Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/sched/debug.c
4 *
5 * Print the CFS rbtree and other debugging details
6 *
7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8 */
9#include "sched.h"
10
11static DEFINE_SPINLOCK(sched_debug_lock);
12
13/*
14 * This allows printing both to /proc/sched_debug and
15 * to the console
16 */
17#define SEQ_printf(m, x...) \
18 do { \
19 if (m) \
20 seq_printf(m, x); \
21 else \
22 pr_cont(x); \
23 } while (0)
24
25/*
26 * Ease the printing of nsec fields:
27 */
28static long long nsec_high(unsigned long long nsec)
29{
30 if ((long long)nsec < 0) {
31 nsec = -nsec;
32 do_div(nsec, 1000000);
33 return -nsec;
34 }
35 do_div(nsec, 1000000);
36
37 return nsec;
38}
39
40static unsigned long nsec_low(unsigned long long nsec)
41{
42 if ((long long)nsec < 0)
43 nsec = -nsec;
44
45 return do_div(nsec, 1000000);
46}
47
48#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
49
50#define SCHED_FEAT(name, enabled) \
51 #name ,
52
53static const char * const sched_feat_names[] = {
54#include "features.h"
55};
56
57#undef SCHED_FEAT
58
59static int sched_feat_show(struct seq_file *m, void *v)
60{
61 int i;
62
63 for (i = 0; i < __SCHED_FEAT_NR; i++) {
64 if (!(sysctl_sched_features & (1UL << i)))
65 seq_puts(m, "NO_");
66 seq_printf(m, "%s ", sched_feat_names[i]);
67 }
68 seq_puts(m, "\n");
69
70 return 0;
71}
72
73#ifdef CONFIG_JUMP_LABEL
74
75#define jump_label_key__true STATIC_KEY_INIT_TRUE
76#define jump_label_key__false STATIC_KEY_INIT_FALSE
77
78#define SCHED_FEAT(name, enabled) \
79 jump_label_key__##enabled ,
80
81struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
82#include "features.h"
83};
84
85#undef SCHED_FEAT
86
87static void sched_feat_disable(int i)
88{
89 static_key_disable_cpuslocked(&sched_feat_keys[i]);
90}
91
92static void sched_feat_enable(int i)
93{
94 static_key_enable_cpuslocked(&sched_feat_keys[i]);
95}
96#else
97static void sched_feat_disable(int i) { };
98static void sched_feat_enable(int i) { };
99#endif /* CONFIG_JUMP_LABEL */
100
101static int sched_feat_set(char *cmp)
102{
103 int i;
104 int neg = 0;
105
106 if (strncmp(cmp, "NO_", 3) == 0) {
107 neg = 1;
108 cmp += 3;
109 }
110
111 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
112 if (i < 0)
113 return i;
114
115 if (neg) {
116 sysctl_sched_features &= ~(1UL << i);
117 sched_feat_disable(i);
118 } else {
119 sysctl_sched_features |= (1UL << i);
120 sched_feat_enable(i);
121 }
122
123 return 0;
124}
125
126static ssize_t
127sched_feat_write(struct file *filp, const char __user *ubuf,
128 size_t cnt, loff_t *ppos)
129{
130 char buf[64];
131 char *cmp;
132 int ret;
133 struct inode *inode;
134
135 if (cnt > 63)
136 cnt = 63;
137
138 if (copy_from_user(&buf, ubuf, cnt))
139 return -EFAULT;
140
141 buf[cnt] = 0;
142 cmp = strstrip(buf);
143
144 /* Ensure the static_key remains in a consistent state */
145 inode = file_inode(filp);
146 cpus_read_lock();
147 inode_lock(inode);
148 ret = sched_feat_set(cmp);
149 inode_unlock(inode);
150 cpus_read_unlock();
151 if (ret < 0)
152 return ret;
153
154 *ppos += cnt;
155
156 return cnt;
157}
158
159static int sched_feat_open(struct inode *inode, struct file *filp)
160{
161 return single_open(filp, sched_feat_show, NULL);
162}
163
164static const struct file_operations sched_feat_fops = {
165 .open = sched_feat_open,
166 .write = sched_feat_write,
167 .read = seq_read,
168 .llseek = seq_lseek,
169 .release = single_release,
170};
171
172__read_mostly bool sched_debug_enabled;
173
174static __init int sched_init_debug(void)
175{
176 debugfs_create_file("sched_features", 0644, NULL, NULL,
177 &sched_feat_fops);
178
179 debugfs_create_bool("sched_debug", 0644, NULL,
180 &sched_debug_enabled);
181
182 return 0;
183}
184late_initcall(sched_init_debug);
185
186#ifdef CONFIG_SMP
187
188#ifdef CONFIG_SYSCTL
189
190static struct ctl_table sd_ctl_dir[] = {
191 {
192 .procname = "sched_domain",
193 .mode = 0555,
194 },
195 {}
196};
197
198static struct ctl_table sd_ctl_root[] = {
199 {
200 .procname = "kernel",
201 .mode = 0555,
202 .child = sd_ctl_dir,
203 },
204 {}
205};
206
207static struct ctl_table *sd_alloc_ctl_entry(int n)
208{
209 struct ctl_table *entry =
210 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
211
212 return entry;
213}
214
215static void sd_free_ctl_entry(struct ctl_table **tablep)
216{
217 struct ctl_table *entry;
218
219 /*
220 * In the intermediate directories, both the child directory and
221 * procname are dynamically allocated and could fail but the mode
222 * will always be set. In the lowest directory the names are
223 * static strings and all have proc handlers.
