to register
1052 * @net: net namespace for the service to register
1053 * @family: protocol family of service's listener socket
1054 * @proto: transport protocol number to advertise
1055 * @port: port to advertise
1056 *
1057 * Service is registered for any address in the passed-in protocol family
1058 */
1059int svc_register(const struct svc_serv *serv, struct net *net,
1060 const int family, const unsigned short proto,
1061 const unsigned short port)
1062{
1063 struct svc_program *progp;
1064 unsigned int i;
1065 int error = 0;
1066
1067 WARN_ON_ONCE(proto == 0 && port == 0);
1068 if (proto == 0 && port == 0)
1069 return -EINVAL;
1070
1071 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1072 for (i = 0; i < progp->pg_nvers; i++) {
1073
1074 error = progp->pg_rpcbind_set(net, progp, i,
1075 family, proto, port);
1076 if (error < 0) {
1077 printk(KERN_WARNING "svc: failed to register "
1078 "%sv%u RPC service (errno %d).\n",
1079 progp->pg_name, i, -error);
1080 break;
1081 }
1082 }
1083 }
1084
1085 return error;
1086}
1087
1088/*
1089 * If user space is running rpcbind, it should take the v4 UNSET
1090 * and clear everything for this [program, version]. If user space
1091 * is running portmap, it will reject the v4 UNSET, but won't have
1092 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient
1093 * in this case to clear all existing entries for [program, version].
1094 */
1095static void __svc_unregister(struct net *net, const u32 program, const u32 version,
1096 const char *progname)
1097{
1098 int error;
1099
1100 error = rpcb_v4_register(net, program, version, NULL, "");
1101
1102 /*
1103 * User space didn't support rpcbind v4, so retry this
1104 * request with the legacy rpcbind v2 protocol.
1105 */
1106 if (error == -EPROTONOSUPPORT)
1107 error = rpcb_register(net, program, version, 0, 0);
1108
1109 dprintk("svc: %s(%sv%u), error %d\n",
1110 __func__, progname, version, error);
1111}
1112
1113/*
1114 * All netids, bind addresses and ports registered for [program, version]
1115 * are removed from the local rpcbind database (if the service is not
1116 * hidden) to make way for a new instance of the service.
1117 *
1118 * The result of unregistration is reported via dprintk for those who want
1119 * verification of the result, but is otherwise not important.
1120 */
1121static void svc_unregister(const struct svc_serv *serv, struct net *net)
1122{
1123 struct svc_program *progp;
1124 unsigned long flags;
1125 unsigned int i;
1126
1127 clear_thread_flag(TIF_SIGPENDING);
1128
1129 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1130 for (i = 0; i < progp->pg_nvers; i++) {
1131 if (progp->pg_vers[i] == NULL)
1132 continue;
1133 if (progp->pg_vers[i]->vs_hidden)
1134 continue;
1135
1136 dprintk("svc: attempting to unregister %sv%u\n",
1137 progp->pg_name, i);
1138 __svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1139 }
1140 }
1141
1142 spin_lock_irqsave(¤t->sighand->siglock, flags);
1143 recalc_sigpending();
1144 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
1145}
1146
1147/*
1148 * dprintk the given error with the address of the client that caused it.
1149 */
1150#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
1151static __printf(2, 3)
1152void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1153{
1154 struct va_format vaf;
1155 va_list args;
1156 char buf[RPC_MAX_ADDRBUFLEN];
1157
1158 va_start(args, fmt);
1159
1160 vaf.fmt = fmt;
1161 vaf.va = &args;
1162
1163 dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1164
1165 va_end(args);
1166}
1167#else
1168static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {}
1169#endif
1170
1171__be32
1172svc_return_autherr(struct svc_rqst *rqstp, __be32 auth_err)
1173{
1174 set_bit(RQ_AUTHERR, &rqstp->rq_flags);
1175 return auth_err;
1176}
1177EXPORT_SYMBOL_GPL(svc_return_autherr);
1178
1179static __be32
1180svc_get_autherr(struct svc_rqst *rqstp, __be32 *statp)
1181{
1182 if (test_and_clear_bit(RQ_AUTHERR, &rqstp->rq_flags))
1183 return *statp;
1184 return rpc_auth_ok;
1185}
1186
1187static int
1188svc_generic_dispatch(struct svc_rqst *rqstp, __be32 *statp)
1189{
1190 struct kvec *argv = &rqstp->rq_arg.head[0];
1191 struct kvec *resv = &rqstp->rq_res.head[0];
1192 const struct svc_procedure *procp = rqstp->rq_procinfo;
1193
1194 /*
1195 * Decode arguments
1196 * XXX: why do we ignore the return value?
1197 */
1198 if (procp->pc_decode &&
1199 !procp->pc_decode(rqstp, argv->iov_base)) {
1200 *statp = rpc_garbage_args;
1201 return 1;
1202 }
1203
1204 *statp = procp->pc_func(rqstp);
1205
1206 if (*statp == rpc_drop_reply ||
1207 test_bit(RQ_DROPME, &rqstp->rq_flags))
1208 return 0;
1209
1210 if (test_bit(RQ_AUTHERR, &rqstp->rq_flags))
1211 return 1;
1212
1213 if (*statp != rpc_success)
1214 return 1;
1215
1216 /* Encode reply */
1217 if (procp->pc_encode &&
1218 !procp->pc_encode(rqstp, resv->iov_base + resv->iov_len)) {
1219 dprintk("svc: failed to encode reply\n");
1220 /* serv->sv_stats->rpcsystemerr++; */
1221 *statp = rpc_system_err;
1222 }
1223 return 1;
1224}
1225
1226__be32
1227svc_generic_init_request(struct svc_rqst *rqstp,
1228 const struct svc_program *progp,
1229 struct svc_process_info *ret)
1230{
1231 const struct svc_version *versp = NULL; /* compiler food */
1232 const struct svc_procedure *procp = NULL;
1233
1234 if (rqstp->rq_vers >= progp->pg_nvers )
1235 goto err_bad_vers;
1236 versp = progp->pg_vers[rqstp->rq_vers];
1237 if (!versp)
1238 goto err_bad_vers;
1239
1240 /*
1241 * Some protocol versions (namely NFSv4) require some form of
1242 * congestion control. (See RFC 7530 section 3.1 paragraph 2)
1243 * In other words, UDP is not allowed. We mark those when setting
1244 * up the svc_xprt, and verify that here.
1245 *
1246 * The spec is not very clear about what error should be returned
1247 * when someone tries to access a server that is listening on UDP
1248 * for lower versions. RPC_PROG_MISMATCH seems to be the closest
1249 * fit.
1250 */
1251 if (versp->vs_need_cong_ctrl && rqstp->rq_xprt &&
1252 !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags))
1253 goto err_bad_vers;
1254
1255 if (rqstp->rq_proc >= versp->vs_nproc)
1256 goto err_bad_proc;
1257 rqstp->rq_procinfo = procp = &versp->vs_proc[rqstp->rq_proc];
1258 if (!procp)
1259 goto err_bad_proc;
1260
1261 /* Initialize storage for argp and resp */
1262 memset(rqstp->rq_argp, 0, procp->pc_argsize);
1263 memset(rqstp->rq_resp, 0, procp->pc_ressize);
1264
1265 /* Bump per-procedure stats counter */
1266 versp->vs_count[rqstp->rq_proc]++;
1267
1268 ret->dispatch = versp->vs_dispatch;
1269 return rpc_success;
1270err_bad_vers:
1271 ret->mismatch.lovers = progp->pg_lovers;
1272 ret->mismatch.hivers = progp->pg_hivers;
1273 return rpc_prog_mismatch;
1274err_bad_proc:
1275 return rpc_proc_unavail;
1276}
1277EXPORT_SYMBOL_GPL(svc_generic_init_request);
1278
1279/*
1280 * Common routine for processing the RPC request.
1281 */
1282static int
1283svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv)
1284{
1285 struct svc_program *progp;
1286 const struct svc_procedure *procp = NULL;
1287 struct svc_serv *serv = rqstp->rq_server;
1288 struct svc_process_info process;
1289 __be32 *statp;
1290 u32 prog, vers;
1291 __be32 auth_stat, rpc_stat;
1292 int auth_res;
1293 __be32 *reply_statp;
1294
1295 rpc_stat = rpc_success;
1296
1297 if (argv->iov_len < 6*4)
1298 goto err_short_len;
1299
1300 /* Will be turned off by GSS integrity and privacy services */
1301 set_bit(RQ_SPLICE_OK, &rqstp->rq_flags);
1302 /* Will be turned off only when NFSv4 Sessions are used */
1303 set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags);
1304 clear_bit(RQ_DROPME, &rqstp->rq_flags);
1305
1306 svc_putu32(resv, rqstp->rq_xid);
1307
1308 vers = svc_getnl(argv);
1309
1310 /* First words of reply: */
1311 svc_putnl(resv, 1); /* REPLY */
1312
1313 if (vers != 2) /* RPC version number */
1314 goto err_bad_rpc;
1315
1316 /* Save position in case we later decide to reject: */
1317 reply_statp = resv->iov_base + resv->iov_len;
1318
1319 svc_putnl(resv, 0); /* ACCEPT */
1320
1321 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */
1322 rqstp->rq_vers = svc_getnl(argv); /* version number */
1323 rqstp->rq_proc = svc_getnl(argv); /* procedure number */
1324
1325 for (progp = serv->sv_program; progp; progp = progp->pg_next)
1326 if (prog == progp->pg_prog)
1327 break;
1328
1329 /*
1330 * Decode auth data, and add verifier to reply buffer.
1331 * We do this before anything else in order to get a decent
1332 * auth verifier.
