Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/vmalloc.c
   4 *
   5 *  Copyright (C) 1993  Linus Torvalds
   6 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   7 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   8 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   9 *  Numa awareness, Christoph Lameter, SGI, June 2005
 
  10 */
  11
  12#include <linux/vmalloc.h>
  13#include <linux/mm.h>
  14#include <linux/module.h>
  15#include <linux/highmem.h>
  16#include <linux/sched/signal.h>
  17#include <linux/slab.h>
  18#include <linux/spinlock.h>
  19#include <linux/interrupt.h>
  20#include <linux/proc_fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/set_memory.h>
  23#include <linux/debugobjects.h>
  24#include <linux/kallsyms.h>
  25#include <linux/list.h>
  26#include <linux/notifier.h>
  27#include <linux/rbtree.h>
  28#include <linux/radix-tree.h>
 
  29#include <linux/rcupdate.h>
  30#include <linux/pfn.h>
  31#include <linux/kmemleak.h>
  32#include <linux/atomic.h>
  33#include <linux/compiler.h>
 
  34#include <linux/llist.h>
 
  35#include <linux/bitops.h>
  36#include <linux/rbtree_augmented.h>
  37
  38#include <linux/uaccess.h>
 
 
  39#include <asm/tlbflush.h>
  40#include <asm/shmparam.h>
  41
 
 
 
  42#include "internal.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43
  44struct vfree_deferred {
  45	struct llist_head list;
  46	struct work_struct wq;
  47};
  48static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  49
  50static void __vunmap(const void *, int);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51
  52static void free_work(struct work_struct *w)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53{
  54	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  55	struct llist_node *t, *llnode;
  56
  57	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
  58		__vunmap((void *)llnode, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  59}
  60
  61/*** Page table manipulation functions ***/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62
  63static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64{
  65	pte_t *pte;
  66
  67	pte = pte_offset_kernel(pmd, addr);
  68	do {
  69		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  70		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  71	} while (pte++, addr += PAGE_SIZE, addr != end);
 
  72}
  73
  74static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
 
  75{
  76	pmd_t *pmd;
  77	unsigned long next;
 
  78
  79	pmd = pmd_offset(pud, addr);
  80	do {
  81		next = pmd_addr_end(addr, end);
  82		if (pmd_clear_huge(pmd))
 
 
 
 
 
  83			continue;
  84		if (pmd_none_or_clear_bad(pmd))
  85			continue;
  86		vunmap_pte_range(pmd, addr, next);
 
 
  87	} while (pmd++, addr = next, addr != end);
  88}
  89
  90static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
 
  91{
  92	pud_t *pud;
  93	unsigned long next;
 
  94
  95	pud = pud_offset(p4d, addr);
  96	do {
  97		next = pud_addr_end(addr, end);
  98		if (pud_clear_huge(pud))
 
 
 
 
 
  99			continue;
 100		if (pud_none_or_clear_bad(pud))
 101			continue;
 102		vunmap_pmd_range(pud, addr, next);
 103	} while (pud++, addr = next, addr != end);
 104}
 105
 106static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
 
 107{
 108	p4d_t *p4d;
 109	unsigned long next;
 110
 111	p4d = p4d_offset(pgd, addr);
 112	do {
 113		next = p4d_addr_end(addr, end);
 114		if (p4d_clear_huge(p4d))
 115			continue;
 
 
 
 116		if (p4d_none_or_clear_bad(p4d))
 117			continue;
 118		vunmap_pud_range(p4d, addr, next);
 119	} while (p4d++, addr = next, addr != end);
 120}
 121
 122static void vunmap_page_range(unsigned long addr, unsigned long end)
 
 
 
 
 
 
 
 
 
 
 
 
 123{
 124	pgd_t *pgd;
 125	unsigned long next;
 
 
 
 126
 127	BUG_ON(addr >= end);
 128	pgd = pgd_offset_k(addr);
 129	do {
 130		next = pgd_addr_end(addr, end);
 
 
 131		if (pgd_none_or_clear_bad(pgd))
 132			continue;
 133		vunmap_p4d_range(pgd, addr, next);
 134	} while (pgd++, addr = next, addr != end);
 
 
 
 
 
 
 
 
 
 135}
 136
 137static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 138		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 139{
 140	pte_t *pte;
 141
 142	/*
 143	 * nr is a running index into the array which helps higher level
 144	 * callers keep track of where we're up to.
 145	 */
 146
 147	pte = pte_alloc_kernel(pmd, addr);
 148	if (!pte)
 149		return -ENOMEM;
 150	do {
 151		struct page *page = pages[*nr];
 152
 153		if (WARN_ON(!pte_none(*pte)))
 154			return -EBUSY;
 155		if (WARN_ON(!page))
 156			return -ENOMEM;
 
 
 
 157		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 158		(*nr)++;
 159	} while (pte++, addr += PAGE_SIZE, addr != end);
 
 160	return 0;
 161}
 162
 163static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 164		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 
 165{
 166	pmd_t *pmd;
 167	unsigned long next;
 168
 169	pmd = pmd_alloc(&init_mm, pud, addr);
 170	if (!pmd)
 171		return -ENOMEM;
 172	do {
 173		next = pmd_addr_end(addr, end);
 174		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 175			return -ENOMEM;
 176	} while (pmd++, addr = next, addr != end);
 177	return 0;
 178}
 179
 180static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
 181		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 
 182{
 183	pud_t *pud;
 184	unsigned long next;
 185
 186	pud = pud_alloc(&init_mm, p4d, addr);
 187	if (!pud)
 188		return -ENOMEM;
 189	do {
 190		next = pud_addr_end(addr, end);
 191		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 192			return -ENOMEM;
 193	} while (pud++, addr = next, addr != end);
 194	return 0;
 195}
 196
 197static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
 198		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 
 199{
 200	p4d_t *p4d;
 201	unsigned long next;
 202
 203	p4d = p4d_alloc(&init_mm, pgd, addr);
 204	if (!p4d)
 205		return -ENOMEM;
 206	do {
 207		next = p4d_addr_end(addr, end);
 208		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
 209			return -ENOMEM;
 210	} while (p4d++, addr = next, addr != end);
 211	return 0;
 212}
 213
 214/*
 215 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 216 * will have pfns corresponding to the "pages" array.
 217 *
 218 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 219 */
 220static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 221				   pgprot_t prot, struct page **pages)
 222{
 
 223	pgd_t *pgd;
 224	unsigned long next;
 225	unsigned long addr = start;
 226	int err = 0;
 227	int nr = 0;
 
 228
 229	BUG_ON(addr >= end);
 230	pgd = pgd_offset_k(addr);
 231	do {
 232		next = pgd_addr_end(addr, end);
 233		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
 
 
 234		if (err)
 235			return err;
 236	} while (pgd++, addr = next, addr != end);
 237
 238	return nr;
 
 
 
 239}
 240
 241static int vmap_page_range(unsigned long start, unsigned long end,
 242			   pgprot_t prot, struct page **pages)
 
 
 
 
 
 
 
 
 
 243{
 244	int ret;
 
 
 
 
 
 
 
 
 
 245
 246	ret = vmap_page_range_noflush(start, end, prot, pages);
 247	flush_cache_vmap(start, end);
 248	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 249}
 250
 251int is_vmalloc_or_module_addr(const void *x)
 252{
 253	/*
 254	 * ARM, x86-64 and sparc64 put modules in a special place,
 255	 * and fall back on vmalloc() if that fails. Others
 256	 * just put it in the vmalloc space.
 257	 */
 258#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 259	unsigned long addr = (unsigned long)x;
 260	if (addr >= MODULES_VADDR && addr < MODULES_END)
 261		return 1;
 262#endif
 263	return is_vmalloc_addr(x);
 264}
 
 265
 266/*
 267 * Walk a vmap address to the struct page it maps.
 
 
 268 */
 269struct page *vmalloc_to_page(const void *vmalloc_addr)
 270{
 271	unsigned long addr = (unsigned long) vmalloc_addr;
 272	struct page *page = NULL;
 273	pgd_t *pgd = pgd_offset_k(addr);
 274	p4d_t *p4d;
 275	pud_t *pud;
 276	pmd_t *pmd;
 277	pte_t *ptep, pte;
 278
 279	/*
 280	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 281	 * architectures that do not vmalloc module space
 282	 */
 283	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 284
 285	if (pgd_none(*pgd))
 286		return NULL;
 
 
 
 
 
 287	p4d = p4d_offset(pgd, addr);
 288	if (p4d_none(*p4d))
 289		return NULL;
 290	pud = pud_offset(p4d, addr);
 
 
 
 291
 292	/*
 293	 * Don't dereference bad PUD or PMD (below) entries. This will also
 294	 * identify huge mappings, which we may encounter on architectures
 295	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
 296	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
 297	 * not [unambiguously] associated with a struct page, so there is
 298	 * no correct value to return for them.
 299	 */
 300	WARN_ON_ONCE(pud_bad(*pud));
 301	if (pud_none(*pud) || pud_bad(*pud))
 302		return NULL;
 
 
 
 
 
 303	pmd = pmd_offset(pud, addr);
 304	WARN_ON_ONCE(pmd_bad(*pmd));
 305	if (pmd_none(*pmd) || pmd_bad(*pmd))
 
 
 
 306		return NULL;
 307
 308	ptep = pte_offset_map(pmd, addr);
 309	pte = *ptep;
 310	if (pte_present(pte))
 311		page = pte_page(pte);
 312	pte_unmap(ptep);
 313	return page;
 314}
 315EXPORT_SYMBOL(vmalloc_to_page);
 316
 317/*
 318 * Map a vmalloc()-space virtual address to the physical page frame number.
 319 */
 320unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 321{
 322	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 323}
 324EXPORT_SYMBOL(vmalloc_to_pfn);
 325
 326
 327/*** Global kva allocator ***/
 328
 329#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
 330#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
 331
 332
 333static DEFINE_SPINLOCK(vmap_area_lock);
 334/* Export for kexec only */
 335LIST_HEAD(vmap_area_list);
 336static LLIST_HEAD(vmap_purge_list);
 337static struct rb_root vmap_area_root = RB_ROOT;
 338static bool vmap_initialized __read_mostly;
 339
 340/*
 341 * This kmem_cache is used for vmap_area objects. Instead of
 342 * allocating from slab we reuse an object from this cache to
 343 * make things faster. Especially in "no edge" splitting of
 344 * free block.
 345 */
 346static struct kmem_cache *vmap_area_cachep;
 347
 348/*
 349 * This linked list is used in pair with free_vmap_area_root.
 350 * It gives O(1) access to prev/next to perform fast coalescing.
 351 */
 352static LIST_HEAD(free_vmap_area_list);
 353
 354/*
 355 * This augment red-black tree represents the free vmap space.
 356 * All vmap_area objects in this tree are sorted by va->va_start
 357 * address. It is used for allocation and merging when a vmap
 358 * object is released.
 359 *
 360 * Each vmap_area node contains a maximum available free block
 361 * of its sub-tree, right or left. Therefore it is possible to
 362 * find a lowest match of free area.
 363 */
 364static struct rb_root free_vmap_area_root = RB_ROOT;
 365
 366/*
 367 * Preload a CPU with one object for "no edge" split case. The
 368 * aim is to get rid of allocations from the atomic context, thus
 369 * to use more permissive allocation masks.
 370 */
 371static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
 372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 373static __always_inline unsigned long
 374va_size(struct vmap_area *va)
 375{
 376	return (va->va_end - va->va_start);
 377}
 378
 379static __always_inline unsigned long
 380get_subtree_max_size(struct rb_node *node)
 381{
 382	struct vmap_area *va;
 383
 384	va = rb_entry_safe(node, struct vmap_area, rb_node);
 385	return va ? va->subtree_max_size : 0;
 386}
 387
 388/*
 389 * Gets called when remove the node and rotate.
 390 */
 391static __always_inline unsigned long
 392compute_subtree_max_size(struct vmap_area *va)
 393{
 394	return max3(va_size(va),
 395		get_subtree_max_size(va->rb_node.rb_left),
 396		get_subtree_max_size(va->rb_node.rb_right));
 397}
 398
 399RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
 400	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
 401
 402static void purge_vmap_area_lazy(void);
 403static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 404static unsigned long lazy_max_pages(void);
 
 405
 406static atomic_long_t nr_vmalloc_pages;
 407
 408unsigned long vmalloc_nr_pages(void)
 409{
 410	return atomic_long_read(&nr_vmalloc_pages);
 411}
 412
 413static struct vmap_area *__find_vmap_area(unsigned long addr)
 414{
 415	struct rb_node *n = vmap_area_root.rb_node;
 
 
 416
 417	while (n) {
 418		struct vmap_area *va;
 419
 420		va = rb_entry(n, struct vmap_area, rb_node);
 421		if (addr < va->va_start)
 422			n = n->rb_left;
 423		else if (addr >= va->va_end)
 424			n = n->rb_right;
 425		else
 426			return va;
 427	}
 428
 429	return NULL;
 430}
 431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432/*
 433 * This function returns back addresses of parent node
 434 * and its left or right link for further processing.
 
 
 
 
 435 */
 436static __always_inline struct rb_node **
 437find_va_links(struct vmap_area *va,
 438	struct rb_root *root, struct rb_node *from,
 439	struct rb_node **parent)
 440{
 441	struct vmap_area *tmp_va;
 442	struct rb_node **link;
 443
 444	if (root) {
 445		link = &root->rb_node;
 446		if (unlikely(!*link)) {
 447			*parent = NULL;
 448			return link;
 449		}
 450	} else {
 451		link = &from;
 452	}
 453
 454	/*
 455	 * Go to the bottom of the tree. When we hit the last point
 456	 * we end up with parent rb_node and correct direction, i name
 457	 * it link, where the new va->rb_node will be attached to.
 458	 */
 459	do {
 460		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
 461
 462		/*
 463		 * During the traversal we also do some sanity check.
 464		 * Trigger the BUG() if there are sides(left/right)
 465		 * or full overlaps.
 466		 */
 467		if (va->va_start < tmp_va->va_end &&
 468				va->va_end <= tmp_va->va_start)
 469			link = &(*link)->rb_left;
 470		else if (va->va_end > tmp_va->va_start &&
 471				va->va_start >= tmp_va->va_end)
 472			link = &(*link)->rb_right;
 473		else
 474			BUG();
 
 
 
 
 475	} while (*link);
 476
 477	*parent = &tmp_va->rb_node;
 478	return link;
 479}
 480
 481static __always_inline struct list_head *
 482get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
 483{
 484	struct list_head *list;
 485
 486	if (unlikely(!parent))
 487		/*
 488		 * The red-black tree where we try to find VA neighbors
 489		 * before merging or inserting is empty, i.e. it means
 490		 * there is no free vmap space. Normally it does not
 491		 * happen but we handle this case anyway.
 492		 */
 493		return NULL;
 494
 495	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
 496	return (&parent->rb_right == link ? list->next : list);
 497}
 498
 499static __always_inline void
 500link_va(struct vmap_area *va, struct rb_root *root,
 501	struct rb_node *parent, struct rb_node **link, struct list_head *head)
 
 502{
 503	/*
 504	 * VA is still not in the list, but we can
 505	 * identify its future previous list_head node.
 506	 */
 507	if (likely(parent)) {
 508		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
 509		if (&parent->rb_right != link)
 510			head = head->prev;
 511	}
 512
 513	/* Insert to the rb-tree */
 514	rb_link_node(&va->rb_node, parent, link);
 515	if (root == &free_vmap_area_root) {
 516		/*
 517		 * Some explanation here. Just perform simple insertion
 518		 * to the tree. We do not set va->subtree_max_size to
 519		 * its current size before calling rb_insert_augmented().
 520		 * It is because of we populate the tree from the bottom
 521		 * to parent levels when the node _is_ in the tree.
 522		 *
 523		 * Therefore we set subtree_max_size to zero after insertion,
 524		 * to let __augment_tree_propagate_from() puts everything to
 525		 * the correct order later on.
 526		 */
 527		rb_insert_augmented(&va->rb_node,
 528			root, &free_vmap_area_rb_augment_cb);
 529		va->subtree_max_size = 0;
 530	} else {
 531		rb_insert_color(&va->rb_node, root);
 532	}
 533
 534	/* Address-sort this list */
 535	list_add(&va->list, head);
 536}
 537
 538static __always_inline void
 539unlink_va(struct vmap_area *va, struct rb_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540{
 541	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
 542		return;
 543
 544	if (root == &free_vmap_area_root)
 545		rb_erase_augmented(&va->rb_node,
 546			root, &free_vmap_area_rb_augment_cb);
 547	else
 548		rb_erase(&va->rb_node, root);
 549
 550	list_del(&va->list);
 551	RB_CLEAR_NODE(&va->rb_node);
 552}
 553
 554#if DEBUG_AUGMENT_PROPAGATE_CHECK
 555static void
 556augment_tree_propagate_check(struct rb_node *n)
 557{
 558	struct vmap_area *va;
 559	struct rb_node *node;
 560	unsigned long size;
 561	bool found = false;
 562
 563	if (n == NULL)
 564		return;
 565
 566	va = rb_entry(n, struct vmap_area, rb_node);
 567	size = va->subtree_max_size;
 568	node = n;
 569
 570	while (node) {
 571		va = rb_entry(node, struct vmap_area, rb_node);
 
 
 
 572
 573		if (get_subtree_max_size(node->rb_left) == size) {
 574			node = node->rb_left;
 575		} else {
 576			if (va_size(va) == size) {
 577				found = true;
 578				break;
 579			}
 
 
 
 
 580
 581			node = node->rb_right;
 582		}
 583	}
 
 
 584
 585	if (!found) {
 586		va = rb_entry(n, struct vmap_area, rb_node);
 587		pr_emerg("tree is corrupted: %lu, %lu\n",
 588			va_size(va), va->subtree_max_size);
 
 589	}
 590
 591	augment_tree_propagate_check(n->rb_left);
 592	augment_tree_propagate_check(n->rb_right);
 593}
 594#endif
 595
 596/*
 597 * This function populates subtree_max_size from bottom to upper
 598 * levels starting from VA point. The propagation must be done
 599 * when VA size is modified by changing its va_start/va_end. Or
 600 * in case of newly inserting of VA to the tree.
 601 *
 602 * It means that __augment_tree_propagate_from() must be called:
 603 * - After VA has been inserted to the tree(free path);
 604 * - After VA has been shrunk(allocation path);
 605 * - After VA has been increased(merging path).
 606 *
 607 * Please note that, it does not mean that upper parent nodes
 608 * and their subtree_max_size are recalculated all the time up
 609 * to the root node.
 610 *
 611 *       4--8
 612 *        /\
 613 *       /  \
 614 *      /    \
 615 *    2--2  8--8
 616 *
 617 * For example if we modify the node 4, shrinking it to 2, then
 618 * no any modification is required. If we shrink the node 2 to 1
 619 * its subtree_max_size is updated only, and set to 1. If we shrink
 620 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 621 * node becomes 4--6.
 622 */
 623static __always_inline void
 624augment_tree_propagate_from(struct vmap_area *va)
 625{
 626	struct rb_node *node = &va->rb_node;
 627	unsigned long new_va_sub_max_size;
 628
 629	while (node) {
 630		va = rb_entry(node, struct vmap_area, rb_node);
 631		new_va_sub_max_size = compute_subtree_max_size(va);
 632
 633		/*
 634		 * If the newly calculated maximum available size of the
 635		 * subtree is equal to the current one, then it means that
 636		 * the tree is propagated correctly. So we have to stop at
 637		 * this point to save cycles.
 638		 */
 639		if (va->subtree_max_size == new_va_sub_max_size)
 640			break;
 641
 642		va->subtree_max_size = new_va_sub_max_size;
 643		node = rb_parent(&va->rb_node);
 644	}
 645
 646#if DEBUG_AUGMENT_PROPAGATE_CHECK
 647	augment_tree_propagate_check(free_vmap_area_root.rb_node);
 648#endif
 649}
 650
 651static void
 652insert_vmap_area(struct vmap_area *va,
 653	struct rb_root *root, struct list_head *head)
 654{
 655	struct rb_node **link;
 656	struct rb_node *parent;
 657
 658	link = find_va_links(va, root, NULL, &parent);
 659	link_va(va, root, parent, link, head);
 
 660}
 661
 662static void
 663insert_vmap_area_augment(struct vmap_area *va,
 664	struct rb_node *from, struct rb_root *root,
 665	struct list_head *head)
 666{
 667	struct rb_node **link;
 668	struct rb_node *parent;
 669
 670	if (from)
 671		link = find_va_links(va, NULL, from, &parent);
 672	else
 673		link = find_va_links(va, root, NULL, &parent);
 674
 675	link_va(va, root, parent, link, head);
 676	augment_tree_propagate_from(va);
 
 
 677}
 678
 679/*
 680 * Merge de-allocated chunk of VA memory with previous
 681 * and next free blocks. If coalesce is not done a new
 682 * free area is inserted. If VA has been merged, it is
 683 * freed.
 
 
 
 
 
 684 */
 685static __always_inline void
 686merge_or_add_vmap_area(struct vmap_area *va,
 687	struct rb_root *root, struct list_head *head)
 688{
 689	struct vmap_area *sibling;
 690	struct list_head *next;
 691	struct rb_node **link;
 692	struct rb_node *parent;
 693	bool merged = false;
 694
 695	/*
 696	 * Find a place in the tree where VA potentially will be
 697	 * inserted, unless it is merged with its sibling/siblings.
 698	 */
 699	link = find_va_links(va, root, NULL, &parent);
 
 
 700
 701	/*
 702	 * Get next node of VA to check if merging can be done.
 703	 */
 704	next = get_va_next_sibling(parent, link);
 705	if (unlikely(next == NULL))
 706		goto insert;
 707
 708	/*
 709	 * start            end
 710	 * |                |
 711	 * |<------VA------>|<-----Next----->|
 712	 *                  |                |
 713	 *                  start            end
 714	 */
 715	if (next != head) {
 716		sibling = list_entry(next, struct vmap_area, list);
 717		if (sibling->va_start == va->va_end) {
 718			sibling->va_start = va->va_start;
 719
 720			/* Check and update the tree if needed. */
 721			augment_tree_propagate_from(sibling);
 722
 723			/* Free vmap_area object. */
 724			kmem_cache_free(vmap_area_cachep, va);
 725
 726			/* Point to the new merged area. */
 727			va = sibling;
 728			merged = true;
 729		}
 730	}
 731
 732	/*
 733	 * start            end
 734	 * |                |
 735	 * |<-----Prev----->|<------VA------>|
 736	 *                  |                |
 737	 *                  start            end
 738	 */
 739	if (next->prev != head) {
 740		sibling = list_entry(next->prev, struct vmap_area, list);
 741		if (sibling->va_end == va->va_start) {
 742			sibling->va_end = va->va_end;
 743
 744			/* Check and update the tree if needed. */
 745			augment_tree_propagate_from(sibling);
 746
 
 
 747			if (merged)
 748				unlink_va(va, root);
 
 
 749
 750			/* Free vmap_area object. */
 751			kmem_cache_free(vmap_area_cachep, va);
 752			return;
 
 
 
 753		}
 754	}
 755
 756insert:
 757	if (!merged) {
 758		link_va(va, root, parent, link, head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 759		augment_tree_propagate_from(va);
 760	}
 
 761}
 762
 763static __always_inline bool
 764is_within_this_va(struct vmap_area *va, unsigned long size,
 765	unsigned long align, unsigned long vstart)
 766{
 767	unsigned long nva_start_addr;
 768
 769	if (va->va_start > vstart)
 770		nva_start_addr = ALIGN(va->va_start, align);
 771	else
 772		nva_start_addr = ALIGN(vstart, align);
 773
 774	/* Can be overflowed due to big size or alignment. */
 775	if (nva_start_addr + size < nva_start_addr ||
 776			nva_start_addr < vstart)
 777		return false;
 778
 779	return (nva_start_addr + size <= va->va_end);
 780}
 781
 782/*
 783 * Find the first free block(lowest start address) in the tree,
 784 * that will accomplish the request corresponding to passing
 785 * parameters.
 
 
 786 */
 787static __always_inline struct vmap_area *
 788find_vmap_lowest_match(unsigned long size,
 789	unsigned long align, unsigned long vstart)
 790{
 791	struct vmap_area *va;
 792	struct rb_node *node;
 793	unsigned long length;
 794
 795	/* Start from the root. */
 796	node = free_vmap_area_root.rb_node;
 797
 798	/* Adjust the search size for alignment overhead. */
 799	length = size + align - 1;
 800
 801	while (node) {
 802		va = rb_entry(node, struct vmap_area, rb_node);
 803
 804		if (get_subtree_max_size(node->rb_left) >= length &&
 805				vstart < va->va_start) {
 806			node = node->rb_left;
 807		} else {
 808			if (is_within_this_va(va, size, align, vstart))
 809				return va;
 810
 811			/*
 812			 * Does not make sense to go deeper towards the right
 813			 * sub-tree if it does not have a free block that is
 814			 * equal or bigger to the requested search length.
 815			 */
 816			if (get_subtree_max_size(node->rb_right) >= length) {
 817				node = node->rb_right;
 818				continue;
 819			}
 820
 821			/*
 822			 * OK. We roll back and find the first right sub-tree,
 823			 * that will satisfy the search criteria. It can happen
 824			 * only once due to "vstart" restriction.
 
 825			 */
 826			while ((node = rb_parent(node))) {
 827				va = rb_entry(node, struct vmap_area, rb_node);
 828				if (is_within_this_va(va, size, align, vstart))
 829					return va;
 830
 831				if (get_subtree_max_size(node->rb_right) >= length &&
 832						vstart <= va->va_start) {
 
 
 
 
 
 
 
 833					node = node->rb_right;
 834					break;
 835				}
 836			}
 837		}
 838	}
 839
 840	return NULL;
 841}
 842
 843#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
 844#include <linux/random.h>
 845
 846static struct vmap_area *
 847find_vmap_lowest_linear_match(unsigned long size,
 848	unsigned long align, unsigned long vstart)
 849{
 850	struct vmap_area *va;
 851
 852	list_for_each_entry(va, &free_vmap_area_list, list) {
 853		if (!is_within_this_va(va, size, align, vstart))
 854			continue;
 855
 856		return va;
 857	}
 858
 859	return NULL;
 860}
 861
 862static void
 863find_vmap_lowest_match_check(unsigned long size)
 
 864{
 865	struct vmap_area *va_1, *va_2;
 866	unsigned long vstart;
 867	unsigned int rnd;
 868
 869	get_random_bytes(&rnd, sizeof(rnd));
 870	vstart = VMALLOC_START + rnd;
 871
 872	va_1 = find_vmap_lowest_match(size, 1, vstart);
 873	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
 874
 875	if (va_1 != va_2)
 876		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
 877			va_1, va_2, vstart);
 878}
 879#endif
 880
 881enum fit_type {
 882	NOTHING_FIT = 0,
 883	FL_FIT_TYPE = 1,	/* full fit */
 884	LE_FIT_TYPE = 2,	/* left edge fit */
 885	RE_FIT_TYPE = 3,	/* right edge fit */
 886	NE_FIT_TYPE = 4		/* no edge fit */
 887};
 888
 889static __always_inline enum fit_type
 890classify_va_fit_type(struct vmap_area *va,
 891	unsigned long nva_start_addr, unsigned long size)
 892{
 893	enum fit_type type;
 894
 895	/* Check if it is within VA. */
 896	if (nva_start_addr < va->va_start ||
 897			nva_start_addr + size > va->va_end)
 898		return NOTHING_FIT;
 899
 900	/* Now classify. */
 901	if (va->va_start == nva_start_addr) {
 902		if (va->va_end == nva_start_addr + size)
 903			type = FL_FIT_TYPE;
 904		else
 905			type = LE_FIT_TYPE;
 906	} else if (va->va_end == nva_start_addr + size) {
 907		type = RE_FIT_TYPE;
 908	} else {
 909		type = NE_FIT_TYPE;
 910	}
 911
 912	return type;
 913}
 914
 915static __always_inline int
 916adjust_va_to_fit_type(struct vmap_area *va,
 917	unsigned long nva_start_addr, unsigned long size,
 918	enum fit_type type)
 919{
 920	struct vmap_area *lva = NULL;
 
 921
 922	if (type == FL_FIT_TYPE) {
 923		/*
 924		 * No need to split VA, it fully fits.
 925		 *
 926		 * |               |
 927		 * V      NVA      V
 928		 * |---------------|
 929		 */
 930		unlink_va(va, &free_vmap_area_root);
 931		kmem_cache_free(vmap_area_cachep, va);
 932	} else if (type == LE_FIT_TYPE) {
 933		/*
 934		 * Split left edge of fit VA.
 935		 *
 936		 * |       |
 937		 * V  NVA  V   R
 938		 * |-------|-------|
 939		 */
 940		va->va_start += size;
 941	} else if (type == RE_FIT_TYPE) {
 942		/*
 943		 * Split right edge of fit VA.
 944		 *
 945		 *         |       |
 946		 *     L   V  NVA  V
 947		 * |-------|-------|
 948		 */
 949		va->va_end = nva_start_addr;
 950	} else if (type == NE_FIT_TYPE) {
 951		/*
 952		 * Split no edge of fit VA.
 953		 *
 954		 *     |       |
 955		 *   L V  NVA  V R
 956		 * |---|-------|---|
 957		 */
 958		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
 959		if (unlikely(!lva)) {
 960			/*
 961			 * For percpu allocator we do not do any pre-allocation
 962			 * and leave it as it is. The reason is it most likely
 963			 * never ends up with NE_FIT_TYPE splitting. In case of
 964			 * percpu allocations offsets and sizes are aligned to
 965			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
 966			 * are its main fitting cases.
 967			 *
 968			 * There are a few exceptions though, as an example it is
 969			 * a first allocation (early boot up) when we have "one"
 970			 * big free space that has to be split.
 