224 */
225 for (entry = *tablep; entry->mode; entry++) {
226 if (entry->child)
227 sd_free_ctl_entry(&entry->child);
228 if (entry->proc_handler == NULL)
229 kfree(entry->procname);
230 }
231
232 kfree(*tablep);
233 *tablep = NULL;
234}
235
236static void
237set_table_entry(struct ctl_table *entry,
238 const char *procname, void *data, int maxlen,
239 umode_t mode, proc_handler *proc_handler)
240{
241 entry->procname = procname;
242 entry->data = data;
243 entry->maxlen = maxlen;
244 entry->mode = mode;
245 entry->proc_handler = proc_handler;
246}
247
248static struct ctl_table *
249sd_alloc_ctl_domain_table(struct sched_domain *sd)
250{
251 struct ctl_table *table = sd_alloc_ctl_entry(9);
252
253 if (table == NULL)
254 return NULL;
255
256 set_table_entry(&table[0], "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax);
257 set_table_entry(&table[1], "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax);
258 set_table_entry(&table[2], "busy_factor", &sd->busy_factor, sizeof(int), 0644, proc_dointvec_minmax);
259 set_table_entry(&table[3], "imbalance_pct", &sd->imbalance_pct, sizeof(int), 0644, proc_dointvec_minmax);
260 set_table_entry(&table[4], "cache_nice_tries", &sd->cache_nice_tries, sizeof(int), 0644, proc_dointvec_minmax);
261 set_table_entry(&table[5], "flags", &sd->flags, sizeof(int), 0644, proc_dointvec_minmax);
262 set_table_entry(&table[6], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax);
263 set_table_entry(&table[7], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring);
264 /* &table[8] is terminator */
265
266 return table;
267}
268
269static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
270{
271 struct ctl_table *entry, *table;
272 struct sched_domain *sd;
273 int domain_num = 0, i;
274 char buf[32];
275
276 for_each_domain(cpu, sd)
277 domain_num++;
278 entry = table = sd_alloc_ctl_entry(domain_num + 1);
279 if (table == NULL)
280 return NULL;
281
282 i = 0;
283 for_each_domain(cpu, sd) {
284 snprintf(buf, 32, "domain%d", i);
285 entry->procname = kstrdup(buf, GFP_KERNEL);
286 entry->mode = 0555;
287 entry->child = sd_alloc_ctl_domain_table(sd);
288 entry++;
289 i++;
290 }
291 return table;
292}
293
294static cpumask_var_t sd_sysctl_cpus;
295static struct ctl_table_header *sd_sysctl_header;
296
297void register_sched_domain_sysctl(void)
298{
299 static struct ctl_table *cpu_entries;
300 static struct ctl_table **cpu_idx;
301 static bool init_done = false;
302 char buf[32];
303 int i;
304
305 if (!cpu_entries) {
306 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
307 if (!cpu_entries)
308 return;
309
310 WARN_ON(sd_ctl_dir[0].child);
311 sd_ctl_dir[0].child = cpu_entries;
312 }
313
314 if (!cpu_idx) {
315 struct ctl_table *e = cpu_entries;
316
317 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
318 if (!cpu_idx)
319 return;
320
321 /* deal with sparse possible map */
322 for_each_possible_cpu(i) {
323 cpu_idx[i] = e;
324 e++;
325 }
326 }
327
328 if (!cpumask_available(sd_sysctl_cpus)) {
329 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
330 return;
331 }
332
333 if (!init_done) {
334 init_done = true;
335 /* init to possible to not have holes in @cpu_entries */
336 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
337 }
338
339 for_each_cpu(i, sd_sysctl_cpus) {
340 struct ctl_table *e = cpu_idx[i];
341
342 if (e->child)
343 sd_free_ctl_entry(&e->child);
344
345 if (!e->procname) {
346 snprintf(buf, 32, "cpu%d", i);
347 e->procname = kstrdup(buf, GFP_KERNEL);
348 }
349 e->mode = 0555;
350 e->child = sd_alloc_ctl_cpu_table(i);
351
352 __cpumask_clear_cpu(i, sd_sysctl_cpus);
353 }
354
355 WARN_ON(sd_sysctl_header);
356 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
357}
358
359void dirty_sched_domain_sysctl(int cpu)
360{
361 if (cpumask_available(sd_sysctl_cpus))
362 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
363}
364
365/* may be called multiple times per register */
366void unregister_sched_domain_sysctl(void)
367{
368 unregister_sysctl_table(sd_sysctl_header);
369 sd_sysctl_header = NULL;
370}
371#endif /* CONFIG_SYSCTL */
372#endif /* CONFIG_SMP */
373
374#ifdef CONFIG_FAIR_GROUP_SCHED
375static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
376{
377 struct sched_entity *se = tg->se[cpu];
378
379#define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
380#define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F))
381#define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
382#define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
383
384 if (!se)
385 return;
386
387 PN(se->exec_start);
388 PN(se->vruntime);
389 PN(se->sum_exec_runtime);
390
391 if (schedstat_enabled()) {
392 PN_SCHEDSTAT(se->statistics.wait_start);
393 PN_SCHEDSTAT(se->statistics.sleep_start);
394 PN_SCHEDSTAT(se->statistics.block_start);
395 PN_SCHEDSTAT(se->statistics.sleep_max);
396 PN_SCHEDSTAT(se->statistics.block_max);
397 PN_SCHEDSTAT(se->statistics.exec_max);
398 PN_SCHEDSTAT(se->statistics.slice_max);
399 PN_SCHEDSTAT(se->statistics.wait_max);
400 PN_SCHEDSTAT(se->statistics.wait_sum);
401 P_SCHEDSTAT(se->statistics.wait_count);
402 }
403
404 P(se->load.weight);
405 P(se->runnable_weight);
406#ifdef CONFIG_SMP
407 P(se->avg.load_avg);
408 P(se->avg.util_avg);
409 P(se->avg.runnable_load_avg);
410#endif
411
412#undef PN_SCHEDSTAT
413#undef PN
414#undef P_SCHEDSTAT
415#undef P
416}
417#endif
418
419#ifdef CONFIG_CGROUP_SCHED
420static char group_path[PATH_MAX];
421
422static char *task_group_path(struct task_group *tg)
423{
424 if (autogroup_path(tg, group_path, PATH_MAX))
425 return group_path;
426
427 cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
428
429 return group_path;
430}
431#endif
432
433static void
434print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
435{
436 if (rq->curr == p)
437 SEQ_printf(m, ">R");
438 else
439 SEQ_printf(m, " %c", task_state_to_char(p));
440
441 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
442 p->comm, task_pid_nr(p),
443 SPLIT_NS(p->se.vruntime),
444 (long long)(p->nvcsw + p->nivcsw),
445 p->prio);
446
447 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
448 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
449 SPLIT_NS(p->se.sum_exec_runtime),
450 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
451
452#ifdef CONFIG_NUMA_BALANCING
453 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
454#endif
455#ifdef CONFIG_CGROUP_SCHED
456 SEQ_printf(m, " %s", task_group_path(task_group(p)));
457#endif
458
459 SEQ_printf(m, "\n");
460}
461
462static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
463{
464 struct task_struct *g, *p;
465
466 SEQ_printf(m, "\n");
467 SEQ_printf(m, "runnable tasks:\n");
468 SEQ_printf(m, " S task PID tree-key switches prio"
469 " wait-time sum-exec sum-sleep\n");
470 SEQ_printf(m, "-------------------------------------------------------"
471 "----------------------------------------------------\n");
472
473 rcu_read_lock();
474 for_each_process_thread(g, p) {
475 if (task_cpu(p) != rq_cpu)
476 continue;
477
478 print_task(m, rq, p);
479 }
480 rcu_read_unlock();
481}
482
483void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
484{
485 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
486 spread, rq0_min_vruntime, spread0;
487 struct rq *rq = cpu_rq(cpu);
488 struct sched_entity *last;
489 unsigned long flags;
490
491#ifdef CONFIG_FAIR_GROUP_SCHED
492 SEQ_printf(m, "\n");
493 SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
494#else