1333 */
1334 auth_res = svc_authenticate(rqstp, &auth_stat);
1335 /* Also give the program a chance to reject this call: */
1336 if (auth_res == SVC_OK && progp) {
1337 auth_stat = rpc_autherr_badcred;
1338 auth_res = progp->pg_authenticate(rqstp);
1339 }
1340 switch (auth_res) {
1341 case SVC_OK:
1342 break;
1343 case SVC_GARBAGE:
1344 goto err_garbage;
1345 case SVC_SYSERR:
1346 rpc_stat = rpc_system_err;
1347 goto err_bad;
1348 case SVC_DENIED:
1349 goto err_bad_auth;
1350 case SVC_CLOSE:
1351 goto close;
1352 case SVC_DROP:
1353 goto dropit;
1354 case SVC_COMPLETE:
1355 goto sendit;
1356 }
1357
1358 if (progp == NULL)
1359 goto err_bad_prog;
1360
1361 rpc_stat = progp->pg_init_request(rqstp, progp, &process);
1362 switch (rpc_stat) {
1363 case rpc_success:
1364 break;
1365 case rpc_prog_unavail:
1366 goto err_bad_prog;
1367 case rpc_prog_mismatch:
1368 goto err_bad_vers;
1369 case rpc_proc_unavail:
1370 goto err_bad_proc;
1371 }
1372
1373 procp = rqstp->rq_procinfo;
1374 /* Should this check go into the dispatcher? */
1375 if (!procp || !procp->pc_func)
1376 goto err_bad_proc;
1377
1378 /* Syntactic check complete */
1379 serv->sv_stats->rpccnt++;
1380 trace_svc_process(rqstp, progp->pg_name);
1381
1382 /* Build the reply header. */
1383 statp = resv->iov_base +resv->iov_len;
1384 svc_putnl(resv, RPC_SUCCESS);
1385
1386 /* un-reserve some of the out-queue now that we have a
1387 * better idea of reply size
1388 */
1389 if (procp->pc_xdrressize)
1390 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1391
1392 /* Call the function that processes the request. */
1393 if (!process.dispatch) {
1394 if (!svc_generic_dispatch(rqstp, statp))
1395 goto release_dropit;
1396 if (*statp == rpc_garbage_args)
1397 goto err_garbage;
1398 auth_stat = svc_get_autherr(rqstp, statp);
1399 if (auth_stat != rpc_auth_ok)
1400 goto err_release_bad_auth;
1401 } else {
1402 dprintk("svc: calling dispatcher\n");
1403 if (!process.dispatch(rqstp, statp))
1404 goto release_dropit; /* Release reply info */
1405 }
1406
1407 /* Check RPC status result */
1408 if (*statp != rpc_success)
1409 resv->iov_len = ((void*)statp) - resv->iov_base + 4;
1410
1411 /* Release reply info */
1412 if (procp->pc_release)
1413 procp->pc_release(rqstp);
1414
1415 if (procp->pc_encode == NULL)
1416 goto dropit;
1417
1418 sendit:
1419 if (svc_authorise(rqstp))
1420 goto close;
1421 return 1; /* Caller can now send it */
1422
1423release_dropit:
1424 if (procp->pc_release)
1425 procp->pc_release(rqstp);
1426 dropit:
1427 svc_authorise(rqstp); /* doesn't hurt to call this twice */
1428 dprintk("svc: svc_process dropit\n");
1429 return 0;
1430
1431 close:
1432 if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1433 svc_close_xprt(rqstp->rq_xprt);
1434 dprintk("svc: svc_process close\n");
1435 return 0;
1436
1437err_short_len:
1438 svc_printk(rqstp, "short len %zd, dropping request\n",
1439 argv->iov_len);
1440 goto close;
1441
1442err_bad_rpc:
1443 serv->sv_stats->rpcbadfmt++;
1444 svc_putnl(resv, 1); /* REJECT */
1445 svc_putnl(resv, 0); /* RPC_MISMATCH */
1446 svc_putnl(resv, 2); /* Only RPCv2 supported */
1447 svc_putnl(resv, 2);
1448 goto sendit;
1449
1450err_release_bad_auth:
1451 if (procp->pc_release)
1452 procp->pc_release(rqstp);
1453err_bad_auth:
1454 dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat));
1455 serv->sv_stats->rpcbadauth++;
1456 /* Restore write pointer to location of accept status: */
1457 xdr_ressize_check(rqstp, reply_statp);
1458 svc_putnl(resv, 1); /* REJECT */
1459 svc_putnl(resv, 1); /* AUTH_ERROR */
1460 svc_putnl(resv, ntohl(auth_stat)); /* status */
1461 goto sendit;
1462
1463err_bad_prog:
1464 dprintk("svc: unknown program %d\n", prog);
1465 serv->sv_stats->rpcbadfmt++;
1466 svc_putnl(resv, RPC_PROG_UNAVAIL);
1467 goto sendit;
1468
1469err_bad_vers:
1470 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1471 rqstp->rq_vers, rqstp->rq_prog, progp->pg_name);
1472
1473 serv->sv_stats->rpcbadfmt++;
1474 svc_putnl(resv, RPC_PROG_MISMATCH);
1475 svc_putnl(resv, process.mismatch.lovers);
1476 svc_putnl(resv, process.mismatch.hivers);
1477 goto sendit;
1478
1479err_bad_proc:
1480 svc_printk(rqstp, "unknown procedure (%d)\n", rqstp->rq_proc);
1481
1482 serv->sv_stats->rpcbadfmt++;
1483 svc_putnl(resv, RPC_PROC_UNAVAIL);
1484 goto sendit;
1485
1486err_garbage:
1487 svc_printk(rqstp, "failed to decode args\n");
1488
1489 rpc_stat = rpc_garbage_args;
1490err_bad:
1491 serv->sv_stats->rpcbadfmt++;
1492 svc_putnl(resv, ntohl(rpc_stat));
1493 goto sendit;
1494}
1495
1496/*
1497 * Process the RPC request.
1498 */
1499int
1500svc_process(struct svc_rqst *rqstp)
1501{
1502 struct kvec *argv = &rqstp->rq_arg.head[0];
1503 struct kvec *resv = &rqstp->rq_res.head[0];
1504 struct svc_serv *serv = rqstp->rq_server;
1505 u32 dir;
1506
1507 /*
1508 * Setup response xdr_buf.
1509 * Initially it has just one page
1510 */
1511 rqstp->rq_next_page = &rqstp->rq_respages[1];
1512 resv->iov_base = page_address(rqstp->rq_respages[0]);
1513 resv->iov_len = 0;
1514 rqstp->rq_res.pages = rqstp->rq_respages + 1;
1515 rqstp->rq_res.len = 0;
1516 rqstp->rq_res.page_base = 0;
1517 rqstp->rq_res.page_len = 0;
1518 rqstp->rq_res.buflen = PAGE_SIZE;
1519 rqstp->rq_res.tail[0].iov_base = NULL;
1520 rqstp->rq_res.tail[0].iov_len = 0;
1521
1522 dir = svc_getnl(argv);
1523 if (dir != 0) {
1524 /* direction != CALL */
1525 svc_printk(rqstp, "bad direction %d, dropping request\n", dir);
1526 serv->sv_stats->rpcbadfmt++;
1527 goto out_drop;
1528 }
1529
1530 /* Reserve space for the record marker */
1531 if (rqstp->rq_prot == IPPROTO_TCP)
1532 svc_putnl(resv, 0);
1533
1534 /* Returns 1 for send, 0 for drop */
1535 if (likely(svc_process_common(rqstp, argv, resv)))
1536 return svc_send(rqstp);
1537
1538out_drop:
1539 svc_drop(rqstp);
1540 return 0;
1541}
1542EXPORT_SYMBOL_GPL(svc_process);
1543
1544#if defined(CONFIG_SUNRPC_BACKCHANNEL)
1545/*
1546 * Process a backchannel RPC request that arrived over an existing
1547 * outbound connection
1548 */
1549int
1550bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req,
1551 struct svc_rqst *rqstp)
1552{
1553 struct kvec *argv = &rqstp->rq_arg.head[0];
1554 struct kvec *resv = &rqstp->rq_res.head[0];
1555 struct rpc_task *task;
1556 int proc_error;
1557 int error;
1558
1559 dprintk("svc: %s(%p)\n", __func__, req);
1560
1561 /* Build the svc_rqst used by the common processing routine */
1562 rqstp->rq_xid = req->rq_xid;
1563 rqstp->rq_prot = req->rq_xprt->prot;
1564 rqstp->rq_server = serv;
1565 rqstp->rq_bc_net = req->rq_xprt->xprt_net;
1566
1567 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1568 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1569 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1570 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1571
1572 /* Adjust the argument buffer length */
1573 rqstp->rq_arg.len = req->rq_private_buf.len;
1574 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1575 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1576 rqstp->rq_arg.page_len = 0;
1577 } else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len +
1578 rqstp->rq_arg.page_len)
1579 rqstp->rq_arg.page_len = rqstp->rq_arg.len -
1580 rqstp->rq_arg.head[0].iov_len;
1581 else
1582 rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len +
1583 rqstp->rq_arg.page_len;
1584
1585 /* reset result send buffer "put" position */
1586 resv->iov_len = 0;
1587
1588 /*
1589 * Skip the next two words because they've already been
1590 * processed in the transport
1591 */
1592 svc_getu32(argv); /* XID */
1593 svc_getnl(argv); /* CALLDIR */
1594
1595 /* Parse and execute the bc call */
1596 proc_error = svc_process_common(rqstp, argv, resv);
1597
1598 atomic_dec(&req->rq_xprt->bc_slot_count);
1599 if (!proc_error) {
1600 /* Processing error: drop the request */
1601 xprt_free_bc_request(req);
1602 error = -EINVAL;
1603 goto out;
1604 }
1605 /* Finally, send the reply synchronously */
1606 memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf));
1607 task = rpc_run_bc_task(req);
1608 if (IS_ERR(task)) {
1609 error = PTR_ERR(task);
1610 goto out;
1611 }
1612
1613 WARN_ON_ONCE(atomic_read(&task->tk_count) != 1);
1614 error = task->tk_status;
1615 rpc_put_task(task);
1616
1617out:
1618 dprintk("svc: %s(), error=%d\n", __func__, error);
1619 return error;
1620}
1621EXPORT_SYMBOL_GPL(bc_svc_process);
1622#endif /* CONFIG_SUNRPC_BACKCHANNEL */
1623
1624/*
1625 * Return (transport-specific) limit on the rpc payload.