 
 
 
 
 
 
 
 
 
 
 
 
 971			 */
 972			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
 973			if (!lva)
 974				return -1;
 975		}
 976
 977		/*
 978		 * Build the remainder.
 979		 */
 980		lva->va_start = va->va_start;
 981		lva->va_end = nva_start_addr;
 982
 983		/*
 984		 * Shrink this VA to remaining size.
 985		 */
 986		va->va_start = nva_start_addr + size;
 987	} else {
 988		return -1;
 989	}
 990
 991	if (type != FL_FIT_TYPE) {
 992		augment_tree_propagate_from(va);
 993
 994		if (lva)	/* type == NE_FIT_TYPE */
 995			insert_vmap_area_augment(lva, &va->rb_node,
 996				&free_vmap_area_root, &free_vmap_area_list);
 997	}
 998
 999	return 0;
1000}
1001
1002/*
1003 * Returns a start address of the newly allocated area, if success.
1004 * Otherwise a vend is returned that indicates failure.
1005 */
1006static __always_inline unsigned long
1007__alloc_vmap_area(unsigned long size, unsigned long align,
1008	unsigned long vstart, unsigned long vend)
1009{
1010	unsigned long nva_start_addr;
1011	struct vmap_area *va;
1012	enum fit_type type;
1013	int ret;
1014
1015	va = find_vmap_lowest_match(size, align, vstart);
1016	if (unlikely(!va))
1017		return vend;
1018
1019	if (va->va_start > vstart)
1020		nva_start_addr = ALIGN(va->va_start, align);
1021	else
1022		nva_start_addr = ALIGN(vstart, align);
1023
1024	/* Check the "vend" restriction. */
1025	if (nva_start_addr + size > vend)
1026		return vend;
1027
1028	/* Classify what we have found. */
1029	type = classify_va_fit_type(va, nva_start_addr, size);
1030	if (WARN_ON_ONCE(type == NOTHING_FIT))
1031		return vend;
1032
1033	/* Update the free vmap_area. */
1034	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1035	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036		return vend;
1037
1038#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1039	find_vmap_lowest_match_check(size);
1040#endif
1041
1042	return nva_start_addr;
1043}
1044
1045/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1046 * Allocate a region of KVA of the specified size and alignment, within the
1047 * vstart and vend.
1048 */
1049static struct vmap_area *alloc_vmap_area(unsigned long size,
1050				unsigned long align,
1051				unsigned long vstart, unsigned long vend,
1052				int node, gfp_t gfp_mask)
 
1053{
1054	struct vmap_area *va, *pva;
 
 
1055	unsigned long addr;
 
1056	int purged = 0;
 
1057
1058	BUG_ON(!size);
1059	BUG_ON(offset_in_page(size));
1060	BUG_ON(!is_power_of_2(align));
1061
1062	if (unlikely(!vmap_initialized))
1063		return ERR_PTR(-EBUSY);
1064
1065	might_sleep();
1066
1067	va = kmem_cache_alloc_node(vmap_area_cachep,
1068			gfp_mask & GFP_RECLAIM_MASK, node);
1069	if (unlikely(!va))
1070		return ERR_PTR(-ENOMEM);
1071
1072	/*
1073	 * Only scan the relevant parts containing pointers to other objects
1074	 * to avoid false negatives.
1075	 */
1076	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
1077
1078retry:
1079	/*
1080	 * Preload this CPU with one extra vmap_area object to ensure
1081	 * that we have it available when fit type of free area is
1082	 * NE_FIT_TYPE.
1083	 *
1084	 * The preload is done in non-atomic context, thus it allows us
1085	 * to use more permissive allocation masks to be more stable under
1086	 * low memory condition and high memory pressure.
1087	 *
1088	 * Even if it fails we do not really care about that. Just proceed
1089	 * as it is. "overflow" path will refill the cache we allocate from.
1090	 */
1091	preempt_disable();
1092	if (!__this_cpu_read(ne_fit_preload_node)) {
1093		preempt_enable();
1094		pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node);
1095		preempt_disable();
 
 
1096
1097		if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) {
1098			if (pva)
1099				kmem_cache_free(vmap_area_cachep, pva);
1100		}
 
 
 
 
 
 
 
 
 
1101	}
1102
1103	spin_lock(&vmap_area_lock);
1104	preempt_enable();
1105
1106	/*
1107	 * If an allocation fails, the "vend" address is
1108	 * returned. Therefore trigger the overflow path.
1109	 */
1110	addr = __alloc_vmap_area(size, align, vstart, vend);
1111	if (unlikely(addr == vend))
1112		goto overflow;
1113
1114	va->va_start = addr;
1115	va->va_end = addr + size;
1116	va->vm = NULL;
1117	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1118
1119	spin_unlock(&vmap_area_lock);
 
 
 
 
1120
1121	BUG_ON(!IS_ALIGNED(va->va_start, align));
1122	BUG_ON(va->va_start < vstart);
1123	BUG_ON(va->va_end > vend);
1124
 
 
 
 
 
 
1125	return va;
1126
1127overflow:
1128	spin_unlock(&vmap_area_lock);
1129	if (!purged) {
1130		purge_vmap_area_lazy();
1131		purged = 1;
1132		goto retry;
1133	}
1134
1135	if (gfpflags_allow_blocking(gfp_mask)) {
1136		unsigned long freed = 0;
1137		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1138		if (freed > 0) {
1139			purged = 0;
1140			goto retry;
1141		}
1142	}
1143
1144	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1145		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1146			size);
1147
1148	kmem_cache_free(vmap_area_cachep, va);
1149	return ERR_PTR(-EBUSY);
1150}
1151
1152int register_vmap_purge_notifier(struct notifier_block *nb)
1153{
1154	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1155}
1156EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1157
1158int unregister_vmap_purge_notifier(struct notifier_block *nb)
1159{
1160	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1161}
1162EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1163
1164static void __free_vmap_area(struct vmap_area *va)
1165{
1166	/*
1167	 * Remove from the busy tree/list.
1168	 */
1169	unlink_va(va, &vmap_area_root);
1170
1171	/*
1172	 * Merge VA with its neighbors, otherwise just add it.
1173	 */
1174	merge_or_add_vmap_area(va,
1175		&free_vmap_area_root, &free_vmap_area_list);
1176}
1177
1178/*
1179 * Free a region of KVA allocated by alloc_vmap_area
1180 */
1181static void free_vmap_area(struct vmap_area *va)
1182{
1183	spin_lock(&vmap_area_lock);
1184	__free_vmap_area(va);
1185	spin_unlock(&vmap_area_lock);
1186}
1187
1188/*
1189 * Clear the pagetable entries of a given vmap_area
1190 */
1191static void unmap_vmap_area(struct vmap_area *va)
1192{
1193	vunmap_page_range(va->va_start, va->va_end);
1194}
1195
1196/*
1197 * lazy_max_pages is the maximum amount of virtual address space we gather up
1198 * before attempting to purge with a TLB flush.
1199 *
1200 * There is a tradeoff here: a larger number will cover more kernel page tables
1201 * and take slightly longer to purge, but it will linearly reduce the number of
1202 * global TLB flushes that must be performed. It would seem natural to scale
1203 * this number up linearly with the number of CPUs (because vmapping activity
1204 * could also scale linearly with the number of CPUs), however it is likely
1205 * that in practice, workloads might be constrained in other ways that mean
1206 * vmap activity will not scale linearly with CPUs. Also, I want to be
1207 * conservative and not introduce a big latency on huge systems, so go with
1208 * a less aggressive log scale. It will still be an improvement over the old
1209 * code, and it will be simple to change the scale factor if we find that it
1210 * becomes a problem on bigger systems.
1211 */
1212static unsigned long lazy_max_pages(void)
1213{
1214	unsigned int log;
1215
1216	log = fls(num_online_cpus());
1217
1218	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1219}
1220
1221static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1222
1223/*
1224 * Serialize vmap purging.  There is no actual criticial section protected
1225 * by this look, but we want to avoid concurrent calls for performance
1226 * reasons and to make the pcpu_get_vm_areas more deterministic.
1227 */
1228static DEFINE_MUTEX(vmap_purge_lock);
1229
1230/* for per-CPU blocks */
1231static void purge_fragmented_blocks_allcpus(void);
 
1232
1233/*
1234 * called before a call to iounmap() if the caller wants vm_area_struct's
1235 * immediately freed.
1236 */
1237void set_iounmap_nonlazy(void)
1238{
1239	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
 
 
 
 
 
 
 
 
 
1240}
1241
1242/*
1243 * Purges all lazily-freed vmap areas.
1244 */
1245static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1246{
1247	unsigned long resched_threshold;
1248	struct llist_node *valist;
1249	struct vmap_area *va;
1250	struct vmap_area *n_va;
 
1251
1252	lockdep_assert_held(&vmap_purge_lock);
 
1253
1254	valist = llist_del_all(&vmap_purge_list);
1255	if (unlikely(valist == NULL))
1256		return false;
1257
1258	/*
1259	 * First make sure the mappings are removed from all page-tables
1260	 * before they are freed.
1261	 */
1262	vmalloc_sync_all();
1263
1264	/*
1265	 * TODO: to calculate a flush range without looping.
1266	 * The list can be up to lazy_max_pages() elements.
1267	 */
1268	llist_for_each_entry(va, valist, purge_list) {
1269		if (va->va_start < start)
1270			start = va->va_start;
1271		if (va->va_end > end)
1272			end = va->va_end;
1273	}
1274
1275	flush_tlb_kernel_range(start, end);
1276	resched_threshold = lazy_max_pages() << 1;
 
 
1277
1278	spin_lock(&vmap_area_lock);
1279	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1280		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1281
1282		/*
1283		 * Finally insert or merge lazily-freed area. It is
1284		 * detached and there is no need to "unlink" it from
1285		 * anything.
 
1286		 */
1287		merge_or_add_vmap_area(va,
1288			&free_vmap_area_root, &free_vmap_area_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289
1290		atomic_long_sub(nr, &vmap_lazy_nr);
 
1291
1292		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1293			cond_resched_lock(&vmap_area_lock);
 
 
 
 
1294	}
1295	spin_unlock(&vmap_area_lock);
1296	return true;
1297}
1298
1299/*
1300 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1301 * is already purging.
1302 */
1303static void try_purge_vmap_area_lazy(void)
 
1304{
1305	if (mutex_trylock(&vmap_purge_lock)) {
1306		__purge_vmap_area_lazy(ULONG_MAX, 0);
1307		mutex_unlock(&vmap_purge_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1308	}
 
 
 
1309}
1310
1311/*
1312 * Kick off a purge of the outstanding lazy areas.
1313 */
1314static void purge_vmap_area_lazy(void)
 
1315{
1316	mutex_lock(&vmap_purge_lock);
1317	purge_fragmented_blocks_allcpus();
1318	__purge_vmap_area_lazy(ULONG_MAX, 0);
 
 
 
 
 
 
 
1319	mutex_unlock(&vmap_purge_lock);
1320}
1321
1322/*
1323 * Free a vmap area, caller ensuring that the area has been unmapped
1324 * and flush_cache_vunmap had been called for the correct range
1325 * previously.
1326 */
1327static void free_vmap_area_noflush(struct vmap_area *va)
1328{
 
 
 
 
1329	unsigned long nr_lazy;
1330
1331	spin_lock(&vmap_area_lock);
1332	unlink_va(va, &vmap_area_root);
1333	spin_unlock(&vmap_area_lock);
1334
1335	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1336				PAGE_SHIFT, &vmap_lazy_nr);
1337
1338	/* After this point, we may free va at any time */
1339	llist_add(&va->purge_list, &vmap_purge_list);
 
 
 
 
 
 
 
 
 
 
1340
1341	if (unlikely(nr_lazy > lazy_max_pages()))
1342		try_purge_vmap_area_lazy();
 
1343}
1344
1345/*
1346 * Free and unmap a vmap area
1347 */
1348static void free_unmap_vmap_area(struct vmap_area *va)
1349{
1350	flush_cache_vunmap(va->va_start, va->va_end);
1351	unmap_vmap_area(va);
1352	if (debug_pagealloc_enabled())
1353		flush_tlb_kernel_range(va->va_start, va->va_end);
1354
1355	free_vmap_area_noflush(va);
1356}
1357
1358static struct vmap_area *find_vmap_area(unsigned long addr)
1359{
 
1360	struct vmap_area *va;
 
1361
1362	spin_lock(&vmap_area_lock);
1363	va = __find_vmap_area(addr);
1364	spin_unlock(&vmap_area_lock);
1365
1366	return va;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1367}
1368
1369/*** Per cpu kva allocator ***/
1370
1371/*
1372 * vmap space is limited especially on 32 bit architectures. Ensure there is
1373 * room for at least 16 percpu vmap blocks per CPU.
1374 */
1375/*
1376 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1377 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1378 * instead (we just need a rough idea)
1379 */
1380#if BITS_PER_LONG == 32
1381#define VMALLOC_SPACE		(128UL*1024*1024)
1382#else
1383#define VMALLOC_SPACE		(128UL*1024*1024*1024)
1384#endif
1385
1386#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1387#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1388#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1389#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1390#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1391#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1392#define VMAP_BBMAP_BITS		\
1393		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1394		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1395			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1396
1397#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1398
 
 
 
 
 
 
 
 
 
 
1399struct vmap_block_queue {
1400	spinlock_t lock;
1401	struct list_head free;
 
 
 
 
 
 
 
1402};
1403
1404struct vmap_block {
1405	spinlock_t lock;
1406	struct vmap_area *va;
1407	unsigned long free, dirty;
 
1408	unsigned long dirty_min, dirty_max; /*< dirty range */
1409	struct list_head free_list;
1410	struct rcu_head rcu_head;
1411	struct list_head purge;
1412};
1413
1414/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1415static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1416
1417/*
1418 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1419 * in the free path. Could get rid of this if we change the API to return a
1420 * "cookie" from alloc, to be passed to free. But no big deal yet.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1421 */
1422static DEFINE_SPINLOCK(vmap_block_tree_lock);
1423static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 
 
 
 
 
1424
1425/*
1426 * We should probably have a fallback mechanism to allocate virtual memory
1427 * out of partially filled vmap blocks. However vmap block sizing should be
1428 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1429 * big problem.
1430 */
1431
1432static unsigned long addr_to_vb_idx(unsigned long addr)
1433{
1434	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1435	addr /= VMAP_BLOCK_SIZE;
1436	return addr;
1437}
1438
1439static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1440{
1441	unsigned long addr;
1442
1443	addr = va_start + (pages_off << PAGE_SHIFT);
1444	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1445	return (void *)addr;
1446}
1447
1448/**
1449 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1450 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1451 * @order:    how many 2^order pages should be occupied in newly allocated block
1452 * @gfp_mask: flags for the page level allocator
1453 *
1454 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1455 */
1456static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1457{
1458	struct vmap_block_queue *vbq;
1459	struct vmap_block *vb;
1460	struct vmap_area *va;
 
1461	unsigned long vb_idx;
1462	int node, err;
1463	void *vaddr;
1464
1465	node = numa_node_id();
1466
1467	vb = kmalloc_node(sizeof(struct vmap_block),
1468			gfp_mask & GFP_RECLAIM_MASK, node);
1469	if (unlikely(!vb))
1470		return ERR_PTR(-ENOMEM);
1471
1472	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1473					VMALLOC_START, VMALLOC_END,
1474					node, gfp_mask);
 
1475	if (IS_ERR(va)) {
1476		kfree(vb);
1477		return ERR_CAST(va);
1478	}
1479
1480	err = radix_tree_preload(gfp_mask);
1481	if (unlikely(err)) {
1482		kfree(vb);
1483		free_vmap_area(va);
1484		return ERR_PTR(err);
1485	}
1486
1487	vaddr = vmap_block_vaddr(va->va_start, 0);
1488	spin_lock_init(&vb->lock);
1489	vb->va = va;
1490	/* At least something should be left free */
1491	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
 
1492	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1493	vb->dirty = 0;
1494	vb->dirty_min = VMAP_BBMAP_BITS;
1495	vb->dirty_max = 0;
 
1496	INIT_LIST_HEAD(&vb->free_list);
1497
 
1498	vb_idx = addr_to_vb_idx(va->va_start);
1499	spin_lock(&vmap_block_tree_lock);
1500	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1501	spin_unlock(&vmap_block_tree_lock);
1502	BUG_ON(err);
1503	radix_tree_preload_end();
 
1504
1505	vbq = &get_cpu_var(vmap_block_queue);
1506	spin_lock(&vbq->lock);
1507	list_add_tail_rcu(&vb->free_list, &vbq->free);
1508	spin_unlock(&vbq->lock);
1509	put_cpu_var(vmap_block_queue);
1510
1511	return vaddr;
1512}
1513
1514static void free_vmap_block(struct vmap_block *vb)
1515{
 
1516	struct vmap_block *tmp;
1517	unsigned long vb_idx;
1518
1519	vb_idx = addr_to_vb_idx(vb->va->va_start);
1520	spin_lock(&vmap_block_tree_lock);
1521	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1522	spin_unlock(&vmap_block_tree_lock);
1523	BUG_ON(tmp != vb);
1524
 
 
 
 
 
1525	free_vmap_area_noflush(vb->va);
1526	kfree_rcu(vb, rcu_head);
1527}
1528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1529static void purge_fragmented_blocks(int cpu)
1530{
1531	LIST_HEAD(purge);
1532	struct vmap_block *vb;
1533	struct vmap_block *n_vb;
1534	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1535
1536	rcu_read_lock();
1537	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 
 
1538
1539		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 
1540			continue;
1541
1542		spin_lock(&vb->lock);
1543		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1544			vb->free = 0; /* prevent further allocs after releasing lock */
1545			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1546			vb->dirty_min = 0;
1547			vb->dirty_max = VMAP_BBMAP_BITS;
1548			spin_lock(&vbq->lock);
1549			list_del_rcu(&vb->free_list);
1550			spin_unlock(&vbq->lock);
1551			spin_unlock(&vb->lock);
1552			list_add_tail(&vb->purge, &purge);
1553		} else
1554			spin_unlock(&vb->lock);
1555	}
1556	rcu_read_unlock();
1557
1558	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1559		list_del(&vb->purge);
1560		free_vmap_block(vb);
1561	}
1562}
1563
1564static void purge_fragmented_blocks_allcpus(void)
1565{
1566	int cpu;
1567
1568	for_each_possible_cpu(cpu)
1569		purge_fragmented_blocks(cpu);
1570}
1571
1572static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1573{
1574	struct vmap_block_queue *vbq;
1575	struct vmap_block *vb;
1576	void *vaddr = NULL;
1577	unsigned int order;
1578
1579	BUG_ON(offset_in_page(size));
1580	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1581	if (WARN_ON(size == 0)) {
1582		/*
1583		 * Allocating 0 bytes isn't what caller wants since
1584		 * get_order(0) returns funny result. Just warn and terminate
1585		 * early.
1586		 */
1587		return NULL;
1588	}
1589	order = get_order(size);
1590
1591	rcu_read_lock();
1592	vbq = &get_cpu_var(vmap_block_queue);
1593	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1594		unsigned long pages_off;
1595
 
 
 
1596		spin_lock(&vb->lock);
1597		if (vb->free < (1UL << order)) {
1598			spin_unlock(&vb->lock);
1599			continue;
1600		}
1601
1602		pages_off = VMAP_BBMAP_BITS - vb->free;
1603		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1604		vb->free -= 1UL << order;
 
1605		if (vb->free == 0) {
1606			spin_lock(&vbq->lock);
1607			list_del_rcu(&vb->free_list);
1608			spin_unlock(&vbq->lock);
1609		}
1610
1611		spin_unlock(&vb->lock);
1612		break;
1613	}
1614
1615	put_cpu_var(vmap_block_queue);
1616	rcu_read_unlock();
1617
1618	/* Allocate new block if nothing was found */
1619	if (!vaddr)
1620		vaddr = new_vmap_block(order, gfp_mask);
1621
1622	return vaddr;
1623}
1624
1625static void vb_free(const void *addr, unsigned long size)
1626{
1627	unsigned long offset;
1628	unsigned long vb_idx;
1629	unsigned int order;
1630	struct vmap_block *vb;
 
1631
1632	BUG_ON(offset_in_page(size));
1633	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1634
1635	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1636
1637	order = get_order(size);
 
1638
1639	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1640	offset >>= PAGE_SHIFT;
1641
1642	vb_idx = addr_to_vb_idx((unsigned long)addr);
1643	rcu_read_lock();
1644	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1645	rcu_read_unlock();
1646	BUG_ON(!vb);
1647
1648	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1649
1650	if (debug_pagealloc_enabled())
1651		flush_tlb_kernel_range((unsigned long)addr,
1652					(unsigned long)addr + size);
1653
1654	spin_lock(&vb->lock);
1655
1656	/* Expand dirty range */
1657	vb->dirty_min = min(vb->dirty_min, offset);
1658	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1659
1660	vb->dirty += 1UL << order;
1661	if (vb->dirty == VMAP_BBMAP_BITS) {
1662		BUG_ON(vb->free);
1663		spin_unlock(&vb->lock);
1664		free_vmap_block(vb);
1665	} else
1666		spin_unlock(&vb->lock);
1667}
1668
1669static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1670{
 
1671	int cpu;
1672
1673	if (unlikely(!vmap_initialized))
1674		return;
1675
1676	might_sleep();
1677
1678	for_each_possible_cpu(cpu) {
1679		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1680		struct vmap_block *vb;
 
1681
1682		rcu_read_lock();
1683		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1684			spin_lock(&vb->lock);
1685			if (vb->dirty) {
 
 
 
 
 
 
 
1686				unsigned long va_start = vb->va->va_start;
1687				unsigned long s, e;
1688
1689				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1690				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1691
1692				start = min(s, start);
1693				end   = max(e, end);
1694
 
 
 
 
1695				flush = 1;
1696			}
1697			spin_unlock(&vb->lock);
1698		}
1699		rcu_read_unlock();
1700	}
 
1701
1702	mutex_lock(&vmap_purge_lock);
1703	purge_fragmented_blocks_allcpus();
1704	if (!__purge_vmap_area_lazy(start, end) && flush)
1705		flush_tlb_kernel_range(start, end);
1706	mutex_unlock(&vmap_purge_lock);
1707}
1708
1709/**
1710 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1711 *
1712 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1713 * to amortize TLB flushing overheads. What this means is that any page you
1714 * have now, may, in a former life, have been mapped into kernel virtual
1715 * address by the vmap layer and so there might be some CPUs with TLB entries
1716 * still referencing that page (additional to the regular 1:1 kernel mapping).
1717 *
1718 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1719 * be sure that none of the pages we have control over will have any aliases
1720 * from the vmap layer.
1721 */
1722void vm_unmap_aliases(void)
1723{
1724	unsigned long start = ULONG_MAX, end = 0;
1725	int flush = 0;
1726
1727	_vm_unmap_aliases(start, end, flush);
1728}
1729EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1730
1731/**
1732 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1733 * @mem: the pointer returned by vm_map_ram
1734 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1735 */
1736void vm_unmap_ram(const void *mem, unsigned int count)
1737{
1738	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1739	unsigned long addr = (unsigned long)mem;
1740	struct vmap_area *va;
1741
1742	might_sleep();
1743	BUG_ON(!addr);
1744	BUG_ON(addr < VMALLOC_START);
1745	BUG_ON(addr > VMALLOC_END);
1746	BUG_ON(!PAGE_ALIGNED(addr));
1747
 
 
1748	if (likely(count <= VMAP_MAX_ALLOC)) {
1749		debug_check_no_locks_freed(mem, size);
1750		vb_free(mem, size);
1751		return;
1752	}
1753
1754	va = find_vmap_area(addr);
1755	BUG_ON(!va);
 
 
1756	debug_check_no_locks_freed((void *)va->va_start,
1757				    (va->va_end - va->va_start));
1758	free_unmap_vmap_area(va);
1759}
1760EXPORT_SYMBOL(vm_unmap_ram);
1761
1762/**
1763 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1764 * @pages: an array of pointers to the pages to be mapped
1765 * @count: number of pages
1766 * @node: prefer to allocate data structures on this node
1767 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1768 *
1769 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1770 * faster than vmap so it's good.  But if you mix long-life and short-life
1771 * objects with vm_map_ram(), it could consume lots of address space through
1772 * fragmentation (especially on a 32bit machine).  You could see failures in
1773 * the end.  Please use this function for short-lived objects.
1774 *
1775 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1776 */
1777void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1778{
1779	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1780	unsigned long addr;
1781	void *mem;
1782
1783	if (likely(count <= VMAP_MAX_ALLOC)) {
1784		mem = vb_alloc(size, GFP_KERNEL);
1785		if (IS_ERR(mem))
1786			return NULL;
1787		addr = (unsigned long)mem;
1788	} else {
1789		struct vmap_area *va;
1790		va = alloc_vmap_area(size, PAGE_SIZE,
1791				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
 
1792		if (IS_ERR(va))
1793			return NULL;
1794
1795		addr = va->va_start;
1796		mem = (void *)addr;
1797	}
1798	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
 
 
1799		vm_unmap_ram(mem, count);
1800		return NULL;
1801	}
 
 
 
 
 
 
 
 
1802	return mem;
1803}
1804EXPORT_SYMBOL(vm_map_ram);
1805
1806static struct vm_struct *vmlist __initdata;
1807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808/**
1809 * vm_area_add_early - add vmap area early during boot
1810 * @vm: vm_struct to add
1811 *
1812 * This function is used to add fixed kernel vm area to vmlist before
1813 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1814 * should contain proper values and the other fields should be zero.
1815 *
1816 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1817 */
1818void __init vm_area_add_early(struct vm_struct *vm)
1819{
1820	struct vm_struct *tmp, **p;
1821
1822	BUG_ON(vmap_initialized);
1823	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1824		if (tmp->addr >= vm->addr) {
1825			BUG_ON(tmp->addr < vm->addr + vm->size);
1826			break;
1827		} else
1828			BUG_ON(tmp->addr + tmp->size > vm->addr);
1829	}
1830	vm->next = *p;
1831	*p = vm;
1832}
1833
1834/**
1835 * vm_area_register_early - register vmap area early during boot
1836 * @vm: vm_struct to register
1837 * @align: requested alignment
1838 *
1839 * This function is used to register kernel vm area before
1840 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1841 * proper values on entry and other fields should be zero.  On return,
1842 * vm->addr contains the allocated address.
1843 *
1844 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1845 */
1846void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1847{
1848	static size_t vm_init_off __initdata;
1849	unsigned long addr;
1850
1851	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1852	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1853
1854	vm->addr = (void *)addr;
1855
1856	vm_area_add_early(vm);
1857}
1858
1859static void vmap_init_free_space(void)
1860{
1861	unsigned long vmap_start = 1;
1862	const unsigned long vmap_end = ULONG_MAX;
1863	struct vmap_area *busy, *free;
1864
1865	/*
1866	 *     B     F     B     B     B     F
1867	 * -|-----|.....|-----|-----|-----|.....|-
1868	 *  |           The KVA space           |
1869	 *  |<--------------------------------->|
1870	 */
1871	list_for_each_entry(busy, &vmap_area_list, list) {
1872		if (busy->va_start - vmap_start > 0) {
1873			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1874			if (!WARN_ON_ONCE(!free)) {
1875				free->va_start = vmap_start;
1876				free->va_end = busy->va_start;
1877
1878				insert_vmap_area_augment(free, NULL,
1879					&free_vmap_area_root,
1880						&free_vmap_area_list);
1881			}
1882		}
1883
1884		vmap_start = busy->va_end;
1885	}
1886
1887	if (vmap_end - vmap_start > 0) {
1888		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1889		if (!WARN_ON_ONCE(!free)) {
1890			free->va_start = vmap_start;
1891			free->va_end = vmap_end;
1892
1893			insert_vmap_area_augment(free, NULL,
1894				&free_vmap_area_root,
1895					&free_vmap_area_list);
1896		}
1897	}
1898}
1899
1900void __init vmalloc_init(void)
1901{
1902	struct vmap_area *va;
1903	struct vm_struct *tmp;
1904	int i;
1905
1906	/*
1907	 * Create the cache for vmap_area objects.
1908	 */
1909	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1910
1911	for_each_possible_cpu(i) {
1912		struct vmap_block_queue *vbq;
1913		struct vfree_deferred *p;
1914
1915		vbq = &per_cpu(vmap_block_queue, i);
1916		spin_lock_init(&vbq->lock);
1917		INIT_LIST_HEAD(&vbq->free);
1918		p = &per_cpu(vfree_deferred, i);
1919		init_llist_head(&p->list);
1920		INIT_WORK(&p->wq, free_work);
1921	}
1922
1923	/* Import existing vmlist entries. */
1924	for (tmp = vmlist; tmp; tmp = tmp->next) {
1925		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1926		if (WARN_ON_ONCE(!va))
1927			continue;
1928
1929		va->va_start = (unsigned long)tmp->addr;
1930		va->va_end = va->va_start + tmp->size;
1931		va->vm = tmp;
1932		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1933	}
1934
1935	/*
1936	 * Now we can initialize a free vmap space.
1937	 */
1938	vmap_init_free_space();
1939	vmap_initialized = true;
1940}
1941
1942/**
1943 * map_kernel_range_noflush - map kernel VM area with the specified pages
1944 * @addr: start of the VM area to map
1945 * @size: size of the VM area to map
1946 * @prot: page protection flags to use
1947 * @pages: pages to map
1948 *
1949 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1950 * specify should have been allocated using get_vm_area() and its
1951 * friends.
1952 *
1953 * NOTE:
1954 * This function does NOT do any cache flushing.  The caller is
1955 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1956 * before calling this function.
1957 *
1958 * RETURNS:
1959 * The number of pages mapped on success, -errno on failure.
1960 */
1961int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1962			     pgprot_t prot, struct page **pages)
1963{
1964	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1965}
1966
1967/**
1968 * unmap_kernel_range_noflush - unmap kernel VM area
1969 * @addr: start of the VM area to unmap
1970 * @size: size of the VM area to unmap
1971 *
1972 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1973 * specify should have been allocated using get_vm_area() and its
1974 * friends.
1975 *
1976 * NOTE:
1977 * This function does NOT do any cache flushing.  The caller is
1978 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1979 * before calling this function and flush_tlb_kernel_range() after.
1980 */
1981void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1982{
1983	vunmap_page_range(addr, addr + size);
1984}
1985EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1986
1987/**
1988 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1989 * @addr: start of the VM area to unmap
1990 * @size: size of the VM area to unmap
1991 *
1992 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1993 * the unmapping and tlb after.
1994 */
1995void unmap_kernel_range(unsigned long addr, unsigned long size)
1996{
1997	unsigned long end = addr + size;
1998
1999	flush_cache_vunmap(addr, end);
2000	vunmap_page_range(addr, end);
2001	flush_tlb_kernel_range(addr, end);
2002}
2003EXPORT_SYMBOL_GPL(unmap_kernel_range);
2004
2005int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
2006{
2007	unsigned long addr = (unsigned long)area->addr;
2008	unsigned long end = addr + get_vm_area_size(area);
2009	int err;
2010
2011	err = vmap_page_range(addr, end, prot, pages);
2012
2013	return err > 0 ? 0 : err;
2014}
2015EXPORT_SYMBOL_GPL(map_vm_area);
2016
2017static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2018			      unsigned long flags, const void *caller)
2019{
2020	spin_lock(&vmap_area_lock);
2021	vm->flags = flags;
2022	vm->addr = (void *)va->va_start;
2023	vm->size = va->va_end - va->va_start;
2024	vm->caller = caller;
2025	va->vm = vm;
2026	spin_unlock(&vmap_area_lock);
 
 
 
 
 
 
 
 
 
2027}
2028
2029static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2030{
2031	/*
2032	 * Before removing VM_UNINITIALIZED,
2033	 * we should make sure that vm has proper values.
2034	 * Pair with smp_rmb() in show_numa_info().
2035	 */
2036	smp_wmb();
2037	vm->flags &= ~VM_UNINITIALIZED;
2038}
2039
2040static struct vm_struct *__get_vm_area_node(unsigned long size,
2041		unsigned long align, unsigned long flags, unsigned long start,
2042		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
 
2043{
2044	struct vmap_area *va;
2045	struct vm_struct *area;
 
2046
2047	BUG_ON(in_interrupt());
2048	size = PAGE_ALIGN(size);
2049	if (unlikely(!size))
2050		return NULL;
2051
2052	if (flags & VM_IOREMAP)
2053		align = 1ul << clamp_t(int, get_count_order_long(size),
2054				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2055
2056	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2057	if (unlikely(!area))
2058		return NULL;
2059
2060	if (!(flags & VM_NO_GUARD))
2061		size += PAGE_SIZE;
2062
2063	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2064	if (IS_ERR(va)) {
2065		kfree(area);
2066		return NULL;
2067	}
2068
2069	setup_vmalloc_vm(area, va, flags, caller);
2070
2071	return area;
2072}
 
 
 
 
 
 
 
 
 
2073
2074struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2075				unsigned long start, unsigned long end)
2076{
2077	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2078				  GFP_KERNEL, __builtin_return_address(0));
2079}
2080EXPORT_SYMBOL_GPL(__get_vm_area);
2081
2082struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2083				       unsigned long start, unsigned long end,
2084				       const void *caller)
2085{
2086	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2087				  GFP_KERNEL, caller);
2088}
2089
2090/**
2091 * get_vm_area - reserve a contiguous kernel virtual area
2092 * @size:	 size of the area
2093 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2094 *
2095 * Search an area of @size in the kernel virtual mapping area,
2096 * and reserved it for out purposes.  Returns the area descriptor
2097 * on success or %NULL on failure.
2098 *
2099 * Return: the area descriptor on success or %NULL on failure.
2100 */
2101struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2102{
2103	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
 
2104				  NUMA_NO_NODE, GFP_KERNEL,
2105				  __builtin_return_address(0));
2106}
2107
2108struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2109				const void *caller)
2110{
2111	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
 
2112				  NUMA_NO_NODE, GFP_KERNEL, caller);
2113}
2114
2115/**
2116 * find_vm_area - find a continuous kernel virtual area
2117 * @addr:	  base address
2118 *
2119 * Search for the kernel VM area starting at @addr, and return it.
2120 * It is up to the caller to do all required locking to keep the returned
2121 * pointer valid.
2122 *
2123 * Return: pointer to the found area or %NULL on faulure
2124 */
2125struct vm_struct *find_vm_area(const void *addr)
2126{
2127	struct vmap_area *va;
2128
2129	va = find_vmap_area((unsigned long)addr);
2130	if (!va)
2131		return NULL;
2132
2133	return va->vm;
2134}
2135
2136/**
2137 * remove_vm_area - find and remove a continuous kernel virtual area
2138 * @addr:	    base address
2139 *
2140 * Search for the kernel VM area starting at @addr, and remove it.
2141 * This function returns the found VM area, but using it is NOT safe
2142 * on SMP machines, except for its size or flags.
2143 *
2144 * Return: pointer to the found area or %NULL on faulure
2145 */
2146struct vm_struct *remove_vm_area(const void *addr)
2147{
2148	struct vmap_area *va;
 
2149
2150	might_sleep();
2151
2152	spin_lock(&vmap_area_lock);
2153	va = __find_vmap_area((unsigned long)addr);
2154	if (va && va->vm) {
2155		struct vm_struct *vm = va->vm;
2156
2157		va->vm = NULL;
2158		spin_unlock(&vmap_area_lock);
2159
2160		kasan_free_shadow(vm);
2161		free_unmap_vmap_area(va);
 
 
2162
2163		return vm;
2164	}
 
 
2165
2166	spin_unlock(&vmap_area_lock);
2167	return NULL;
2168}
2169
2170static inline void set_area_direct_map(const struct vm_struct *area,
2171				       int (*set_direct_map)(struct page *page))
2172{
2173	int i;
2174
 
2175	for (i = 0; i < area->nr_pages; i++)
2176		if (page_address(area->pages[i]))
2177			set_direct_map(area->pages[i]);
2178}
2179
2180/* Handle removing and resetting vm mappings related to the vm_struct. */
2181static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
 
 
2182{
2183	unsigned long start = ULONG_MAX, end = 0;
2184	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2185	int flush_dmap = 0;
2186	int i;
2187
2188	remove_vm_area(area->addr);
2189
2190	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2191	if (!flush_reset)
2192		return;
2193
2194	/*
2195	 * If not deallocating pages, just do the flush of the VM area and
2196	 * return.
2197	 */
2198	if (!deallocate_pages) {
2199		vm_unmap_aliases();
2200		return;
2201	}
2202
2203	/*
2204	 * If execution gets here, flush the vm mapping and reset the direct
2205	 * map. Find the start and end range of the direct mappings to make sure
2206	 * the vm_unmap_aliases() flush includes the direct map.
2207	 */
2208	for (i = 0; i < area->nr_pages; i++) {
2209		unsigned long addr = (unsigned long)page_address(area->pages[i]);
 
2210		if (addr) {
 
 
 
2211			start = min(addr, start);
2212			end = max(addr + PAGE_SIZE, end);
2213			flush_dmap = 1;
2214		}
2215	}
2216
2217	/*
2218	 * Set direct map to something invalid so that it won't be cached if
2219	 * there are any accesses after the TLB flush, then flush the TLB and
2220	 * reset the direct map permissions to the default.
2221	 */
2222	set_area_direct_map(area, set_direct_map_invalid_noflush);
2223	_vm_unmap_aliases(start, end, flush_dmap);
2224	set_area_direct_map(area, set_direct_map_default_noflush);
2225}
2226
2227static void __vunmap(const void *addr, int deallocate_pages)
2228{
2229	struct vm_struct *area;
2230
2231	if (!addr)
2232		return;
2233
2234	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2235			addr))
2236		return;
2237
2238	area = find_vm_area(addr);
2239	if (unlikely(!area)) {
2240		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2241				addr);
2242		return;
2243	}
2244
2245	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2246	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2247
2248	vm_remove_mappings(area, deallocate_pages);
2249
2250	if (deallocate_pages) {
2251		int i;
2252
2253		for (i = 0; i < area->nr_pages; i++) {
2254			struct page *page = area->pages[i];
2255
2256			BUG_ON(!page);
2257			__free_pages(page, 0);
2258		}
2259		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2260
2261		kvfree(area->pages);
2262	}
2263
2264	kfree(area);
2265	return;
2266}
2267
2268static inline void __vfree_deferred(const void *addr)
2269{
2270	/*
2271	 * Use raw_cpu_ptr() because this can be called from preemptible
2272	 * context. Preemption is absolutely fine here, because the llist_add()
2273	 * implementation is lockless, so it works even if we are adding to
2274	 * nother cpu's list.  schedule_work() should be fine with this too.
2275	 */
2276	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2277
2278	if (llist_add((struct llist_node *)addr, &p->list))
2279		schedule_work(&p->wq);
2280}
2281
2282/**
2283 * vfree_atomic - release memory allocated by vmalloc()
2284 * @addr:	  memory base address
2285 *
2286 * This one is just like vfree() but can be called in any atomic context
2287 * except NMIs.
2288 */
2289void vfree_atomic(const void *addr)
2290{
2291	BUG_ON(in_nmi());
2292
 
2293	kmemleak_free(addr);
2294
2295	if (!addr)
2296		return;
2297	__vfree_deferred(addr);
2298}
2299
2300static void __vfree(const void *addr)
2301{
2302	if (unlikely(in_interrupt()))
2303		__vfree_deferred(addr);
2304	else
2305		__vunmap(addr, 1);
2306}
2307
2308/**
2309 * vfree - release memory allocated by vmalloc()
2310 * @addr:  memory base address
2311 *
2312 * Free the virtually continuous memory area starting at @addr, as
2313 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2314 * NULL, no operation is performed.
 