495 SEQ_printf(m, "\n");
496 SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
497#endif
498 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
499 SPLIT_NS(cfs_rq->exec_clock));
500
501 raw_spin_lock_irqsave(&rq->lock, flags);
502 if (rb_first_cached(&cfs_rq->tasks_timeline))
503 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
504 last = __pick_last_entity(cfs_rq);
505 if (last)
506 max_vruntime = last->vruntime;
507 min_vruntime = cfs_rq->min_vruntime;
508 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
509 raw_spin_unlock_irqrestore(&rq->lock, flags);
510 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
511 SPLIT_NS(MIN_vruntime));
512 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
513 SPLIT_NS(min_vruntime));
514 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
515 SPLIT_NS(max_vruntime));
516 spread = max_vruntime - MIN_vruntime;
517 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
518 SPLIT_NS(spread));
519 spread0 = min_vruntime - rq0_min_vruntime;
520 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
521 SPLIT_NS(spread0));
522 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
523 cfs_rq->nr_spread_over);
524 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
525 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
526#ifdef CONFIG_SMP
527 SEQ_printf(m, " .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
528 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
529 cfs_rq->avg.load_avg);
530 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg",
531 cfs_rq->avg.runnable_load_avg);
532 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
533 cfs_rq->avg.util_avg);
534 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued",
535 cfs_rq->avg.util_est.enqueued);
536 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
537 cfs_rq->removed.load_avg);
538 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
539 cfs_rq->removed.util_avg);
540 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_sum",
541 cfs_rq->removed.runnable_sum);
542#ifdef CONFIG_FAIR_GROUP_SCHED
543 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
544 cfs_rq->tg_load_avg_contrib);
545 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
546 atomic_long_read(&cfs_rq->tg->load_avg));
547#endif
548#endif
549#ifdef CONFIG_CFS_BANDWIDTH
550 SEQ_printf(m, " .%-30s: %d\n", "throttled",
551 cfs_rq->throttled);
552 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
553 cfs_rq->throttle_count);
554#endif
555
556#ifdef CONFIG_FAIR_GROUP_SCHED
557 print_cfs_group_stats(m, cpu, cfs_rq->tg);
558#endif
559}
560
561void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
562{
563#ifdef CONFIG_RT_GROUP_SCHED
564 SEQ_printf(m, "\n");
565 SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
566#else
567 SEQ_printf(m, "\n");
568 SEQ_printf(m, "rt_rq[%d]:\n", cpu);
569#endif
570
571#define P(x) \
572 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
573#define PU(x) \
574 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
575#define PN(x) \
576 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
577
578 PU(rt_nr_running);
579#ifdef CONFIG_SMP
580 PU(rt_nr_migratory);
581#endif
582 P(rt_throttled);
583 PN(rt_time);
584 PN(rt_runtime);
585
586#undef PN
587#undef PU
588#undef P
589}
590
591void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
592{
593 struct dl_bw *dl_bw;
594
595 SEQ_printf(m, "\n");
596 SEQ_printf(m, "dl_rq[%d]:\n", cpu);
597
598#define PU(x) \
599 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
600
601 PU(dl_nr_running);
602#ifdef CONFIG_SMP
603 PU(dl_nr_migratory);
604 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
605#else
606 dl_bw = &dl_rq->dl_bw;
607#endif
608 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
609 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
610
611#undef PU
612}
613
614static void print_cpu(struct seq_file *m, int cpu)
615{
616 struct rq *rq = cpu_rq(cpu);
617 unsigned long flags;
618
619#ifdef CONFIG_X86
620 {
621 unsigned int freq = cpu_khz ? : 1;
622
623 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
624 cpu, freq / 1000, (freq % 1000));
625 }
626#else
627 SEQ_printf(m, "cpu#%d\n", cpu);
628#endif
629
630#define P(x) \
631do { \
632 if (sizeof(rq->x) == 4) \
633 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
634 else \
635 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
636} while (0)
637
638#define PN(x) \
639 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
640
641 P(nr_running);
642 P(nr_switches);
643 P(nr_load_updates);
644 P(nr_uninterruptible);
645 PN(next_balance);
646 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
647 PN(clock);
648 PN(clock_task);
649#undef P
650#undef PN
651
652#ifdef CONFIG_SMP
653#define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
654 P64(avg_idle);
655 P64(max_idle_balance_cost);
656#undef P64
657#endif
658
659#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
660 if (schedstat_enabled()) {
661 P(yld_count);
662 P(sched_count);
663 P(sched_goidle);
664 P(ttwu_count);
665 P(ttwu_local);
666 }
667#undef P
668
669 spin_lock_irqsave(&sched_debug_lock, flags);
670 print_cfs_stats(m, cpu);
671 print_rt_stats(m, cpu);
672 print_dl_stats(m, cpu);
673
674 print_rq(m, rq, cpu);
675 spin_unlock_irqrestore(&sched_debug_lock, flags);
676 SEQ_printf(m, "\n");
677}
678
679static const char *sched_tunable_scaling_names[] = {
680 "none",
681 "logarithmic",
682 "linear"
683};
684
685static void sched_debug_header(struct seq_file *m)
686{
687 u64 ktime, sched_clk, cpu_clk;
688 unsigned long flags;
689
690 local_irq_save(flags);
691 ktime = ktime_to_ns(ktime_get());
692 sched_clk = sched_clock();
693 cpu_clk = local_clock();
694 local_irq_restore(flags);
695
696 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
697 init_utsname()->release,
698 (int)strcspn(init_utsname()->version, " "),
699 init_utsname()->version);
700
701#define P(x) \
702 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
703#define PN(x) \
704 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
705 PN(ktime);
706 PN(sched_clk);
707 PN(cpu_clk);
708 P(jiffies);
709#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
710 P(sched_clock_stable());
711#endif
712#undef PN
713#undef P
714
715 SEQ_printf(m, "\n");
716 SEQ_printf(m, "sysctl_sched\n");
717
718#define P(x) \
719 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
720#define PN(x) \
721 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
722 PN(sysctl_sched_latency);
723 PN(sysctl_sched_min_granularity);
724 PN(sysctl_sched_wakeup_granularity);
725 P(sysctl_sched_child_runs_first);
726 P(sysctl_sched_features);
727#undef PN
728#undef P
729
730 SEQ_printf(m, " .%-40s: %d (%s)\n",
731 "sysctl_sched_tunable_scaling",
732 sysctl_sched_tunable_scaling,
733 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
734 SEQ_printf(m, "\n");
735}
736
737static int sched_debug_show(struct seq_file *m, void *v)
738{
739 int cpu = (unsigned long)(v - 2);
740
741 if (cpu != -1)
742 print_cpu(m, cpu);
743 else
744 sched_debug_header(m);
745
746 return 0;
747}
748
749void sysrq_sched_debug_show(void)
750{
751 int cpu;
752
753 sched_debug_header(NULL);
754 for_each_online_cpu(cpu)
755 print_cpu(NULL, cpu);
756
757}
758
759/*
760 * This itererator needs some explanation.
761 * It returns 1 for the header position.
762 * This means 2 is CPU 0.
763 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
764 * to use cpumask_* to iterate over the CPUs.