1626 */
1627u32 svc_max_payload(const struct svc_rqst *rqstp)
1628{
1629 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1630
1631 if (rqstp->rq_server->sv_max_payload < max)
1632 max = rqstp->rq_server->sv_max_payload;
1633 return max;
1634}
1635EXPORT_SYMBOL_GPL(svc_max_payload);
1636
1637/**
1638 * svc_fill_write_vector - Construct data argument for VFS write call
1639 * @rqstp: svc_rqst to operate on
1640 * @pages: list of pages containing data payload
1641 * @first: buffer containing first section of write payload
1642 * @total: total number of bytes of write payload
1643 *
1644 * Fills in rqstp::rq_vec, and returns the number of elements.
1645 */
1646unsigned int svc_fill_write_vector(struct svc_rqst *rqstp, struct page **pages,
1647 struct kvec *first, size_t total)
1648{
1649 struct kvec *vec = rqstp->rq_vec;
1650 unsigned int i;
1651
1652 /* Some types of transport can present the write payload
1653 * entirely in rq_arg.pages. In this case, @first is empty.
1654 */
1655 i = 0;
1656 if (first->iov_len) {
1657 vec[i].iov_base = first->iov_base;
1658 vec[i].iov_len = min_t(size_t, total, first->iov_len);
1659 total -= vec[i].iov_len;
1660 ++i;
1661 }
1662
1663 while (total) {
1664 vec[i].iov_base = page_address(*pages);
1665 vec[i].iov_len = min_t(size_t, total, PAGE_SIZE);
1666 total -= vec[i].iov_len;
1667 ++i;
1668 ++pages;
1669 }
1670
1671 WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec));
1672 return i;
1673}
1674EXPORT_SYMBOL_GPL(svc_fill_write_vector);
1675
1676/**
1677 * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call
1678 * @rqstp: svc_rqst to operate on
1679 * @first: buffer containing first section of pathname
1680 * @p: buffer containing remaining section of pathname
1681 * @total: total length of the pathname argument
1682 *
1683 * The VFS symlink API demands a NUL-terminated pathname in mapped memory.
1684 * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free
1685 * the returned string.
1686 */
1687char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first,
1688 void *p, size_t total)
1689{
1690 size_t len, remaining;
1691 char *result, *dst;
1692
1693 result = kmalloc(total + 1, GFP_KERNEL);
1694 if (!result)
1695 return ERR_PTR(-ESERVERFAULT);
1696
1697 dst = result;
1698 remaining = total;
1699
1700 len = min_t(size_t, total, first->iov_len);
1701 if (len) {
1702 memcpy(dst, first->iov_base, len);
1703 dst += len;
1704 remaining -= len;
1705 }
1706
1707 if (remaining) {
1708 len = min_t(size_t, remaining, PAGE_SIZE);
1709 memcpy(dst, p, len);
1710 dst += len;
1711 }
1712
1713 *dst = '\0';
1714
1715 /* Sanity check: Linux doesn't allow the pathname argument to
1716 * contain a NUL byte.
1717 */
1718 if (strlen(result) != total) {
1719 kfree(result);
1720 return ERR_PTR(-EINVAL);
1721 }
1722 return result;
1723}
1724EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/net/sunrpc/svc.c
4 *
5 * High-level RPC service routines
6 *
7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
8 *
9 * Multiple threads pools and NUMAisation
10 * Copyright (c) 2006 Silicon Graphics, Inc.
11 * by Greg Banks <gnb@melbourne.sgi.com>
12 */
13
14#include <linux/linkage.h>
15#include <linux/sched/signal.h>
16#include <linux/errno.h>
17#include <linux/net.h>
18#include <linux/in.h>
19#include <linux/mm.h>
20#include <linux/interrupt.h>
21#include <linux/module.h>
22#include <linux/kthread.h>
23#include <linux/slab.h>
24
25#include <linux/sunrpc/types.h>
26#include <linux/sunrpc/xdr.h>
27#include <linux/sunrpc/stats.h>
28#include <linux/sunrpc/svcsock.h>
29#include <linux/sunrpc/clnt.h>
30#include <linux/sunrpc/bc_xprt.h>
31
32#include <trace/events/sunrpc.h>
33
34#include "fail.h"
35
36#define RPCDBG_FACILITY RPCDBG_SVCDSP
37
38static void svc_unregister(const struct svc_serv *serv, struct net *net);
39
40#define SVC_POOL_DEFAULT SVC_POOL_GLOBAL
41
42/*
43 * Mode for mapping cpus to pools.
44 */
45enum {
46 SVC_POOL_AUTO = -1, /* choose one of the others */
47 SVC_POOL_GLOBAL, /* no mapping, just a single global pool
48 * (legacy & UP mode) */
49 SVC_POOL_PERCPU, /* one pool per cpu */
50 SVC_POOL_PERNODE /* one pool per numa node */
51};
52
53/*
54 * Structure for mapping cpus to pools and vice versa.
55 * Setup once during sunrpc initialisation.
56 */
57
58struct svc_pool_map {
59 int count; /* How many svc_servs use us */
60 int mode; /* Note: int not enum to avoid
61 * warnings about "enumeration value
62 * not handled in switch" */
63 unsigned int npools;
64 unsigned int *pool_to; /* maps pool id to cpu or node */
65 unsigned int *to_pool; /* maps cpu or node to pool id */
66};
67
68static struct svc_pool_map svc_pool_map = {
69 .mode = SVC_POOL_DEFAULT
70};
71
72static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
73
74static int
75param_set_pool_mode(const char *val, const struct kernel_param *kp)
76{
77 int *ip = (int *)kp->arg;
78 struct svc_pool_map *m = &svc_pool_map;
79 int err;
80
81 mutex_lock(&svc_pool_map_mutex);
82
83 err = -EBUSY;
84 if (m->count)
85 goto out;
86
87 err = 0;
88 if (!strncmp(val, "auto", 4))
89 *ip = SVC_POOL_AUTO;
90 else if (!strncmp(val, "global", 6))
91 *ip = SVC_POOL_GLOBAL;
92 else if (!strncmp(val, "percpu", 6))
93 *ip = SVC_POOL_PERCPU;
94 else if (!strncmp(val, "pernode", 7))
95 *ip = SVC_POOL_PERNODE;
96 else
97 err = -EINVAL;
98
99out:
100 mutex_unlock(&svc_pool_map_mutex);
101 return err;
102}
103
104static int
105param_get_pool_mode(char *buf, const struct kernel_param *kp)
106{
107 int *ip = (int *)kp->arg;
108
109 switch (*ip)
110 {
111 case SVC_POOL_AUTO:
112 return sysfs_emit(buf, "auto\n");
113 case SVC_POOL_GLOBAL:
114 return sysfs_emit(buf, "global\n");
115 case SVC_POOL_PERCPU:
116 return sysfs_emit(buf, "percpu\n");
117 case SVC_POOL_PERNODE:
118 return sysfs_emit(buf, "pernode\n");
119 default:
120 return sysfs_emit(buf, "%d\n", *ip);
121 }
122}
123
124module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
125 &svc_pool_map.mode, 0644);
126
127/*
128 * Detect best pool mapping mode heuristically,
129 * according to the machine's topology.
130 */
131static int
132svc_pool_map_choose_mode(void)
133{
134 unsigned int node;
135
136 if (nr_online_nodes > 1) {
137 /*
138 * Actually have multiple NUMA nodes,
139 * so split pools on NUMA node boundaries
140 */
141 return SVC_POOL_PERNODE;
142 }
143
144 node = first_online_node;
145 if (nr_cpus_node(node) > 2) {
146 /*
147 * Non-trivial SMP, or CONFIG_NUMA on
148 * non-NUMA hardware, e.g. with a generic
149 * x86_64 kernel on Xeons. In this case we
150 * want to divide the pools on cpu boundaries.
151 */
152 return SVC_POOL_PERCPU;
153 }
154
155 /* default: one global pool */
156 return SVC_POOL_GLOBAL;
157}
158
159/*
160 * Allocate the to_pool[] and pool_to[] arrays.
161 * Returns 0 on success or an errno.
162 */
163static int
164svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
165{
166 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
167 if (!m->to_pool)
168 goto fail;
169 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
170 if (!m->pool_to)
171 goto fail_free;
172
173 return 0;
174
175fail_free:
176 kfree(m->to_pool);
177 m->to_pool = NULL;
178fail:
179 return -ENOMEM;
180}
181
182/*
183 * Initialise the pool map for SVC_POOL_PERCPU mode.
184 * Returns number of pools or <0 on error.
185 */
186static int
187svc_pool_map_init_percpu(struct svc_pool_map *m)
188{
189 unsigned int maxpools = nr_cpu_ids;
190 unsigned int pidx = 0;
191 unsigned int cpu;
192 int err;
193
194 err = svc_pool_map_alloc_arrays(m, maxpools);
195 if (err)
196 return err;
197
198 for_each_online_cpu(cpu) {
199 BUG_ON(pidx >= maxpools);
200 m->to_pool[cpu] = pidx;
201 m->pool_to[pidx] = cpu;
202 pidx++;
203 }
204 /* cpus brought online later all get mapped to pool0, sorry */
205
206 return pidx;
207};
208
209
210/*
211 * Initialise the pool map for SVC_POOL_PERNODE mode.
212 * Returns number of pools or <0 on error.
213 */
214static int
215svc_pool_map_init_pernode(struct svc_pool_map *m)
216{
217 unsigned int maxpools = nr_node_ids;
218 unsigned int pidx = 0;
219 unsigned int node;
220 int err;
221
222 err = svc_pool_map_alloc_arrays(m, maxpools);
223 if (err)
224 return err;
225
226 for_each_node_with_cpus(node) {
227 /* some architectures (e.g. SN2) have cpuless nodes */
228 BUG_ON(pidx > maxpools);
229 m->to_pool[node] = pidx;
230 m->pool_to[pidx] = node;
231 pidx++;
232 }
233 /* nodes brought online later all get mapped to pool0, sorry */
234
235 return pidx;
236}
237
238
239/*
240 * Add a reference to the global map of cpus to pools (and
241 * vice versa) if pools are in use.
242 * Initialise the map if we're the first user.
243 * Returns the number of pools. If this is '1', no reference
244 * was taken.