2315 *
2316 * Must not be called in NMI context (strictly speaking, only if we don't
2317 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2318 * conventions for vfree() arch-depenedent would be a really bad idea)
2319 *
 
2320 * May sleep if called *not* from interrupt context.
2321 *
2322 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
 
2323 */
2324void vfree(const void *addr)
2325{
2326	BUG_ON(in_nmi());
 
2327
2328	kmemleak_free(addr);
 
 
 
2329
2330	might_sleep_if(!in_interrupt());
 
 
2331
2332	if (!addr)
2333		return;
2334
2335	__vfree(addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2336}
2337EXPORT_SYMBOL(vfree);
2338
2339/**
2340 * vunmap - release virtual mapping obtained by vmap()
2341 * @addr:   memory base address
2342 *
2343 * Free the virtually contiguous memory area starting at @addr,
2344 * which was created from the page array passed to vmap().
2345 *
2346 * Must not be called in interrupt context.
2347 */
2348void vunmap(const void *addr)
2349{
 
 
2350	BUG_ON(in_interrupt());
2351	might_sleep();
2352	if (addr)
2353		__vunmap(addr, 0);
 
 
 
 
 
 
 
 
2354}
2355EXPORT_SYMBOL(vunmap);
2356
2357/**
2358 * vmap - map an array of pages into virtually contiguous space
2359 * @pages: array of page pointers
2360 * @count: number of pages to map
2361 * @flags: vm_area->flags
2362 * @prot: page protection for the mapping
2363 *
2364 * Maps @count pages from @pages into contiguous kernel virtual
2365 * space.
 
 
 
2366 *
2367 * Return: the address of the area or %NULL on failure
2368 */
2369void *vmap(struct page **pages, unsigned int count,
2370	   unsigned long flags, pgprot_t prot)
2371{
2372	struct vm_struct *area;
 
2373	unsigned long size;		/* In bytes */
2374
2375	might_sleep();
2376
 
 
 
 
 
 
 
 
 
 
2377	if (count > totalram_pages())
2378		return NULL;
2379
2380	size = (unsigned long)count << PAGE_SHIFT;
2381	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2382	if (!area)
2383		return NULL;
2384
2385	if (map_vm_area(area, prot, pages)) {
 
 
2386		vunmap(area->addr);
2387		return NULL;
2388	}
2389
 
 
 
 
2390	return area->addr;
2391}
2392EXPORT_SYMBOL(vmap);
2393
2394static void *__vmalloc_node(unsigned long size, unsigned long align,
2395			    gfp_t gfp_mask, pgprot_t prot,
2396			    int node, const void *caller);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2397static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2398				 pgprot_t prot, int node)
 
2399{
2400	struct page **pages;
2401	unsigned int nr_pages, array_size, i;
2402	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2403	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2404	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2405					0 :
2406					__GFP_HIGHMEM;
 
 
 
 
 
 
2407
2408	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2409	array_size = (nr_pages * sizeof(struct page *));
2410
2411	/* Please note that the recursion is strictly bounded. */
2412	if (array_size > PAGE_SIZE) {
2413		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2414				PAGE_KERNEL, node, area->caller);
2415	} else {
2416		pages = kmalloc_node(array_size, nested_gfp, node);
2417	}
2418
2419	if (!pages) {
2420		remove_vm_area(area->addr);
2421		kfree(area);
 
 
2422		return NULL;
2423	}
2424
2425	area->pages = pages;
2426	area->nr_pages = nr_pages;
2427
2428	for (i = 0; i < area->nr_pages; i++) {
2429		struct page *page;
2430
2431		if (node == NUMA_NO_NODE)
2432			page = alloc_page(alloc_mask|highmem_mask);
2433		else
2434			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2435
2436		if (unlikely(!page)) {
2437			/* Successfully allocated i pages, free them in __vunmap() */
2438			area->nr_pages = i;
2439			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2440			goto fail;
2441		}
2442		area->pages[i] = page;
2443		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2444			cond_resched();
2445	}
2446	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2447
2448	if (map_vm_area(area, prot, pages))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2449		goto fail;
 
 
2450	return area->addr;
2451
2452fail:
2453	warn_alloc(gfp_mask, NULL,
2454			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2455			  (area->nr_pages*PAGE_SIZE), area->size);
2456	__vfree(area->addr);
2457	return NULL;
2458}
2459
2460/**
2461 * __vmalloc_node_range - allocate virtually contiguous memory
2462 * @size:		  allocation size
2463 * @align:		  desired alignment
2464 * @start:		  vm area range start
2465 * @end:		  vm area range end
2466 * @gfp_mask:		  flags for the page level allocator
2467 * @prot:		  protection mask for the allocated pages
2468 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2469 * @node:		  node to use for allocation or NUMA_NO_NODE
2470 * @caller:		  caller's return address
2471 *
2472 * Allocate enough pages to cover @size from the page level
2473 * allocator with @gfp_mask flags.  Map them into contiguous
2474 * kernel virtual space, using a pagetable protection of @prot.
 
 
 
 
 
 
 
 
 
 
2475 *
2476 * Return: the address of the area or %NULL on failure
2477 */
2478void *__vmalloc_node_range(unsigned long size, unsigned long align,
2479			unsigned long start, unsigned long end, gfp_t gfp_mask,
2480			pgprot_t prot, unsigned long vm_flags, int node,
2481			const void *caller)
2482{
2483	struct vm_struct *area;
2484	void *addr;
 
2485	unsigned long real_size = size;
 
 
2486
2487	size = PAGE_ALIGN(size);
2488	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2489		goto fail;
 
2490
2491	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2492				vm_flags, start, end, node, gfp_mask, caller);
2493	if (!area)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2494		goto fail;
2495
2496	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2497	if (!addr)
2498		return NULL;
 
 
 
 
 
 
 
 
 
 
 
2499
2500	/*
2501	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2502	 * flag. It means that vm_struct is not fully initialized.
2503	 * Now, it is fully initialized, so remove this flag here.
2504	 */
2505	clear_vm_uninitialized_flag(area);
2506
2507	kmemleak_vmalloc(area, size, gfp_mask);
 
 
2508
2509	return addr;
2510
2511fail:
2512	warn_alloc(gfp_mask, NULL,
2513			  "vmalloc: allocation failure: %lu bytes", real_size);
 
 
 
 
 
2514	return NULL;
2515}
2516
2517/*
2518 * This is only for performance analysis of vmalloc and stress purpose.
2519 * It is required by vmalloc test module, therefore do not use it other
2520 * than that.
2521 */
2522#ifdef CONFIG_TEST_VMALLOC_MODULE
2523EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2524#endif
2525
2526/**
2527 * __vmalloc_node - allocate virtually contiguous memory
2528 * @size:	    allocation size
2529 * @align:	    desired alignment
2530 * @gfp_mask:	    flags for the page level allocator
2531 * @prot:	    protection mask for the allocated pages
2532 * @node:	    node to use for allocation or NUMA_NO_NODE
2533 * @caller:	    caller's return address
2534 *
2535 * Allocate enough pages to cover @size from the page level
2536 * allocator with @gfp_mask flags.  Map them into contiguous
2537 * kernel virtual space, using a pagetable protection of @prot.
2538 *
2539 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2540 * and __GFP_NOFAIL are not supported
2541 *
2542 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2543 * with mm people.
2544 *
2545 * Return: pointer to the allocated memory or %NULL on error
2546 */
2547static void *__vmalloc_node(unsigned long size, unsigned long align,
2548			    gfp_t gfp_mask, pgprot_t prot,
2549			    int node, const void *caller)
2550{
2551	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2552				gfp_mask, prot, 0, node, caller);
2553}
 
 
 
 
 
 
 
 
2554
2555void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2556{
2557	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2558				__builtin_return_address(0));
2559}
2560EXPORT_SYMBOL(__vmalloc);
2561
2562static inline void *__vmalloc_node_flags(unsigned long size,
2563					int node, gfp_t flags)
2564{
2565	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2566					node, __builtin_return_address(0));
2567}
2568
2569
2570void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2571				  void *caller)
2572{
2573	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2574}
2575
2576/**
2577 * vmalloc - allocate virtually contiguous memory
2578 * @size:    allocation size
2579 *
2580 * Allocate enough pages to cover @size from the page level
2581 * allocator and map them into contiguous kernel virtual space.
2582 *
2583 * For tight control over page level allocator and protection flags
2584 * use __vmalloc() instead.
2585 *
2586 * Return: pointer to the allocated memory or %NULL on error
2587 */
2588void *vmalloc(unsigned long size)
2589{
2590	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2591				    GFP_KERNEL);
2592}
2593EXPORT_SYMBOL(vmalloc);
2594
2595/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2596 * vzalloc - allocate virtually contiguous memory with zero fill
2597 * @size:    allocation size
2598 *
2599 * Allocate enough pages to cover @size from the page level
2600 * allocator and map them into contiguous kernel virtual space.
2601 * The memory allocated is set to zero.
2602 *
2603 * For tight control over page level allocator and protection flags
2604 * use __vmalloc() instead.
2605 *
2606 * Return: pointer to the allocated memory or %NULL on error
2607 */
2608void *vzalloc(unsigned long size)
2609{
2610	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2611				GFP_KERNEL | __GFP_ZERO);
2612}
2613EXPORT_SYMBOL(vzalloc);
2614
2615/**
2616 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2617 * @size: allocation size
2618 *
2619 * The resulting memory area is zeroed so it can be mapped to userspace
2620 * without leaking data.
2621 *
2622 * Return: pointer to the allocated memory or %NULL on error
2623 */
2624void *vmalloc_user(unsigned long size)
2625{
2626	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2627				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2628				    VM_USERMAP, NUMA_NO_NODE,
2629				    __builtin_return_address(0));
2630}
2631EXPORT_SYMBOL(vmalloc_user);
2632
2633/**
2634 * vmalloc_node - allocate memory on a specific node
2635 * @size:	  allocation size
2636 * @node:	  numa node
2637 *
2638 * Allocate enough pages to cover @size from the page level
2639 * allocator and map them into contiguous kernel virtual space.
2640 *
2641 * For tight control over page level allocator and protection flags
2642 * use __vmalloc() instead.
2643 *
2644 * Return: pointer to the allocated memory or %NULL on error
2645 */
2646void *vmalloc_node(unsigned long size, int node)
2647{
2648	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2649					node, __builtin_return_address(0));
2650}
2651EXPORT_SYMBOL(vmalloc_node);
2652
2653/**
2654 * vzalloc_node - allocate memory on a specific node with zero fill
2655 * @size:	allocation size
2656 * @node:	numa node
2657 *
2658 * Allocate enough pages to cover @size from the page level
2659 * allocator and map them into contiguous kernel virtual space.
2660 * The memory allocated is set to zero.
2661 *
2662 * For tight control over page level allocator and protection flags
2663 * use __vmalloc_node() instead.
2664 *
2665 * Return: pointer to the allocated memory or %NULL on error
2666 */
2667void *vzalloc_node(unsigned long size, int node)
2668{
2669	return __vmalloc_node_flags(size, node,
2670			 GFP_KERNEL | __GFP_ZERO);
2671}
2672EXPORT_SYMBOL(vzalloc_node);
2673
2674/**
2675 * vmalloc_exec - allocate virtually contiguous, executable memory
2676 * @size:	  allocation size
2677 *
2678 * Kernel-internal function to allocate enough pages to cover @size
2679 * the page level allocator and map them into contiguous and
2680 * executable kernel virtual space.
2681 *
2682 * For tight control over page level allocator and protection flags
2683 * use __vmalloc() instead.
2684 *
2685 * Return: pointer to the allocated memory or %NULL on error
2686 */
2687void *vmalloc_exec(unsigned long size)
2688{
2689	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2690			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2691			NUMA_NO_NODE, __builtin_return_address(0));
2692}
2693
2694#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2695#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2696#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2697#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2698#else
2699/*
2700 * 64b systems should always have either DMA or DMA32 zones. For others
2701 * GFP_DMA32 should do the right thing and use the normal zone.
2702 */
2703#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2704#endif
2705
2706/**
2707 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2708 * @size:	allocation size
2709 *
2710 * Allocate enough 32bit PA addressable pages to cover @size from the
2711 * page level allocator and map them into contiguous kernel virtual space.
2712 *
2713 * Return: pointer to the allocated memory or %NULL on error
2714 */
2715void *vmalloc_32(unsigned long size)
2716{
2717	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2718			      NUMA_NO_NODE, __builtin_return_address(0));
2719}
2720EXPORT_SYMBOL(vmalloc_32);
2721
2722/**
2723 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2724 * @size:	     allocation size
2725 *
2726 * The resulting memory area is 32bit addressable and zeroed so it can be
2727 * mapped to userspace without leaking data.
2728 *
2729 * Return: pointer to the allocated memory or %NULL on error
2730 */
2731void *vmalloc_32_user(unsigned long size)
2732{
2733	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2734				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2735				    VM_USERMAP, NUMA_NO_NODE,
2736				    __builtin_return_address(0));
2737}
2738EXPORT_SYMBOL(vmalloc_32_user);
2739
2740/*
2741 * small helper routine , copy contents to buf from addr.
2742 * If the page is not present, fill zero.
 
2743 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2744
2745static int aligned_vread(char *buf, char *addr, unsigned long count)
 
 
 
 
 
 
 
2746{
2747	struct page *p;
2748	int copied = 0;
2749
2750	while (count) {
2751		unsigned long offset, length;
 
2752
2753		offset = offset_in_page(addr);
2754		length = PAGE_SIZE - offset;
2755		if (length > count)
2756			length = count;
2757		p = vmalloc_to_page(addr);
2758		/*
2759		 * To do safe access to this _mapped_ area, we need
2760		 * lock. But adding lock here means that we need to add
2761		 * overhead of vmalloc()/vfree() calles for this _debug_
2762		 * interface, rarely used. Instead of that, we'll use
2763		 * kmap() and get small overhead in this access function.
 
2764		 */
2765		if (p) {
2766			/*
2767			 * we can expect USER0 is not used (see vread/vwrite's
2768			 * function description)
2769			 */
2770			void *map = kmap_atomic(p);
2771			memcpy(buf, map + offset, length);
2772			kunmap_atomic(map);
2773		} else
2774			memset(buf, 0, length);
2775
2776		addr += length;
2777		buf += length;
2778		copied += length;
2779		count -= length;
2780	}
2781	return copied;
 
2782}
2783
2784static int aligned_vwrite(char *buf, char *addr, unsigned long count)
 
 
 
 
 
 
2785{
2786	struct page *p;
2787	int copied = 0;
 
 
 
 
2788
2789	while (count) {
2790		unsigned long offset, length;
 
 
 
 
 
2791
2792		offset = offset_in_page(addr);
2793		length = PAGE_SIZE - offset;
2794		if (length > count)
2795			length = count;
2796		p = vmalloc_to_page(addr);
2797		/*
2798		 * To do safe access to this _mapped_ area, we need
2799		 * lock. But adding lock here means that we need to add
2800		 * overhead of vmalloc()/vfree() calles for this _debug_
2801		 * interface, rarely used. Instead of that, we'll use
2802		 * kmap() and get small overhead in this access function.
2803		 */
2804		if (p) {
2805			/*
2806			 * we can expect USER0 is not used (see vread/vwrite's
2807			 * function description)
2808			 */
2809			void *map = kmap_atomic(p);
2810			memcpy(map + offset, buf, length);
2811			kunmap_atomic(map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2812		}
2813		addr += length;
2814		buf += length;
2815		copied += length;
2816		count -= length;
 
 
 
 
 
 
 
 
 
 
2817	}
2818	return copied;
 
 
 
 
 
 
 
 
 
2819}
2820
2821/**
2822 * vread() - read vmalloc area in a safe way.
2823 * @buf:     buffer for reading data
2824 * @addr:    vm address.
2825 * @count:   number of bytes to be read.
2826 *
2827 * This function checks that addr is a valid vmalloc'ed area, and
2828 * copy data from that area to a given buffer. If the given memory range
2829 * of [addr...addr+count) includes some valid address, data is copied to
2830 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2831 * IOREMAP area is treated as memory hole and no copy is done.
2832 *
2833 * If [addr...addr+count) doesn't includes any intersects with alive
2834 * vm_struct area, returns 0. @buf should be kernel's buffer.
2835 *
2836 * Note: In usual ops, vread() is never necessary because the caller
2837 * should know vmalloc() area is valid and can use memcpy().
2838 * This is for routines which have to access vmalloc area without
2839 * any information, as /dev/kmem.
2840 *
2841 * Return: number of bytes for which addr and buf should be increased
2842 * (same number as @count) or %0 if [addr...addr+count) doesn't
2843 * include any intersection with valid vmalloc area
2844 */
2845long vread(char *buf, char *addr, unsigned long count)
2846{
 
2847	struct vmap_area *va;
2848	struct vm_struct *vm;
2849	char *vaddr, *buf_start = buf;
2850	unsigned long buflen = count;
2851	unsigned long n;
 
 
2852
2853	/* Don't allow overflow */
2854	if ((unsigned long) addr + count < count)
2855		count = -(unsigned long) addr;
2856
2857	spin_lock(&vmap_area_lock);
2858	list_for_each_entry(va, &vmap_area_list, list) {
2859		if (!count)
2860			break;
2861
2862		if (!va->vm)
2863			continue;
 
 
 
 
 
 
 
 
 
 
 
2864
2865		vm = va->vm;
2866		vaddr = (char *) vm->addr;
2867		if (addr >= vaddr + get_vm_area_size(vm))
2868			continue;
2869		while (addr < vaddr) {
2870			if (count == 0)
2871				goto finished;
2872			*buf = '\0';
2873			buf++;
2874			addr++;
2875			count--;
2876		}
2877		n = vaddr + get_vm_area_size(vm) - addr;
2878		if (n > count)
2879			n = count;
2880		if (!(vm->flags & VM_IOREMAP))
2881			aligned_vread(buf, addr, n);
2882		else /* IOREMAP area is treated as memory hole */
2883			memset(buf, 0, n);
2884		buf += n;
2885		addr += n;
2886		count -= n;
2887	}
2888finished:
2889	spin_unlock(&vmap_area_lock);
2890
2891	if (buf == buf_start)
2892		return 0;
2893	/* zero-fill memory holes */
2894	if (buf != buf_start + buflen)
2895		memset(buf, 0, buflen - (buf - buf_start));
2896
2897	return buflen;
2898}
2899
2900/**
2901 * vwrite() - write vmalloc area in a safe way.
2902 * @buf:      buffer for source data
2903 * @addr:     vm address.
2904 * @count:    number of bytes to be read.
2905 *
2906 * This function checks that addr is a valid vmalloc'ed area, and
2907 * copy data from a buffer to the given addr. If specified range of
2908 * [addr...addr+count) includes some valid address, data is copied from
2909 * proper area of @buf. If there are memory holes, no copy to hole.
2910 * IOREMAP area is treated as memory hole and no copy is done.
2911 *
2912 * If [addr...addr+count) doesn't includes any intersects with alive
2913 * vm_struct area, returns 0. @buf should be kernel's buffer.
2914 *
2915 * Note: In usual ops, vwrite() is never necessary because the caller
2916 * should know vmalloc() area is valid and can use memcpy().
2917 * This is for routines which have to access vmalloc area without
2918 * any information, as /dev/kmem.
2919 *
2920 * Return: number of bytes for which addr and buf should be
2921 * increased (same number as @count) or %0 if [addr...addr+count)
2922 * doesn't include any intersection with valid vmalloc area
2923 */
2924long vwrite(char *buf, char *addr, unsigned long count)
2925{
2926	struct vmap_area *va;
2927	struct vm_struct *vm;
2928	char *vaddr;
2929	unsigned long n, buflen;
2930	int copied = 0;
2931
2932	/* Don't allow overflow */
2933	if ((unsigned long) addr + count < count)
2934		count = -(unsigned long) addr;
2935	buflen = count;
2936
2937	spin_lock(&vmap_area_lock);
2938	list_for_each_entry(va, &vmap_area_list, list) {
2939		if (!count)
2940			break;
2941
2942		if (!va->vm)
2943			continue;
 
2944
2945		vm = va->vm;
2946		vaddr = (char *) vm->addr;
2947		if (addr >= vaddr + get_vm_area_size(vm))
2948			continue;
2949		while (addr < vaddr) {
2950			if (count == 0)
2951				goto finished;
2952			buf++;
2953			addr++;
2954			count--;
2955		}
2956		n = vaddr + get_vm_area_size(vm) - addr;
2957		if (n > count)
2958			n = count;
2959		if (!(vm->flags & VM_IOREMAP)) {
2960			aligned_vwrite(buf, addr, n);
2961			copied++;
2962		}
2963		buf += n;
2964		addr += n;
2965		count -= n;
2966	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2967finished:
2968	spin_unlock(&vmap_area_lock);
2969	if (!copied)
2970		return 0;
2971	return buflen;
 
2972}
2973
2974/**
2975 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2976 * @vma:		vma to cover
2977 * @uaddr:		target user address to start at
2978 * @kaddr:		virtual address of vmalloc kernel memory
 
2979 * @size:		size of map area
2980 *
2981 * Returns:	0 for success, -Exxx on failure
2982 *
2983 * This function checks that @kaddr is a valid vmalloc'ed area,
2984 * and that it is big enough to cover the range starting at
2985 * @uaddr in @vma. Will return failure if that criteria isn't
2986 * met.
2987 *
2988 * Similar to remap_pfn_range() (see mm/memory.c)
2989 */
2990int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2991				void *kaddr, unsigned long size)
 
2992{
2993	struct vm_struct *area;
 
 
 
 
 
2994
2995	size = PAGE_ALIGN(size);
2996
2997	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2998		return -EINVAL;
2999
3000	area = find_vm_area(kaddr);
3001	if (!area)
3002		return -EINVAL;
3003
3004	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3005		return -EINVAL;
3006
3007	if (kaddr + size > area->addr + get_vm_area_size(area))
 
3008		return -EINVAL;
 
3009
3010	do {
3011		struct page *page = vmalloc_to_page(kaddr);
3012		int ret;
3013
3014		ret = vm_insert_page(vma, uaddr, page);
3015		if (ret)
3016			return ret;
3017
3018		uaddr += PAGE_SIZE;
3019		kaddr += PAGE_SIZE;
3020		size -= PAGE_SIZE;
3021	} while (size > 0);
3022
3023	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3024
3025	return 0;
3026}
3027EXPORT_SYMBOL(remap_vmalloc_range_partial);
3028
3029/**
3030 * remap_vmalloc_range - map vmalloc pages to userspace
3031 * @vma:		vma to cover (map full range of vma)
3032 * @addr:		vmalloc memory
3033 * @pgoff:		number of pages into addr before first page to map
3034 *
3035 * Returns:	0 for success, -Exxx on failure
3036 *
3037 * This function checks that addr is a valid vmalloc'ed area, and
3038 * that it is big enough to cover the vma. Will return failure if
3039 * that criteria isn't met.
3040 *
3041 * Similar to remap_pfn_range() (see mm/memory.c)
3042 */
3043int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3044						unsigned long pgoff)
3045{
3046	return remap_vmalloc_range_partial(vma, vma->vm_start,
3047					   addr + (pgoff << PAGE_SHIFT),
3048					   vma->vm_end - vma->vm_start);
3049}
3050EXPORT_SYMBOL(remap_vmalloc_range);
3051
3052/*
3053 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3054 * have one.
3055 *
3056 * The purpose of this function is to make sure the vmalloc area
3057 * mappings are identical in all page-tables in the system.
3058 */
3059void __weak vmalloc_sync_all(void)
3060{
3061}
3062
3063
3064static int f(pte_t *pte, unsigned long addr, void *data)
3065{
3066	pte_t ***p = data;
3067
3068	if (p) {
3069		*(*p) = pte;
3070		(*p)++;
3071	}
3072	return 0;
3073}
3074
3075/**
3076 * alloc_vm_area - allocate a range of kernel address space
3077 * @size:	   size of the area
3078 * @ptes:	   returns the PTEs for the address space
3079 *
3080 * Returns:	NULL on failure, vm_struct on success
3081 *
3082 * This function reserves a range of kernel address space, and
3083 * allocates pagetables to map that range.  No actual mappings
3084 * are created.
3085 *
3086 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3087 * allocated for the VM area are returned.
3088 */
3089struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3090{
3091	struct vm_struct *area;
3092
3093	area = get_vm_area_caller(size, VM_IOREMAP,
3094				__builtin_return_address(0));
3095	if (area == NULL)
3096		return NULL;
3097
3098	/*
3099	 * This ensures that page tables are constructed for this region
3100	 * of kernel virtual address space and mapped into init_mm.
3101	 */
3102	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3103				size, f, ptes ? &ptes : NULL)) {
3104		free_vm_area(area);
3105		return NULL;
3106	}
3107
3108	return area;
3109}
3110EXPORT_SYMBOL_GPL(alloc_vm_area);
3111
3112void free_vm_area(struct vm_struct *area)
3113{
3114	struct vm_struct *ret;
3115	ret = remove_vm_area(area->addr);
3116	BUG_ON(ret != area);
3117	kfree(area);
3118}
3119EXPORT_SYMBOL_GPL(free_vm_area);
3120
3121#ifdef CONFIG_SMP
3122static struct vmap_area *node_to_va(struct rb_node *n)
3123{
3124	return rb_entry_safe(n, struct vmap_area, rb_node);
3125}
3126
3127/**
3128 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3129 * @addr: target address
3130 *
3131 * Returns: vmap_area if it is found. If there is no such area
3132 *   the first highest(reverse order) vmap_area is returned
3133 *   i.e. va->va_start < addr && va->va_end < addr or NULL
3134 *   if there are no any areas before @addr.
3135 */
3136static struct vmap_area *
3137pvm_find_va_enclose_addr(unsigned long addr)
3138{
3139	struct vmap_area *va, *tmp;
3140	struct rb_node *n;
3141
3142	n = free_vmap_area_root.rb_node;
3143	va = NULL;
3144
3145	while (n) {
3146		tmp = rb_entry(n, struct vmap_area, rb_node);
3147		if (tmp->va_start <= addr) {
3148			va = tmp;
3149			if (tmp->va_end >= addr)
3150				break;
3151
3152			n = n->rb_right;
3153		} else {
3154			n = n->rb_left;
3155		}
3156	}
3157
3158	return va;
3159}
3160
3161/**
3162 * pvm_determine_end_from_reverse - find the highest aligned address
3163 * of free block below VMALLOC_END
3164 * @va:
3165 *   in - the VA we start the search(reverse order);
3166 *   out - the VA with the highest aligned end address.
 