765 */
766static void *sched_debug_start(struct seq_file *file, loff_t *offset)
767{
768 unsigned long n = *offset;
769
770 if (n == 0)
771 return (void *) 1;
772
773 n--;
774
775 if (n > 0)
776 n = cpumask_next(n - 1, cpu_online_mask);
777 else
778 n = cpumask_first(cpu_online_mask);
779
780 *offset = n + 1;
781
782 if (n < nr_cpu_ids)
783 return (void *)(unsigned long)(n + 2);
784
785 return NULL;
786}
787
788static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
789{
790 (*offset)++;
791 return sched_debug_start(file, offset);
792}
793
794static void sched_debug_stop(struct seq_file *file, void *data)
795{
796}
797
798static const struct seq_operations sched_debug_sops = {
799 .start = sched_debug_start,
800 .next = sched_debug_next,
801 .stop = sched_debug_stop,
802 .show = sched_debug_show,
803};
804
805static int __init init_sched_debug_procfs(void)
806{
807 if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
808 return -ENOMEM;
809 return 0;
810}
811
812__initcall(init_sched_debug_procfs);
813
814#define __P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
815#define P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
816#define __PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
817#define PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
818
819
820#ifdef CONFIG_NUMA_BALANCING
821void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
822 unsigned long tpf, unsigned long gsf, unsigned long gpf)
823{
824 SEQ_printf(m, "numa_faults node=%d ", node);
825 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
826 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
827}
828#endif
829
830
831static void sched_show_numa(struct task_struct *p, struct seq_file *m)
832{
833#ifdef CONFIG_NUMA_BALANCING
834 struct mempolicy *pol;
835
836 if (p->mm)
837 P(mm->numa_scan_seq);
838
839 task_lock(p);
840 pol = p->mempolicy;
841 if (pol && !(pol->flags & MPOL_F_MORON))
842 pol = NULL;
843 mpol_get(pol);
844 task_unlock(p);
845
846 P(numa_pages_migrated);
847 P(numa_preferred_nid);
848 P(total_numa_faults);
849 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
850 task_node(p), task_numa_group_id(p));
851 show_numa_stats(p, m);
852 mpol_put(pol);
853#endif
854}
855
856void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
857 struct seq_file *m)
858{
859 unsigned long nr_switches;
860
861 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
862 get_nr_threads(p));
863 SEQ_printf(m,
864 "---------------------------------------------------------"
865 "----------\n");
866#define __P(F) \
867 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
868#define P(F) \
869 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
870#define P_SCHEDSTAT(F) \
871 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
872#define __PN(F) \
873 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
874#define PN(F) \
875 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
876#define PN_SCHEDSTAT(F) \
877 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
878
879 PN(se.exec_start);
880 PN(se.vruntime);
881 PN(se.sum_exec_runtime);
882
883 nr_switches = p->nvcsw + p->nivcsw;
884
885 P(se.nr_migrations);
886
887 if (schedstat_enabled()) {
888 u64 avg_atom, avg_per_cpu;
889
890 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
891 PN_SCHEDSTAT(se.statistics.wait_start);
892 PN_SCHEDSTAT(se.statistics.sleep_start);
893 PN_SCHEDSTAT(se.statistics.block_start);
894 PN_SCHEDSTAT(se.statistics.sleep_max);
895 PN_SCHEDSTAT(se.statistics.block_max);
896 PN_SCHEDSTAT(se.statistics.exec_max);
897 PN_SCHEDSTAT(se.statistics.slice_max);
898 PN_SCHEDSTAT(se.statistics.wait_max);
899 PN_SCHEDSTAT(se.statistics.wait_sum);
900 P_SCHEDSTAT(se.statistics.wait_count);
901 PN_SCHEDSTAT(se.statistics.iowait_sum);
902 P_SCHEDSTAT(se.statistics.iowait_count);
903 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
904 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
905 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
906 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
907 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
908 P_SCHEDSTAT(se.statistics.nr_wakeups);
909 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
910 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
911 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
912 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
913 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
914 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
915 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
916 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
917
918 avg_atom = p->se.sum_exec_runtime;
919 if (nr_switches)
920 avg_atom = div64_ul(avg_atom, nr_switches);
921 else
922 avg_atom = -1LL;
923
924 avg_per_cpu = p->se.sum_exec_runtime;
925 if (p->se.nr_migrations) {
926 avg_per_cpu = div64_u64(avg_per_cpu,
927 p->se.nr_migrations);
928 } else {
929 avg_per_cpu = -1LL;
930 }
931
932 __PN(avg_atom);
933 __PN(avg_per_cpu);
934 }
935
936 __P(nr_switches);
937 SEQ_printf(m, "%-45s:%21Ld\n",
938 "nr_voluntary_switches", (long long)p->nvcsw);
939 SEQ_printf(m, "%-45s:%21Ld\n",
940 "nr_involuntary_switches", (long long)p->nivcsw);
941
942 P(se.load.weight);
943 P(se.runnable_weight);
944#ifdef CONFIG_SMP
945 P(se.avg.load_sum);
946 P(se.avg.runnable_load_sum);
947 P(se.avg.util_sum);
948 P(se.avg.load_avg);
949 P(se.avg.runnable_load_avg);
950 P(se.avg.util_avg);
951 P(se.avg.last_update_time);
952 P(se.avg.util_est.ewma);
953 P(se.avg.util_est.enqueued);
954#endif
955 P(policy);
956 P(prio);
957 if (task_has_dl_policy(p)) {
958 P(dl.runtime);
959 P(dl.deadline);
960 }
961#undef PN_SCHEDSTAT
962#undef PN
963#undef __PN
964#undef P_SCHEDSTAT
965#undef P
966#undef __P
967
968 {
969 unsigned int this_cpu = raw_smp_processor_id();
970 u64 t0, t1;
971
972 t0 = cpu_clock(this_cpu);
973 t1 = cpu_clock(this_cpu);
974 SEQ_printf(m, "%-45s:%21Ld\n",
975 "clock-delta", (long long)(t1-t0));
976 }
977
978 sched_show_numa(p, m);
979}
980
981void proc_sched_set_task(struct task_struct *p)
982{
983#ifdef CONFIG_SCHEDSTATS
984 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
985#endif
986}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/sched/debug.c
4 *
5 * Print the CFS rbtree and other debugging details
6 *
7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8 */
9
10/*
11 * This allows printing both to /sys/kernel/debug/sched/debug and
12 * to the console
13 */
14#define SEQ_printf(m, x...) \
15 do { \
16 if (m) \
17 seq_printf(m, x); \
18 else \
19 pr_cont(x); \
20 } while (0)
21
22/*
23 * Ease the printing of nsec fields:
24 */
25static long long nsec_high(unsigned long long nsec)
26{
27 if ((long long)nsec < 0) {
28 nsec = -nsec;
29 do_div(nsec, 1000000);
30 return -nsec;
31 }
32 do_div(nsec, 1000000);
33
34 return nsec;
35}
36
37static unsigned long nsec_low(unsigned long long nsec)
38{
39 if ((long long)nsec < 0)
40 nsec = -nsec;
41
42 return do_div(nsec, 1000000);
43}
44
45#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
46
47#define SCHED_FEAT(name, enabled) \
48 #name ,
49
50static const char * const sched_feat_names[] = {
51#include "features.h"
52};
53
54#undef SCHED_FEAT
55
56static int sched_feat_show(struct seq_file *m, void *v)
57{
58 int i;
59
60 for (i = 0; i < __SCHED_FEAT_NR; i++) {
61 if (!(sysctl_sched_features & (1UL << i)))
62 seq_puts(m, "NO_");
63 seq_printf(m, "%s ", sched_feat_names[i]);
64 }
65 seq_puts(m, "\n");
66
67 return 0;
68}
69
70#ifdef CONFIG_JUMP_LABEL
71
72#define jump_label_key__true STATIC_KEY_INIT_TRUE
73#define jump_label_key__false STATIC_KEY_INIT_FALSE
74
75#define SCHED_FEAT(name, enabled) \
76 jump_label_key__##enabled ,
77
78struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
79#include "features.h"
80};
81
82#undef SCHED_FEAT
83
84static void sched_feat_disable(int i)
85{
86 static_key_disable_cpuslocked(&sched_feat_keys[i]);
87}
88
89static void sched_feat_enable(int i)
90{
91 static_key_enable_cpuslocked(&sched_feat_keys[i]);
92}
93#else
94static void sched_feat_disable(int i) { };
95static void sched_feat_enable(int i) { };
96#endif /* CONFIG_JUMP_LABEL */
97
98static int sched_feat_set(char *cmp)
99{
100 int i;
101 int neg = 0;
102
103 if (strncmp(cmp, "NO_", 3) == 0) {