245 */
246static unsigned int
247svc_pool_map_get(void)
248{
249 struct svc_pool_map *m = &svc_pool_map;
250 int npools = -1;
251
252 mutex_lock(&svc_pool_map_mutex);
253
254 if (m->count++) {
255 mutex_unlock(&svc_pool_map_mutex);
256 WARN_ON_ONCE(m->npools <= 1);
257 return m->npools;
258 }
259
260 if (m->mode == SVC_POOL_AUTO)
261 m->mode = svc_pool_map_choose_mode();
262
263 switch (m->mode) {
264 case SVC_POOL_PERCPU:
265 npools = svc_pool_map_init_percpu(m);
266 break;
267 case SVC_POOL_PERNODE:
268 npools = svc_pool_map_init_pernode(m);
269 break;
270 }
271
272 if (npools <= 0) {
273 /* default, or memory allocation failure */
274 npools = 1;
275 m->mode = SVC_POOL_GLOBAL;
276 }
277 m->npools = npools;
278
279 if (npools == 1)
280 /* service is unpooled, so doesn't hold a reference */
281 m->count--;
282
283 mutex_unlock(&svc_pool_map_mutex);
284 return npools;
285}
286
287/*
288 * Drop a reference to the global map of cpus to pools, if
289 * pools were in use, i.e. if npools > 1.
290 * When the last reference is dropped, the map data is
291 * freed; this allows the sysadmin to change the pool
292 * mode using the pool_mode module option without
293 * rebooting or re-loading sunrpc.ko.
294 */
295static void
296svc_pool_map_put(int npools)
297{
298 struct svc_pool_map *m = &svc_pool_map;
299
300 if (npools <= 1)
301 return;
302 mutex_lock(&svc_pool_map_mutex);
303
304 if (!--m->count) {
305 kfree(m->to_pool);
306 m->to_pool = NULL;
307 kfree(m->pool_to);
308 m->pool_to = NULL;
309 m->npools = 0;
310 }
311
312 mutex_unlock(&svc_pool_map_mutex);
313}
314
315static int svc_pool_map_get_node(unsigned int pidx)
316{
317 const struct svc_pool_map *m = &svc_pool_map;
318
319 if (m->count) {
320 if (m->mode == SVC_POOL_PERCPU)
321 return cpu_to_node(m->pool_to[pidx]);
322 if (m->mode == SVC_POOL_PERNODE)
323 return m->pool_to[pidx];
324 }
325 return NUMA_NO_NODE;
326}
327/*
328 * Set the given thread's cpus_allowed mask so that it
329 * will only run on cpus in the given pool.
330 */
331static inline void
332svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
333{
334 struct svc_pool_map *m = &svc_pool_map;
335 unsigned int node = m->pool_to[pidx];
336
337 /*
338 * The caller checks for sv_nrpools > 1, which
339 * implies that we've been initialized.
340 */
341 WARN_ON_ONCE(m->count == 0);
342 if (m->count == 0)
343 return;
344
345 switch (m->mode) {
346 case SVC_POOL_PERCPU:
347 {
348 set_cpus_allowed_ptr(task, cpumask_of(node));
349 break;
350 }
351 case SVC_POOL_PERNODE:
352 {
353 set_cpus_allowed_ptr(task, cpumask_of_node(node));
354 break;
355 }
356 }
357}
358
359/**
360 * svc_pool_for_cpu - Select pool to run a thread on this cpu
361 * @serv: An RPC service
362 *
363 * Use the active CPU and the svc_pool_map's mode setting to
364 * select the svc thread pool to use. Once initialized, the
365 * svc_pool_map does not change.
366 *
367 * Return value:
368 * A pointer to an svc_pool
369 */
370struct svc_pool *svc_pool_for_cpu(struct svc_serv *serv)
371{
372 struct svc_pool_map *m = &svc_pool_map;
373 int cpu = raw_smp_processor_id();
374 unsigned int pidx = 0;
375
376 if (serv->sv_nrpools <= 1)
377 return serv->sv_pools;
378
379 switch (m->mode) {
380 case SVC_POOL_PERCPU:
381 pidx = m->to_pool[cpu];
382 break;
383 case SVC_POOL_PERNODE:
384 pidx = m->to_pool[cpu_to_node(cpu)];
385 break;
386 }
387
388 return &serv->sv_pools[pidx % serv->sv_nrpools];
389}
390
391int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
392{
393 int err;
394
395 err = rpcb_create_local(net);
396 if (err)
397 return err;
398
399 /* Remove any stale portmap registrations */
400 svc_unregister(serv, net);
401 return 0;
402}
403EXPORT_SYMBOL_GPL(svc_rpcb_setup);
404
405void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
406{
407 svc_unregister(serv, net);
408 rpcb_put_local(net);
409}
410EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
411
412static int svc_uses_rpcbind(struct svc_serv *serv)
413{
414 struct svc_program *progp;
415 unsigned int i;
416
417 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
418 for (i = 0; i < progp->pg_nvers; i++) {
419 if (progp->pg_vers[i] == NULL)
420 continue;
421 if (!progp->pg_vers[i]->vs_hidden)
422 return 1;
423 }
424 }
425
426 return 0;
427}
428
429int svc_bind(struct svc_serv *serv, struct net *net)
430{
431 if (!svc_uses_rpcbind(serv))
432 return 0;
433 return svc_rpcb_setup(serv, net);
434}
435EXPORT_SYMBOL_GPL(svc_bind);
436
437#if defined(CONFIG_SUNRPC_BACKCHANNEL)
438static void
439__svc_init_bc(struct svc_serv *serv)
440{
441 lwq_init(&serv->sv_cb_list);
442}
443#else
444static void
445__svc_init_bc(struct svc_serv *serv)
446{
447}
448#endif
449
450/*
451 * Create an RPC service
452 */
453static struct svc_serv *
454__svc_create(struct svc_program *prog, struct svc_stat *stats,
455 unsigned int bufsize, int npools, int (*threadfn)(void *data))
456{
457 struct svc_serv *serv;
458 unsigned int vers;
459 unsigned int xdrsize;
460 unsigned int i;
461
462 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
463 return NULL;
464 serv->sv_name = prog->pg_name;
465 serv->sv_program = prog;
466 serv->sv_stats = stats;
467 if (bufsize > RPCSVC_MAXPAYLOAD)
468 bufsize = RPCSVC_MAXPAYLOAD;
469 serv->sv_max_payload = bufsize? bufsize : 4096;
470 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
471 serv->sv_threadfn = threadfn;
472 xdrsize = 0;
473 while (prog) {
474 prog->pg_lovers = prog->pg_nvers-1;
475 for (vers=0; vers<prog->pg_nvers ; vers++)
476 if (prog->pg_vers[vers]) {
477 prog->pg_hivers = vers;
478 if (prog->pg_lovers > vers)
479 prog->pg_lovers = vers;
480 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
481 xdrsize = prog->pg_vers[vers]->vs_xdrsize;
482 }
483 prog = prog->pg_next;
484 }
485 serv->sv_xdrsize = xdrsize;
486 INIT_LIST_HEAD(&serv->sv_tempsocks);
487 INIT_LIST_HEAD(&serv->sv_permsocks);
488 timer_setup(&serv->sv_temptimer, NULL, 0);
489 spin_lock_init(&serv->sv_lock);
490
491 __svc_init_bc(serv);
492
493 serv->sv_nrpools = npools;
494 serv->sv_pools =
495 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
496 GFP_KERNEL);
497 if (!serv->sv_pools) {
498 kfree(serv);
499 return NULL;
500 }
501
502 for (i = 0; i < serv->sv_nrpools; i++) {
503 struct svc_pool *pool = &serv->sv_pools[i];
504
505 dprintk("svc: initialising pool %u for %s\n",
506 i, serv->sv_name);
507
508 pool->sp_id = i;
509 lwq_init(&pool->sp_xprts);
510 INIT_LIST_HEAD(&pool->sp_all_threads);
511 init_llist_head(&pool->sp_idle_threads);
512
513 percpu_counter_init(&pool->sp_messages_arrived, 0, GFP_KERNEL);
514 percpu_counter_init(&pool->sp_sockets_queued, 0, GFP_KERNEL);
515 percpu_counter_init(&pool->sp_threads_woken, 0, GFP_KERNEL);
516 }
517
518 return serv;
519}
520
521/**
522 * svc_create - Create an RPC service
523 * @prog: the RPC program the new service will handle
524 * @bufsize: maximum message size for @prog
525 * @threadfn: a function to service RPC requests for @prog
526 *
527 * Returns an instantiated struct svc_serv object or NULL.
528 */
529struct svc_serv *svc_create(struct svc_program *prog, unsigned int bufsize,
530 int (*threadfn)(void *data))
531{
532 return __svc_create(prog, NULL, bufsize, 1, threadfn);
533}
534EXPORT_SYMBOL_GPL(svc_create);
535
536/**
537 * svc_create_pooled - Create an RPC service with pooled threads
538 * @prog: the RPC program the new service will handle
539 * @stats: the stats struct if desired
540 * @bufsize: maximum message size for @prog
541 * @threadfn: a function to service RPC requests for @prog
542 *
543 * Returns an instantiated struct svc_serv object or NULL.
544 */
545struct svc_serv *svc_create_pooled(struct svc_program *prog,
546 struct svc_stat *stats,
547 unsigned int bufsize,
548 int (*threadfn)(void *data))
549{
550 struct svc_serv *serv;
551 unsigned int npools = svc_pool_map_get();
552
553 serv = __svc_create(prog, stats, bufsize, npools, threadfn);
554 if (!serv)
555 goto out_err;
556 return serv;
557out_err:
558 svc_pool_map_put(npools);
559 return NULL;
560}
561EXPORT_SYMBOL_GPL(svc_create_pooled);
562
563/*
564 * Destroy an RPC service. Should be called with appropriate locking to
565 * protect sv_permsocks and sv_tempsocks.
566 */
567void
568svc_destroy(struct svc_serv **servp)
569{
570 struct svc_serv *serv = *servp;
571 unsigned int i;
572
573 *servp = NULL;
574
575 dprintk("svc: svc_destroy(%s)\n", serv->sv_program->pg_name);
576 timer_shutdown_sync(&serv->sv_temptimer);
577
578 /*
579 * Remaining transports at this point are not expected.
