Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * net/sched/sch_generic.c	Generic packet scheduler routines.
   4 *
   5 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
   6 *              Jamal Hadi Salim, <hadi@cyberus.ca> 990601
   7 *              - Ingress support
   8 */
   9
  10#include <linux/bitops.h>
  11#include <linux/module.h>
  12#include <linux/types.h>
  13#include <linux/kernel.h>
  14#include <linux/sched.h>
  15#include <linux/string.h>
  16#include <linux/errno.h>
  17#include <linux/netdevice.h>
  18#include <linux/skbuff.h>
  19#include <linux/rtnetlink.h>
  20#include <linux/init.h>
  21#include <linux/rcupdate.h>
  22#include <linux/list.h>
  23#include <linux/slab.h>
  24#include <linux/if_vlan.h>
  25#include <linux/skb_array.h>
  26#include <linux/if_macvlan.h>
  27#include <net/sch_generic.h>
  28#include <net/pkt_sched.h>
  29#include <net/dst.h>
 
  30#include <trace/events/qdisc.h>
  31#include <trace/events/net.h>
  32#include <net/xfrm.h>
  33
  34/* Qdisc to use by default */
  35const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops;
  36EXPORT_SYMBOL(default_qdisc_ops);
  37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  38/* Main transmission queue. */
  39
  40/* Modifications to data participating in scheduling must be protected with
  41 * qdisc_lock(qdisc) spinlock.
  42 *
  43 * The idea is the following:
  44 * - enqueue, dequeue are serialized via qdisc root lock
  45 * - ingress filtering is also serialized via qdisc root lock
  46 * - updates to tree and tree walking are only done under the rtnl mutex.
  47 */
  48
  49#define SKB_XOFF_MAGIC ((struct sk_buff *)1UL)
  50
  51static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q)
  52{
  53	const struct netdev_queue *txq = q->dev_queue;
  54	spinlock_t *lock = NULL;
  55	struct sk_buff *skb;
  56
  57	if (q->flags & TCQ_F_NOLOCK) {
  58		lock = qdisc_lock(q);
  59		spin_lock(lock);
  60	}
  61
  62	skb = skb_peek(&q->skb_bad_txq);
  63	if (skb) {
  64		/* check the reason of requeuing without tx lock first */
  65		txq = skb_get_tx_queue(txq->dev, skb);
  66		if (!netif_xmit_frozen_or_stopped(txq)) {
  67			skb = __skb_dequeue(&q->skb_bad_txq);
  68			if (qdisc_is_percpu_stats(q)) {
  69				qdisc_qstats_cpu_backlog_dec(q, skb);
  70				qdisc_qstats_cpu_qlen_dec(q);
  71			} else {
  72				qdisc_qstats_backlog_dec(q, skb);
  73				q->q.qlen--;
  74			}
  75		} else {
  76			skb = SKB_XOFF_MAGIC;
 
  77		}
  78	}
  79
  80	if (lock)
  81		spin_unlock(lock);
  82
  83	return skb;
  84}
  85
  86static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q)
  87{
  88	struct sk_buff *skb = skb_peek(&q->skb_bad_txq);
  89
  90	if (unlikely(skb))
  91		skb = __skb_dequeue_bad_txq(q);
  92
  93	return skb;
  94}
  95
  96static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q,
  97					     struct sk_buff *skb)
  98{
  99	spinlock_t *lock = NULL;
 100
 101	if (q->flags & TCQ_F_NOLOCK) {
 102		lock = qdisc_lock(q);
 103		spin_lock(lock);
 104	}
 105
 106	__skb_queue_tail(&q->skb_bad_txq, skb);
 107
 108	if (qdisc_is_percpu_stats(q)) {
 109		qdisc_qstats_cpu_backlog_inc(q, skb);
 110		qdisc_qstats_cpu_qlen_inc(q);
 111	} else {
 112		qdisc_qstats_backlog_inc(q, skb);
 113		q->q.qlen++;
 114	}
 115
 116	if (lock)
 117		spin_unlock(lock);
 118}
 119
 120static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q)
 121{
 122	spinlock_t *lock = NULL;
 123
 124	if (q->flags & TCQ_F_NOLOCK) {
 125		lock = qdisc_lock(q);
 126		spin_lock(lock);
 127	}
 128
 129	while (skb) {
 130		struct sk_buff *next = skb->next;
 131
 132		__skb_queue_tail(&q->gso_skb, skb);
 133
 134		/* it's still part of the queue */
 135		if (qdisc_is_percpu_stats(q)) {
 136			qdisc_qstats_cpu_requeues_inc(q);
 137			qdisc_qstats_cpu_backlog_inc(q, skb);
 138			qdisc_qstats_cpu_qlen_inc(q);
 139		} else {
 140			q->qstats.requeues++;
 141			qdisc_qstats_backlog_inc(q, skb);
 142			q->q.qlen++;
 143		}
 144
 145		skb = next;
 146	}
 147	if (lock)
 
 148		spin_unlock(lock);
 149	__netif_schedule(q);
 
 
 
 150}
 151
 152static void try_bulk_dequeue_skb(struct Qdisc *q,
 153				 struct sk_buff *skb,
 154				 const struct netdev_queue *txq,
 155				 int *packets)
 156{
 157	int bytelimit = qdisc_avail_bulklimit(txq) - skb->len;
 158
 159	while (bytelimit > 0) {
 160		struct sk_buff *nskb = q->dequeue(q);
 161
 162		if (!nskb)
 163			break;
 164
 165		bytelimit -= nskb->len; /* covers GSO len */
 166		skb->next = nskb;
 167		skb = nskb;
 168		(*packets)++; /* GSO counts as one pkt */
 169	}
 170	skb_mark_not_on_list(skb);
 171}
 172
 173/* This variant of try_bulk_dequeue_skb() makes sure
 174 * all skbs in the chain are for the same txq
 175 */
 176static void try_bulk_dequeue_skb_slow(struct Qdisc *q,
 177				      struct sk_buff *skb,
 178				      int *packets)
 179{
 180	int mapping = skb_get_queue_mapping(skb);
 181	struct sk_buff *nskb;
 182	int cnt = 0;
 183
 184	do {
 185		nskb = q->dequeue(q);
 186		if (!nskb)
 187			break;
 188		if (unlikely(skb_get_queue_mapping(nskb) != mapping)) {
 189			qdisc_enqueue_skb_bad_txq(q, nskb);
 190			break;
 191		}
 192		skb->next = nskb;
 193		skb = nskb;
 194	} while (++cnt < 8);
 195	(*packets) += cnt;
 196	skb_mark_not_on_list(skb);
 197}
 198
 199/* Note that dequeue_skb can possibly return a SKB list (via skb->next).
 200 * A requeued skb (via q->gso_skb) can also be a SKB list.
 201 */
 202static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate,
 203				   int *packets)
 204{
 205	const struct netdev_queue *txq = q->dev_queue;
 206	struct sk_buff *skb = NULL;
 207
 208	*packets = 1;
 209	if (unlikely(!skb_queue_empty(&q->gso_skb))) {
 210		spinlock_t *lock = NULL;
 211
 212		if (q->flags & TCQ_F_NOLOCK) {
 213			lock = qdisc_lock(q);
 214			spin_lock(lock);
 215		}
 216
 217		skb = skb_peek(&q->gso_skb);
 218
 219		/* skb may be null if another cpu pulls gso_skb off in between
 220		 * empty check and lock.
 221		 */
 222		if (!skb) {
 223			if (lock)
 224				spin_unlock(lock);
 225			goto validate;
 226		}
 227
 228		/* skb in gso_skb were already validated */
 229		*validate = false;
 230		if (xfrm_offload(skb))
 231			*validate = true;
 232		/* check the reason of requeuing without tx lock first */
 233		txq = skb_get_tx_queue(txq->dev, skb);
 234		if (!netif_xmit_frozen_or_stopped(txq)) {
 235			skb = __skb_dequeue(&q->gso_skb);
 236			if (qdisc_is_percpu_stats(q)) {
 237				qdisc_qstats_cpu_backlog_dec(q, skb);
 238				qdisc_qstats_cpu_qlen_dec(q);
 239			} else {
 240				qdisc_qstats_backlog_dec(q, skb);
 241				q->q.qlen--;
 242			}
 243		} else {
 244			skb = NULL;
 
 245		}
 246		if (lock)
 247			spin_unlock(lock);
 248		goto trace;
 249	}
 250validate:
 251	*validate = true;
 252
 253	if ((q->flags & TCQ_F_ONETXQUEUE) &&
 254	    netif_xmit_frozen_or_stopped(txq))
 
 255		return skb;
 
 256
 257	skb = qdisc_dequeue_skb_bad_txq(q);
 258	if (unlikely(skb)) {
 259		if (skb == SKB_XOFF_MAGIC)
 260			return NULL;
 261		goto bulk;
 262	}
 263	skb = q->dequeue(q);
 264	if (skb) {
 265bulk:
 266		if (qdisc_may_bulk(q))
 267			try_bulk_dequeue_skb(q, skb, txq, packets);
 268		else
 269			try_bulk_dequeue_skb_slow(q, skb, packets);
 270	}
 271trace:
 272	trace_qdisc_dequeue(q, txq, *packets, skb);
 273	return skb;
 274}
 275
 276/*
 277 * Transmit possibly several skbs, and handle the return status as
 278 * required. Owning running seqcount bit guarantees that
 279 * only one CPU can execute this function.
 280 *
 281 * Returns to the caller:
 282 *				false  - hardware queue frozen backoff
 283 *				true   - feel free to send more pkts
 284 */
 285bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q,
 286		     struct net_device *dev, struct netdev_queue *txq,
 287		     spinlock_t *root_lock, bool validate)
 288{
 289	int ret = NETDEV_TX_BUSY;
 290	bool again = false;
 291
 292	/* And release qdisc */
 293	if (root_lock)
 294		spin_unlock(root_lock);
 295
 296	/* Note that we validate skb (GSO, checksum, ...) outside of locks */
 297	if (validate)
 298		skb = validate_xmit_skb_list(skb, dev, &again);
 299
 300#ifdef CONFIG_XFRM_OFFLOAD
 301	if (unlikely(again)) {
 302		if (root_lock)
 303			spin_lock(root_lock);
 304
 305		dev_requeue_skb(skb, q);
 306		return false;
 307	}
 308#endif
 309
 310	if (likely(skb)) {
 311		HARD_TX_LOCK(dev, txq, smp_processor_id());
 312		if (!netif_xmit_frozen_or_stopped(txq))
 313			skb = dev_hard_start_xmit(skb, dev, txq, &ret);
 
 
 314
 315		HARD_TX_UNLOCK(dev, txq);
 316	} else {
 317		if (root_lock)
 318			spin_lock(root_lock);
 319		return true;
 320	}
 321
 322	if (root_lock)
 323		spin_lock(root_lock);
 324
 325	if (!dev_xmit_complete(ret)) {
 326		/* Driver returned NETDEV_TX_BUSY - requeue skb */
 327		if (unlikely(ret != NETDEV_TX_BUSY))
 328			net_warn_ratelimited("BUG %s code %d qlen %d\n",
 329					     dev->name, ret, q->q.qlen);
 330
 331		dev_requeue_skb(skb, q);
 332		return false;
 333	}
 334
 335	return true;
 336}
 337
 338/*
 339 * NOTE: Called under qdisc_lock(q) with locally disabled BH.
 340 *
 341 * running seqcount guarantees only one CPU can process
 342 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for
 343 * this queue.
 344 *
 345 *  netif_tx_lock serializes accesses to device driver.
 346 *
 347 *  qdisc_lock(q) and netif_tx_lock are mutually exclusive,
 348 *  if one is grabbed, another must be free.
 349 *
 350 * Note, that this procedure can be called by a watchdog timer
 351 *
 352 * Returns to the caller:
 353 *				0  - queue is empty or throttled.
 354 *				>0 - queue is not empty.
 355 *
 356 */
 357static inline bool qdisc_restart(struct Qdisc *q, int *packets)
 358{
 359	spinlock_t *root_lock = NULL;
 360	struct netdev_queue *txq;
 361	struct net_device *dev;
 362	struct sk_buff *skb;
 363	bool validate;
 364
 365	/* Dequeue packet */
 366	skb = dequeue_skb(q, &validate, packets);
 367	if (unlikely(!skb))
 368		return false;
 369
 370	if (!(q->flags & TCQ_F_NOLOCK))
 371		root_lock = qdisc_lock(q);
 372
 373	dev = qdisc_dev(q);
 374	txq = skb_get_tx_queue(dev, skb);
 375
 376	return sch_direct_xmit(skb, q, dev, txq, root_lock, validate);
 377}
 378
 379void __qdisc_run(struct Qdisc *q)
 380{
 381	int quota = dev_tx_weight;
 382	int packets;
 383
 384	while (qdisc_restart(q, &packets)) {
 385		/*
 386		 * Ordered by possible occurrence: Postpone processing if
 387		 * 1. we've exceeded packet quota
 388		 * 2. another process needs the CPU;
 389		 */
 390		quota -= packets;
 391		if (quota <= 0 || need_resched()) {
 392			__netif_schedule(q);
 
 
 
 
 393			break;
 394		}
 395	}
 396}
 397
 398unsigned long dev_trans_start(struct net_device *dev)
 399{
 400	unsigned long val, res;
 
 401	unsigned int i;
 402
 403	if (is_vlan_dev(dev))
 404		dev = vlan_dev_real_dev(dev);
 405	else if (netif_is_macvlan(dev))
 406		dev = macvlan_dev_real_dev(dev);
 407	res = netdev_get_tx_queue(dev, 0)->trans_start;
 408	for (i = 1; i < dev->num_tx_queues; i++) {
 409		val = netdev_get_tx_queue(dev, i)->trans_start;
 410		if (val && time_after(val, res))
 411			res = val;
 412	}
 413
 414	return res;
 415}
 416EXPORT_SYMBOL(dev_trans_start);
 417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 418static void dev_watchdog(struct timer_list *t)
 419{
 420	struct net_device *dev = from_timer(dev, t, watchdog_timer);
 
 421
 422	netif_tx_lock(dev);
 423	if (!qdisc_tx_is_noop(dev)) {
 424		if (netif_device_present(dev) &&
 425		    netif_running(dev) &&
 426		    netif_carrier_ok(dev)) {
 427			int some_queue_timedout = 0;
 428			unsigned int i;
 429			unsigned long trans_start;
 430
 431			for (i = 0; i < dev->num_tx_queues; i++) {
 432				struct netdev_queue *txq;
 433
 434				txq = netdev_get_tx_queue(dev, i);
 435				trans_start = txq->trans_start;
 436				if (netif_xmit_stopped(txq) &&
 437				    time_after(jiffies, (trans_start +
 438							 dev->watchdog_timeo))) {
 439					some_queue_timedout = 1;
 440					txq->trans_timeout++;
 441					break;
 442				}
 443			}
 444
 445			if (some_queue_timedout) {
 446				trace_net_dev_xmit_timeout(dev, i);
 447				WARN_ONCE(1, KERN_INFO "NETDEV WATCHDOG: %s (%s): transmit queue %u timed out\n",
 448				       dev->name, netdev_drivername(dev), i);
 449				dev->netdev_ops->ndo_tx_timeout(dev);
 
 
 
 450			}
 451			if (!mod_timer(&dev->watchdog_timer,
 452				       round_jiffies(jiffies +
 453						     dev->watchdog_timeo)))
 454				dev_hold(dev);
 455		}
 456	}
 457	netif_tx_unlock(dev);
 458
 459	dev_put(dev);
 
 460}
 461
 462void __netdev_watchdog_up(struct net_device *dev)
 463{
 464	if (dev->netdev_ops->ndo_tx_timeout) {
 465		if (dev->watchdog_timeo <= 0)
 466			dev->watchdog_timeo = 5*HZ;
 467		if (!mod_timer(&dev->watchdog_timer,
 468			       round_jiffies(jiffies + dev->watchdog_timeo)))
 469			dev_hold(dev);
 
 470	}
 471}
 
 472
 473static void dev_watchdog_up(struct net_device *dev)
 474{
 475	__netdev_watchdog_up(dev);
 476}
 477
 478static void dev_watchdog_down(struct net_device *dev)
 479{
 480	netif_tx_lock_bh(dev);
 481	if (del_timer(&dev->watchdog_timer))
 482		dev_put(dev);
 483	netif_tx_unlock_bh(dev);
 484}
 485
 486/**
 487 *	netif_carrier_on - set carrier
 488 *	@dev: network device
 489 *
 490 * Device has detected acquisition of carrier.
 491 */
 492void netif_carrier_on(struct net_device *dev)
 493{
 494	if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
 495		if (dev->reg_state == NETREG_UNINITIALIZED)
 496			return;
 497		atomic_inc(&dev->carrier_up_count);
 498		linkwatch_fire_event(dev);
 499		if (netif_running(dev))
 500			__netdev_watchdog_up(dev);
 501	}
 502}
 503EXPORT_SYMBOL(netif_carrier_on);
 504
 505/**
 506 *	netif_carrier_off - clear carrier
 507 *	@dev: network device
 508 *
 509 * Device has detected loss of carrier.
 510 */
 511void netif_carrier_off(struct net_device *dev)
 512{
 513	if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
 514		if (dev->reg_state == NETREG_UNINITIALIZED)
 515			return;
 516		atomic_inc(&dev->carrier_down_count);
 517		linkwatch_fire_event(dev);
 518	}
 519}
 520EXPORT_SYMBOL(netif_carrier_off);
 521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522/* "NOOP" scheduler: the best scheduler, recommended for all interfaces
 523   under all circumstances. It is difficult to invent anything faster or
 524   cheaper.
 525 */
 526
 527static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
 528			struct sk_buff **to_free)
 529{
 530	__qdisc_drop(skb, to_free);
 531	return NET_XMIT_CN;
 532}
 533
 534static struct sk_buff *noop_dequeue(struct Qdisc *qdisc)
 535{
 536	return NULL;
 537}
 538
 539struct Qdisc_ops noop_qdisc_ops __read_mostly = {
 540	.id		=	"noop",
 541	.priv_size	=	0,
 542	.enqueue	=	noop_enqueue,
 543	.dequeue	=	noop_dequeue,
 544	.peek		=	noop_dequeue,
 545	.owner		=	THIS_MODULE,
 546};
 547
 548static struct netdev_queue noop_netdev_queue = {
 549	RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc),
 550	.qdisc_sleeping	=	&noop_qdisc,
 551};
 552
 553struct Qdisc noop_qdisc = {
 554	.enqueue	=	noop_enqueue,
 555	.dequeue	=	noop_dequeue,
 556	.flags		=	TCQ_F_BUILTIN,
 557	.ops		=	&noop_qdisc_ops,
 558	.q.lock		=	__SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock),
 559	.dev_queue	=	&noop_netdev_queue,
 560	.running	=	SEQCNT_ZERO(noop_qdisc.running),
 561	.busylock	=	__SPIN_LOCK_UNLOCKED(noop_qdisc.busylock),
 562	.gso_skb = {
 563		.next = (struct sk_buff *)&noop_qdisc.gso_skb,
 564		.prev = (struct sk_buff *)&noop_qdisc.gso_skb,
 565		.qlen = 0,
 566		.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock),
 567	},
 568	.skb_bad_txq = {
 569		.next = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
 570		.prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
 571		.qlen = 0,
 572		.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock),
 573	},
 574};
 575EXPORT_SYMBOL(noop_qdisc);
 576
 577static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt,
 578			struct netlink_ext_ack *extack)
 579{
 580	/* register_qdisc() assigns a default of noop_enqueue if unset,
 581	 * but __dev_queue_xmit() treats noqueue only as such
 582	 * if this is NULL - so clear it here. */
 583	qdisc->enqueue = NULL;
 584	return 0;
 585}
 586
 587struct Qdisc_ops noqueue_qdisc_ops __read_mostly = {
 588	.id		=	"noqueue",
 589	.priv_size	=	0,
 590	.init		=	noqueue_init,
 591	.enqueue	=	noop_enqueue,
 592	.dequeue	=	noop_dequeue,
 593	.peek		=	noop_dequeue,
 594	.owner		=	THIS_MODULE,
 595};
 596
 597static const u8 prio2band[TC_PRIO_MAX + 1] = {
 598	1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1
 599};
 
 600
 601/* 3-band FIFO queue: old style, but should be a bit faster than
 602   generic prio+fifo combination.
 603 */
 604
 605#define PFIFO_FAST_BANDS 3
 606
 607/*
 608 * Private data for a pfifo_fast scheduler containing:
 609 *	- rings for priority bands
 610 */
 611struct pfifo_fast_priv {
 612	struct skb_array q[PFIFO_FAST_BANDS];
 613};
 614
 615static inline struct skb_array *band2list(struct pfifo_fast_priv *priv,
 616					  int band)
 617{
 618	return &priv->q[band];
 619}
 620
 621static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
 622			      struct sk_buff **to_free)
 623{
 624	int band = prio2band[skb->priority & TC_PRIO_MAX];
 625	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
 626	struct skb_array *q = band2list(priv, band);
 627	unsigned int pkt_len = qdisc_pkt_len(skb);
 628	int err;
 629
 630	err = skb_array_produce(q, skb);
 631
 632	if (unlikely(err)) {
 633		if (qdisc_is_percpu_stats(qdisc))
 634			return qdisc_drop_cpu(skb, qdisc, to_free);
 635		else
 636			return qdisc_drop(skb, qdisc, to_free);
 637	}
 638
 639	qdisc_update_stats_at_enqueue(qdisc, pkt_len);
 640	return NET_XMIT_SUCCESS;
 641}
 642
 643static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc)
 644{
 645	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
 646	struct sk_buff *skb = NULL;
 
 647	int band;
 648
 
 649	for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
 650		struct skb_array *q = band2list(priv, band);
 651
 652		if (__skb_array_empty(q))
 653			continue;
 654
 655		skb = __skb_array_consume(q);
 656	}
 657	if (likely(skb)) {
 658		qdisc_update_stats_at_dequeue(qdisc, skb);
 659	} else {
 660		qdisc->empty = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 661	}
 662
 663	return skb;
 664}
 665
 666static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc)
 667{
 668	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
 669	struct sk_buff *skb = NULL;
 670	int band;
 671
 672	for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
 673		struct skb_array *q = band2list(priv, band);
 674
 675		skb = __skb_array_peek(q);
 676	}
 677
 678	return skb;
 679}
 680
 681static void pfifo_fast_reset(struct Qdisc *qdisc)
 682{
 683	int i, band;
 684	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
 685
 686	for (band = 0; band < PFIFO_FAST_BANDS; band++) {
 687		struct skb_array *q = band2list(priv, band);
 688		struct sk_buff *skb;
 689
 690		/* NULL ring is possible if destroy path is due to a failed
 691		 * skb_array_init() in pfifo_fast_init() case.
 692		 */
 693		if (!q->ring.queue)
 694			continue;
 695
 696		while ((skb = __skb_array_consume(q)) != NULL)
 697			kfree_skb(skb);
 698	}
 699
 700	if (qdisc_is_percpu_stats(qdisc)) {
 701		for_each_possible_cpu(i) {
 702			struct gnet_stats_queue *q;
 703
 704			q = per_cpu_ptr(qdisc->cpu_qstats, i);
 705			q->backlog = 0;
 706			q->qlen = 0;
 707		}
 708	}
 709}
 710
 711static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb)
 712{
 713	struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS };
 714
 715	memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1);
 716	if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
 717		goto nla_put_failure;
 718	return skb->len;
 719
 720nla_put_failure:
 721	return -1;
 722}
 723
 724static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt,
 725			   struct netlink_ext_ack *extack)
 726{
 727	unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len;
 728	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
 729	int prio;
 730
 731	/* guard against zero length rings */
 732	if (!qlen)
 733		return -EINVAL;
 734
 735	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
 736		struct skb_array *q = band2list(priv, prio);
 737		int err;
 738
 739		err = skb_array_init(q, qlen, GFP_KERNEL);
 740		if (err)
 741			return -ENOMEM;
 742	}
 743
 744	/* Can by-pass the queue discipline */
 745	qdisc->flags |= TCQ_F_CAN_BYPASS;
 746	return 0;
 747}
 748
 749static void pfifo_fast_destroy(struct Qdisc *sch)
 750{
 751	struct pfifo_fast_priv *priv = qdisc_priv(sch);
 752	int prio;
 753
 754	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
 755		struct skb_array *q = band2list(priv, prio);
 756
 757		/* NULL ring is possible if destroy path is due to a failed
 758		 * skb_array_init() in pfifo_fast_init() case.
 759		 */
 760		if (!q->ring.queue)
 761			continue;
 762		/* Destroy ring but no need to kfree_skb because a call to
 763		 * pfifo_fast_reset() has already done that work.
 764		 */
 765		ptr_ring_cleanup(&q->ring, NULL);
 766	}
 767}
 768
 769static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch,
 770					  unsigned int new_len)
 771{
 772	struct pfifo_fast_priv *priv = qdisc_priv(sch);
 773	struct skb_array *bands[PFIFO_FAST_BANDS];
 774	int prio;
 775
 776	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
 777		struct skb_array *q = band2list(priv, prio);
 778
 779		bands[prio] = q;
 780	}
 781
 782	return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len,
 783					 GFP_KERNEL);
 784}
 785
 786struct Qdisc_ops pfifo_fast_ops __read_mostly = {
 787	.id		=	"pfifo_fast",
 788	.priv_size	=	sizeof(struct pfifo_fast_priv),
 789	.enqueue	=	pfifo_fast_enqueue,
 790	.dequeue	=	pfifo_fast_dequeue,
 791	.peek		=	pfifo_fast_peek,
 792	.init		=	pfifo_fast_init,
 793	.destroy	=	pfifo_fast_destroy,
 794	.reset		=	pfifo_fast_reset,
 795	.dump		=	pfifo_fast_dump,
 796	.change_tx_queue_len =  pfifo_fast_change_tx_queue_len,
 797	.owner		=	THIS_MODULE,
 798	.static_flags	=	TCQ_F_NOLOCK | TCQ_F_CPUSTATS,
 799};
 800EXPORT_SYMBOL(pfifo_fast_ops);
 801
 
 
 802struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue,
 803			  const struct Qdisc_ops *ops,
 804			  struct netlink_ext_ack *extack)
 805{
 806	void *p;
 807	struct Qdisc *sch;
 808	unsigned int size = QDISC_ALIGN(sizeof(*sch)) + ops->priv_size;
 809	int err = -ENOBUFS;
 810	struct net_device *dev;
 811
 812	if (!dev_queue) {
 813		NL_SET_ERR_MSG(extack, "No device queue given");
 814		err = -EINVAL;
 815		goto errout;
 816	}
 817
 818	dev = dev_queue->dev;
 819	p = kzalloc_node(size, GFP_KERNEL,
 820			 netdev_queue_numa_node_read(dev_queue));
 821
 822	if (!p)
 823		goto errout;
 824	sch = (struct Qdisc *) QDISC_ALIGN((unsigned long) p);
 825	/* if we got non aligned memory, ask more and do alignment ourself */
 826	if (sch != p) {
 827		kfree(p);
 828		p = kzalloc_node(size + QDISC_ALIGNTO - 1, GFP_KERNEL,
 829				 netdev_queue_numa_node_read(dev_queue));
 830		if (!p)
 831			goto errout;
 832		sch = (struct Qdisc *) QDISC_ALIGN((unsigned long) p);
 833		sch->padded = (char *) sch - (char *) p;
 834	}
 835	__skb_queue_head_init(&sch->gso_skb);
 836	__skb_queue_head_init(&sch->skb_bad_txq);
 837	qdisc_skb_head_init(&sch->q);
 838	spin_lock_init(&sch->q.lock);
 839
 840	if (ops->static_flags & TCQ_F_CPUSTATS) {
 841		sch->cpu_bstats =
 842			netdev_alloc_pcpu_stats(struct gnet_stats_basic_cpu);
 843		if (!sch->cpu_bstats)
 844			goto errout1;
 845
 846		sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue);
 847		if (!sch->cpu_qstats) {
 848			free_percpu(sch->cpu_bstats);
 849			goto errout1;
 850		}
 851	}
 852
 853	spin_lock_init(&sch->busylock);
 
 
 
 854	/* seqlock has the same scope of busylock, for NOLOCK qdisc */
 855	spin_lock_init(&sch->seqlock);
 856	seqcount_init(&sch->running);
 
 857
 858	sch->ops = ops;
 859	sch->flags = ops->static_flags;
 860	sch->enqueue = ops->enqueue;
 861	sch->dequeue = ops->dequeue;
 862	sch->dev_queue = dev_queue;
 863	sch->empty = true;
 864	dev_hold(dev);
 865	refcount_set(&sch->refcnt, 1);
 866
 867	if (sch != &noop_qdisc) {
 868		lockdep_set_class(&sch->busylock, &dev->qdisc_tx_busylock_key);
 869		lockdep_set_class(&sch->seqlock, &dev->qdisc_tx_busylock_key);
 870		lockdep_set_class(&sch->running, &dev->qdisc_running_key);
 871	}
 872
 873	return sch;
 874errout1:
 875	kfree(p);
 876errout:
 877	return ERR_PTR(err);
 878}
 879
 880struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue,
 881				const struct Qdisc_ops *ops,
 882				unsigned int parentid,
 883				struct netlink_ext_ack *extack)
 884{
 885	struct Qdisc *sch;
 886
 887	if (!try_module_get(ops->owner)) {
 888		NL_SET_ERR_MSG(extack, "Failed to increase module reference counter");
 889		return NULL;
 890	}
 891
 892	sch = qdisc_alloc(dev_queue, ops, extack);
 893	if (IS_ERR(sch)) {
 894		module_put(ops->owner);
 895		return NULL;
 896	}
 897	sch->parent = parentid;
 898
 899	if (!ops->init || ops->init(sch, NULL, extack) == 0)
 
 900		return sch;
 
 901
 902	qdisc_put(sch);
 903	return NULL;
 904}
 905EXPORT_SYMBOL(qdisc_create_dflt);
 906
 907/* Under qdisc_lock(qdisc) and BH! */
 908
 909void qdisc_reset(struct Qdisc *qdisc)
 910{
 911	const struct Qdisc_ops *ops = qdisc->ops;
 912	struct sk_buff *skb, *tmp;
 
 913
 914	if (ops->reset)
 915		ops->reset(qdisc);
 916
 917	skb_queue_walk_safe(&qdisc->gso_skb, skb, tmp) {
 918		__skb_unlink(skb, &qdisc->gso_skb);
 919		kfree_skb_list(skb);
 920	}
 921
 922	skb_queue_walk_safe(&qdisc->skb_bad_txq, skb, tmp) {
 923		__skb_unlink(skb, &qdisc->skb_bad_txq);
 924		kfree_skb_list(skb);
 925	}
 926
 927	qdisc->q.qlen = 0;
 928	qdisc->qstats.backlog = 0;
 929}
 930EXPORT_SYMBOL(qdisc_reset);
 931
 932void qdisc_free(struct Qdisc *qdisc)
 933{
 934	if (qdisc_is_percpu_stats(qdisc)) {
 935		free_percpu(qdisc->cpu_bstats);
 936		free_percpu(qdisc->cpu_qstats);
 937	}
 938
 939	kfree((char *) qdisc - qdisc->padded);
 940}
 941
 942static void qdisc_free_cb(struct rcu_head *head)
 943{
 944	struct Qdisc *q = container_of(head, struct Qdisc, rcu);
 945
 946	qdisc_free(q);
 947}
 948
 949static void qdisc_destroy(struct Qdisc *qdisc)
 950{
 951	const struct Qdisc_ops  *ops = qdisc->ops;
 952	struct sk_buff *skb, *tmp;
 953
 954#ifdef CONFIG_NET_SCHED
 955	qdisc_hash_del(qdisc);
 956
 957	qdisc_put_stab(rtnl_dereference(qdisc->stab));
 958#endif
 959	gen_kill_estimator(&qdisc->rate_est);
 960	if (ops->reset)
 961		ops->reset(qdisc);
 
 
 962	if (ops->destroy)
 963		ops->destroy(qdisc);
 964
 965	module_put(ops->owner);
 966	dev_put(qdisc_dev(qdisc));
 967
 968	skb_queue_walk_safe(&qdisc->gso_skb, skb, tmp) {
 969		__skb_unlink(skb, &qdisc->gso_skb);
 970		kfree_skb_list(skb);
 971	}
 972
 973	skb_queue_walk_safe(&qdisc->skb_bad_txq, skb, tmp) {
 974		__skb_unlink(skb, &qdisc->skb_bad_txq);
 975		kfree_skb_list(skb);
 976	}
 977
 978	call_rcu(&qdisc->rcu, qdisc_free_cb);
 979}
 980
 
 
 
 
 
 
 
 
 981void qdisc_put(struct Qdisc *qdisc)
 982{
 983	if (!qdisc)
 984		return;
 985
 986	if (qdisc->flags & TCQ_F_BUILTIN ||
 987	    !refcount_dec_and_test(&qdisc->refcnt))
 988		return;
 989
 990	qdisc_destroy(qdisc);
 991}
 992EXPORT_SYMBOL(qdisc_put);
 993
 994/* Version of qdisc_put() that is called with rtnl mutex unlocked.
 995 * Intended to be used as optimization, this function only takes rtnl lock if
 996 * qdisc reference counter reached zero.
 997 */
 998
 999void qdisc_put_unlocked(struct Qdisc *qdisc)
1000{
1001	if (qdisc->flags & TCQ_F_BUILTIN ||
1002	    !refcount_dec_and_rtnl_lock(&qdisc->refcnt))
1003		return;
1004
1005	qdisc_destroy(qdisc);
1006	rtnl_unlock();
1007}
1008EXPORT_SYMBOL(qdisc_put_unlocked);
1009
1010/* Attach toplevel qdisc to device queue. */
1011struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue,
1012			      struct Qdisc *qdisc)
1013{
1014	struct Qdisc *oqdisc = dev_queue->qdisc_sleeping;
1015	spinlock_t *root_lock;
1016
1017	root_lock = qdisc_lock(oqdisc);
1018	spin_lock_bh(root_lock);
1019
1020	/* ... and graft new one */
1021	if (qdisc == NULL)
1022		qdisc = &noop_qdisc;
1023	dev_queue->qdisc_sleeping = qdisc;
1024	rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc);
1025
1026	spin_unlock_bh(root_lock);
1027
1028	return oqdisc;
1029}
1030EXPORT_SYMBOL(dev_graft_qdisc);
1031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032static void attach_one_default_qdisc(struct net_device *dev,
1033				     struct netdev_queue *dev_queue,
1034				     void *_unused)
1035{
1036	struct Qdisc *qdisc;
1037	const struct Qdisc_ops *ops = default_qdisc_ops;
1038
1039	if (dev->priv_flags & IFF_NO_QUEUE)
1040		ops = &noqueue_qdisc_ops;
1041	else if(dev->type == ARPHRD_CAN)
1042		ops = &pfifo_fast_ops;
1043
1044	qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL);
1045	if (!qdisc) {
1046		netdev_info(dev, "activation failed\n");
1047		return;
1048	}
1049	if (!netif_is_multiqueue(dev))
1050		qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1051	dev_queue->qdisc_sleeping = qdisc;
1052}
1053
1054static void attach_default_qdiscs(struct net_device *dev)
1055{
1056	struct netdev_queue *txq;
1057	struct Qdisc *qdisc;
1058
1059	txq = netdev_get_tx_queue(dev, 0);
1060
1061	if (!netif_is_multiqueue(dev) ||
1062	    dev->priv_flags & IFF_NO_QUEUE) {
1063		netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1064		dev->qdisc = txq->qdisc_sleeping;
1065		qdisc_refcount_inc(dev->qdisc);
 
1066	} else {
1067		qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL);
1068		if (qdisc) {
1069			dev->qdisc = qdisc;
1070			qdisc->ops->attach(qdisc);
1071		}
1072	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1073#ifdef CONFIG_NET_SCHED
1074	if (dev->qdisc != &noop_qdisc)
1075		qdisc_hash_add(dev->qdisc, false);
1076#endif
1077}
1078
1079static void transition_one_qdisc(struct net_device *dev,
1080				 struct netdev_queue *dev_queue,
1081				 void *_need_watchdog)
1082{
1083	struct Qdisc *new_qdisc = dev_queue->qdisc_sleeping;
1084	int *need_watchdog_p = _need_watchdog;
1085
1086	if (!(new_qdisc->flags & TCQ_F_BUILTIN))
1087		clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state);
1088
1089	rcu_assign_pointer(dev_queue->qdisc, new_qdisc);
1090	if (need_watchdog_p) {
1091		dev_queue->trans_start = 0;
1092		*need_watchdog_p = 1;
1093	}
1094}
1095
1096void dev_activate(struct net_device *dev)
1097{
1098	int need_watchdog;
1099
1100	/* No queueing discipline is attached to device;
1101	 * create default one for devices, which need queueing
1102	 * and noqueue_qdisc for virtual interfaces
1103	 */
1104
1105	if (dev->qdisc == &noop_qdisc)
1106		attach_default_qdiscs(dev);
1107
1108	if (!netif_carrier_ok(dev))
1109		/* Delay activation until next carrier-on event */
1110		return;
1111
1112	need_watchdog = 0;
1113	netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog);
1114	if (dev_ingress_queue(dev))
1115		transition_one_qdisc(dev, dev_ingress_queue(dev), NULL);
1116
1117	if (need_watchdog) {
1118		netif_trans_update(dev);
1119		dev_watchdog_up(dev);
1120	}
1121}
1122EXPORT_SYMBOL(dev_activate);
1123
 
 
 
 
 
 
 
 
1124static void dev_deactivate_queue(struct net_device *dev,
1125				 struct netdev_queue *dev_queue,
1126				 void *_qdisc_default)
1127{
1128	struct Qdisc *qdisc_default = _qdisc_default;
1129	struct Qdisc *qdisc;
1130
1131	qdisc = rtnl_dereference(dev_queue->qdisc);
1132	if (qdisc) {
1133		bool nolock = qdisc->flags & TCQ_F_NOLOCK;
 
 
 
1134
1135		if (nolock)
1136			spin_lock_bh(&qdisc->seqlock);
1137		spin_lock_bh(qdisc_lock(qdisc));
 
 
 
1138
1139		if (!(qdisc->flags & TCQ_F_BUILTIN))
1140			set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state);
 
1141
1142		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1143		qdisc_reset(qdisc);
1144
1145		spin_unlock_bh(qdisc_lock(qdisc));
1146		if (nolock)
1147			spin_unlock_bh(&qdisc->seqlock);
 
 
 
 
 
 
 
 
1148	}
1149}
1150
1151static bool some_qdisc_is_busy(struct net_device *dev)
1152{
1153	unsigned int i;
1154
1155	for (i = 0; i < dev->num_tx_queues; i++) {
1156		struct netdev_queue *dev_queue;
1157		spinlock_t *root_lock;
1158		struct Qdisc *q;
1159		int val;
1160
1161		dev_queue = netdev_get_tx_queue(dev, i);
1162		q = dev_queue->qdisc_sleeping;
1163
1164		root_lock = qdisc_lock(q);
1165		spin_lock_bh(root_lock);
1166
1167		val = (qdisc_is_running(q) ||
1168		       test_bit(__QDISC_STATE_SCHED, &q->state));
1169
1170		spin_unlock_bh(root_lock);
1171
1172		if (val)
1173			return true;
1174	}
1175	return false;
1176}
1177
1178static void dev_qdisc_reset(struct net_device *dev,
1179			    struct netdev_queue *dev_queue,
1180			    void *none)
1181{
1182	struct Qdisc *qdisc = dev_queue->qdisc_sleeping;
1183
1184	if (qdisc)
1185		qdisc_reset(qdisc);
1186}
1187
1188/**
1189 * 	dev_deactivate_many - deactivate transmissions on several devices
1190 * 	@head: list of devices to deactivate
1191 *
1192 *	This function returns only when all outstanding transmissions
1193 *	have completed, unless all devices are in dismantle phase.
1194 */
1195void dev_deactivate_many(struct list_head *head)
1196{
1197	struct net_device *dev;
1198
1199	list_for_each_entry(dev, head, close_list) {
1200		netdev_for_each_tx_queue(dev, dev_deactivate_queue,
1201					 &noop_qdisc);
1202		if (dev_ingress_queue(dev))
1203			dev_deactivate_queue(dev, dev_ingress_queue(dev),
1204					     &noop_qdisc);
1205
1206		dev_watchdog_down(dev);
1207	}
1208
1209	/* Wait for outstanding qdisc-less dev_queue_xmit calls.
 
1210	 * This is avoided if all devices are in dismantle phase :
1211	 * Caller will call synchronize_net() for us
1212	 */
1213	synchronize_net();
1214
1215	/* Wait for outstanding qdisc_run calls. */
1216	list_for_each_entry(dev, head, close_list) {
1217		while (some_qdisc_is_busy(dev))
1218			yield();
1219		/* The new qdisc is assigned at this point so we can safely
1220		 * unwind stale skb lists and qdisc statistics
1221		 */
1222		netdev_for_each_tx_queue(dev, dev_qdisc_reset, NULL);
1223		if (dev_ingress_queue(dev))
1224			dev_qdisc_reset(dev, dev_ingress_queue(dev), NULL);
 
 
 
 
 
 
 
 
 
 
 
1225	}
1226}
1227
1228void dev_deactivate(struct net_device *dev)
1229{
1230	LIST_HEAD(single);
1231
1232	list_add(&dev->close_list, &single);
1233	dev_deactivate_many(&single);
1234	list_del(&single);
1235}
1236EXPORT_SYMBOL(dev_deactivate);
1237
1238static int qdisc_change_tx_queue_len(struct net_device *dev,
1239				     struct netdev_queue *dev_queue)
1240{
1241	struct Qdisc *qdisc = dev_queue->qdisc_sleeping;
1242	const struct Qdisc_ops *ops = qdisc->ops;
1243
1244	if (ops->change_tx_queue_len)
1245		return ops->change_tx_queue_len(qdisc, dev->tx_queue_len);
1246	return 0;
1247}
1248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1249int dev_qdisc_change_tx_queue_len(struct net_device *dev)
1250{
1251	bool up = dev->flags & IFF_UP;
1252	unsigned int i;
1253	int ret = 0;
1254
1255	if (up)
1256		dev_deactivate(dev);
1257
1258	for (i = 0; i < dev->num_tx_queues; i++) {
1259		ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]);
1260
1261		/* TODO: revert changes on a partial failure */
1262		if (ret)
1263			break;
1264	}
1265
1266	if (up)
1267		dev_activate(dev);
1268	return ret;
1269}
1270
1271static void dev_init_scheduler_queue(struct net_device *dev,
1272				     struct netdev_queue *dev_queue,
1273				     void *_qdisc)
1274{
1275	struct Qdisc *qdisc = _qdisc;
1276
1277	rcu_assign_pointer(dev_queue->qdisc, qdisc);
1278	dev_queue->qdisc_sleeping = qdisc;
1279}
1280
1281void dev_init_scheduler(struct net_device *dev)
1282{
1283	dev->qdisc = &noop_qdisc;
1284	netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc);
1285	if (dev_ingress_queue(dev))
1286		dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1287
1288	timer_setup(&dev->watchdog_timer, dev_watchdog, 0);
1289}
1290
1291static void shutdown_scheduler_queue(struct net_device *dev,
1292				     struct netdev_queue *dev_queue,
1293				     void *_qdisc_default)
1294{
1295	struct Qdisc *qdisc = dev_queue->qdisc_sleeping;
1296	struct Qdisc *qdisc_default = _qdisc_default;
1297
1298	if (qdisc) {
1299		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1300		dev_queue->qdisc_sleeping = qdisc_default;
1301
1302		qdisc_put(qdisc);
1303	}
1304}
1305
1306void dev_shutdown(struct net_device *dev)
1307{
1308	netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1309	if (dev_ingress_queue(dev))
1310		shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1311	qdisc_put(dev->qdisc);
1312	dev->qdisc = &noop_qdisc;
1313
1314	WARN_ON(timer_pending(&dev->watchdog_timer));
1315}
1316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1317void psched_ratecfg_precompute(struct psched_ratecfg *r,
1318			       const struct tc_ratespec *conf,
1319			       u64 rate64)
1320{
1321	memset(r, 0, sizeof(*r));
1322	r->overhead = conf->overhead;
 
1323	r->rate_bytes_ps = max_t(u64, conf->rate, rate64);
1324	r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK);
1325	r->mult = 1;
1326	/*
1327	 * The deal here is to replace a divide by a reciprocal one
1328	 * in fast path (a reciprocal divide is a multiply and a shift)
1329	 *
1330	 * Normal formula would be :
1331	 *  time_in_ns = (NSEC_PER_SEC * len) / rate_bps
1332	 *
1333	 * We compute mult/shift to use instead :
1334	 *  time_in_ns = (len * mult) >> shift;
1335	 *
1336	 * We try to get the highest possible mult value for accuracy,
1337	 * but have to make sure no overflows will ever happen.
1338	 */
1339	if (r->rate_bytes_ps > 0) {
1340		u64 factor = NSEC_PER_SEC;
1341
1342		for (;;) {
1343			r->mult = div64_u64(factor, r->rate_bytes_ps);
1344			if (r->mult & (1U << 31) || factor & (1ULL << 63))
1345				break;
1346			factor <<= 1;
1347			r->shift++;
1348		}
1349	}
1350}
1351EXPORT_SYMBOL(psched_ratecfg_precompute);
1352
1353static void mini_qdisc_rcu_func(struct rcu_head *head)
1354{
 
 
1355}
 
1356
1357void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp,
1358			  struct tcf_proto *tp_head)
1359{
1360	/* Protected with chain0->filter_chain_lock.
1361	 * Can't access chain directly because tp_head can be NULL.
1362	 */
1363	struct mini_Qdisc *miniq_old =
1364		rcu_dereference_protected(*miniqp->p_miniq, 1);
1365	struct mini_Qdisc *miniq;
1366
1367	if (!tp_head) {
1368		RCU_INIT_POINTER(*miniqp->p_miniq, NULL);
1369		/* Wait for flying RCU callback before it is freed. */
1370		rcu_barrier();
1371		return;
1372	}
1373
1374	miniq = !miniq_old || miniq_old == &miniqp->miniq2 ?
1375		&miniqp->miniq1 : &miniqp->miniq2;
 
 
 
 
 
 
 
1376
1377	/* We need to make sure that readers won't see the miniq
1378	 * we are about to modify. So wait until previous call_rcu callback
1379	 * is done.
1380	 */
1381	rcu_barrier();
1382	miniq->filter_list = tp_head;
1383	rcu_assign_pointer(*miniqp->p_miniq, miniq);
1384
1385	if (miniq_old)
1386		/* This is counterpart of the rcu barriers above. We need to
1387		 * block potential new user of miniq_old until all readers
1388		 * are not seeing it.
1389		 */
1390		call_rcu(&miniq_old->rcu, mini_qdisc_rcu_func);
1391}
1392EXPORT_SYMBOL(mini_qdisc_pair_swap);
1393
 
 
 
 
 
 
 
 
1394void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc,
1395			  struct mini_Qdisc __rcu **p_miniq)
1396{
1397	miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats;
1398	miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats;
1399	miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats;
1400	miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats;
 
 
1401	miniqp->p_miniq = p_miniq;
1402}
1403EXPORT_SYMBOL(mini_qdisc_pair_init);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * net/sched/sch_generic.c	Generic packet scheduler routines.
   4 *
   5 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
   6 *              Jamal Hadi Salim, <hadi@cyberus.ca> 990601
   7 *              - Ingress support
   8 */
   9
  10#include <linux/bitops.h>
  11#include <linux/module.h>
  12#include <linux/types.h>
  13#include <linux/kernel.h>
  14#include <linux/sched.h>
  15#include <linux/string.h>
  16#include <linux/errno.h>
  17#include <linux/netdevice.h>
  18#include <linux/skbuff.h>
  19#include <linux/rtnetlink.h>
  20#include <linux/init.h>
  21#include <linux/rcupdate.h>
  22#include <linux/list.h>
  23#include <linux/slab.h>
  24#include <linux/if_vlan.h>
  25#include <linux/skb_array.h>
  26#include <linux/if_macvlan.h>
  27#include <net/sch_generic.h>
  28#include <net/pkt_sched.h>
  29#include <net/dst.h>
  30#include <net/hotdata.h>
  31#include <trace/events/qdisc.h>
  32#include <trace/events/net.h>
  33#include <net/xfrm.h>
  34
  35/* Qdisc to use by default */
  36const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops;
  37EXPORT_SYMBOL(default_qdisc_ops);
  38
  39static void qdisc_maybe_clear_missed(struct Qdisc *q,
  40				     const struct netdev_queue *txq)
  41{
  42	clear_bit(__QDISC_STATE_MISSED, &q->state);
  43
  44	/* Make sure the below netif_xmit_frozen_or_stopped()
  45	 * checking happens after clearing STATE_MISSED.
  46	 */
  47	smp_mb__after_atomic();
  48
  49	/* Checking netif_xmit_frozen_or_stopped() again to
  50	 * make sure STATE_MISSED is set if the STATE_MISSED
  51	 * set by netif_tx_wake_queue()'s rescheduling of
  52	 * net_tx_action() is cleared by the above clear_bit().
  53	 */
  54	if (!netif_xmit_frozen_or_stopped(txq))
  55		set_bit(__QDISC_STATE_MISSED, &q->state);
  56	else
  57		set_bit(__QDISC_STATE_DRAINING, &q->state);
  58}
  59
  60/* Main transmission queue. */
  61
  62/* Modifications to data participating in scheduling must be protected with
  63 * qdisc_lock(qdisc) spinlock.
  64 *
  65 * The idea is the following:
  66 * - enqueue, dequeue are serialized via qdisc root lock
  67 * - ingress filtering is also serialized via qdisc root lock
  68 * - updates to tree and tree walking are only done under the rtnl mutex.
  69 */
  70
  71#define SKB_XOFF_MAGIC ((struct sk_buff *)1UL)
  72
  73static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q)
  74{
  75	const struct netdev_queue *txq = q->dev_queue;
  76	spinlock_t *lock = NULL;
  77	struct sk_buff *skb;
  78
  79	if (q->flags & TCQ_F_NOLOCK) {
  80		lock = qdisc_lock(q);
  81		spin_lock(lock);
  82	}
  83
  84	skb = skb_peek(&q->skb_bad_txq);
  85	if (skb) {
  86		/* check the reason of requeuing without tx lock first */
  87		txq = skb_get_tx_queue(txq->dev, skb);
  88		if (!netif_xmit_frozen_or_stopped(txq)) {
  89			skb = __skb_dequeue(&q->skb_bad_txq);
  90			if (qdisc_is_percpu_stats(q)) {
  91				qdisc_qstats_cpu_backlog_dec(q, skb);
  92				qdisc_qstats_cpu_qlen_dec(q);
  93			} else {
  94				qdisc_qstats_backlog_dec(q, skb);
  95				q->q.qlen--;
  96			}
  97		} else {
  98			skb = SKB_XOFF_MAGIC;
  99			qdisc_maybe_clear_missed(q, txq);
 100		}
 101	}
 102
 103	if (lock)
 104		spin_unlock(lock);
 105
 106	return skb;
 107}
 108
 109static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q)
 110{
 111	struct sk_buff *skb = skb_peek(&q->skb_bad_txq);
 112
 113	if (unlikely(skb))
 114		skb = __skb_dequeue_bad_txq(q);
 115
 116	return skb;
 117}
 118
 119static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q,
 120					     struct sk_buff *skb)
 121{
 122	spinlock_t *lock = NULL;
 123
 124	if (q->flags & TCQ_F_NOLOCK) {
 125		lock = qdisc_lock(q);
 126		spin_lock(lock);
 127	}
 128
 129	__skb_queue_tail(&q->skb_bad_txq, skb);
 130
 131	if (qdisc_is_percpu_stats(q)) {
 132		qdisc_qstats_cpu_backlog_inc(q, skb);
 133		qdisc_qstats_cpu_qlen_inc(q);
 134	} else {
 135		qdisc_qstats_backlog_inc(q, skb);
 136		q->q.qlen++;
 137	}
 138
 139	if (lock)
 140		spin_unlock(lock);
 141}
 142
 143static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q)
 144{
 145	spinlock_t *lock = NULL;
 146
 147	if (q->flags & TCQ_F_NOLOCK) {
 148		lock = qdisc_lock(q);
 149		spin_lock(lock);
 150	}
 151
 152	while (skb) {
 153		struct sk_buff *next = skb->next;
 154
 155		__skb_queue_tail(&q->gso_skb, skb);
 156
 157		/* it's still part of the queue */
 158		if (qdisc_is_percpu_stats(q)) {
 159			qdisc_qstats_cpu_requeues_inc(q);
 160			qdisc_qstats_cpu_backlog_inc(q, skb);
 161			qdisc_qstats_cpu_qlen_inc(q);
 162		} else {
 163			q->qstats.requeues++;
 164			qdisc_qstats_backlog_inc(q, skb);
 165			q->q.qlen++;
 166		}
 167
 168		skb = next;
 169	}
 170
 171	if (lock) {
 172		spin_unlock(lock);
 173		set_bit(__QDISC_STATE_MISSED, &q->state);
 174	} else {
 175		__netif_schedule(q);
 176	}
 177}
 178
 179static void try_bulk_dequeue_skb(struct Qdisc *q,
 180				 struct sk_buff *skb,
 181				 const struct netdev_queue *txq,
 182				 int *packets)
 183{
 184	int bytelimit = qdisc_avail_bulklimit(txq) - skb->len;
 185
 186	while (bytelimit > 0) {
 187		struct sk_buff *nskb = q->dequeue(q);
 188
 189		if (!nskb)
 190			break;
 191
 192		bytelimit -= nskb->len; /* covers GSO len */
 193		skb->next = nskb;
 194		skb = nskb;
 195		(*packets)++; /* GSO counts as one pkt */
 196	}
 197	skb_mark_not_on_list(skb);
 198}
 199
 200/* This variant of try_bulk_dequeue_skb() makes sure
 201 * all skbs in the chain are for the same txq
 202 */
 203static void try_bulk_dequeue_skb_slow(struct Qdisc *q,
 204				      struct sk_buff *skb,
 205				      int *packets)
 206{
 207	int mapping = skb_get_queue_mapping(skb);
 208	struct sk_buff *nskb;
 209	int cnt = 0;
 210
 211	do {
 212		nskb = q->dequeue(q);
 213		if (!nskb)
 214			break;
 215		if (unlikely(skb_get_queue_mapping(nskb) != mapping)) {
 216			qdisc_enqueue_skb_bad_txq(q, nskb);
 217			break;
 218		}
 219		skb->next = nskb;
 220		skb = nskb;
 221	} while (++cnt < 8);
 222	(*packets) += cnt;
 223	skb_mark_not_on_list(skb);
 224}
 225
 226/* Note that dequeue_skb can possibly return a SKB list (via skb->next).
 227 * A requeued skb (via q->gso_skb) can also be a SKB list.
 228 */
 229static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate,
 230				   int *packets)
 231{
 232	const struct netdev_queue *txq = q->dev_queue;
 233	struct sk_buff *skb = NULL;
 234
 235	*packets = 1;
 236	if (unlikely(!skb_queue_empty(&q->gso_skb))) {
 237		spinlock_t *lock = NULL;
 238
 239		if (q->flags & TCQ_F_NOLOCK) {
 240			lock = qdisc_lock(q);
 241			spin_lock(lock);
 242		}
 243
 244		skb = skb_peek(&q->gso_skb);
 245
 246		/* skb may be null if another cpu pulls gso_skb off in between
 247		 * empty check and lock.
 248		 */
 249		if (!skb) {
 250			if (lock)
 251				spin_unlock(lock);
 252			goto validate;
 253		}
 254
 255		/* skb in gso_skb were already validated */
 256		*validate = false;
 257		if (xfrm_offload(skb))
 258			*validate = true;
 259		/* check the reason of requeuing without tx lock first */
 260		txq = skb_get_tx_queue(txq->dev, skb);
 261		if (!netif_xmit_frozen_or_stopped(txq)) {
 262			skb = __skb_dequeue(&q->gso_skb);
 263			if (qdisc_is_percpu_stats(q)) {
 264				qdisc_qstats_cpu_backlog_dec(q, skb);
 265				qdisc_qstats_cpu_qlen_dec(q);
 266			} else {
 267				qdisc_qstats_backlog_dec(q, skb);
 268				q->q.qlen--;
 269			}
 270		} else {
 271			skb = NULL;
 272			qdisc_maybe_clear_missed(q, txq);
 273		}
 274		if (lock)
 275			spin_unlock(lock);
 276		goto trace;
 277	}
 278validate:
 279	*validate = true;
 280
 281	if ((q->flags & TCQ_F_ONETXQUEUE) &&
 282	    netif_xmit_frozen_or_stopped(txq)) {
 283		qdisc_maybe_clear_missed(q, txq);
 284		return skb;
 285	}
 286
 287	skb = qdisc_dequeue_skb_bad_txq(q);
 288	if (unlikely(skb)) {
 289		if (skb == SKB_XOFF_MAGIC)
 290			return NULL;
 291		goto bulk;
 292	}
 293	skb = q->dequeue(q);
 294	if (skb) {
 295bulk:
 296		if (qdisc_may_bulk(q))
 297			try_bulk_dequeue_skb(q, skb, txq, packets);
 298		else
 299			try_bulk_dequeue_skb_slow(q, skb, packets);
 300	}
 301trace:
 302	trace_qdisc_dequeue(q, txq, *packets, skb);
 303	return skb;
 304}
 305
 306/*
 307 * Transmit possibly several skbs, and handle the return status as
 308 * required. Owning qdisc running bit guarantees that only one CPU
 309 * can execute this function.
 310 *
 311 * Returns to the caller:
 312 *				false  - hardware queue frozen backoff
 313 *				true   - feel free to send more pkts
 314 */
 315bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q,
 316		     struct net_device *dev, struct netdev_queue *txq,
 317		     spinlock_t *root_lock, bool validate)
 318{
 319	int ret = NETDEV_TX_BUSY;
 320	bool again = false;
 321
 322	/* And release qdisc */
 323	if (root_lock)
 324		spin_unlock(root_lock);
 325
 326	/* Note that we validate skb (GSO, checksum, ...) outside of locks */
 327	if (validate)
 328		skb = validate_xmit_skb_list(skb, dev, &again);
 329
 330#ifdef CONFIG_XFRM_OFFLOAD
 331	if (unlikely(again)) {
 332		if (root_lock)
 333			spin_lock(root_lock);
 334
 335		dev_requeue_skb(skb, q);
 336		return false;
 337	}
 338#endif
 339
 340	if (likely(skb)) {
 341		HARD_TX_LOCK(dev, txq, smp_processor_id());
 342		if (!netif_xmit_frozen_or_stopped(txq))
 343			skb = dev_hard_start_xmit(skb, dev, txq, &ret);
 344		else
 345			qdisc_maybe_clear_missed(q, txq);
 346
 347		HARD_TX_UNLOCK(dev, txq);
 348	} else {
 349		if (root_lock)
 350			spin_lock(root_lock);
 351		return true;
 352	}
 353
 354	if (root_lock)
 355		spin_lock(root_lock);
 356
 357	if (!dev_xmit_complete(ret)) {
 358		/* Driver returned NETDEV_TX_BUSY - requeue skb */
 359		if (unlikely(ret != NETDEV_TX_BUSY))
 360			net_warn_ratelimited("BUG %s code %d qlen %d\n",
 361					     dev->name, ret, q->q.qlen);
 362
 363		dev_requeue_skb(skb, q);
 364		return false;
 365	}
 366
 367	return true;
 368}
 369
 370/*
 371 * NOTE: Called under qdisc_lock(q) with locally disabled BH.
 372 *
 373 * running seqcount guarantees only one CPU can process
 374 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for
 375 * this queue.
 376 *
 377 *  netif_tx_lock serializes accesses to device driver.
 378 *
 379 *  qdisc_lock(q) and netif_tx_lock are mutually exclusive,
 380 *  if one is grabbed, another must be free.
 381 *
 382 * Note, that this procedure can be called by a watchdog timer
 383 *
 384 * Returns to the caller:
 385 *				0  - queue is empty or throttled.
 386 *				>0 - queue is not empty.
 387 *
 388 */
 389static inline bool qdisc_restart(struct Qdisc *q, int *packets)
 390{
 391	spinlock_t *root_lock = NULL;
 392	struct netdev_queue *txq;
 393	struct net_device *dev;
 394	struct sk_buff *skb;
 395	bool validate;
 396
 397	/* Dequeue packet */
 398	skb = dequeue_skb(q, &validate, packets);
 399	if (unlikely(!skb))
 400		return false;
 401
 402	if (!(q->flags & TCQ_F_NOLOCK))
 403		root_lock = qdisc_lock(q);
 404
 405	dev = qdisc_dev(q);
 406	txq = skb_get_tx_queue(dev, skb);
 407
 408	return sch_direct_xmit(skb, q, dev, txq, root_lock, validate);
 409}
 410
 411void __qdisc_run(struct Qdisc *q)
 412{
 413	int quota = READ_ONCE(net_hotdata.dev_tx_weight);
 414	int packets;
 415
 416	while (qdisc_restart(q, &packets)) {
 
 
 
 
 
 417		quota -= packets;
 418		if (quota <= 0) {
 419			if (q->flags & TCQ_F_NOLOCK)
 420				set_bit(__QDISC_STATE_MISSED, &q->state);
 421			else
 422				__netif_schedule(q);
 423
 424			break;
 425		}
 426	}
 427}
 428
 429unsigned long dev_trans_start(struct net_device *dev)
 430{
 431	unsigned long res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start);
 432	unsigned long val;
 433	unsigned int i;
 434
 
 
 
 
 
 435	for (i = 1; i < dev->num_tx_queues; i++) {
 436		val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start);
 437		if (val && time_after(val, res))
 438			res = val;
 439	}
 440
 441	return res;
 442}
 443EXPORT_SYMBOL(dev_trans_start);
 444
 445static void netif_freeze_queues(struct net_device *dev)
 446{
 447	unsigned int i;
 448	int cpu;
 449
 450	cpu = smp_processor_id();
 451	for (i = 0; i < dev->num_tx_queues; i++) {
 452		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
 453
 454		/* We are the only thread of execution doing a
 455		 * freeze, but we have to grab the _xmit_lock in
 456		 * order to synchronize with threads which are in
 457		 * the ->hard_start_xmit() handler and already
 458		 * checked the frozen bit.
 459		 */
 460		__netif_tx_lock(txq, cpu);
 461		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
 462		__netif_tx_unlock(txq);
 463	}
 464}
 465
 466void netif_tx_lock(struct net_device *dev)
 467{
 468	spin_lock(&dev->tx_global_lock);
 469	netif_freeze_queues(dev);
 470}
 471EXPORT_SYMBOL(netif_tx_lock);
 472
 473static void netif_unfreeze_queues(struct net_device *dev)
 474{
 475	unsigned int i;
 476
 477	for (i = 0; i < dev->num_tx_queues; i++) {
 478		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
 479
 480		/* No need to grab the _xmit_lock here.  If the
 481		 * queue is not stopped for another reason, we
 482		 * force a schedule.
 483		 */
 484		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
 485		netif_schedule_queue(txq);
 486	}
 487}
 488
 489void netif_tx_unlock(struct net_device *dev)
 490{
 491	netif_unfreeze_queues(dev);
 492	spin_unlock(&dev->tx_global_lock);
 493}
 494EXPORT_SYMBOL(netif_tx_unlock);
 495
 496static void dev_watchdog(struct timer_list *t)
 497{
 498	struct net_device *dev = from_timer(dev, t, watchdog_timer);
 499	bool release = true;
 500
 501	spin_lock(&dev->tx_global_lock);
 502	if (!qdisc_tx_is_noop(dev)) {
 503		if (netif_device_present(dev) &&
 504		    netif_running(dev) &&
 505		    netif_carrier_ok(dev)) {
 506			unsigned int timedout_ms = 0;
 507			unsigned int i;
 508			unsigned long trans_start;
 509
 510			for (i = 0; i < dev->num_tx_queues; i++) {
 511				struct netdev_queue *txq;
 512
 513				txq = netdev_get_tx_queue(dev, i);
 514				trans_start = READ_ONCE(txq->trans_start);
 515				if (netif_xmit_stopped(txq) &&
 516				    time_after(jiffies, (trans_start +
 517							 dev->watchdog_timeo))) {
 518					timedout_ms = jiffies_to_msecs(jiffies - trans_start);
 519					atomic_long_inc(&txq->trans_timeout);
 520					break;
 521				}
 522			}
 523
 524			if (unlikely(timedout_ms)) {
 525				trace_net_dev_xmit_timeout(dev, i);
 526				netdev_crit(dev, "NETDEV WATCHDOG: CPU: %d: transmit queue %u timed out %u ms\n",
 527					    raw_smp_processor_id(),
 528					    i, timedout_ms);
 529				netif_freeze_queues(dev);
 530				dev->netdev_ops->ndo_tx_timeout(dev, i);
 531				netif_unfreeze_queues(dev);
 532			}
 533			if (!mod_timer(&dev->watchdog_timer,
 534				       round_jiffies(jiffies +
 535						     dev->watchdog_timeo)))
 536				release = false;
 537		}
 538	}
 539	spin_unlock(&dev->tx_global_lock);
 540
 541	if (release)
 542		netdev_put(dev, &dev->watchdog_dev_tracker);
 543}
 544
 545void __netdev_watchdog_up(struct net_device *dev)
 546{
 547	if (dev->netdev_ops->ndo_tx_timeout) {
 548		if (dev->watchdog_timeo <= 0)
 549			dev->watchdog_timeo = 5*HZ;
 550		if (!mod_timer(&dev->watchdog_timer,
 551			       round_jiffies(jiffies + dev->watchdog_timeo)))
 552			netdev_hold(dev, &dev->watchdog_dev_tracker,
 553				    GFP_ATOMIC);
 554	}
 555}
 556EXPORT_SYMBOL_GPL(__netdev_watchdog_up);
 557
 558static void dev_watchdog_up(struct net_device *dev)
 559{
 560	__netdev_watchdog_up(dev);
 561}
 562
 563static void dev_watchdog_down(struct net_device *dev)
 564{
 565	netif_tx_lock_bh(dev);
 566	if (del_timer(&dev->watchdog_timer))
 567		netdev_put(dev, &dev->watchdog_dev_tracker);
 568	netif_tx_unlock_bh(dev);
 569}
 570
 571/**
 572 *	netif_carrier_on - set carrier
 573 *	@dev: network device
 574 *
 575 * Device has detected acquisition of carrier.
 576 */
 577void netif_carrier_on(struct net_device *dev)
 578{
 579	if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
 580		if (dev->reg_state == NETREG_UNINITIALIZED)
 581			return;
 582		atomic_inc(&dev->carrier_up_count);
 583		linkwatch_fire_event(dev);
 584		if (netif_running(dev))
 585			__netdev_watchdog_up(dev);
 586	}
 587}
 588EXPORT_SYMBOL(netif_carrier_on);
 589
 590/**
 591 *	netif_carrier_off - clear carrier
 592 *	@dev: network device
 593 *
 594 * Device has detected loss of carrier.
 595 */
 596void netif_carrier_off(struct net_device *dev)
 597{
 598	if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
 599		if (dev->reg_state == NETREG_UNINITIALIZED)
 600			return;
 601		atomic_inc(&dev->carrier_down_count);
 602		linkwatch_fire_event(dev);
 603	}
 604}
 605EXPORT_SYMBOL(netif_carrier_off);
 606
 607/**
 608 *	netif_carrier_event - report carrier state event
 609 *	@dev: network device
 610 *
 611 * Device has detected a carrier event but the carrier state wasn't changed.
 612 * Use in drivers when querying carrier state asynchronously, to avoid missing
 613 * events (link flaps) if link recovers before it's queried.
 614 */
 615void netif_carrier_event(struct net_device *dev)
 616{
 617	if (dev->reg_state == NETREG_UNINITIALIZED)
 618		return;
 619	atomic_inc(&dev->carrier_up_count);
 620	atomic_inc(&dev->carrier_down_count);
 621	linkwatch_fire_event(dev);
 622}
 623EXPORT_SYMBOL_GPL(netif_carrier_event);
 624
 625/* "NOOP" scheduler: the best scheduler, recommended for all interfaces
 626   under all circumstances. It is difficult to invent anything faster or
 627   cheaper.
 628 */
 629
 630static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
 631			struct sk_buff **to_free)
 632{
 633	__qdisc_drop(skb, to_free);
 634	return NET_XMIT_CN;
 635}
 636
 637static struct sk_buff *noop_dequeue(struct Qdisc *qdisc)
 638{
 639	return NULL;
 640}
 641
 642struct Qdisc_ops noop_qdisc_ops __read_mostly = {
 643	.id		=	"noop",
 644	.priv_size	=	0,
 645	.enqueue	=	noop_enqueue,
 646	.dequeue	=	noop_dequeue,
 647	.peek		=	noop_dequeue,
 648	.owner		=	THIS_MODULE,
 649};
 650
 651static struct netdev_queue noop_netdev_queue = {
 652	RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc),
 653	RCU_POINTER_INITIALIZER(qdisc_sleeping, &noop_qdisc),
 654};
 655
 656struct Qdisc noop_qdisc = {
 657	.enqueue	=	noop_enqueue,
 658	.dequeue	=	noop_dequeue,
 659	.flags		=	TCQ_F_BUILTIN,
 660	.ops		=	&noop_qdisc_ops,
 661	.q.lock		=	__SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock),
 662	.dev_queue	=	&noop_netdev_queue,
 
 663	.busylock	=	__SPIN_LOCK_UNLOCKED(noop_qdisc.busylock),
 664	.gso_skb = {
 665		.next = (struct sk_buff *)&noop_qdisc.gso_skb,
 666		.prev = (struct sk_buff *)&noop_qdisc.gso_skb,
 667		.qlen = 0,
 668		.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock),
 669	},
 670	.skb_bad_txq = {
 671		.next = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
 672		.prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
 673		.qlen = 0,
 674		.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock),
 675	},
 676};
 677EXPORT_SYMBOL(noop_qdisc);
 678
 679static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt,
 680			struct netlink_ext_ack *extack)
 681{
 682	/* register_qdisc() assigns a default of noop_enqueue if unset,
 683	 * but __dev_queue_xmit() treats noqueue only as such
 684	 * if this is NULL - so clear it here. */
 685	qdisc->enqueue = NULL;
 686	return 0;
 687}
 688
 689struct Qdisc_ops noqueue_qdisc_ops __read_mostly = {
 690	.id		=	"noqueue",
 691	.priv_size	=	0,
 692	.init		=	noqueue_init,
 693	.enqueue	=	noop_enqueue,
 694	.dequeue	=	noop_dequeue,
 695	.peek		=	noop_dequeue,
 696	.owner		=	THIS_MODULE,
 697};
 698
 699const u8 sch_default_prio2band[TC_PRIO_MAX + 1] = {
 700	1, 2, 2, 2, 1, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
 701};
 702EXPORT_SYMBOL(sch_default_prio2band);
 703
 704/* 3-band FIFO queue: old style, but should be a bit faster than
 705   generic prio+fifo combination.
 706 */
 707
 708#define PFIFO_FAST_BANDS 3
 709
 710/*
 711 * Private data for a pfifo_fast scheduler containing:
 712 *	- rings for priority bands
 713 */
 714struct pfifo_fast_priv {
 715	struct skb_array q[PFIFO_FAST_BANDS];
 716};
 717
 718static inline struct skb_array *band2list(struct pfifo_fast_priv *priv,
 719					  int band)
 720{
 721	return &priv->q[band];
 722}
 723
 724static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
 725			      struct sk_buff **to_free)
 726{
 727	int band = sch_default_prio2band[skb->priority & TC_PRIO_MAX];
 728	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
 729	struct skb_array *q = band2list(priv, band);
 730	unsigned int pkt_len = qdisc_pkt_len(skb);
 731	int err;
 732
 733	err = skb_array_produce(q, skb);
 734
 735	if (unlikely(err)) {
 736		if (qdisc_is_percpu_stats(qdisc))
 737			return qdisc_drop_cpu(skb, qdisc, to_free);
 738		else
 739			return qdisc_drop(skb, qdisc, to_free);
 740	}
 741
 742	qdisc_update_stats_at_enqueue(qdisc, pkt_len);
 743	return NET_XMIT_SUCCESS;
 744}
 745
 746static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc)
 747{
 748	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
 749	struct sk_buff *skb = NULL;
 750	bool need_retry = true;
 751	int band;
 752
 753retry:
 754	for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
 755		struct skb_array *q = band2list(priv, band);
 756
 757		if (__skb_array_empty(q))
 758			continue;
 759
 760		skb = __skb_array_consume(q);
 761	}
 762	if (likely(skb)) {
 763		qdisc_update_stats_at_dequeue(qdisc, skb);
 764	} else if (need_retry &&
 765		   READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) {
 766		/* Delay clearing the STATE_MISSED here to reduce
 767		 * the overhead of the second spin_trylock() in
 768		 * qdisc_run_begin() and __netif_schedule() calling
 769		 * in qdisc_run_end().
 770		 */
 771		clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
 772		clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
 773
 774		/* Make sure dequeuing happens after clearing
 775		 * STATE_MISSED.
 776		 */
 777		smp_mb__after_atomic();
 778
 779		need_retry = false;
 780
 781		goto retry;
 782	}
 783
 784	return skb;
 785}
 786
 787static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc)
 788{
 789	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
 790	struct sk_buff *skb = NULL;
 791	int band;
 792
 793	for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
 794		struct skb_array *q = band2list(priv, band);
 795
 796		skb = __skb_array_peek(q);
 797	}
 798
 799	return skb;
 800}
 801
 802static void pfifo_fast_reset(struct Qdisc *qdisc)
 803{
 804	int i, band;
 805	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
 806
 807	for (band = 0; band < PFIFO_FAST_BANDS; band++) {
 808		struct skb_array *q = band2list(priv, band);
 809		struct sk_buff *skb;
 810
 811		/* NULL ring is possible if destroy path is due to a failed
 812		 * skb_array_init() in pfifo_fast_init() case.
 813		 */
 814		if (!q->ring.queue)
 815			continue;
 816
 817		while ((skb = __skb_array_consume(q)) != NULL)
 818			kfree_skb(skb);
 819	}
 820
 821	if (qdisc_is_percpu_stats(qdisc)) {
 822		for_each_possible_cpu(i) {
 823			struct gnet_stats_queue *q;
 824
 825			q = per_cpu_ptr(qdisc->cpu_qstats, i);
 826			q->backlog = 0;
 827			q->qlen = 0;
 828		}
 829	}
 830}
 831
 832static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb)
 833{
 834	struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS };
 835
 836	memcpy(&opt.priomap, sch_default_prio2band, TC_PRIO_MAX + 1);
 837	if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
 838		goto nla_put_failure;
 839	return skb->len;
 840
 841nla_put_failure:
 842	return -1;
 843}
 844
 845static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt,
 846			   struct netlink_ext_ack *extack)
 847{
 848	unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len;
 849	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
 850	int prio;
 851
 852	/* guard against zero length rings */
 853	if (!qlen)
 854		return -EINVAL;
 855
 856	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
 857		struct skb_array *q = band2list(priv, prio);
 858		int err;
 859
 860		err = skb_array_init(q, qlen, GFP_KERNEL);
 861		if (err)
 862			return -ENOMEM;
 863	}
 864
 865	/* Can by-pass the queue discipline */
 866	qdisc->flags |= TCQ_F_CAN_BYPASS;
 867	return 0;
 868}
 869
 870static void pfifo_fast_destroy(struct Qdisc *sch)
 871{
 872	struct pfifo_fast_priv *priv = qdisc_priv(sch);
 873	int prio;
 874
 875	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
 876		struct skb_array *q = band2list(priv, prio);
 877
 878		/* NULL ring is possible if destroy path is due to a failed
 879		 * skb_array_init() in pfifo_fast_init() case.
 880		 */
 881		if (!q->ring.queue)
 882			continue;
 883		/* Destroy ring but no need to kfree_skb because a call to
 884		 * pfifo_fast_reset() has already done that work.
 885		 */
 886		ptr_ring_cleanup(&q->ring, NULL);
 887	}
 888}
 889
 890static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch,
 891					  unsigned int new_len)
 892{
 893	struct pfifo_fast_priv *priv = qdisc_priv(sch);
 894	struct skb_array *bands[PFIFO_FAST_BANDS];
 895	int prio;
 896
 897	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
 898		struct skb_array *q = band2list(priv, prio);
 899
 900		bands[prio] = q;
 901	}
 902
 903	return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len,
 904					 GFP_KERNEL);
 905}
 906
 907struct Qdisc_ops pfifo_fast_ops __read_mostly = {
 908	.id		=	"pfifo_fast",
 909	.priv_size	=	sizeof(struct pfifo_fast_priv),
 910	.enqueue	=	pfifo_fast_enqueue,
 911	.dequeue	=	pfifo_fast_dequeue,
 912	.peek		=	pfifo_fast_peek,
 913	.init		=	pfifo_fast_init,
 914	.destroy	=	pfifo_fast_destroy,
 915	.reset		=	pfifo_fast_reset,
 916	.dump		=	pfifo_fast_dump,
 917	.change_tx_queue_len =  pfifo_fast_change_tx_queue_len,
 918	.owner		=	THIS_MODULE,
 919	.static_flags	=	TCQ_F_NOLOCK | TCQ_F_CPUSTATS,
 920};
 921EXPORT_SYMBOL(pfifo_fast_ops);
 922
 923static struct lock_class_key qdisc_tx_busylock;
 924
 925struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue,
 926			  const struct Qdisc_ops *ops,
 927			  struct netlink_ext_ack *extack)
 928{
 
 929	struct Qdisc *sch;
 930	unsigned int size = sizeof(*sch) + ops->priv_size;
 931	int err = -ENOBUFS;
 932	struct net_device *dev;
 933
 934	if (!dev_queue) {
 935		NL_SET_ERR_MSG(extack, "No device queue given");
 936		err = -EINVAL;
 937		goto errout;
 938	}
 939
 940	dev = dev_queue->dev;
 941	sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue));
 
 942
 943	if (!sch)
 944		goto errout;
 
 
 
 
 
 
 
 
 
 
 
 945	__skb_queue_head_init(&sch->gso_skb);
 946	__skb_queue_head_init(&sch->skb_bad_txq);
 947	gnet_stats_basic_sync_init(&sch->bstats);
 948	spin_lock_init(&sch->q.lock);
 949
 950	if (ops->static_flags & TCQ_F_CPUSTATS) {
 951		sch->cpu_bstats =
 952			netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync);
 953		if (!sch->cpu_bstats)
 954			goto errout1;
 955
 956		sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue);
 957		if (!sch->cpu_qstats) {
 958			free_percpu(sch->cpu_bstats);
 959			goto errout1;
 960		}
 961	}
 962
 963	spin_lock_init(&sch->busylock);
 964	lockdep_set_class(&sch->busylock,
 965			  dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
 966
 967	/* seqlock has the same scope of busylock, for NOLOCK qdisc */
 968	spin_lock_init(&sch->seqlock);
 969	lockdep_set_class(&sch->seqlock,
 970			  dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
 971
 972	sch->ops = ops;
 973	sch->flags = ops->static_flags;
 974	sch->enqueue = ops->enqueue;
 975	sch->dequeue = ops->dequeue;
 976	sch->dev_queue = dev_queue;
 977	sch->owner = -1;
 978	netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL);
 979	refcount_set(&sch->refcnt, 1);
 980
 
 
 
 
 
 
 981	return sch;
 982errout1:
 983	kfree(sch);
 984errout:
 985	return ERR_PTR(err);
 986}
 987
 988struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue,
 989				const struct Qdisc_ops *ops,
 990				unsigned int parentid,
 991				struct netlink_ext_ack *extack)
 992{
 993	struct Qdisc *sch;
 994
 995	if (!try_module_get(ops->owner)) {
 996		NL_SET_ERR_MSG(extack, "Failed to increase module reference counter");
 997		return NULL;
 998	}
 999
1000	sch = qdisc_alloc(dev_queue, ops, extack);
1001	if (IS_ERR(sch)) {
1002		module_put(ops->owner);
1003		return NULL;
1004	}
1005	sch->parent = parentid;
1006
1007	if (!ops->init || ops->init(sch, NULL, extack) == 0) {
1008		trace_qdisc_create(ops, dev_queue->dev, parentid);
1009		return sch;
1010	}
1011
1012	qdisc_put(sch);
1013	return NULL;
1014}
1015EXPORT_SYMBOL(qdisc_create_dflt);
1016
1017/* Under qdisc_lock(qdisc) and BH! */
1018
1019void qdisc_reset(struct Qdisc *qdisc)
1020{
1021	const struct Qdisc_ops *ops = qdisc->ops;
1022
1023	trace_qdisc_reset(qdisc);
1024
1025	if (ops->reset)
1026		ops->reset(qdisc);
1027
1028	__skb_queue_purge(&qdisc->gso_skb);
1029	__skb_queue_purge(&qdisc->skb_bad_txq);
 
 
 
 
 
 
 
1030
1031	qdisc->q.qlen = 0;
1032	qdisc->qstats.backlog = 0;
1033}
1034EXPORT_SYMBOL(qdisc_reset);
1035
1036void qdisc_free(struct Qdisc *qdisc)
1037{
1038	if (qdisc_is_percpu_stats(qdisc)) {
1039		free_percpu(qdisc->cpu_bstats);
1040		free_percpu(qdisc->cpu_qstats);
1041	}
1042
1043	kfree(qdisc);
1044}
1045
1046static void qdisc_free_cb(struct rcu_head *head)
1047{
1048	struct Qdisc *q = container_of(head, struct Qdisc, rcu);
1049
1050	qdisc_free(q);
1051}
1052
1053static void __qdisc_destroy(struct Qdisc *qdisc)
1054{
1055	const struct Qdisc_ops  *ops = qdisc->ops;
1056	struct net_device *dev = qdisc_dev(qdisc);
1057
1058#ifdef CONFIG_NET_SCHED
1059	qdisc_hash_del(qdisc);
1060
1061	qdisc_put_stab(rtnl_dereference(qdisc->stab));
1062#endif
1063	gen_kill_estimator(&qdisc->rate_est);
1064
1065	qdisc_reset(qdisc);
1066
1067
1068	if (ops->destroy)
1069		ops->destroy(qdisc);
1070
1071	module_put(ops->owner);
1072	netdev_put(dev, &qdisc->dev_tracker);
1073
1074	trace_qdisc_destroy(qdisc);
 
 
 
 
 
 
 
 
1075
1076	call_rcu(&qdisc->rcu, qdisc_free_cb);
1077}
1078
1079void qdisc_destroy(struct Qdisc *qdisc)
1080{
1081	if (qdisc->flags & TCQ_F_BUILTIN)
1082		return;
1083
1084	__qdisc_destroy(qdisc);
1085}
1086
1087void qdisc_put(struct Qdisc *qdisc)
1088{
1089	if (!qdisc)
1090		return;
1091
1092	if (qdisc->flags & TCQ_F_BUILTIN ||
1093	    !refcount_dec_and_test(&qdisc->refcnt))
1094		return;
1095
1096	__qdisc_destroy(qdisc);
1097}
1098EXPORT_SYMBOL(qdisc_put);
1099
1100/* Version of qdisc_put() that is called with rtnl mutex unlocked.
1101 * Intended to be used as optimization, this function only takes rtnl lock if
1102 * qdisc reference counter reached zero.
1103 */
1104
1105void qdisc_put_unlocked(struct Qdisc *qdisc)
1106{
1107	if (qdisc->flags & TCQ_F_BUILTIN ||
1108	    !refcount_dec_and_rtnl_lock(&qdisc->refcnt))
1109		return;
1110
1111	__qdisc_destroy(qdisc);
1112	rtnl_unlock();
1113}
1114EXPORT_SYMBOL(qdisc_put_unlocked);
1115
1116/* Attach toplevel qdisc to device queue. */
1117struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue,
1118			      struct Qdisc *qdisc)
1119{
1120	struct Qdisc *oqdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1121	spinlock_t *root_lock;
1122
1123	root_lock = qdisc_lock(oqdisc);
1124	spin_lock_bh(root_lock);
1125
1126	/* ... and graft new one */
1127	if (qdisc == NULL)
1128		qdisc = &noop_qdisc;
1129	rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1130	rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc);
1131
1132	spin_unlock_bh(root_lock);
1133
1134	return oqdisc;
1135}
1136EXPORT_SYMBOL(dev_graft_qdisc);
1137
1138static void shutdown_scheduler_queue(struct net_device *dev,
1139				     struct netdev_queue *dev_queue,
1140				     void *_qdisc_default)
1141{
1142	struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1143	struct Qdisc *qdisc_default = _qdisc_default;
1144
1145	if (qdisc) {
1146		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1147		rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc_default);
1148
1149		qdisc_put(qdisc);
1150	}
1151}
1152
1153static void attach_one_default_qdisc(struct net_device *dev,
1154				     struct netdev_queue *dev_queue,
1155				     void *_unused)
1156{
1157	struct Qdisc *qdisc;
1158	const struct Qdisc_ops *ops = default_qdisc_ops;
1159
1160	if (dev->priv_flags & IFF_NO_QUEUE)
1161		ops = &noqueue_qdisc_ops;
1162	else if(dev->type == ARPHRD_CAN)
1163		ops = &pfifo_fast_ops;
1164
1165	qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL);
1166	if (!qdisc)
 
1167		return;
1168
1169	if (!netif_is_multiqueue(dev))
1170		qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1171	rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1172}
1173
1174static void attach_default_qdiscs(struct net_device *dev)
1175{
1176	struct netdev_queue *txq;
1177	struct Qdisc *qdisc;
1178
1179	txq = netdev_get_tx_queue(dev, 0);
1180
1181	if (!netif_is_multiqueue(dev) ||
1182	    dev->priv_flags & IFF_NO_QUEUE) {
1183		netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1184		qdisc = rtnl_dereference(txq->qdisc_sleeping);
1185		rcu_assign_pointer(dev->qdisc, qdisc);
1186		qdisc_refcount_inc(qdisc);
1187	} else {
1188		qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL);
1189		if (qdisc) {
1190			rcu_assign_pointer(dev->qdisc, qdisc);
1191			qdisc->ops->attach(qdisc);
1192		}
1193	}
1194	qdisc = rtnl_dereference(dev->qdisc);
1195
1196	/* Detect default qdisc setup/init failed and fallback to "noqueue" */
1197	if (qdisc == &noop_qdisc) {
1198		netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n",
1199			    default_qdisc_ops->id, noqueue_qdisc_ops.id);
1200		netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1201		dev->priv_flags |= IFF_NO_QUEUE;
1202		netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1203		qdisc = rtnl_dereference(txq->qdisc_sleeping);
1204		rcu_assign_pointer(dev->qdisc, qdisc);
1205		qdisc_refcount_inc(qdisc);
1206		dev->priv_flags ^= IFF_NO_QUEUE;
1207	}
1208
1209#ifdef CONFIG_NET_SCHED
1210	if (qdisc != &noop_qdisc)
1211		qdisc_hash_add(qdisc, false);
1212#endif
1213}
1214
1215static void transition_one_qdisc(struct net_device *dev,
1216				 struct netdev_queue *dev_queue,
1217				 void *_need_watchdog)
1218{
1219	struct Qdisc *new_qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1220	int *need_watchdog_p = _need_watchdog;
1221
1222	if (!(new_qdisc->flags & TCQ_F_BUILTIN))
1223		clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state);
1224
1225	rcu_assign_pointer(dev_queue->qdisc, new_qdisc);
1226	if (need_watchdog_p) {
1227		WRITE_ONCE(dev_queue->trans_start, 0);
1228		*need_watchdog_p = 1;
1229	}
1230}
1231
1232void dev_activate(struct net_device *dev)
1233{
1234	int need_watchdog;
1235
1236	/* No queueing discipline is attached to device;
1237	 * create default one for devices, which need queueing
1238	 * and noqueue_qdisc for virtual interfaces
1239	 */
1240
1241	if (rtnl_dereference(dev->qdisc) == &noop_qdisc)
1242		attach_default_qdiscs(dev);
1243
1244	if (!netif_carrier_ok(dev))
1245		/* Delay activation until next carrier-on event */
1246		return;
1247
1248	need_watchdog = 0;
1249	netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog);
1250	if (dev_ingress_queue(dev))
1251		transition_one_qdisc(dev, dev_ingress_queue(dev), NULL);
1252
1253	if (need_watchdog) {
1254		netif_trans_update(dev);
1255		dev_watchdog_up(dev);
1256	}
1257}
1258EXPORT_SYMBOL(dev_activate);
1259
1260static void qdisc_deactivate(struct Qdisc *qdisc)
1261{
1262	if (qdisc->flags & TCQ_F_BUILTIN)
1263		return;
1264
1265	set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state);
1266}
1267
1268static void dev_deactivate_queue(struct net_device *dev,
1269				 struct netdev_queue *dev_queue,
1270				 void *_qdisc_default)
1271{
1272	struct Qdisc *qdisc_default = _qdisc_default;
1273	struct Qdisc *qdisc;
1274
1275	qdisc = rtnl_dereference(dev_queue->qdisc);
1276	if (qdisc) {
1277		qdisc_deactivate(qdisc);
1278		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1279	}
1280}
1281
1282static void dev_reset_queue(struct net_device *dev,
1283			    struct netdev_queue *dev_queue,
1284			    void *_unused)
1285{
1286	struct Qdisc *qdisc;
1287	bool nolock;
1288
1289	qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1290	if (!qdisc)
1291		return;
1292
1293	nolock = qdisc->flags & TCQ_F_NOLOCK;
 
1294
1295	if (nolock)
1296		spin_lock_bh(&qdisc->seqlock);
1297	spin_lock_bh(qdisc_lock(qdisc));
1298
1299	qdisc_reset(qdisc);
1300
1301	spin_unlock_bh(qdisc_lock(qdisc));
1302	if (nolock) {
1303		clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
1304		clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
1305		spin_unlock_bh(&qdisc->seqlock);
1306	}
1307}
1308
1309static bool some_qdisc_is_busy(struct net_device *dev)
1310{
1311	unsigned int i;
1312
1313	for (i = 0; i < dev->num_tx_queues; i++) {
1314		struct netdev_queue *dev_queue;
1315		spinlock_t *root_lock;
1316		struct Qdisc *q;
1317		int val;
1318
1319		dev_queue = netdev_get_tx_queue(dev, i);
1320		q = rtnl_dereference(dev_queue->qdisc_sleeping);
1321
1322		root_lock = qdisc_lock(q);
1323		spin_lock_bh(root_lock);
1324
1325		val = (qdisc_is_running(q) ||
1326		       test_bit(__QDISC_STATE_SCHED, &q->state));
1327
1328		spin_unlock_bh(root_lock);
1329
1330		if (val)
1331			return true;
1332	}
1333	return false;
1334}
1335
 
 
 
 
 
 
 
 
 
 
1336/**
1337 * 	dev_deactivate_many - deactivate transmissions on several devices
1338 * 	@head: list of devices to deactivate
1339 *
1340 *	This function returns only when all outstanding transmissions
1341 *	have completed, unless all devices are in dismantle phase.
1342 */
1343void dev_deactivate_many(struct list_head *head)
1344{
1345	struct net_device *dev;
1346
1347	list_for_each_entry(dev, head, close_list) {
1348		netdev_for_each_tx_queue(dev, dev_deactivate_queue,
1349					 &noop_qdisc);
1350		if (dev_ingress_queue(dev))
1351			dev_deactivate_queue(dev, dev_ingress_queue(dev),
1352					     &noop_qdisc);
1353
1354		dev_watchdog_down(dev);
1355	}
1356
1357	/* Wait for outstanding qdisc-less dev_queue_xmit calls or
1358	 * outstanding qdisc enqueuing calls.
1359	 * This is avoided if all devices are in dismantle phase :
1360	 * Caller will call synchronize_net() for us
1361	 */
1362	synchronize_net();
1363
 
1364	list_for_each_entry(dev, head, close_list) {
1365		netdev_for_each_tx_queue(dev, dev_reset_queue, NULL);
1366
 
 
 
 
1367		if (dev_ingress_queue(dev))
1368			dev_reset_queue(dev, dev_ingress_queue(dev), NULL);
1369	}
1370
1371	/* Wait for outstanding qdisc_run calls. */
1372	list_for_each_entry(dev, head, close_list) {
1373		while (some_qdisc_is_busy(dev)) {
1374			/* wait_event() would avoid this sleep-loop but would
1375			 * require expensive checks in the fast paths of packet
1376			 * processing which isn't worth it.
1377			 */
1378			schedule_timeout_uninterruptible(1);
1379		}
1380	}
1381}
1382
1383void dev_deactivate(struct net_device *dev)
1384{
1385	LIST_HEAD(single);
1386
1387	list_add(&dev->close_list, &single);
1388	dev_deactivate_many(&single);
1389	list_del(&single);
1390}
1391EXPORT_SYMBOL(dev_deactivate);
1392
1393static int qdisc_change_tx_queue_len(struct net_device *dev,
1394				     struct netdev_queue *dev_queue)
1395{
1396	struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1397	const struct Qdisc_ops *ops = qdisc->ops;
1398
1399	if (ops->change_tx_queue_len)
1400		return ops->change_tx_queue_len(qdisc, dev->tx_queue_len);
1401	return 0;
1402}
1403
1404void dev_qdisc_change_real_num_tx(struct net_device *dev,
1405				  unsigned int new_real_tx)
1406{
1407	struct Qdisc *qdisc = rtnl_dereference(dev->qdisc);
1408
1409	if (qdisc->ops->change_real_num_tx)
1410		qdisc->ops->change_real_num_tx(qdisc, new_real_tx);
1411}
1412
1413void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx)
1414{
1415#ifdef CONFIG_NET_SCHED
1416	struct net_device *dev = qdisc_dev(sch);
1417	struct Qdisc *qdisc;
1418	unsigned int i;
1419
1420	for (i = new_real_tx; i < dev->real_num_tx_queues; i++) {
1421		qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1422		/* Only update the default qdiscs we created,
1423		 * qdiscs with handles are always hashed.
1424		 */
1425		if (qdisc != &noop_qdisc && !qdisc->handle)
1426			qdisc_hash_del(qdisc);
1427	}
1428	for (i = dev->real_num_tx_queues; i < new_real_tx; i++) {
1429		qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1430		if (qdisc != &noop_qdisc && !qdisc->handle)
1431			qdisc_hash_add(qdisc, false);
1432	}
1433#endif
1434}
1435EXPORT_SYMBOL(mq_change_real_num_tx);
1436
1437int dev_qdisc_change_tx_queue_len(struct net_device *dev)
1438{
1439	bool up = dev->flags & IFF_UP;
1440	unsigned int i;
1441	int ret = 0;
1442
1443	if (up)
1444		dev_deactivate(dev);
1445
1446	for (i = 0; i < dev->num_tx_queues; i++) {
1447		ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]);
1448
1449		/* TODO: revert changes on a partial failure */
1450		if (ret)
1451			break;
1452	}
1453
1454	if (up)
1455		dev_activate(dev);
1456	return ret;
1457}
1458
1459static void dev_init_scheduler_queue(struct net_device *dev,
1460				     struct netdev_queue *dev_queue,
1461				     void *_qdisc)
1462{
1463	struct Qdisc *qdisc = _qdisc;
1464
1465	rcu_assign_pointer(dev_queue->qdisc, qdisc);
1466	rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1467}
1468
1469void dev_init_scheduler(struct net_device *dev)
1470{
1471	rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1472	netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc);
1473	if (dev_ingress_queue(dev))
1474		dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1475
1476	timer_setup(&dev->watchdog_timer, dev_watchdog, 0);
1477}
1478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1479void dev_shutdown(struct net_device *dev)
1480{
1481	netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1482	if (dev_ingress_queue(dev))
1483		shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1484	qdisc_put(rtnl_dereference(dev->qdisc));
1485	rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1486
1487	WARN_ON(timer_pending(&dev->watchdog_timer));
1488}
1489
1490/**
1491 * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division
1492 * @rate:   Rate to compute reciprocal division values of
1493 * @mult:   Multiplier for reciprocal division
1494 * @shift:  Shift for reciprocal division
1495 *
1496 * The multiplier and shift for reciprocal division by rate are stored
1497 * in mult and shift.
1498 *
1499 * The deal here is to replace a divide by a reciprocal one
1500 * in fast path (a reciprocal divide is a multiply and a shift)
1501 *
1502 * Normal formula would be :
1503 *  time_in_ns = (NSEC_PER_SEC * len) / rate_bps
1504 *
1505 * We compute mult/shift to use instead :
1506 *  time_in_ns = (len * mult) >> shift;
1507 *
1508 * We try to get the highest possible mult value for accuracy,
1509 * but have to make sure no overflows will ever happen.
1510 *
1511 * reciprocal_value() is not used here it doesn't handle 64-bit values.
1512 */
1513static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift)
1514{
1515	u64 factor = NSEC_PER_SEC;
1516
1517	*mult = 1;
1518	*shift = 0;
1519
1520	if (rate <= 0)
1521		return;
1522
1523	for (;;) {
1524		*mult = div64_u64(factor, rate);
1525		if (*mult & (1U << 31) || factor & (1ULL << 63))
1526			break;
1527		factor <<= 1;
1528		(*shift)++;
1529	}
1530}
1531
1532void psched_ratecfg_precompute(struct psched_ratecfg *r,
1533			       const struct tc_ratespec *conf,
1534			       u64 rate64)
1535{
1536	memset(r, 0, sizeof(*r));
1537	r->overhead = conf->overhead;
1538	r->mpu = conf->mpu;
1539	r->rate_bytes_ps = max_t(u64, conf->rate, rate64);
1540	r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK);
1541	psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1542}
1543EXPORT_SYMBOL(psched_ratecfg_precompute);
1544
1545void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64)
1546{
1547	r->rate_pkts_ps = pktrate64;
1548	psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift);
1549}
1550EXPORT_SYMBOL(psched_ppscfg_precompute);
1551
1552void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp,
1553			  struct tcf_proto *tp_head)
1554{
1555	/* Protected with chain0->filter_chain_lock.
1556	 * Can't access chain directly because tp_head can be NULL.
1557	 */
1558	struct mini_Qdisc *miniq_old =
1559		rcu_dereference_protected(*miniqp->p_miniq, 1);
1560	struct mini_Qdisc *miniq;
1561
1562	if (!tp_head) {
1563		RCU_INIT_POINTER(*miniqp->p_miniq, NULL);
1564	} else {
1565		miniq = miniq_old != &miniqp->miniq1 ?
1566			&miniqp->miniq1 : &miniqp->miniq2;
 
1567
1568		/* We need to make sure that readers won't see the miniq
1569		 * we are about to modify. So ensure that at least one RCU
1570		 * grace period has elapsed since the miniq was made
1571		 * inactive.
1572		 */
1573		if (IS_ENABLED(CONFIG_PREEMPT_RT))
1574			cond_synchronize_rcu(miniq->rcu_state);
1575		else if (!poll_state_synchronize_rcu(miniq->rcu_state))
1576			synchronize_rcu_expedited();
1577
1578		miniq->filter_list = tp_head;
1579		rcu_assign_pointer(*miniqp->p_miniq, miniq);
1580	}
 
 
 
 
1581
1582	if (miniq_old)
1583		/* This is counterpart of the rcu sync above. We need to
1584		 * block potential new user of miniq_old until all readers
1585		 * are not seeing it.
1586		 */
1587		miniq_old->rcu_state = start_poll_synchronize_rcu();
1588}
1589EXPORT_SYMBOL(mini_qdisc_pair_swap);
1590
1591void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp,
1592				struct tcf_block *block)
1593{
1594	miniqp->miniq1.block = block;
1595	miniqp->miniq2.block = block;
1596}
1597EXPORT_SYMBOL(mini_qdisc_pair_block_init);
1598
1599void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc,
1600			  struct mini_Qdisc __rcu **p_miniq)
1601{
1602	miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats;
1603	miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats;
1604	miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats;
1605	miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats;
1606	miniqp->miniq1.rcu_state = get_state_synchronize_rcu();
1607	miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state;
1608	miniqp->p_miniq = p_miniq;
1609}
1610EXPORT_SYMBOL(mini_qdisc_pair_init);