104 neg = 1;
105 cmp += 3;
106 }
107
108 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
109 if (i < 0)
110 return i;
111
112 if (neg) {
113 sysctl_sched_features &= ~(1UL << i);
114 sched_feat_disable(i);
115 } else {
116 sysctl_sched_features |= (1UL << i);
117 sched_feat_enable(i);
118 }
119
120 return 0;
121}
122
123static ssize_t
124sched_feat_write(struct file *filp, const char __user *ubuf,
125 size_t cnt, loff_t *ppos)
126{
127 char buf[64];
128 char *cmp;
129 int ret;
130 struct inode *inode;
131
132 if (cnt > 63)
133 cnt = 63;
134
135 if (copy_from_user(&buf, ubuf, cnt))
136 return -EFAULT;
137
138 buf[cnt] = 0;
139 cmp = strstrip(buf);
140
141 /* Ensure the static_key remains in a consistent state */
142 inode = file_inode(filp);
143 cpus_read_lock();
144 inode_lock(inode);
145 ret = sched_feat_set(cmp);
146 inode_unlock(inode);
147 cpus_read_unlock();
148 if (ret < 0)
149 return ret;
150
151 *ppos += cnt;
152
153 return cnt;
154}
155
156static int sched_feat_open(struct inode *inode, struct file *filp)
157{
158 return single_open(filp, sched_feat_show, NULL);
159}
160
161static const struct file_operations sched_feat_fops = {
162 .open = sched_feat_open,
163 .write = sched_feat_write,
164 .read = seq_read,
165 .llseek = seq_lseek,
166 .release = single_release,
167};
168
169#ifdef CONFIG_SMP
170
171static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf,
172 size_t cnt, loff_t *ppos)
173{
174 char buf[16];
175 unsigned int scaling;
176
177 if (cnt > 15)
178 cnt = 15;
179
180 if (copy_from_user(&buf, ubuf, cnt))
181 return -EFAULT;
182 buf[cnt] = '\0';
183
184 if (kstrtouint(buf, 10, &scaling))
185 return -EINVAL;
186
187 if (scaling >= SCHED_TUNABLESCALING_END)
188 return -EINVAL;
189
190 sysctl_sched_tunable_scaling = scaling;
191 if (sched_update_scaling())
192 return -EINVAL;
193
194 *ppos += cnt;
195 return cnt;
196}
197
198static int sched_scaling_show(struct seq_file *m, void *v)
199{
200 seq_printf(m, "%d\n", sysctl_sched_tunable_scaling);
201 return 0;
202}
203
204static int sched_scaling_open(struct inode *inode, struct file *filp)
205{
206 return single_open(filp, sched_scaling_show, NULL);
207}
208
209static const struct file_operations sched_scaling_fops = {
210 .open = sched_scaling_open,
211 .write = sched_scaling_write,
212 .read = seq_read,
213 .llseek = seq_lseek,
214 .release = single_release,
215};
216
217#endif /* SMP */
218
219#ifdef CONFIG_PREEMPT_DYNAMIC
220
221static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
222 size_t cnt, loff_t *ppos)
223{
224 char buf[16];
225 int mode;
226
227 if (cnt > 15)
228 cnt = 15;
229
230 if (copy_from_user(&buf, ubuf, cnt))
231 return -EFAULT;
232
233 buf[cnt] = 0;
234 mode = sched_dynamic_mode(strstrip(buf));
235 if (mode < 0)
236 return mode;
237
238 sched_dynamic_update(mode);
239
240 *ppos += cnt;
241
242 return cnt;
243}
244
245static int sched_dynamic_show(struct seq_file *m, void *v)
246{
247 static const char * preempt_modes[] = {
248 "none", "voluntary", "full"
249 };
250 int i;
251
252 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
253 if (preempt_dynamic_mode == i)
254 seq_puts(m, "(");
255 seq_puts(m, preempt_modes[i]);
256 if (preempt_dynamic_mode == i)
257 seq_puts(m, ")");
258
259 seq_puts(m, " ");
260 }
261
262 seq_puts(m, "\n");
263 return 0;
264}
265
266static int sched_dynamic_open(struct inode *inode, struct file *filp)
267{
268 return single_open(filp, sched_dynamic_show, NULL);
269}
270
271static const struct file_operations sched_dynamic_fops = {
272 .open = sched_dynamic_open,
273 .write = sched_dynamic_write,
274 .read = seq_read,
275 .llseek = seq_lseek,
276 .release = single_release,
277};
278
279#endif /* CONFIG_PREEMPT_DYNAMIC */
280
281__read_mostly bool sched_debug_verbose;
282
283#ifdef CONFIG_SMP
284static struct dentry *sd_dentry;
285
286
287static ssize_t sched_verbose_write(struct file *filp, const char __user *ubuf,
288 size_t cnt, loff_t *ppos)
289{
290 ssize_t result;
291 bool orig;
292
293 cpus_read_lock();
294 mutex_lock(&sched_domains_mutex);
295
296 orig = sched_debug_verbose;
297 result = debugfs_write_file_bool(filp, ubuf, cnt, ppos);
298
299 if (sched_debug_verbose && !orig)
300 update_sched_domain_debugfs();
301 else if (!sched_debug_verbose && orig) {
302 debugfs_remove(sd_dentry);
303 sd_dentry = NULL;
304 }
305
306 mutex_unlock(&sched_domains_mutex);
307 cpus_read_unlock();
308
309 return result;
310}
311#else
312#define sched_verbose_write debugfs_write_file_bool
313#endif
314
315static const struct file_operations sched_verbose_fops = {
316 .read = debugfs_read_file_bool,
317 .write = sched_verbose_write,
318 .open = simple_open,
319 .llseek = default_llseek,
320};
321
322static const struct seq_operations sched_debug_sops;
323
324static int sched_debug_open(struct inode *inode, struct file *filp)
325{
326 return seq_open(filp, &sched_debug_sops);
327}
328
329static const struct file_operations sched_debug_fops = {
330 .open = sched_debug_open,
331 .read = seq_read,
332 .llseek = seq_lseek,
333 .release = seq_release,
334};
335
336static struct dentry *debugfs_sched;
337
338static __init int sched_init_debug(void)
339{
340 struct dentry __maybe_unused *numa;
341
342 debugfs_sched = debugfs_create_dir("sched", NULL);
343
344 debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops);
345 debugfs_create_file_unsafe("verbose", 0644, debugfs_sched, &sched_debug_verbose, &sched_verbose_fops);
346#ifdef CONFIG_PREEMPT_DYNAMIC
347 debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops);
348#endif
349
350 debugfs_create_u32("base_slice_ns", 0644, debugfs_sched, &sysctl_sched_base_slice);
351
352 debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
353 debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
354
355#ifdef CONFIG_SMP
356 debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops);
357 debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost);
358 debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate);
359
360 mutex_lock(&sched_domains_mutex);
361 update_sched_domain_debugfs();
362 mutex_unlock(&sched_domains_mutex);
363#endif
364
365#ifdef CONFIG_NUMA_BALANCING
366 numa = debugfs_create_dir("numa_balancing", debugfs_sched);
367
368 debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay);
369 debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min);
370 debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max);
371 debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size);
372 debugfs_create_u32("hot_threshold_ms", 0644, numa, &sysctl_numa_balancing_hot_threshold);
373#endif
374
375 debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
376
377 return 0;
378}
379late_initcall(sched_init_debug);
380
381#ifdef CONFIG_SMP
382
383static cpumask_var_t sd_sysctl_cpus;
384
385static int sd_flags_show(struct seq_file *m, void *v)
386{
387 unsigned long flags = *(unsigned int *)m->private;
388 int idx;
389
390 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
391 seq_puts(m, sd_flag_debug[idx].name);
392 seq_puts(m, " ");
393 }
394 seq_puts(m, "\n");
395
396 return 0;
397}
398
399static int sd_flags_open(struct inode *inode, struct file *file)
400{
401 return single_open(file, sd_flags_show, inode->i_private);
402}
403
404static const struct file_operations sd_flags_fops = {
405 .open = sd_flags_open,
406 .read = seq_read,
407 .llseek = seq_lseek,
408 .release = single_release,
409};
410
411static void register_sd(struct sched_domain *sd, struct dentry *parent)
412{
413#define SDM(type, mode, member) \
414 debugfs_create_##type(#member, mode, parent, &sd->member)
415
416 SDM(ulong, 0644, min_interval);
417 SDM(ulong, 0644, max_interval);
418 SDM(u64, 0644, max_newidle_lb_cost);
419 SDM(u32, 0644, busy_factor);
420 SDM(u32, 0644, imbalance_pct);
421 SDM(u32, 0644, cache_nice_tries);
422 SDM(str, 0444, name);
423
424#undef SDM
425
426 debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops);
427 debugfs_create_file("groups_flags", 0444, parent, &sd->groups->flags, &sd_flags_fops);
428}
429
430void update_sched_domain_debugfs(void)
431{
432 int cpu, i;
433
434 /*
435 * This can unfortunately be invoked before sched_debug_init() creates
436 * the debug directory. Don't touch sd_sysctl_cpus until then.