580 */
581 WARN_ONCE(!list_empty(&serv->sv_permsocks),
582 "SVC: permsocks remain for %s\n", serv->sv_program->pg_name);
583 WARN_ONCE(!list_empty(&serv->sv_tempsocks),
584 "SVC: tempsocks remain for %s\n", serv->sv_program->pg_name);
585
586 cache_clean_deferred(serv);
587
588 svc_pool_map_put(serv->sv_nrpools);
589
590 for (i = 0; i < serv->sv_nrpools; i++) {
591 struct svc_pool *pool = &serv->sv_pools[i];
592
593 percpu_counter_destroy(&pool->sp_messages_arrived);
594 percpu_counter_destroy(&pool->sp_sockets_queued);
595 percpu_counter_destroy(&pool->sp_threads_woken);
596 }
597 kfree(serv->sv_pools);
598 kfree(serv);
599}
600EXPORT_SYMBOL_GPL(svc_destroy);
601
602static bool
603svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
604{
605 unsigned long pages, ret;
606
607 /* bc_xprt uses fore channel allocated buffers */
608 if (svc_is_backchannel(rqstp))
609 return true;
610
611 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
612 * We assume one is at most one page
613 */
614 WARN_ON_ONCE(pages > RPCSVC_MAXPAGES);
615 if (pages > RPCSVC_MAXPAGES)
616 pages = RPCSVC_MAXPAGES;
617
618 ret = alloc_pages_bulk_array_node(GFP_KERNEL, node, pages,
619 rqstp->rq_pages);
620 return ret == pages;
621}
622
623/*
624 * Release an RPC server buffer
625 */
626static void
627svc_release_buffer(struct svc_rqst *rqstp)
628{
629 unsigned int i;
630
631 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
632 if (rqstp->rq_pages[i])
633 put_page(rqstp->rq_pages[i]);
634}
635
636struct svc_rqst *
637svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node)
638{
639 struct svc_rqst *rqstp;
640
641 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
642 if (!rqstp)
643 return rqstp;
644
645 folio_batch_init(&rqstp->rq_fbatch);
646
647 rqstp->rq_server = serv;
648 rqstp->rq_pool = pool;
649
650 rqstp->rq_scratch_page = alloc_pages_node(node, GFP_KERNEL, 0);
651 if (!rqstp->rq_scratch_page)
652 goto out_enomem;
653
654 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
655 if (!rqstp->rq_argp)
656 goto out_enomem;
657
658 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
659 if (!rqstp->rq_resp)
660 goto out_enomem;
661
662 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
663 goto out_enomem;
664
665 return rqstp;
666out_enomem:
667 svc_rqst_free(rqstp);
668 return NULL;
669}
670EXPORT_SYMBOL_GPL(svc_rqst_alloc);
671
672static struct svc_rqst *
673svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
674{
675 struct svc_rqst *rqstp;
676
677 rqstp = svc_rqst_alloc(serv, pool, node);
678 if (!rqstp)
679 return ERR_PTR(-ENOMEM);
680
681 spin_lock_bh(&serv->sv_lock);
682 serv->sv_nrthreads += 1;
683 spin_unlock_bh(&serv->sv_lock);
684
685 atomic_inc(&pool->sp_nrthreads);
686
687 /* Protected by whatever lock the service uses when calling
688 * svc_set_num_threads()
689 */
690 list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads);
691
692 return rqstp;
693}
694
695/**
696 * svc_pool_wake_idle_thread - Awaken an idle thread in @pool
697 * @pool: service thread pool
698 *
699 * Can be called from soft IRQ or process context. Finding an idle
700 * service thread and marking it BUSY is atomic with respect to
701 * other calls to svc_pool_wake_idle_thread().
702 *
703 */
704void svc_pool_wake_idle_thread(struct svc_pool *pool)
705{
706 struct svc_rqst *rqstp;
707 struct llist_node *ln;
708
709 rcu_read_lock();
710 ln = READ_ONCE(pool->sp_idle_threads.first);
711 if (ln) {
712 rqstp = llist_entry(ln, struct svc_rqst, rq_idle);
713 WRITE_ONCE(rqstp->rq_qtime, ktime_get());
714 if (!task_is_running(rqstp->rq_task)) {
715 wake_up_process(rqstp->rq_task);
716 trace_svc_wake_up(rqstp->rq_task->pid);
717 percpu_counter_inc(&pool->sp_threads_woken);
718 }
719 rcu_read_unlock();
720 return;
721 }
722 rcu_read_unlock();
723
724}
725EXPORT_SYMBOL_GPL(svc_pool_wake_idle_thread);
726
727static struct svc_pool *
728svc_pool_next(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
729{
730 return pool ? pool : &serv->sv_pools[(*state)++ % serv->sv_nrpools];
731}
732
733static struct svc_pool *
734svc_pool_victim(struct svc_serv *serv, struct svc_pool *target_pool,
735 unsigned int *state)
736{
737 struct svc_pool *pool;
738 unsigned int i;
739
740retry:
741 pool = target_pool;
742
743 if (pool != NULL) {
744 if (atomic_inc_not_zero(&pool->sp_nrthreads))
745 goto found_pool;
746 return NULL;
747 } else {
748 for (i = 0; i < serv->sv_nrpools; i++) {
749 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
750 if (atomic_inc_not_zero(&pool->sp_nrthreads))
751 goto found_pool;
752 }
753 return NULL;
754 }
755
756found_pool:
757 set_bit(SP_VICTIM_REMAINS, &pool->sp_flags);
758 set_bit(SP_NEED_VICTIM, &pool->sp_flags);
759 if (!atomic_dec_and_test(&pool->sp_nrthreads))
760 return pool;
761 /* Nothing left in this pool any more */
762 clear_bit(SP_NEED_VICTIM, &pool->sp_flags);
763 clear_bit(SP_VICTIM_REMAINS, &pool->sp_flags);
764 goto retry;
765}
766
767static int
768svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
769{
770 struct svc_rqst *rqstp;
771 struct task_struct *task;
772 struct svc_pool *chosen_pool;
773 unsigned int state = serv->sv_nrthreads-1;
774 int node;
775
776 do {
777 nrservs--;
778 chosen_pool = svc_pool_next(serv, pool, &state);
779 node = svc_pool_map_get_node(chosen_pool->sp_id);
780
781 rqstp = svc_prepare_thread(serv, chosen_pool, node);
782 if (IS_ERR(rqstp))
783 return PTR_ERR(rqstp);
784 task = kthread_create_on_node(serv->sv_threadfn, rqstp,
785 node, "%s", serv->sv_name);
786 if (IS_ERR(task)) {
787 svc_exit_thread(rqstp);
788 return PTR_ERR(task);
789 }
790
791 rqstp->rq_task = task;
792 if (serv->sv_nrpools > 1)
793 svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
794
795 svc_sock_update_bufs(serv);
796 wake_up_process(task);
797 } while (nrservs > 0);
798
799 return 0;
800}
801
802static int
803svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
804{
805 unsigned int state = serv->sv_nrthreads-1;
806 struct svc_pool *victim;
807
808 do {
809 victim = svc_pool_victim(serv, pool, &state);
810 if (!victim)
811 break;
812 svc_pool_wake_idle_thread(victim);
813 wait_on_bit(&victim->sp_flags, SP_VICTIM_REMAINS,
814 TASK_IDLE);
815 nrservs++;
816 } while (nrservs < 0);
817 return 0;
818}
819
820/**
821 * svc_set_num_threads - adjust number of threads per RPC service
822 * @serv: RPC service to adjust
823 * @pool: Specific pool from which to choose threads, or NULL
824 * @nrservs: New number of threads for @serv (0 or less means kill all threads)
825 *
826 * Create or destroy threads to make the number of threads for @serv the
827 * given number. If @pool is non-NULL, change only threads in that pool;
828 * otherwise, round-robin between all pools for @serv. @serv's
829 * sv_nrthreads is adjusted for each thread created or destroyed.
830 *
831 * Caller must ensure mutual exclusion between this and server startup or
832 * shutdown.
833 *
834 * Returns zero on success or a negative errno if an error occurred while
835 * starting a thread.
836 */
837int
838svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
839{
840 if (!pool)
841 nrservs -= serv->sv_nrthreads;
842 else
843 nrservs -= atomic_read(&pool->sp_nrthreads);
844
845 if (nrservs > 0)
846 return svc_start_kthreads(serv, pool, nrservs);
847 if (nrservs < 0)
848 return svc_stop_kthreads(serv, pool, nrservs);
849 return 0;
850}
851EXPORT_SYMBOL_GPL(svc_set_num_threads);
852
853/**
854 * svc_rqst_replace_page - Replace one page in rq_pages[]
855 * @rqstp: svc_rqst with pages to replace
856 * @page: replacement page
857 *
858 * When replacing a page in rq_pages, batch the release of the
859 * replaced pages to avoid hammering the page allocator.
860 *
861 * Return values:
862 * %true: page replaced
863 * %false: array bounds checking failed
864 */
865bool svc_rqst_replace_page(struct svc_rqst *rqstp, struct page *page)
866{
867 struct page **begin = rqstp->rq_pages;
868 struct page **end = &rqstp->rq_pages[RPCSVC_MAXPAGES];
869
870 if (unlikely(rqstp->rq_next_page < begin || rqstp->rq_next_page > end)) {
871 trace_svc_replace_page_err(rqstp);
872 return false;
873 }
874
875 if (*rqstp->rq_next_page) {
876 if (!folio_batch_add(&rqstp->rq_fbatch,
877 page_folio(*rqstp->rq_next_page)))
878 __folio_batch_release(&rqstp->rq_fbatch);
879 }
880
881 get_page(page);
882 *(rqstp->rq_next_page++) = page;
883 return true;
884}
885EXPORT_SYMBOL_GPL(svc_rqst_replace_page);
886
887/**
888 * svc_rqst_release_pages - Release Reply buffer pages
889 * @rqstp: RPC transaction context
890 *
891 * Release response pages that might still be in flight after
892 * svc_send, and any spliced filesystem-owned pages.