3167 *
3168 * Returns: determined end address within vmap_area
3169 */
3170static unsigned long
3171pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3172{
3173	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3174	unsigned long addr;
3175
3176	if (likely(*va)) {
3177		list_for_each_entry_from_reverse((*va),
3178				&free_vmap_area_list, list) {
3179			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3180			if ((*va)->va_start < addr)
3181				return addr;
3182		}
3183	}
3184
3185	return 0;
3186}
3187
3188/**
3189 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3190 * @offsets: array containing offset of each area
3191 * @sizes: array containing size of each area
3192 * @nr_vms: the number of areas to allocate
3193 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3194 *
3195 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3196 *	    vm_structs on success, %NULL on failure
3197 *
3198 * Percpu allocator wants to use congruent vm areas so that it can
3199 * maintain the offsets among percpu areas.  This function allocates
3200 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3201 * be scattered pretty far, distance between two areas easily going up
3202 * to gigabytes.  To avoid interacting with regular vmallocs, these
3203 * areas are allocated from top.
3204 *
3205 * Despite its complicated look, this allocator is rather simple. It
3206 * does everything top-down and scans free blocks from the end looking
3207 * for matching base. While scanning, if any of the areas do not fit the
3208 * base address is pulled down to fit the area. Scanning is repeated till
3209 * all the areas fit and then all necessary data structures are inserted
3210 * and the result is returned.
3211 */
3212struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3213				     const size_t *sizes, int nr_vms,
3214				     size_t align)
3215{
3216	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3217	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3218	struct vmap_area **vas, *va;
3219	struct vm_struct **vms;
3220	int area, area2, last_area, term_area;
3221	unsigned long base, start, size, end, last_end;
3222	bool purged = false;
3223	enum fit_type type;
3224
3225	/* verify parameters and allocate data structures */
3226	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3227	for (last_area = 0, area = 0; area < nr_vms; area++) {
3228		start = offsets[area];
3229		end = start + sizes[area];
3230
3231		/* is everything aligned properly? */
3232		BUG_ON(!IS_ALIGNED(offsets[area], align));
3233		BUG_ON(!IS_ALIGNED(sizes[area], align));
3234
3235		/* detect the area with the highest address */
3236		if (start > offsets[last_area])
3237			last_area = area;
3238
3239		for (area2 = area + 1; area2 < nr_vms; area2++) {
3240			unsigned long start2 = offsets[area2];
3241			unsigned long end2 = start2 + sizes[area2];
3242
3243			BUG_ON(start2 < end && start < end2);
3244		}
3245	}
3246	last_end = offsets[last_area] + sizes[last_area];
3247
3248	if (vmalloc_end - vmalloc_start < last_end) {
3249		WARN_ON(true);
3250		return NULL;
3251	}
3252
3253	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3254	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3255	if (!vas || !vms)
3256		goto err_free2;
3257
3258	for (area = 0; area < nr_vms; area++) {
3259		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3260		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3261		if (!vas[area] || !vms[area])
3262			goto err_free;
3263	}
3264retry:
3265	spin_lock(&vmap_area_lock);
3266
3267	/* start scanning - we scan from the top, begin with the last area */
3268	area = term_area = last_area;
3269	start = offsets[area];
3270	end = start + sizes[area];
3271
3272	va = pvm_find_va_enclose_addr(vmalloc_end);
3273	base = pvm_determine_end_from_reverse(&va, align) - end;
3274
3275	while (true) {
3276		/*
3277		 * base might have underflowed, add last_end before
3278		 * comparing.
3279		 */
3280		if (base + last_end < vmalloc_start + last_end)
3281			goto overflow;
3282
3283		/*
3284		 * Fitting base has not been found.
3285		 */
3286		if (va == NULL)
3287			goto overflow;
3288
3289		/*
3290		 * If required width exeeds current VA block, move
3291		 * base downwards and then recheck.
3292		 */
3293		if (base + end > va->va_end) {
3294			base = pvm_determine_end_from_reverse(&va, align) - end;
3295			term_area = area;
3296			continue;
3297		}
3298
3299		/*
3300		 * If this VA does not fit, move base downwards and recheck.
3301		 */
3302		if (base + start < va->va_start) {
3303			va = node_to_va(rb_prev(&va->rb_node));
3304			base = pvm_determine_end_from_reverse(&va, align) - end;
3305			term_area = area;
3306			continue;
3307		}
3308
3309		/*
3310		 * This area fits, move on to the previous one.  If
3311		 * the previous one is the terminal one, we're done.
3312		 */
3313		area = (area + nr_vms - 1) % nr_vms;
3314		if (area == term_area)
3315			break;
3316
3317		start = offsets[area];
3318		end = start + sizes[area];
3319		va = pvm_find_va_enclose_addr(base + end);
3320	}
3321
3322	/* we've found a fitting base, insert all va's */
3323	for (area = 0; area < nr_vms; area++) {
3324		int ret;
3325
3326		start = base + offsets[area];
3327		size = sizes[area];
3328
3329		va = pvm_find_va_enclose_addr(start);
3330		if (WARN_ON_ONCE(va == NULL))
3331			/* It is a BUG(), but trigger recovery instead. */
3332			goto recovery;
3333
3334		type = classify_va_fit_type(va, start, size);
3335		if (WARN_ON_ONCE(type == NOTHING_FIT))
 
3336			/* It is a BUG(), but trigger recovery instead. */
3337			goto recovery;
3338
3339		ret = adjust_va_to_fit_type(va, start, size, type);
3340		if (unlikely(ret))
3341			goto recovery;
3342
3343		/* Allocated area. */
3344		va = vas[area];
3345		va->va_start = start;
3346		va->va_end = start + size;
3347
3348		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3349	}
3350
3351	spin_unlock(&vmap_area_lock);
 
 
 
 
 
 
3352
3353	/* insert all vm's */
3354	for (area = 0; area < nr_vms; area++)
3355		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
 
 
 
 
3356				 pcpu_get_vm_areas);
 
 
 
 
 
 
 
 
 
 
 
 
3357
3358	kfree(vas);
3359	return vms;
3360
3361recovery:
3362	/* Remove previously inserted areas. */
 
 
 
 
 
3363	while (area--) {
3364		__free_vmap_area(vas[area]);
 
 
 
 
 
 
3365		vas[area] = NULL;
3366	}
3367
3368overflow:
3369	spin_unlock(&vmap_area_lock);
3370	if (!purged) {
3371		purge_vmap_area_lazy();
3372		purged = true;
3373
3374		/* Before "retry", check if we recover. */
3375		for (area = 0; area < nr_vms; area++) {
3376			if (vas[area])
3377				continue;
3378
3379			vas[area] = kmem_cache_zalloc(
3380				vmap_area_cachep, GFP_KERNEL);
3381			if (!vas[area])
3382				goto err_free;
3383		}
3384
3385		goto retry;
3386	}
3387
3388err_free:
3389	for (area = 0; area < nr_vms; area++) {
3390		if (vas[area])
3391			kmem_cache_free(vmap_area_cachep, vas[area]);
3392
3393		kfree(vms[area]);
3394	}
3395err_free2:
3396	kfree(vas);
3397	kfree(vms);
3398	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3399}
3400
3401/**
3402 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3403 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3404 * @nr_vms: the number of allocated areas
3405 *
3406 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3407 */
3408void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3409{
3410	int i;
3411
3412	for (i = 0; i < nr_vms; i++)
3413		free_vm_area(vms[i]);
3414	kfree(vms);
3415}
3416#endif	/* CONFIG_SMP */
3417
3418#ifdef CONFIG_PROC_FS
3419static void *s_start(struct seq_file *m, loff_t *pos)
3420	__acquires(&vmap_area_lock)
3421{
3422	spin_lock(&vmap_area_lock);
3423	return seq_list_start(&vmap_area_list, *pos);
3424}
 
 
 
3425
3426static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3427{
3428	return seq_list_next(p, &vmap_area_list, pos);
3429}
3430
3431static void s_stop(struct seq_file *m, void *p)
3432	__releases(&vmap_area_lock)
3433{
3434	spin_unlock(&vmap_area_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3435}
 
3436
 
3437static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3438{
3439	if (IS_ENABLED(CONFIG_NUMA)) {
3440		unsigned int nr, *counters = m->private;
 
3441
3442		if (!counters)
3443			return;
3444
3445		if (v->flags & VM_UNINITIALIZED)
3446			return;
3447		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3448		smp_rmb();
3449
3450		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3451
3452		for (nr = 0; nr < v->nr_pages; nr++)
3453			counters[page_to_nid(v->pages[nr])]++;
3454
3455		for_each_node_state(nr, N_HIGH_MEMORY)
3456			if (counters[nr])
3457				seq_printf(m, " N%u=%u", nr, counters[nr]);
3458	}
3459}
3460
3461static void show_purge_info(struct seq_file *m)
3462{
3463	struct llist_node *head;
3464	struct vmap_area *va;
 
3465
3466	head = READ_ONCE(vmap_purge_list.first);
3467	if (head == NULL)
3468		return;
3469
3470	llist_for_each_entry(va, head, purge_list) {
3471		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3472			(void *)va->va_start, (void *)va->va_end,
3473			va->va_end - va->va_start);
 
 
 
3474	}
3475}
3476
3477static int s_show(struct seq_file *m, void *p)
3478{
 
3479	struct vmap_area *va;
3480	struct vm_struct *v;
 
3481
3482	va = list_entry(p, struct vmap_area, list);
 
3483
3484	/*
3485	 * s_show can encounter race with remove_vm_area, !vm on behalf
3486	 * of vmap area is being tear down or vm_map_ram allocation.
3487	 */
3488	if (!va->vm) {
3489		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3490			(void *)va->va_start, (void *)va->va_end,
3491			va->va_end - va->va_start);
3492
3493		return 0;
3494	}
 
 
3495
3496	v = va->vm;
 
3497
3498	seq_printf(m, "0x%pK-0x%pK %7ld",
3499		v->addr, v->addr + v->size, v->size);
3500
3501	if (v->caller)
3502		seq_printf(m, " %pS", v->caller);
3503
3504	if (v->nr_pages)
3505		seq_printf(m, " pages=%d", v->nr_pages);
3506
3507	if (v->phys_addr)
3508		seq_printf(m, " phys=%pa", &v->phys_addr);
3509
3510	if (v->flags & VM_IOREMAP)
3511		seq_puts(m, " ioremap");
3512
3513	if (v->flags & VM_ALLOC)
3514		seq_puts(m, " vmalloc");
3515
3516	if (v->flags & VM_MAP)
3517		seq_puts(m, " vmap");
3518
3519	if (v->flags & VM_USERMAP)
3520		seq_puts(m, " user");
3521
3522	if (v->flags & VM_DMA_COHERENT)
3523		seq_puts(m, " dma-coherent");
3524
3525	if (is_vmalloc_addr(v->pages))
3526		seq_puts(m, " vpages");
3527
3528	show_numa_info(m, v);
3529	seq_putc(m, '\n');
 
 
 
3530
3531	/*
3532	 * As a final step, dump "unpurged" areas. Note,
3533	 * that entire "/proc/vmallocinfo" output will not
3534	 * be address sorted, because the purge list is not
3535	 * sorted.
3536	 */
3537	if (list_is_last(&va->list, &vmap_area_list))
3538		show_purge_info(m);
3539
3540	return 0;
3541}
3542
3543static const struct seq_operations vmalloc_op = {
3544	.start = s_start,
3545	.next = s_next,
3546	.stop = s_stop,
3547	.show = s_show,
3548};
3549
3550static int __init proc_vmalloc_init(void)
3551{
 
 
3552	if (IS_ENABLED(CONFIG_NUMA))
3553		proc_create_seq_private("vmallocinfo", 0400, NULL,
3554				&vmalloc_op,
3555				nr_node_ids * sizeof(unsigned int), NULL);
3556	else
3557		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3558	return 0;
3559}
3560module_init(proc_vmalloc_init);
3561
3562#endif
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
 
 
   3 *  Copyright (C) 1993  Linus Torvalds
   4 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   5 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   6 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   7 *  Numa awareness, Christoph Lameter, SGI, June 2005
   8 *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched/signal.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/set_memory.h>
  22#include <linux/debugobjects.h>
  23#include <linux/kallsyms.h>
  24#include <linux/list.h>
  25#include <linux/notifier.h>
  26#include <linux/rbtree.h>
  27#include <linux/xarray.h>
  28#include <linux/io.h>
  29#include <linux/rcupdate.h>
  30#include <linux/pfn.h>
  31#include <linux/kmemleak.h>
  32#include <linux/atomic.h>
  33#include <linux/compiler.h>
  34#include <linux/memcontrol.h>
  35#include <linux/llist.h>
  36#include <linux/uio.h>
  37#include <linux/bitops.h>
  38#include <linux/rbtree_augmented.h>
  39#include <linux/overflow.h>
  40#include <linux/pgtable.h>
  41#include <linux/hugetlb.h>
  42#include <linux/sched/mm.h>
  43#include <asm/tlbflush.h>
  44#include <asm/shmparam.h>
  45
  46#define CREATE_TRACE_POINTS
  47#include <trace/events/vmalloc.h>
  48
  49#include "internal.h"
  50#include "pgalloc-track.h"
  51
  52#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
  53static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
  54
  55static int __init set_nohugeiomap(char *str)
  56{
  57	ioremap_max_page_shift = PAGE_SHIFT;
  58	return 0;
  59}
  60early_param("nohugeiomap", set_nohugeiomap);
  61#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
  62static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
  63#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
  64
  65#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
  66static bool __ro_after_init vmap_allow_huge = true;
  67
  68static int __init set_nohugevmalloc(char *str)
  69{
  70	vmap_allow_huge = false;
  71	return 0;
  72}
  73early_param("nohugevmalloc", set_nohugevmalloc);
  74#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
  75static const bool vmap_allow_huge = false;
  76#endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
  77
  78bool is_vmalloc_addr(const void *x)
  79{
  80	unsigned long addr = (unsigned long)kasan_reset_tag(x);
  81
  82	return addr >= VMALLOC_START && addr < VMALLOC_END;
  83}
  84EXPORT_SYMBOL(is_vmalloc_addr);
  85
  86struct vfree_deferred {
  87	struct llist_head list;
  88	struct work_struct wq;
  89};
  90static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  91
  92/*** Page table manipulation functions ***/
  93static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  94			phys_addr_t phys_addr, pgprot_t prot,
  95			unsigned int max_page_shift, pgtbl_mod_mask *mask)
  96{
  97	pte_t *pte;
  98	u64 pfn;
  99	unsigned long size = PAGE_SIZE;
 100
 101	pfn = phys_addr >> PAGE_SHIFT;
 102	pte = pte_alloc_kernel_track(pmd, addr, mask);
 103	if (!pte)
 104		return -ENOMEM;
 105	do {
 106		BUG_ON(!pte_none(ptep_get(pte)));
 107
 108#ifdef CONFIG_HUGETLB_PAGE
 109		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
 110		if (size != PAGE_SIZE) {
 111			pte_t entry = pfn_pte(pfn, prot);
 112
 113			entry = arch_make_huge_pte(entry, ilog2(size), 0);
 114			set_huge_pte_at(&init_mm, addr, pte, entry, size);
 115			pfn += PFN_DOWN(size);
 116			continue;
 117		}
 118#endif
 119		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
 120		pfn++;
 121	} while (pte += PFN_DOWN(size), addr += size, addr != end);
 122	*mask |= PGTBL_PTE_MODIFIED;
 123	return 0;
 124}
 125
 126static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
 127			phys_addr_t phys_addr, pgprot_t prot,
 128			unsigned int max_page_shift)
 129{
 130	if (max_page_shift < PMD_SHIFT)
 131		return 0;
 132
 133	if (!arch_vmap_pmd_supported(prot))
 134		return 0;
 135
 136	if ((end - addr) != PMD_SIZE)
 137		return 0;
 138
 139	if (!IS_ALIGNED(addr, PMD_SIZE))
 140		return 0;
 141
 142	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
 143		return 0;
 144
 145	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
 146		return 0;
 147
 148	return pmd_set_huge(pmd, phys_addr, prot);
 149}
 150
 151static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 152			phys_addr_t phys_addr, pgprot_t prot,
 153			unsigned int max_page_shift, pgtbl_mod_mask *mask)
 154{
 155	pmd_t *pmd;
 156	unsigned long next;
 157
 158	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
 159	if (!pmd)
 160		return -ENOMEM;
 161	do {
 162		next = pmd_addr_end(addr, end);
 163
 164		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
 165					max_page_shift)) {
 166			*mask |= PGTBL_PMD_MODIFIED;
 167			continue;
 168		}
 169
 170		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
 171			return -ENOMEM;
 172	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
 173	return 0;
 174}
 175
 176static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
 177			phys_addr_t phys_addr, pgprot_t prot,
 178			unsigned int max_page_shift)
 179{
 180	if (max_page_shift < PUD_SHIFT)
 181		return 0;
 182
 183	if (!arch_vmap_pud_supported(prot))
 184		return 0;
 185
 186	if ((end - addr) != PUD_SIZE)
 187		return 0;
 188
 189	if (!IS_ALIGNED(addr, PUD_SIZE))
 190		return 0;
 191
 192	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
 193		return 0;
 194
 195	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
 196		return 0;
 197
 198	return pud_set_huge(pud, phys_addr, prot);
 199}
 200
 201static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
 202			phys_addr_t phys_addr, pgprot_t prot,
 203			unsigned int max_page_shift, pgtbl_mod_mask *mask)
 204{
 205	pud_t *pud;
 206	unsigned long next;
 207
 208	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
 209	if (!pud)
 210		return -ENOMEM;
 211	do {
 212		next = pud_addr_end(addr, end);
 213
 214		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
 215					max_page_shift)) {
 216			*mask |= PGTBL_PUD_MODIFIED;
 217			continue;
 218		}
 219
 220		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
 221					max_page_shift, mask))
 222			return -ENOMEM;
 223	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
 224	return 0;
 225}
 226
 227static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
 228			phys_addr_t phys_addr, pgprot_t prot,
 229			unsigned int max_page_shift)
 230{
 231	if (max_page_shift < P4D_SHIFT)
 232		return 0;
 233
 234	if (!arch_vmap_p4d_supported(prot))
 235		return 0;
 236
 237	if ((end - addr) != P4D_SIZE)
 238		return 0;
 239
 240	if (!IS_ALIGNED(addr, P4D_SIZE))
 241		return 0;
 242
 243	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
 244		return 0;
 245
 246	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
 247		return 0;
 248
 249	return p4d_set_huge(p4d, phys_addr, prot);
 250}
 251
 252static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 253			phys_addr_t phys_addr, pgprot_t prot,
 254			unsigned int max_page_shift, pgtbl_mod_mask *mask)
 255{
 256	p4d_t *p4d;
 257	unsigned long next;
 258
 259	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
 260	if (!p4d)
 261		return -ENOMEM;
 262	do {
 263		next = p4d_addr_end(addr, end);
 264
 265		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
 266					max_page_shift)) {
 267			*mask |= PGTBL_P4D_MODIFIED;
 268			continue;
 269		}
 270
 271		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
 272					max_page_shift, mask))
 273			return -ENOMEM;
 274	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
 275	return 0;
 276}
 277
 278static int vmap_range_noflush(unsigned long addr, unsigned long end,
 279			phys_addr_t phys_addr, pgprot_t prot,
 280			unsigned int max_page_shift)
 281{
 282	pgd_t *pgd;
 283	unsigned long start;
 284	unsigned long next;
 285	int err;
 286	pgtbl_mod_mask mask = 0;
 287
 288	might_sleep();
 289	BUG_ON(addr >= end);
 290
 291	start = addr;
 292	pgd = pgd_offset_k(addr);
 293	do {
 294		next = pgd_addr_end(addr, end);
 295		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
 296					max_page_shift, &mask);
 297		if (err)
 298			break;
 299	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
 300
 301	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 302		arch_sync_kernel_mappings(start, end);
 303
 304	return err;
 305}
 306
 307int vmap_page_range(unsigned long addr, unsigned long end,
 308		    phys_addr_t phys_addr, pgprot_t prot)
 309{
 310	int err;
 311
 312	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
 313				 ioremap_max_page_shift);
 314	flush_cache_vmap(addr, end);
 315	if (!err)
 316		err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
 317					       ioremap_max_page_shift);
 318	return err;
 319}
 320
 321int ioremap_page_range(unsigned long addr, unsigned long end,
 322		phys_addr_t phys_addr, pgprot_t prot)
 323{
 324	struct vm_struct *area;
 325
 326	area = find_vm_area((void *)addr);
 327	if (!area || !(area->flags & VM_IOREMAP)) {
 328		WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr);
 329		return -EINVAL;
 330	}
 331	if (addr != (unsigned long)area->addr ||
 332	    (void *)end != area->addr + get_vm_area_size(area)) {
 333		WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n",
 334			  addr, end, (long)area->addr,
 335			  (long)area->addr + get_vm_area_size(area));
 336		return -ERANGE;
 337	}
 338	return vmap_page_range(addr, end, phys_addr, prot);
 339}
 340
 341static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 342			     pgtbl_mod_mask *mask)
 343{
 344	pte_t *pte;
 345
 346	pte = pte_offset_kernel(pmd, addr);
 347	do {
 348		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
 349		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
 350	} while (pte++, addr += PAGE_SIZE, addr != end);
 351	*mask |= PGTBL_PTE_MODIFIED;
 352}
 353
 354static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 355			     pgtbl_mod_mask *mask)
 356{
 357	pmd_t *pmd;
 358	unsigned long next;
 359	int cleared;
 360
 361	pmd = pmd_offset(pud, addr);
 362	do {
 363		next = pmd_addr_end(addr, end);
 364
 365		cleared = pmd_clear_huge(pmd);
 366		if (cleared || pmd_bad(*pmd))
 367			*mask |= PGTBL_PMD_MODIFIED;
 368
 369		if (cleared)
 370			continue;
 371		if (pmd_none_or_clear_bad(pmd))
 372			continue;
 373		vunmap_pte_range(pmd, addr, next, mask);
 374
 375		cond_resched();
 376	} while (pmd++, addr = next, addr != end);
 377}
 378
 379static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
 380			     pgtbl_mod_mask *mask)
 381{
 382	pud_t *pud;
 383	unsigned long next;
 384	int cleared;
 385
 386	pud = pud_offset(p4d, addr);
 387	do {
 388		next = pud_addr_end(addr, end);
 389
 390		cleared = pud_clear_huge(pud);
 391		if (cleared || pud_bad(*pud))
 392			*mask |= PGTBL_PUD_MODIFIED;
 393
 394		if (cleared)
 395			continue;
 396		if (pud_none_or_clear_bad(pud))
 397			continue;
 398		vunmap_pmd_range(pud, addr, next, mask);
 399	} while (pud++, addr = next, addr != end);
 400}
 401
 402static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 403			     pgtbl_mod_mask *mask)
 404{
 405	p4d_t *p4d;
 406	unsigned long next;
 407
 408	p4d = p4d_offset(pgd, addr);
 409	do {
 410		next = p4d_addr_end(addr, end);
 411
 412		p4d_clear_huge(p4d);
 413		if (p4d_bad(*p4d))
 414			*mask |= PGTBL_P4D_MODIFIED;
 415
 416		if (p4d_none_or_clear_bad(p4d))
 417			continue;
 418		vunmap_pud_range(p4d, addr, next, mask);
 419	} while (p4d++, addr = next, addr != end);
 420}
 421
 422/*
 423 * vunmap_range_noflush is similar to vunmap_range, but does not
 424 * flush caches or TLBs.
 425 *
 426 * The caller is responsible for calling flush_cache_vmap() before calling
 427 * this function, and flush_tlb_kernel_range after it has returned
 428 * successfully (and before the addresses are expected to cause a page fault
 429 * or be re-mapped for something else, if TLB flushes are being delayed or
 430 * coalesced).
 431 *
 432 * This is an internal function only. Do not use outside mm/.
 433 */
 434void __vunmap_range_noflush(unsigned long start, unsigned long end)
 435{
 
 436	unsigned long next;
 437	pgd_t *pgd;
 438	unsigned long addr = start;
 439	pgtbl_mod_mask mask = 0;
 440
 441	BUG_ON(addr >= end);
 442	pgd = pgd_offset_k(addr);
 443	do {
 444		next = pgd_addr_end(addr, end);
 445		if (pgd_bad(*pgd))
 446			mask |= PGTBL_PGD_MODIFIED;
 447		if (pgd_none_or_clear_bad(pgd))
 448			continue;
 449		vunmap_p4d_range(pgd, addr, next, &mask);
 450	} while (pgd++, addr = next, addr != end);
 451
 452	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 453		arch_sync_kernel_mappings(start, end);
 454}
 455
 456void vunmap_range_noflush(unsigned long start, unsigned long end)
 457{
 458	kmsan_vunmap_range_noflush(start, end);
 459	__vunmap_range_noflush(start, end);
 460}
 461
 462/**
 463 * vunmap_range - unmap kernel virtual addresses
 464 * @addr: start of the VM area to unmap
 465 * @end: end of the VM area to unmap (non-inclusive)
 466 *
 467 * Clears any present PTEs in the virtual address range, flushes TLBs and
 468 * caches. Any subsequent access to the address before it has been re-mapped
 469 * is a kernel bug.
 470 */
 471void vunmap_range(unsigned long addr, unsigned long end)
 472{
 473	flush_cache_vunmap(addr, end);
 474	vunmap_range_noflush(addr, end);
 475	flush_tlb_kernel_range(addr, end);
 476}
 477
 478static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
 479		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 480		pgtbl_mod_mask *mask)
 481{
 482	pte_t *pte;
 483
 484	/*
 485	 * nr is a running index into the array which helps higher level
 486	 * callers keep track of where we're up to.
 487	 */
 488
 489	pte = pte_alloc_kernel_track(pmd, addr, mask);
 490	if (!pte)
 491		return -ENOMEM;
 492	do {
 493		struct page *page = pages[*nr];
 494
 495		if (WARN_ON(!pte_none(ptep_get(pte))))
 496			return -EBUSY;
 497		if (WARN_ON(!page))
 498			return -ENOMEM;
 499		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
 500			return -EINVAL;
 501
 502		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 503		(*nr)++;
 504	} while (pte++, addr += PAGE_SIZE, addr != end);
 505	*mask |= PGTBL_PTE_MODIFIED;
 506	return 0;
 507}
 508
 509static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
 510		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 511		pgtbl_mod_mask *mask)
 512{
 513	pmd_t *pmd;
 514	unsigned long next;
 515
 516	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
 517	if (!pmd)
 518		return -ENOMEM;
 519	do {
 520		next = pmd_addr_end(addr, end);
 521		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
 522			return -ENOMEM;
 523	} while (pmd++, addr = next, addr != end);
 524	return 0;
 525}
 526
 527static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
 528		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 529		pgtbl_mod_mask *mask)
 530{
 531	pud_t *pud;
 532	unsigned long next;
 533
 534	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
 535	if (!pud)
 536		return -ENOMEM;
 537	do {
 538		next = pud_addr_end(addr, end);
 539		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
 540			return -ENOMEM;
 541	} while (pud++, addr = next, addr != end);
 542	return 0;
 543}
 544
 545static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
 546		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 547		pgtbl_mod_mask *mask)
 548{
 549	p4d_t *p4d;
 550	unsigned long next;
 551
 552	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
 553	if (!p4d)
 554		return -ENOMEM;
 555	do {
 556		next = p4d_addr_end(addr, end);
 557		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
 558			return -ENOMEM;
 559	} while (p4d++, addr = next, addr != end);
 560	return 0;
 561}
 562
 563static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
 564		pgprot_t prot, struct page **pages)
 
 
 
 
 
 
 565{
 566	unsigned long start = addr;
 567	pgd_t *pgd;
 568	unsigned long next;
 
 569	int err = 0;
 570	int nr = 0;
 571	pgtbl_mod_mask mask = 0;
 572
 573	BUG_ON(addr >= end);
 574	pgd = pgd_offset_k(addr);
 575	do {
 576		next = pgd_addr_end(addr, end);
 577		if (pgd_bad(*pgd))
 578			mask |= PGTBL_PGD_MODIFIED;
 579		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
 580		if (err)
 581			return err;
 582	} while (pgd++, addr = next, addr != end);
 583
 584	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 585		arch_sync_kernel_mappings(start, end);
 586
 587	return 0;
 588}
 589
 590/*
 591 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
 592 * flush caches.
 593 *
 594 * The caller is responsible for calling flush_cache_vmap() after this
 595 * function returns successfully and before the addresses are accessed.
 596 *
 597 * This is an internal function only. Do not use outside mm/.
 598 */
 599int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 600		pgprot_t prot, struct page **pages, unsigned int page_shift)
 601{
 602	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
 603
 604	WARN_ON(page_shift < PAGE_SHIFT);
 605
 606	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
 607			page_shift == PAGE_SHIFT)
 608		return vmap_small_pages_range_noflush(addr, end, prot, pages);
 609
 610	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
 611		int err;
 612
 613		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
 614					page_to_phys(pages[i]), prot,
 615					page_shift);
 616		if (err)
 617			return err;
 618
 619		addr += 1UL << page_shift;
 620	}
 621
 622	return 0;
 623}
 624
 625int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 626		pgprot_t prot, struct page **pages, unsigned int page_shift)
 627{
 628	int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
 629						 page_shift);
 630
 631	if (ret)
 632		return ret;
 633	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
 634}
 635
 636/**
 637 * vmap_pages_range - map pages to a kernel virtual address
 638 * @addr: start of the VM area to map
 639 * @end: end of the VM area to map (non-inclusive)
 640 * @prot: page protection flags to use
 641 * @pages: pages to map (always PAGE_SIZE pages)
 642 * @page_shift: maximum shift that the pages may be mapped with, @pages must
 643 * be aligned and contiguous up to at least this shift.
 644 *
 645 * RETURNS:
 646 * 0 on success, -errno on failure.
 647 */
 648static int vmap_pages_range(unsigned long addr, unsigned long end,
 649		pgprot_t prot, struct page **pages, unsigned int page_shift)
 650{
 651	int err;
 652
 653	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
 654	flush_cache_vmap(addr, end);
 655	return err;
 656}
 657
 658static int check_sparse_vm_area(struct vm_struct *area, unsigned long start,
 659				unsigned long end)
 660{
 661	might_sleep();
 662	if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS))
 663		return -EINVAL;
 664	if (WARN_ON_ONCE(area->flags & VM_NO_GUARD))
 665		return -EINVAL;
 666	if (WARN_ON_ONCE(!(area->flags & VM_SPARSE)))
 667		return -EINVAL;
 668	if ((end - start) >> PAGE_SHIFT > totalram_pages())
 669		return -E2BIG;
 670	if (start < (unsigned long)area->addr ||
 671	    (void *)end > area->addr + get_vm_area_size(area))
 672		return -ERANGE;
 673	return 0;
 674}
 675
 676/**
 677 * vm_area_map_pages - map pages inside given sparse vm_area
 678 * @area: vm_area
 679 * @start: start address inside vm_area
 680 * @end: end address inside vm_area
 681 * @pages: pages to map (always PAGE_SIZE pages)
 682 */
 683int vm_area_map_pages(struct vm_struct *area, unsigned long start,
 684		      unsigned long end, struct page **pages)
 685{
 686	int err;
 687
 688	err = check_sparse_vm_area(area, start, end);
 689	if (err)
 690		return err;
 691
 692	return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT);
 693}
 694
 695/**
 696 * vm_area_unmap_pages - unmap pages inside given sparse vm_area
 697 * @area: vm_area
 698 * @start: start address inside vm_area
 699 * @end: end address inside vm_area
 700 */
 701void vm_area_unmap_pages(struct vm_struct *area, unsigned long start,
 702			 unsigned long end)
 703{
 704	if (check_sparse_vm_area(area, start, end))
 705		return;
 706
 707	vunmap_range(start, end);
 708}
 709
 710int is_vmalloc_or_module_addr(const void *x)
 711{
 712	/*
 713	 * ARM, x86-64 and sparc64 put modules in a special place,
 714	 * and fall back on vmalloc() if that fails. Others
 715	 * just put it in the vmalloc space.
 716	 */
 717#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 718	unsigned long addr = (unsigned long)kasan_reset_tag(x);
 719	if (addr >= MODULES_VADDR && addr < MODULES_END)
 720		return 1;
 721#endif
 722	return is_vmalloc_addr(x);
 723}
 724EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
 725
 726/*
 727 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
 728 * return the tail page that corresponds to the base page address, which
 729 * matches small vmap mappings.
 730 */
 731struct page *vmalloc_to_page(const void *vmalloc_addr)
 732{
 733	unsigned long addr = (unsigned long) vmalloc_addr;
 734	struct page *page = NULL;
 735	pgd_t *pgd = pgd_offset_k(addr);
 736	p4d_t *p4d;
 737	pud_t *pud;
 738	pmd_t *pmd;
 739	pte_t *ptep, pte;
 740
 741	/*
 742	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 743	 * architectures that do not vmalloc module space
 744	 */
 745	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 746
 747	if (pgd_none(*pgd))
 748		return NULL;
 749	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
 750		return NULL; /* XXX: no allowance for huge pgd */
 751	if (WARN_ON_ONCE(pgd_bad(*pgd)))
 752		return NULL;
 753
 754	p4d = p4d_offset(pgd, addr);
 755	if (p4d_none(*p4d))
 756		return NULL;
 757	if (p4d_leaf(*p4d))
 758		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
 759	if (WARN_ON_ONCE(p4d_bad(*p4d)))
 760		return NULL;
 761
 762	pud = pud_offset(p4d, addr);
 763	if (pud_none(*pud))
 
 
 
 
 
 
 
 
 764		return NULL;
 765	if (pud_leaf(*pud))
 766		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
 767	if (WARN_ON_ONCE(pud_bad(*pud)))
 768		return NULL;
 769
 770	pmd = pmd_offset(pud, addr);
 771	if (pmd_none(*pmd))
 772		return NULL;
 773	if (pmd_leaf(*pmd))
 774		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
 775	if (WARN_ON_ONCE(pmd_bad(*pmd)))
 776		return NULL;
 777
 778	ptep = pte_offset_kernel(pmd, addr);
 779	pte = ptep_get(ptep);
 780	if (pte_present(pte))
 781		page = pte_page(pte);
 782
 783	return page;
 784}
 785EXPORT_SYMBOL(vmalloc_to_page);
 786
 787/*
 788 * Map a vmalloc()-space virtual address to the physical page frame number.
 789 */
 790unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 791{
 792	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 793}
 794EXPORT_SYMBOL(vmalloc_to_pfn);
 795
 796
 797/*** Global kva allocator ***/
 798
 799#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
 800#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
 801
 802
 803static DEFINE_SPINLOCK(free_vmap_area_lock);
 
 
 
 
 804static bool vmap_initialized __read_mostly;
 805
 806/*
 807 * This kmem_cache is used for vmap_area objects. Instead of
 808 * allocating from slab we reuse an object from this cache to
 809 * make things faster. Especially in "no edge" splitting of
 810 * free block.
 811 */
 812static struct kmem_cache *vmap_area_cachep;
 813
 814/*
 815 * This linked list is used in pair with free_vmap_area_root.
 816 * It gives O(1) access to prev/next to perform fast coalescing.
 817 */
 818static LIST_HEAD(free_vmap_area_list);
 819
 820/*
 821 * This augment red-black tree represents the free vmap space.
 822 * All vmap_area objects in this tree are sorted by va->va_start
 823 * address. It is used for allocation and merging when a vmap
 824 * object is released.
 825 *
 826 * Each vmap_area node contains a maximum available free block
 827 * of its sub-tree, right or left. Therefore it is possible to
 828 * find a lowest match of free area.
 829 */
 830static struct rb_root free_vmap_area_root = RB_ROOT;
 831
 832/*
 833 * Preload a CPU with one object for "no edge" split case. The
 834 * aim is to get rid of allocations from the atomic context, thus
 835 * to use more permissive allocation masks.
 836 */
 837static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
 838
 839/*
 840 * This structure defines a single, solid model where a list and
 841 * rb-tree are part of one entity protected by the lock. Nodes are
 842 * sorted in ascending order, thus for O(1) access to left/right
 843 * neighbors a list is used as well as for sequential traversal.
 844 */
 845struct rb_list {
 846	struct rb_root root;
 847	struct list_head head;
 848	spinlock_t lock;
 849};
 850
 851/*
 852 * A fast size storage contains VAs up to 1M size. A pool consists
 853 * of linked between each other ready to go VAs of certain sizes.
 854 * An index in the pool-array corresponds to number of pages + 1.
 855 */
 856#define MAX_VA_SIZE_PAGES 256
 857
 858struct vmap_pool {
 859	struct list_head head;
 860	unsigned long len;
 861};
 862
 863/*
 864 * An effective vmap-node logic. Users make use of nodes instead
 865 * of a global heap. It allows to balance an access and mitigate
 866 * contention.
 867 */
 868static struct vmap_node {
 869	/* Simple size segregated storage. */
 870	struct vmap_pool pool[MAX_VA_SIZE_PAGES];
 871	spinlock_t pool_lock;
 872	bool skip_populate;
 873
 874	/* Bookkeeping data of this node. */
 875	struct rb_list busy;
 876	struct rb_list lazy;
 877
 878	/*
 879	 * Ready-to-free areas.
 880	 */
 881	struct list_head purge_list;
 882	struct work_struct purge_work;
 883	unsigned long nr_purged;
 884} single;
 885
 886/*
 887 * Initial setup consists of one single node, i.e. a balancing
 888 * is fully disabled. Later on, after vmap is initialized these
 889 * parameters are updated based on a system capacity.
 890 */
 891static struct vmap_node *vmap_nodes = &single;
 892static __read_mostly unsigned int nr_vmap_nodes = 1;
 893static __read_mostly unsigned int vmap_zone_size = 1;
 894
 895static inline unsigned int
 896addr_to_node_id(unsigned long addr)
 897{
 898	return (addr / vmap_zone_size) % nr_vmap_nodes;
 899}
 900
 901static inline struct vmap_node *
 902addr_to_node(unsigned long addr)
 903{
 904	return &vmap_nodes[addr_to_node_id(addr)];
 905}
 906
 907static inline struct vmap_node *
 908id_to_node(unsigned int id)
 909{
 910	return &vmap_nodes[id % nr_vmap_nodes];
 911}
 912
 913/*
 914 * We use the value 0 to represent "no node", that is why
 915 * an encoded value will be the node-id incremented by 1.
 916 * It is always greater then 0. A valid node_id which can
 917 * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id
 918 * is not valid 0 is returned.
 919 */
 920static unsigned int
 921encode_vn_id(unsigned int node_id)
 922{
 923	/* Can store U8_MAX [0:254] nodes. */
 924	if (node_id < nr_vmap_nodes)
 925		return (node_id + 1) << BITS_PER_BYTE;
 926
 927	/* Warn and no node encoded. */
 928	WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id);
 929	return 0;
 930}
 931
 932/*
 933 * Returns an encoded node-id, the valid range is within
 934 * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is
 935 * returned if extracted data is wrong.
 936 */
 937static unsigned int
 938decode_vn_id(unsigned int val)
 939{
 940	unsigned int node_id = (val >> BITS_PER_BYTE) - 1;
 941
 942	/* Can store U8_MAX [0:254] nodes. */
 943	if (node_id < nr_vmap_nodes)
 944		return node_id;
 945
 946	/* If it was _not_ zero, warn. */
 947	WARN_ONCE(node_id != UINT_MAX,
 948		"Decode wrong node id (%d)\n", node_id);
 949
 950	return nr_vmap_nodes;
 951}
 952
 953static bool
 954is_vn_id_valid(unsigned int node_id)
 955{
 956	if (node_id < nr_vmap_nodes)
 957		return true;
 958
 959	return false;
 960}
 961
 962static __always_inline unsigned long
 963va_size(struct vmap_area *va)
 964{
 965	return (va->va_end - va->va_start);
 966}
 967
 968static __always_inline unsigned long
 969get_subtree_max_size(struct rb_node *node)
 970{
 971	struct vmap_area *va;
 972
 973	va = rb_entry_safe(node, struct vmap_area, rb_node);
 974	return va ? va->subtree_max_size : 0;
 975}
 976
 
 
 
 
 
 
 
 
 
 
 
 977RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
 978	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
 979
 980static void reclaim_and_purge_vmap_areas(void);
 981static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 982static void drain_vmap_area_work(struct work_struct *work);
 983static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
 984
 985static atomic_long_t nr_vmalloc_pages;
 986
 987unsigned long vmalloc_nr_pages(void)
 988{
 989	return atomic_long_read(&nr_vmalloc_pages);
 990}
 991
 992static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
 993{
 994	struct rb_node *n = root->rb_node;
 995
 996	addr = (unsigned long)kasan_reset_tag((void *)addr);
 997
 998	while (n) {
 999		struct vmap_area *va;
1000
1001		va = rb_entry(n, struct vmap_area, rb_node);
1002		if (addr < va->va_start)
1003			n = n->rb_left;
1004		else if (addr >= va->va_end)
1005			n = n->rb_right;
1006		else
1007			return va;
1008	}
1009
1010	return NULL;
1011}
1012
1013/* Look up the first VA which satisfies addr < va_end, NULL if none. */
1014static struct vmap_area *
1015__find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root)
1016{
1017	struct vmap_area *va = NULL;
1018	struct rb_node *n = root->rb_node;
1019
1020	addr = (unsigned long)kasan_reset_tag((void *)addr);
1021
1022	while (n) {
1023		struct vmap_area *tmp;
1024
1025		tmp = rb_entry(n, struct vmap_area, rb_node);
1026		if (tmp->va_end > addr) {
1027			va = tmp;
1028			if (tmp->va_start <= addr)
1029				break;
1030
1031			n = n->rb_left;
1032		} else
1033			n = n->rb_right;
1034	}
1035
1036	return va;
1037}
1038
1039/*
1040 * Returns a node where a first VA, that satisfies addr < va_end, resides.
1041 * If success, a node is locked. A user is responsible to unlock it when a
1042 * VA is no longer needed to be accessed.
1043 *
1044 * Returns NULL if nothing found.
1045 */
1046static struct vmap_node *
1047find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va)
1048{
1049	unsigned long va_start_lowest;
1050	struct vmap_node *vn;
1051	int i;
1052
1053repeat:
1054	for (i = 0, va_start_lowest = 0; i < nr_vmap_nodes; i++) {
1055		vn = &vmap_nodes[i];
1056
1057		spin_lock(&vn->busy.lock);
1058		*va = __find_vmap_area_exceed_addr(addr, &vn->busy.root);
1059
1060		if (*va)
1061			if (!va_start_lowest || (*va)->va_start < va_start_lowest)
1062				va_start_lowest = (*va)->va_start;
1063		spin_unlock(&vn->busy.lock);
1064	}
1065
1066	/*
1067	 * Check if found VA exists, it might have gone away.  In this case we
1068	 * repeat the search because a VA has been removed concurrently and we
1069	 * need to proceed to the next one, which is a rare case.
1070	 */
1071	if (va_start_lowest) {
1072		vn = addr_to_node(va_start_lowest);
1073
1074		spin_lock(&vn->busy.lock);
1075		*va = __find_vmap_area(va_start_lowest, &vn->busy.root);
1076
1077		if (*va)
1078			return vn;
1079
1080		spin_unlock(&vn->busy.lock);
1081		goto repeat;
1082	}
1083
1084	return NULL;
1085}
1086
1087/*
1088 * This function returns back addresses of parent node
1089 * and its left or right link for further processing.
1090 *
1091 * Otherwise NULL is returned. In that case all further
1092 * steps regarding inserting of conflicting overlap range
1093 * have to be declined and actually considered as a bug.
1094 */
1095static __always_inline struct rb_node **
1096find_va_links(struct vmap_area *va,
1097	struct rb_root *root, struct rb_node *from,
1098	struct rb_node **parent)
1099{
1100	struct vmap_area *tmp_va;
1101	struct rb_node **link;
1102
1103	if (root) {
1104		link = &root->rb_node;
1105		if (unlikely(!*link)) {
1106			*parent = NULL;
1107			return link;
1108		}
1109	} else {
1110		link = &from;
1111	}
1112
1113	/*
1114	 * Go to the bottom of the tree. When we hit the last point
1115	 * we end up with parent rb_node and correct direction, i name
1116	 * it link, where the new va->rb_node will be attached to.
1117	 */
1118	do {
1119		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
1120
1121		/*
1122		 * During the traversal we also do some sanity check.
1123		 * Trigger the BUG() if there are sides(left/right)
1124		 * or full overlaps.
1125		 */
1126		if (va->va_end <= tmp_va->va_start)
 
1127			link = &(*link)->rb_left;
1128		else if (va->va_start >= tmp_va->va_end)
 
1129			link = &(*link)->rb_right;
1130		else {
1131			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
1132				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
1133
1134			return NULL;
1135		}
1136	} while (*link);
1137
1138	*parent = &tmp_va->rb_node;
1139	return link;
1140}
1141
1142static __always_inline struct list_head *
1143get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
1144{
1145	struct list_head *list;
1146
1147	if (unlikely(!parent))
1148		/*
1149		 * The red-black tree where we try to find VA neighbors
1150		 * before merging or inserting is empty, i.e. it means
1151		 * there is no free vmap space. Normally it does not
1152		 * happen but we handle this case anyway.
1153		 */
1154		return NULL;
1155
1156	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
1157	return (&parent->rb_right == link ? list->next : list);
1158}
1159
1160static __always_inline void
1161__link_va(struct vmap_area *va, struct rb_root *root,
1162	struct rb_node *parent, struct rb_node **link,
1163	struct list_head *head, bool augment)
1164{
1165	/*
1166	 * VA is still not in the list, but we can
1167	 * identify its future previous list_head node.
1168	 */
1169	if (likely(parent)) {
1170		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
1171		if (&parent->rb_right != link)
1172			head = head->prev;
1173	}
1174
1175	/* Insert to the rb-tree */
1176	rb_link_node(&va->rb_node, parent, link);
1177	if (augment) {
1178		/*
1179		 * Some explanation here. Just perform simple insertion
1180		 * to the tree. We do not set va->subtree_max_size to
1181		 * its current size before calling rb_insert_augmented().
1182		 * It is because we populate the tree from the bottom
1183		 * to parent levels when the node _is_ in the tree.
1184		 *
1185		 * Therefore we set subtree_max_size to zero after insertion,
1186		 * to let __augment_tree_propagate_from() puts everything to
1187		 * the correct order later on.
1188		 */
1189		rb_insert_augmented(&va->rb_node,
1190			root, &free_vmap_area_rb_augment_cb);
1191		va->subtree_max_size = 0;
1192	} else {
1193		rb_insert_color(&va->rb_node, root);
1194	}
1195
1196	/* Address-sort this list */
1197	list_add(&va->list, head);
1198}
1199
1200static __always_inline void
1201link_va(struct vmap_area *va, struct rb_root *root,
1202	struct rb_node *parent, struct rb_node **link,
1203	struct list_head *head)
1204{
1205	__link_va(va, root, parent, link, head, false);
1206}
1207
1208static __always_inline void
1209link_va_augment(struct vmap_area *va, struct rb_root *root,
1210	struct rb_node *parent, struct rb_node **link,
1211	struct list_head *head)
1212{
1213	__link_va(va, root, parent, link, head, true);
1214}
1215
1216static __always_inline void
1217__unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
1218{
1219	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
1220		return;
1221
1222	if (augment)
1223		rb_erase_augmented(&va->rb_node,
1224			root, &free_vmap_area_rb_augment_cb);
1225	else
1226		rb_erase(&va->rb_node, root);
1227
1228	list_del_init(&va->list);
1229	RB_CLEAR_NODE(&va->rb_node);
1230}
1231
1232static __always_inline void
1233unlink_va(struct vmap_area *va, struct rb_root *root)
 
1234{
1235	__unlink_va(va, root, false);
1236}
 
 
 
 
 
 
 
 
 
1237
1238static __always_inline void
1239unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1240{
1241	__unlink_va(va, root, true);
1242}
1243
1244#if DEBUG_AUGMENT_PROPAGATE_CHECK
1245/*
1246 * Gets called when remove the node and rotate.
1247 */
1248static __always_inline unsigned long
1249compute_subtree_max_size(struct vmap_area *va)
1250{
1251	return max3(va_size(va),
1252		get_subtree_max_size(va->rb_node.rb_left),
1253		get_subtree_max_size(va->rb_node.rb_right));
1254}
1255
1256static void
1257augment_tree_propagate_check(void)
1258{
1259	struct vmap_area *va;
1260	unsigned long computed_size;
1261
1262	list_for_each_entry(va, &free_vmap_area_list, list) {
1263		computed_size = compute_subtree_max_size(va);
1264		if (computed_size != va->subtree_max_size)
1265			pr_emerg("tree is corrupted: %lu, %lu\n",
1266				va_size(va), va->subtree_max_size);
1267	}
 
 
 
1268}
1269#endif
1270
1271/*
1272 * This function populates subtree_max_size from bottom to upper
1273 * levels starting from VA point. The propagation must be done
1274 * when VA size is modified by changing its va_start/va_end. Or
1275 * in case of newly inserting of VA to the tree.
1276 *
1277 * It means that __augment_tree_propagate_from() must be called:
1278 * - After VA has been inserted to the tree(free path);
1279 * - After VA has been shrunk(allocation path);
1280 * - After VA has been increased(merging path).
1281 *
1282 * Please note that, it does not mean that upper parent nodes
1283 * and their subtree_max_size are recalculated all the time up
1284 * to the root node.
1285 *
1286 *       4--8
1287 *        /\
1288 *       /  \
1289 *      /    \
1290 *    2--2  8--8
1291 *
1292 * For example if we modify the node 4, shrinking it to 2, then
1293 * no any modification is required. If we shrink the node 2 to 1
1294 * its subtree_max_size is updated only, and set to 1. If we shrink
1295 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1296 * node becomes 4--6.
1297 */
1298static __always_inline void
1299augment_tree_propagate_from(struct vmap_area *va)
1300{
1301	/*
1302	 * Populate the tree from bottom towards the root until
1303	 * the calculated maximum available size of checked node
1304	 * is equal to its current one.
1305	 */
1306	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
1307
1308#if DEBUG_AUGMENT_PROPAGATE_CHECK
1309	augment_tree_propagate_check();
1310#endif
1311}
1312
1313static void
1314insert_vmap_area(struct vmap_area *va,
1315	struct rb_root *root, struct list_head *head)
1316{
1317	struct rb_node **link;
1318	struct rb_node *parent;
1319
1320	link = find_va_links(va, root, NULL, &parent);
1321	if (link)
1322		link_va(va, root, parent, link, head);
1323}
1324
1325static void
1326insert_vmap_area_augment(struct vmap_area *va,
1327	struct rb_node *from, struct rb_root *root,
1328	struct list_head *head)
1329{
1330	struct rb_node **link;
1331	struct rb_node *parent;
1332
1333	if (from)
1334		link = find_va_links(va, NULL, from, &parent);
1335	else
1336		link = find_va_links(va, root, NULL, &parent);
1337
1338	if (link) {
1339		link_va_augment(va, root, parent, link, head);
1340		augment_tree_propagate_from(va);
1341	}
1342}
1343
1344/*
1345 * Merge de-allocated chunk of VA memory with previous
1346 * and next free blocks. If coalesce is not done a new
1347 * free area is inserted. If VA has been merged, it is
1348 * freed.
1349 *
1350 * Please note, it can return NULL in case of overlap
1351 * ranges, followed by WARN() report. Despite it is a
1352 * buggy behaviour, a system can be alive and keep
1353 * ongoing.
1354 */
1355static __always_inline struct vmap_area *
1356__merge_or_add_vmap_area(struct vmap_area *va,
1357	struct rb_root *root, struct list_head *head, bool augment)
1358{
1359	struct vmap_area *sibling;
1360	struct list_head *next;
1361	struct rb_node **link;
1362	struct rb_node *parent;
1363	bool merged = false;
1364
1365	/*
1366	 * Find a place in the tree where VA potentially will be
1367	 * inserted, unless it is merged with its sibling/siblings.
1368	 */
1369	link = find_va_links(va, root, NULL, &parent);
1370	if (!link)
1371		return NULL;
1372
1373	/*
1374	 * Get next node of VA to check if merging can be done.
1375	 */
1376	next = get_va_next_sibling(parent, link);
1377	if (unlikely(next == NULL))
1378		goto insert;
1379
1380	/*
1381	 * start            end
1382	 * |                |
1383	 * |<------VA------>|<-----Next----->|
1384	 *                  |                |
1385	 *                  start            end
1386	 */
1387	if (next != head) {
1388		sibling = list_entry(next, struct vmap_area, list);
1389		if (sibling->va_start == va->va_end) {
1390			sibling->va_start = va->va_start;
1391
 
 
 
1392			/* Free vmap_area object. */
1393			kmem_cache_free(vmap_area_cachep, va);
1394
1395			/* Point to the new merged area. */
1396			va = sibling;
1397			merged = true;
1398		}
1399	}
1400
1401	/*
1402	 * start            end
1403	 * |                |
1404	 * |<-----Prev----->|<------VA------>|
1405	 *                  |                |
1406	 *                  start            end
1407	 */
1408	if (next->prev != head) {
1409		sibling = list_entry(next->prev, struct vmap_area, list);
1410		if (sibling->va_end == va->va_start) {
1411			/*
1412			 * If both neighbors are coalesced, it is important
1413			 * to unlink the "next" node first, followed by merging
1414			 * with "previous" one. Otherwise the tree might not be
1415			 * fully populated if a sibling's augmented value is
1416			 * "normalized" because of rotation operations.
1417			 */
1418			if (merged)
1419				__unlink_va(va, root, augment);
1420
1421			sibling->va_end = va->va_end;
1422
1423			/* Free vmap_area object. */
1424			kmem_cache_free(vmap_area_cachep, va);
1425
1426			/* Point to the new merged area. */
1427			va = sibling;
1428			merged = true;
1429		}
1430	}
1431
1432insert:
1433	if (!merged)
1434		__link_va(va, root, parent, link, head, augment);
1435
1436	return va;
1437}
1438
1439static __always_inline struct vmap_area *
1440merge_or_add_vmap_area(struct vmap_area *va,
1441	struct rb_root *root, struct list_head *head)
1442{
1443	return __merge_or_add_vmap_area(va, root, head, false);
1444}
1445
1446static __always_inline struct vmap_area *
1447merge_or_add_vmap_area_augment(struct vmap_area *va,
1448	struct rb_root *root, struct list_head *head)
1449{
1450	va = __merge_or_add_vmap_area(va, root, head, true);
1451	if (va)
1452		augment_tree_propagate_from(va);
1453
1454	return va;
1455}
1456
1457static __always_inline bool
1458is_within_this_va(struct vmap_area *va, unsigned long size,
1459	unsigned long align, unsigned long vstart)
1460{
1461	unsigned long nva_start_addr;
1462
1463	if (va->va_start > vstart)
1464		nva_start_addr = ALIGN(va->va_start, align);
1465	else
1466		nva_start_addr = ALIGN(vstart, align);
1467
1468	/* Can be overflowed due to big size or alignment. */
1469	if (nva_start_addr + size < nva_start_addr ||
1470			nva_start_addr < vstart)
1471		return false;
1472
1473	return (nva_start_addr + size <= va->va_end);
1474}
1475
1476/*
1477 * Find the first free block(lowest start address) in the tree,
1478 * that will accomplish the request corresponding to passing
1479 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1480 * a search length is adjusted to account for worst case alignment
1481 * overhead.
1482 */
1483static __always_inline struct vmap_area *
1484find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1485	unsigned long align, unsigned long vstart, bool adjust_search_size)
1486{
1487	struct vmap_area *va;
1488	struct rb_node *node;
1489	unsigned long length;
1490
1491	/* Start from the root. */
1492	node = root->rb_node;
1493
1494	/* Adjust the search size for alignment overhead. */
1495	length = adjust_search_size ? size + align - 1 : size;
1496
1497	while (node) {
1498		va = rb_entry(node, struct vmap_area, rb_node);
1499
1500		if (get_subtree_max_size(node->rb_left) >= length &&
1501				vstart < va->va_start) {
1502			node = node->rb_left;
1503		} else {
1504			if (is_within_this_va(va, size, align, vstart))
1505				return va;
1506
1507			/*
1508			 * Does not make sense to go deeper towards the right
1509			 * sub-tree if it does not have a free block that is
1510			 * equal or bigger to the requested search length.
1511			 */
1512			if (get_subtree_max_size(node->rb_right) >= length) {
1513				node = node->rb_right;
1514				continue;
1515			}
1516
1517			/*
1518			 * OK. We roll back and find the first right sub-tree,
1519			 * that will satisfy the search criteria. It can happen
1520			 * due to "vstart" restriction or an alignment overhead
1521			 * that is bigger then PAGE_SIZE.
1522			 */
1523			while ((node = rb_parent(node))) {
1524				va = rb_entry(node, struct vmap_area, rb_node);
1525				if (is_within_this_va(va, size, align, vstart))
1526					return va;
1527
1528				if (get_subtree_max_size(node->rb_right) >= length &&
1529						vstart <= va->va_start) {
1530					/*
1531					 * Shift the vstart forward. Please note, we update it with
1532					 * parent's start address adding "1" because we do not want
1533					 * to enter same sub-tree after it has already been checked
1534					 * and no suitable free block found there.
1535					 */
1536					vstart = va->va_start + 1;
1537					node = node->rb_right;
1538					break;
1539				}
1540			}
1541		}
1542	}
1543
1544	return NULL;
1545}
1546
1547#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1548#include <linux/random.h>
1549
1550static struct vmap_area *
1551find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1552	unsigned long align, unsigned long vstart)
1553{
1554	struct vmap_area *va;
1555
1556	list_for_each_entry(va, head, list) {
1557		if (!is_within_this_va(va, size, align, vstart))
1558			continue;
1559
1560		return va;
1561	}
1562
1563	return NULL;
1564}
1565
1566static void
1567find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1568			     unsigned long size, unsigned long align)
1569{
1570	struct vmap_area *va_1, *va_2;
1571	unsigned long vstart;
1572	unsigned int rnd;
1573
1574	get_random_bytes(&rnd, sizeof(rnd));
1575	vstart = VMALLOC_START + rnd;
1576
1577	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1578	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1579
1580	if (va_1 != va_2)
1581		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1582			va_1, va_2, vstart);
1583}
1584#endif
1585
1586enum fit_type {
1587	NOTHING_FIT = 0,
1588	FL_FIT_TYPE = 1,	/* full fit */
1589	LE_FIT_TYPE = 2,	/* left edge fit */
1590	RE_FIT_TYPE = 3,	/* right edge fit */
1591	NE_FIT_TYPE = 4		/* no edge fit */
1592};
1593
1594static __always_inline enum fit_type
1595classify_va_fit_type(struct vmap_area *va,
1596	unsigned long nva_start_addr, unsigned long size)
1597{
1598	enum fit_type type;
1599
1600	/* Check if it is within VA. */
1601	if (nva_start_addr < va->va_start ||
1602			nva_start_addr + size > va->va_end)
1603		return NOTHING_FIT;
1604
1605	/* Now classify. */
1606	if (va->va_start == nva_start_addr) {
1607		if (va->va_end == nva_start_addr + size)
1608			type = FL_FIT_TYPE;
1609		else
1610			type = LE_FIT_TYPE;
1611	} else if (va->va_end == nva_start_addr + size) {
1612		type = RE_FIT_TYPE;
1613	} else {
1614		type = NE_FIT_TYPE;
1615	}
1616
1617	return type;
1618}
1619
1620static __always_inline int
1621va_clip(struct rb_root *root, struct list_head *head,
1622		struct vmap_area *va, unsigned long nva_start_addr,
1623		unsigned long size)
1624{
1625	struct vmap_area *lva = NULL;
1626	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1627
1628	if (type == FL_FIT_TYPE) {
1629		/*
1630		 * No need to split VA, it fully fits.
1631		 *
1632		 * |               |
1633		 * V      NVA      V
1634		 * |---------------|
1635		 */
1636		unlink_va_augment(va, root);
1637		kmem_cache_free(vmap_area_cachep, va);
1638	} else if (type == LE_FIT_TYPE) {
1639		/*
1640		 * Split left edge of fit VA.
1641		 *
1642		 * |       |
1643		 * V  NVA  V   R
1644		 * |-------|-------|
1645		 */
1646		va->va_start += size;
1647	} else if (type == RE_FIT_TYPE) {
1648		/*
1649		 * Split right edge of fit VA.
1650		 *
1651		 *         |       |
1652		 *     L   V  NVA  V
1653		 * |-------|-------|
1654		 */
1655		va->va_end = nva_start_addr;
1656	} else if (type == NE_FIT_TYPE) {
1657		/*
1658		 * Split no edge of fit VA.
1659		 *
1660		 *     |       |
1661		 *   L V  NVA  V R
1662		 * |---|-------|---|
1663		 */
1664		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1665		if (unlikely(!lva)) {
1666			/*
1667			 * For percpu allocator we do not do any pre-allocation
1668			 * and leave it as it is. The reason is it most likely
1669			 * never ends up with NE_FIT_TYPE splitting. In case of
1670			 * percpu allocations offsets and sizes are aligned to
1671			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1672			 * are its main fitting cases.
1673			 *
1674			 * There are a few exceptions though, as an example it is
1675			 * a first allocation (early boot up) when we have "one"
1676			 * big free space that has to be split.
1677			 *
1678			 * Also we can hit this path in case of regular "vmap"
1679			 * allocations, if "this" current CPU was not preloaded.
1680			 * See the comment in alloc_vmap_area() why. If so, then
1681			 * GFP_NOWAIT is used instead to get an extra object for
1682			 * split purpose. That is rare and most time does not
1683			 * occur.
1684			 *
1685			 * What happens if an allocation gets failed. Basically,
1686			 * an "overflow" path is triggered to purge lazily freed
1687			 * areas to free some memory, then, the "retry" path is
1688			 * triggered to repeat one more time. See more details
1689			 * in alloc_vmap_area() function.
1690			 */
1691			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1692			if (!lva)
1693				return -1;
1694		}
1695
1696		/*
1697		 * Build the remainder.
1698		 */
1699		lva->va_start = va->va_start;
1700		lva->va_end = nva_start_addr;
1701
1702		/*
1703		 * Shrink this VA to remaining size.
1704		 */
1705		va->va_start = nva_start_addr + size;
1706	} else {
1707		return -1;
1708	}
1709
1710	if (type != FL_FIT_TYPE) {
1711		augment_tree_propagate_from(va);
1712
1713		if (lva)	/* type == NE_FIT_TYPE */
1714			insert_vmap_area_augment(lva, &va->rb_node, root, head);
 
1715	}
1716
1717	return 0;
1718}
1719
1720static unsigned long
1721va_alloc(struct vmap_area *va,
1722		struct rb_root *root, struct list_head *head,
1723		unsigned long size, unsigned long align,
1724		unsigned long vstart, unsigned long vend)
 
 
1725{
1726	unsigned long nva_start_addr;
 
 
1727	int ret;
1728
 
 
 
 
1729	if (va->va_start > vstart)
1730		nva_start_addr = ALIGN(va->va_start, align);
1731	else
1732		nva_start_addr = ALIGN(vstart, align);
1733
1734	/* Check the "vend" restriction. */
1735	if (nva_start_addr + size > vend)
1736		return vend;
1737
1738	/* Update the free vmap_area. */
1739	ret = va_clip(root, head, va, nva_start_addr, size);
1740	if (WARN_ON_ONCE(ret))
1741		return vend;
1742
1743	return nva_start_addr;
1744}
1745
1746/*
1747 * Returns a start address of the newly allocated area, if success.
1748 * Otherwise a vend is returned that indicates failure.
1749 */
1750static __always_inline unsigned long
1751__alloc_vmap_area(struct rb_root *root, struct list_head *head,
1752	unsigned long size, unsigned long align,
1753	unsigned long vstart, unsigned long vend)
1754{
1755	bool adjust_search_size = true;
1756	unsigned long nva_start_addr;
1757	struct vmap_area *va;
1758
1759	/*
1760	 * Do not adjust when:
1761	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1762	 *      All blocks(their start addresses) are at least PAGE_SIZE
1763	 *      aligned anyway;
1764	 *   b) a short range where a requested size corresponds to exactly
1765	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1766	 *      With adjusted search length an allocation would not succeed.
1767	 */
1768	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1769		adjust_search_size = false;
1770
1771	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1772	if (unlikely(!va))
1773		return vend;
1774
1775	nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend);
1776	if (nva_start_addr == vend)
1777		return vend;
1778
1779#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1780	find_vmap_lowest_match_check(root, head, size, align);
1781#endif
1782
1783	return nva_start_addr;
1784}
1785
1786/*
1787 * Free a region of KVA allocated by alloc_vmap_area
1788 */
1789static void free_vmap_area(struct vmap_area *va)
1790{
1791	struct vmap_node *vn = addr_to_node(va->va_start);
1792
1793	/*
1794	 * Remove from the busy tree/list.
1795	 */
1796	spin_lock(&vn->busy.lock);
1797	unlink_va(va, &vn->busy.root);
1798	spin_unlock(&vn->busy.lock);
1799
1800	/*
1801	 * Insert/Merge it back to the free tree/list.
1802	 */
1803	spin_lock(&free_vmap_area_lock);
1804	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1805	spin_unlock(&free_vmap_area_lock);
1806}
1807
1808static inline void
1809preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1810{
1811	struct vmap_area *va = NULL;
1812
1813	/*
1814	 * Preload this CPU with one extra vmap_area object. It is used
1815	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1816	 * a CPU that does an allocation is preloaded.
1817	 *
1818	 * We do it in non-atomic context, thus it allows us to use more
1819	 * permissive allocation masks to be more stable under low memory
1820	 * condition and high memory pressure.
1821	 */
1822	if (!this_cpu_read(ne_fit_preload_node))
1823		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1824
1825	spin_lock(lock);
1826
1827	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1828		kmem_cache_free(vmap_area_cachep, va);
1829}
1830
1831static struct vmap_pool *
1832size_to_va_pool(struct vmap_node *vn, unsigned long size)
1833{
1834	unsigned int idx = (size - 1) / PAGE_SIZE;
1835
1836	if (idx < MAX_VA_SIZE_PAGES)
1837		return &vn->pool[idx];
1838
1839	return NULL;
1840}
1841
1842static bool
1843node_pool_add_va(struct vmap_node *n, struct vmap_area *va)
1844{
1845	struct vmap_pool *vp;
1846
1847	vp = size_to_va_pool(n, va_size(va));
1848	if (!vp)
1849		return false;
1850
1851	spin_lock(&n->pool_lock);
1852	list_add(&va->list, &vp->head);
1853	WRITE_ONCE(vp->len, vp->len + 1);
1854	spin_unlock(&n->pool_lock);
1855
1856	return true;
1857}
1858
1859static struct vmap_area *
1860node_pool_del_va(struct vmap_node *vn, unsigned long size,
1861		unsigned long align, unsigned long vstart,
1862		unsigned long vend)
1863{
1864	struct vmap_area *va = NULL;
1865	struct vmap_pool *vp;
1866	int err = 0;
1867
1868	vp = size_to_va_pool(vn, size);
1869	if (!vp || list_empty(&vp->head))
1870		return NULL;
1871
1872	spin_lock(&vn->pool_lock);
1873	if (!list_empty(&vp->head)) {
1874		va = list_first_entry(&vp->head, struct vmap_area, list);
1875
1876		if (IS_ALIGNED(va->va_start, align)) {
1877			/*
1878			 * Do some sanity check and emit a warning
1879			 * if one of below checks detects an error.
1880			 */
1881			err |= (va_size(va) != size);
1882			err |= (va->va_start < vstart);
1883			err |= (va->va_end > vend);
1884
1885			if (!WARN_ON_ONCE(err)) {
1886				list_del_init(&va->list);
1887				WRITE_ONCE(vp->len, vp->len - 1);
1888			} else {
1889				va = NULL;
1890			}
1891		} else {
1892			list_move_tail(&va->list, &vp->head);
1893			va = NULL;
1894		}
1895	}
1896	spin_unlock(&vn->pool_lock);
1897
1898	return va;
1899}
1900
1901static struct vmap_area *
1902node_alloc(unsigned long size, unsigned long align,
1903		unsigned long vstart, unsigned long vend,
1904		unsigned long *addr, unsigned int *vn_id)
1905{
1906	struct vmap_area *va;
1907
1908	*vn_id = 0;
1909	*addr = vend;
1910
1911	/*
1912	 * Fallback to a global heap if not vmalloc or there
1913	 * is only one node.
1914	 */
1915	if (vstart != VMALLOC_START || vend != VMALLOC_END ||
1916			nr_vmap_nodes == 1)
1917		return NULL;
1918
1919	*vn_id = raw_smp_processor_id() % nr_vmap_nodes;
1920	va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend);
1921	*vn_id = encode_vn_id(*vn_id);
1922
1923	if (va)
1924		*addr = va->va_start;
1925
1926	return va;
1927}
1928
1929/*
1930 * Allocate a region of KVA of the specified size and alignment, within the
1931 * vstart and vend.
1932 */
1933static struct vmap_area *alloc_vmap_area(unsigned long size,
1934				unsigned long align,
1935				unsigned long vstart, unsigned long vend,
1936				int node, gfp_t gfp_mask,
1937				unsigned long va_flags)
1938{
1939	struct vmap_node *vn;
1940	struct vmap_area *va;
1941	unsigned long freed;
1942	unsigned long addr;
1943	unsigned int vn_id;
1944	int purged = 0;
1945	int ret;
1946
1947	if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1948		return ERR_PTR(-EINVAL);
 
1949
1950	if (unlikely(!vmap_initialized))
1951		return ERR_PTR(-EBUSY);
1952
1953	might_sleep();
1954
 
 
 
 
 
 
 
 
 
 
 
 
1955	/*
1956	 * If a VA is obtained from a global heap(if it fails here)
1957	 * it is anyway marked with this "vn_id" so it is returned
1958	 * to this pool's node later. Such way gives a possibility
1959	 * to populate pools based on users demand.
 
 
 
1960	 *
1961	 * On success a ready to go VA is returned.
 
1962	 */
1963	va = node_alloc(size, align, vstart, vend, &addr, &vn_id);
1964	if (!va) {
1965		gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1966
1967		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1968		if (unlikely(!va))
1969			return ERR_PTR(-ENOMEM);
1970
1971		/*
1972		 * Only scan the relevant parts containing pointers to other objects
1973		 * to avoid false negatives.
1974		 */
1975		kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1976	}
1977
1978retry:
1979	if (addr == vend) {
1980		preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1981		addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1982			size, align, vstart, vend);
1983		spin_unlock(&free_vmap_area_lock);
1984	}
1985
1986	trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
 
1987
1988	/*
1989	 * If an allocation fails, the "vend" address is
1990	 * returned. Therefore trigger the overflow path.
1991	 */
 
1992	if (unlikely(addr == vend))
1993		goto overflow;
1994
1995	va->va_start = addr;
1996	va->va_end = addr + size;
1997	va->vm = NULL;
1998	va->flags = (va_flags | vn_id);
1999
2000	vn = addr_to_node(va->va_start);
2001
2002	spin_lock(&vn->busy.lock);
2003	insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
2004	spin_unlock(&vn->busy.lock);
2005
2006	BUG_ON(!IS_ALIGNED(va->va_start, align));
2007	BUG_ON(va->va_start < vstart);
2008	BUG_ON(va->va_end > vend);
2009
2010	ret = kasan_populate_vmalloc(addr, size);
2011	if (ret) {
2012		free_vmap_area(va);
2013		return ERR_PTR(ret);
2014	}
2015
2016	return va;
2017
2018overflow:
 
2019	if (!purged) {
2020		reclaim_and_purge_vmap_areas();
2021		purged = 1;
2022		goto retry;
2023	}
2024
2025	freed = 0;
2026	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
2027
2028	if (freed > 0) {
2029		purged = 0;
2030		goto retry;
 
2031	}
2032
2033	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
2034		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
2035			size);
2036
2037	kmem_cache_free(vmap_area_cachep, va);
2038	return ERR_PTR(-EBUSY);
2039}
2040
2041int register_vmap_purge_notifier(struct notifier_block *nb)
2042{
2043	return blocking_notifier_chain_register(&vmap_notify_list, nb);
2044}
2045EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
2046
2047int unregister_vmap_purge_notifier(struct notifier_block *nb)
2048{
2049	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
2050}
2051EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
2052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2053/*
2054 * lazy_max_pages is the maximum amount of virtual address space we gather up
2055 * before attempting to purge with a TLB flush.
2056 *
2057 * There is a tradeoff here: a larger number will cover more kernel page tables
2058 * and take slightly longer to purge, but it will linearly reduce the number of
2059 * global TLB flushes that must be performed. It would seem natural to scale
2060 * this number up linearly with the number of CPUs (because vmapping activity
2061 * could also scale linearly with the number of CPUs), however it is likely
2062 * that in practice, workloads might be constrained in other ways that mean
2063 * vmap activity will not scale linearly with CPUs. Also, I want to be
2064 * conservative and not introduce a big latency on huge systems, so go with
2065 * a less aggressive log scale. It will still be an improvement over the old
2066 * code, and it will be simple to change the scale factor if we find that it
2067 * becomes a problem on bigger systems.
2068 */
2069static unsigned long lazy_max_pages(void)
2070{
2071	unsigned int log;
2072
2073	log = fls(num_online_cpus());
2074
2075	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
2076}
2077
2078static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
2079
2080/*
2081 * Serialize vmap purging.  There is no actual critical section protected
2082 * by this lock, but we want to avoid concurrent calls for performance
2083 * reasons and to make the pcpu_get_vm_areas more deterministic.
2084 */
2085static DEFINE_MUTEX(vmap_purge_lock);
2086
2087/* for per-CPU blocks */
2088static void purge_fragmented_blocks_allcpus(void);
2089static cpumask_t purge_nodes;
2090
2091static void
2092reclaim_list_global(struct list_head *head)
 
 
 
2093{
2094	struct vmap_area *va, *n;
2095
2096	if (list_empty(head))
2097		return;
2098
2099	spin_lock(&free_vmap_area_lock);
2100	list_for_each_entry_safe(va, n, head, list)
2101		merge_or_add_vmap_area_augment(va,
2102			&free_vmap_area_root, &free_vmap_area_list);
2103	spin_unlock(&free_vmap_area_lock);
2104}
2105
2106static void
2107decay_va_pool_node(struct vmap_node *vn, bool full_decay)
 
 
2108{
2109	struct vmap_area *va, *nva;
2110	struct list_head decay_list;
2111	struct rb_root decay_root;
2112	unsigned long n_decay;
2113	int i;
2114
2115	decay_root = RB_ROOT;
2116	INIT_LIST_HEAD(&decay_list);
2117
2118	for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
2119		struct list_head tmp_list;
 
2120
2121		if (list_empty(&vn->pool[i].head))
2122			continue;
 
 
 
2123
2124		INIT_LIST_HEAD(&tmp_list);
 
 
 
 
 
 
 
 
 
2125
2126		/* Detach the pool, so no-one can access it. */
2127		spin_lock(&vn->pool_lock);
2128		list_replace_init(&vn->pool[i].head, &tmp_list);
2129		spin_unlock(&vn->pool_lock);
2130
2131		if (full_decay)
2132			WRITE_ONCE(vn->pool[i].len, 0);
2133
2134		/* Decay a pool by ~25% out of left objects. */
2135		n_decay = vn->pool[i].len >> 2;
2136
2137		list_for_each_entry_safe(va, nva, &tmp_list, list) {
2138			list_del_init(&va->list);
2139			merge_or_add_vmap_area(va, &decay_root, &decay_list);
2140
2141			if (!full_decay) {
2142				WRITE_ONCE(vn->pool[i].len, vn->pool[i].len - 1);
2143
2144				if (!--n_decay)
2145					break;
2146			}
2147		}
2148
2149		/*
2150		 * Attach the pool back if it has been partly decayed.
2151		 * Please note, it is supposed that nobody(other contexts)
2152		 * can populate the pool therefore a simple list replace
2153		 * operation takes place here.
2154		 */
2155		if (!full_decay && !list_empty(&tmp_list)) {
2156			spin_lock(&vn->pool_lock);
2157			list_replace_init(&tmp_list, &vn->pool[i].head);
2158			spin_unlock(&vn->pool_lock);
2159		}
2160	}
2161
2162	reclaim_list_global(&decay_list);
2163}
2164
2165static void purge_vmap_node(struct work_struct *work)
2166{
2167	struct vmap_node *vn = container_of(work,
2168		struct vmap_node, purge_work);
2169	struct vmap_area *va, *n_va;
2170	LIST_HEAD(local_list);
2171
2172	vn->nr_purged = 0;
2173
2174	list_for_each_entry_safe(va, n_va, &vn->purge_list, list) {
2175		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
2176		unsigned long orig_start = va->va_start;
2177		unsigned long orig_end = va->va_end;
2178		unsigned int vn_id = decode_vn_id(va->flags);
2179
2180		list_del_init(&va->list);
2181
2182		if (is_vmalloc_or_module_addr((void *)orig_start))
2183			kasan_release_vmalloc(orig_start, orig_end,
2184					      va->va_start, va->va_end);
2185
2186		atomic_long_sub(nr, &vmap_lazy_nr);
2187		vn->nr_purged++;
2188
2189		if (is_vn_id_valid(vn_id) && !vn->skip_populate)
2190			if (node_pool_add_va(vn, va))
2191				continue;
2192
2193		/* Go back to global. */
2194		list_add(&va->list, &local_list);
2195	}
2196
2197	reclaim_list_global(&local_list);
2198}
2199
2200/*
2201 * Purges all lazily-freed vmap areas.
 
2202 */
2203static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end,
2204		bool full_pool_decay)
2205{
2206	unsigned long nr_purged_areas = 0;
2207	unsigned int nr_purge_helpers;
2208	unsigned int nr_purge_nodes;
2209	struct vmap_node *vn;
2210	int i;
2211
2212	lockdep_assert_held(&vmap_purge_lock);
2213
2214	/*
2215	 * Use cpumask to mark which node has to be processed.
2216	 */
2217	purge_nodes = CPU_MASK_NONE;
2218
2219	for (i = 0; i < nr_vmap_nodes; i++) {
2220		vn = &vmap_nodes[i];
2221
2222		INIT_LIST_HEAD(&vn->purge_list);
2223		vn->skip_populate = full_pool_decay;
2224		decay_va_pool_node(vn, full_pool_decay);
2225
2226		if (RB_EMPTY_ROOT(&vn->lazy.root))
2227			continue;
2228
2229		spin_lock(&vn->lazy.lock);
2230		WRITE_ONCE(vn->lazy.root.rb_node, NULL);
2231		list_replace_init(&vn->lazy.head, &vn->purge_list);
2232		spin_unlock(&vn->lazy.lock);
2233
2234		start = min(start, list_first_entry(&vn->purge_list,
2235			struct vmap_area, list)->va_start);
2236
2237		end = max(end, list_last_entry(&vn->purge_list,
2238			struct vmap_area, list)->va_end);
2239
2240		cpumask_set_cpu(i, &purge_nodes);
2241	}
2242
2243	nr_purge_nodes = cpumask_weight(&purge_nodes);
2244	if (nr_purge_nodes > 0) {
2245		flush_tlb_kernel_range(start, end);
2246
2247		/* One extra worker is per a lazy_max_pages() full set minus one. */
2248		nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages();
2249		nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1;
2250
2251		for_each_cpu(i, &purge_nodes) {
2252			vn = &vmap_nodes[i];
2253
2254			if (nr_purge_helpers > 0) {
2255				INIT_WORK(&vn->purge_work, purge_vmap_node);
2256
2257				if (cpumask_test_cpu(i, cpu_online_mask))
2258					schedule_work_on(i, &vn->purge_work);
2259				else
2260					schedule_work(&vn->purge_work);
2261
2262				nr_purge_helpers--;
2263			} else {
2264				vn->purge_work.func = NULL;
2265				purge_vmap_node(&vn->purge_work);
2266				nr_purged_areas += vn->nr_purged;
2267			}
2268		}
2269
2270		for_each_cpu(i, &purge_nodes) {
2271			vn = &vmap_nodes[i];
2272
2273			if (vn->purge_work.func) {
2274				flush_work(&vn->purge_work);
2275				nr_purged_areas += vn->nr_purged;
2276			}
2277		}
2278	}
2279
2280	trace_purge_vmap_area_lazy(start, end, nr_purged_areas);
2281	return nr_purged_areas > 0;
2282}
2283
2284/*
2285 * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
2286 */
2287static void reclaim_and_purge_vmap_areas(void)
2288
2289{
2290	mutex_lock(&vmap_purge_lock);
2291	purge_fragmented_blocks_allcpus();
2292	__purge_vmap_area_lazy(ULONG_MAX, 0, true);
2293	mutex_unlock(&vmap_purge_lock);
2294}
2295
2296static void drain_vmap_area_work(struct work_struct *work)
2297{
2298	mutex_lock(&vmap_purge_lock);
2299	__purge_vmap_area_lazy(ULONG_MAX, 0, false);
2300	mutex_unlock(&vmap_purge_lock);
2301}
2302
2303/*
2304 * Free a vmap area, caller ensuring that the area has been unmapped,
2305 * unlinked and flush_cache_vunmap had been called for the correct
2306 * range previously.
2307 */
2308static void free_vmap_area_noflush(struct vmap_area *va)
2309{
2310	unsigned long nr_lazy_max = lazy_max_pages();
2311	unsigned long va_start = va->va_start;
2312	unsigned int vn_id = decode_vn_id(va->flags);
2313	struct vmap_node *vn;
2314	unsigned long nr_lazy;
2315
2316	if (WARN_ON_ONCE(!list_empty(&va->list)))
2317		return;
 
2318
2319	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
2320				PAGE_SHIFT, &vmap_lazy_nr);
2321
2322	/*
2323	 * If it was request by a certain node we would like to
2324	 * return it to that node, i.e. its pool for later reuse.
2325	 */
2326	vn = is_vn_id_valid(vn_id) ?
2327		id_to_node(vn_id):addr_to_node(va->va_start);
2328
2329	spin_lock(&vn->lazy.lock);
2330	insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head);
2331	spin_unlock(&vn->lazy.lock);
2332
2333	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
2334
2335	/* After this point, we may free va at any time */
2336	if (unlikely(nr_lazy > nr_lazy_max))
2337		schedule_work(&drain_vmap_work);
2338}
2339
2340/*
2341 * Free and unmap a vmap area
2342 */
2343static void free_unmap_vmap_area(struct vmap_area *va)
2344{
2345	flush_cache_vunmap(va->va_start, va->va_end);
2346	vunmap_range_noflush(va->va_start, va->va_end);
2347	if (debug_pagealloc_enabled_static())
2348		flush_tlb_kernel_range(va->va_start, va->va_end);
2349
2350	free_vmap_area_noflush(va);
2351}
2352
2353struct vmap_area *find_vmap_area(unsigned long addr)
2354{
2355	struct vmap_node *vn;
2356	struct vmap_area *va;
2357	int i, j;
2358
2359	if (unlikely(!vmap_initialized))
2360		return NULL;
 
2361
2362	/*
2363	 * An addr_to_node_id(addr) converts an address to a node index
2364	 * where a VA is located. If VA spans several zones and passed
2365	 * addr is not the same as va->va_start, what is not common, we
2366	 * may need to scan extra nodes. See an example:
2367	 *
2368	 *      <----va---->
2369	 * -|-----|-----|-----|-----|-
2370	 *     1     2     0     1
2371	 *
2372	 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed
2373	 * addr is within 2 or 0 nodes we should do extra work.
2374	 */
2375	i = j = addr_to_node_id(addr);
2376	do {
2377		vn = &vmap_nodes[i];
2378
2379		spin_lock(&vn->busy.lock);
2380		va = __find_vmap_area(addr, &vn->busy.root);
2381		spin_unlock(&vn->busy.lock);
2382
2383		if (va)
2384			return va;
2385	} while ((i = (i + 1) % nr_vmap_nodes) != j);
2386
2387	return NULL;
2388}
2389
2390static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
2391{
2392	struct vmap_node *vn;
2393	struct vmap_area *va;
2394	int i, j;
2395
2396	/*
2397	 * Check the comment in the find_vmap_area() about the loop.
2398	 */
2399	i = j = addr_to_node_id(addr);
2400	do {
2401		vn = &vmap_nodes[i];
2402
2403		spin_lock(&vn->busy.lock);
2404		va = __find_vmap_area(addr, &vn->busy.root);
2405		if (va)
2406			unlink_va(va, &vn->busy.root);
2407		spin_unlock(&vn->busy.lock);
2408
2409		if (va)
2410			return va;
2411	} while ((i = (i + 1) % nr_vmap_nodes) != j);
2412
2413	return NULL;
2414}
2415
2416/*** Per cpu kva allocator ***/
2417
2418/*
2419 * vmap space is limited especially on 32 bit architectures. Ensure there is
2420 * room for at least 16 percpu vmap blocks per CPU.
2421 */
2422/*
2423 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
2424 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
2425 * instead (we just need a rough idea)
2426 */
2427#if BITS_PER_LONG == 32
2428#define VMALLOC_SPACE		(128UL*1024*1024)
2429#else
2430#define VMALLOC_SPACE		(128UL*1024*1024*1024)
2431#endif
2432
2433#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
2434#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
2435#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
2436#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
2437#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
2438#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
2439#define VMAP_BBMAP_BITS		\
2440		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
2441		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
2442			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
2443
2444#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
2445
2446/*
2447 * Purge threshold to prevent overeager purging of fragmented blocks for
2448 * regular operations: Purge if vb->free is less than 1/4 of the capacity.
2449 */
2450#define VMAP_PURGE_THRESHOLD	(VMAP_BBMAP_BITS / 4)
2451
2452#define VMAP_RAM		0x1 /* indicates vm_map_ram area*/
2453#define VMAP_BLOCK		0x2 /* mark out the vmap_block sub-type*/
2454#define VMAP_FLAGS_MASK		0x3
2455
2456struct vmap_block_queue {
2457	spinlock_t lock;
2458	struct list_head free;
2459
2460	/*
2461	 * An xarray requires an extra memory dynamically to
2462	 * be allocated. If it is an issue, we can use rb-tree
2463	 * instead.
2464	 */
2465	struct xarray vmap_blocks;
2466};
2467
2468struct vmap_block {
2469	spinlock_t lock;
2470	struct vmap_area *va;
2471	unsigned long free, dirty;
2472	DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
2473	unsigned long dirty_min, dirty_max; /*< dirty range */
2474	struct list_head free_list;
2475	struct rcu_head rcu_head;
2476	struct list_head purge;
2477};
2478
2479/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
2480static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
2481
2482/*
2483 * In order to fast access to any "vmap_block" associated with a
2484 * specific address, we use a hash.
2485 *
2486 * A per-cpu vmap_block_queue is used in both ways, to serialize
2487 * an access to free block chains among CPUs(alloc path) and it
2488 * also acts as a vmap_block hash(alloc/free paths). It means we
2489 * overload it, since we already have the per-cpu array which is
2490 * used as a hash table. When used as a hash a 'cpu' passed to
2491 * per_cpu() is not actually a CPU but rather a hash index.
2492 *
2493 * A hash function is addr_to_vb_xa() which hashes any address
2494 * to a specific index(in a hash) it belongs to. This then uses a
2495 * per_cpu() macro to access an array with generated index.
2496 *
2497 * An example:
2498 *
2499 *  CPU_1  CPU_2  CPU_0
2500 *    |      |      |
2501 *    V      V      V
2502 * 0     10     20     30     40     50     60
2503 * |------|------|------|------|------|------|...<vmap address space>
2504 *   CPU0   CPU1   CPU2   CPU0   CPU1   CPU2
2505 *
2506 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
2507 *   it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
2508 *
2509 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
2510 *   it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
2511 *
2512 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
2513 *   it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
2514 *
2515 * This technique almost always avoids lock contention on insert/remove,
2516 * however xarray spinlocks protect against any contention that remains.
2517 */
2518static struct xarray *
2519addr_to_vb_xa(unsigned long addr)
2520{
2521	int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus();
2522
2523	return &per_cpu(vmap_block_queue, index).vmap_blocks;
2524}
2525
2526/*
2527 * We should probably have a fallback mechanism to allocate virtual memory
2528 * out of partially filled vmap blocks. However vmap block sizing should be
2529 * fairly reasonable according to the vmalloc size, so it shouldn't be a
2530 * big problem.
2531 */
2532
2533static unsigned long addr_to_vb_idx(unsigned long addr)
2534{
2535	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2536	addr /= VMAP_BLOCK_SIZE;
2537	return addr;
2538}
2539
2540static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2541{
2542	unsigned long addr;
2543
2544	addr = va_start + (pages_off << PAGE_SHIFT);
2545	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2546	return (void *)addr;
2547}
2548
2549/**
2550 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2551 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
2552 * @order:    how many 2^order pages should be occupied in newly allocated block
2553 * @gfp_mask: flags for the page level allocator
2554 *
2555 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2556 */
2557static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2558{
2559	struct vmap_block_queue *vbq;
2560	struct vmap_block *vb;
2561	struct vmap_area *va;
2562	struct xarray *xa;
2563	unsigned long vb_idx;
2564	int node, err;
2565	void *vaddr;
2566
2567	node = numa_node_id();
2568
2569	vb = kmalloc_node(sizeof(struct vmap_block),
2570			gfp_mask & GFP_RECLAIM_MASK, node);
2571	if (unlikely(!vb))
2572		return ERR_PTR(-ENOMEM);
2573
2574	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2575					VMALLOC_START, VMALLOC_END,
2576					node, gfp_mask,
2577					VMAP_RAM|VMAP_BLOCK);
2578	if (IS_ERR(va)) {
2579		kfree(vb);
2580		return ERR_CAST(va);
2581	}
2582
 
 
 
 
 
 
 
2583	vaddr = vmap_block_vaddr(va->va_start, 0);
2584	spin_lock_init(&vb->lock);
2585	vb->va = va;
2586	/* At least something should be left free */
2587	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2588	bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2589	vb->free = VMAP_BBMAP_BITS - (1UL << order);
2590	vb->dirty = 0;
2591	vb->dirty_min = VMAP_BBMAP_BITS;
2592	vb->dirty_max = 0;
2593	bitmap_set(vb->used_map, 0, (1UL << order));
2594	INIT_LIST_HEAD(&vb->free_list);
2595
2596	xa = addr_to_vb_xa(va->va_start);
2597	vb_idx = addr_to_vb_idx(va->va_start);
2598	err = xa_insert(xa, vb_idx, vb, gfp_mask);
2599	if (err) {
2600		kfree(vb);
2601		free_vmap_area(va);
2602		return ERR_PTR(err);
2603	}
2604
2605	vbq = raw_cpu_ptr(&vmap_block_queue);
2606	spin_lock(&vbq->lock);
2607	list_add_tail_rcu(&vb->free_list, &vbq->free);
2608	spin_unlock(&vbq->lock);
 
2609
2610	return vaddr;
2611}
2612
2613static void free_vmap_block(struct vmap_block *vb)
2614{
2615	struct vmap_node *vn;
2616	struct vmap_block *tmp;
2617	struct xarray *xa;
2618
2619	xa = addr_to_vb_xa(vb->va->va_start);
2620	tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
 
 
2621	BUG_ON(tmp != vb);
2622
2623	vn = addr_to_node(vb->va->va_start);
2624	spin_lock(&vn->busy.lock);
2625	unlink_va(vb->va, &vn->busy.root);
2626	spin_unlock(&vn->busy.lock);
2627
2628	free_vmap_area_noflush(vb->va);
2629	kfree_rcu(vb, rcu_head);
2630}
2631
2632static bool purge_fragmented_block(struct vmap_block *vb,
2633		struct vmap_block_queue *vbq, struct list_head *purge_list,
2634		bool force_purge)
2635{
2636	if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2637	    vb->dirty == VMAP_BBMAP_BITS)
2638		return false;
2639
2640	/* Don't overeagerly purge usable blocks unless requested */
2641	if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2642		return false;
2643
2644	/* prevent further allocs after releasing lock */
2645	WRITE_ONCE(vb->free, 0);
2646	/* prevent purging it again */
2647	WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2648	vb->dirty_min = 0;
2649	vb->dirty_max = VMAP_BBMAP_BITS;
2650	spin_lock(&vbq->lock);
2651	list_del_rcu(&vb->free_list);
2652	spin_unlock(&vbq->lock);
2653	list_add_tail(&vb->purge, purge_list);
2654	return true;
2655}
2656
2657static void free_purged_blocks(struct list_head *purge_list)
2658{
2659	struct vmap_block *vb, *n_vb;
2660
2661	list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2662		list_del(&vb->purge);
2663		free_vmap_block(vb);
2664	}
2665}
2666
2667static void purge_fragmented_blocks(int cpu)
2668{
2669	LIST_HEAD(purge);
2670	struct vmap_block *vb;
 
2671	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2672
2673	rcu_read_lock();
2674	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2675		unsigned long free = READ_ONCE(vb->free);
2676		unsigned long dirty = READ_ONCE(vb->dirty);
2677
2678		if (free + dirty != VMAP_BBMAP_BITS ||
2679		    dirty == VMAP_BBMAP_BITS)
2680			continue;
2681
2682		spin_lock(&vb->lock);
2683		purge_fragmented_block(vb, vbq, &purge, true);
2684		spin_unlock(&vb->lock);
 
 
 
 
 
 
 
 
 
 
2685	}
2686	rcu_read_unlock();
2687	free_purged_blocks(&purge);
 
 
 
 
2688}
2689
2690static void purge_fragmented_blocks_allcpus(void)
2691{
2692	int cpu;
2693
2694	for_each_possible_cpu(cpu)
2695		purge_fragmented_blocks(cpu);
2696}
2697
2698static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2699{
2700	struct vmap_block_queue *vbq;
2701	struct vmap_block *vb;
2702	void *vaddr = NULL;
2703	unsigned int order;
2704
2705	BUG_ON(offset_in_page(size));
2706	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2707	if (WARN_ON(size == 0)) {
2708		/*
2709		 * Allocating 0 bytes isn't what caller wants since
2710		 * get_order(0) returns funny result. Just warn and terminate
2711		 * early.
2712		 */
2713		return ERR_PTR(-EINVAL);
2714	}
2715	order = get_order(size);
2716
2717	rcu_read_lock();
2718	vbq = raw_cpu_ptr(&vmap_block_queue);
2719	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2720		unsigned long pages_off;
2721
2722		if (READ_ONCE(vb->free) < (1UL << order))
2723			continue;
2724
2725		spin_lock(&vb->lock);
2726		if (vb->free < (1UL << order)) {
2727			spin_unlock(&vb->lock);
2728			continue;
2729		}
2730
2731		pages_off = VMAP_BBMAP_BITS - vb->free;
2732		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2733		WRITE_ONCE(vb->free, vb->free - (1UL << order));
2734		bitmap_set(vb->used_map, pages_off, (1UL << order));
2735		if (vb->free == 0) {
2736			spin_lock(&vbq->lock);
2737			list_del_rcu(&vb->free_list);
2738			spin_unlock(&vbq->lock);
2739		}
2740
2741		spin_unlock(&vb->lock);
2742		break;
2743	}
2744
 
2745	rcu_read_unlock();
2746
2747	/* Allocate new block if nothing was found */
2748	if (!vaddr)
2749		vaddr = new_vmap_block(order, gfp_mask);
2750
2751	return vaddr;
2752}
2753
2754static void vb_free(unsigned long addr, unsigned long size)
2755{
2756	unsigned long offset;
 
2757	unsigned int order;
2758	struct vmap_block *vb;
2759	struct xarray *xa;
2760
2761	BUG_ON(offset_in_page(size));
2762	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2763
2764	flush_cache_vunmap(addr, addr + size);
2765
2766	order = get_order(size);
2767	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2768
2769	xa = addr_to_vb_xa(addr);
2770	vb = xa_load(xa, addr_to_vb_idx(addr));
2771
2772	spin_lock(&vb->lock);
2773	bitmap_clear(vb->used_map, offset, (1UL << order));
2774	spin_unlock(&vb->lock);
 
 
2775
2776	vunmap_range_noflush(addr, addr + size);
2777
2778	if (debug_pagealloc_enabled_static())
2779		flush_tlb_kernel_range(addr, addr + size);
 
2780
2781	spin_lock(&vb->lock);
2782
2783	/* Expand the not yet TLB flushed dirty range */
2784	vb->dirty_min = min(vb->dirty_min, offset);
2785	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2786
2787	WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2788	if (vb->dirty == VMAP_BBMAP_BITS) {
2789		BUG_ON(vb->free);
2790		spin_unlock(&vb->lock);
2791		free_vmap_block(vb);
2792	} else
2793		spin_unlock(&vb->lock);
2794}
2795
2796static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2797{
2798	LIST_HEAD(purge_list);
2799	int cpu;
2800
2801	if (unlikely(!vmap_initialized))
2802		return;
2803
2804	mutex_lock(&vmap_purge_lock);
2805
2806	for_each_possible_cpu(cpu) {
2807		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2808		struct vmap_block *vb;
2809		unsigned long idx;
2810
2811		rcu_read_lock();
2812		xa_for_each(&vbq->vmap_blocks, idx, vb) {
2813			spin_lock(&vb->lock);
2814
2815			/*
2816			 * Try to purge a fragmented block first. If it's
2817			 * not purgeable, check whether there is dirty
2818			 * space to be flushed.
2819			 */
2820			if (!purge_fragmented_block(vb, vbq, &purge_list, false) &&
2821			    vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2822				unsigned long va_start = vb->va->va_start;
2823				unsigned long s, e;
2824
2825				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2826				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2827
2828				start = min(s, start);
2829				end   = max(e, end);
2830
2831				/* Prevent that this is flushed again */
2832				vb->dirty_min = VMAP_BBMAP_BITS;
2833				vb->dirty_max = 0;
2834
2835				flush = 1;
2836			}
2837			spin_unlock(&vb->lock);
2838		}
2839		rcu_read_unlock();
2840	}
2841	free_purged_blocks(&purge_list);
2842
2843	if (!__purge_vmap_area_lazy(start, end, false) && flush)
 
 
2844		flush_tlb_kernel_range(start, end);
2845	mutex_unlock(&vmap_purge_lock);
2846}
2847
2848/**
2849 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2850 *
2851 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2852 * to amortize TLB flushing overheads. What this means is that any page you
2853 * have now, may, in a former life, have been mapped into kernel virtual
2854 * address by the vmap layer and so there might be some CPUs with TLB entries
2855 * still referencing that page (additional to the regular 1:1 kernel mapping).
2856 *
2857 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2858 * be sure that none of the pages we have control over will have any aliases
2859 * from the vmap layer.
2860 */
2861void vm_unmap_aliases(void)
2862{
2863	unsigned long start = ULONG_MAX, end = 0;
2864	int flush = 0;
2865
2866	_vm_unmap_aliases(start, end, flush);
2867}
2868EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2869
2870/**
2871 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2872 * @mem: the pointer returned by vm_map_ram
2873 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2874 */
2875void vm_unmap_ram(const void *mem, unsigned int count)
2876{
2877	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2878	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2879	struct vmap_area *va;
2880
2881	might_sleep();
2882	BUG_ON(!addr);
2883	BUG_ON(addr < VMALLOC_START);
2884	BUG_ON(addr > VMALLOC_END);
2885	BUG_ON(!PAGE_ALIGNED(addr));
2886
2887	kasan_poison_vmalloc(mem, size);
2888
2889	if (likely(count <= VMAP_MAX_ALLOC)) {
2890		debug_check_no_locks_freed(mem, size);
2891		vb_free(addr, size);
2892		return;
2893	}
2894
2895	va = find_unlink_vmap_area(addr);
2896	if (WARN_ON_ONCE(!va))
2897		return;
2898
2899	debug_check_no_locks_freed((void *)va->va_start,
2900				    (va->va_end - va->va_start));
2901	free_unmap_vmap_area(va);
2902}
2903EXPORT_SYMBOL(vm_unmap_ram);
2904
2905/**
2906 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2907 * @pages: an array of pointers to the pages to be mapped
2908 * @count: number of pages
2909 * @node: prefer to allocate data structures on this node
 
2910 *
2911 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2912 * faster than vmap so it's good.  But if you mix long-life and short-life
2913 * objects with vm_map_ram(), it could consume lots of address space through
2914 * fragmentation (especially on a 32bit machine).  You could see failures in
2915 * the end.  Please use this function for short-lived objects.
2916 *
2917 * Returns: a pointer to the address that has been mapped, or %NULL on failure
2918 */
2919void *vm_map_ram(struct page **pages, unsigned int count, int node)
2920{
2921	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2922	unsigned long addr;
2923	void *mem;
2924
2925	if (likely(count <= VMAP_MAX_ALLOC)) {
2926		mem = vb_alloc(size, GFP_KERNEL);
2927		if (IS_ERR(mem))
2928			return NULL;
2929		addr = (unsigned long)mem;
2930	} else {
2931		struct vmap_area *va;
2932		va = alloc_vmap_area(size, PAGE_SIZE,
2933				VMALLOC_START, VMALLOC_END,
2934				node, GFP_KERNEL, VMAP_RAM);
2935		if (IS_ERR(va))
2936			return NULL;
2937
2938		addr = va->va_start;
2939		mem = (void *)addr;
2940	}
2941
2942	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2943				pages, PAGE_SHIFT) < 0) {
2944		vm_unmap_ram(mem, count);
2945		return NULL;
2946	}
2947
2948	/*
2949	 * Mark the pages as accessible, now that they are mapped.
2950	 * With hardware tag-based KASAN, marking is skipped for
2951	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2952	 */
2953	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2954
2955	return mem;
2956}
2957EXPORT_SYMBOL(vm_map_ram);
2958
2959static struct vm_struct *vmlist __initdata;
2960
2961static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2962{
2963#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2964	return vm->page_order;
2965#else
2966	return 0;
2967#endif
2968}
2969
2970static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2971{
2972#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2973	vm->page_order = order;
2974#else
2975	BUG_ON(order != 0);
2976#endif
2977}
2978
2979/**
2980 * vm_area_add_early - add vmap area early during boot
2981 * @vm: vm_struct to add
2982 *
2983 * This function is used to add fixed kernel vm area to vmlist before
2984 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2985 * should contain proper values and the other fields should be zero.
2986 *
2987 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2988 */
2989void __init vm_area_add_early(struct vm_struct *vm)
2990{
2991	struct vm_struct *tmp, **p;
2992
2993	BUG_ON(vmap_initialized);
2994	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2995		if (tmp->addr >= vm->addr) {
2996			BUG_ON(tmp->addr < vm->addr + vm->size);
2997			break;
2998		} else
2999			BUG_ON(tmp->addr + tmp->size > vm->addr);
3000	}
3001	vm->next = *p;
3002	*p = vm;
3003}
3004
3005/**
3006 * vm_area_register_early - register vmap area early during boot
3007 * @vm: vm_struct to register
3008 * @align: requested alignment
3009 *
3010 * This function is used to register kernel vm area before
3011 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
3012 * proper values on entry and other fields should be zero.  On return,
3013 * vm->addr contains the allocated address.
3014 *
3015 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3016 */
3017void __init vm_area_register_early(struct vm_struct *vm, size_t align)
3018{
3019	unsigned long addr = ALIGN(VMALLOC_START, align);
3020	struct vm_struct *cur, **p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3021
3022	BUG_ON(vmap_initialized);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3023
3024	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
3025		if ((unsigned long)cur->addr - addr >= vm->size)
3026			break;
3027		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
3028	}
3029
3030	BUG_ON(addr > VMALLOC_END - vm->size);
3031	vm->addr = (void *)addr;
3032	vm->next = *p;
3033	*p = vm;
3034	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3035}
 
3036
3037static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
3038	struct vmap_area *va, unsigned long flags, const void *caller)
3039{
 
3040	vm->flags = flags;
3041	vm->addr = (void *)va->va_start;
3042	vm->size = va->va_end - va->va_start;
3043	vm->caller = caller;
3044	va->vm = vm;
3045}
3046
3047static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
3048			      unsigned long flags, const void *caller)
3049{
3050	struct vmap_node *vn = addr_to_node(va->va_start);
3051
3052	spin_lock(&vn->busy.lock);
3053	setup_vmalloc_vm_locked(vm, va, flags, caller);
3054	spin_unlock(&vn->busy.lock);
3055}
3056
3057static void clear_vm_uninitialized_flag(struct vm_struct *vm)
3058{
3059	/*
3060	 * Before removing VM_UNINITIALIZED,
3061	 * we should make sure that vm has proper values.
3062	 * Pair with smp_rmb() in show_numa_info().
3063	 */
3064	smp_wmb();
3065	vm->flags &= ~VM_UNINITIALIZED;
3066}
3067
3068static struct vm_struct *__get_vm_area_node(unsigned long size,
3069		unsigned long align, unsigned long shift, unsigned long flags,
3070		unsigned long start, unsigned long end, int node,
3071		gfp_t gfp_mask, const void *caller)
3072{
3073	struct vmap_area *va;
3074	struct vm_struct *area;
3075	unsigned long requested_size = size;
3076
3077	BUG_ON(in_interrupt());
3078	size = ALIGN(size, 1ul << shift);
3079	if (unlikely(!size))
3080		return NULL;
3081
3082	if (flags & VM_IOREMAP)
3083		align = 1ul << clamp_t(int, get_count_order_long(size),
3084				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
3085
3086	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
3087	if (unlikely(!area))
3088		return NULL;
3089
3090	if (!(flags & VM_NO_GUARD))
3091		size += PAGE_SIZE;
3092
3093	va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0);
3094	if (IS_ERR(va)) {
3095		kfree(area);
3096		return NULL;
3097	}
3098
3099	setup_vmalloc_vm(area, va, flags, caller);
3100
3101	/*
3102	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
3103	 * best-effort approach, as they can be mapped outside of vmalloc code.
3104	 * For VM_ALLOC mappings, the pages are marked as accessible after
3105	 * getting mapped in __vmalloc_node_range().
3106	 * With hardware tag-based KASAN, marking is skipped for
3107	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3108	 */
3109	if (!(flags & VM_ALLOC))
3110		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
3111						    KASAN_VMALLOC_PROT_NORMAL);
3112
3113	return area;
 
 
 
 
3114}
 
3115
3116struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
3117				       unsigned long start, unsigned long end,
3118				       const void *caller)
3119{
3120	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
3121				  NUMA_NO_NODE, GFP_KERNEL, caller);
3122}
3123
3124/**
3125 * get_vm_area - reserve a contiguous kernel virtual area
3126 * @size:	 size of the area
3127 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
3128 *
3129 * Search an area of @size in the kernel virtual mapping area,
3130 * and reserved it for out purposes.  Returns the area descriptor
3131 * on success or %NULL on failure.
3132 *
3133 * Return: the area descriptor on success or %NULL on failure.
3134 */
3135struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
3136{
3137	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3138				  VMALLOC_START, VMALLOC_END,
3139				  NUMA_NO_NODE, GFP_KERNEL,
3140				  __builtin_return_address(0));
3141}
3142
3143struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
3144				const void *caller)
3145{
3146	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3147				  VMALLOC_START, VMALLOC_END,
3148				  NUMA_NO_NODE, GFP_KERNEL, caller);
3149}
3150
3151/**
3152 * find_vm_area - find a continuous kernel virtual area
3153 * @addr:	  base address
3154 *
3155 * Search for the kernel VM area starting at @addr, and return it.
3156 * It is up to the caller to do all required locking to keep the returned
3157 * pointer valid.
3158 *
3159 * Return: the area descriptor on success or %NULL on failure.
3160 */
3161struct vm_struct *find_vm_area(const void *addr)
3162{
3163	struct vmap_area *va;
3164
3165	va = find_vmap_area((unsigned long)addr);
3166	if (!va)
3167		return NULL;
3168
3169	return va->vm;
3170}
3171
3172/**
3173 * remove_vm_area - find and remove a continuous kernel virtual area
3174 * @addr:	    base address
3175 *
3176 * Search for the kernel VM area starting at @addr, and remove it.
3177 * This function returns the found VM area, but using it is NOT safe
3178 * on SMP machines, except for its size or flags.
3179 *
3180 * Return: the area descriptor on success or %NULL on failure.
3181 */
3182struct vm_struct *remove_vm_area(const void *addr)
3183{
3184	struct vmap_area *va;
3185	struct vm_struct *vm;
3186
3187	might_sleep();
3188
3189	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
3190			addr))
3191		return NULL;
 
 
 
 
3192
3193	va = find_unlink_vmap_area((unsigned long)addr);
3194	if (!va || !va->vm)
3195		return NULL;
3196	vm = va->vm;
3197
3198	debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
3199	debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
3200	kasan_free_module_shadow(vm);
3201	kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
3202
3203	free_unmap_vmap_area(va);
3204	return vm;
3205}
3206
3207static inline void set_area_direct_map(const struct vm_struct *area,
3208				       int (*set_direct_map)(struct page *page))
3209{
3210	int i;
3211
3212	/* HUGE_VMALLOC passes small pages to set_direct_map */
3213	for (i = 0; i < area->nr_pages; i++)
3214		if (page_address(area->pages[i]))
3215			set_direct_map(area->pages[i]);
3216}
3217
3218/*
3219 * Flush the vm mapping and reset the direct map.
3220 */
3221static void vm_reset_perms(struct vm_struct *area)
3222{
3223	unsigned long start = ULONG_MAX, end = 0;
3224	unsigned int page_order = vm_area_page_order(area);
3225	int flush_dmap = 0;
3226	int i;
3227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3228	/*
3229	 * Find the start and end range of the direct mappings to make sure that
 
3230	 * the vm_unmap_aliases() flush includes the direct map.
3231	 */
3232	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
3233		unsigned long addr = (unsigned long)page_address(area->pages[i]);
3234
3235		if (addr) {
3236			unsigned long page_size;
3237
3238			page_size = PAGE_SIZE << page_order;
3239			start = min(addr, start);
3240			end = max(addr + page_size, end);
3241			flush_dmap = 1;
3242		}
3243	}
3244
3245	/*
3246	 * Set direct map to something invalid so that it won't be cached if
3247	 * there are any accesses after the TLB flush, then flush the TLB and
3248	 * reset the direct map permissions to the default.
3249	 */
3250	set_area_direct_map(area, set_direct_map_invalid_noflush);
3251	_vm_unmap_aliases(start, end, flush_dmap);
3252	set_area_direct_map(area, set_direct_map_default_noflush);
3253}
3254
3255static void delayed_vfree_work(struct work_struct *w)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3256{
3257	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
3258	struct llist_node *t, *llnode;
 
 
 
 
 
3259
3260	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
3261		vfree(llnode);
3262}
3263
3264/**
3265 * vfree_atomic - release memory allocated by vmalloc()
3266 * @addr:	  memory base address
3267 *
3268 * This one is just like vfree() but can be called in any atomic context
3269 * except NMIs.
3270 */
3271void vfree_atomic(const void *addr)
3272{
3273	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
3274
3275	BUG_ON(in_nmi());
3276	kmemleak_free(addr);
3277
3278	/*
3279	 * Use raw_cpu_ptr() because this can be called from preemptible
3280	 * context. Preemption is absolutely fine here, because the llist_add()
3281	 * implementation is lockless, so it works even if we are adding to
3282	 * another cpu's list. schedule_work() should be fine with this too.
3283	 */
3284	if (addr && llist_add((struct llist_node *)addr, &p->list))
3285		schedule_work(&p->wq);
 
 
 
3286}
3287
3288/**
3289 * vfree - Release memory allocated by vmalloc()
3290 * @addr:  Memory base address
3291 *
3292 * Free the virtually continuous memory area starting at @addr, as obtained
3293 * from one of the vmalloc() family of APIs.  This will usually also free the
3294 * physical memory underlying the virtual allocation, but that memory is
3295 * reference counted, so it will not be freed until the last user goes away.
3296 *
3297 * If @addr is NULL, no operation is performed.
 
 
3298 *
3299 * Context:
3300 * May sleep if called *not* from interrupt context.
3301 * Must not be called in NMI context (strictly speaking, it could be
3302 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
3303 * conventions for vfree() arch-dependent would be a really bad idea).
3304 */
3305void vfree(const void *addr)
3306{
3307	struct vm_struct *vm;
3308	int i;
3309
3310	if (unlikely(in_interrupt())) {
3311		vfree_atomic(addr);
3312		return;
3313	}
3314
3315	BUG_ON(in_nmi());
3316	kmemleak_free(addr);
3317	might_sleep();
3318
3319	if (!addr)
3320		return;
3321
3322	vm = remove_vm_area(addr);
3323	if (unlikely(!vm)) {
3324		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
3325				addr);
3326		return;
3327	}
3328
3329	if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
3330		vm_reset_perms(vm);
3331	for (i = 0; i < vm->nr_pages; i++) {
3332		struct page *page = vm->pages[i];
3333
3334		BUG_ON(!page);
3335		mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
3336		/*
3337		 * High-order allocs for huge vmallocs are split, so
3338		 * can be freed as an array of order-0 allocations
3339		 */
3340		__free_page(page);
3341		cond_resched();
3342	}
3343	atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
3344	kvfree(vm->pages);
3345	kfree(vm);
3346}
3347EXPORT_SYMBOL(vfree);
3348
3349/**
3350 * vunmap - release virtual mapping obtained by vmap()
3351 * @addr:   memory base address
3352 *
3353 * Free the virtually contiguous memory area starting at @addr,
3354 * which was created from the page array passed to vmap().
3355 *
3356 * Must not be called in interrupt context.
3357 */
3358void vunmap(const void *addr)
3359{
3360	struct vm_struct *vm;
3361
3362	BUG_ON(in_interrupt());
3363	might_sleep();
3364
3365	if (!addr)
3366		return;
3367	vm = remove_vm_area(addr);
3368	if (unlikely(!vm)) {
3369		WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
3370				addr);
3371		return;
3372	}
3373	kfree(vm);
3374}
3375EXPORT_SYMBOL(vunmap);
3376
3377/**
3378 * vmap - map an array of pages into virtually contiguous space
3379 * @pages: array of page pointers
3380 * @count: number of pages to map
3381 * @flags: vm_area->flags
3382 * @prot: page protection for the mapping
3383 *
3384 * Maps @count pages from @pages into contiguous kernel virtual space.
3385 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
3386 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
3387 * are transferred from the caller to vmap(), and will be freed / dropped when
3388 * vfree() is called on the return value.
3389 *
3390 * Return: the address of the area or %NULL on failure
3391 */
3392void *vmap(struct page **pages, unsigned int count,
3393	   unsigned long flags, pgprot_t prot)
3394{
3395	struct vm_struct *area;
3396	unsigned long addr;
3397	unsigned long size;		/* In bytes */
3398
3399	might_sleep();
3400
3401	if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
3402		return NULL;
3403
3404	/*
3405	 * Your top guard is someone else's bottom guard. Not having a top
3406	 * guard compromises someone else's mappings too.
3407	 */
3408	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
3409		flags &= ~VM_NO_GUARD;
3410
3411	if (count > totalram_pages())
3412		return NULL;
3413
3414	size = (unsigned long)count << PAGE_SHIFT;
3415	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
3416	if (!area)
3417		return NULL;
3418
3419	addr = (unsigned long)area->addr;
3420	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
3421				pages, PAGE_SHIFT) < 0) {
3422		vunmap(area->addr);
3423		return NULL;
3424	}
3425
3426	if (flags & VM_MAP_PUT_PAGES) {
3427		area->pages = pages;
3428		area->nr_pages = count;
3429	}
3430	return area->addr;
3431}
3432EXPORT_SYMBOL(vmap);
3433
3434#ifdef CONFIG_VMAP_PFN
3435struct vmap_pfn_data {
3436	unsigned long	*pfns;
3437	pgprot_t	prot;
3438	unsigned int	idx;
3439};
3440
3441static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
3442{
3443	struct vmap_pfn_data *data = private;
3444	unsigned long pfn = data->pfns[data->idx];
3445	pte_t ptent;
3446
3447	if (WARN_ON_ONCE(pfn_valid(pfn)))
3448		return -EINVAL;
3449
3450	ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
3451	set_pte_at(&init_mm, addr, pte, ptent);
3452
3453	data->idx++;
3454	return 0;
3455}
3456
3457/**
3458 * vmap_pfn - map an array of PFNs into virtually contiguous space
3459 * @pfns: array of PFNs
3460 * @count: number of pages to map
3461 * @prot: page protection for the mapping
3462 *
3463 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
3464 * the start address of the mapping.
3465 */
3466void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
3467{
3468	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
3469	struct vm_struct *area;
3470
3471	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
3472			__builtin_return_address(0));
3473	if (!area)
3474		return NULL;
3475	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3476			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
3477		free_vm_area(area);
3478		return NULL;
3479	}
3480
3481	flush_cache_vmap((unsigned long)area->addr,
3482			 (unsigned long)area->addr + count * PAGE_SIZE);
3483
3484	return area->addr;
3485}
3486EXPORT_SYMBOL_GPL(vmap_pfn);
3487#endif /* CONFIG_VMAP_PFN */
3488
3489static inline unsigned int
3490vm_area_alloc_pages(gfp_t gfp, int nid,
3491		unsigned int order, unsigned int nr_pages, struct page **pages)
3492{
3493	unsigned int nr_allocated = 0;
3494	gfp_t alloc_gfp = gfp;
3495	bool nofail = false;
3496	struct page *page;
3497	int i;
3498
3499	/*
3500	 * For order-0 pages we make use of bulk allocator, if
3501	 * the page array is partly or not at all populated due
3502	 * to fails, fallback to a single page allocator that is
3503	 * more permissive.
3504	 */
3505	if (!order) {
3506		/* bulk allocator doesn't support nofail req. officially */
3507		gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
3508
3509		while (nr_allocated < nr_pages) {
3510			unsigned int nr, nr_pages_request;
3511
3512			/*
3513			 * A maximum allowed request is hard-coded and is 100
3514			 * pages per call. That is done in order to prevent a
3515			 * long preemption off scenario in the bulk-allocator
3516			 * so the range is [1:100].
3517			 */
3518			nr_pages_request = min(100U, nr_pages - nr_allocated);
3519
3520			/* memory allocation should consider mempolicy, we can't
3521			 * wrongly use nearest node when nid == NUMA_NO_NODE,
3522			 * otherwise memory may be allocated in only one node,
3523			 * but mempolicy wants to alloc memory by interleaving.
3524			 */
3525			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3526				nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
3527							nr_pages_request,
3528							pages + nr_allocated);
3529
3530			else
3531				nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
3532							nr_pages_request,
3533							pages + nr_allocated);
3534
3535			nr_allocated += nr;
3536			cond_resched();
3537
3538			/*
3539			 * If zero or pages were obtained partly,
3540			 * fallback to a single page allocator.
3541			 */
3542			if (nr != nr_pages_request)
3543				break;
3544		}
3545	} else if (gfp & __GFP_NOFAIL) {
3546		/*
3547		 * Higher order nofail allocations are really expensive and
3548		 * potentially dangerous (pre-mature OOM, disruptive reclaim
3549		 * and compaction etc.
3550		 */
3551		alloc_gfp &= ~__GFP_NOFAIL;
3552		nofail = true;
3553	}
3554
3555	/* High-order pages or fallback path if "bulk" fails. */
3556	while (nr_allocated < nr_pages) {
3557		if (fatal_signal_pending(current))
3558			break;
3559
3560		if (nid == NUMA_NO_NODE)
3561			page = alloc_pages(alloc_gfp, order);
3562		else
3563			page = alloc_pages_node(nid, alloc_gfp, order);
3564		if (unlikely(!page)) {
3565			if (!nofail)
3566				break;
3567
3568			/* fall back to the zero order allocations */
3569			alloc_gfp |= __GFP_NOFAIL;
3570			order = 0;
3571			continue;
3572		}
3573
3574		/*
3575		 * Higher order allocations must be able to be treated as
3576		 * indepdenent small pages by callers (as they can with
3577		 * small-page vmallocs). Some drivers do their own refcounting
3578		 * on vmalloc_to_page() pages, some use page->mapping,
3579		 * page->lru, etc.
3580		 */
3581		if (order)
3582			split_page(page, order);
3583
3584		/*
3585		 * Careful, we allocate and map page-order pages, but
3586		 * tracking is done per PAGE_SIZE page so as to keep the
3587		 * vm_struct APIs independent of the physical/mapped size.
3588		 */
3589		for (i = 0; i < (1U << order); i++)
3590			pages[nr_allocated + i] = page + i;
3591
3592		cond_resched();
3593		nr_allocated += 1U << order;
3594	}
3595
3596	return nr_allocated;
3597}
3598
3599static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3600				 pgprot_t prot, unsigned int page_shift,
3601				 int node)
3602{
 
 
3603	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3604	bool nofail = gfp_mask & __GFP_NOFAIL;
3605	unsigned long addr = (unsigned long)area->addr;
3606	unsigned long size = get_vm_area_size(area);
3607	unsigned long array_size;
3608	unsigned int nr_small_pages = size >> PAGE_SHIFT;
3609	unsigned int page_order;
3610	unsigned int flags;
3611	int ret;
3612
3613	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3614
3615	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3616		gfp_mask |= __GFP_HIGHMEM;
3617
3618	/* Please note that the recursion is strictly bounded. */
3619	if (array_size > PAGE_SIZE) {
3620		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3621					area->caller);
3622	} else {
3623		area->pages = kmalloc_node(array_size, nested_gfp, node);
3624	}
3625
3626	if (!area->pages) {
3627		warn_alloc(gfp_mask, NULL,
3628			"vmalloc error: size %lu, failed to allocated page array size %lu",
3629			nr_small_pages * PAGE_SIZE, array_size);
3630		free_vm_area(area);
3631		return NULL;
3632	}
3633
3634	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3635	page_order = vm_area_page_order(area);
3636
3637	area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3638		node, page_order, nr_small_pages, area->pages);
3639
3640	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3641	if (gfp_mask & __GFP_ACCOUNT) {
3642		int i;
 
3643
3644		for (i = 0; i < area->nr_pages; i++)
3645			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
 
 
 
 
 
 
 
3646	}
 
3647
3648	/*
3649	 * If not enough pages were obtained to accomplish an
3650	 * allocation request, free them via vfree() if any.
3651	 */
3652	if (area->nr_pages != nr_small_pages) {
3653		/*
3654		 * vm_area_alloc_pages() can fail due to insufficient memory but
3655		 * also:-
3656		 *
3657		 * - a pending fatal signal
3658		 * - insufficient huge page-order pages
3659		 *
3660		 * Since we always retry allocations at order-0 in the huge page
3661		 * case a warning for either is spurious.
3662		 */
3663		if (!fatal_signal_pending(current) && page_order == 0)
3664			warn_alloc(gfp_mask, NULL,
3665				"vmalloc error: size %lu, failed to allocate pages",
3666				area->nr_pages * PAGE_SIZE);
3667		goto fail;
3668	}
3669
3670	/*
3671	 * page tables allocations ignore external gfp mask, enforce it
3672	 * by the scope API
3673	 */
3674	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3675		flags = memalloc_nofs_save();
3676	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3677		flags = memalloc_noio_save();
3678
3679	do {
3680		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3681			page_shift);
3682		if (nofail && (ret < 0))
3683			schedule_timeout_uninterruptible(1);
3684	} while (nofail && (ret < 0));
3685
3686	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3687		memalloc_nofs_restore(flags);
3688	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3689		memalloc_noio_restore(flags);
3690
3691	if (ret < 0) {
3692		warn_alloc(gfp_mask, NULL,
3693			"vmalloc error: size %lu, failed to map pages",
3694			area->nr_pages * PAGE_SIZE);
3695		goto fail;
3696	}
3697
3698	return area->addr;
3699
3700fail:
3701	vfree(area->addr);
 
 
 
3702	return NULL;
3703}
3704
3705/**
3706 * __vmalloc_node_range - allocate virtually contiguous memory
3707 * @size:		  allocation size
3708 * @align:		  desired alignment
3709 * @start:		  vm area range start
3710 * @end:		  vm area range end
3711 * @gfp_mask:		  flags for the page level allocator
3712 * @prot:		  protection mask for the allocated pages
3713 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3714 * @node:		  node to use for allocation or NUMA_NO_NODE
3715 * @caller:		  caller's return address
3716 *
3717 * Allocate enough pages to cover @size from the page level
3718 * allocator with @gfp_mask flags. Please note that the full set of gfp
3719 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3720 * supported.
3721 * Zone modifiers are not supported. From the reclaim modifiers
3722 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3723 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3724 * __GFP_RETRY_MAYFAIL are not supported).
3725 *
3726 * __GFP_NOWARN can be used to suppress failures messages.
3727 *
3728 * Map them into contiguous kernel virtual space, using a pagetable
3729 * protection of @prot.
3730 *
3731 * Return: the address of the area or %NULL on failure
3732 */
3733void *__vmalloc_node_range(unsigned long size, unsigned long align,
3734			unsigned long start, unsigned long end, gfp_t gfp_mask,
3735			pgprot_t prot, unsigned long vm_flags, int node,
3736			const void *caller)
3737{
3738	struct vm_struct *area;
3739	void *ret;
3740	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3741	unsigned long real_size = size;
3742	unsigned long real_align = align;
3743	unsigned int shift = PAGE_SHIFT;
3744
3745	if (WARN_ON_ONCE(!size))
3746		return NULL;
3747
3748	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3749		warn_alloc(gfp_mask, NULL,
3750			"vmalloc error: size %lu, exceeds total pages",
3751			real_size);
3752		return NULL;
3753	}
3754
3755	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3756		unsigned long size_per_node;
3757
3758		/*
3759		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3760		 * others like modules don't yet expect huge pages in
3761		 * their allocations due to apply_to_page_range not
3762		 * supporting them.
3763		 */
3764
3765		size_per_node = size;
3766		if (node == NUMA_NO_NODE)
3767			size_per_node /= num_online_nodes();
3768		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3769			shift = PMD_SHIFT;
3770		else
3771			shift = arch_vmap_pte_supported_shift(size_per_node);
3772
3773		align = max(real_align, 1UL << shift);
3774		size = ALIGN(real_size, 1UL << shift);
3775	}
3776
3777again:
3778	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3779				  VM_UNINITIALIZED | vm_flags, start, end, node,
3780				  gfp_mask, caller);
3781	if (!area) {
3782		bool nofail = gfp_mask & __GFP_NOFAIL;
3783		warn_alloc(gfp_mask, NULL,
3784			"vmalloc error: size %lu, vm_struct allocation failed%s",
3785			real_size, (nofail) ? ". Retrying." : "");
3786		if (nofail) {
3787			schedule_timeout_uninterruptible(1);
3788			goto again;
3789		}
3790		goto fail;
3791	}
3792
3793	/*
3794	 * Prepare arguments for __vmalloc_area_node() and
3795	 * kasan_unpoison_vmalloc().
3796	 */
3797	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3798		if (kasan_hw_tags_enabled()) {
3799			/*
3800			 * Modify protection bits to allow tagging.
3801			 * This must be done before mapping.
3802			 */
3803			prot = arch_vmap_pgprot_tagged(prot);
3804
3805			/*
3806			 * Skip page_alloc poisoning and zeroing for physical
3807			 * pages backing VM_ALLOC mapping. Memory is instead
3808			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3809			 */
3810			gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3811		}
3812
3813		/* Take note that the mapping is PAGE_KERNEL. */
3814		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3815	}
3816
3817	/* Allocate physical pages and map them into vmalloc space. */
3818	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3819	if (!ret)
3820		goto fail;
3821
3822	/*
3823	 * Mark the pages as accessible, now that they are mapped.
3824	 * The condition for setting KASAN_VMALLOC_INIT should complement the
3825	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3826	 * to make sure that memory is initialized under the same conditions.
3827	 * Tag-based KASAN modes only assign tags to normal non-executable
3828	 * allocations, see __kasan_unpoison_vmalloc().
3829	 */
3830	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3831	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3832	    (gfp_mask & __GFP_SKIP_ZERO))
3833		kasan_flags |= KASAN_VMALLOC_INIT;
3834	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3835	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3836
3837	/*
3838	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3839	 * flag. It means that vm_struct is not fully initialized.
3840	 * Now, it is fully initialized, so remove this flag here.
3841	 */
3842	clear_vm_uninitialized_flag(area);
3843
3844	size = PAGE_ALIGN(size);
3845	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3846		kmemleak_vmalloc(area, size, gfp_mask);
3847
3848	return area->addr;
3849
3850fail:
3851	if (shift > PAGE_SHIFT) {
3852		shift = PAGE_SHIFT;
3853		align = real_align;
3854		size = real_size;
3855		goto again;
3856	}
3857
3858	return NULL;
3859}
3860
 
 
 
 
 
 
 
 
 
3861/**
3862 * __vmalloc_node - allocate virtually contiguous memory
3863 * @size:	    allocation size
3864 * @align:	    desired alignment
3865 * @gfp_mask:	    flags for the page level allocator
 
3866 * @node:	    node to use for allocation or NUMA_NO_NODE
3867 * @caller:	    caller's return address
3868 *
3869 * Allocate enough pages to cover @size from the page level allocator with
3870 * @gfp_mask flags.  Map them into contiguous kernel virtual space.
 
3871 *
3872 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3873 * and __GFP_NOFAIL are not supported
3874 *
3875 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3876 * with mm people.
3877 *
3878 * Return: pointer to the allocated memory or %NULL on error
3879 */
3880void *__vmalloc_node(unsigned long size, unsigned long align,
3881			    gfp_t gfp_mask, int node, const void *caller)
 
3882{
3883	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3884				gfp_mask, PAGE_KERNEL, 0, node, caller);
3885}
3886/*
3887 * This is only for performance analysis of vmalloc and stress purpose.
3888 * It is required by vmalloc test module, therefore do not use it other
3889 * than that.
3890 */
3891#ifdef CONFIG_TEST_VMALLOC_MODULE
3892EXPORT_SYMBOL_GPL(__vmalloc_node);
3893#endif
3894
3895void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3896{
3897	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3898				__builtin_return_address(0));
3899}
3900EXPORT_SYMBOL(__vmalloc);
3901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3902/**
3903 * vmalloc - allocate virtually contiguous memory
3904 * @size:    allocation size
3905 *
3906 * Allocate enough pages to cover @size from the page level
3907 * allocator and map them into contiguous kernel virtual space.
3908 *
3909 * For tight control over page level allocator and protection flags
3910 * use __vmalloc() instead.
3911 *
3912 * Return: pointer to the allocated memory or %NULL on error
3913 */
3914void *vmalloc(unsigned long size)
3915{
3916	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3917				__builtin_return_address(0));
3918}
3919EXPORT_SYMBOL(vmalloc);
3920
3921/**
3922 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3923 * @size:      allocation size
3924 * @gfp_mask:  flags for the page level allocator
3925 *
3926 * Allocate enough pages to cover @size from the page level
3927 * allocator and map them into contiguous kernel virtual space.
3928 * If @size is greater than or equal to PMD_SIZE, allow using
3929 * huge pages for the memory
3930 *
3931 * Return: pointer to the allocated memory or %NULL on error
3932 */
3933void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3934{
3935	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3936				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3937				    NUMA_NO_NODE, __builtin_return_address(0));
3938}
3939EXPORT_SYMBOL_GPL(vmalloc_huge);
3940
3941/**
3942 * vzalloc - allocate virtually contiguous memory with zero fill
3943 * @size:    allocation size
3944 *
3945 * Allocate enough pages to cover @size from the page level
3946 * allocator and map them into contiguous kernel virtual space.
3947 * The memory allocated is set to zero.
3948 *
3949 * For tight control over page level allocator and protection flags
3950 * use __vmalloc() instead.
3951 *
3952 * Return: pointer to the allocated memory or %NULL on error
3953 */
3954void *vzalloc(unsigned long size)
3955{
3956	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3957				__builtin_return_address(0));
3958}
3959EXPORT_SYMBOL(vzalloc);
3960
3961/**
3962 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3963 * @size: allocation size
3964 *
3965 * The resulting memory area is zeroed so it can be mapped to userspace
3966 * without leaking data.
3967 *
3968 * Return: pointer to the allocated memory or %NULL on error
3969 */
3970void *vmalloc_user(unsigned long size)
3971{
3972	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3973				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3974				    VM_USERMAP, NUMA_NO_NODE,
3975				    __builtin_return_address(0));
3976}
3977EXPORT_SYMBOL(vmalloc_user);
3978
3979/**
3980 * vmalloc_node - allocate memory on a specific node
3981 * @size:	  allocation size
3982 * @node:	  numa node
3983 *
3984 * Allocate enough pages to cover @size from the page level
3985 * allocator and map them into contiguous kernel virtual space.
3986 *
3987 * For tight control over page level allocator and protection flags
3988 * use __vmalloc() instead.
3989 *
3990 * Return: pointer to the allocated memory or %NULL on error
3991 */
3992void *vmalloc_node(unsigned long size, int node)
3993{
3994	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3995			__builtin_return_address(0));
3996}
3997EXPORT_SYMBOL(vmalloc_node);
3998
3999/**
4000 * vzalloc_node - allocate memory on a specific node with zero fill
4001 * @size:	allocation size
4002 * @node:	numa node
4003 *
4004 * Allocate enough pages to cover @size from the page level
4005 * allocator and map them into contiguous kernel virtual space.
4006 * The memory allocated is set to zero.
4007 *
 
 
 
4008 * Return: pointer to the allocated memory or %NULL on error
4009 */
4010void *vzalloc_node(unsigned long size, int node)
4011{
4012	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
4013				__builtin_return_address(0));
4014}
4015EXPORT_SYMBOL(vzalloc_node);
4016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4017#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
4018#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4019#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
4020#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
4021#else
4022/*
4023 * 64b systems should always have either DMA or DMA32 zones. For others
4024 * GFP_DMA32 should do the right thing and use the normal zone.
4025 */
4026#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4027#endif
4028
4029/**
4030 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
4031 * @size:	allocation size
4032 *
4033 * Allocate enough 32bit PA addressable pages to cover @size from the
4034 * page level allocator and map them into contiguous kernel virtual space.
4035 *
4036 * Return: pointer to the allocated memory or %NULL on error
4037 */
4038void *vmalloc_32(unsigned long size)
4039{
4040	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
4041			__builtin_return_address(0));
4042}
4043EXPORT_SYMBOL(vmalloc_32);
4044
4045/**
4046 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
4047 * @size:	     allocation size
4048 *
4049 * The resulting memory area is 32bit addressable and zeroed so it can be
4050 * mapped to userspace without leaking data.
4051 *
4052 * Return: pointer to the allocated memory or %NULL on error
4053 */
4054void *vmalloc_32_user(unsigned long size)
4055{
4056	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
4057				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
4058				    VM_USERMAP, NUMA_NO_NODE,
4059				    __builtin_return_address(0));
4060}
4061EXPORT_SYMBOL(vmalloc_32_user);
4062
4063/*
4064 * Atomically zero bytes in the iterator.
4065 *
4066 * Returns the number of zeroed bytes.
4067 */
4068static size_t zero_iter(struct iov_iter *iter, size_t count)
4069{
4070	size_t remains = count;
4071
4072	while (remains > 0) {
4073		size_t num, copied;
4074
4075		num = min_t(size_t, remains, PAGE_SIZE);
4076		copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
4077		remains -= copied;
4078
4079		if (copied < num)
4080			break;
4081	}
4082
4083	return count - remains;
4084}
4085
4086/*
4087 * small helper routine, copy contents to iter from addr.
4088 * If the page is not present, fill zero.
4089 *
4090 * Returns the number of copied bytes.
4091 */
4092static size_t aligned_vread_iter(struct iov_iter *iter,
4093				 const char *addr, size_t count)
4094{
4095	size_t remains = count;
4096	struct page *page;
4097
4098	while (remains > 0) {
4099		unsigned long offset, length;
4100		size_t copied = 0;
4101
4102		offset = offset_in_page(addr);
4103		length = PAGE_SIZE - offset;
4104		if (length > remains)
4105			length = remains;
4106		page = vmalloc_to_page(addr);
4107		/*
4108		 * To do safe access to this _mapped_ area, we need lock. But
4109		 * adding lock here means that we need to add overhead of
4110		 * vmalloc()/vfree() calls for this _debug_ interface, rarely
4111		 * used. Instead of that, we'll use an local mapping via
4112		 * copy_page_to_iter_nofault() and accept a small overhead in
4113		 * this access function.
4114		 */
4115		if (page)
4116			copied = copy_page_to_iter_nofault(page, offset,
4117							   length, iter);
4118		else
4119			copied = zero_iter(iter, length);
4120
4121		addr += copied;
4122		remains -= copied;
 
 
4123
4124		if (copied != length)
4125			break;
 
 
4126	}
4127
4128	return count - remains;
4129}
4130
4131/*
4132 * Read from a vm_map_ram region of memory.
4133 *
4134 * Returns the number of copied bytes.
4135 */
4136static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
4137				  size_t count, unsigned long flags)
4138{
4139	char *start;
4140	struct vmap_block *vb;
4141	struct xarray *xa;
4142	unsigned long offset;
4143	unsigned int rs, re;
4144	size_t remains, n;
4145
4146	/*
4147	 * If it's area created by vm_map_ram() interface directly, but
4148	 * not further subdividing and delegating management to vmap_block,
4149	 * handle it here.
4150	 */
4151	if (!(flags & VMAP_BLOCK))
4152		return aligned_vread_iter(iter, addr, count);
4153
4154	remains = count;
4155
4156	/*
4157	 * Area is split into regions and tracked with vmap_block, read out
4158	 * each region and zero fill the hole between regions.
4159	 */
4160	xa = addr_to_vb_xa((unsigned long) addr);
4161	vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
4162	if (!vb)
4163		goto finished_zero;
4164
4165	spin_lock(&vb->lock);
4166	if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
4167		spin_unlock(&vb->lock);
4168		goto finished_zero;
4169	}
4170
4171	for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
4172		size_t copied;
4173
4174		if (remains == 0)
4175			goto finished;
4176
4177		start = vmap_block_vaddr(vb->va->va_start, rs);
4178
4179		if (addr < start) {
4180			size_t to_zero = min_t(size_t, start - addr, remains);
4181			size_t zeroed = zero_iter(iter, to_zero);
4182
4183			addr += zeroed;
4184			remains -= zeroed;
4185
4186			if (remains == 0 || zeroed != to_zero)
4187				goto finished;
4188		}
4189
4190		/*it could start reading from the middle of used region*/
4191		offset = offset_in_page(addr);
4192		n = ((re - rs + 1) << PAGE_SHIFT) - offset;
4193		if (n > remains)
4194			n = remains;
4195
4196		copied = aligned_vread_iter(iter, start + offset, n);
4197
4198		addr += copied;
4199		remains -= copied;
4200
4201		if (copied != n)
4202			goto finished;
4203	}
4204
4205	spin_unlock(&vb->lock);
4206
4207finished_zero:
4208	/* zero-fill the left dirty or free regions */
4209	return count - remains + zero_iter(iter, remains);
4210finished:
4211	/* We couldn't copy/zero everything */
4212	spin_unlock(&vb->lock);
4213	return count - remains;
4214}
4215
4216/**
4217 * vread_iter() - read vmalloc area in a safe way to an iterator.
4218 * @iter:         the iterator to which data should be written.
4219 * @addr:         vm address.
4220 * @count:        number of bytes to be read.
4221 *
4222 * This function checks that addr is a valid vmalloc'ed area, and
4223 * copy data from that area to a given buffer. If the given memory range
4224 * of [addr...addr+count) includes some valid address, data is copied to
4225 * proper area of @buf. If there are memory holes, they'll be zero-filled.
4226 * IOREMAP area is treated as memory hole and no copy is done.
4227 *
4228 * If [addr...addr+count) doesn't includes any intersects with alive
4229 * vm_struct area, returns 0. @buf should be kernel's buffer.
4230 *
4231 * Note: In usual ops, vread() is never necessary because the caller
4232 * should know vmalloc() area is valid and can use memcpy().
4233 * This is for routines which have to access vmalloc area without
4234 * any information, as /proc/kcore.
4235 *
4236 * Return: number of bytes for which addr and buf should be increased
4237 * (same number as @count) or %0 if [addr...addr+count) doesn't
4238 * include any intersection with valid vmalloc area
4239 */
4240long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
4241{
4242	struct vmap_node *vn;
4243	struct vmap_area *va;
4244	struct vm_struct *vm;
4245	char *vaddr;
4246	size_t n, size, flags, remains;
4247	unsigned long next;
4248
4249	addr = kasan_reset_tag(addr);
4250
4251	/* Don't allow overflow */
4252	if ((unsigned long) addr + count < count)
4253		count = -(unsigned long) addr;
4254
4255	remains = count;
 
 
 
4256
4257	vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va);
4258	if (!vn)
4259		goto finished_zero;
4260
4261	/* no intersects with alive vmap_area */
4262	if ((unsigned long)addr + remains <= va->va_start)
4263		goto finished_zero;
4264
4265	do {
4266		size_t copied;
4267
4268		if (remains == 0)
4269			goto finished;
4270
4271		vm = va->vm;
4272		flags = va->flags & VMAP_FLAGS_MASK;
4273		/*
4274		 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
4275		 * be set together with VMAP_RAM.
4276		 */
4277		WARN_ON(flags == VMAP_BLOCK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4278
4279		if (!vm && !flags)
4280			goto next_va;
 
 
 
4281
4282		if (vm && (vm->flags & VM_UNINITIALIZED))
4283			goto next_va;
4284
4285		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4286		smp_rmb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4287
4288		vaddr = (char *) va->va_start;
4289		size = vm ? get_vm_area_size(vm) : va_size(va);
 
 
4290
4291		if (addr >= vaddr + size)
4292			goto next_va;
 
 
4293
4294		if (addr < vaddr) {
4295			size_t to_zero = min_t(size_t, vaddr - addr, remains);
4296			size_t zeroed = zero_iter(iter, to_zero);
4297
4298			addr += zeroed;
4299			remains -= zeroed;
4300
4301			if (remains == 0 || zeroed != to_zero)
 
 
4302				goto finished;
4303		}
4304
4305		n = vaddr + size - addr;
4306		if (n > remains)
4307			n = remains;
4308
4309		if (flags & VMAP_RAM)
4310			copied = vmap_ram_vread_iter(iter, addr, n, flags);
4311		else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE))))
4312			copied = aligned_vread_iter(iter, addr, n);
4313		else /* IOREMAP | SPARSE area is treated as memory hole */
4314			copied = zero_iter(iter, n);
4315
4316		addr += copied;
4317		remains -= copied;
4318
4319		if (copied != n)
4320			goto finished;
4321
4322	next_va:
4323		next = va->va_end;
4324		spin_unlock(&vn->busy.lock);
4325	} while ((vn = find_vmap_area_exceed_addr_lock(next, &va)));
4326
4327finished_zero:
4328	if (vn)
4329		spin_unlock(&vn->busy.lock);
4330
4331	/* zero-fill memory holes */
4332	return count - remains + zero_iter(iter, remains);
4333finished:
4334	/* Nothing remains, or We couldn't copy/zero everything. */
4335	if (vn)
4336		spin_unlock(&vn->busy.lock);
4337
4338	return count - remains;
4339}
4340
4341/**
4342 * remap_vmalloc_range_partial - map vmalloc pages to userspace
4343 * @vma:		vma to cover
4344 * @uaddr:		target user address to start at
4345 * @kaddr:		virtual address of vmalloc kernel memory
4346 * @pgoff:		offset from @kaddr to start at
4347 * @size:		size of map area
4348 *
4349 * Returns:	0 for success, -Exxx on failure
4350 *
4351 * This function checks that @kaddr is a valid vmalloc'ed area,
4352 * and that it is big enough to cover the range starting at
4353 * @uaddr in @vma. Will return failure if that criteria isn't
4354 * met.
4355 *
4356 * Similar to remap_pfn_range() (see mm/memory.c)
4357 */
4358int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
4359				void *kaddr, unsigned long pgoff,
4360				unsigned long size)
4361{
4362	struct vm_struct *area;
4363	unsigned long off;
4364	unsigned long end_index;
4365
4366	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
4367		return -EINVAL;
4368
4369	size = PAGE_ALIGN(size);
4370
4371	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
4372		return -EINVAL;
4373
4374	area = find_vm_area(kaddr);
4375	if (!area)
4376		return -EINVAL;
4377
4378	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
4379		return -EINVAL;
4380
4381	if (check_add_overflow(size, off, &end_index) ||
4382	    end_index > get_vm_area_size(area))
4383		return -EINVAL;
4384	kaddr += off;
4385
4386	do {
4387		struct page *page = vmalloc_to_page(kaddr);
4388		int ret;
4389
4390		ret = vm_insert_page(vma, uaddr, page);
4391		if (ret)
4392			return ret;
4393
4394		uaddr += PAGE_SIZE;
4395		kaddr += PAGE_SIZE;
4396		size -= PAGE_SIZE;
4397	} while (size > 0);
4398
4399	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
4400
4401	return 0;
4402}
 
4403
4404/**
4405 * remap_vmalloc_range - map vmalloc pages to userspace
4406 * @vma:		vma to cover (map full range of vma)
4407 * @addr:		vmalloc memory
4408 * @pgoff:		number of pages into addr before first page to map
4409 *
4410 * Returns:	0 for success, -Exxx on failure
4411 *
4412 * This function checks that addr is a valid vmalloc'ed area, and
4413 * that it is big enough to cover the vma. Will return failure if
4414 * that criteria isn't met.
4415 *
4416 * Similar to remap_pfn_range() (see mm/memory.c)
4417 */
4418int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
4419						unsigned long pgoff)
4420{
4421	return remap_vmalloc_range_partial(vma, vma->vm_start,
4422					   addr, pgoff,
4423					   vma->vm_end - vma->vm_start);
4424}
4425EXPORT_SYMBOL(remap_vmalloc_range);
4426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4427void free_vm_area(struct vm_struct *area)
4428{
4429	struct vm_struct *ret;
4430	ret = remove_vm_area(area->addr);
4431	BUG_ON(ret != area);
4432	kfree(area);
4433}
4434EXPORT_SYMBOL_GPL(free_vm_area);
4435
4436#ifdef CONFIG_SMP
4437static struct vmap_area *node_to_va(struct rb_node *n)
4438{
4439	return rb_entry_safe(n, struct vmap_area, rb_node);
4440}
4441
4442/**
4443 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
4444 * @addr: target address
4445 *
4446 * Returns: vmap_area if it is found. If there is no such area
4447 *   the first highest(reverse order) vmap_area is returned
4448 *   i.e. va->va_start < addr && va->va_end < addr or NULL
4449 *   if there are no any areas before @addr.
4450 */
4451static struct vmap_area *
4452pvm_find_va_enclose_addr(unsigned long addr)
4453{
4454	struct vmap_area *va, *tmp;
4455	struct rb_node *n;
4456
4457	n = free_vmap_area_root.rb_node;
4458	va = NULL;
4459
4460	while (n) {
4461		tmp = rb_entry(n, struct vmap_area, rb_node);
4462		if (tmp->va_start <= addr) {
4463			va = tmp;
4464			if (tmp->va_end >= addr)
4465				break;
4466
4467			n = n->rb_right;
4468		} else {
4469			n = n->rb_left;
4470		}
4471	}
4472
4473	return va;
4474}
4475
4476/**
4477 * pvm_determine_end_from_reverse - find the highest aligned address
4478 * of free block below VMALLOC_END
4479 * @va:
4480 *   in - the VA we start the search(reverse order);
4481 *   out - the VA with the highest aligned end address.
4482 * @align: alignment for required highest address
4483 *
4484 * Returns: determined end address within vmap_area
4485 */
4486static unsigned long
4487pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
4488{
4489	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4490	unsigned long addr;
4491
4492	if (likely(*va)) {
4493		list_for_each_entry_from_reverse((*va),
4494				&free_vmap_area_list, list) {
4495			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
4496			if ((*va)->va_start < addr)
4497				return addr;
4498		}
4499	}
4500
4501	return 0;
4502}
4503
4504/**
4505 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4506 * @offsets: array containing offset of each area
4507 * @sizes: array containing size of each area
4508 * @nr_vms: the number of areas to allocate
4509 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4510 *
4511 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4512 *	    vm_structs on success, %NULL on failure
4513 *
4514 * Percpu allocator wants to use congruent vm areas so that it can
4515 * maintain the offsets among percpu areas.  This function allocates
4516 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
4517 * be scattered pretty far, distance between two areas easily going up
4518 * to gigabytes.  To avoid interacting with regular vmallocs, these
4519 * areas are allocated from top.
4520 *
4521 * Despite its complicated look, this allocator is rather simple. It
4522 * does everything top-down and scans free blocks from the end looking
4523 * for matching base. While scanning, if any of the areas do not fit the
4524 * base address is pulled down to fit the area. Scanning is repeated till
4525 * all the areas fit and then all necessary data structures are inserted
4526 * and the result is returned.
4527 */
4528struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4529				     const size_t *sizes, int nr_vms,
4530				     size_t align)
4531{
4532	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4533	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4534	struct vmap_area **vas, *va;
4535	struct vm_struct **vms;
4536	int area, area2, last_area, term_area;
4537	unsigned long base, start, size, end, last_end, orig_start, orig_end;
4538	bool purged = false;
 
4539
4540	/* verify parameters and allocate data structures */
4541	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4542	for (last_area = 0, area = 0; area < nr_vms; area++) {
4543		start = offsets[area];
4544		end = start + sizes[area];
4545
4546		/* is everything aligned properly? */
4547		BUG_ON(!IS_ALIGNED(offsets[area], align));
4548		BUG_ON(!IS_ALIGNED(sizes[area], align));
4549
4550		/* detect the area with the highest address */
4551		if (start > offsets[last_area])
4552			last_area = area;
4553
4554		for (area2 = area + 1; area2 < nr_vms; area2++) {
4555			unsigned long start2 = offsets[area2];
4556			unsigned long end2 = start2 + sizes[area2];
4557
4558			BUG_ON(start2 < end && start < end2);
4559		}
4560	}
4561	last_end = offsets[last_area] + sizes[last_area];
4562
4563	if (vmalloc_end - vmalloc_start < last_end) {
4564		WARN_ON(true);
4565		return NULL;
4566	}
4567
4568	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4569	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4570	if (!vas || !vms)
4571		goto err_free2;
4572
4573	for (area = 0; area < nr_vms; area++) {
4574		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4575		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4576		if (!vas[area] || !vms[area])
4577			goto err_free;
4578	}
4579retry:
4580	spin_lock(&free_vmap_area_lock);
4581
4582	/* start scanning - we scan from the top, begin with the last area */
4583	area = term_area = last_area;
4584	start = offsets[area];
4585	end = start + sizes[area];
4586
4587	va = pvm_find_va_enclose_addr(vmalloc_end);
4588	base = pvm_determine_end_from_reverse(&va, align) - end;
4589
4590	while (true) {
4591		/*
4592		 * base might have underflowed, add last_end before
4593		 * comparing.
4594		 */
4595		if (base + last_end < vmalloc_start + last_end)
4596			goto overflow;
4597
4598		/*
4599		 * Fitting base has not been found.
4600		 */
4601		if (va == NULL)
4602			goto overflow;
4603
4604		/*
4605		 * If required width exceeds current VA block, move
4606		 * base downwards and then recheck.
4607		 */
4608		if (base + end > va->va_end) {
4609			base = pvm_determine_end_from_reverse(&va, align) - end;
4610			term_area = area;
4611			continue;
4612		}
4613
4614		/*
4615		 * If this VA does not fit, move base downwards and recheck.
4616		 */
4617		if (base + start < va->va_start) {
4618			va = node_to_va(rb_prev(&va->rb_node));
4619			base = pvm_determine_end_from_reverse(&va, align) - end;
4620			term_area = area;
4621			continue;
4622		}
4623
4624		/*
4625		 * This area fits, move on to the previous one.  If
4626		 * the previous one is the terminal one, we're done.
4627		 */
4628		area = (area + nr_vms - 1) % nr_vms;
4629		if (area == term_area)
4630			break;
4631
4632		start = offsets[area];
4633		end = start + sizes[area];
4634		va = pvm_find_va_enclose_addr(base + end);
4635	}
4636
4637	/* we've found a fitting base, insert all va's */
4638	for (area = 0; area < nr_vms; area++) {
4639		int ret;
4640
4641		start = base + offsets[area];
4642		size = sizes[area];
4643
4644		va = pvm_find_va_enclose_addr(start);
4645		if (WARN_ON_ONCE(va == NULL))
4646			/* It is a BUG(), but trigger recovery instead. */
4647			goto recovery;
4648
4649		ret = va_clip(&free_vmap_area_root,
4650			&free_vmap_area_list, va, start, size);
4651		if (WARN_ON_ONCE(unlikely(ret)))
4652			/* It is a BUG(), but trigger recovery instead. */
4653			goto recovery;
4654
 
 
 
 
4655		/* Allocated area. */
4656		va = vas[area];
4657		va->va_start = start;
4658		va->va_end = start + size;
 
 
4659	}
4660
4661	spin_unlock(&free_vmap_area_lock);
4662
4663	/* populate the kasan shadow space */
4664	for (area = 0; area < nr_vms; area++) {
4665		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4666			goto err_free_shadow;
4667	}
4668
4669	/* insert all vm's */
4670	for (area = 0; area < nr_vms; area++) {
4671		struct vmap_node *vn = addr_to_node(vas[area]->va_start);
4672
4673		spin_lock(&vn->busy.lock);
4674		insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head);
4675		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
4676				 pcpu_get_vm_areas);
4677		spin_unlock(&vn->busy.lock);
4678	}
4679
4680	/*
4681	 * Mark allocated areas as accessible. Do it now as a best-effort
4682	 * approach, as they can be mapped outside of vmalloc code.
4683	 * With hardware tag-based KASAN, marking is skipped for
4684	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4685	 */
4686	for (area = 0; area < nr_vms; area++)
4687		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4688				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4689
4690	kfree(vas);
4691	return vms;
4692
4693recovery:
4694	/*
4695	 * Remove previously allocated areas. There is no
4696	 * need in removing these areas from the busy tree,
4697	 * because they are inserted only on the final step
4698	 * and when pcpu_get_vm_areas() is success.
4699	 */
4700	while (area--) {
4701		orig_start = vas[area]->va_start;
4702		orig_end = vas[area]->va_end;
4703		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4704				&free_vmap_area_list);
4705		if (va)
4706			kasan_release_vmalloc(orig_start, orig_end,
4707				va->va_start, va->va_end);
4708		vas[area] = NULL;
4709	}
4710
4711overflow:
4712	spin_unlock(&free_vmap_area_lock);
4713	if (!purged) {
4714		reclaim_and_purge_vmap_areas();
4715		purged = true;
4716
4717		/* Before "retry", check if we recover. */
4718		for (area = 0; area < nr_vms; area++) {
4719			if (vas[area])
4720				continue;
4721
4722			vas[area] = kmem_cache_zalloc(
4723				vmap_area_cachep, GFP_KERNEL);
4724			if (!vas[area])
4725				goto err_free;
4726		}
4727
4728		goto retry;
4729	}
4730
4731err_free:
4732	for (area = 0; area < nr_vms; area++) {
4733		if (vas[area])
4734			kmem_cache_free(vmap_area_cachep, vas[area]);
4735
4736		kfree(vms[area]);
4737	}
4738err_free2:
4739	kfree(vas);
4740	kfree(vms);
4741	return NULL;
4742
4743err_free_shadow:
4744	spin_lock(&free_vmap_area_lock);
4745	/*
4746	 * We release all the vmalloc shadows, even the ones for regions that
4747	 * hadn't been successfully added. This relies on kasan_release_vmalloc
4748	 * being able to tolerate this case.
4749	 */
4750	for (area = 0; area < nr_vms; area++) {
4751		orig_start = vas[area]->va_start;
4752		orig_end = vas[area]->va_end;
4753		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4754				&free_vmap_area_list);
4755		if (va)
4756			kasan_release_vmalloc(orig_start, orig_end,
4757				va->va_start, va->va_end);
4758		vas[area] = NULL;
4759		kfree(vms[area]);
4760	}
4761	spin_unlock(&free_vmap_area_lock);
4762	kfree(vas);
4763	kfree(vms);
4764	return NULL;
4765}
4766
4767/**
4768 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4769 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4770 * @nr_vms: the number of allocated areas
4771 *
4772 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4773 */
4774void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4775{
4776	int i;
4777
4778	for (i = 0; i < nr_vms; i++)
4779		free_vm_area(vms[i]);
4780	kfree(vms);
4781}
4782#endif	/* CONFIG_SMP */
4783
4784#ifdef CONFIG_PRINTK
4785bool vmalloc_dump_obj(void *object)
 
4786{
4787	const void *caller;
4788	struct vm_struct *vm;
4789	struct vmap_area *va;
4790	struct vmap_node *vn;
4791	unsigned long addr;
4792	unsigned int nr_pages;
4793
4794	addr = PAGE_ALIGN((unsigned long) object);
4795	vn = addr_to_node(addr);
 
 
4796
4797	if (!spin_trylock(&vn->busy.lock))
4798		return false;
4799
4800	va = __find_vmap_area(addr, &vn->busy.root);
4801	if (!va || !va->vm) {
4802		spin_unlock(&vn->busy.lock);
4803		return false;
4804	}
4805
4806	vm = va->vm;
4807	addr = (unsigned long) vm->addr;
4808	caller = vm->caller;
4809	nr_pages = vm->nr_pages;
4810	spin_unlock(&vn->busy.lock);
4811
4812	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4813		nr_pages, addr, caller);
4814
4815	return true;
4816}
4817#endif
4818
4819#ifdef CONFIG_PROC_FS
4820static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4821{
4822	if (IS_ENABLED(CONFIG_NUMA)) {
4823		unsigned int nr, *counters = m->private;
4824		unsigned int step = 1U << vm_area_page_order(v);
4825
4826		if (!counters)
4827			return;
4828
4829		if (v->flags & VM_UNINITIALIZED)
4830			return;
4831		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4832		smp_rmb();
4833
4834		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4835
4836		for (nr = 0; nr < v->nr_pages; nr += step)
4837			counters[page_to_nid(v->pages[nr])] += step;
 
4838		for_each_node_state(nr, N_HIGH_MEMORY)
4839			if (counters[nr])
4840				seq_printf(m, " N%u=%u", nr, counters[nr]);
4841	}
4842}
4843
4844static void show_purge_info(struct seq_file *m)
4845{
4846	struct vmap_node *vn;
4847	struct vmap_area *va;
4848	int i;
4849
4850	for (i = 0; i < nr_vmap_nodes; i++) {
4851		vn = &vmap_nodes[i];
 
4852
4853		spin_lock(&vn->lazy.lock);
4854		list_for_each_entry(va, &vn->lazy.head, list) {
4855			seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4856				(void *)va->va_start, (void *)va->va_end,
4857				va->va_end - va->va_start);
4858		}
4859		spin_unlock(&vn->lazy.lock);
4860	}
4861}
4862
4863static int vmalloc_info_show(struct seq_file *m, void *p)
4864{
4865	struct vmap_node *vn;
4866	struct vmap_area *va;
4867	struct vm_struct *v;
4868	int i;
4869
4870	for (i = 0; i < nr_vmap_nodes; i++) {
4871		vn = &vmap_nodes[i];
4872
4873		spin_lock(&vn->busy.lock);
4874		list_for_each_entry(va, &vn->busy.head, list) {
4875			if (!va->vm) {
4876				if (va->flags & VMAP_RAM)
4877					seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4878						(void *)va->va_start, (void *)va->va_end,
4879						va->va_end - va->va_start);
 
4880
4881				continue;
4882			}
4883
4884			v = va->vm;
4885
4886			seq_printf(m, "0x%pK-0x%pK %7ld",
4887				v->addr, v->addr + v->size, v->size);
4888
4889			if (v->caller)
4890				seq_printf(m, " %pS", v->caller);
4891
4892			if (v->nr_pages)
4893				seq_printf(m, " pages=%d", v->nr_pages);
4894
4895			if (v->phys_addr)
4896				seq_printf(m, " phys=%pa", &v->phys_addr);
4897
4898			if (v->flags & VM_IOREMAP)
4899				seq_puts(m, " ioremap");
4900
4901			if (v->flags & VM_SPARSE)
4902				seq_puts(m, " sparse");
4903
4904			if (v->flags & VM_ALLOC)
4905				seq_puts(m, " vmalloc");
4906
4907			if (v->flags & VM_MAP)
4908				seq_puts(m, " vmap");
4909
4910			if (v->flags & VM_USERMAP)
4911				seq_puts(m, " user");
4912
4913			if (v->flags & VM_DMA_COHERENT)
4914				seq_puts(m, " dma-coherent");
4915
4916			if (is_vmalloc_addr(v->pages))
4917				seq_puts(m, " vpages");
4918
4919			show_numa_info(m, v);
4920			seq_putc(m, '\n');
4921		}
4922		spin_unlock(&vn->busy.lock);
4923	}
4924
4925	/*
4926	 * As a final step, dump "unpurged" areas.
 
 
 
4927	 */
4928	show_purge_info(m);
 
 
4929	return 0;
4930}
4931
 
 
 
 
 
 
 
4932static int __init proc_vmalloc_init(void)
4933{
4934	void *priv_data = NULL;
4935
4936	if (IS_ENABLED(CONFIG_NUMA))
4937		priv_data = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
4938
4939	proc_create_single_data("vmallocinfo",
4940		0400, NULL, vmalloc_info_show, priv_data);
4941
4942	return 0;
4943}
4944module_init(proc_vmalloc_init);
4945
4946#endif
4947
4948static void __init vmap_init_free_space(void)
4949{
4950	unsigned long vmap_start = 1;
4951	const unsigned long vmap_end = ULONG_MAX;
4952	struct vmap_area *free;
4953	struct vm_struct *busy;
4954
4955	/*
4956	 *     B     F     B     B     B     F
4957	 * -|-----|.....|-----|-----|-----|.....|-
4958	 *  |           The KVA space           |
4959	 *  |<--------------------------------->|
4960	 */
4961	for (busy = vmlist; busy; busy = busy->next) {
4962		if ((unsigned long) busy->addr - vmap_start > 0) {
4963			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4964			if (!WARN_ON_ONCE(!free)) {
4965				free->va_start = vmap_start;
4966				free->va_end = (unsigned long) busy->addr;
4967
4968				insert_vmap_area_augment(free, NULL,
4969					&free_vmap_area_root,
4970						&free_vmap_area_list);
4971			}
4972		}
4973
4974		vmap_start = (unsigned long) busy->addr + busy->size;
4975	}
4976
4977	if (vmap_end - vmap_start > 0) {
4978		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4979		if (!WARN_ON_ONCE(!free)) {
4980			free->va_start = vmap_start;
4981			free->va_end = vmap_end;
4982
4983			insert_vmap_area_augment(free, NULL,
4984				&free_vmap_area_root,
4985					&free_vmap_area_list);
4986		}
4987	}
4988}
4989
4990static void vmap_init_nodes(void)
4991{
4992	struct vmap_node *vn;
4993	int i, n;
4994
4995#if BITS_PER_LONG == 64
4996	/*
4997	 * A high threshold of max nodes is fixed and bound to 128,
4998	 * thus a scale factor is 1 for systems where number of cores
4999	 * are less or equal to specified threshold.
5000	 *
5001	 * As for NUMA-aware notes. For bigger systems, for example
5002	 * NUMA with multi-sockets, where we can end-up with thousands
5003	 * of cores in total, a "sub-numa-clustering" should be added.
5004	 *
5005	 * In this case a NUMA domain is considered as a single entity
5006	 * with dedicated sub-nodes in it which describe one group or
5007	 * set of cores. Therefore a per-domain purging is supposed to
5008	 * be added as well as a per-domain balancing.
5009	 */
5010	n = clamp_t(unsigned int, num_possible_cpus(), 1, 128);
5011
5012	if (n > 1) {
5013		vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN);
5014		if (vn) {
5015			/* Node partition is 16 pages. */
5016			vmap_zone_size = (1 << 4) * PAGE_SIZE;
5017			nr_vmap_nodes = n;
5018			vmap_nodes = vn;
5019		} else {
5020			pr_err("Failed to allocate an array. Disable a node layer\n");
5021		}
5022	}
5023#endif
5024
5025	for (n = 0; n < nr_vmap_nodes; n++) {
5026		vn = &vmap_nodes[n];
5027		vn->busy.root = RB_ROOT;
5028		INIT_LIST_HEAD(&vn->busy.head);
5029		spin_lock_init(&vn->busy.lock);
5030
5031		vn->lazy.root = RB_ROOT;
5032		INIT_LIST_HEAD(&vn->lazy.head);
5033		spin_lock_init(&vn->lazy.lock);
5034
5035		for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
5036			INIT_LIST_HEAD(&vn->pool[i].head);
5037			WRITE_ONCE(vn->pool[i].len, 0);
5038		}
5039
5040		spin_lock_init(&vn->pool_lock);
5041	}
5042}
5043
5044static unsigned long
5045vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5046{
5047	unsigned long count;
5048	struct vmap_node *vn;
5049	int i, j;
5050
5051	for (count = 0, i = 0; i < nr_vmap_nodes; i++) {
5052		vn = &vmap_nodes[i];
5053
5054		for (j = 0; j < MAX_VA_SIZE_PAGES; j++)
5055			count += READ_ONCE(vn->pool[j].len);
5056	}
5057
5058	return count ? count : SHRINK_EMPTY;
5059}
5060
5061static unsigned long
5062vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5063{
5064	int i;
5065
5066	for (i = 0; i < nr_vmap_nodes; i++)
5067		decay_va_pool_node(&vmap_nodes[i], true);
5068
5069	return SHRINK_STOP;
5070}
5071
5072void __init vmalloc_init(void)
5073{
5074	struct shrinker *vmap_node_shrinker;
5075	struct vmap_area *va;
5076	struct vmap_node *vn;
5077	struct vm_struct *tmp;
5078	int i;
5079
5080	/*
5081	 * Create the cache for vmap_area objects.
5082	 */
5083	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
5084
5085	for_each_possible_cpu(i) {
5086		struct vmap_block_queue *vbq;
5087		struct vfree_deferred *p;
5088
5089		vbq = &per_cpu(vmap_block_queue, i);
5090		spin_lock_init(&vbq->lock);
5091		INIT_LIST_HEAD(&vbq->free);
5092		p = &per_cpu(vfree_deferred, i);
5093		init_llist_head(&p->list);
5094		INIT_WORK(&p->wq, delayed_vfree_work);
5095		xa_init(&vbq->vmap_blocks);
5096	}
5097
5098	/*
5099	 * Setup nodes before importing vmlist.
5100	 */
5101	vmap_init_nodes();
5102
5103	/* Import existing vmlist entries. */
5104	for (tmp = vmlist; tmp; tmp = tmp->next) {
5105		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5106		if (WARN_ON_ONCE(!va))
5107			continue;
5108
5109		va->va_start = (unsigned long)tmp->addr;
5110		va->va_end = va->va_start + tmp->size;
5111		va->vm = tmp;
5112
5113		vn = addr_to_node(va->va_start);
5114		insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
5115	}
5116
5117	/*
5118	 * Now we can initialize a free vmap space.
5119	 */
5120	vmap_init_free_space();
5121	vmap_initialized = true;
5122
5123	vmap_node_shrinker = shrinker_alloc(0, "vmap-node");
5124	if (!vmap_node_shrinker) {
5125		pr_err("Failed to allocate vmap-node shrinker!\n");
5126		return;
5127	}
5128
5129	vmap_node_shrinker->count_objects = vmap_node_shrink_count;
5130	vmap_node_shrinker->scan_objects = vmap_node_shrink_scan;
5131	shrinker_register(vmap_node_shrinker);
5132}