437 */
438 if (!debugfs_sched)
439 return;
440
441 if (!sched_debug_verbose)
442 return;
443
444 if (!cpumask_available(sd_sysctl_cpus)) {
445 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
446 return;
447 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
448 }
449
450 if (!sd_dentry) {
451 sd_dentry = debugfs_create_dir("domains", debugfs_sched);
452
453 /* rebuild sd_sysctl_cpus if empty since it gets cleared below */
454 if (cpumask_empty(sd_sysctl_cpus))
455 cpumask_copy(sd_sysctl_cpus, cpu_online_mask);
456 }
457
458 for_each_cpu(cpu, sd_sysctl_cpus) {
459 struct sched_domain *sd;
460 struct dentry *d_cpu;
461 char buf[32];
462
463 snprintf(buf, sizeof(buf), "cpu%d", cpu);
464 debugfs_lookup_and_remove(buf, sd_dentry);
465 d_cpu = debugfs_create_dir(buf, sd_dentry);
466
467 i = 0;
468 for_each_domain(cpu, sd) {
469 struct dentry *d_sd;
470
471 snprintf(buf, sizeof(buf), "domain%d", i);
472 d_sd = debugfs_create_dir(buf, d_cpu);
473
474 register_sd(sd, d_sd);
475 i++;
476 }
477
478 __cpumask_clear_cpu(cpu, sd_sysctl_cpus);
479 }
480}
481
482void dirty_sched_domain_sysctl(int cpu)
483{
484 if (cpumask_available(sd_sysctl_cpus))
485 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
486}
487
488#endif /* CONFIG_SMP */
489
490#ifdef CONFIG_FAIR_GROUP_SCHED
491static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
492{
493 struct sched_entity *se = tg->se[cpu];
494
495#define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
496#define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", \
497 #F, (long long)schedstat_val(stats->F))
498#define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
499#define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", \
500 #F, SPLIT_NS((long long)schedstat_val(stats->F)))
501
502 if (!se)
503 return;
504
505 PN(se->exec_start);
506 PN(se->vruntime);
507 PN(se->sum_exec_runtime);
508
509 if (schedstat_enabled()) {
510 struct sched_statistics *stats;
511 stats = __schedstats_from_se(se);
512
513 PN_SCHEDSTAT(wait_start);
514 PN_SCHEDSTAT(sleep_start);
515 PN_SCHEDSTAT(block_start);
516 PN_SCHEDSTAT(sleep_max);
517 PN_SCHEDSTAT(block_max);
518 PN_SCHEDSTAT(exec_max);
519 PN_SCHEDSTAT(slice_max);
520 PN_SCHEDSTAT(wait_max);
521 PN_SCHEDSTAT(wait_sum);
522 P_SCHEDSTAT(wait_count);
523 }
524
525 P(se->load.weight);
526#ifdef CONFIG_SMP
527 P(se->avg.load_avg);
528 P(se->avg.util_avg);
529 P(se->avg.runnable_avg);
530#endif
531
532#undef PN_SCHEDSTAT
533#undef PN
534#undef P_SCHEDSTAT
535#undef P
536}
537#endif
538
539#ifdef CONFIG_CGROUP_SCHED
540static DEFINE_SPINLOCK(sched_debug_lock);
541static char group_path[PATH_MAX];
542
543static void task_group_path(struct task_group *tg, char *path, int plen)
544{
545 if (autogroup_path(tg, path, plen))
546 return;
547
548 cgroup_path(tg->css.cgroup, path, plen);
549}
550
551/*
552 * Only 1 SEQ_printf_task_group_path() caller can use the full length
553 * group_path[] for cgroup path. Other simultaneous callers will have
554 * to use a shorter stack buffer. A "..." suffix is appended at the end
555 * of the stack buffer so that it will show up in case the output length
556 * matches the given buffer size to indicate possible path name truncation.
557 */
558#define SEQ_printf_task_group_path(m, tg, fmt...) \
559{ \
560 if (spin_trylock(&sched_debug_lock)) { \
561 task_group_path(tg, group_path, sizeof(group_path)); \
562 SEQ_printf(m, fmt, group_path); \
563 spin_unlock(&sched_debug_lock); \
564 } else { \
565 char buf[128]; \
566 char *bufend = buf + sizeof(buf) - 3; \
567 task_group_path(tg, buf, bufend - buf); \
568 strcpy(bufend - 1, "..."); \
569 SEQ_printf(m, fmt, buf); \
570 } \
571}
572#endif
573
574static void
575print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
576{
577 if (task_current(rq, p))
578 SEQ_printf(m, ">R");
579 else
580 SEQ_printf(m, " %c", task_state_to_char(p));
581
582 SEQ_printf(m, "%15s %5d %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld.%06ld %9Ld %5d ",
583 p->comm, task_pid_nr(p),
584 SPLIT_NS(p->se.vruntime),
585 entity_eligible(cfs_rq_of(&p->se), &p->se) ? 'E' : 'N',
586 SPLIT_NS(p->se.deadline),
587 SPLIT_NS(p->se.slice),
588 SPLIT_NS(p->se.sum_exec_runtime),
589 (long long)(p->nvcsw + p->nivcsw),
590 p->prio);
591
592 SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld %9lld.%06ld",
593 SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)),
594 SPLIT_NS(p->se.sum_exec_runtime),
595 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)),
596 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime)));
597
598#ifdef CONFIG_NUMA_BALANCING
599 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
600#endif
601#ifdef CONFIG_CGROUP_SCHED
602 SEQ_printf_task_group_path(m, task_group(p), " %s")
603#endif
604
605 SEQ_printf(m, "\n");
606}
607
608static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
609{
610 struct task_struct *g, *p;
611
612 SEQ_printf(m, "\n");
613 SEQ_printf(m, "runnable tasks:\n");
614 SEQ_printf(m, " S task PID tree-key switches prio"
615 " wait-time sum-exec sum-sleep\n");
616 SEQ_printf(m, "-------------------------------------------------------"
617 "------------------------------------------------------\n");
618
619 rcu_read_lock();
620 for_each_process_thread(g, p) {
621 if (task_cpu(p) != rq_cpu)
622 continue;
623
624 print_task(m, rq, p);
625 }
626 rcu_read_unlock();
627}
628
629void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
630{
631 s64 left_vruntime = -1, min_vruntime, right_vruntime = -1, left_deadline = -1, spread;
632 struct sched_entity *last, *first, *root;
633 struct rq *rq = cpu_rq(cpu);
634 unsigned long flags;
635
636#ifdef CONFIG_FAIR_GROUP_SCHED
637 SEQ_printf(m, "\n");
638 SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu);
639#else
640 SEQ_printf(m, "\n");
641 SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
642#endif
643 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
644 SPLIT_NS(cfs_rq->exec_clock));
645
646 raw_spin_rq_lock_irqsave(rq, flags);
647 root = __pick_root_entity(cfs_rq);
648 if (root)
649 left_vruntime = root->min_vruntime;
650 first = __pick_first_entity(cfs_rq);
651 if (first)
652 left_deadline = first->deadline;
653 last = __pick_last_entity(cfs_rq);
654 if (last)
655 right_vruntime = last->vruntime;
656 min_vruntime = cfs_rq->min_vruntime;
657 raw_spin_rq_unlock_irqrestore(rq, flags);
658
659 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "left_deadline",
660 SPLIT_NS(left_deadline));
661 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "left_vruntime",