893 */
894void svc_rqst_release_pages(struct svc_rqst *rqstp)
895{
896 int i, count = rqstp->rq_next_page - rqstp->rq_respages;
897
898 if (count) {
899 release_pages(rqstp->rq_respages, count);
900 for (i = 0; i < count; i++)
901 rqstp->rq_respages[i] = NULL;
902 }
903}
904
905/*
906 * Called from a server thread as it's exiting. Caller must hold the "service
907 * mutex" for the service.
908 */
909void
910svc_rqst_free(struct svc_rqst *rqstp)
911{
912 folio_batch_release(&rqstp->rq_fbatch);
913 svc_release_buffer(rqstp);
914 if (rqstp->rq_scratch_page)
915 put_page(rqstp->rq_scratch_page);
916 kfree(rqstp->rq_resp);
917 kfree(rqstp->rq_argp);
918 kfree(rqstp->rq_auth_data);
919 kfree_rcu(rqstp, rq_rcu_head);
920}
921EXPORT_SYMBOL_GPL(svc_rqst_free);
922
923void
924svc_exit_thread(struct svc_rqst *rqstp)
925{
926 struct svc_serv *serv = rqstp->rq_server;
927 struct svc_pool *pool = rqstp->rq_pool;
928
929 list_del_rcu(&rqstp->rq_all);
930
931 atomic_dec(&pool->sp_nrthreads);
932
933 spin_lock_bh(&serv->sv_lock);
934 serv->sv_nrthreads -= 1;
935 spin_unlock_bh(&serv->sv_lock);
936 svc_sock_update_bufs(serv);
937
938 svc_rqst_free(rqstp);
939
940 clear_and_wake_up_bit(SP_VICTIM_REMAINS, &pool->sp_flags);
941}
942EXPORT_SYMBOL_GPL(svc_exit_thread);
943
944/*
945 * Register an "inet" protocol family netid with the local
946 * rpcbind daemon via an rpcbind v4 SET request.
947 *
948 * No netconfig infrastructure is available in the kernel, so
949 * we map IP_ protocol numbers to netids by hand.
950 *
951 * Returns zero on success; a negative errno value is returned
952 * if any error occurs.
953 */
954static int __svc_rpcb_register4(struct net *net, const u32 program,
955 const u32 version,
956 const unsigned short protocol,
957 const unsigned short port)
958{
959 const struct sockaddr_in sin = {
960 .sin_family = AF_INET,
961 .sin_addr.s_addr = htonl(INADDR_ANY),
962 .sin_port = htons(port),
963 };
964 const char *netid;
965 int error;
966
967 switch (protocol) {
968 case IPPROTO_UDP:
969 netid = RPCBIND_NETID_UDP;
970 break;
971 case IPPROTO_TCP:
972 netid = RPCBIND_NETID_TCP;
973 break;
974 default:
975 return -ENOPROTOOPT;
976 }
977
978 error = rpcb_v4_register(net, program, version,
979 (const struct sockaddr *)&sin, netid);
980
981 /*
982 * User space didn't support rpcbind v4, so retry this
983 * registration request with the legacy rpcbind v2 protocol.
984 */
985 if (error == -EPROTONOSUPPORT)
986 error = rpcb_register(net, program, version, protocol, port);
987
988 return error;
989}
990
991#if IS_ENABLED(CONFIG_IPV6)
992/*
993 * Register an "inet6" protocol family netid with the local
994 * rpcbind daemon via an rpcbind v4 SET request.
995 *
996 * No netconfig infrastructure is available in the kernel, so
997 * we map IP_ protocol numbers to netids by hand.
998 *
999 * Returns zero on success; a negative errno value is returned
1000 * if any error occurs.
1001 */
1002static int __svc_rpcb_register6(struct net *net, const u32 program,
1003 const u32 version,
1004 const unsigned short protocol,
1005 const unsigned short port)
1006{
1007 const struct sockaddr_in6 sin6 = {
1008 .sin6_family = AF_INET6,
1009 .sin6_addr = IN6ADDR_ANY_INIT,
1010 .sin6_port = htons(port),
1011 };
1012 const char *netid;
1013 int error;
1014
1015 switch (protocol) {
1016 case IPPROTO_UDP:
1017 netid = RPCBIND_NETID_UDP6;
1018 break;
1019 case IPPROTO_TCP:
1020 netid = RPCBIND_NETID_TCP6;
1021 break;
1022 default:
1023 return -ENOPROTOOPT;
1024 }
1025
1026 error = rpcb_v4_register(net, program, version,
1027 (const struct sockaddr *)&sin6, netid);
1028
1029 /*
1030 * User space didn't support rpcbind version 4, so we won't
1031 * use a PF_INET6 listener.
1032 */
1033 if (error == -EPROTONOSUPPORT)
1034 error = -EAFNOSUPPORT;
1035
1036 return error;
1037}
1038#endif /* IS_ENABLED(CONFIG_IPV6) */
1039
1040/*
1041 * Register a kernel RPC service via rpcbind version 4.
1042 *
1043 * Returns zero on success; a negative errno value is returned
1044 * if any error occurs.
1045 */
1046static int __svc_register(struct net *net, const char *progname,
1047 const u32 program, const u32 version,
1048 const int family,
1049 const unsigned short protocol,
1050 const unsigned short port)
1051{
1052 int error = -EAFNOSUPPORT;
1053
1054 switch (family) {
1055 case PF_INET:
1056 error = __svc_rpcb_register4(net, program, version,
1057 protocol, port);
1058 break;
1059#if IS_ENABLED(CONFIG_IPV6)
1060 case PF_INET6:
1061 error = __svc_rpcb_register6(net, program, version,
1062 protocol, port);
1063#endif
1064 }
1065
1066 trace_svc_register(progname, version, family, protocol, port, error);
1067 return error;
1068}
1069
1070int svc_rpcbind_set_version(struct net *net,
1071 const struct svc_program *progp,
1072 u32 version, int family,
1073 unsigned short proto,
1074 unsigned short port)
1075{
1076 return __svc_register(net, progp->pg_name, progp->pg_prog,
1077 version, family, proto, port);
1078
1079}
1080EXPORT_SYMBOL_GPL(svc_rpcbind_set_version);
1081
1082int svc_generic_rpcbind_set(struct net *net,
1083 const struct svc_program *progp,
1084 u32 version, int family,
1085 unsigned short proto,
1086 unsigned short port)
1087{
1088 const struct svc_version *vers = progp->pg_vers[version];
1089 int error;
1090
1091 if (vers == NULL)
1092 return 0;
1093
1094 if (vers->vs_hidden) {
1095 trace_svc_noregister(progp->pg_name, version, proto,
1096 port, family, 0);
1097 return 0;
1098 }
1099
1100 /*
1101 * Don't register a UDP port if we need congestion
1102 * control.
1103 */
1104 if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP)
1105 return 0;
1106
1107 error = svc_rpcbind_set_version(net, progp, version,
1108 family, proto, port);
1109
1110 return (vers->vs_rpcb_optnl) ? 0 : error;
1111}
1112EXPORT_SYMBOL_GPL(svc_generic_rpcbind_set);
1113
1114/**
1115 * svc_register - register an RPC service with the local portmapper
1116 * @serv: svc_serv struct for the service to register
1117 * @net: net namespace for the service to register
1118 * @family: protocol family of service's listener socket
1119 * @proto: transport protocol number to advertise
1120 * @port: port to advertise
1121 *
1122 * Service is registered for any address in the passed-in protocol family
1123 */
1124int svc_register(const struct svc_serv *serv, struct net *net,
1125 const int family, const unsigned short proto,
1126 const unsigned short port)
1127{
1128 struct svc_program *progp;
1129 unsigned int i;
1130 int error = 0;
1131
1132 WARN_ON_ONCE(proto == 0 && port == 0);
1133 if (proto == 0 && port == 0)
1134 return -EINVAL;
1135
1136 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1137 for (i = 0; i < progp->pg_nvers; i++) {
1138
1139 error = progp->pg_rpcbind_set(net, progp, i,
1140 family, proto, port);
1141 if (error < 0) {
1142 printk(KERN_WARNING "svc: failed to register "
1143 "%sv%u RPC service (errno %d).\n",
1144 progp->pg_name, i, -error);
1145 break;
1146 }
1147 }
1148 }
1149
1150 return error;
1151}
1152
1153/*
1154 * If user space is running rpcbind, it should take the v4 UNSET
1155 * and clear everything for this [program, version]. If user space
1156 * is running portmap, it will reject the v4 UNSET, but won't have
1157 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient
1158 * in this case to clear all existing entries for [program, version].
1159 */
1160static void __svc_unregister(struct net *net, const u32 program, const u32 version,
1161 const char *progname)
1162{
1163 int error;
1164
1165 error = rpcb_v4_register(net, program, version, NULL, "");
1166
1167 /*
1168 * User space didn't support rpcbind v4, so retry this
1169 * request with the legacy rpcbind v2 protocol.
1170 */
1171 if (error == -EPROTONOSUPPORT)
1172 error = rpcb_register(net, program, version, 0, 0);
1173
1174 trace_svc_unregister(progname, version, error);
1175}
1176
1177/*
1178 * All netids, bind addresses and ports registered for [program, version]
1179 * are removed from the local rpcbind database (if the service is not
1180 * hidden) to make way for a new instance of the service.
1181 *
1182 * The result of unregistration is reported via dprintk for those who want
1183 * verification of the result, but is otherwise not important.
1184 */
1185static void svc_unregister(const struct svc_serv *serv, struct net *net)
1186{
1187 struct sighand_struct *sighand;
1188 struct svc_program *progp;
1189 unsigned long flags;
1190 unsigned int i;
1191
1192 clear_thread_flag(TIF_SIGPENDING);
1193
1194 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1195 for (i = 0; i < progp->pg_nvers; i++) {
1196 if (progp->pg_vers[i] == NULL)
1197 continue;
1198 if (progp->pg_vers[i]->vs_hidden)
1199 continue;
1200 __svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1201 }
1202 }
1203
1204 rcu_read_lock();
1205 sighand = rcu_dereference(current->sighand);
1206 spin_lock_irqsave(&sighand->siglock, flags);
1207 recalc_sigpending();
1208 spin_unlock_irqrestore(&sighand->siglock, flags);
1209 rcu_read_unlock();
1210}
1211
1212/*
1213 * dprintk the given error with the address of the client that caused it.
1214 */
1215#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
1216static __printf(2, 3)
1217void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1218{
1219 struct va_format vaf;
1220 va_list args;
1221 char buf[RPC_MAX_ADDRBUFLEN];
1222
1223 va_start(args, fmt);
1224
1225 vaf.fmt = fmt;
1226 vaf.va = &args;
1227
1228 dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1229
1230 va_end(args);
1231}
1232#else
1233static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {}
1234#endif
1235
1236__be32
1237svc_generic_init_request(struct svc_rqst *rqstp,
1238 const struct svc_program *progp,
1239 struct svc_process_info *ret)
1240{
1241 const struct svc_version *versp = NULL; /* compiler food */
1242 const struct svc_procedure *procp = NULL;
1243
1244 if (rqstp->rq_vers >= progp->pg_nvers )
1245 goto err_bad_vers;
1246 versp = progp->pg_vers[rqstp->rq_vers];
1247 if (!versp)
1248 goto err_bad_vers;
1249
1250 /*
1251 * Some protocol versions (namely NFSv4) require some form of
1252 * congestion control. (See RFC 7530 section 3.1 paragraph 2)
1253 * In other words, UDP is not allowed. We mark those when setting
1254 * up the svc_xprt, and verify that here.
1255 *
1256 * The spec is not very clear about what error should be returned
1257 * when someone tries to access a server that is listening on UDP
1258 * for lower versions. RPC_PROG_MISMATCH seems to be the closest
1259 * fit.
1260 */
1261 if (versp->vs_need_cong_ctrl && rqstp->rq_xprt &&
1262 !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags))
1263 goto err_bad_vers;
1264
1265 if (rqstp->rq_proc >= versp->vs_nproc)
1266 goto err_bad_proc;
1267 rqstp->rq_procinfo = procp = &versp->vs_proc[rqstp->rq_proc];
1268
1269 /* Initialize storage for argp and resp */
1270 memset(rqstp->rq_argp, 0, procp->pc_argzero);
1271 memset(rqstp->rq_resp, 0, procp->pc_ressize);
1272
1273 /* Bump per-procedure stats counter */
1274 this_cpu_inc(versp->vs_count[rqstp->rq_proc]);
1275
1276 ret->dispatch = versp->vs_dispatch;
1277 return rpc_success;
1278err_bad_vers:
1279 ret->mismatch.lovers = progp->pg_lovers;
1280 ret->mismatch.hivers = progp->pg_hivers;
1281 return rpc_prog_mismatch;
1282err_bad_proc:
1283 return rpc_proc_unavail;
1284}
1285EXPORT_SYMBOL_GPL(svc_generic_init_request);
1286
1287/*
1288 * Common routine for processing the RPC request.
1289 */
1290static int
1291svc_process_common(struct svc_rqst *rqstp)
1292{
1293 struct xdr_stream *xdr = &rqstp->rq_res_stream;
1294 struct svc_program *progp;
1295 const struct svc_procedure *procp = NULL;
1296 struct svc_serv *serv = rqstp->rq_server;
1297 struct svc_process_info process;
1298 enum svc_auth_status auth_res;
1299 unsigned int aoffset;
1300 int rc;
1301 __be32 *p;
1302
1303 /* Will be turned off only when NFSv4 Sessions are used */
1304 set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags);
1305 clear_bit(RQ_DROPME, &rqstp->rq_flags);
1306
1307 /* Construct the first words of the reply: */
1308 svcxdr_init_encode(rqstp);
1309 xdr_stream_encode_be32(xdr, rqstp->rq_xid);
1310 xdr_stream_encode_be32(xdr, rpc_reply);
1311
1312 p = xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 4);
1313 if (unlikely(!p))
1314 goto err_short_len;
1315 if (*p++ != cpu_to_be32(RPC_VERSION))
1316 goto err_bad_rpc;
1317
1318 xdr_stream_encode_be32(xdr, rpc_msg_accepted);
1319
1320 rqstp->rq_prog = be32_to_cpup(p++);
1321 rqstp->rq_vers = be32_to_cpup(p++);
1322 rqstp->rq_proc = be32_to_cpup(p);
1323
1324 for (progp = serv->sv_program; progp; progp = progp->pg_next)
1325 if (rqstp->rq_prog == progp->pg_prog)
1326 break;
1327
1328 /*
1329 * Decode auth data, and add verifier to reply buffer.
1330 * We do this before anything else in order to get a decent
1331 * auth verifier.
1332 */
1333 auth_res = svc_authenticate(rqstp);
1334 /* Also give the program a chance to reject this call: */
1335 if (auth_res == SVC_OK && progp)
1336 auth_res = progp->pg_authenticate(rqstp);
1337 trace_svc_authenticate(rqstp, auth_res);
1338 switch (auth_res) {
1339 case SVC_OK:
1340 break;
1341 case SVC_GARBAGE:
1342 goto err_garbage_args;
1343 case SVC_SYSERR:
1344 goto err_system_err;
1345 case SVC_DENIED:
1346 goto err_bad_auth;
1347 case SVC_CLOSE:
1348 goto close;
1349 case SVC_DROP:
1350 goto dropit;
1351 case SVC_COMPLETE:
1352 goto sendit;
1353 default:
1354 pr_warn_once("Unexpected svc_auth_status (%d)\n", auth_res);
1355 goto err_system_err;
1356 }
1357
1358 if (progp == NULL)
1359 goto err_bad_prog;
1360
1361 switch (progp->pg_init_request(rqstp, progp, &process)) {
1362 case rpc_success:
1363 break;
1364 case rpc_prog_unavail:
1365 goto err_bad_prog;
1366 case rpc_prog_mismatch:
1367 goto err_bad_vers;
1368 case rpc_proc_unavail:
1369 goto err_bad_proc;
1370 }
1371
1372 procp = rqstp->rq_procinfo;
1373 /* Should this check go into the dispatcher? */
1374 if (!procp || !procp->pc_func)
1375 goto err_bad_proc;
1376
1377 /* Syntactic check complete */
1378 if (serv->sv_stats)
1379 serv->sv_stats->rpccnt++;
1380 trace_svc_process(rqstp, progp->pg_name);
1381
1382 aoffset = xdr_stream_pos(xdr);
1383
1384 /* un-reserve some of the out-queue now that we have a
1385 * better idea of reply size
1386 */
1387 if (procp->pc_xdrressize)
1388 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1389
1390 /* Call the function that processes the request. */
1391 rc = process.dispatch(rqstp);
1392 if (procp->pc_release)
1393 procp->pc_release(rqstp);
1394 xdr_finish_decode(xdr);
1395
1396 if (!rc)
1397 goto dropit;
1398 if (rqstp->rq_auth_stat != rpc_auth_ok)
1399 goto err_bad_auth;
1400
1401 if (*rqstp->rq_accept_statp != rpc_success)
1402 xdr_truncate_encode(xdr, aoffset);
1403
1404 if (procp->pc_encode == NULL)
1405 goto dropit;
1406
1407 sendit:
1408 if (svc_authorise(rqstp))
1409 goto close_xprt;
1410 return 1; /* Caller can now send it */
1411
1412 dropit:
1413 svc_authorise(rqstp); /* doesn't hurt to call this twice */
1414 dprintk("svc: svc_process dropit\n");
1415 return 0;
1416
1417 close:
1418 svc_authorise(rqstp);
1419close_xprt:
1420 if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1421 svc_xprt_close(rqstp->rq_xprt);
1422 dprintk("svc: svc_process close\n");
1423 return 0;
1424
1425err_short_len:
1426 svc_printk(rqstp, "short len %u, dropping request\n",
1427 rqstp->rq_arg.len);
1428 goto close_xprt;
1429
1430err_bad_rpc:
1431 if (serv->sv_stats)
1432 serv->sv_stats->rpcbadfmt++;
1433 xdr_stream_encode_u32(xdr, RPC_MSG_DENIED);
1434 xdr_stream_encode_u32(xdr, RPC_MISMATCH);
1435 /* Only RPCv2 supported */
1436 xdr_stream_encode_u32(xdr, RPC_VERSION);
1437 xdr_stream_encode_u32(xdr, RPC_VERSION);
1438 return 1; /* don't wrap */
1439
1440err_bad_auth:
1441 dprintk("svc: authentication failed (%d)\n",
1442 be32_to_cpu(rqstp->rq_auth_stat));
1443 if (serv->sv_stats)
1444 serv->sv_stats->rpcbadauth++;
1445 /* Restore write pointer to location of reply status: */
1446 xdr_truncate_encode(xdr, XDR_UNIT * 2);
1447 xdr_stream_encode_u32(xdr, RPC_MSG_DENIED);
1448 xdr_stream_encode_u32(xdr, RPC_AUTH_ERROR);
1449 xdr_stream_encode_be32(xdr, rqstp->rq_auth_stat);
1450 goto sendit;
1451
1452err_bad_prog:
1453 dprintk("svc: unknown program %d\n", rqstp->rq_prog);
1454 if (serv->sv_stats)
1455 serv->sv_stats->rpcbadfmt++;
1456 *rqstp->rq_accept_statp = rpc_prog_unavail;
1457 goto sendit;
1458
1459err_bad_vers:
1460 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1461 rqstp->rq_vers, rqstp->rq_prog, progp->pg_name);
1462
1463 if (serv->sv_stats)
1464 serv->sv_stats->rpcbadfmt++;
1465 *rqstp->rq_accept_statp = rpc_prog_mismatch;
1466
1467 /*
1468 * svc_authenticate() has already added the verifier and
1469 * advanced the stream just past rq_accept_statp.