662 SPLIT_NS(left_vruntime));
663 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
664 SPLIT_NS(min_vruntime));
665 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "avg_vruntime",
666 SPLIT_NS(avg_vruntime(cfs_rq)));
667 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "right_vruntime",
668 SPLIT_NS(right_vruntime));
669 spread = right_vruntime - left_vruntime;
670 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", SPLIT_NS(spread));
671 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
672 cfs_rq->nr_spread_over);
673 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
674 SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running);
675 SEQ_printf(m, " .%-30s: %d\n", "idle_nr_running",
676 cfs_rq->idle_nr_running);
677 SEQ_printf(m, " .%-30s: %d\n", "idle_h_nr_running",
678 cfs_rq->idle_h_nr_running);
679 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
680#ifdef CONFIG_SMP
681 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
682 cfs_rq->avg.load_avg);
683 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg",
684 cfs_rq->avg.runnable_avg);
685 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
686 cfs_rq->avg.util_avg);
687 SEQ_printf(m, " .%-30s: %u\n", "util_est",
688 cfs_rq->avg.util_est);
689 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
690 cfs_rq->removed.load_avg);
691 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
692 cfs_rq->removed.util_avg);
693 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg",
694 cfs_rq->removed.runnable_avg);
695#ifdef CONFIG_FAIR_GROUP_SCHED
696 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
697 cfs_rq->tg_load_avg_contrib);
698 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
699 atomic_long_read(&cfs_rq->tg->load_avg));
700#endif
701#endif
702#ifdef CONFIG_CFS_BANDWIDTH
703 SEQ_printf(m, " .%-30s: %d\n", "throttled",
704 cfs_rq->throttled);
705 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
706 cfs_rq->throttle_count);
707#endif
708
709#ifdef CONFIG_FAIR_GROUP_SCHED
710 print_cfs_group_stats(m, cpu, cfs_rq->tg);
711#endif
712}
713
714void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
715{
716#ifdef CONFIG_RT_GROUP_SCHED
717 SEQ_printf(m, "\n");
718 SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu);
719#else
720 SEQ_printf(m, "\n");
721 SEQ_printf(m, "rt_rq[%d]:\n", cpu);
722#endif
723
724#define P(x) \
725 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
726#define PU(x) \
727 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
728#define PN(x) \
729 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
730
731 PU(rt_nr_running);
732 P(rt_throttled);
733 PN(rt_time);
734 PN(rt_runtime);
735
736#undef PN
737#undef PU
738#undef P
739}
740
741void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
742{
743 struct dl_bw *dl_bw;
744
745 SEQ_printf(m, "\n");
746 SEQ_printf(m, "dl_rq[%d]:\n", cpu);
747
748#define PU(x) \
749 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
750
751 PU(dl_nr_running);
752#ifdef CONFIG_SMP
753 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
754#else
755 dl_bw = &dl_rq->dl_bw;
756#endif
757 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
758 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
759
760#undef PU
761}
762
763static void print_cpu(struct seq_file *m, int cpu)
764{
765 struct rq *rq = cpu_rq(cpu);
766
767#ifdef CONFIG_X86
768 {
769 unsigned int freq = cpu_khz ? : 1;
770
771 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
772 cpu, freq / 1000, (freq % 1000));
773 }
774#else
775 SEQ_printf(m, "cpu#%d\n", cpu);
776#endif
777
778#define P(x) \
779do { \
780 if (sizeof(rq->x) == 4) \
781 SEQ_printf(m, " .%-30s: %d\n", #x, (int)(rq->x)); \
782 else \
783 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
784} while (0)
785
786#define PN(x) \
787 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
788
789 P(nr_running);
790 P(nr_switches);
791 P(nr_uninterruptible);
792 PN(next_balance);
793 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
794 PN(clock);
795 PN(clock_task);
796#undef P
797#undef PN
798
799#ifdef CONFIG_SMP
800#define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
801 P64(avg_idle);
802 P64(max_idle_balance_cost);
803#undef P64
804#endif
805
806#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
807 if (schedstat_enabled()) {
808 P(yld_count);
809 P(sched_count);
810 P(sched_goidle);
811 P(ttwu_count);
812 P(ttwu_local);
813 }
814#undef P
815
816 print_cfs_stats(m, cpu);
817 print_rt_stats(m, cpu);
818 print_dl_stats(m, cpu);
819
820 print_rq(m, rq, cpu);
821 SEQ_printf(m, "\n");
822}
823
824static const char *sched_tunable_scaling_names[] = {
825 "none",
826 "logarithmic",
827 "linear"
828};
829
830static void sched_debug_header(struct seq_file *m)
831{
832 u64 ktime, sched_clk, cpu_clk;
833 unsigned long flags;
834
835 local_irq_save(flags);
836 ktime = ktime_to_ns(ktime_get());
837 sched_clk = sched_clock();
838 cpu_clk = local_clock();
839 local_irq_restore(flags);
840
841 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
842 init_utsname()->release,
843 (int)strcspn(init_utsname()->version, " "),
844 init_utsname()->version);
845
846#define P(x) \
847 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
848#define PN(x) \
849 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
850 PN(ktime);
851 PN(sched_clk);
852 PN(cpu_clk);
853 P(jiffies);
854#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
855 P(sched_clock_stable());
856#endif
857#undef PN
858#undef P
859
860 SEQ_printf(m, "\n");
861 SEQ_printf(m, "sysctl_sched\n");
862
863#define P(x) \
864 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
865#define PN(x) \
866 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
867 PN(sysctl_sched_base_slice);
868 P(sysctl_sched_features);
869#undef PN
870#undef P
871
872 SEQ_printf(m, " .%-40s: %d (%s)\n",
873 "sysctl_sched_tunable_scaling",
874 sysctl_sched_tunable_scaling,
875 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
876 SEQ_printf(m, "\n");
877}
878
879static int sched_debug_show(struct seq_file *m, void *v)
880{
881 int cpu = (unsigned long)(v - 2);
882
883 if (cpu != -1)
884 print_cpu(m, cpu);
885 else
886 sched_debug_header(m);
887
888 return 0;
889}
890
891void sysrq_sched_debug_show(void)
892{
893 int cpu;
894
895 sched_debug_header(NULL);
896 for_each_online_cpu(cpu) {
897 /*
898 * Need to reset softlockup watchdogs on all CPUs, because
899 * another CPU might be blocked waiting for us to process
900 * an IPI or stop_machine.
901 */
902 touch_nmi_watchdog();
903 touch_all_softlockup_watchdogs();
904 print_cpu(NULL, cpu);
905 }
906}
907
908/*
909 * This iterator needs some explanation.
910 * It returns 1 for the header position.
911 * This means 2 is CPU 0.
912 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
913 * to use cpumask_* to iterate over the CPUs.
914 */
915static void *sched_debug_start(struct seq_file *file, loff_t *offset)
916{
917 unsigned long n = *offset;
918
919 if (n == 0)
920 return (void *) 1;
921
922 n--;
923
924 if (n > 0)
925 n = cpumask_next(n - 1, cpu_online_mask);
926 else
927 n = cpumask_first(cpu_online_mask);
928
929 *offset = n + 1;
930
931 if (n < nr_cpu_ids)
932 return (void *)(unsigned long)(n + 2);
933
934 return NULL;
935}
936
937static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
938{
939 (*offset)++;
940 return sched_debug_start(file, offset);
941}
942
943static void sched_debug_stop(struct seq_file *file, void *data)
944{
945}
946
947static const struct seq_operations sched_debug_sops = {
948 .start = sched_debug_start,
949 .next = sched_debug_next,
950 .stop = sched_debug_stop,
951 .show = sched_debug_show,
952};
953
954#define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
955#define __P(F) __PS(#F, F)
956#define P(F) __PS(#F, p->F)
957#define PM(F, M) __PS(#F, p->F & (M))
958#define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
959#define __PN(F) __PSN(#F, F)
960#define PN(F) __PSN(#F, p->F)
961
962
963#ifdef CONFIG_NUMA_BALANCING
964void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
965 unsigned long tpf, unsigned long gsf, unsigned long gpf)
966{
967 SEQ_printf(m, "numa_faults node=%d ", node);
968 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
969 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
970}
971#endif
972
973
974static void sched_show_numa(struct task_struct *p, struct seq_file *m)
975{
976#ifdef CONFIG_NUMA_BALANCING
977 if (p->mm)
978 P(mm->numa_scan_seq);
979
980 P(numa_pages_migrated);
981 P(numa_preferred_nid);
982 P(total_numa_faults);
983 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
984 task_node(p), task_numa_group_id(p));
985 show_numa_stats(p, m);
986#endif
987}
988
989void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
990 struct seq_file *m)
991{
992 unsigned long nr_switches;
993
994 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
995 get_nr_threads(p));
996 SEQ_printf(m,
997 "---------------------------------------------------------"
998 "----------\n");
999
1000#define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->stats.F))
1001#define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->stats.F))
1002
1003 PN(se.exec_start);
1004 PN(se.vruntime);
1005 PN(se.sum_exec_runtime);
1006
1007 nr_switches = p->nvcsw + p->nivcsw;
1008
1009 P(se.nr_migrations);
1010
1011 if (schedstat_enabled()) {
1012 u64 avg_atom, avg_per_cpu;
1013
1014 PN_SCHEDSTAT(sum_sleep_runtime);
1015 PN_SCHEDSTAT(sum_block_runtime);
1016 PN_SCHEDSTAT(wait_start);
1017 PN_SCHEDSTAT(sleep_start);
1018 PN_SCHEDSTAT(block_start);
1019 PN_SCHEDSTAT(sleep_max);
1020 PN_SCHEDSTAT(block_max);
1021 PN_SCHEDSTAT(exec_max);
1022 PN_SCHEDSTAT(slice_max);
1023 PN_SCHEDSTAT(wait_max);
1024 PN_SCHEDSTAT(wait_sum);
1025 P_SCHEDSTAT(wait_count);
1026 PN_SCHEDSTAT(iowait_sum);
1027 P_SCHEDSTAT(iowait_count);
1028 P_SCHEDSTAT(nr_migrations_cold);
1029 P_SCHEDSTAT(nr_failed_migrations_affine);
1030 P_SCHEDSTAT(nr_failed_migrations_running);
1031 P_SCHEDSTAT(nr_failed_migrations_hot);
1032 P_SCHEDSTAT(nr_forced_migrations);
1033 P_SCHEDSTAT(nr_wakeups);
1034 P_SCHEDSTAT(nr_wakeups_sync);
1035 P_SCHEDSTAT(nr_wakeups_migrate);
1036 P_SCHEDSTAT(nr_wakeups_local);
1037 P_SCHEDSTAT(nr_wakeups_remote);
1038 P_SCHEDSTAT(nr_wakeups_affine);
1039 P_SCHEDSTAT(nr_wakeups_affine_attempts);
1040 P_SCHEDSTAT(nr_wakeups_passive);
1041 P_SCHEDSTAT(nr_wakeups_idle);
1042
1043 avg_atom = p->se.sum_exec_runtime;
1044 if (nr_switches)
1045 avg_atom = div64_ul(avg_atom, nr_switches);
1046 else
1047 avg_atom = -1LL;
1048
1049 avg_per_cpu = p->se.sum_exec_runtime;
1050 if (p->se.nr_migrations) {
1051 avg_per_cpu = div64_u64(avg_per_cpu,
1052 p->se.nr_migrations);
1053 } else {
1054 avg_per_cpu = -1LL;
1055 }
1056
1057 __PN(avg_atom);
1058 __PN(avg_per_cpu);
1059
1060#ifdef CONFIG_SCHED_CORE
1061 PN_SCHEDSTAT(core_forceidle_sum);
1062#endif
1063 }
1064
1065 __P(nr_switches);
1066 __PS("nr_voluntary_switches", p->nvcsw);
1067 __PS("nr_involuntary_switches", p->nivcsw);
1068
1069 P(se.load.weight);
1070#ifdef CONFIG_SMP
1071 P(se.avg.load_sum);
1072 P(se.avg.runnable_sum);
1073 P(se.avg.util_sum);
1074 P(se.avg.load_avg);
1075 P(se.avg.runnable_avg);
1076 P(se.avg.util_avg);
1077 P(se.avg.last_update_time);
1078 PM(se.avg.util_est, ~UTIL_AVG_UNCHANGED);
1079#endif
1080#ifdef CONFIG_UCLAMP_TASK
1081 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
1082 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
1083 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
1084 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
1085#endif
1086 P(policy);
1087 P(prio);
1088 if (task_has_dl_policy(p)) {
1089 P(dl.runtime);
1090 P(dl.deadline);
1091 }
1092#undef PN_SCHEDSTAT
1093#undef P_SCHEDSTAT
1094
1095 {
1096 unsigned int this_cpu = raw_smp_processor_id();
1097 u64 t0, t1;
1098
1099 t0 = cpu_clock(this_cpu);
1100 t1 = cpu_clock(this_cpu);
1101 __PS("clock-delta", t1-t0);
1102 }
1103
1104 sched_show_numa(p, m);
1105}
1106
1107void proc_sched_set_task(struct task_struct *p)
1108{
1109#ifdef CONFIG_SCHEDSTATS
1110 memset(&p->stats, 0, sizeof(p->stats));
1111#endif
1112}
1113
1114void resched_latency_warn(int cpu, u64 latency)
1115{
1116 static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1);
1117
1118 WARN(__ratelimit(&latency_check_ratelimit),
1119 "sched: CPU %d need_resched set for > %llu ns (%d ticks) "
1120 "without schedule\n",
1121 cpu, latency, cpu_rq(cpu)->ticks_without_resched);
1122}