1470 */
1471 xdr_stream_encode_u32(xdr, process.mismatch.lovers);
1472 xdr_stream_encode_u32(xdr, process.mismatch.hivers);
1473 goto sendit;
1474
1475err_bad_proc:
1476 svc_printk(rqstp, "unknown procedure (%d)\n", rqstp->rq_proc);
1477
1478 if (serv->sv_stats)
1479 serv->sv_stats->rpcbadfmt++;
1480 *rqstp->rq_accept_statp = rpc_proc_unavail;
1481 goto sendit;
1482
1483err_garbage_args:
1484 svc_printk(rqstp, "failed to decode RPC header\n");
1485
1486 if (serv->sv_stats)
1487 serv->sv_stats->rpcbadfmt++;
1488 *rqstp->rq_accept_statp = rpc_garbage_args;
1489 goto sendit;
1490
1491err_system_err:
1492 if (serv->sv_stats)
1493 serv->sv_stats->rpcbadfmt++;
1494 *rqstp->rq_accept_statp = rpc_system_err;
1495 goto sendit;
1496}
1497
1498/**
1499 * svc_process - Execute one RPC transaction
1500 * @rqstp: RPC transaction context
1501 *
1502 */
1503void svc_process(struct svc_rqst *rqstp)
1504{
1505 struct kvec *resv = &rqstp->rq_res.head[0];
1506 __be32 *p;
1507
1508#if IS_ENABLED(CONFIG_FAIL_SUNRPC)
1509 if (!fail_sunrpc.ignore_server_disconnect &&
1510 should_fail(&fail_sunrpc.attr, 1))
1511 svc_xprt_deferred_close(rqstp->rq_xprt);
1512#endif
1513
1514 /*
1515 * Setup response xdr_buf.
1516 * Initially it has just one page
1517 */
1518 rqstp->rq_next_page = &rqstp->rq_respages[1];
1519 resv->iov_base = page_address(rqstp->rq_respages[0]);
1520 resv->iov_len = 0;
1521 rqstp->rq_res.pages = rqstp->rq_next_page;
1522 rqstp->rq_res.len = 0;
1523 rqstp->rq_res.page_base = 0;
1524 rqstp->rq_res.page_len = 0;
1525 rqstp->rq_res.buflen = PAGE_SIZE;
1526 rqstp->rq_res.tail[0].iov_base = NULL;
1527 rqstp->rq_res.tail[0].iov_len = 0;
1528
1529 svcxdr_init_decode(rqstp);
1530 p = xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 2);
1531 if (unlikely(!p))
1532 goto out_drop;
1533 rqstp->rq_xid = *p++;
1534 if (unlikely(*p != rpc_call))
1535 goto out_baddir;
1536
1537 if (!svc_process_common(rqstp))
1538 goto out_drop;
1539 svc_send(rqstp);
1540 return;
1541
1542out_baddir:
1543 svc_printk(rqstp, "bad direction 0x%08x, dropping request\n",
1544 be32_to_cpu(*p));
1545 if (rqstp->rq_server->sv_stats)
1546 rqstp->rq_server->sv_stats->rpcbadfmt++;
1547out_drop:
1548 svc_drop(rqstp);
1549}
1550
1551#if defined(CONFIG_SUNRPC_BACKCHANNEL)
1552/**
1553 * svc_process_bc - process a reverse-direction RPC request
1554 * @req: RPC request to be used for client-side processing
1555 * @rqstp: server-side execution context
1556 *
1557 */
1558void svc_process_bc(struct rpc_rqst *req, struct svc_rqst *rqstp)
1559{
1560 struct rpc_task *task;
1561 int proc_error;
1562 struct rpc_timeout timeout;
1563
1564 /* Build the svc_rqst used by the common processing routine */
1565 rqstp->rq_xid = req->rq_xid;
1566 rqstp->rq_prot = req->rq_xprt->prot;
1567 rqstp->rq_bc_net = req->rq_xprt->xprt_net;
1568
1569 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1570 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1571 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1572 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1573
1574 /* Adjust the argument buffer length */
1575 rqstp->rq_arg.len = req->rq_private_buf.len;
1576 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1577 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1578 rqstp->rq_arg.page_len = 0;
1579 } else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len +
1580 rqstp->rq_arg.page_len)
1581 rqstp->rq_arg.page_len = rqstp->rq_arg.len -
1582 rqstp->rq_arg.head[0].iov_len;
1583 else
1584 rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len +
1585 rqstp->rq_arg.page_len;
1586
1587 /* Reset the response buffer */
1588 rqstp->rq_res.head[0].iov_len = 0;
1589
1590 /*
1591 * Skip the XID and calldir fields because they've already
1592 * been processed by the caller.
1593 */
1594 svcxdr_init_decode(rqstp);
1595 if (!xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 2))
1596 return;
1597
1598 /* Parse and execute the bc call */
1599 proc_error = svc_process_common(rqstp);
1600
1601 atomic_dec(&req->rq_xprt->bc_slot_count);
1602 if (!proc_error) {
1603 /* Processing error: drop the request */
1604 xprt_free_bc_request(req);
1605 return;
1606 }
1607 /* Finally, send the reply synchronously */
1608 if (rqstp->bc_to_initval > 0) {
1609 timeout.to_initval = rqstp->bc_to_initval;
1610 timeout.to_retries = rqstp->bc_to_retries;
1611 } else {
1612 timeout.to_initval = req->rq_xprt->timeout->to_initval;
1613 timeout.to_retries = req->rq_xprt->timeout->to_retries;
1614 }
1615 memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf));
1616 task = rpc_run_bc_task(req, &timeout);
1617
1618 if (IS_ERR(task))
1619 return;
1620
1621 WARN_ON_ONCE(atomic_read(&task->tk_count) != 1);
1622 rpc_put_task(task);
1623}
1624#endif /* CONFIG_SUNRPC_BACKCHANNEL */
1625
1626/**
1627 * svc_max_payload - Return transport-specific limit on the RPC payload
1628 * @rqstp: RPC transaction context
1629 *
1630 * Returns the maximum number of payload bytes the current transport
1631 * allows.
1632 */
1633u32 svc_max_payload(const struct svc_rqst *rqstp)
1634{
1635 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1636
1637 if (rqstp->rq_server->sv_max_payload < max)
1638 max = rqstp->rq_server->sv_max_payload;
1639 return max;
1640}
1641EXPORT_SYMBOL_GPL(svc_max_payload);
1642
1643/**
1644 * svc_proc_name - Return RPC procedure name in string form
1645 * @rqstp: svc_rqst to operate on
1646 *
1647 * Return value:
1648 * Pointer to a NUL-terminated string
1649 */
1650const char *svc_proc_name(const struct svc_rqst *rqstp)
1651{
1652 if (rqstp && rqstp->rq_procinfo)
1653 return rqstp->rq_procinfo->pc_name;
1654 return "unknown";
1655}
1656
1657
1658/**
1659 * svc_encode_result_payload - mark a range of bytes as a result payload
1660 * @rqstp: svc_rqst to operate on
1661 * @offset: payload's byte offset in rqstp->rq_res
1662 * @length: size of payload, in bytes
1663 *
1664 * Returns zero on success, or a negative errno if a permanent
1665 * error occurred.
1666 */
1667int svc_encode_result_payload(struct svc_rqst *rqstp, unsigned int offset,
1668 unsigned int length)
1669{
1670 return rqstp->rq_xprt->xpt_ops->xpo_result_payload(rqstp, offset,
1671 length);
1672}
1673EXPORT_SYMBOL_GPL(svc_encode_result_payload);
1674
1675/**
1676 * svc_fill_write_vector - Construct data argument for VFS write call
1677 * @rqstp: svc_rqst to operate on
1678 * @payload: xdr_buf containing only the write data payload
1679 *
1680 * Fills in rqstp::rq_vec, and returns the number of elements.
1681 */
1682unsigned int svc_fill_write_vector(struct svc_rqst *rqstp,
1683 struct xdr_buf *payload)
1684{
1685 struct page **pages = payload->pages;
1686 struct kvec *first = payload->head;
1687 struct kvec *vec = rqstp->rq_vec;
1688 size_t total = payload->len;
1689 unsigned int i;
1690
1691 /* Some types of transport can present the write payload
1692 * entirely in rq_arg.pages. In this case, @first is empty.
1693 */
1694 i = 0;
1695 if (first->iov_len) {
1696 vec[i].iov_base = first->iov_base;
1697 vec[i].iov_len = min_t(size_t, total, first->iov_len);
1698 total -= vec[i].iov_len;
1699 ++i;
1700 }
1701
1702 while (total) {
1703 vec[i].iov_base = page_address(*pages);
1704 vec[i].iov_len = min_t(size_t, total, PAGE_SIZE);
1705 total -= vec[i].iov_len;
1706 ++i;
1707 ++pages;
1708 }
1709
1710 WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec));
1711 return i;
1712}
1713EXPORT_SYMBOL_GPL(svc_fill_write_vector);
1714
1715/**
1716 * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call
1717 * @rqstp: svc_rqst to operate on
1718 * @first: buffer containing first section of pathname
1719 * @p: buffer containing remaining section of pathname
1720 * @total: total length of the pathname argument
1721 *
1722 * The VFS symlink API demands a NUL-terminated pathname in mapped memory.
1723 * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free
1724 * the returned string.
1725 */
1726char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first,
1727 void *p, size_t total)
1728{
1729 size_t len, remaining;
1730 char *result, *dst;
1731
1732 result = kmalloc(total + 1, GFP_KERNEL);
1733 if (!result)
1734 return ERR_PTR(-ESERVERFAULT);
1735
1736 dst = result;
1737 remaining = total;
1738
1739 len = min_t(size_t, total, first->iov_len);
1740 if (len) {
1741 memcpy(dst, first->iov_base, len);
1742 dst += len;
1743 remaining -= len;
1744 }
1745
1746 if (remaining) {
1747 len = min_t(size_t, remaining, PAGE_SIZE);
1748 memcpy(dst, p, len);
1749 dst += len;
1750 }
1751
1752 *dst = '\0';
1753
1754 /* Sanity check: Linux doesn't allow the pathname argument to
1755 * contain a NUL byte.
1756 */
1757 if (strlen(result) != total) {
1758 kfree(result);
1759 return ERR_PTR(-EINVAL);
1760 }
1761 return result;
1762}
1763EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname);