Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
24 */
25
26#include <linux/slab.h>
27#include <linux/delay.h>
28#include <linux/blkdev.h>
29#include <linux/module.h>
30#include <linux/seq_file.h>
31#include <linux/ratelimit.h>
32
33#include <trace/events/block.h>
34
35#include "md.h"
36#include "raid1.h"
37#include "md-bitmap.h"
38
39#define UNSUPPORTED_MDDEV_FLAGS \
40 ((1L << MD_HAS_JOURNAL) | \
41 (1L << MD_JOURNAL_CLEAN) | \
42 (1L << MD_HAS_PPL) | \
43 (1L << MD_HAS_MULTIPLE_PPLS))
44
45static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
46static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
47
48#define raid1_log(md, fmt, args...) \
49 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
50
51#include "raid1-10.c"
52
53static int check_and_add_wb(struct md_rdev *rdev, sector_t lo, sector_t hi)
54{
55 struct wb_info *wi, *temp_wi;
56 unsigned long flags;
57 int ret = 0;
58 struct mddev *mddev = rdev->mddev;
59
60 wi = mempool_alloc(mddev->wb_info_pool, GFP_NOIO);
61
62 spin_lock_irqsave(&rdev->wb_list_lock, flags);
63 list_for_each_entry(temp_wi, &rdev->wb_list, list) {
64 /* collision happened */
65 if (hi > temp_wi->lo && lo < temp_wi->hi) {
66 ret = -EBUSY;
67 break;
68 }
69 }
70
71 if (!ret) {
72 wi->lo = lo;
73 wi->hi = hi;
74 list_add(&wi->list, &rdev->wb_list);
75 } else
76 mempool_free(wi, mddev->wb_info_pool);
77 spin_unlock_irqrestore(&rdev->wb_list_lock, flags);
78
79 return ret;
80}
81
82static void remove_wb(struct md_rdev *rdev, sector_t lo, sector_t hi)
83{
84 struct wb_info *wi;
85 unsigned long flags;
86 int found = 0;
87 struct mddev *mddev = rdev->mddev;
88
89 spin_lock_irqsave(&rdev->wb_list_lock, flags);
90 list_for_each_entry(wi, &rdev->wb_list, list)
91 if (hi == wi->hi && lo == wi->lo) {
92 list_del(&wi->list);
93 mempool_free(wi, mddev->wb_info_pool);
94 found = 1;
95 break;
96 }
97
98 if (!found)
99 WARN(1, "The write behind IO is not recorded\n");
100 spin_unlock_irqrestore(&rdev->wb_list_lock, flags);
101 wake_up(&rdev->wb_io_wait);
102}
103
104/*
105 * for resync bio, r1bio pointer can be retrieved from the per-bio
106 * 'struct resync_pages'.
107 */
108static inline struct r1bio *get_resync_r1bio(struct bio *bio)
109{
110 return get_resync_pages(bio)->raid_bio;
111}
112
113static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
114{
115 struct pool_info *pi = data;
116 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
117
118 /* allocate a r1bio with room for raid_disks entries in the bios array */
119 return kzalloc(size, gfp_flags);
120}
121
122#define RESYNC_DEPTH 32
123#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
124#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
125#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
126#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
127#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
128
129static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
130{
131 struct pool_info *pi = data;
132 struct r1bio *r1_bio;
133 struct bio *bio;
134 int need_pages;
135 int j;
136 struct resync_pages *rps;
137
138 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
139 if (!r1_bio)
140 return NULL;
141
142 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
143 gfp_flags);
144 if (!rps)
145 goto out_free_r1bio;
146
147 /*
148 * Allocate bios : 1 for reading, n-1 for writing
149 */
150 for (j = pi->raid_disks ; j-- ; ) {
151 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
152 if (!bio)
153 goto out_free_bio;
154 r1_bio->bios[j] = bio;
155 }
156 /*
157 * Allocate RESYNC_PAGES data pages and attach them to
158 * the first bio.
159 * If this is a user-requested check/repair, allocate
160 * RESYNC_PAGES for each bio.
161 */
162 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
163 need_pages = pi->raid_disks;
164 else
165 need_pages = 1;
166 for (j = 0; j < pi->raid_disks; j++) {
167 struct resync_pages *rp = &rps[j];
168
169 bio = r1_bio->bios[j];
170
171 if (j < need_pages) {
172 if (resync_alloc_pages(rp, gfp_flags))
173 goto out_free_pages;
174 } else {
175 memcpy(rp, &rps[0], sizeof(*rp));
176 resync_get_all_pages(rp);
177 }
178
179 rp->raid_bio = r1_bio;
180 bio->bi_private = rp;
181 }
182
183 r1_bio->master_bio = NULL;
184
185 return r1_bio;
186
187out_free_pages:
188 while (--j >= 0)
189 resync_free_pages(&rps[j]);
190
191out_free_bio:
192 while (++j < pi->raid_disks)
193 bio_put(r1_bio->bios[j]);
194 kfree(rps);
195
196out_free_r1bio:
197 rbio_pool_free(r1_bio, data);
198 return NULL;
199}
200
201static void r1buf_pool_free(void *__r1_bio, void *data)
202{
203 struct pool_info *pi = data;
204 int i;
205 struct r1bio *r1bio = __r1_bio;
206 struct resync_pages *rp = NULL;
207
208 for (i = pi->raid_disks; i--; ) {
209 rp = get_resync_pages(r1bio->bios[i]);
210 resync_free_pages(rp);
211 bio_put(r1bio->bios[i]);
212 }
213
214 /* resync pages array stored in the 1st bio's .bi_private */
215 kfree(rp);
216
217 rbio_pool_free(r1bio, data);
218}
219
220static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
221{
222 int i;
223
224 for (i = 0; i < conf->raid_disks * 2; i++) {
225 struct bio **bio = r1_bio->bios + i;
226 if (!BIO_SPECIAL(*bio))
227 bio_put(*bio);
228 *bio = NULL;
229 }
230}
231
232static void free_r1bio(struct r1bio *r1_bio)
233{
234 struct r1conf *conf = r1_bio->mddev->private;
235
236 put_all_bios(conf, r1_bio);
237 mempool_free(r1_bio, &conf->r1bio_pool);
238}
239
240static void put_buf(struct r1bio *r1_bio)
241{
242 struct r1conf *conf = r1_bio->mddev->private;
243 sector_t sect = r1_bio->sector;
244 int i;
245
246 for (i = 0; i < conf->raid_disks * 2; i++) {
247 struct bio *bio = r1_bio->bios[i];
248 if (bio->bi_end_io)
249 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
250 }
251
252 mempool_free(r1_bio, &conf->r1buf_pool);
253
254 lower_barrier(conf, sect);
255}
256
257static void reschedule_retry(struct r1bio *r1_bio)
258{
259 unsigned long flags;
260 struct mddev *mddev = r1_bio->mddev;
261 struct r1conf *conf = mddev->private;
262 int idx;
263
264 idx = sector_to_idx(r1_bio->sector);
265 spin_lock_irqsave(&conf->device_lock, flags);
266 list_add(&r1_bio->retry_list, &conf->retry_list);
267 atomic_inc(&conf->nr_queued[idx]);
268 spin_unlock_irqrestore(&conf->device_lock, flags);
269
270 wake_up(&conf->wait_barrier);
271 md_wakeup_thread(mddev->thread);
272}
273
274/*
275 * raid_end_bio_io() is called when we have finished servicing a mirrored
276 * operation and are ready to return a success/failure code to the buffer
277 * cache layer.
278 */
279static void call_bio_endio(struct r1bio *r1_bio)
280{
281 struct bio *bio = r1_bio->master_bio;
282 struct r1conf *conf = r1_bio->mddev->private;
283
284 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
285 bio->bi_status = BLK_STS_IOERR;
286
287 bio_endio(bio);
288 /*
289 * Wake up any possible resync thread that waits for the device
290 * to go idle.
291 */
292 allow_barrier(conf, r1_bio->sector);
293}
294
295static void raid_end_bio_io(struct r1bio *r1_bio)
296{
297 struct bio *bio = r1_bio->master_bio;
298
299 /* if nobody has done the final endio yet, do it now */
300 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
301 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
302 (bio_data_dir(bio) == WRITE) ? "write" : "read",
303 (unsigned long long) bio->bi_iter.bi_sector,
304 (unsigned long long) bio_end_sector(bio) - 1);
305
306 call_bio_endio(r1_bio);
307 }
308 free_r1bio(r1_bio);
309}
310
311/*
312 * Update disk head position estimator based on IRQ completion info.
313 */
314static inline void update_head_pos(int disk, struct r1bio *r1_bio)
315{
316 struct r1conf *conf = r1_bio->mddev->private;
317
318 conf->mirrors[disk].head_position =
319 r1_bio->sector + (r1_bio->sectors);
320}
321
322/*
323 * Find the disk number which triggered given bio
324 */
325static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
326{
327 int mirror;
328 struct r1conf *conf = r1_bio->mddev->private;
329 int raid_disks = conf->raid_disks;
330
331 for (mirror = 0; mirror < raid_disks * 2; mirror++)
332 if (r1_bio->bios[mirror] == bio)
333 break;
334
335 BUG_ON(mirror == raid_disks * 2);
336 update_head_pos(mirror, r1_bio);
337
338 return mirror;
339}
340
341static void raid1_end_read_request(struct bio *bio)
342{
343 int uptodate = !bio->bi_status;
344 struct r1bio *r1_bio = bio->bi_private;
345 struct r1conf *conf = r1_bio->mddev->private;
346 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
347
348 /*
349 * this branch is our 'one mirror IO has finished' event handler:
350 */
351 update_head_pos(r1_bio->read_disk, r1_bio);
352
353 if (uptodate)
354 set_bit(R1BIO_Uptodate, &r1_bio->state);
355 else if (test_bit(FailFast, &rdev->flags) &&
356 test_bit(R1BIO_FailFast, &r1_bio->state))
357 /* This was a fail-fast read so we definitely
358 * want to retry */
359 ;
360 else {
361 /* If all other devices have failed, we want to return
362 * the error upwards rather than fail the last device.
363 * Here we redefine "uptodate" to mean "Don't want to retry"
364 */
365 unsigned long flags;
366 spin_lock_irqsave(&conf->device_lock, flags);
367 if (r1_bio->mddev->degraded == conf->raid_disks ||
368 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
369 test_bit(In_sync, &rdev->flags)))
370 uptodate = 1;
371 spin_unlock_irqrestore(&conf->device_lock, flags);
372 }
373
374 if (uptodate) {
375 raid_end_bio_io(r1_bio);
376 rdev_dec_pending(rdev, conf->mddev);
377 } else {
378 /*
379 * oops, read error:
380 */
381 char b[BDEVNAME_SIZE];
382 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
383 mdname(conf->mddev),
384 bdevname(rdev->bdev, b),
385 (unsigned long long)r1_bio->sector);
386 set_bit(R1BIO_ReadError, &r1_bio->state);
387 reschedule_retry(r1_bio);
388 /* don't drop the reference on read_disk yet */
389 }
390}
391
392static void close_write(struct r1bio *r1_bio)
393{
394 /* it really is the end of this request */
395 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
396 bio_free_pages(r1_bio->behind_master_bio);
397 bio_put(r1_bio->behind_master_bio);
398 r1_bio->behind_master_bio = NULL;
399 }
400 /* clear the bitmap if all writes complete successfully */
401 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
402 r1_bio->sectors,
403 !test_bit(R1BIO_Degraded, &r1_bio->state),
404 test_bit(R1BIO_BehindIO, &r1_bio->state));
405 md_write_end(r1_bio->mddev);
406}
407
408static void r1_bio_write_done(struct r1bio *r1_bio)
409{
410 if (!atomic_dec_and_test(&r1_bio->remaining))
411 return;
412
413 if (test_bit(R1BIO_WriteError, &r1_bio->state))
414 reschedule_retry(r1_bio);
415 else {
416 close_write(r1_bio);
417 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
418 reschedule_retry(r1_bio);
419 else
420 raid_end_bio_io(r1_bio);
421 }
422}
423
424static void raid1_end_write_request(struct bio *bio)
425{
426 struct r1bio *r1_bio = bio->bi_private;
427 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
428 struct r1conf *conf = r1_bio->mddev->private;
429 struct bio *to_put = NULL;
430 int mirror = find_bio_disk(r1_bio, bio);
431 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
432 bool discard_error;
433
434 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
435
436 /*
437 * 'one mirror IO has finished' event handler:
438 */
439 if (bio->bi_status && !discard_error) {
440 set_bit(WriteErrorSeen, &rdev->flags);
441 if (!test_and_set_bit(WantReplacement, &rdev->flags))
442 set_bit(MD_RECOVERY_NEEDED, &
443 conf->mddev->recovery);
444
445 if (test_bit(FailFast, &rdev->flags) &&
446 (bio->bi_opf & MD_FAILFAST) &&
447 /* We never try FailFast to WriteMostly devices */
448 !test_bit(WriteMostly, &rdev->flags)) {
449 md_error(r1_bio->mddev, rdev);
450 }
451
452 /*
453 * When the device is faulty, it is not necessary to
454 * handle write error.
455 * For failfast, this is the only remaining device,
456 * We need to retry the write without FailFast.
457 */
458 if (!test_bit(Faulty, &rdev->flags))
459 set_bit(R1BIO_WriteError, &r1_bio->state);
460 else {
461 /* Finished with this branch */
462 r1_bio->bios[mirror] = NULL;
463 to_put = bio;
464 }
465 } else {
466 /*
467 * Set R1BIO_Uptodate in our master bio, so that we
468 * will return a good error code for to the higher
469 * levels even if IO on some other mirrored buffer
470 * fails.
471 *
472 * The 'master' represents the composite IO operation
473 * to user-side. So if something waits for IO, then it
474 * will wait for the 'master' bio.
475 */
476 sector_t first_bad;
477 int bad_sectors;
478
479 r1_bio->bios[mirror] = NULL;
480 to_put = bio;
481 /*
482 * Do not set R1BIO_Uptodate if the current device is
483 * rebuilding or Faulty. This is because we cannot use
484 * such device for properly reading the data back (we could
485 * potentially use it, if the current write would have felt
486 * before rdev->recovery_offset, but for simplicity we don't
487 * check this here.
488 */
489 if (test_bit(In_sync, &rdev->flags) &&
490 !test_bit(Faulty, &rdev->flags))
491 set_bit(R1BIO_Uptodate, &r1_bio->state);
492
493 /* Maybe we can clear some bad blocks. */
494 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
495 &first_bad, &bad_sectors) && !discard_error) {
496 r1_bio->bios[mirror] = IO_MADE_GOOD;
497 set_bit(R1BIO_MadeGood, &r1_bio->state);
498 }
499 }
500
501 if (behind) {
502 if (test_bit(WBCollisionCheck, &rdev->flags)) {
503 sector_t lo = r1_bio->sector;
504 sector_t hi = r1_bio->sector + r1_bio->sectors;
505
506 remove_wb(rdev, lo, hi);
507 }
508 if (test_bit(WriteMostly, &rdev->flags))
509 atomic_dec(&r1_bio->behind_remaining);
510
511 /*
512 * In behind mode, we ACK the master bio once the I/O
513 * has safely reached all non-writemostly
514 * disks. Setting the Returned bit ensures that this
515 * gets done only once -- we don't ever want to return
516 * -EIO here, instead we'll wait
517 */
518 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
519 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
520 /* Maybe we can return now */
521 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
522 struct bio *mbio = r1_bio->master_bio;
523 pr_debug("raid1: behind end write sectors"
524 " %llu-%llu\n",
525 (unsigned long long) mbio->bi_iter.bi_sector,
526 (unsigned long long) bio_end_sector(mbio) - 1);
527 call_bio_endio(r1_bio);
528 }
529 }
530 }
531 if (r1_bio->bios[mirror] == NULL)
532 rdev_dec_pending(rdev, conf->mddev);
533
534 /*
535 * Let's see if all mirrored write operations have finished
536 * already.
537 */
538 r1_bio_write_done(r1_bio);
539
540 if (to_put)
541 bio_put(to_put);
542}
543
544static sector_t align_to_barrier_unit_end(sector_t start_sector,
545 sector_t sectors)
546{
547 sector_t len;
548
549 WARN_ON(sectors == 0);
550 /*
551 * len is the number of sectors from start_sector to end of the
552 * barrier unit which start_sector belongs to.
553 */
554 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
555 start_sector;
556
557 if (len > sectors)
558 len = sectors;
559
560 return len;
561}
562
563/*
564 * This routine returns the disk from which the requested read should
565 * be done. There is a per-array 'next expected sequential IO' sector
566 * number - if this matches on the next IO then we use the last disk.
567 * There is also a per-disk 'last know head position' sector that is
568 * maintained from IRQ contexts, both the normal and the resync IO
569 * completion handlers update this position correctly. If there is no
570 * perfect sequential match then we pick the disk whose head is closest.
571 *
572 * If there are 2 mirrors in the same 2 devices, performance degrades
573 * because position is mirror, not device based.
574 *
575 * The rdev for the device selected will have nr_pending incremented.
576 */
577static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
578{
579 const sector_t this_sector = r1_bio->sector;
580 int sectors;
581 int best_good_sectors;
582 int best_disk, best_dist_disk, best_pending_disk;
583 int has_nonrot_disk;
584 int disk;
585 sector_t best_dist;
586 unsigned int min_pending;
587 struct md_rdev *rdev;
588 int choose_first;
589 int choose_next_idle;
590
591 rcu_read_lock();
592 /*
593 * Check if we can balance. We can balance on the whole
594 * device if no resync is going on, or below the resync window.
595 * We take the first readable disk when above the resync window.
596 */
597 retry:
598 sectors = r1_bio->sectors;
599 best_disk = -1;
600 best_dist_disk = -1;
601 best_dist = MaxSector;
602 best_pending_disk = -1;
603 min_pending = UINT_MAX;
604 best_good_sectors = 0;
605 has_nonrot_disk = 0;
606 choose_next_idle = 0;
607 clear_bit(R1BIO_FailFast, &r1_bio->state);
608
609 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
610 (mddev_is_clustered(conf->mddev) &&
611 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
612 this_sector + sectors)))
613 choose_first = 1;
614 else
615 choose_first = 0;
616
617 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
618 sector_t dist;
619 sector_t first_bad;
620 int bad_sectors;
621 unsigned int pending;
622 bool nonrot;
623
624 rdev = rcu_dereference(conf->mirrors[disk].rdev);
625 if (r1_bio->bios[disk] == IO_BLOCKED
626 || rdev == NULL
627 || test_bit(Faulty, &rdev->flags))
628 continue;
629 if (!test_bit(In_sync, &rdev->flags) &&
630 rdev->recovery_offset < this_sector + sectors)
631 continue;
632 if (test_bit(WriteMostly, &rdev->flags)) {
633 /* Don't balance among write-mostly, just
634 * use the first as a last resort */
635 if (best_dist_disk < 0) {
636 if (is_badblock(rdev, this_sector, sectors,
637 &first_bad, &bad_sectors)) {
638 if (first_bad <= this_sector)
639 /* Cannot use this */
640 continue;
641 best_good_sectors = first_bad - this_sector;
642 } else
643 best_good_sectors = sectors;
644 best_dist_disk = disk;
645 best_pending_disk = disk;
646 }
647 continue;
648 }
649 /* This is a reasonable device to use. It might
650 * even be best.
651 */
652 if (is_badblock(rdev, this_sector, sectors,
653 &first_bad, &bad_sectors)) {
654 if (best_dist < MaxSector)
655 /* already have a better device */
656 continue;
657 if (first_bad <= this_sector) {
658 /* cannot read here. If this is the 'primary'
659 * device, then we must not read beyond
660 * bad_sectors from another device..
661 */
662 bad_sectors -= (this_sector - first_bad);
663 if (choose_first && sectors > bad_sectors)
664 sectors = bad_sectors;
665 if (best_good_sectors > sectors)
666 best_good_sectors = sectors;
667
668 } else {
669 sector_t good_sectors = first_bad - this_sector;
670 if (good_sectors > best_good_sectors) {
671 best_good_sectors = good_sectors;
672 best_disk = disk;
673 }
674 if (choose_first)
675 break;
676 }
677 continue;
678 } else {
679 if ((sectors > best_good_sectors) && (best_disk >= 0))
680 best_disk = -1;
681 best_good_sectors = sectors;
682 }
683
684 if (best_disk >= 0)
685 /* At least two disks to choose from so failfast is OK */
686 set_bit(R1BIO_FailFast, &r1_bio->state);
687
688 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
689 has_nonrot_disk |= nonrot;
690 pending = atomic_read(&rdev->nr_pending);
691 dist = abs(this_sector - conf->mirrors[disk].head_position);
692 if (choose_first) {
693 best_disk = disk;
694 break;
695 }
696 /* Don't change to another disk for sequential reads */
697 if (conf->mirrors[disk].next_seq_sect == this_sector
698 || dist == 0) {
699 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
700 struct raid1_info *mirror = &conf->mirrors[disk];
701
702 best_disk = disk;
703 /*
704 * If buffered sequential IO size exceeds optimal
705 * iosize, check if there is idle disk. If yes, choose
706 * the idle disk. read_balance could already choose an
707 * idle disk before noticing it's a sequential IO in
708 * this disk. This doesn't matter because this disk
709 * will idle, next time it will be utilized after the
710 * first disk has IO size exceeds optimal iosize. In
711 * this way, iosize of the first disk will be optimal
712 * iosize at least. iosize of the second disk might be
713 * small, but not a big deal since when the second disk
714 * starts IO, the first disk is likely still busy.
715 */
716 if (nonrot && opt_iosize > 0 &&
717 mirror->seq_start != MaxSector &&
718 mirror->next_seq_sect > opt_iosize &&
719 mirror->next_seq_sect - opt_iosize >=
720 mirror->seq_start) {
721 choose_next_idle = 1;
722 continue;
723 }
724 break;
725 }
726
727 if (choose_next_idle)
728 continue;
729
730 if (min_pending > pending) {
731 min_pending = pending;
732 best_pending_disk = disk;
733 }
734
735 if (dist < best_dist) {
736 best_dist = dist;
737 best_dist_disk = disk;
738 }
739 }
740
741 /*
742 * If all disks are rotational, choose the closest disk. If any disk is
743 * non-rotational, choose the disk with less pending request even the
744 * disk is rotational, which might/might not be optimal for raids with
745 * mixed ratation/non-rotational disks depending on workload.
746 */
747 if (best_disk == -1) {
748 if (has_nonrot_disk || min_pending == 0)
749 best_disk = best_pending_disk;
750 else
751 best_disk = best_dist_disk;
752 }
753
754 if (best_disk >= 0) {
755 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
756 if (!rdev)
757 goto retry;
758 atomic_inc(&rdev->nr_pending);
759 sectors = best_good_sectors;
760
761 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
762 conf->mirrors[best_disk].seq_start = this_sector;
763
764 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
765 }
766 rcu_read_unlock();
767 *max_sectors = sectors;
768
769 return best_disk;
770}
771
772static int raid1_congested(struct mddev *mddev, int bits)
773{
774 struct r1conf *conf = mddev->private;
775 int i, ret = 0;
776
777 if ((bits & (1 << WB_async_congested)) &&
778 conf->pending_count >= max_queued_requests)
779 return 1;
780
781 rcu_read_lock();
782 for (i = 0; i < conf->raid_disks * 2; i++) {
783 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
784 if (rdev && !test_bit(Faulty, &rdev->flags)) {
785 struct request_queue *q = bdev_get_queue(rdev->bdev);
786
787 BUG_ON(!q);
788
789 /* Note the '|| 1' - when read_balance prefers
790 * non-congested targets, it can be removed
791 */
792 if ((bits & (1 << WB_async_congested)) || 1)
793 ret |= bdi_congested(q->backing_dev_info, bits);
794 else
795 ret &= bdi_congested(q->backing_dev_info, bits);
796 }
797 }
798 rcu_read_unlock();
799 return ret;
800}
801
802static void flush_bio_list(struct r1conf *conf, struct bio *bio)
803{
804 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
805 md_bitmap_unplug(conf->mddev->bitmap);
806 wake_up(&conf->wait_barrier);
807
808 while (bio) { /* submit pending writes */
809 struct bio *next = bio->bi_next;
810 struct md_rdev *rdev = (void *)bio->bi_disk;
811 bio->bi_next = NULL;
812 bio_set_dev(bio, rdev->bdev);
813 if (test_bit(Faulty, &rdev->flags)) {
814 bio_io_error(bio);
815 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
816 !blk_queue_discard(bio->bi_disk->queue)))
817 /* Just ignore it */
818 bio_endio(bio);
819 else
820 generic_make_request(bio);
821 bio = next;
822 }
823}
824
825static void flush_pending_writes(struct r1conf *conf)
826{
827 /* Any writes that have been queued but are awaiting
828 * bitmap updates get flushed here.
829 */
830 spin_lock_irq(&conf->device_lock);
831
832 if (conf->pending_bio_list.head) {
833 struct blk_plug plug;
834 struct bio *bio;
835
836 bio = bio_list_get(&conf->pending_bio_list);
837 conf->pending_count = 0;
838 spin_unlock_irq(&conf->device_lock);
839
840 /*
841 * As this is called in a wait_event() loop (see freeze_array),
842 * current->state might be TASK_UNINTERRUPTIBLE which will
843 * cause a warning when we prepare to wait again. As it is
844 * rare that this path is taken, it is perfectly safe to force
845 * us to go around the wait_event() loop again, so the warning
846 * is a false-positive. Silence the warning by resetting
847 * thread state
848 */
849 __set_current_state(TASK_RUNNING);
850 blk_start_plug(&plug);
851 flush_bio_list(conf, bio);
852 blk_finish_plug(&plug);
853 } else
854 spin_unlock_irq(&conf->device_lock);
855}
856
857/* Barriers....
858 * Sometimes we need to suspend IO while we do something else,
859 * either some resync/recovery, or reconfigure the array.
860 * To do this we raise a 'barrier'.
861 * The 'barrier' is a counter that can be raised multiple times
862 * to count how many activities are happening which preclude
863 * normal IO.
864 * We can only raise the barrier if there is no pending IO.
865 * i.e. if nr_pending == 0.
866 * We choose only to raise the barrier if no-one is waiting for the
867 * barrier to go down. This means that as soon as an IO request
868 * is ready, no other operations which require a barrier will start
869 * until the IO request has had a chance.
870 *
871 * So: regular IO calls 'wait_barrier'. When that returns there
872 * is no backgroup IO happening, It must arrange to call
873 * allow_barrier when it has finished its IO.
874 * backgroup IO calls must call raise_barrier. Once that returns
875 * there is no normal IO happeing. It must arrange to call
876 * lower_barrier when the particular background IO completes.
877 *
878 * If resync/recovery is interrupted, returns -EINTR;
879 * Otherwise, returns 0.
880 */
881static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
882{
883 int idx = sector_to_idx(sector_nr);
884
885 spin_lock_irq(&conf->resync_lock);
886
887 /* Wait until no block IO is waiting */
888 wait_event_lock_irq(conf->wait_barrier,
889 !atomic_read(&conf->nr_waiting[idx]),
890 conf->resync_lock);
891
892 /* block any new IO from starting */
893 atomic_inc(&conf->barrier[idx]);
894 /*
895 * In raise_barrier() we firstly increase conf->barrier[idx] then
896 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
897 * increase conf->nr_pending[idx] then check conf->barrier[idx].
898 * A memory barrier here to make sure conf->nr_pending[idx] won't
899 * be fetched before conf->barrier[idx] is increased. Otherwise
900 * there will be a race between raise_barrier() and _wait_barrier().
901 */
902 smp_mb__after_atomic();
903
904 /* For these conditions we must wait:
905 * A: while the array is in frozen state
906 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
907 * existing in corresponding I/O barrier bucket.
908 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
909 * max resync count which allowed on current I/O barrier bucket.
910 */
911 wait_event_lock_irq(conf->wait_barrier,
912 (!conf->array_frozen &&
913 !atomic_read(&conf->nr_pending[idx]) &&
914 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
915 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
916 conf->resync_lock);
917
918 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
919 atomic_dec(&conf->barrier[idx]);
920 spin_unlock_irq(&conf->resync_lock);
921 wake_up(&conf->wait_barrier);
922 return -EINTR;
923 }
924
925 atomic_inc(&conf->nr_sync_pending);
926 spin_unlock_irq(&conf->resync_lock);
927
928 return 0;
929}
930
931static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
932{
933 int idx = sector_to_idx(sector_nr);
934
935 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
936
937 atomic_dec(&conf->barrier[idx]);
938 atomic_dec(&conf->nr_sync_pending);
939 wake_up(&conf->wait_barrier);
940}
941
942static void _wait_barrier(struct r1conf *conf, int idx)
943{
944 /*
945 * We need to increase conf->nr_pending[idx] very early here,
946 * then raise_barrier() can be blocked when it waits for
947 * conf->nr_pending[idx] to be 0. Then we can avoid holding
948 * conf->resync_lock when there is no barrier raised in same
949 * barrier unit bucket. Also if the array is frozen, I/O
950 * should be blocked until array is unfrozen.
951 */
952 atomic_inc(&conf->nr_pending[idx]);
953 /*
954 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
955 * check conf->barrier[idx]. In raise_barrier() we firstly increase
956 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
957 * barrier is necessary here to make sure conf->barrier[idx] won't be
958 * fetched before conf->nr_pending[idx] is increased. Otherwise there
959 * will be a race between _wait_barrier() and raise_barrier().
960 */
961 smp_mb__after_atomic();
962
963 /*
964 * Don't worry about checking two atomic_t variables at same time
965 * here. If during we check conf->barrier[idx], the array is
966 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
967 * 0, it is safe to return and make the I/O continue. Because the
968 * array is frozen, all I/O returned here will eventually complete
969 * or be queued, no race will happen. See code comment in
970 * frozen_array().
971 */
972 if (!READ_ONCE(conf->array_frozen) &&
973 !atomic_read(&conf->barrier[idx]))
974 return;
975
976 /*
977 * After holding conf->resync_lock, conf->nr_pending[idx]
978 * should be decreased before waiting for barrier to drop.
979 * Otherwise, we may encounter a race condition because
980 * raise_barrer() might be waiting for conf->nr_pending[idx]
981 * to be 0 at same time.
982 */
983 spin_lock_irq(&conf->resync_lock);
984 atomic_inc(&conf->nr_waiting[idx]);
985 atomic_dec(&conf->nr_pending[idx]);
986 /*
987 * In case freeze_array() is waiting for
988 * get_unqueued_pending() == extra
989 */
990 wake_up(&conf->wait_barrier);
991 /* Wait for the barrier in same barrier unit bucket to drop. */
992 wait_event_lock_irq(conf->wait_barrier,
993 !conf->array_frozen &&
994 !atomic_read(&conf->barrier[idx]),
995 conf->resync_lock);
996 atomic_inc(&conf->nr_pending[idx]);
997 atomic_dec(&conf->nr_waiting[idx]);
998 spin_unlock_irq(&conf->resync_lock);
999}
1000
1001static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
1002{
1003 int idx = sector_to_idx(sector_nr);
1004
1005 /*
1006 * Very similar to _wait_barrier(). The difference is, for read
1007 * I/O we don't need wait for sync I/O, but if the whole array
1008 * is frozen, the read I/O still has to wait until the array is
1009 * unfrozen. Since there is no ordering requirement with
1010 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1011 */
1012 atomic_inc(&conf->nr_pending[idx]);
1013
1014 if (!READ_ONCE(conf->array_frozen))
1015 return;
1016
1017 spin_lock_irq(&conf->resync_lock);
1018 atomic_inc(&conf->nr_waiting[idx]);
1019 atomic_dec(&conf->nr_pending[idx]);
1020 /*
1021 * In case freeze_array() is waiting for
1022 * get_unqueued_pending() == extra
1023 */
1024 wake_up(&conf->wait_barrier);
1025 /* Wait for array to be unfrozen */
1026 wait_event_lock_irq(conf->wait_barrier,
1027 !conf->array_frozen,
1028 conf->resync_lock);
1029 atomic_inc(&conf->nr_pending[idx]);
1030 atomic_dec(&conf->nr_waiting[idx]);
1031 spin_unlock_irq(&conf->resync_lock);
1032}
1033
1034static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1035{
1036 int idx = sector_to_idx(sector_nr);
1037
1038 _wait_barrier(conf, idx);
1039}
1040
1041static void _allow_barrier(struct r1conf *conf, int idx)
1042{
1043 atomic_dec(&conf->nr_pending[idx]);
1044 wake_up(&conf->wait_barrier);
1045}
1046
1047static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1048{
1049 int idx = sector_to_idx(sector_nr);
1050
1051 _allow_barrier(conf, idx);
1052}
1053
1054/* conf->resync_lock should be held */
1055static int get_unqueued_pending(struct r1conf *conf)
1056{
1057 int idx, ret;
1058
1059 ret = atomic_read(&conf->nr_sync_pending);
1060 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1061 ret += atomic_read(&conf->nr_pending[idx]) -
1062 atomic_read(&conf->nr_queued[idx]);
1063
1064 return ret;
1065}
1066
1067static void freeze_array(struct r1conf *conf, int extra)
1068{
1069 /* Stop sync I/O and normal I/O and wait for everything to
1070 * go quiet.
1071 * This is called in two situations:
1072 * 1) management command handlers (reshape, remove disk, quiesce).
1073 * 2) one normal I/O request failed.
1074
1075 * After array_frozen is set to 1, new sync IO will be blocked at
1076 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1077 * or wait_read_barrier(). The flying I/Os will either complete or be
1078 * queued. When everything goes quite, there are only queued I/Os left.
1079
1080 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1081 * barrier bucket index which this I/O request hits. When all sync and
1082 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1083 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1084 * in handle_read_error(), we may call freeze_array() before trying to
1085 * fix the read error. In this case, the error read I/O is not queued,
1086 * so get_unqueued_pending() == 1.
1087 *
1088 * Therefore before this function returns, we need to wait until
1089 * get_unqueued_pendings(conf) gets equal to extra. For
1090 * normal I/O context, extra is 1, in rested situations extra is 0.
1091 */
1092 spin_lock_irq(&conf->resync_lock);
1093 conf->array_frozen = 1;
1094 raid1_log(conf->mddev, "wait freeze");
1095 wait_event_lock_irq_cmd(
1096 conf->wait_barrier,
1097 get_unqueued_pending(conf) == extra,
1098 conf->resync_lock,
1099 flush_pending_writes(conf));
1100 spin_unlock_irq(&conf->resync_lock);
1101}
1102static void unfreeze_array(struct r1conf *conf)
1103{
1104 /* reverse the effect of the freeze */
1105 spin_lock_irq(&conf->resync_lock);
1106 conf->array_frozen = 0;
1107 spin_unlock_irq(&conf->resync_lock);
1108 wake_up(&conf->wait_barrier);
1109}
1110
1111static void alloc_behind_master_bio(struct r1bio *r1_bio,
1112 struct bio *bio)
1113{
1114 int size = bio->bi_iter.bi_size;
1115 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1116 int i = 0;
1117 struct bio *behind_bio = NULL;
1118
1119 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1120 if (!behind_bio)
1121 return;
1122
1123 /* discard op, we don't support writezero/writesame yet */
1124 if (!bio_has_data(bio)) {
1125 behind_bio->bi_iter.bi_size = size;
1126 goto skip_copy;
1127 }
1128
1129 behind_bio->bi_write_hint = bio->bi_write_hint;
1130
1131 while (i < vcnt && size) {
1132 struct page *page;
1133 int len = min_t(int, PAGE_SIZE, size);
1134
1135 page = alloc_page(GFP_NOIO);
1136 if (unlikely(!page))
1137 goto free_pages;
1138
1139 bio_add_page(behind_bio, page, len, 0);
1140
1141 size -= len;
1142 i++;
1143 }
1144
1145 bio_copy_data(behind_bio, bio);
1146skip_copy:
1147 r1_bio->behind_master_bio = behind_bio;
1148 set_bit(R1BIO_BehindIO, &r1_bio->state);
1149
1150 return;
1151
1152free_pages:
1153 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1154 bio->bi_iter.bi_size);
1155 bio_free_pages(behind_bio);
1156 bio_put(behind_bio);
1157}
1158
1159struct raid1_plug_cb {
1160 struct blk_plug_cb cb;
1161 struct bio_list pending;
1162 int pending_cnt;
1163};
1164
1165static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1166{
1167 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1168 cb);
1169 struct mddev *mddev = plug->cb.data;
1170 struct r1conf *conf = mddev->private;
1171 struct bio *bio;
1172
1173 if (from_schedule || current->bio_list) {
1174 spin_lock_irq(&conf->device_lock);
1175 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1176 conf->pending_count += plug->pending_cnt;
1177 spin_unlock_irq(&conf->device_lock);
1178 wake_up(&conf->wait_barrier);
1179 md_wakeup_thread(mddev->thread);
1180 kfree(plug);
1181 return;
1182 }
1183
1184 /* we aren't scheduling, so we can do the write-out directly. */
1185 bio = bio_list_get(&plug->pending);
1186 flush_bio_list(conf, bio);
1187 kfree(plug);
1188}
1189
1190static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1191{
1192 r1_bio->master_bio = bio;
1193 r1_bio->sectors = bio_sectors(bio);
1194 r1_bio->state = 0;
1195 r1_bio->mddev = mddev;
1196 r1_bio->sector = bio->bi_iter.bi_sector;
1197}
1198
1199static inline struct r1bio *
1200alloc_r1bio(struct mddev *mddev, struct bio *bio)
1201{
1202 struct r1conf *conf = mddev->private;
1203 struct r1bio *r1_bio;
1204
1205 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1206 /* Ensure no bio records IO_BLOCKED */
1207 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1208 init_r1bio(r1_bio, mddev, bio);
1209 return r1_bio;
1210}
1211
1212static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1213 int max_read_sectors, struct r1bio *r1_bio)
1214{
1215 struct r1conf *conf = mddev->private;
1216 struct raid1_info *mirror;
1217 struct bio *read_bio;
1218 struct bitmap *bitmap = mddev->bitmap;
1219 const int op = bio_op(bio);
1220 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1221 int max_sectors;
1222 int rdisk;
1223 bool print_msg = !!r1_bio;
1224 char b[BDEVNAME_SIZE];
1225
1226 /*
1227 * If r1_bio is set, we are blocking the raid1d thread
1228 * so there is a tiny risk of deadlock. So ask for
1229 * emergency memory if needed.
1230 */
1231 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1232
1233 if (print_msg) {
1234 /* Need to get the block device name carefully */
1235 struct md_rdev *rdev;
1236 rcu_read_lock();
1237 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1238 if (rdev)
1239 bdevname(rdev->bdev, b);
1240 else
1241 strcpy(b, "???");
1242 rcu_read_unlock();
1243 }
1244
1245 /*
1246 * Still need barrier for READ in case that whole
1247 * array is frozen.
1248 */
1249 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1250
1251 if (!r1_bio)
1252 r1_bio = alloc_r1bio(mddev, bio);
1253 else
1254 init_r1bio(r1_bio, mddev, bio);
1255 r1_bio->sectors = max_read_sectors;
1256
1257 /*
1258 * make_request() can abort the operation when read-ahead is being
1259 * used and no empty request is available.
1260 */
1261 rdisk = read_balance(conf, r1_bio, &max_sectors);
1262
1263 if (rdisk < 0) {
1264 /* couldn't find anywhere to read from */
1265 if (print_msg) {
1266 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1267 mdname(mddev),
1268 b,
1269 (unsigned long long)r1_bio->sector);
1270 }
1271 raid_end_bio_io(r1_bio);
1272 return;
1273 }
1274 mirror = conf->mirrors + rdisk;
1275
1276 if (print_msg)
1277 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1278 mdname(mddev),
1279 (unsigned long long)r1_bio->sector,
1280 bdevname(mirror->rdev->bdev, b));
1281
1282 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1283 bitmap) {
1284 /*
1285 * Reading from a write-mostly device must take care not to
1286 * over-take any writes that are 'behind'
1287 */
1288 raid1_log(mddev, "wait behind writes");
1289 wait_event(bitmap->behind_wait,
1290 atomic_read(&bitmap->behind_writes) == 0);
1291 }
1292
1293 if (max_sectors < bio_sectors(bio)) {
1294 struct bio *split = bio_split(bio, max_sectors,
1295 gfp, &conf->bio_split);
1296 bio_chain(split, bio);
1297 generic_make_request(bio);
1298 bio = split;
1299 r1_bio->master_bio = bio;
1300 r1_bio->sectors = max_sectors;
1301 }
1302
1303 r1_bio->read_disk = rdisk;
1304
1305 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1306
1307 r1_bio->bios[rdisk] = read_bio;
1308
1309 read_bio->bi_iter.bi_sector = r1_bio->sector +
1310 mirror->rdev->data_offset;
1311 bio_set_dev(read_bio, mirror->rdev->bdev);
1312 read_bio->bi_end_io = raid1_end_read_request;
1313 bio_set_op_attrs(read_bio, op, do_sync);
1314 if (test_bit(FailFast, &mirror->rdev->flags) &&
1315 test_bit(R1BIO_FailFast, &r1_bio->state))
1316 read_bio->bi_opf |= MD_FAILFAST;
1317 read_bio->bi_private = r1_bio;
1318
1319 if (mddev->gendisk)
1320 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1321 disk_devt(mddev->gendisk), r1_bio->sector);
1322
1323 generic_make_request(read_bio);
1324}
1325
1326static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1327 int max_write_sectors)
1328{
1329 struct r1conf *conf = mddev->private;
1330 struct r1bio *r1_bio;
1331 int i, disks;
1332 struct bitmap *bitmap = mddev->bitmap;
1333 unsigned long flags;
1334 struct md_rdev *blocked_rdev;
1335 struct blk_plug_cb *cb;
1336 struct raid1_plug_cb *plug = NULL;
1337 int first_clone;
1338 int max_sectors;
1339
1340 if (mddev_is_clustered(mddev) &&
1341 md_cluster_ops->area_resyncing(mddev, WRITE,
1342 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1343
1344 DEFINE_WAIT(w);
1345 for (;;) {
1346 prepare_to_wait(&conf->wait_barrier,
1347 &w, TASK_IDLE);
1348 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1349 bio->bi_iter.bi_sector,
1350 bio_end_sector(bio)))
1351 break;
1352 schedule();
1353 }
1354 finish_wait(&conf->wait_barrier, &w);
1355 }
1356
1357 /*
1358 * Register the new request and wait if the reconstruction
1359 * thread has put up a bar for new requests.
1360 * Continue immediately if no resync is active currently.
1361 */
1362 wait_barrier(conf, bio->bi_iter.bi_sector);
1363
1364 r1_bio = alloc_r1bio(mddev, bio);
1365 r1_bio->sectors = max_write_sectors;
1366
1367 if (conf->pending_count >= max_queued_requests) {
1368 md_wakeup_thread(mddev->thread);
1369 raid1_log(mddev, "wait queued");
1370 wait_event(conf->wait_barrier,
1371 conf->pending_count < max_queued_requests);
1372 }
1373 /* first select target devices under rcu_lock and
1374 * inc refcount on their rdev. Record them by setting
1375 * bios[x] to bio
1376 * If there are known/acknowledged bad blocks on any device on
1377 * which we have seen a write error, we want to avoid writing those
1378 * blocks.
1379 * This potentially requires several writes to write around
1380 * the bad blocks. Each set of writes gets it's own r1bio
1381 * with a set of bios attached.
1382 */
1383
1384 disks = conf->raid_disks * 2;
1385 retry_write:
1386 blocked_rdev = NULL;
1387 rcu_read_lock();
1388 max_sectors = r1_bio->sectors;
1389 for (i = 0; i < disks; i++) {
1390 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1391 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1392 atomic_inc(&rdev->nr_pending);
1393 blocked_rdev = rdev;
1394 break;
1395 }
1396 r1_bio->bios[i] = NULL;
1397 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1398 if (i < conf->raid_disks)
1399 set_bit(R1BIO_Degraded, &r1_bio->state);
1400 continue;
1401 }
1402
1403 atomic_inc(&rdev->nr_pending);
1404 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1405 sector_t first_bad;
1406 int bad_sectors;
1407 int is_bad;
1408
1409 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1410 &first_bad, &bad_sectors);
1411 if (is_bad < 0) {
1412 /* mustn't write here until the bad block is
1413 * acknowledged*/
1414 set_bit(BlockedBadBlocks, &rdev->flags);
1415 blocked_rdev = rdev;
1416 break;
1417 }
1418 if (is_bad && first_bad <= r1_bio->sector) {
1419 /* Cannot write here at all */
1420 bad_sectors -= (r1_bio->sector - first_bad);
1421 if (bad_sectors < max_sectors)
1422 /* mustn't write more than bad_sectors
1423 * to other devices yet
1424 */
1425 max_sectors = bad_sectors;
1426 rdev_dec_pending(rdev, mddev);
1427 /* We don't set R1BIO_Degraded as that
1428 * only applies if the disk is
1429 * missing, so it might be re-added,
1430 * and we want to know to recover this
1431 * chunk.
1432 * In this case the device is here,
1433 * and the fact that this chunk is not
1434 * in-sync is recorded in the bad
1435 * block log
1436 */
1437 continue;
1438 }
1439 if (is_bad) {
1440 int good_sectors = first_bad - r1_bio->sector;
1441 if (good_sectors < max_sectors)
1442 max_sectors = good_sectors;
1443 }
1444 }
1445 r1_bio->bios[i] = bio;
1446 }
1447 rcu_read_unlock();
1448
1449 if (unlikely(blocked_rdev)) {
1450 /* Wait for this device to become unblocked */
1451 int j;
1452
1453 for (j = 0; j < i; j++)
1454 if (r1_bio->bios[j])
1455 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1456 r1_bio->state = 0;
1457 allow_barrier(conf, bio->bi_iter.bi_sector);
1458 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1459 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1460 wait_barrier(conf, bio->bi_iter.bi_sector);
1461 goto retry_write;
1462 }
1463
1464 if (max_sectors < bio_sectors(bio)) {
1465 struct bio *split = bio_split(bio, max_sectors,
1466 GFP_NOIO, &conf->bio_split);
1467 bio_chain(split, bio);
1468 generic_make_request(bio);
1469 bio = split;
1470 r1_bio->master_bio = bio;
1471 r1_bio->sectors = max_sectors;
1472 }
1473
1474 atomic_set(&r1_bio->remaining, 1);
1475 atomic_set(&r1_bio->behind_remaining, 0);
1476
1477 first_clone = 1;
1478
1479 for (i = 0; i < disks; i++) {
1480 struct bio *mbio = NULL;
1481 if (!r1_bio->bios[i])
1482 continue;
1483
1484 if (first_clone) {
1485 /* do behind I/O ?
1486 * Not if there are too many, or cannot
1487 * allocate memory, or a reader on WriteMostly
1488 * is waiting for behind writes to flush */
1489 if (bitmap &&
1490 (atomic_read(&bitmap->behind_writes)
1491 < mddev->bitmap_info.max_write_behind) &&
1492 !waitqueue_active(&bitmap->behind_wait)) {
1493 alloc_behind_master_bio(r1_bio, bio);
1494 }
1495
1496 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1497 test_bit(R1BIO_BehindIO, &r1_bio->state));
1498 first_clone = 0;
1499 }
1500
1501 if (r1_bio->behind_master_bio)
1502 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1503 GFP_NOIO, &mddev->bio_set);
1504 else
1505 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1506
1507 if (r1_bio->behind_master_bio) {
1508 struct md_rdev *rdev = conf->mirrors[i].rdev;
1509
1510 if (test_bit(WBCollisionCheck, &rdev->flags)) {
1511 sector_t lo = r1_bio->sector;
1512 sector_t hi = r1_bio->sector + r1_bio->sectors;
1513
1514 wait_event(rdev->wb_io_wait,
1515 check_and_add_wb(rdev, lo, hi) == 0);
1516 }
1517 if (test_bit(WriteMostly, &rdev->flags))
1518 atomic_inc(&r1_bio->behind_remaining);
1519 }
1520
1521 r1_bio->bios[i] = mbio;
1522
1523 mbio->bi_iter.bi_sector = (r1_bio->sector +
1524 conf->mirrors[i].rdev->data_offset);
1525 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1526 mbio->bi_end_io = raid1_end_write_request;
1527 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1528 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1529 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1530 conf->raid_disks - mddev->degraded > 1)
1531 mbio->bi_opf |= MD_FAILFAST;
1532 mbio->bi_private = r1_bio;
1533
1534 atomic_inc(&r1_bio->remaining);
1535
1536 if (mddev->gendisk)
1537 trace_block_bio_remap(mbio->bi_disk->queue,
1538 mbio, disk_devt(mddev->gendisk),
1539 r1_bio->sector);
1540 /* flush_pending_writes() needs access to the rdev so...*/
1541 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1542
1543 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1544 if (cb)
1545 plug = container_of(cb, struct raid1_plug_cb, cb);
1546 else
1547 plug = NULL;
1548 if (plug) {
1549 bio_list_add(&plug->pending, mbio);
1550 plug->pending_cnt++;
1551 } else {
1552 spin_lock_irqsave(&conf->device_lock, flags);
1553 bio_list_add(&conf->pending_bio_list, mbio);
1554 conf->pending_count++;
1555 spin_unlock_irqrestore(&conf->device_lock, flags);
1556 md_wakeup_thread(mddev->thread);
1557 }
1558 }
1559
1560 r1_bio_write_done(r1_bio);
1561
1562 /* In case raid1d snuck in to freeze_array */
1563 wake_up(&conf->wait_barrier);
1564}
1565
1566static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1567{
1568 sector_t sectors;
1569
1570 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1571 md_flush_request(mddev, bio);
1572 return true;
1573 }
1574
1575 /*
1576 * There is a limit to the maximum size, but
1577 * the read/write handler might find a lower limit
1578 * due to bad blocks. To avoid multiple splits,
1579 * we pass the maximum number of sectors down
1580 * and let the lower level perform the split.
1581 */
1582 sectors = align_to_barrier_unit_end(
1583 bio->bi_iter.bi_sector, bio_sectors(bio));
1584
1585 if (bio_data_dir(bio) == READ)
1586 raid1_read_request(mddev, bio, sectors, NULL);
1587 else {
1588 if (!md_write_start(mddev,bio))
1589 return false;
1590 raid1_write_request(mddev, bio, sectors);
1591 }
1592 return true;
1593}
1594
1595static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1596{
1597 struct r1conf *conf = mddev->private;
1598 int i;
1599
1600 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1601 conf->raid_disks - mddev->degraded);
1602 rcu_read_lock();
1603 for (i = 0; i < conf->raid_disks; i++) {
1604 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1605 seq_printf(seq, "%s",
1606 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1607 }
1608 rcu_read_unlock();
1609 seq_printf(seq, "]");
1610}
1611
1612static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1613{
1614 char b[BDEVNAME_SIZE];
1615 struct r1conf *conf = mddev->private;
1616 unsigned long flags;
1617
1618 /*
1619 * If it is not operational, then we have already marked it as dead
1620 * else if it is the last working disks with "fail_last_dev == false",
1621 * ignore the error, let the next level up know.
1622 * else mark the drive as failed
1623 */
1624 spin_lock_irqsave(&conf->device_lock, flags);
1625 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1626 && (conf->raid_disks - mddev->degraded) == 1) {
1627 /*
1628 * Don't fail the drive, act as though we were just a
1629 * normal single drive.
1630 * However don't try a recovery from this drive as
1631 * it is very likely to fail.
1632 */
1633 conf->recovery_disabled = mddev->recovery_disabled;
1634 spin_unlock_irqrestore(&conf->device_lock, flags);
1635 return;
1636 }
1637 set_bit(Blocked, &rdev->flags);
1638 if (test_and_clear_bit(In_sync, &rdev->flags))
1639 mddev->degraded++;
1640 set_bit(Faulty, &rdev->flags);
1641 spin_unlock_irqrestore(&conf->device_lock, flags);
1642 /*
1643 * if recovery is running, make sure it aborts.
1644 */
1645 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1646 set_mask_bits(&mddev->sb_flags, 0,
1647 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1648 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1649 "md/raid1:%s: Operation continuing on %d devices.\n",
1650 mdname(mddev), bdevname(rdev->bdev, b),
1651 mdname(mddev), conf->raid_disks - mddev->degraded);
1652}
1653
1654static void print_conf(struct r1conf *conf)
1655{
1656 int i;
1657
1658 pr_debug("RAID1 conf printout:\n");
1659 if (!conf) {
1660 pr_debug("(!conf)\n");
1661 return;
1662 }
1663 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1664 conf->raid_disks);
1665
1666 rcu_read_lock();
1667 for (i = 0; i < conf->raid_disks; i++) {
1668 char b[BDEVNAME_SIZE];
1669 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1670 if (rdev)
1671 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1672 i, !test_bit(In_sync, &rdev->flags),
1673 !test_bit(Faulty, &rdev->flags),
1674 bdevname(rdev->bdev,b));
1675 }
1676 rcu_read_unlock();
1677}
1678
1679static void close_sync(struct r1conf *conf)
1680{
1681 int idx;
1682
1683 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1684 _wait_barrier(conf, idx);
1685 _allow_barrier(conf, idx);
1686 }
1687
1688 mempool_exit(&conf->r1buf_pool);
1689}
1690
1691static int raid1_spare_active(struct mddev *mddev)
1692{
1693 int i;
1694 struct r1conf *conf = mddev->private;
1695 int count = 0;
1696 unsigned long flags;
1697
1698 /*
1699 * Find all failed disks within the RAID1 configuration
1700 * and mark them readable.
1701 * Called under mddev lock, so rcu protection not needed.
1702 * device_lock used to avoid races with raid1_end_read_request
1703 * which expects 'In_sync' flags and ->degraded to be consistent.
1704 */
1705 spin_lock_irqsave(&conf->device_lock, flags);
1706 for (i = 0; i < conf->raid_disks; i++) {
1707 struct md_rdev *rdev = conf->mirrors[i].rdev;
1708 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1709 if (repl
1710 && !test_bit(Candidate, &repl->flags)
1711 && repl->recovery_offset == MaxSector
1712 && !test_bit(Faulty, &repl->flags)
1713 && !test_and_set_bit(In_sync, &repl->flags)) {
1714 /* replacement has just become active */
1715 if (!rdev ||
1716 !test_and_clear_bit(In_sync, &rdev->flags))
1717 count++;
1718 if (rdev) {
1719 /* Replaced device not technically
1720 * faulty, but we need to be sure
1721 * it gets removed and never re-added
1722 */
1723 set_bit(Faulty, &rdev->flags);
1724 sysfs_notify_dirent_safe(
1725 rdev->sysfs_state);
1726 }
1727 }
1728 if (rdev
1729 && rdev->recovery_offset == MaxSector
1730 && !test_bit(Faulty, &rdev->flags)
1731 && !test_and_set_bit(In_sync, &rdev->flags)) {
1732 count++;
1733 sysfs_notify_dirent_safe(rdev->sysfs_state);
1734 }
1735 }
1736 mddev->degraded -= count;
1737 spin_unlock_irqrestore(&conf->device_lock, flags);
1738
1739 print_conf(conf);
1740 return count;
1741}
1742
1743static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1744{
1745 struct r1conf *conf = mddev->private;
1746 int err = -EEXIST;
1747 int mirror = 0;
1748 struct raid1_info *p;
1749 int first = 0;
1750 int last = conf->raid_disks - 1;
1751
1752 if (mddev->recovery_disabled == conf->recovery_disabled)
1753 return -EBUSY;
1754
1755 if (md_integrity_add_rdev(rdev, mddev))
1756 return -ENXIO;
1757
1758 if (rdev->raid_disk >= 0)
1759 first = last = rdev->raid_disk;
1760
1761 /*
1762 * find the disk ... but prefer rdev->saved_raid_disk
1763 * if possible.
1764 */
1765 if (rdev->saved_raid_disk >= 0 &&
1766 rdev->saved_raid_disk >= first &&
1767 rdev->saved_raid_disk < conf->raid_disks &&
1768 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1769 first = last = rdev->saved_raid_disk;
1770
1771 for (mirror = first; mirror <= last; mirror++) {
1772 p = conf->mirrors + mirror;
1773 if (!p->rdev) {
1774 if (mddev->gendisk)
1775 disk_stack_limits(mddev->gendisk, rdev->bdev,
1776 rdev->data_offset << 9);
1777
1778 p->head_position = 0;
1779 rdev->raid_disk = mirror;
1780 err = 0;
1781 /* As all devices are equivalent, we don't need a full recovery
1782 * if this was recently any drive of the array
1783 */
1784 if (rdev->saved_raid_disk < 0)
1785 conf->fullsync = 1;
1786 rcu_assign_pointer(p->rdev, rdev);
1787 break;
1788 }
1789 if (test_bit(WantReplacement, &p->rdev->flags) &&
1790 p[conf->raid_disks].rdev == NULL) {
1791 /* Add this device as a replacement */
1792 clear_bit(In_sync, &rdev->flags);
1793 set_bit(Replacement, &rdev->flags);
1794 rdev->raid_disk = mirror;
1795 err = 0;
1796 conf->fullsync = 1;
1797 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1798 break;
1799 }
1800 }
1801 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1802 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1803 print_conf(conf);
1804 return err;
1805}
1806
1807static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1808{
1809 struct r1conf *conf = mddev->private;
1810 int err = 0;
1811 int number = rdev->raid_disk;
1812 struct raid1_info *p = conf->mirrors + number;
1813
1814 if (rdev != p->rdev)
1815 p = conf->mirrors + conf->raid_disks + number;
1816
1817 print_conf(conf);
1818 if (rdev == p->rdev) {
1819 if (test_bit(In_sync, &rdev->flags) ||
1820 atomic_read(&rdev->nr_pending)) {
1821 err = -EBUSY;
1822 goto abort;
1823 }
1824 /* Only remove non-faulty devices if recovery
1825 * is not possible.
1826 */
1827 if (!test_bit(Faulty, &rdev->flags) &&
1828 mddev->recovery_disabled != conf->recovery_disabled &&
1829 mddev->degraded < conf->raid_disks) {
1830 err = -EBUSY;
1831 goto abort;
1832 }
1833 p->rdev = NULL;
1834 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1835 synchronize_rcu();
1836 if (atomic_read(&rdev->nr_pending)) {
1837 /* lost the race, try later */
1838 err = -EBUSY;
1839 p->rdev = rdev;
1840 goto abort;
1841 }
1842 }
1843 if (conf->mirrors[conf->raid_disks + number].rdev) {
1844 /* We just removed a device that is being replaced.
1845 * Move down the replacement. We drain all IO before
1846 * doing this to avoid confusion.
1847 */
1848 struct md_rdev *repl =
1849 conf->mirrors[conf->raid_disks + number].rdev;
1850 freeze_array(conf, 0);
1851 if (atomic_read(&repl->nr_pending)) {
1852 /* It means that some queued IO of retry_list
1853 * hold repl. Thus, we cannot set replacement
1854 * as NULL, avoiding rdev NULL pointer
1855 * dereference in sync_request_write and
1856 * handle_write_finished.
1857 */
1858 err = -EBUSY;
1859 unfreeze_array(conf);
1860 goto abort;
1861 }
1862 clear_bit(Replacement, &repl->flags);
1863 p->rdev = repl;
1864 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1865 unfreeze_array(conf);
1866 }
1867
1868 clear_bit(WantReplacement, &rdev->flags);
1869 err = md_integrity_register(mddev);
1870 }
1871abort:
1872
1873 print_conf(conf);
1874 return err;
1875}
1876
1877static void end_sync_read(struct bio *bio)
1878{
1879 struct r1bio *r1_bio = get_resync_r1bio(bio);
1880
1881 update_head_pos(r1_bio->read_disk, r1_bio);
1882
1883 /*
1884 * we have read a block, now it needs to be re-written,
1885 * or re-read if the read failed.
1886 * We don't do much here, just schedule handling by raid1d
1887 */
1888 if (!bio->bi_status)
1889 set_bit(R1BIO_Uptodate, &r1_bio->state);
1890
1891 if (atomic_dec_and_test(&r1_bio->remaining))
1892 reschedule_retry(r1_bio);
1893}
1894
1895static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1896{
1897 sector_t sync_blocks = 0;
1898 sector_t s = r1_bio->sector;
1899 long sectors_to_go = r1_bio->sectors;
1900
1901 /* make sure these bits don't get cleared. */
1902 do {
1903 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1904 s += sync_blocks;
1905 sectors_to_go -= sync_blocks;
1906 } while (sectors_to_go > 0);
1907}
1908
1909static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1910{
1911 if (atomic_dec_and_test(&r1_bio->remaining)) {
1912 struct mddev *mddev = r1_bio->mddev;
1913 int s = r1_bio->sectors;
1914
1915 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1916 test_bit(R1BIO_WriteError, &r1_bio->state))
1917 reschedule_retry(r1_bio);
1918 else {
1919 put_buf(r1_bio);
1920 md_done_sync(mddev, s, uptodate);
1921 }
1922 }
1923}
1924
1925static void end_sync_write(struct bio *bio)
1926{
1927 int uptodate = !bio->bi_status;
1928 struct r1bio *r1_bio = get_resync_r1bio(bio);
1929 struct mddev *mddev = r1_bio->mddev;
1930 struct r1conf *conf = mddev->private;
1931 sector_t first_bad;
1932 int bad_sectors;
1933 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1934
1935 if (!uptodate) {
1936 abort_sync_write(mddev, r1_bio);
1937 set_bit(WriteErrorSeen, &rdev->flags);
1938 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1939 set_bit(MD_RECOVERY_NEEDED, &
1940 mddev->recovery);
1941 set_bit(R1BIO_WriteError, &r1_bio->state);
1942 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1943 &first_bad, &bad_sectors) &&
1944 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1945 r1_bio->sector,
1946 r1_bio->sectors,
1947 &first_bad, &bad_sectors)
1948 )
1949 set_bit(R1BIO_MadeGood, &r1_bio->state);
1950
1951 put_sync_write_buf(r1_bio, uptodate);
1952}
1953
1954static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1955 int sectors, struct page *page, int rw)
1956{
1957 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1958 /* success */
1959 return 1;
1960 if (rw == WRITE) {
1961 set_bit(WriteErrorSeen, &rdev->flags);
1962 if (!test_and_set_bit(WantReplacement,
1963 &rdev->flags))
1964 set_bit(MD_RECOVERY_NEEDED, &
1965 rdev->mddev->recovery);
1966 }
1967 /* need to record an error - either for the block or the device */
1968 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1969 md_error(rdev->mddev, rdev);
1970 return 0;
1971}
1972
1973static int fix_sync_read_error(struct r1bio *r1_bio)
1974{
1975 /* Try some synchronous reads of other devices to get
1976 * good data, much like with normal read errors. Only
1977 * read into the pages we already have so we don't
1978 * need to re-issue the read request.
1979 * We don't need to freeze the array, because being in an
1980 * active sync request, there is no normal IO, and
1981 * no overlapping syncs.
1982 * We don't need to check is_badblock() again as we
1983 * made sure that anything with a bad block in range
1984 * will have bi_end_io clear.
1985 */
1986 struct mddev *mddev = r1_bio->mddev;
1987 struct r1conf *conf = mddev->private;
1988 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1989 struct page **pages = get_resync_pages(bio)->pages;
1990 sector_t sect = r1_bio->sector;
1991 int sectors = r1_bio->sectors;
1992 int idx = 0;
1993 struct md_rdev *rdev;
1994
1995 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1996 if (test_bit(FailFast, &rdev->flags)) {
1997 /* Don't try recovering from here - just fail it
1998 * ... unless it is the last working device of course */
1999 md_error(mddev, rdev);
2000 if (test_bit(Faulty, &rdev->flags))
2001 /* Don't try to read from here, but make sure
2002 * put_buf does it's thing
2003 */
2004 bio->bi_end_io = end_sync_write;
2005 }
2006
2007 while(sectors) {
2008 int s = sectors;
2009 int d = r1_bio->read_disk;
2010 int success = 0;
2011 int start;
2012
2013 if (s > (PAGE_SIZE>>9))
2014 s = PAGE_SIZE >> 9;
2015 do {
2016 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2017 /* No rcu protection needed here devices
2018 * can only be removed when no resync is
2019 * active, and resync is currently active
2020 */
2021 rdev = conf->mirrors[d].rdev;
2022 if (sync_page_io(rdev, sect, s<<9,
2023 pages[idx],
2024 REQ_OP_READ, 0, false)) {
2025 success = 1;
2026 break;
2027 }
2028 }
2029 d++;
2030 if (d == conf->raid_disks * 2)
2031 d = 0;
2032 } while (!success && d != r1_bio->read_disk);
2033
2034 if (!success) {
2035 char b[BDEVNAME_SIZE];
2036 int abort = 0;
2037 /* Cannot read from anywhere, this block is lost.
2038 * Record a bad block on each device. If that doesn't
2039 * work just disable and interrupt the recovery.
2040 * Don't fail devices as that won't really help.
2041 */
2042 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2043 mdname(mddev), bio_devname(bio, b),
2044 (unsigned long long)r1_bio->sector);
2045 for (d = 0; d < conf->raid_disks * 2; d++) {
2046 rdev = conf->mirrors[d].rdev;
2047 if (!rdev || test_bit(Faulty, &rdev->flags))
2048 continue;
2049 if (!rdev_set_badblocks(rdev, sect, s, 0))
2050 abort = 1;
2051 }
2052 if (abort) {
2053 conf->recovery_disabled =
2054 mddev->recovery_disabled;
2055 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2056 md_done_sync(mddev, r1_bio->sectors, 0);
2057 put_buf(r1_bio);
2058 return 0;
2059 }
2060 /* Try next page */
2061 sectors -= s;
2062 sect += s;
2063 idx++;
2064 continue;
2065 }
2066
2067 start = d;
2068 /* write it back and re-read */
2069 while (d != r1_bio->read_disk) {
2070 if (d == 0)
2071 d = conf->raid_disks * 2;
2072 d--;
2073 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2074 continue;
2075 rdev = conf->mirrors[d].rdev;
2076 if (r1_sync_page_io(rdev, sect, s,
2077 pages[idx],
2078 WRITE) == 0) {
2079 r1_bio->bios[d]->bi_end_io = NULL;
2080 rdev_dec_pending(rdev, mddev);
2081 }
2082 }
2083 d = start;
2084 while (d != r1_bio->read_disk) {
2085 if (d == 0)
2086 d = conf->raid_disks * 2;
2087 d--;
2088 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2089 continue;
2090 rdev = conf->mirrors[d].rdev;
2091 if (r1_sync_page_io(rdev, sect, s,
2092 pages[idx],
2093 READ) != 0)
2094 atomic_add(s, &rdev->corrected_errors);
2095 }
2096 sectors -= s;
2097 sect += s;
2098 idx ++;
2099 }
2100 set_bit(R1BIO_Uptodate, &r1_bio->state);
2101 bio->bi_status = 0;
2102 return 1;
2103}
2104
2105static void process_checks(struct r1bio *r1_bio)
2106{
2107 /* We have read all readable devices. If we haven't
2108 * got the block, then there is no hope left.
2109 * If we have, then we want to do a comparison
2110 * and skip the write if everything is the same.
2111 * If any blocks failed to read, then we need to
2112 * attempt an over-write
2113 */
2114 struct mddev *mddev = r1_bio->mddev;
2115 struct r1conf *conf = mddev->private;
2116 int primary;
2117 int i;
2118 int vcnt;
2119
2120 /* Fix variable parts of all bios */
2121 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2122 for (i = 0; i < conf->raid_disks * 2; i++) {
2123 blk_status_t status;
2124 struct bio *b = r1_bio->bios[i];
2125 struct resync_pages *rp = get_resync_pages(b);
2126 if (b->bi_end_io != end_sync_read)
2127 continue;
2128 /* fixup the bio for reuse, but preserve errno */
2129 status = b->bi_status;
2130 bio_reset(b);
2131 b->bi_status = status;
2132 b->bi_iter.bi_sector = r1_bio->sector +
2133 conf->mirrors[i].rdev->data_offset;
2134 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2135 b->bi_end_io = end_sync_read;
2136 rp->raid_bio = r1_bio;
2137 b->bi_private = rp;
2138
2139 /* initialize bvec table again */
2140 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2141 }
2142 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2143 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2144 !r1_bio->bios[primary]->bi_status) {
2145 r1_bio->bios[primary]->bi_end_io = NULL;
2146 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2147 break;
2148 }
2149 r1_bio->read_disk = primary;
2150 for (i = 0; i < conf->raid_disks * 2; i++) {
2151 int j = 0;
2152 struct bio *pbio = r1_bio->bios[primary];
2153 struct bio *sbio = r1_bio->bios[i];
2154 blk_status_t status = sbio->bi_status;
2155 struct page **ppages = get_resync_pages(pbio)->pages;
2156 struct page **spages = get_resync_pages(sbio)->pages;
2157 struct bio_vec *bi;
2158 int page_len[RESYNC_PAGES] = { 0 };
2159 struct bvec_iter_all iter_all;
2160
2161 if (sbio->bi_end_io != end_sync_read)
2162 continue;
2163 /* Now we can 'fixup' the error value */
2164 sbio->bi_status = 0;
2165
2166 bio_for_each_segment_all(bi, sbio, iter_all)
2167 page_len[j++] = bi->bv_len;
2168
2169 if (!status) {
2170 for (j = vcnt; j-- ; ) {
2171 if (memcmp(page_address(ppages[j]),
2172 page_address(spages[j]),
2173 page_len[j]))
2174 break;
2175 }
2176 } else
2177 j = 0;
2178 if (j >= 0)
2179 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2180 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2181 && !status)) {
2182 /* No need to write to this device. */
2183 sbio->bi_end_io = NULL;
2184 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2185 continue;
2186 }
2187
2188 bio_copy_data(sbio, pbio);
2189 }
2190}
2191
2192static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2193{
2194 struct r1conf *conf = mddev->private;
2195 int i;
2196 int disks = conf->raid_disks * 2;
2197 struct bio *wbio;
2198
2199 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2200 /* ouch - failed to read all of that. */
2201 if (!fix_sync_read_error(r1_bio))
2202 return;
2203
2204 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2205 process_checks(r1_bio);
2206
2207 /*
2208 * schedule writes
2209 */
2210 atomic_set(&r1_bio->remaining, 1);
2211 for (i = 0; i < disks ; i++) {
2212 wbio = r1_bio->bios[i];
2213 if (wbio->bi_end_io == NULL ||
2214 (wbio->bi_end_io == end_sync_read &&
2215 (i == r1_bio->read_disk ||
2216 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2217 continue;
2218 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2219 abort_sync_write(mddev, r1_bio);
2220 continue;
2221 }
2222
2223 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2224 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2225 wbio->bi_opf |= MD_FAILFAST;
2226
2227 wbio->bi_end_io = end_sync_write;
2228 atomic_inc(&r1_bio->remaining);
2229 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2230
2231 generic_make_request(wbio);
2232 }
2233
2234 put_sync_write_buf(r1_bio, 1);
2235}
2236
2237/*
2238 * This is a kernel thread which:
2239 *
2240 * 1. Retries failed read operations on working mirrors.
2241 * 2. Updates the raid superblock when problems encounter.
2242 * 3. Performs writes following reads for array synchronising.
2243 */
2244
2245static void fix_read_error(struct r1conf *conf, int read_disk,
2246 sector_t sect, int sectors)
2247{
2248 struct mddev *mddev = conf->mddev;
2249 while(sectors) {
2250 int s = sectors;
2251 int d = read_disk;
2252 int success = 0;
2253 int start;
2254 struct md_rdev *rdev;
2255
2256 if (s > (PAGE_SIZE>>9))
2257 s = PAGE_SIZE >> 9;
2258
2259 do {
2260 sector_t first_bad;
2261 int bad_sectors;
2262
2263 rcu_read_lock();
2264 rdev = rcu_dereference(conf->mirrors[d].rdev);
2265 if (rdev &&
2266 (test_bit(In_sync, &rdev->flags) ||
2267 (!test_bit(Faulty, &rdev->flags) &&
2268 rdev->recovery_offset >= sect + s)) &&
2269 is_badblock(rdev, sect, s,
2270 &first_bad, &bad_sectors) == 0) {
2271 atomic_inc(&rdev->nr_pending);
2272 rcu_read_unlock();
2273 if (sync_page_io(rdev, sect, s<<9,
2274 conf->tmppage, REQ_OP_READ, 0, false))
2275 success = 1;
2276 rdev_dec_pending(rdev, mddev);
2277 if (success)
2278 break;
2279 } else
2280 rcu_read_unlock();
2281 d++;
2282 if (d == conf->raid_disks * 2)
2283 d = 0;
2284 } while (!success && d != read_disk);
2285
2286 if (!success) {
2287 /* Cannot read from anywhere - mark it bad */
2288 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2289 if (!rdev_set_badblocks(rdev, sect, s, 0))
2290 md_error(mddev, rdev);
2291 break;
2292 }
2293 /* write it back and re-read */
2294 start = d;
2295 while (d != read_disk) {
2296 if (d==0)
2297 d = conf->raid_disks * 2;
2298 d--;
2299 rcu_read_lock();
2300 rdev = rcu_dereference(conf->mirrors[d].rdev);
2301 if (rdev &&
2302 !test_bit(Faulty, &rdev->flags)) {
2303 atomic_inc(&rdev->nr_pending);
2304 rcu_read_unlock();
2305 r1_sync_page_io(rdev, sect, s,
2306 conf->tmppage, WRITE);
2307 rdev_dec_pending(rdev, mddev);
2308 } else
2309 rcu_read_unlock();
2310 }
2311 d = start;
2312 while (d != read_disk) {
2313 char b[BDEVNAME_SIZE];
2314 if (d==0)
2315 d = conf->raid_disks * 2;
2316 d--;
2317 rcu_read_lock();
2318 rdev = rcu_dereference(conf->mirrors[d].rdev);
2319 if (rdev &&
2320 !test_bit(Faulty, &rdev->flags)) {
2321 atomic_inc(&rdev->nr_pending);
2322 rcu_read_unlock();
2323 if (r1_sync_page_io(rdev, sect, s,
2324 conf->tmppage, READ)) {
2325 atomic_add(s, &rdev->corrected_errors);
2326 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2327 mdname(mddev), s,
2328 (unsigned long long)(sect +
2329 rdev->data_offset),
2330 bdevname(rdev->bdev, b));
2331 }
2332 rdev_dec_pending(rdev, mddev);
2333 } else
2334 rcu_read_unlock();
2335 }
2336 sectors -= s;
2337 sect += s;
2338 }
2339}
2340
2341static int narrow_write_error(struct r1bio *r1_bio, int i)
2342{
2343 struct mddev *mddev = r1_bio->mddev;
2344 struct r1conf *conf = mddev->private;
2345 struct md_rdev *rdev = conf->mirrors[i].rdev;
2346
2347 /* bio has the data to be written to device 'i' where
2348 * we just recently had a write error.
2349 * We repeatedly clone the bio and trim down to one block,
2350 * then try the write. Where the write fails we record
2351 * a bad block.
2352 * It is conceivable that the bio doesn't exactly align with
2353 * blocks. We must handle this somehow.
2354 *
2355 * We currently own a reference on the rdev.
2356 */
2357
2358 int block_sectors;
2359 sector_t sector;
2360 int sectors;
2361 int sect_to_write = r1_bio->sectors;
2362 int ok = 1;
2363
2364 if (rdev->badblocks.shift < 0)
2365 return 0;
2366
2367 block_sectors = roundup(1 << rdev->badblocks.shift,
2368 bdev_logical_block_size(rdev->bdev) >> 9);
2369 sector = r1_bio->sector;
2370 sectors = ((sector + block_sectors)
2371 & ~(sector_t)(block_sectors - 1))
2372 - sector;
2373
2374 while (sect_to_write) {
2375 struct bio *wbio;
2376 if (sectors > sect_to_write)
2377 sectors = sect_to_write;
2378 /* Write at 'sector' for 'sectors'*/
2379
2380 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2381 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2382 GFP_NOIO,
2383 &mddev->bio_set);
2384 } else {
2385 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2386 &mddev->bio_set);
2387 }
2388
2389 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2390 wbio->bi_iter.bi_sector = r1_bio->sector;
2391 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2392
2393 bio_trim(wbio, sector - r1_bio->sector, sectors);
2394 wbio->bi_iter.bi_sector += rdev->data_offset;
2395 bio_set_dev(wbio, rdev->bdev);
2396
2397 if (submit_bio_wait(wbio) < 0)
2398 /* failure! */
2399 ok = rdev_set_badblocks(rdev, sector,
2400 sectors, 0)
2401 && ok;
2402
2403 bio_put(wbio);
2404 sect_to_write -= sectors;
2405 sector += sectors;
2406 sectors = block_sectors;
2407 }
2408 return ok;
2409}
2410
2411static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2412{
2413 int m;
2414 int s = r1_bio->sectors;
2415 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2416 struct md_rdev *rdev = conf->mirrors[m].rdev;
2417 struct bio *bio = r1_bio->bios[m];
2418 if (bio->bi_end_io == NULL)
2419 continue;
2420 if (!bio->bi_status &&
2421 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2422 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2423 }
2424 if (bio->bi_status &&
2425 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2426 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2427 md_error(conf->mddev, rdev);
2428 }
2429 }
2430 put_buf(r1_bio);
2431 md_done_sync(conf->mddev, s, 1);
2432}
2433
2434static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2435{
2436 int m, idx;
2437 bool fail = false;
2438
2439 for (m = 0; m < conf->raid_disks * 2 ; m++)
2440 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2441 struct md_rdev *rdev = conf->mirrors[m].rdev;
2442 rdev_clear_badblocks(rdev,
2443 r1_bio->sector,
2444 r1_bio->sectors, 0);
2445 rdev_dec_pending(rdev, conf->mddev);
2446 } else if (r1_bio->bios[m] != NULL) {
2447 /* This drive got a write error. We need to
2448 * narrow down and record precise write
2449 * errors.
2450 */
2451 fail = true;
2452 if (!narrow_write_error(r1_bio, m)) {
2453 md_error(conf->mddev,
2454 conf->mirrors[m].rdev);
2455 /* an I/O failed, we can't clear the bitmap */
2456 set_bit(R1BIO_Degraded, &r1_bio->state);
2457 }
2458 rdev_dec_pending(conf->mirrors[m].rdev,
2459 conf->mddev);
2460 }
2461 if (fail) {
2462 spin_lock_irq(&conf->device_lock);
2463 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2464 idx = sector_to_idx(r1_bio->sector);
2465 atomic_inc(&conf->nr_queued[idx]);
2466 spin_unlock_irq(&conf->device_lock);
2467 /*
2468 * In case freeze_array() is waiting for condition
2469 * get_unqueued_pending() == extra to be true.
2470 */
2471 wake_up(&conf->wait_barrier);
2472 md_wakeup_thread(conf->mddev->thread);
2473 } else {
2474 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2475 close_write(r1_bio);
2476 raid_end_bio_io(r1_bio);
2477 }
2478}
2479
2480static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2481{
2482 struct mddev *mddev = conf->mddev;
2483 struct bio *bio;
2484 struct md_rdev *rdev;
2485
2486 clear_bit(R1BIO_ReadError, &r1_bio->state);
2487 /* we got a read error. Maybe the drive is bad. Maybe just
2488 * the block and we can fix it.
2489 * We freeze all other IO, and try reading the block from
2490 * other devices. When we find one, we re-write
2491 * and check it that fixes the read error.
2492 * This is all done synchronously while the array is
2493 * frozen
2494 */
2495
2496 bio = r1_bio->bios[r1_bio->read_disk];
2497 bio_put(bio);
2498 r1_bio->bios[r1_bio->read_disk] = NULL;
2499
2500 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2501 if (mddev->ro == 0
2502 && !test_bit(FailFast, &rdev->flags)) {
2503 freeze_array(conf, 1);
2504 fix_read_error(conf, r1_bio->read_disk,
2505 r1_bio->sector, r1_bio->sectors);
2506 unfreeze_array(conf);
2507 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2508 md_error(mddev, rdev);
2509 } else {
2510 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2511 }
2512
2513 rdev_dec_pending(rdev, conf->mddev);
2514 allow_barrier(conf, r1_bio->sector);
2515 bio = r1_bio->master_bio;
2516
2517 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2518 r1_bio->state = 0;
2519 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2520}
2521
2522static void raid1d(struct md_thread *thread)
2523{
2524 struct mddev *mddev = thread->mddev;
2525 struct r1bio *r1_bio;
2526 unsigned long flags;
2527 struct r1conf *conf = mddev->private;
2528 struct list_head *head = &conf->retry_list;
2529 struct blk_plug plug;
2530 int idx;
2531
2532 md_check_recovery(mddev);
2533
2534 if (!list_empty_careful(&conf->bio_end_io_list) &&
2535 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2536 LIST_HEAD(tmp);
2537 spin_lock_irqsave(&conf->device_lock, flags);
2538 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2539 list_splice_init(&conf->bio_end_io_list, &tmp);
2540 spin_unlock_irqrestore(&conf->device_lock, flags);
2541 while (!list_empty(&tmp)) {
2542 r1_bio = list_first_entry(&tmp, struct r1bio,
2543 retry_list);
2544 list_del(&r1_bio->retry_list);
2545 idx = sector_to_idx(r1_bio->sector);
2546 atomic_dec(&conf->nr_queued[idx]);
2547 if (mddev->degraded)
2548 set_bit(R1BIO_Degraded, &r1_bio->state);
2549 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2550 close_write(r1_bio);
2551 raid_end_bio_io(r1_bio);
2552 }
2553 }
2554
2555 blk_start_plug(&plug);
2556 for (;;) {
2557
2558 flush_pending_writes(conf);
2559
2560 spin_lock_irqsave(&conf->device_lock, flags);
2561 if (list_empty(head)) {
2562 spin_unlock_irqrestore(&conf->device_lock, flags);
2563 break;
2564 }
2565 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2566 list_del(head->prev);
2567 idx = sector_to_idx(r1_bio->sector);
2568 atomic_dec(&conf->nr_queued[idx]);
2569 spin_unlock_irqrestore(&conf->device_lock, flags);
2570
2571 mddev = r1_bio->mddev;
2572 conf = mddev->private;
2573 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2574 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2575 test_bit(R1BIO_WriteError, &r1_bio->state))
2576 handle_sync_write_finished(conf, r1_bio);
2577 else
2578 sync_request_write(mddev, r1_bio);
2579 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2580 test_bit(R1BIO_WriteError, &r1_bio->state))
2581 handle_write_finished(conf, r1_bio);
2582 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2583 handle_read_error(conf, r1_bio);
2584 else
2585 WARN_ON_ONCE(1);
2586
2587 cond_resched();
2588 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2589 md_check_recovery(mddev);
2590 }
2591 blk_finish_plug(&plug);
2592}
2593
2594static int init_resync(struct r1conf *conf)
2595{
2596 int buffs;
2597
2598 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2599 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2600
2601 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2602 r1buf_pool_free, conf->poolinfo);
2603}
2604
2605static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2606{
2607 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2608 struct resync_pages *rps;
2609 struct bio *bio;
2610 int i;
2611
2612 for (i = conf->poolinfo->raid_disks; i--; ) {
2613 bio = r1bio->bios[i];
2614 rps = bio->bi_private;
2615 bio_reset(bio);
2616 bio->bi_private = rps;
2617 }
2618 r1bio->master_bio = NULL;
2619 return r1bio;
2620}
2621
2622/*
2623 * perform a "sync" on one "block"
2624 *
2625 * We need to make sure that no normal I/O request - particularly write
2626 * requests - conflict with active sync requests.
2627 *
2628 * This is achieved by tracking pending requests and a 'barrier' concept
2629 * that can be installed to exclude normal IO requests.
2630 */
2631
2632static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2633 int *skipped)
2634{
2635 struct r1conf *conf = mddev->private;
2636 struct r1bio *r1_bio;
2637 struct bio *bio;
2638 sector_t max_sector, nr_sectors;
2639 int disk = -1;
2640 int i;
2641 int wonly = -1;
2642 int write_targets = 0, read_targets = 0;
2643 sector_t sync_blocks;
2644 int still_degraded = 0;
2645 int good_sectors = RESYNC_SECTORS;
2646 int min_bad = 0; /* number of sectors that are bad in all devices */
2647 int idx = sector_to_idx(sector_nr);
2648 int page_idx = 0;
2649
2650 if (!mempool_initialized(&conf->r1buf_pool))
2651 if (init_resync(conf))
2652 return 0;
2653
2654 max_sector = mddev->dev_sectors;
2655 if (sector_nr >= max_sector) {
2656 /* If we aborted, we need to abort the
2657 * sync on the 'current' bitmap chunk (there will
2658 * only be one in raid1 resync.
2659 * We can find the current addess in mddev->curr_resync
2660 */
2661 if (mddev->curr_resync < max_sector) /* aborted */
2662 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2663 &sync_blocks, 1);
2664 else /* completed sync */
2665 conf->fullsync = 0;
2666
2667 md_bitmap_close_sync(mddev->bitmap);
2668 close_sync(conf);
2669
2670 if (mddev_is_clustered(mddev)) {
2671 conf->cluster_sync_low = 0;
2672 conf->cluster_sync_high = 0;
2673 }
2674 return 0;
2675 }
2676
2677 if (mddev->bitmap == NULL &&
2678 mddev->recovery_cp == MaxSector &&
2679 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2680 conf->fullsync == 0) {
2681 *skipped = 1;
2682 return max_sector - sector_nr;
2683 }
2684 /* before building a request, check if we can skip these blocks..
2685 * This call the bitmap_start_sync doesn't actually record anything
2686 */
2687 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2688 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2689 /* We can skip this block, and probably several more */
2690 *skipped = 1;
2691 return sync_blocks;
2692 }
2693
2694 /*
2695 * If there is non-resync activity waiting for a turn, then let it
2696 * though before starting on this new sync request.
2697 */
2698 if (atomic_read(&conf->nr_waiting[idx]))
2699 schedule_timeout_uninterruptible(1);
2700
2701 /* we are incrementing sector_nr below. To be safe, we check against
2702 * sector_nr + two times RESYNC_SECTORS
2703 */
2704
2705 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2706 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2707
2708
2709 if (raise_barrier(conf, sector_nr))
2710 return 0;
2711
2712 r1_bio = raid1_alloc_init_r1buf(conf);
2713
2714 rcu_read_lock();
2715 /*
2716 * If we get a correctably read error during resync or recovery,
2717 * we might want to read from a different device. So we
2718 * flag all drives that could conceivably be read from for READ,
2719 * and any others (which will be non-In_sync devices) for WRITE.
2720 * If a read fails, we try reading from something else for which READ
2721 * is OK.
2722 */
2723
2724 r1_bio->mddev = mddev;
2725 r1_bio->sector = sector_nr;
2726 r1_bio->state = 0;
2727 set_bit(R1BIO_IsSync, &r1_bio->state);
2728 /* make sure good_sectors won't go across barrier unit boundary */
2729 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2730
2731 for (i = 0; i < conf->raid_disks * 2; i++) {
2732 struct md_rdev *rdev;
2733 bio = r1_bio->bios[i];
2734
2735 rdev = rcu_dereference(conf->mirrors[i].rdev);
2736 if (rdev == NULL ||
2737 test_bit(Faulty, &rdev->flags)) {
2738 if (i < conf->raid_disks)
2739 still_degraded = 1;
2740 } else if (!test_bit(In_sync, &rdev->flags)) {
2741 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2742 bio->bi_end_io = end_sync_write;
2743 write_targets ++;
2744 } else {
2745 /* may need to read from here */
2746 sector_t first_bad = MaxSector;
2747 int bad_sectors;
2748
2749 if (is_badblock(rdev, sector_nr, good_sectors,
2750 &first_bad, &bad_sectors)) {
2751 if (first_bad > sector_nr)
2752 good_sectors = first_bad - sector_nr;
2753 else {
2754 bad_sectors -= (sector_nr - first_bad);
2755 if (min_bad == 0 ||
2756 min_bad > bad_sectors)
2757 min_bad = bad_sectors;
2758 }
2759 }
2760 if (sector_nr < first_bad) {
2761 if (test_bit(WriteMostly, &rdev->flags)) {
2762 if (wonly < 0)
2763 wonly = i;
2764 } else {
2765 if (disk < 0)
2766 disk = i;
2767 }
2768 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2769 bio->bi_end_io = end_sync_read;
2770 read_targets++;
2771 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2772 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2773 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2774 /*
2775 * The device is suitable for reading (InSync),
2776 * but has bad block(s) here. Let's try to correct them,
2777 * if we are doing resync or repair. Otherwise, leave
2778 * this device alone for this sync request.
2779 */
2780 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2781 bio->bi_end_io = end_sync_write;
2782 write_targets++;
2783 }
2784 }
2785 if (bio->bi_end_io) {
2786 atomic_inc(&rdev->nr_pending);
2787 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2788 bio_set_dev(bio, rdev->bdev);
2789 if (test_bit(FailFast, &rdev->flags))
2790 bio->bi_opf |= MD_FAILFAST;
2791 }
2792 }
2793 rcu_read_unlock();
2794 if (disk < 0)
2795 disk = wonly;
2796 r1_bio->read_disk = disk;
2797
2798 if (read_targets == 0 && min_bad > 0) {
2799 /* These sectors are bad on all InSync devices, so we
2800 * need to mark them bad on all write targets
2801 */
2802 int ok = 1;
2803 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2804 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2805 struct md_rdev *rdev = conf->mirrors[i].rdev;
2806 ok = rdev_set_badblocks(rdev, sector_nr,
2807 min_bad, 0
2808 ) && ok;
2809 }
2810 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2811 *skipped = 1;
2812 put_buf(r1_bio);
2813
2814 if (!ok) {
2815 /* Cannot record the badblocks, so need to
2816 * abort the resync.
2817 * If there are multiple read targets, could just
2818 * fail the really bad ones ???
2819 */
2820 conf->recovery_disabled = mddev->recovery_disabled;
2821 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2822 return 0;
2823 } else
2824 return min_bad;
2825
2826 }
2827 if (min_bad > 0 && min_bad < good_sectors) {
2828 /* only resync enough to reach the next bad->good
2829 * transition */
2830 good_sectors = min_bad;
2831 }
2832
2833 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2834 /* extra read targets are also write targets */
2835 write_targets += read_targets-1;
2836
2837 if (write_targets == 0 || read_targets == 0) {
2838 /* There is nowhere to write, so all non-sync
2839 * drives must be failed - so we are finished
2840 */
2841 sector_t rv;
2842 if (min_bad > 0)
2843 max_sector = sector_nr + min_bad;
2844 rv = max_sector - sector_nr;
2845 *skipped = 1;
2846 put_buf(r1_bio);
2847 return rv;
2848 }
2849
2850 if (max_sector > mddev->resync_max)
2851 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2852 if (max_sector > sector_nr + good_sectors)
2853 max_sector = sector_nr + good_sectors;
2854 nr_sectors = 0;
2855 sync_blocks = 0;
2856 do {
2857 struct page *page;
2858 int len = PAGE_SIZE;
2859 if (sector_nr + (len>>9) > max_sector)
2860 len = (max_sector - sector_nr) << 9;
2861 if (len == 0)
2862 break;
2863 if (sync_blocks == 0) {
2864 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2865 &sync_blocks, still_degraded) &&
2866 !conf->fullsync &&
2867 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2868 break;
2869 if ((len >> 9) > sync_blocks)
2870 len = sync_blocks<<9;
2871 }
2872
2873 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2874 struct resync_pages *rp;
2875
2876 bio = r1_bio->bios[i];
2877 rp = get_resync_pages(bio);
2878 if (bio->bi_end_io) {
2879 page = resync_fetch_page(rp, page_idx);
2880
2881 /*
2882 * won't fail because the vec table is big
2883 * enough to hold all these pages
2884 */
2885 bio_add_page(bio, page, len, 0);
2886 }
2887 }
2888 nr_sectors += len>>9;
2889 sector_nr += len>>9;
2890 sync_blocks -= (len>>9);
2891 } while (++page_idx < RESYNC_PAGES);
2892
2893 r1_bio->sectors = nr_sectors;
2894
2895 if (mddev_is_clustered(mddev) &&
2896 conf->cluster_sync_high < sector_nr + nr_sectors) {
2897 conf->cluster_sync_low = mddev->curr_resync_completed;
2898 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2899 /* Send resync message */
2900 md_cluster_ops->resync_info_update(mddev,
2901 conf->cluster_sync_low,
2902 conf->cluster_sync_high);
2903 }
2904
2905 /* For a user-requested sync, we read all readable devices and do a
2906 * compare
2907 */
2908 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2909 atomic_set(&r1_bio->remaining, read_targets);
2910 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2911 bio = r1_bio->bios[i];
2912 if (bio->bi_end_io == end_sync_read) {
2913 read_targets--;
2914 md_sync_acct_bio(bio, nr_sectors);
2915 if (read_targets == 1)
2916 bio->bi_opf &= ~MD_FAILFAST;
2917 generic_make_request(bio);
2918 }
2919 }
2920 } else {
2921 atomic_set(&r1_bio->remaining, 1);
2922 bio = r1_bio->bios[r1_bio->read_disk];
2923 md_sync_acct_bio(bio, nr_sectors);
2924 if (read_targets == 1)
2925 bio->bi_opf &= ~MD_FAILFAST;
2926 generic_make_request(bio);
2927 }
2928 return nr_sectors;
2929}
2930
2931static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2932{
2933 if (sectors)
2934 return sectors;
2935
2936 return mddev->dev_sectors;
2937}
2938
2939static struct r1conf *setup_conf(struct mddev *mddev)
2940{
2941 struct r1conf *conf;
2942 int i;
2943 struct raid1_info *disk;
2944 struct md_rdev *rdev;
2945 int err = -ENOMEM;
2946
2947 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2948 if (!conf)
2949 goto abort;
2950
2951 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2952 sizeof(atomic_t), GFP_KERNEL);
2953 if (!conf->nr_pending)
2954 goto abort;
2955
2956 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2957 sizeof(atomic_t), GFP_KERNEL);
2958 if (!conf->nr_waiting)
2959 goto abort;
2960
2961 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2962 sizeof(atomic_t), GFP_KERNEL);
2963 if (!conf->nr_queued)
2964 goto abort;
2965
2966 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2967 sizeof(atomic_t), GFP_KERNEL);
2968 if (!conf->barrier)
2969 goto abort;
2970
2971 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2972 mddev->raid_disks, 2),
2973 GFP_KERNEL);
2974 if (!conf->mirrors)
2975 goto abort;
2976
2977 conf->tmppage = alloc_page(GFP_KERNEL);
2978 if (!conf->tmppage)
2979 goto abort;
2980
2981 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2982 if (!conf->poolinfo)
2983 goto abort;
2984 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2985 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2986 rbio_pool_free, conf->poolinfo);
2987 if (err)
2988 goto abort;
2989
2990 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2991 if (err)
2992 goto abort;
2993
2994 conf->poolinfo->mddev = mddev;
2995
2996 err = -EINVAL;
2997 spin_lock_init(&conf->device_lock);
2998 rdev_for_each(rdev, mddev) {
2999 int disk_idx = rdev->raid_disk;
3000 if (disk_idx >= mddev->raid_disks
3001 || disk_idx < 0)
3002 continue;
3003 if (test_bit(Replacement, &rdev->flags))
3004 disk = conf->mirrors + mddev->raid_disks + disk_idx;
3005 else
3006 disk = conf->mirrors + disk_idx;
3007
3008 if (disk->rdev)
3009 goto abort;
3010 disk->rdev = rdev;
3011 disk->head_position = 0;
3012 disk->seq_start = MaxSector;
3013 }
3014 conf->raid_disks = mddev->raid_disks;
3015 conf->mddev = mddev;
3016 INIT_LIST_HEAD(&conf->retry_list);
3017 INIT_LIST_HEAD(&conf->bio_end_io_list);
3018
3019 spin_lock_init(&conf->resync_lock);
3020 init_waitqueue_head(&conf->wait_barrier);
3021
3022 bio_list_init(&conf->pending_bio_list);
3023 conf->pending_count = 0;
3024 conf->recovery_disabled = mddev->recovery_disabled - 1;
3025
3026 err = -EIO;
3027 for (i = 0; i < conf->raid_disks * 2; i++) {
3028
3029 disk = conf->mirrors + i;
3030
3031 if (i < conf->raid_disks &&
3032 disk[conf->raid_disks].rdev) {
3033 /* This slot has a replacement. */
3034 if (!disk->rdev) {
3035 /* No original, just make the replacement
3036 * a recovering spare
3037 */
3038 disk->rdev =
3039 disk[conf->raid_disks].rdev;
3040 disk[conf->raid_disks].rdev = NULL;
3041 } else if (!test_bit(In_sync, &disk->rdev->flags))
3042 /* Original is not in_sync - bad */
3043 goto abort;
3044 }
3045
3046 if (!disk->rdev ||
3047 !test_bit(In_sync, &disk->rdev->flags)) {
3048 disk->head_position = 0;
3049 if (disk->rdev &&
3050 (disk->rdev->saved_raid_disk < 0))
3051 conf->fullsync = 1;
3052 }
3053 }
3054
3055 err = -ENOMEM;
3056 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3057 if (!conf->thread)
3058 goto abort;
3059
3060 return conf;
3061
3062 abort:
3063 if (conf) {
3064 mempool_exit(&conf->r1bio_pool);
3065 kfree(conf->mirrors);
3066 safe_put_page(conf->tmppage);
3067 kfree(conf->poolinfo);
3068 kfree(conf->nr_pending);
3069 kfree(conf->nr_waiting);
3070 kfree(conf->nr_queued);
3071 kfree(conf->barrier);
3072 bioset_exit(&conf->bio_split);
3073 kfree(conf);
3074 }
3075 return ERR_PTR(err);
3076}
3077
3078static void raid1_free(struct mddev *mddev, void *priv);
3079static int raid1_run(struct mddev *mddev)
3080{
3081 struct r1conf *conf;
3082 int i;
3083 struct md_rdev *rdev;
3084 int ret;
3085 bool discard_supported = false;
3086
3087 if (mddev->level != 1) {
3088 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3089 mdname(mddev), mddev->level);
3090 return -EIO;
3091 }
3092 if (mddev->reshape_position != MaxSector) {
3093 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3094 mdname(mddev));
3095 return -EIO;
3096 }
3097 if (mddev_init_writes_pending(mddev) < 0)
3098 return -ENOMEM;
3099 /*
3100 * copy the already verified devices into our private RAID1
3101 * bookkeeping area. [whatever we allocate in run(),
3102 * should be freed in raid1_free()]
3103 */
3104 if (mddev->private == NULL)
3105 conf = setup_conf(mddev);
3106 else
3107 conf = mddev->private;
3108
3109 if (IS_ERR(conf))
3110 return PTR_ERR(conf);
3111
3112 if (mddev->queue) {
3113 blk_queue_max_write_same_sectors(mddev->queue, 0);
3114 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3115 }
3116
3117 rdev_for_each(rdev, mddev) {
3118 if (!mddev->gendisk)
3119 continue;
3120 disk_stack_limits(mddev->gendisk, rdev->bdev,
3121 rdev->data_offset << 9);
3122 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3123 discard_supported = true;
3124 }
3125
3126 mddev->degraded = 0;
3127 for (i = 0; i < conf->raid_disks; i++)
3128 if (conf->mirrors[i].rdev == NULL ||
3129 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3130 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3131 mddev->degraded++;
3132 /*
3133 * RAID1 needs at least one disk in active
3134 */
3135 if (conf->raid_disks - mddev->degraded < 1) {
3136 ret = -EINVAL;
3137 goto abort;
3138 }
3139
3140 if (conf->raid_disks - mddev->degraded == 1)
3141 mddev->recovery_cp = MaxSector;
3142
3143 if (mddev->recovery_cp != MaxSector)
3144 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3145 mdname(mddev));
3146 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3147 mdname(mddev), mddev->raid_disks - mddev->degraded,
3148 mddev->raid_disks);
3149
3150 /*
3151 * Ok, everything is just fine now
3152 */
3153 mddev->thread = conf->thread;
3154 conf->thread = NULL;
3155 mddev->private = conf;
3156 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3157
3158 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3159
3160 if (mddev->queue) {
3161 if (discard_supported)
3162 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3163 mddev->queue);
3164 else
3165 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3166 mddev->queue);
3167 }
3168
3169 ret = md_integrity_register(mddev);
3170 if (ret) {
3171 md_unregister_thread(&mddev->thread);
3172 goto abort;
3173 }
3174 return 0;
3175
3176abort:
3177 raid1_free(mddev, conf);
3178 return ret;
3179}
3180
3181static void raid1_free(struct mddev *mddev, void *priv)
3182{
3183 struct r1conf *conf = priv;
3184
3185 mempool_exit(&conf->r1bio_pool);
3186 kfree(conf->mirrors);
3187 safe_put_page(conf->tmppage);
3188 kfree(conf->poolinfo);
3189 kfree(conf->nr_pending);
3190 kfree(conf->nr_waiting);
3191 kfree(conf->nr_queued);
3192 kfree(conf->barrier);
3193 bioset_exit(&conf->bio_split);
3194 kfree(conf);
3195}
3196
3197static int raid1_resize(struct mddev *mddev, sector_t sectors)
3198{
3199 /* no resync is happening, and there is enough space
3200 * on all devices, so we can resize.
3201 * We need to make sure resync covers any new space.
3202 * If the array is shrinking we should possibly wait until
3203 * any io in the removed space completes, but it hardly seems
3204 * worth it.
3205 */
3206 sector_t newsize = raid1_size(mddev, sectors, 0);
3207 if (mddev->external_size &&
3208 mddev->array_sectors > newsize)
3209 return -EINVAL;
3210 if (mddev->bitmap) {
3211 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3212 if (ret)
3213 return ret;
3214 }
3215 md_set_array_sectors(mddev, newsize);
3216 if (sectors > mddev->dev_sectors &&
3217 mddev->recovery_cp > mddev->dev_sectors) {
3218 mddev->recovery_cp = mddev->dev_sectors;
3219 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3220 }
3221 mddev->dev_sectors = sectors;
3222 mddev->resync_max_sectors = sectors;
3223 return 0;
3224}
3225
3226static int raid1_reshape(struct mddev *mddev)
3227{
3228 /* We need to:
3229 * 1/ resize the r1bio_pool
3230 * 2/ resize conf->mirrors
3231 *
3232 * We allocate a new r1bio_pool if we can.
3233 * Then raise a device barrier and wait until all IO stops.
3234 * Then resize conf->mirrors and swap in the new r1bio pool.
3235 *
3236 * At the same time, we "pack" the devices so that all the missing
3237 * devices have the higher raid_disk numbers.
3238 */
3239 mempool_t newpool, oldpool;
3240 struct pool_info *newpoolinfo;
3241 struct raid1_info *newmirrors;
3242 struct r1conf *conf = mddev->private;
3243 int cnt, raid_disks;
3244 unsigned long flags;
3245 int d, d2;
3246 int ret;
3247
3248 memset(&newpool, 0, sizeof(newpool));
3249 memset(&oldpool, 0, sizeof(oldpool));
3250
3251 /* Cannot change chunk_size, layout, or level */
3252 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3253 mddev->layout != mddev->new_layout ||
3254 mddev->level != mddev->new_level) {
3255 mddev->new_chunk_sectors = mddev->chunk_sectors;
3256 mddev->new_layout = mddev->layout;
3257 mddev->new_level = mddev->level;
3258 return -EINVAL;
3259 }
3260
3261 if (!mddev_is_clustered(mddev))
3262 md_allow_write(mddev);
3263
3264 raid_disks = mddev->raid_disks + mddev->delta_disks;
3265
3266 if (raid_disks < conf->raid_disks) {
3267 cnt=0;
3268 for (d= 0; d < conf->raid_disks; d++)
3269 if (conf->mirrors[d].rdev)
3270 cnt++;
3271 if (cnt > raid_disks)
3272 return -EBUSY;
3273 }
3274
3275 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3276 if (!newpoolinfo)
3277 return -ENOMEM;
3278 newpoolinfo->mddev = mddev;
3279 newpoolinfo->raid_disks = raid_disks * 2;
3280
3281 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3282 rbio_pool_free, newpoolinfo);
3283 if (ret) {
3284 kfree(newpoolinfo);
3285 return ret;
3286 }
3287 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3288 raid_disks, 2),
3289 GFP_KERNEL);
3290 if (!newmirrors) {
3291 kfree(newpoolinfo);
3292 mempool_exit(&newpool);
3293 return -ENOMEM;
3294 }
3295
3296 freeze_array(conf, 0);
3297
3298 /* ok, everything is stopped */
3299 oldpool = conf->r1bio_pool;
3300 conf->r1bio_pool = newpool;
3301
3302 for (d = d2 = 0; d < conf->raid_disks; d++) {
3303 struct md_rdev *rdev = conf->mirrors[d].rdev;
3304 if (rdev && rdev->raid_disk != d2) {
3305 sysfs_unlink_rdev(mddev, rdev);
3306 rdev->raid_disk = d2;
3307 sysfs_unlink_rdev(mddev, rdev);
3308 if (sysfs_link_rdev(mddev, rdev))
3309 pr_warn("md/raid1:%s: cannot register rd%d\n",
3310 mdname(mddev), rdev->raid_disk);
3311 }
3312 if (rdev)
3313 newmirrors[d2++].rdev = rdev;
3314 }
3315 kfree(conf->mirrors);
3316 conf->mirrors = newmirrors;
3317 kfree(conf->poolinfo);
3318 conf->poolinfo = newpoolinfo;
3319
3320 spin_lock_irqsave(&conf->device_lock, flags);
3321 mddev->degraded += (raid_disks - conf->raid_disks);
3322 spin_unlock_irqrestore(&conf->device_lock, flags);
3323 conf->raid_disks = mddev->raid_disks = raid_disks;
3324 mddev->delta_disks = 0;
3325
3326 unfreeze_array(conf);
3327
3328 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3329 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3330 md_wakeup_thread(mddev->thread);
3331
3332 mempool_exit(&oldpool);
3333 return 0;
3334}
3335
3336static void raid1_quiesce(struct mddev *mddev, int quiesce)
3337{
3338 struct r1conf *conf = mddev->private;
3339
3340 if (quiesce)
3341 freeze_array(conf, 0);
3342 else
3343 unfreeze_array(conf);
3344}
3345
3346static void *raid1_takeover(struct mddev *mddev)
3347{
3348 /* raid1 can take over:
3349 * raid5 with 2 devices, any layout or chunk size
3350 */
3351 if (mddev->level == 5 && mddev->raid_disks == 2) {
3352 struct r1conf *conf;
3353 mddev->new_level = 1;
3354 mddev->new_layout = 0;
3355 mddev->new_chunk_sectors = 0;
3356 conf = setup_conf(mddev);
3357 if (!IS_ERR(conf)) {
3358 /* Array must appear to be quiesced */
3359 conf->array_frozen = 1;
3360 mddev_clear_unsupported_flags(mddev,
3361 UNSUPPORTED_MDDEV_FLAGS);
3362 }
3363 return conf;
3364 }
3365 return ERR_PTR(-EINVAL);
3366}
3367
3368static struct md_personality raid1_personality =
3369{
3370 .name = "raid1",
3371 .level = 1,
3372 .owner = THIS_MODULE,
3373 .make_request = raid1_make_request,
3374 .run = raid1_run,
3375 .free = raid1_free,
3376 .status = raid1_status,
3377 .error_handler = raid1_error,
3378 .hot_add_disk = raid1_add_disk,
3379 .hot_remove_disk= raid1_remove_disk,
3380 .spare_active = raid1_spare_active,
3381 .sync_request = raid1_sync_request,
3382 .resize = raid1_resize,
3383 .size = raid1_size,
3384 .check_reshape = raid1_reshape,
3385 .quiesce = raid1_quiesce,
3386 .takeover = raid1_takeover,
3387 .congested = raid1_congested,
3388};
3389
3390static int __init raid_init(void)
3391{
3392 return register_md_personality(&raid1_personality);
3393}
3394
3395static void raid_exit(void)
3396{
3397 unregister_md_personality(&raid1_personality);
3398}
3399
3400module_init(raid_init);
3401module_exit(raid_exit);
3402MODULE_LICENSE("GPL");
3403MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3404MODULE_ALIAS("md-personality-3"); /* RAID1 */
3405MODULE_ALIAS("md-raid1");
3406MODULE_ALIAS("md-level-1");
3407
3408module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
24 */
25
26#include <linux/slab.h>
27#include <linux/delay.h>
28#include <linux/blkdev.h>
29#include <linux/module.h>
30#include <linux/seq_file.h>
31#include <linux/ratelimit.h>
32#include <linux/interval_tree_generic.h>
33
34#include <trace/events/block.h>
35
36#include "md.h"
37#include "raid1.h"
38#include "md-bitmap.h"
39
40#define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
42 (1L << MD_JOURNAL_CLEAN) | \
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
45
46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48
49#define RAID_1_10_NAME "raid1"
50#include "raid1-10.c"
51
52#define START(node) ((node)->start)
53#define LAST(node) ((node)->last)
54INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
55 START, LAST, static inline, raid1_rb);
56
57static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
58 struct serial_info *si, int idx)
59{
60 unsigned long flags;
61 int ret = 0;
62 sector_t lo = r1_bio->sector;
63 sector_t hi = lo + r1_bio->sectors;
64 struct serial_in_rdev *serial = &rdev->serial[idx];
65
66 spin_lock_irqsave(&serial->serial_lock, flags);
67 /* collision happened */
68 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
69 ret = -EBUSY;
70 else {
71 si->start = lo;
72 si->last = hi;
73 raid1_rb_insert(si, &serial->serial_rb);
74 }
75 spin_unlock_irqrestore(&serial->serial_lock, flags);
76
77 return ret;
78}
79
80static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
81{
82 struct mddev *mddev = rdev->mddev;
83 struct serial_info *si;
84 int idx = sector_to_idx(r1_bio->sector);
85 struct serial_in_rdev *serial = &rdev->serial[idx];
86
87 if (WARN_ON(!mddev->serial_info_pool))
88 return;
89 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
90 wait_event(serial->serial_io_wait,
91 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
92}
93
94static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
95{
96 struct serial_info *si;
97 unsigned long flags;
98 int found = 0;
99 struct mddev *mddev = rdev->mddev;
100 int idx = sector_to_idx(lo);
101 struct serial_in_rdev *serial = &rdev->serial[idx];
102
103 spin_lock_irqsave(&serial->serial_lock, flags);
104 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
105 si; si = raid1_rb_iter_next(si, lo, hi)) {
106 if (si->start == lo && si->last == hi) {
107 raid1_rb_remove(si, &serial->serial_rb);
108 mempool_free(si, mddev->serial_info_pool);
109 found = 1;
110 break;
111 }
112 }
113 if (!found)
114 WARN(1, "The write IO is not recorded for serialization\n");
115 spin_unlock_irqrestore(&serial->serial_lock, flags);
116 wake_up(&serial->serial_io_wait);
117}
118
119/*
120 * for resync bio, r1bio pointer can be retrieved from the per-bio
121 * 'struct resync_pages'.
122 */
123static inline struct r1bio *get_resync_r1bio(struct bio *bio)
124{
125 return get_resync_pages(bio)->raid_bio;
126}
127
128static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
129{
130 struct pool_info *pi = data;
131 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
132
133 /* allocate a r1bio with room for raid_disks entries in the bios array */
134 return kzalloc(size, gfp_flags);
135}
136
137#define RESYNC_DEPTH 32
138#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
139#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
140#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
141#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
142#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
143
144static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
145{
146 struct pool_info *pi = data;
147 struct r1bio *r1_bio;
148 struct bio *bio;
149 int need_pages;
150 int j;
151 struct resync_pages *rps;
152
153 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
154 if (!r1_bio)
155 return NULL;
156
157 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
158 gfp_flags);
159 if (!rps)
160 goto out_free_r1bio;
161
162 /*
163 * Allocate bios : 1 for reading, n-1 for writing
164 */
165 for (j = pi->raid_disks ; j-- ; ) {
166 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
167 if (!bio)
168 goto out_free_bio;
169 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
170 r1_bio->bios[j] = bio;
171 }
172 /*
173 * Allocate RESYNC_PAGES data pages and attach them to
174 * the first bio.
175 * If this is a user-requested check/repair, allocate
176 * RESYNC_PAGES for each bio.
177 */
178 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
179 need_pages = pi->raid_disks;
180 else
181 need_pages = 1;
182 for (j = 0; j < pi->raid_disks; j++) {
183 struct resync_pages *rp = &rps[j];
184
185 bio = r1_bio->bios[j];
186
187 if (j < need_pages) {
188 if (resync_alloc_pages(rp, gfp_flags))
189 goto out_free_pages;
190 } else {
191 memcpy(rp, &rps[0], sizeof(*rp));
192 resync_get_all_pages(rp);
193 }
194
195 rp->raid_bio = r1_bio;
196 bio->bi_private = rp;
197 }
198
199 r1_bio->master_bio = NULL;
200
201 return r1_bio;
202
203out_free_pages:
204 while (--j >= 0)
205 resync_free_pages(&rps[j]);
206
207out_free_bio:
208 while (++j < pi->raid_disks) {
209 bio_uninit(r1_bio->bios[j]);
210 kfree(r1_bio->bios[j]);
211 }
212 kfree(rps);
213
214out_free_r1bio:
215 rbio_pool_free(r1_bio, data);
216 return NULL;
217}
218
219static void r1buf_pool_free(void *__r1_bio, void *data)
220{
221 struct pool_info *pi = data;
222 int i;
223 struct r1bio *r1bio = __r1_bio;
224 struct resync_pages *rp = NULL;
225
226 for (i = pi->raid_disks; i--; ) {
227 rp = get_resync_pages(r1bio->bios[i]);
228 resync_free_pages(rp);
229 bio_uninit(r1bio->bios[i]);
230 kfree(r1bio->bios[i]);
231 }
232
233 /* resync pages array stored in the 1st bio's .bi_private */
234 kfree(rp);
235
236 rbio_pool_free(r1bio, data);
237}
238
239static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
240{
241 int i;
242
243 for (i = 0; i < conf->raid_disks * 2; i++) {
244 struct bio **bio = r1_bio->bios + i;
245 if (!BIO_SPECIAL(*bio))
246 bio_put(*bio);
247 *bio = NULL;
248 }
249}
250
251static void free_r1bio(struct r1bio *r1_bio)
252{
253 struct r1conf *conf = r1_bio->mddev->private;
254
255 put_all_bios(conf, r1_bio);
256 mempool_free(r1_bio, &conf->r1bio_pool);
257}
258
259static void put_buf(struct r1bio *r1_bio)
260{
261 struct r1conf *conf = r1_bio->mddev->private;
262 sector_t sect = r1_bio->sector;
263 int i;
264
265 for (i = 0; i < conf->raid_disks * 2; i++) {
266 struct bio *bio = r1_bio->bios[i];
267 if (bio->bi_end_io)
268 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
269 }
270
271 mempool_free(r1_bio, &conf->r1buf_pool);
272
273 lower_barrier(conf, sect);
274}
275
276static void reschedule_retry(struct r1bio *r1_bio)
277{
278 unsigned long flags;
279 struct mddev *mddev = r1_bio->mddev;
280 struct r1conf *conf = mddev->private;
281 int idx;
282
283 idx = sector_to_idx(r1_bio->sector);
284 spin_lock_irqsave(&conf->device_lock, flags);
285 list_add(&r1_bio->retry_list, &conf->retry_list);
286 atomic_inc(&conf->nr_queued[idx]);
287 spin_unlock_irqrestore(&conf->device_lock, flags);
288
289 wake_up(&conf->wait_barrier);
290 md_wakeup_thread(mddev->thread);
291}
292
293/*
294 * raid_end_bio_io() is called when we have finished servicing a mirrored
295 * operation and are ready to return a success/failure code to the buffer
296 * cache layer.
297 */
298static void call_bio_endio(struct r1bio *r1_bio)
299{
300 struct bio *bio = r1_bio->master_bio;
301
302 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
303 bio->bi_status = BLK_STS_IOERR;
304
305 bio_endio(bio);
306}
307
308static void raid_end_bio_io(struct r1bio *r1_bio)
309{
310 struct bio *bio = r1_bio->master_bio;
311 struct r1conf *conf = r1_bio->mddev->private;
312 sector_t sector = r1_bio->sector;
313
314 /* if nobody has done the final endio yet, do it now */
315 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
316 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
317 (bio_data_dir(bio) == WRITE) ? "write" : "read",
318 (unsigned long long) bio->bi_iter.bi_sector,
319 (unsigned long long) bio_end_sector(bio) - 1);
320
321 call_bio_endio(r1_bio);
322 }
323
324 free_r1bio(r1_bio);
325 /*
326 * Wake up any possible resync thread that waits for the device
327 * to go idle. All I/Os, even write-behind writes, are done.
328 */
329 allow_barrier(conf, sector);
330}
331
332/*
333 * Update disk head position estimator based on IRQ completion info.
334 */
335static inline void update_head_pos(int disk, struct r1bio *r1_bio)
336{
337 struct r1conf *conf = r1_bio->mddev->private;
338
339 conf->mirrors[disk].head_position =
340 r1_bio->sector + (r1_bio->sectors);
341}
342
343/*
344 * Find the disk number which triggered given bio
345 */
346static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
347{
348 int mirror;
349 struct r1conf *conf = r1_bio->mddev->private;
350 int raid_disks = conf->raid_disks;
351
352 for (mirror = 0; mirror < raid_disks * 2; mirror++)
353 if (r1_bio->bios[mirror] == bio)
354 break;
355
356 BUG_ON(mirror == raid_disks * 2);
357 update_head_pos(mirror, r1_bio);
358
359 return mirror;
360}
361
362static void raid1_end_read_request(struct bio *bio)
363{
364 int uptodate = !bio->bi_status;
365 struct r1bio *r1_bio = bio->bi_private;
366 struct r1conf *conf = r1_bio->mddev->private;
367 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
368
369 /*
370 * this branch is our 'one mirror IO has finished' event handler:
371 */
372 update_head_pos(r1_bio->read_disk, r1_bio);
373
374 if (uptodate)
375 set_bit(R1BIO_Uptodate, &r1_bio->state);
376 else if (test_bit(FailFast, &rdev->flags) &&
377 test_bit(R1BIO_FailFast, &r1_bio->state))
378 /* This was a fail-fast read so we definitely
379 * want to retry */
380 ;
381 else {
382 /* If all other devices have failed, we want to return
383 * the error upwards rather than fail the last device.
384 * Here we redefine "uptodate" to mean "Don't want to retry"
385 */
386 unsigned long flags;
387 spin_lock_irqsave(&conf->device_lock, flags);
388 if (r1_bio->mddev->degraded == conf->raid_disks ||
389 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
390 test_bit(In_sync, &rdev->flags)))
391 uptodate = 1;
392 spin_unlock_irqrestore(&conf->device_lock, flags);
393 }
394
395 if (uptodate) {
396 raid_end_bio_io(r1_bio);
397 rdev_dec_pending(rdev, conf->mddev);
398 } else {
399 /*
400 * oops, read error:
401 */
402 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
403 mdname(conf->mddev),
404 rdev->bdev,
405 (unsigned long long)r1_bio->sector);
406 set_bit(R1BIO_ReadError, &r1_bio->state);
407 reschedule_retry(r1_bio);
408 /* don't drop the reference on read_disk yet */
409 }
410}
411
412static void close_write(struct r1bio *r1_bio)
413{
414 /* it really is the end of this request */
415 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
416 bio_free_pages(r1_bio->behind_master_bio);
417 bio_put(r1_bio->behind_master_bio);
418 r1_bio->behind_master_bio = NULL;
419 }
420 /* clear the bitmap if all writes complete successfully */
421 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
422 r1_bio->sectors,
423 !test_bit(R1BIO_Degraded, &r1_bio->state),
424 test_bit(R1BIO_BehindIO, &r1_bio->state));
425 md_write_end(r1_bio->mddev);
426}
427
428static void r1_bio_write_done(struct r1bio *r1_bio)
429{
430 if (!atomic_dec_and_test(&r1_bio->remaining))
431 return;
432
433 if (test_bit(R1BIO_WriteError, &r1_bio->state))
434 reschedule_retry(r1_bio);
435 else {
436 close_write(r1_bio);
437 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
438 reschedule_retry(r1_bio);
439 else
440 raid_end_bio_io(r1_bio);
441 }
442}
443
444static void raid1_end_write_request(struct bio *bio)
445{
446 struct r1bio *r1_bio = bio->bi_private;
447 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
448 struct r1conf *conf = r1_bio->mddev->private;
449 struct bio *to_put = NULL;
450 int mirror = find_bio_disk(r1_bio, bio);
451 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
452 bool discard_error;
453 sector_t lo = r1_bio->sector;
454 sector_t hi = r1_bio->sector + r1_bio->sectors;
455
456 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
457
458 /*
459 * 'one mirror IO has finished' event handler:
460 */
461 if (bio->bi_status && !discard_error) {
462 set_bit(WriteErrorSeen, &rdev->flags);
463 if (!test_and_set_bit(WantReplacement, &rdev->flags))
464 set_bit(MD_RECOVERY_NEEDED, &
465 conf->mddev->recovery);
466
467 if (test_bit(FailFast, &rdev->flags) &&
468 (bio->bi_opf & MD_FAILFAST) &&
469 /* We never try FailFast to WriteMostly devices */
470 !test_bit(WriteMostly, &rdev->flags)) {
471 md_error(r1_bio->mddev, rdev);
472 }
473
474 /*
475 * When the device is faulty, it is not necessary to
476 * handle write error.
477 */
478 if (!test_bit(Faulty, &rdev->flags))
479 set_bit(R1BIO_WriteError, &r1_bio->state);
480 else {
481 /* Fail the request */
482 set_bit(R1BIO_Degraded, &r1_bio->state);
483 /* Finished with this branch */
484 r1_bio->bios[mirror] = NULL;
485 to_put = bio;
486 }
487 } else {
488 /*
489 * Set R1BIO_Uptodate in our master bio, so that we
490 * will return a good error code for to the higher
491 * levels even if IO on some other mirrored buffer
492 * fails.
493 *
494 * The 'master' represents the composite IO operation
495 * to user-side. So if something waits for IO, then it
496 * will wait for the 'master' bio.
497 */
498 r1_bio->bios[mirror] = NULL;
499 to_put = bio;
500 /*
501 * Do not set R1BIO_Uptodate if the current device is
502 * rebuilding or Faulty. This is because we cannot use
503 * such device for properly reading the data back (we could
504 * potentially use it, if the current write would have felt
505 * before rdev->recovery_offset, but for simplicity we don't
506 * check this here.
507 */
508 if (test_bit(In_sync, &rdev->flags) &&
509 !test_bit(Faulty, &rdev->flags))
510 set_bit(R1BIO_Uptodate, &r1_bio->state);
511
512 /* Maybe we can clear some bad blocks. */
513 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
514 !discard_error) {
515 r1_bio->bios[mirror] = IO_MADE_GOOD;
516 set_bit(R1BIO_MadeGood, &r1_bio->state);
517 }
518 }
519
520 if (behind) {
521 if (test_bit(CollisionCheck, &rdev->flags))
522 remove_serial(rdev, lo, hi);
523 if (test_bit(WriteMostly, &rdev->flags))
524 atomic_dec(&r1_bio->behind_remaining);
525
526 /*
527 * In behind mode, we ACK the master bio once the I/O
528 * has safely reached all non-writemostly
529 * disks. Setting the Returned bit ensures that this
530 * gets done only once -- we don't ever want to return
531 * -EIO here, instead we'll wait
532 */
533 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
534 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
535 /* Maybe we can return now */
536 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
537 struct bio *mbio = r1_bio->master_bio;
538 pr_debug("raid1: behind end write sectors"
539 " %llu-%llu\n",
540 (unsigned long long) mbio->bi_iter.bi_sector,
541 (unsigned long long) bio_end_sector(mbio) - 1);
542 call_bio_endio(r1_bio);
543 }
544 }
545 } else if (rdev->mddev->serialize_policy)
546 remove_serial(rdev, lo, hi);
547 if (r1_bio->bios[mirror] == NULL)
548 rdev_dec_pending(rdev, conf->mddev);
549
550 /*
551 * Let's see if all mirrored write operations have finished
552 * already.
553 */
554 r1_bio_write_done(r1_bio);
555
556 if (to_put)
557 bio_put(to_put);
558}
559
560static sector_t align_to_barrier_unit_end(sector_t start_sector,
561 sector_t sectors)
562{
563 sector_t len;
564
565 WARN_ON(sectors == 0);
566 /*
567 * len is the number of sectors from start_sector to end of the
568 * barrier unit which start_sector belongs to.
569 */
570 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
571 start_sector;
572
573 if (len > sectors)
574 len = sectors;
575
576 return len;
577}
578
579static void update_read_sectors(struct r1conf *conf, int disk,
580 sector_t this_sector, int len)
581{
582 struct raid1_info *info = &conf->mirrors[disk];
583
584 atomic_inc(&info->rdev->nr_pending);
585 if (info->next_seq_sect != this_sector)
586 info->seq_start = this_sector;
587 info->next_seq_sect = this_sector + len;
588}
589
590static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
591 int *max_sectors)
592{
593 sector_t this_sector = r1_bio->sector;
594 int len = r1_bio->sectors;
595 int disk;
596
597 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
598 struct md_rdev *rdev;
599 int read_len;
600
601 if (r1_bio->bios[disk] == IO_BLOCKED)
602 continue;
603
604 rdev = conf->mirrors[disk].rdev;
605 if (!rdev || test_bit(Faulty, &rdev->flags))
606 continue;
607
608 /* choose the first disk even if it has some bad blocks. */
609 read_len = raid1_check_read_range(rdev, this_sector, &len);
610 if (read_len > 0) {
611 update_read_sectors(conf, disk, this_sector, read_len);
612 *max_sectors = read_len;
613 return disk;
614 }
615 }
616
617 return -1;
618}
619
620static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
621 int *max_sectors)
622{
623 sector_t this_sector = r1_bio->sector;
624 int best_disk = -1;
625 int best_len = 0;
626 int disk;
627
628 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
629 struct md_rdev *rdev;
630 int len;
631 int read_len;
632
633 if (r1_bio->bios[disk] == IO_BLOCKED)
634 continue;
635
636 rdev = conf->mirrors[disk].rdev;
637 if (!rdev || test_bit(Faulty, &rdev->flags) ||
638 test_bit(WriteMostly, &rdev->flags))
639 continue;
640
641 /* keep track of the disk with the most readable sectors. */
642 len = r1_bio->sectors;
643 read_len = raid1_check_read_range(rdev, this_sector, &len);
644 if (read_len > best_len) {
645 best_disk = disk;
646 best_len = read_len;
647 }
648 }
649
650 if (best_disk != -1) {
651 *max_sectors = best_len;
652 update_read_sectors(conf, best_disk, this_sector, best_len);
653 }
654
655 return best_disk;
656}
657
658static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
659 int *max_sectors)
660{
661 sector_t this_sector = r1_bio->sector;
662 int bb_disk = -1;
663 int bb_read_len = 0;
664 int disk;
665
666 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
667 struct md_rdev *rdev;
668 int len;
669 int read_len;
670
671 if (r1_bio->bios[disk] == IO_BLOCKED)
672 continue;
673
674 rdev = conf->mirrors[disk].rdev;
675 if (!rdev || test_bit(Faulty, &rdev->flags) ||
676 !test_bit(WriteMostly, &rdev->flags))
677 continue;
678
679 /* there are no bad blocks, we can use this disk */
680 len = r1_bio->sectors;
681 read_len = raid1_check_read_range(rdev, this_sector, &len);
682 if (read_len == r1_bio->sectors) {
683 update_read_sectors(conf, disk, this_sector, read_len);
684 return disk;
685 }
686
687 /*
688 * there are partial bad blocks, choose the rdev with largest
689 * read length.
690 */
691 if (read_len > bb_read_len) {
692 bb_disk = disk;
693 bb_read_len = read_len;
694 }
695 }
696
697 if (bb_disk != -1) {
698 *max_sectors = bb_read_len;
699 update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
700 }
701
702 return bb_disk;
703}
704
705static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
706{
707 /* TODO: address issues with this check and concurrency. */
708 return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
709 conf->mirrors[disk].head_position == r1_bio->sector;
710}
711
712/*
713 * If buffered sequential IO size exceeds optimal iosize, check if there is idle
714 * disk. If yes, choose the idle disk.
715 */
716static bool should_choose_next(struct r1conf *conf, int disk)
717{
718 struct raid1_info *mirror = &conf->mirrors[disk];
719 int opt_iosize;
720
721 if (!test_bit(Nonrot, &mirror->rdev->flags))
722 return false;
723
724 opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
725 return opt_iosize > 0 && mirror->seq_start != MaxSector &&
726 mirror->next_seq_sect > opt_iosize &&
727 mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
728}
729
730static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
731{
732 if (!rdev || test_bit(Faulty, &rdev->flags))
733 return false;
734
735 /* still in recovery */
736 if (!test_bit(In_sync, &rdev->flags) &&
737 rdev->recovery_offset < r1_bio->sector + r1_bio->sectors)
738 return false;
739
740 /* don't read from slow disk unless have to */
741 if (test_bit(WriteMostly, &rdev->flags))
742 return false;
743
744 /* don't split IO for bad blocks unless have to */
745 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
746 return false;
747
748 return true;
749}
750
751struct read_balance_ctl {
752 sector_t closest_dist;
753 int closest_dist_disk;
754 int min_pending;
755 int min_pending_disk;
756 int sequential_disk;
757 int readable_disks;
758};
759
760static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
761{
762 int disk;
763 struct read_balance_ctl ctl = {
764 .closest_dist_disk = -1,
765 .closest_dist = MaxSector,
766 .min_pending_disk = -1,
767 .min_pending = UINT_MAX,
768 .sequential_disk = -1,
769 };
770
771 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
772 struct md_rdev *rdev;
773 sector_t dist;
774 unsigned int pending;
775
776 if (r1_bio->bios[disk] == IO_BLOCKED)
777 continue;
778
779 rdev = conf->mirrors[disk].rdev;
780 if (!rdev_readable(rdev, r1_bio))
781 continue;
782
783 /* At least two disks to choose from so failfast is OK */
784 if (ctl.readable_disks++ == 1)
785 set_bit(R1BIO_FailFast, &r1_bio->state);
786
787 pending = atomic_read(&rdev->nr_pending);
788 dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
789
790 /* Don't change to another disk for sequential reads */
791 if (is_sequential(conf, disk, r1_bio)) {
792 if (!should_choose_next(conf, disk))
793 return disk;
794
795 /*
796 * Add 'pending' to avoid choosing this disk if
797 * there is other idle disk.
798 */
799 pending++;
800 /*
801 * If there is no other idle disk, this disk
802 * will be chosen.
803 */
804 ctl.sequential_disk = disk;
805 }
806
807 if (ctl.min_pending > pending) {
808 ctl.min_pending = pending;
809 ctl.min_pending_disk = disk;
810 }
811
812 if (ctl.closest_dist > dist) {
813 ctl.closest_dist = dist;
814 ctl.closest_dist_disk = disk;
815 }
816 }
817
818 /*
819 * sequential IO size exceeds optimal iosize, however, there is no other
820 * idle disk, so choose the sequential disk.
821 */
822 if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
823 return ctl.sequential_disk;
824
825 /*
826 * If all disks are rotational, choose the closest disk. If any disk is
827 * non-rotational, choose the disk with less pending request even the
828 * disk is rotational, which might/might not be optimal for raids with
829 * mixed ratation/non-rotational disks depending on workload.
830 */
831 if (ctl.min_pending_disk != -1 &&
832 (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
833 return ctl.min_pending_disk;
834 else
835 return ctl.closest_dist_disk;
836}
837
838/*
839 * This routine returns the disk from which the requested read should be done.
840 *
841 * 1) If resync is in progress, find the first usable disk and use it even if it
842 * has some bad blocks.
843 *
844 * 2) Now that there is no resync, loop through all disks and skipping slow
845 * disks and disks with bad blocks for now. Only pay attention to key disk
846 * choice.
847 *
848 * 3) If we've made it this far, now look for disks with bad blocks and choose
849 * the one with most number of sectors.
850 *
851 * 4) If we are all the way at the end, we have no choice but to use a disk even
852 * if it is write mostly.
853 *
854 * The rdev for the device selected will have nr_pending incremented.
855 */
856static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
857 int *max_sectors)
858{
859 int disk;
860
861 clear_bit(R1BIO_FailFast, &r1_bio->state);
862
863 if (raid1_should_read_first(conf->mddev, r1_bio->sector,
864 r1_bio->sectors))
865 return choose_first_rdev(conf, r1_bio, max_sectors);
866
867 disk = choose_best_rdev(conf, r1_bio);
868 if (disk >= 0) {
869 *max_sectors = r1_bio->sectors;
870 update_read_sectors(conf, disk, r1_bio->sector,
871 r1_bio->sectors);
872 return disk;
873 }
874
875 /*
876 * If we are here it means we didn't find a perfectly good disk so
877 * now spend a bit more time trying to find one with the most good
878 * sectors.
879 */
880 disk = choose_bb_rdev(conf, r1_bio, max_sectors);
881 if (disk >= 0)
882 return disk;
883
884 return choose_slow_rdev(conf, r1_bio, max_sectors);
885}
886
887static void wake_up_barrier(struct r1conf *conf)
888{
889 if (wq_has_sleeper(&conf->wait_barrier))
890 wake_up(&conf->wait_barrier);
891}
892
893static void flush_bio_list(struct r1conf *conf, struct bio *bio)
894{
895 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
896 raid1_prepare_flush_writes(conf->mddev->bitmap);
897 wake_up_barrier(conf);
898
899 while (bio) { /* submit pending writes */
900 struct bio *next = bio->bi_next;
901
902 raid1_submit_write(bio);
903 bio = next;
904 cond_resched();
905 }
906}
907
908static void flush_pending_writes(struct r1conf *conf)
909{
910 /* Any writes that have been queued but are awaiting
911 * bitmap updates get flushed here.
912 */
913 spin_lock_irq(&conf->device_lock);
914
915 if (conf->pending_bio_list.head) {
916 struct blk_plug plug;
917 struct bio *bio;
918
919 bio = bio_list_get(&conf->pending_bio_list);
920 spin_unlock_irq(&conf->device_lock);
921
922 /*
923 * As this is called in a wait_event() loop (see freeze_array),
924 * current->state might be TASK_UNINTERRUPTIBLE which will
925 * cause a warning when we prepare to wait again. As it is
926 * rare that this path is taken, it is perfectly safe to force
927 * us to go around the wait_event() loop again, so the warning
928 * is a false-positive. Silence the warning by resetting
929 * thread state
930 */
931 __set_current_state(TASK_RUNNING);
932 blk_start_plug(&plug);
933 flush_bio_list(conf, bio);
934 blk_finish_plug(&plug);
935 } else
936 spin_unlock_irq(&conf->device_lock);
937}
938
939/* Barriers....
940 * Sometimes we need to suspend IO while we do something else,
941 * either some resync/recovery, or reconfigure the array.
942 * To do this we raise a 'barrier'.
943 * The 'barrier' is a counter that can be raised multiple times
944 * to count how many activities are happening which preclude
945 * normal IO.
946 * We can only raise the barrier if there is no pending IO.
947 * i.e. if nr_pending == 0.
948 * We choose only to raise the barrier if no-one is waiting for the
949 * barrier to go down. This means that as soon as an IO request
950 * is ready, no other operations which require a barrier will start
951 * until the IO request has had a chance.
952 *
953 * So: regular IO calls 'wait_barrier'. When that returns there
954 * is no backgroup IO happening, It must arrange to call
955 * allow_barrier when it has finished its IO.
956 * backgroup IO calls must call raise_barrier. Once that returns
957 * there is no normal IO happeing. It must arrange to call
958 * lower_barrier when the particular background IO completes.
959 *
960 * If resync/recovery is interrupted, returns -EINTR;
961 * Otherwise, returns 0.
962 */
963static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
964{
965 int idx = sector_to_idx(sector_nr);
966
967 spin_lock_irq(&conf->resync_lock);
968
969 /* Wait until no block IO is waiting */
970 wait_event_lock_irq(conf->wait_barrier,
971 !atomic_read(&conf->nr_waiting[idx]),
972 conf->resync_lock);
973
974 /* block any new IO from starting */
975 atomic_inc(&conf->barrier[idx]);
976 /*
977 * In raise_barrier() we firstly increase conf->barrier[idx] then
978 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
979 * increase conf->nr_pending[idx] then check conf->barrier[idx].
980 * A memory barrier here to make sure conf->nr_pending[idx] won't
981 * be fetched before conf->barrier[idx] is increased. Otherwise
982 * there will be a race between raise_barrier() and _wait_barrier().
983 */
984 smp_mb__after_atomic();
985
986 /* For these conditions we must wait:
987 * A: while the array is in frozen state
988 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
989 * existing in corresponding I/O barrier bucket.
990 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
991 * max resync count which allowed on current I/O barrier bucket.
992 */
993 wait_event_lock_irq(conf->wait_barrier,
994 (!conf->array_frozen &&
995 !atomic_read(&conf->nr_pending[idx]) &&
996 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
997 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
998 conf->resync_lock);
999
1000 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
1001 atomic_dec(&conf->barrier[idx]);
1002 spin_unlock_irq(&conf->resync_lock);
1003 wake_up(&conf->wait_barrier);
1004 return -EINTR;
1005 }
1006
1007 atomic_inc(&conf->nr_sync_pending);
1008 spin_unlock_irq(&conf->resync_lock);
1009
1010 return 0;
1011}
1012
1013static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
1014{
1015 int idx = sector_to_idx(sector_nr);
1016
1017 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
1018
1019 atomic_dec(&conf->barrier[idx]);
1020 atomic_dec(&conf->nr_sync_pending);
1021 wake_up(&conf->wait_barrier);
1022}
1023
1024static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
1025{
1026 bool ret = true;
1027
1028 /*
1029 * We need to increase conf->nr_pending[idx] very early here,
1030 * then raise_barrier() can be blocked when it waits for
1031 * conf->nr_pending[idx] to be 0. Then we can avoid holding
1032 * conf->resync_lock when there is no barrier raised in same
1033 * barrier unit bucket. Also if the array is frozen, I/O
1034 * should be blocked until array is unfrozen.
1035 */
1036 atomic_inc(&conf->nr_pending[idx]);
1037 /*
1038 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
1039 * check conf->barrier[idx]. In raise_barrier() we firstly increase
1040 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
1041 * barrier is necessary here to make sure conf->barrier[idx] won't be
1042 * fetched before conf->nr_pending[idx] is increased. Otherwise there
1043 * will be a race between _wait_barrier() and raise_barrier().
1044 */
1045 smp_mb__after_atomic();
1046
1047 /*
1048 * Don't worry about checking two atomic_t variables at same time
1049 * here. If during we check conf->barrier[idx], the array is
1050 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
1051 * 0, it is safe to return and make the I/O continue. Because the
1052 * array is frozen, all I/O returned here will eventually complete
1053 * or be queued, no race will happen. See code comment in
1054 * frozen_array().
1055 */
1056 if (!READ_ONCE(conf->array_frozen) &&
1057 !atomic_read(&conf->barrier[idx]))
1058 return ret;
1059
1060 /*
1061 * After holding conf->resync_lock, conf->nr_pending[idx]
1062 * should be decreased before waiting for barrier to drop.
1063 * Otherwise, we may encounter a race condition because
1064 * raise_barrer() might be waiting for conf->nr_pending[idx]
1065 * to be 0 at same time.
1066 */
1067 spin_lock_irq(&conf->resync_lock);
1068 atomic_inc(&conf->nr_waiting[idx]);
1069 atomic_dec(&conf->nr_pending[idx]);
1070 /*
1071 * In case freeze_array() is waiting for
1072 * get_unqueued_pending() == extra
1073 */
1074 wake_up_barrier(conf);
1075 /* Wait for the barrier in same barrier unit bucket to drop. */
1076
1077 /* Return false when nowait flag is set */
1078 if (nowait) {
1079 ret = false;
1080 } else {
1081 wait_event_lock_irq(conf->wait_barrier,
1082 !conf->array_frozen &&
1083 !atomic_read(&conf->barrier[idx]),
1084 conf->resync_lock);
1085 atomic_inc(&conf->nr_pending[idx]);
1086 }
1087
1088 atomic_dec(&conf->nr_waiting[idx]);
1089 spin_unlock_irq(&conf->resync_lock);
1090 return ret;
1091}
1092
1093static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1094{
1095 int idx = sector_to_idx(sector_nr);
1096 bool ret = true;
1097
1098 /*
1099 * Very similar to _wait_barrier(). The difference is, for read
1100 * I/O we don't need wait for sync I/O, but if the whole array
1101 * is frozen, the read I/O still has to wait until the array is
1102 * unfrozen. Since there is no ordering requirement with
1103 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1104 */
1105 atomic_inc(&conf->nr_pending[idx]);
1106
1107 if (!READ_ONCE(conf->array_frozen))
1108 return ret;
1109
1110 spin_lock_irq(&conf->resync_lock);
1111 atomic_inc(&conf->nr_waiting[idx]);
1112 atomic_dec(&conf->nr_pending[idx]);
1113 /*
1114 * In case freeze_array() is waiting for
1115 * get_unqueued_pending() == extra
1116 */
1117 wake_up_barrier(conf);
1118 /* Wait for array to be unfrozen */
1119
1120 /* Return false when nowait flag is set */
1121 if (nowait) {
1122 /* Return false when nowait flag is set */
1123 ret = false;
1124 } else {
1125 wait_event_lock_irq(conf->wait_barrier,
1126 !conf->array_frozen,
1127 conf->resync_lock);
1128 atomic_inc(&conf->nr_pending[idx]);
1129 }
1130
1131 atomic_dec(&conf->nr_waiting[idx]);
1132 spin_unlock_irq(&conf->resync_lock);
1133 return ret;
1134}
1135
1136static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1137{
1138 int idx = sector_to_idx(sector_nr);
1139
1140 return _wait_barrier(conf, idx, nowait);
1141}
1142
1143static void _allow_barrier(struct r1conf *conf, int idx)
1144{
1145 atomic_dec(&conf->nr_pending[idx]);
1146 wake_up_barrier(conf);
1147}
1148
1149static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1150{
1151 int idx = sector_to_idx(sector_nr);
1152
1153 _allow_barrier(conf, idx);
1154}
1155
1156/* conf->resync_lock should be held */
1157static int get_unqueued_pending(struct r1conf *conf)
1158{
1159 int idx, ret;
1160
1161 ret = atomic_read(&conf->nr_sync_pending);
1162 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1163 ret += atomic_read(&conf->nr_pending[idx]) -
1164 atomic_read(&conf->nr_queued[idx]);
1165
1166 return ret;
1167}
1168
1169static void freeze_array(struct r1conf *conf, int extra)
1170{
1171 /* Stop sync I/O and normal I/O and wait for everything to
1172 * go quiet.
1173 * This is called in two situations:
1174 * 1) management command handlers (reshape, remove disk, quiesce).
1175 * 2) one normal I/O request failed.
1176
1177 * After array_frozen is set to 1, new sync IO will be blocked at
1178 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1179 * or wait_read_barrier(). The flying I/Os will either complete or be
1180 * queued. When everything goes quite, there are only queued I/Os left.
1181
1182 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1183 * barrier bucket index which this I/O request hits. When all sync and
1184 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1185 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1186 * in handle_read_error(), we may call freeze_array() before trying to
1187 * fix the read error. In this case, the error read I/O is not queued,
1188 * so get_unqueued_pending() == 1.
1189 *
1190 * Therefore before this function returns, we need to wait until
1191 * get_unqueued_pendings(conf) gets equal to extra. For
1192 * normal I/O context, extra is 1, in rested situations extra is 0.
1193 */
1194 spin_lock_irq(&conf->resync_lock);
1195 conf->array_frozen = 1;
1196 mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
1197 wait_event_lock_irq_cmd(
1198 conf->wait_barrier,
1199 get_unqueued_pending(conf) == extra,
1200 conf->resync_lock,
1201 flush_pending_writes(conf));
1202 spin_unlock_irq(&conf->resync_lock);
1203}
1204static void unfreeze_array(struct r1conf *conf)
1205{
1206 /* reverse the effect of the freeze */
1207 spin_lock_irq(&conf->resync_lock);
1208 conf->array_frozen = 0;
1209 spin_unlock_irq(&conf->resync_lock);
1210 wake_up(&conf->wait_barrier);
1211}
1212
1213static void alloc_behind_master_bio(struct r1bio *r1_bio,
1214 struct bio *bio)
1215{
1216 int size = bio->bi_iter.bi_size;
1217 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1218 int i = 0;
1219 struct bio *behind_bio = NULL;
1220
1221 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1222 &r1_bio->mddev->bio_set);
1223
1224 /* discard op, we don't support writezero/writesame yet */
1225 if (!bio_has_data(bio)) {
1226 behind_bio->bi_iter.bi_size = size;
1227 goto skip_copy;
1228 }
1229
1230 while (i < vcnt && size) {
1231 struct page *page;
1232 int len = min_t(int, PAGE_SIZE, size);
1233
1234 page = alloc_page(GFP_NOIO);
1235 if (unlikely(!page))
1236 goto free_pages;
1237
1238 if (!bio_add_page(behind_bio, page, len, 0)) {
1239 put_page(page);
1240 goto free_pages;
1241 }
1242
1243 size -= len;
1244 i++;
1245 }
1246
1247 bio_copy_data(behind_bio, bio);
1248skip_copy:
1249 r1_bio->behind_master_bio = behind_bio;
1250 set_bit(R1BIO_BehindIO, &r1_bio->state);
1251
1252 return;
1253
1254free_pages:
1255 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1256 bio->bi_iter.bi_size);
1257 bio_free_pages(behind_bio);
1258 bio_put(behind_bio);
1259}
1260
1261static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1262{
1263 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1264 cb);
1265 struct mddev *mddev = plug->cb.data;
1266 struct r1conf *conf = mddev->private;
1267 struct bio *bio;
1268
1269 if (from_schedule) {
1270 spin_lock_irq(&conf->device_lock);
1271 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1272 spin_unlock_irq(&conf->device_lock);
1273 wake_up_barrier(conf);
1274 md_wakeup_thread(mddev->thread);
1275 kfree(plug);
1276 return;
1277 }
1278
1279 /* we aren't scheduling, so we can do the write-out directly. */
1280 bio = bio_list_get(&plug->pending);
1281 flush_bio_list(conf, bio);
1282 kfree(plug);
1283}
1284
1285static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1286{
1287 r1_bio->master_bio = bio;
1288 r1_bio->sectors = bio_sectors(bio);
1289 r1_bio->state = 0;
1290 r1_bio->mddev = mddev;
1291 r1_bio->sector = bio->bi_iter.bi_sector;
1292}
1293
1294static inline struct r1bio *
1295alloc_r1bio(struct mddev *mddev, struct bio *bio)
1296{
1297 struct r1conf *conf = mddev->private;
1298 struct r1bio *r1_bio;
1299
1300 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1301 /* Ensure no bio records IO_BLOCKED */
1302 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1303 init_r1bio(r1_bio, mddev, bio);
1304 return r1_bio;
1305}
1306
1307static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1308 int max_read_sectors, struct r1bio *r1_bio)
1309{
1310 struct r1conf *conf = mddev->private;
1311 struct raid1_info *mirror;
1312 struct bio *read_bio;
1313 struct bitmap *bitmap = mddev->bitmap;
1314 const enum req_op op = bio_op(bio);
1315 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1316 int max_sectors;
1317 int rdisk;
1318 bool r1bio_existed = !!r1_bio;
1319 char b[BDEVNAME_SIZE];
1320
1321 /*
1322 * If r1_bio is set, we are blocking the raid1d thread
1323 * so there is a tiny risk of deadlock. So ask for
1324 * emergency memory if needed.
1325 */
1326 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1327
1328 if (r1bio_existed) {
1329 /* Need to get the block device name carefully */
1330 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1331
1332 if (rdev)
1333 snprintf(b, sizeof(b), "%pg", rdev->bdev);
1334 else
1335 strcpy(b, "???");
1336 }
1337
1338 /*
1339 * Still need barrier for READ in case that whole
1340 * array is frozen.
1341 */
1342 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1343 bio->bi_opf & REQ_NOWAIT)) {
1344 bio_wouldblock_error(bio);
1345 return;
1346 }
1347
1348 if (!r1_bio)
1349 r1_bio = alloc_r1bio(mddev, bio);
1350 else
1351 init_r1bio(r1_bio, mddev, bio);
1352 r1_bio->sectors = max_read_sectors;
1353
1354 /*
1355 * make_request() can abort the operation when read-ahead is being
1356 * used and no empty request is available.
1357 */
1358 rdisk = read_balance(conf, r1_bio, &max_sectors);
1359
1360 if (rdisk < 0) {
1361 /* couldn't find anywhere to read from */
1362 if (r1bio_existed) {
1363 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1364 mdname(mddev),
1365 b,
1366 (unsigned long long)r1_bio->sector);
1367 }
1368 raid_end_bio_io(r1_bio);
1369 return;
1370 }
1371 mirror = conf->mirrors + rdisk;
1372
1373 if (r1bio_existed)
1374 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1375 mdname(mddev),
1376 (unsigned long long)r1_bio->sector,
1377 mirror->rdev->bdev);
1378
1379 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1380 bitmap) {
1381 /*
1382 * Reading from a write-mostly device must take care not to
1383 * over-take any writes that are 'behind'
1384 */
1385 mddev_add_trace_msg(mddev, "raid1 wait behind writes");
1386 wait_event(bitmap->behind_wait,
1387 atomic_read(&bitmap->behind_writes) == 0);
1388 }
1389
1390 if (max_sectors < bio_sectors(bio)) {
1391 struct bio *split = bio_split(bio, max_sectors,
1392 gfp, &conf->bio_split);
1393 bio_chain(split, bio);
1394 submit_bio_noacct(bio);
1395 bio = split;
1396 r1_bio->master_bio = bio;
1397 r1_bio->sectors = max_sectors;
1398 }
1399
1400 r1_bio->read_disk = rdisk;
1401 if (!r1bio_existed) {
1402 md_account_bio(mddev, &bio);
1403 r1_bio->master_bio = bio;
1404 }
1405 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1406 &mddev->bio_set);
1407
1408 r1_bio->bios[rdisk] = read_bio;
1409
1410 read_bio->bi_iter.bi_sector = r1_bio->sector +
1411 mirror->rdev->data_offset;
1412 read_bio->bi_end_io = raid1_end_read_request;
1413 read_bio->bi_opf = op | do_sync;
1414 if (test_bit(FailFast, &mirror->rdev->flags) &&
1415 test_bit(R1BIO_FailFast, &r1_bio->state))
1416 read_bio->bi_opf |= MD_FAILFAST;
1417 read_bio->bi_private = r1_bio;
1418 mddev_trace_remap(mddev, read_bio, r1_bio->sector);
1419 submit_bio_noacct(read_bio);
1420}
1421
1422static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1423 int max_write_sectors)
1424{
1425 struct r1conf *conf = mddev->private;
1426 struct r1bio *r1_bio;
1427 int i, disks;
1428 struct bitmap *bitmap = mddev->bitmap;
1429 unsigned long flags;
1430 struct md_rdev *blocked_rdev;
1431 int first_clone;
1432 int max_sectors;
1433 bool write_behind = false;
1434 bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1435
1436 if (mddev_is_clustered(mddev) &&
1437 md_cluster_ops->area_resyncing(mddev, WRITE,
1438 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1439
1440 DEFINE_WAIT(w);
1441 if (bio->bi_opf & REQ_NOWAIT) {
1442 bio_wouldblock_error(bio);
1443 return;
1444 }
1445 for (;;) {
1446 prepare_to_wait(&conf->wait_barrier,
1447 &w, TASK_IDLE);
1448 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1449 bio->bi_iter.bi_sector,
1450 bio_end_sector(bio)))
1451 break;
1452 schedule();
1453 }
1454 finish_wait(&conf->wait_barrier, &w);
1455 }
1456
1457 /*
1458 * Register the new request and wait if the reconstruction
1459 * thread has put up a bar for new requests.
1460 * Continue immediately if no resync is active currently.
1461 */
1462 if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1463 bio->bi_opf & REQ_NOWAIT)) {
1464 bio_wouldblock_error(bio);
1465 return;
1466 }
1467
1468 retry_write:
1469 r1_bio = alloc_r1bio(mddev, bio);
1470 r1_bio->sectors = max_write_sectors;
1471
1472 /* first select target devices under rcu_lock and
1473 * inc refcount on their rdev. Record them by setting
1474 * bios[x] to bio
1475 * If there are known/acknowledged bad blocks on any device on
1476 * which we have seen a write error, we want to avoid writing those
1477 * blocks.
1478 * This potentially requires several writes to write around
1479 * the bad blocks. Each set of writes gets it's own r1bio
1480 * with a set of bios attached.
1481 */
1482
1483 disks = conf->raid_disks * 2;
1484 blocked_rdev = NULL;
1485 max_sectors = r1_bio->sectors;
1486 for (i = 0; i < disks; i++) {
1487 struct md_rdev *rdev = conf->mirrors[i].rdev;
1488
1489 /*
1490 * The write-behind io is only attempted on drives marked as
1491 * write-mostly, which means we could allocate write behind
1492 * bio later.
1493 */
1494 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1495 write_behind = true;
1496
1497 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1498 atomic_inc(&rdev->nr_pending);
1499 blocked_rdev = rdev;
1500 break;
1501 }
1502 r1_bio->bios[i] = NULL;
1503 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1504 if (i < conf->raid_disks)
1505 set_bit(R1BIO_Degraded, &r1_bio->state);
1506 continue;
1507 }
1508
1509 atomic_inc(&rdev->nr_pending);
1510 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1511 sector_t first_bad;
1512 int bad_sectors;
1513 int is_bad;
1514
1515 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1516 &first_bad, &bad_sectors);
1517 if (is_bad < 0) {
1518 /* mustn't write here until the bad block is
1519 * acknowledged*/
1520 set_bit(BlockedBadBlocks, &rdev->flags);
1521 blocked_rdev = rdev;
1522 break;
1523 }
1524 if (is_bad && first_bad <= r1_bio->sector) {
1525 /* Cannot write here at all */
1526 bad_sectors -= (r1_bio->sector - first_bad);
1527 if (bad_sectors < max_sectors)
1528 /* mustn't write more than bad_sectors
1529 * to other devices yet
1530 */
1531 max_sectors = bad_sectors;
1532 rdev_dec_pending(rdev, mddev);
1533 /* We don't set R1BIO_Degraded as that
1534 * only applies if the disk is
1535 * missing, so it might be re-added,
1536 * and we want to know to recover this
1537 * chunk.
1538 * In this case the device is here,
1539 * and the fact that this chunk is not
1540 * in-sync is recorded in the bad
1541 * block log
1542 */
1543 continue;
1544 }
1545 if (is_bad) {
1546 int good_sectors = first_bad - r1_bio->sector;
1547 if (good_sectors < max_sectors)
1548 max_sectors = good_sectors;
1549 }
1550 }
1551 r1_bio->bios[i] = bio;
1552 }
1553
1554 if (unlikely(blocked_rdev)) {
1555 /* Wait for this device to become unblocked */
1556 int j;
1557
1558 for (j = 0; j < i; j++)
1559 if (r1_bio->bios[j])
1560 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1561 mempool_free(r1_bio, &conf->r1bio_pool);
1562 allow_barrier(conf, bio->bi_iter.bi_sector);
1563
1564 if (bio->bi_opf & REQ_NOWAIT) {
1565 bio_wouldblock_error(bio);
1566 return;
1567 }
1568 mddev_add_trace_msg(mddev, "raid1 wait rdev %d blocked",
1569 blocked_rdev->raid_disk);
1570 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1571 wait_barrier(conf, bio->bi_iter.bi_sector, false);
1572 goto retry_write;
1573 }
1574
1575 /*
1576 * When using a bitmap, we may call alloc_behind_master_bio below.
1577 * alloc_behind_master_bio allocates a copy of the data payload a page
1578 * at a time and thus needs a new bio that can fit the whole payload
1579 * this bio in page sized chunks.
1580 */
1581 if (write_behind && bitmap)
1582 max_sectors = min_t(int, max_sectors,
1583 BIO_MAX_VECS * (PAGE_SIZE >> 9));
1584 if (max_sectors < bio_sectors(bio)) {
1585 struct bio *split = bio_split(bio, max_sectors,
1586 GFP_NOIO, &conf->bio_split);
1587 bio_chain(split, bio);
1588 submit_bio_noacct(bio);
1589 bio = split;
1590 r1_bio->master_bio = bio;
1591 r1_bio->sectors = max_sectors;
1592 }
1593
1594 md_account_bio(mddev, &bio);
1595 r1_bio->master_bio = bio;
1596 atomic_set(&r1_bio->remaining, 1);
1597 atomic_set(&r1_bio->behind_remaining, 0);
1598
1599 first_clone = 1;
1600
1601 for (i = 0; i < disks; i++) {
1602 struct bio *mbio = NULL;
1603 struct md_rdev *rdev = conf->mirrors[i].rdev;
1604 if (!r1_bio->bios[i])
1605 continue;
1606
1607 if (first_clone) {
1608 /* do behind I/O ?
1609 * Not if there are too many, or cannot
1610 * allocate memory, or a reader on WriteMostly
1611 * is waiting for behind writes to flush */
1612 if (bitmap && write_behind &&
1613 (atomic_read(&bitmap->behind_writes)
1614 < mddev->bitmap_info.max_write_behind) &&
1615 !waitqueue_active(&bitmap->behind_wait)) {
1616 alloc_behind_master_bio(r1_bio, bio);
1617 }
1618
1619 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1620 test_bit(R1BIO_BehindIO, &r1_bio->state));
1621 first_clone = 0;
1622 }
1623
1624 if (r1_bio->behind_master_bio) {
1625 mbio = bio_alloc_clone(rdev->bdev,
1626 r1_bio->behind_master_bio,
1627 GFP_NOIO, &mddev->bio_set);
1628 if (test_bit(CollisionCheck, &rdev->flags))
1629 wait_for_serialization(rdev, r1_bio);
1630 if (test_bit(WriteMostly, &rdev->flags))
1631 atomic_inc(&r1_bio->behind_remaining);
1632 } else {
1633 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1634 &mddev->bio_set);
1635
1636 if (mddev->serialize_policy)
1637 wait_for_serialization(rdev, r1_bio);
1638 }
1639
1640 r1_bio->bios[i] = mbio;
1641
1642 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
1643 mbio->bi_end_io = raid1_end_write_request;
1644 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1645 if (test_bit(FailFast, &rdev->flags) &&
1646 !test_bit(WriteMostly, &rdev->flags) &&
1647 conf->raid_disks - mddev->degraded > 1)
1648 mbio->bi_opf |= MD_FAILFAST;
1649 mbio->bi_private = r1_bio;
1650
1651 atomic_inc(&r1_bio->remaining);
1652 mddev_trace_remap(mddev, mbio, r1_bio->sector);
1653 /* flush_pending_writes() needs access to the rdev so...*/
1654 mbio->bi_bdev = (void *)rdev;
1655 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1656 spin_lock_irqsave(&conf->device_lock, flags);
1657 bio_list_add(&conf->pending_bio_list, mbio);
1658 spin_unlock_irqrestore(&conf->device_lock, flags);
1659 md_wakeup_thread(mddev->thread);
1660 }
1661 }
1662
1663 r1_bio_write_done(r1_bio);
1664
1665 /* In case raid1d snuck in to freeze_array */
1666 wake_up_barrier(conf);
1667}
1668
1669static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1670{
1671 sector_t sectors;
1672
1673 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1674 && md_flush_request(mddev, bio))
1675 return true;
1676
1677 /*
1678 * There is a limit to the maximum size, but
1679 * the read/write handler might find a lower limit
1680 * due to bad blocks. To avoid multiple splits,
1681 * we pass the maximum number of sectors down
1682 * and let the lower level perform the split.
1683 */
1684 sectors = align_to_barrier_unit_end(
1685 bio->bi_iter.bi_sector, bio_sectors(bio));
1686
1687 if (bio_data_dir(bio) == READ)
1688 raid1_read_request(mddev, bio, sectors, NULL);
1689 else {
1690 if (!md_write_start(mddev,bio))
1691 return false;
1692 raid1_write_request(mddev, bio, sectors);
1693 }
1694 return true;
1695}
1696
1697static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1698{
1699 struct r1conf *conf = mddev->private;
1700 int i;
1701
1702 lockdep_assert_held(&mddev->lock);
1703
1704 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1705 conf->raid_disks - mddev->degraded);
1706 for (i = 0; i < conf->raid_disks; i++) {
1707 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1708
1709 seq_printf(seq, "%s",
1710 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1711 }
1712 seq_printf(seq, "]");
1713}
1714
1715/**
1716 * raid1_error() - RAID1 error handler.
1717 * @mddev: affected md device.
1718 * @rdev: member device to fail.
1719 *
1720 * The routine acknowledges &rdev failure and determines new @mddev state.
1721 * If it failed, then:
1722 * - &MD_BROKEN flag is set in &mddev->flags.
1723 * - recovery is disabled.
1724 * Otherwise, it must be degraded:
1725 * - recovery is interrupted.
1726 * - &mddev->degraded is bumped.
1727 *
1728 * @rdev is marked as &Faulty excluding case when array is failed and
1729 * &mddev->fail_last_dev is off.
1730 */
1731static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1732{
1733 struct r1conf *conf = mddev->private;
1734 unsigned long flags;
1735
1736 spin_lock_irqsave(&conf->device_lock, flags);
1737
1738 if (test_bit(In_sync, &rdev->flags) &&
1739 (conf->raid_disks - mddev->degraded) == 1) {
1740 set_bit(MD_BROKEN, &mddev->flags);
1741
1742 if (!mddev->fail_last_dev) {
1743 conf->recovery_disabled = mddev->recovery_disabled;
1744 spin_unlock_irqrestore(&conf->device_lock, flags);
1745 return;
1746 }
1747 }
1748 set_bit(Blocked, &rdev->flags);
1749 if (test_and_clear_bit(In_sync, &rdev->flags))
1750 mddev->degraded++;
1751 set_bit(Faulty, &rdev->flags);
1752 spin_unlock_irqrestore(&conf->device_lock, flags);
1753 /*
1754 * if recovery is running, make sure it aborts.
1755 */
1756 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1757 set_mask_bits(&mddev->sb_flags, 0,
1758 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1759 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1760 "md/raid1:%s: Operation continuing on %d devices.\n",
1761 mdname(mddev), rdev->bdev,
1762 mdname(mddev), conf->raid_disks - mddev->degraded);
1763}
1764
1765static void print_conf(struct r1conf *conf)
1766{
1767 int i;
1768
1769 pr_debug("RAID1 conf printout:\n");
1770 if (!conf) {
1771 pr_debug("(!conf)\n");
1772 return;
1773 }
1774 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1775 conf->raid_disks);
1776
1777 lockdep_assert_held(&conf->mddev->reconfig_mutex);
1778 for (i = 0; i < conf->raid_disks; i++) {
1779 struct md_rdev *rdev = conf->mirrors[i].rdev;
1780 if (rdev)
1781 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1782 i, !test_bit(In_sync, &rdev->flags),
1783 !test_bit(Faulty, &rdev->flags),
1784 rdev->bdev);
1785 }
1786}
1787
1788static void close_sync(struct r1conf *conf)
1789{
1790 int idx;
1791
1792 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1793 _wait_barrier(conf, idx, false);
1794 _allow_barrier(conf, idx);
1795 }
1796
1797 mempool_exit(&conf->r1buf_pool);
1798}
1799
1800static int raid1_spare_active(struct mddev *mddev)
1801{
1802 int i;
1803 struct r1conf *conf = mddev->private;
1804 int count = 0;
1805 unsigned long flags;
1806
1807 /*
1808 * Find all failed disks within the RAID1 configuration
1809 * and mark them readable.
1810 * Called under mddev lock, so rcu protection not needed.
1811 * device_lock used to avoid races with raid1_end_read_request
1812 * which expects 'In_sync' flags and ->degraded to be consistent.
1813 */
1814 spin_lock_irqsave(&conf->device_lock, flags);
1815 for (i = 0; i < conf->raid_disks; i++) {
1816 struct md_rdev *rdev = conf->mirrors[i].rdev;
1817 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1818 if (repl
1819 && !test_bit(Candidate, &repl->flags)
1820 && repl->recovery_offset == MaxSector
1821 && !test_bit(Faulty, &repl->flags)
1822 && !test_and_set_bit(In_sync, &repl->flags)) {
1823 /* replacement has just become active */
1824 if (!rdev ||
1825 !test_and_clear_bit(In_sync, &rdev->flags))
1826 count++;
1827 if (rdev) {
1828 /* Replaced device not technically
1829 * faulty, but we need to be sure
1830 * it gets removed and never re-added
1831 */
1832 set_bit(Faulty, &rdev->flags);
1833 sysfs_notify_dirent_safe(
1834 rdev->sysfs_state);
1835 }
1836 }
1837 if (rdev
1838 && rdev->recovery_offset == MaxSector
1839 && !test_bit(Faulty, &rdev->flags)
1840 && !test_and_set_bit(In_sync, &rdev->flags)) {
1841 count++;
1842 sysfs_notify_dirent_safe(rdev->sysfs_state);
1843 }
1844 }
1845 mddev->degraded -= count;
1846 spin_unlock_irqrestore(&conf->device_lock, flags);
1847
1848 print_conf(conf);
1849 return count;
1850}
1851
1852static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
1853 bool replacement)
1854{
1855 struct raid1_info *info = conf->mirrors + disk;
1856
1857 if (replacement)
1858 info += conf->raid_disks;
1859
1860 if (info->rdev)
1861 return false;
1862
1863 if (bdev_nonrot(rdev->bdev)) {
1864 set_bit(Nonrot, &rdev->flags);
1865 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
1866 }
1867
1868 rdev->raid_disk = disk;
1869 info->head_position = 0;
1870 info->seq_start = MaxSector;
1871 WRITE_ONCE(info->rdev, rdev);
1872
1873 return true;
1874}
1875
1876static bool raid1_remove_conf(struct r1conf *conf, int disk)
1877{
1878 struct raid1_info *info = conf->mirrors + disk;
1879 struct md_rdev *rdev = info->rdev;
1880
1881 if (!rdev || test_bit(In_sync, &rdev->flags) ||
1882 atomic_read(&rdev->nr_pending))
1883 return false;
1884
1885 /* Only remove non-faulty devices if recovery is not possible. */
1886 if (!test_bit(Faulty, &rdev->flags) &&
1887 rdev->mddev->recovery_disabled != conf->recovery_disabled &&
1888 rdev->mddev->degraded < conf->raid_disks)
1889 return false;
1890
1891 if (test_and_clear_bit(Nonrot, &rdev->flags))
1892 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
1893
1894 WRITE_ONCE(info->rdev, NULL);
1895 return true;
1896}
1897
1898static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1899{
1900 struct r1conf *conf = mddev->private;
1901 int err = -EEXIST;
1902 int mirror = 0, repl_slot = -1;
1903 struct raid1_info *p;
1904 int first = 0;
1905 int last = conf->raid_disks - 1;
1906
1907 if (mddev->recovery_disabled == conf->recovery_disabled)
1908 return -EBUSY;
1909
1910 if (md_integrity_add_rdev(rdev, mddev))
1911 return -ENXIO;
1912
1913 if (rdev->raid_disk >= 0)
1914 first = last = rdev->raid_disk;
1915
1916 /*
1917 * find the disk ... but prefer rdev->saved_raid_disk
1918 * if possible.
1919 */
1920 if (rdev->saved_raid_disk >= 0 &&
1921 rdev->saved_raid_disk >= first &&
1922 rdev->saved_raid_disk < conf->raid_disks &&
1923 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1924 first = last = rdev->saved_raid_disk;
1925
1926 for (mirror = first; mirror <= last; mirror++) {
1927 p = conf->mirrors + mirror;
1928 if (!p->rdev) {
1929 err = mddev_stack_new_rdev(mddev, rdev);
1930 if (err)
1931 return err;
1932
1933 raid1_add_conf(conf, rdev, mirror, false);
1934 /* As all devices are equivalent, we don't need a full recovery
1935 * if this was recently any drive of the array
1936 */
1937 if (rdev->saved_raid_disk < 0)
1938 conf->fullsync = 1;
1939 break;
1940 }
1941 if (test_bit(WantReplacement, &p->rdev->flags) &&
1942 p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1943 repl_slot = mirror;
1944 }
1945
1946 if (err && repl_slot >= 0) {
1947 /* Add this device as a replacement */
1948 clear_bit(In_sync, &rdev->flags);
1949 set_bit(Replacement, &rdev->flags);
1950 raid1_add_conf(conf, rdev, repl_slot, true);
1951 err = 0;
1952 conf->fullsync = 1;
1953 }
1954
1955 print_conf(conf);
1956 return err;
1957}
1958
1959static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1960{
1961 struct r1conf *conf = mddev->private;
1962 int err = 0;
1963 int number = rdev->raid_disk;
1964 struct raid1_info *p = conf->mirrors + number;
1965
1966 if (unlikely(number >= conf->raid_disks))
1967 goto abort;
1968
1969 if (rdev != p->rdev) {
1970 number += conf->raid_disks;
1971 p = conf->mirrors + number;
1972 }
1973
1974 print_conf(conf);
1975 if (rdev == p->rdev) {
1976 if (!raid1_remove_conf(conf, number)) {
1977 err = -EBUSY;
1978 goto abort;
1979 }
1980
1981 if (number < conf->raid_disks &&
1982 conf->mirrors[conf->raid_disks + number].rdev) {
1983 /* We just removed a device that is being replaced.
1984 * Move down the replacement. We drain all IO before
1985 * doing this to avoid confusion.
1986 */
1987 struct md_rdev *repl =
1988 conf->mirrors[conf->raid_disks + number].rdev;
1989 freeze_array(conf, 0);
1990 if (atomic_read(&repl->nr_pending)) {
1991 /* It means that some queued IO of retry_list
1992 * hold repl. Thus, we cannot set replacement
1993 * as NULL, avoiding rdev NULL pointer
1994 * dereference in sync_request_write and
1995 * handle_write_finished.
1996 */
1997 err = -EBUSY;
1998 unfreeze_array(conf);
1999 goto abort;
2000 }
2001 clear_bit(Replacement, &repl->flags);
2002 WRITE_ONCE(p->rdev, repl);
2003 conf->mirrors[conf->raid_disks + number].rdev = NULL;
2004 unfreeze_array(conf);
2005 }
2006
2007 clear_bit(WantReplacement, &rdev->flags);
2008 err = md_integrity_register(mddev);
2009 }
2010abort:
2011
2012 print_conf(conf);
2013 return err;
2014}
2015
2016static void end_sync_read(struct bio *bio)
2017{
2018 struct r1bio *r1_bio = get_resync_r1bio(bio);
2019
2020 update_head_pos(r1_bio->read_disk, r1_bio);
2021
2022 /*
2023 * we have read a block, now it needs to be re-written,
2024 * or re-read if the read failed.
2025 * We don't do much here, just schedule handling by raid1d
2026 */
2027 if (!bio->bi_status)
2028 set_bit(R1BIO_Uptodate, &r1_bio->state);
2029
2030 if (atomic_dec_and_test(&r1_bio->remaining))
2031 reschedule_retry(r1_bio);
2032}
2033
2034static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
2035{
2036 sector_t sync_blocks = 0;
2037 sector_t s = r1_bio->sector;
2038 long sectors_to_go = r1_bio->sectors;
2039
2040 /* make sure these bits don't get cleared. */
2041 do {
2042 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
2043 s += sync_blocks;
2044 sectors_to_go -= sync_blocks;
2045 } while (sectors_to_go > 0);
2046}
2047
2048static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
2049{
2050 if (atomic_dec_and_test(&r1_bio->remaining)) {
2051 struct mddev *mddev = r1_bio->mddev;
2052 int s = r1_bio->sectors;
2053
2054 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2055 test_bit(R1BIO_WriteError, &r1_bio->state))
2056 reschedule_retry(r1_bio);
2057 else {
2058 put_buf(r1_bio);
2059 md_done_sync(mddev, s, uptodate);
2060 }
2061 }
2062}
2063
2064static void end_sync_write(struct bio *bio)
2065{
2066 int uptodate = !bio->bi_status;
2067 struct r1bio *r1_bio = get_resync_r1bio(bio);
2068 struct mddev *mddev = r1_bio->mddev;
2069 struct r1conf *conf = mddev->private;
2070 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
2071
2072 if (!uptodate) {
2073 abort_sync_write(mddev, r1_bio);
2074 set_bit(WriteErrorSeen, &rdev->flags);
2075 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2076 set_bit(MD_RECOVERY_NEEDED, &
2077 mddev->recovery);
2078 set_bit(R1BIO_WriteError, &r1_bio->state);
2079 } else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
2080 !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
2081 r1_bio->sector, r1_bio->sectors)) {
2082 set_bit(R1BIO_MadeGood, &r1_bio->state);
2083 }
2084
2085 put_sync_write_buf(r1_bio, uptodate);
2086}
2087
2088static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
2089 int sectors, struct page *page, blk_opf_t rw)
2090{
2091 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2092 /* success */
2093 return 1;
2094 if (rw == REQ_OP_WRITE) {
2095 set_bit(WriteErrorSeen, &rdev->flags);
2096 if (!test_and_set_bit(WantReplacement,
2097 &rdev->flags))
2098 set_bit(MD_RECOVERY_NEEDED, &
2099 rdev->mddev->recovery);
2100 }
2101 /* need to record an error - either for the block or the device */
2102 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2103 md_error(rdev->mddev, rdev);
2104 return 0;
2105}
2106
2107static int fix_sync_read_error(struct r1bio *r1_bio)
2108{
2109 /* Try some synchronous reads of other devices to get
2110 * good data, much like with normal read errors. Only
2111 * read into the pages we already have so we don't
2112 * need to re-issue the read request.
2113 * We don't need to freeze the array, because being in an
2114 * active sync request, there is no normal IO, and
2115 * no overlapping syncs.
2116 * We don't need to check is_badblock() again as we
2117 * made sure that anything with a bad block in range
2118 * will have bi_end_io clear.
2119 */
2120 struct mddev *mddev = r1_bio->mddev;
2121 struct r1conf *conf = mddev->private;
2122 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2123 struct page **pages = get_resync_pages(bio)->pages;
2124 sector_t sect = r1_bio->sector;
2125 int sectors = r1_bio->sectors;
2126 int idx = 0;
2127 struct md_rdev *rdev;
2128
2129 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2130 if (test_bit(FailFast, &rdev->flags)) {
2131 /* Don't try recovering from here - just fail it
2132 * ... unless it is the last working device of course */
2133 md_error(mddev, rdev);
2134 if (test_bit(Faulty, &rdev->flags))
2135 /* Don't try to read from here, but make sure
2136 * put_buf does it's thing
2137 */
2138 bio->bi_end_io = end_sync_write;
2139 }
2140
2141 while(sectors) {
2142 int s = sectors;
2143 int d = r1_bio->read_disk;
2144 int success = 0;
2145 int start;
2146
2147 if (s > (PAGE_SIZE>>9))
2148 s = PAGE_SIZE >> 9;
2149 do {
2150 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2151 /* No rcu protection needed here devices
2152 * can only be removed when no resync is
2153 * active, and resync is currently active
2154 */
2155 rdev = conf->mirrors[d].rdev;
2156 if (sync_page_io(rdev, sect, s<<9,
2157 pages[idx],
2158 REQ_OP_READ, false)) {
2159 success = 1;
2160 break;
2161 }
2162 }
2163 d++;
2164 if (d == conf->raid_disks * 2)
2165 d = 0;
2166 } while (!success && d != r1_bio->read_disk);
2167
2168 if (!success) {
2169 int abort = 0;
2170 /* Cannot read from anywhere, this block is lost.
2171 * Record a bad block on each device. If that doesn't
2172 * work just disable and interrupt the recovery.
2173 * Don't fail devices as that won't really help.
2174 */
2175 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2176 mdname(mddev), bio->bi_bdev,
2177 (unsigned long long)r1_bio->sector);
2178 for (d = 0; d < conf->raid_disks * 2; d++) {
2179 rdev = conf->mirrors[d].rdev;
2180 if (!rdev || test_bit(Faulty, &rdev->flags))
2181 continue;
2182 if (!rdev_set_badblocks(rdev, sect, s, 0))
2183 abort = 1;
2184 }
2185 if (abort) {
2186 conf->recovery_disabled =
2187 mddev->recovery_disabled;
2188 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2189 md_done_sync(mddev, r1_bio->sectors, 0);
2190 put_buf(r1_bio);
2191 return 0;
2192 }
2193 /* Try next page */
2194 sectors -= s;
2195 sect += s;
2196 idx++;
2197 continue;
2198 }
2199
2200 start = d;
2201 /* write it back and re-read */
2202 while (d != r1_bio->read_disk) {
2203 if (d == 0)
2204 d = conf->raid_disks * 2;
2205 d--;
2206 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2207 continue;
2208 rdev = conf->mirrors[d].rdev;
2209 if (r1_sync_page_io(rdev, sect, s,
2210 pages[idx],
2211 REQ_OP_WRITE) == 0) {
2212 r1_bio->bios[d]->bi_end_io = NULL;
2213 rdev_dec_pending(rdev, mddev);
2214 }
2215 }
2216 d = start;
2217 while (d != r1_bio->read_disk) {
2218 if (d == 0)
2219 d = conf->raid_disks * 2;
2220 d--;
2221 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2222 continue;
2223 rdev = conf->mirrors[d].rdev;
2224 if (r1_sync_page_io(rdev, sect, s,
2225 pages[idx],
2226 REQ_OP_READ) != 0)
2227 atomic_add(s, &rdev->corrected_errors);
2228 }
2229 sectors -= s;
2230 sect += s;
2231 idx ++;
2232 }
2233 set_bit(R1BIO_Uptodate, &r1_bio->state);
2234 bio->bi_status = 0;
2235 return 1;
2236}
2237
2238static void process_checks(struct r1bio *r1_bio)
2239{
2240 /* We have read all readable devices. If we haven't
2241 * got the block, then there is no hope left.
2242 * If we have, then we want to do a comparison
2243 * and skip the write if everything is the same.
2244 * If any blocks failed to read, then we need to
2245 * attempt an over-write
2246 */
2247 struct mddev *mddev = r1_bio->mddev;
2248 struct r1conf *conf = mddev->private;
2249 int primary;
2250 int i;
2251 int vcnt;
2252
2253 /* Fix variable parts of all bios */
2254 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2255 for (i = 0; i < conf->raid_disks * 2; i++) {
2256 blk_status_t status;
2257 struct bio *b = r1_bio->bios[i];
2258 struct resync_pages *rp = get_resync_pages(b);
2259 if (b->bi_end_io != end_sync_read)
2260 continue;
2261 /* fixup the bio for reuse, but preserve errno */
2262 status = b->bi_status;
2263 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2264 b->bi_status = status;
2265 b->bi_iter.bi_sector = r1_bio->sector +
2266 conf->mirrors[i].rdev->data_offset;
2267 b->bi_end_io = end_sync_read;
2268 rp->raid_bio = r1_bio;
2269 b->bi_private = rp;
2270
2271 /* initialize bvec table again */
2272 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2273 }
2274 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2275 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2276 !r1_bio->bios[primary]->bi_status) {
2277 r1_bio->bios[primary]->bi_end_io = NULL;
2278 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2279 break;
2280 }
2281 r1_bio->read_disk = primary;
2282 for (i = 0; i < conf->raid_disks * 2; i++) {
2283 int j = 0;
2284 struct bio *pbio = r1_bio->bios[primary];
2285 struct bio *sbio = r1_bio->bios[i];
2286 blk_status_t status = sbio->bi_status;
2287 struct page **ppages = get_resync_pages(pbio)->pages;
2288 struct page **spages = get_resync_pages(sbio)->pages;
2289 struct bio_vec *bi;
2290 int page_len[RESYNC_PAGES] = { 0 };
2291 struct bvec_iter_all iter_all;
2292
2293 if (sbio->bi_end_io != end_sync_read)
2294 continue;
2295 /* Now we can 'fixup' the error value */
2296 sbio->bi_status = 0;
2297
2298 bio_for_each_segment_all(bi, sbio, iter_all)
2299 page_len[j++] = bi->bv_len;
2300
2301 if (!status) {
2302 for (j = vcnt; j-- ; ) {
2303 if (memcmp(page_address(ppages[j]),
2304 page_address(spages[j]),
2305 page_len[j]))
2306 break;
2307 }
2308 } else
2309 j = 0;
2310 if (j >= 0)
2311 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2312 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2313 && !status)) {
2314 /* No need to write to this device. */
2315 sbio->bi_end_io = NULL;
2316 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2317 continue;
2318 }
2319
2320 bio_copy_data(sbio, pbio);
2321 }
2322}
2323
2324static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2325{
2326 struct r1conf *conf = mddev->private;
2327 int i;
2328 int disks = conf->raid_disks * 2;
2329 struct bio *wbio;
2330
2331 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2332 /* ouch - failed to read all of that. */
2333 if (!fix_sync_read_error(r1_bio))
2334 return;
2335
2336 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2337 process_checks(r1_bio);
2338
2339 /*
2340 * schedule writes
2341 */
2342 atomic_set(&r1_bio->remaining, 1);
2343 for (i = 0; i < disks ; i++) {
2344 wbio = r1_bio->bios[i];
2345 if (wbio->bi_end_io == NULL ||
2346 (wbio->bi_end_io == end_sync_read &&
2347 (i == r1_bio->read_disk ||
2348 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2349 continue;
2350 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2351 abort_sync_write(mddev, r1_bio);
2352 continue;
2353 }
2354
2355 wbio->bi_opf = REQ_OP_WRITE;
2356 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2357 wbio->bi_opf |= MD_FAILFAST;
2358
2359 wbio->bi_end_io = end_sync_write;
2360 atomic_inc(&r1_bio->remaining);
2361 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2362
2363 submit_bio_noacct(wbio);
2364 }
2365
2366 put_sync_write_buf(r1_bio, 1);
2367}
2368
2369/*
2370 * This is a kernel thread which:
2371 *
2372 * 1. Retries failed read operations on working mirrors.
2373 * 2. Updates the raid superblock when problems encounter.
2374 * 3. Performs writes following reads for array synchronising.
2375 */
2376
2377static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2378{
2379 sector_t sect = r1_bio->sector;
2380 int sectors = r1_bio->sectors;
2381 int read_disk = r1_bio->read_disk;
2382 struct mddev *mddev = conf->mddev;
2383 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2384
2385 if (exceed_read_errors(mddev, rdev)) {
2386 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2387 return;
2388 }
2389
2390 while(sectors) {
2391 int s = sectors;
2392 int d = read_disk;
2393 int success = 0;
2394 int start;
2395
2396 if (s > (PAGE_SIZE>>9))
2397 s = PAGE_SIZE >> 9;
2398
2399 do {
2400 rdev = conf->mirrors[d].rdev;
2401 if (rdev &&
2402 (test_bit(In_sync, &rdev->flags) ||
2403 (!test_bit(Faulty, &rdev->flags) &&
2404 rdev->recovery_offset >= sect + s)) &&
2405 rdev_has_badblock(rdev, sect, s) == 0) {
2406 atomic_inc(&rdev->nr_pending);
2407 if (sync_page_io(rdev, sect, s<<9,
2408 conf->tmppage, REQ_OP_READ, false))
2409 success = 1;
2410 rdev_dec_pending(rdev, mddev);
2411 if (success)
2412 break;
2413 }
2414
2415 d++;
2416 if (d == conf->raid_disks * 2)
2417 d = 0;
2418 } while (d != read_disk);
2419
2420 if (!success) {
2421 /* Cannot read from anywhere - mark it bad */
2422 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2423 if (!rdev_set_badblocks(rdev, sect, s, 0))
2424 md_error(mddev, rdev);
2425 break;
2426 }
2427 /* write it back and re-read */
2428 start = d;
2429 while (d != read_disk) {
2430 if (d==0)
2431 d = conf->raid_disks * 2;
2432 d--;
2433 rdev = conf->mirrors[d].rdev;
2434 if (rdev &&
2435 !test_bit(Faulty, &rdev->flags)) {
2436 atomic_inc(&rdev->nr_pending);
2437 r1_sync_page_io(rdev, sect, s,
2438 conf->tmppage, REQ_OP_WRITE);
2439 rdev_dec_pending(rdev, mddev);
2440 }
2441 }
2442 d = start;
2443 while (d != read_disk) {
2444 if (d==0)
2445 d = conf->raid_disks * 2;
2446 d--;
2447 rdev = conf->mirrors[d].rdev;
2448 if (rdev &&
2449 !test_bit(Faulty, &rdev->flags)) {
2450 atomic_inc(&rdev->nr_pending);
2451 if (r1_sync_page_io(rdev, sect, s,
2452 conf->tmppage, REQ_OP_READ)) {
2453 atomic_add(s, &rdev->corrected_errors);
2454 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2455 mdname(mddev), s,
2456 (unsigned long long)(sect +
2457 rdev->data_offset),
2458 rdev->bdev);
2459 }
2460 rdev_dec_pending(rdev, mddev);
2461 }
2462 }
2463 sectors -= s;
2464 sect += s;
2465 }
2466}
2467
2468static int narrow_write_error(struct r1bio *r1_bio, int i)
2469{
2470 struct mddev *mddev = r1_bio->mddev;
2471 struct r1conf *conf = mddev->private;
2472 struct md_rdev *rdev = conf->mirrors[i].rdev;
2473
2474 /* bio has the data to be written to device 'i' where
2475 * we just recently had a write error.
2476 * We repeatedly clone the bio and trim down to one block,
2477 * then try the write. Where the write fails we record
2478 * a bad block.
2479 * It is conceivable that the bio doesn't exactly align with
2480 * blocks. We must handle this somehow.
2481 *
2482 * We currently own a reference on the rdev.
2483 */
2484
2485 int block_sectors;
2486 sector_t sector;
2487 int sectors;
2488 int sect_to_write = r1_bio->sectors;
2489 int ok = 1;
2490
2491 if (rdev->badblocks.shift < 0)
2492 return 0;
2493
2494 block_sectors = roundup(1 << rdev->badblocks.shift,
2495 bdev_logical_block_size(rdev->bdev) >> 9);
2496 sector = r1_bio->sector;
2497 sectors = ((sector + block_sectors)
2498 & ~(sector_t)(block_sectors - 1))
2499 - sector;
2500
2501 while (sect_to_write) {
2502 struct bio *wbio;
2503 if (sectors > sect_to_write)
2504 sectors = sect_to_write;
2505 /* Write at 'sector' for 'sectors'*/
2506
2507 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2508 wbio = bio_alloc_clone(rdev->bdev,
2509 r1_bio->behind_master_bio,
2510 GFP_NOIO, &mddev->bio_set);
2511 } else {
2512 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2513 GFP_NOIO, &mddev->bio_set);
2514 }
2515
2516 wbio->bi_opf = REQ_OP_WRITE;
2517 wbio->bi_iter.bi_sector = r1_bio->sector;
2518 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2519
2520 bio_trim(wbio, sector - r1_bio->sector, sectors);
2521 wbio->bi_iter.bi_sector += rdev->data_offset;
2522
2523 if (submit_bio_wait(wbio) < 0)
2524 /* failure! */
2525 ok = rdev_set_badblocks(rdev, sector,
2526 sectors, 0)
2527 && ok;
2528
2529 bio_put(wbio);
2530 sect_to_write -= sectors;
2531 sector += sectors;
2532 sectors = block_sectors;
2533 }
2534 return ok;
2535}
2536
2537static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2538{
2539 int m;
2540 int s = r1_bio->sectors;
2541 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2542 struct md_rdev *rdev = conf->mirrors[m].rdev;
2543 struct bio *bio = r1_bio->bios[m];
2544 if (bio->bi_end_io == NULL)
2545 continue;
2546 if (!bio->bi_status &&
2547 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2548 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2549 }
2550 if (bio->bi_status &&
2551 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2552 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2553 md_error(conf->mddev, rdev);
2554 }
2555 }
2556 put_buf(r1_bio);
2557 md_done_sync(conf->mddev, s, 1);
2558}
2559
2560static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2561{
2562 int m, idx;
2563 bool fail = false;
2564
2565 for (m = 0; m < conf->raid_disks * 2 ; m++)
2566 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2567 struct md_rdev *rdev = conf->mirrors[m].rdev;
2568 rdev_clear_badblocks(rdev,
2569 r1_bio->sector,
2570 r1_bio->sectors, 0);
2571 rdev_dec_pending(rdev, conf->mddev);
2572 } else if (r1_bio->bios[m] != NULL) {
2573 /* This drive got a write error. We need to
2574 * narrow down and record precise write
2575 * errors.
2576 */
2577 fail = true;
2578 if (!narrow_write_error(r1_bio, m)) {
2579 md_error(conf->mddev,
2580 conf->mirrors[m].rdev);
2581 /* an I/O failed, we can't clear the bitmap */
2582 set_bit(R1BIO_Degraded, &r1_bio->state);
2583 }
2584 rdev_dec_pending(conf->mirrors[m].rdev,
2585 conf->mddev);
2586 }
2587 if (fail) {
2588 spin_lock_irq(&conf->device_lock);
2589 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2590 idx = sector_to_idx(r1_bio->sector);
2591 atomic_inc(&conf->nr_queued[idx]);
2592 spin_unlock_irq(&conf->device_lock);
2593 /*
2594 * In case freeze_array() is waiting for condition
2595 * get_unqueued_pending() == extra to be true.
2596 */
2597 wake_up(&conf->wait_barrier);
2598 md_wakeup_thread(conf->mddev->thread);
2599 } else {
2600 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2601 close_write(r1_bio);
2602 raid_end_bio_io(r1_bio);
2603 }
2604}
2605
2606static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2607{
2608 struct mddev *mddev = conf->mddev;
2609 struct bio *bio;
2610 struct md_rdev *rdev;
2611 sector_t sector;
2612
2613 clear_bit(R1BIO_ReadError, &r1_bio->state);
2614 /* we got a read error. Maybe the drive is bad. Maybe just
2615 * the block and we can fix it.
2616 * We freeze all other IO, and try reading the block from
2617 * other devices. When we find one, we re-write
2618 * and check it that fixes the read error.
2619 * This is all done synchronously while the array is
2620 * frozen
2621 */
2622
2623 bio = r1_bio->bios[r1_bio->read_disk];
2624 bio_put(bio);
2625 r1_bio->bios[r1_bio->read_disk] = NULL;
2626
2627 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2628 if (mddev->ro == 0
2629 && !test_bit(FailFast, &rdev->flags)) {
2630 freeze_array(conf, 1);
2631 fix_read_error(conf, r1_bio);
2632 unfreeze_array(conf);
2633 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2634 md_error(mddev, rdev);
2635 } else {
2636 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2637 }
2638
2639 rdev_dec_pending(rdev, conf->mddev);
2640 sector = r1_bio->sector;
2641 bio = r1_bio->master_bio;
2642
2643 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2644 r1_bio->state = 0;
2645 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2646 allow_barrier(conf, sector);
2647}
2648
2649static void raid1d(struct md_thread *thread)
2650{
2651 struct mddev *mddev = thread->mddev;
2652 struct r1bio *r1_bio;
2653 unsigned long flags;
2654 struct r1conf *conf = mddev->private;
2655 struct list_head *head = &conf->retry_list;
2656 struct blk_plug plug;
2657 int idx;
2658
2659 md_check_recovery(mddev);
2660
2661 if (!list_empty_careful(&conf->bio_end_io_list) &&
2662 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2663 LIST_HEAD(tmp);
2664 spin_lock_irqsave(&conf->device_lock, flags);
2665 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2666 list_splice_init(&conf->bio_end_io_list, &tmp);
2667 spin_unlock_irqrestore(&conf->device_lock, flags);
2668 while (!list_empty(&tmp)) {
2669 r1_bio = list_first_entry(&tmp, struct r1bio,
2670 retry_list);
2671 list_del(&r1_bio->retry_list);
2672 idx = sector_to_idx(r1_bio->sector);
2673 atomic_dec(&conf->nr_queued[idx]);
2674 if (mddev->degraded)
2675 set_bit(R1BIO_Degraded, &r1_bio->state);
2676 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2677 close_write(r1_bio);
2678 raid_end_bio_io(r1_bio);
2679 }
2680 }
2681
2682 blk_start_plug(&plug);
2683 for (;;) {
2684
2685 flush_pending_writes(conf);
2686
2687 spin_lock_irqsave(&conf->device_lock, flags);
2688 if (list_empty(head)) {
2689 spin_unlock_irqrestore(&conf->device_lock, flags);
2690 break;
2691 }
2692 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2693 list_del(head->prev);
2694 idx = sector_to_idx(r1_bio->sector);
2695 atomic_dec(&conf->nr_queued[idx]);
2696 spin_unlock_irqrestore(&conf->device_lock, flags);
2697
2698 mddev = r1_bio->mddev;
2699 conf = mddev->private;
2700 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2701 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2702 test_bit(R1BIO_WriteError, &r1_bio->state))
2703 handle_sync_write_finished(conf, r1_bio);
2704 else
2705 sync_request_write(mddev, r1_bio);
2706 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2707 test_bit(R1BIO_WriteError, &r1_bio->state))
2708 handle_write_finished(conf, r1_bio);
2709 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2710 handle_read_error(conf, r1_bio);
2711 else
2712 WARN_ON_ONCE(1);
2713
2714 cond_resched();
2715 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2716 md_check_recovery(mddev);
2717 }
2718 blk_finish_plug(&plug);
2719}
2720
2721static int init_resync(struct r1conf *conf)
2722{
2723 int buffs;
2724
2725 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2726 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2727
2728 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2729 r1buf_pool_free, conf->poolinfo);
2730}
2731
2732static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2733{
2734 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2735 struct resync_pages *rps;
2736 struct bio *bio;
2737 int i;
2738
2739 for (i = conf->poolinfo->raid_disks; i--; ) {
2740 bio = r1bio->bios[i];
2741 rps = bio->bi_private;
2742 bio_reset(bio, NULL, 0);
2743 bio->bi_private = rps;
2744 }
2745 r1bio->master_bio = NULL;
2746 return r1bio;
2747}
2748
2749/*
2750 * perform a "sync" on one "block"
2751 *
2752 * We need to make sure that no normal I/O request - particularly write
2753 * requests - conflict with active sync requests.
2754 *
2755 * This is achieved by tracking pending requests and a 'barrier' concept
2756 * that can be installed to exclude normal IO requests.
2757 */
2758
2759static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2760 int *skipped)
2761{
2762 struct r1conf *conf = mddev->private;
2763 struct r1bio *r1_bio;
2764 struct bio *bio;
2765 sector_t max_sector, nr_sectors;
2766 int disk = -1;
2767 int i;
2768 int wonly = -1;
2769 int write_targets = 0, read_targets = 0;
2770 sector_t sync_blocks;
2771 int still_degraded = 0;
2772 int good_sectors = RESYNC_SECTORS;
2773 int min_bad = 0; /* number of sectors that are bad in all devices */
2774 int idx = sector_to_idx(sector_nr);
2775 int page_idx = 0;
2776
2777 if (!mempool_initialized(&conf->r1buf_pool))
2778 if (init_resync(conf))
2779 return 0;
2780
2781 max_sector = mddev->dev_sectors;
2782 if (sector_nr >= max_sector) {
2783 /* If we aborted, we need to abort the
2784 * sync on the 'current' bitmap chunk (there will
2785 * only be one in raid1 resync.
2786 * We can find the current addess in mddev->curr_resync
2787 */
2788 if (mddev->curr_resync < max_sector) /* aborted */
2789 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2790 &sync_blocks, 1);
2791 else /* completed sync */
2792 conf->fullsync = 0;
2793
2794 md_bitmap_close_sync(mddev->bitmap);
2795 close_sync(conf);
2796
2797 if (mddev_is_clustered(mddev)) {
2798 conf->cluster_sync_low = 0;
2799 conf->cluster_sync_high = 0;
2800 }
2801 return 0;
2802 }
2803
2804 if (mddev->bitmap == NULL &&
2805 mddev->recovery_cp == MaxSector &&
2806 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2807 conf->fullsync == 0) {
2808 *skipped = 1;
2809 return max_sector - sector_nr;
2810 }
2811 /* before building a request, check if we can skip these blocks..
2812 * This call the bitmap_start_sync doesn't actually record anything
2813 */
2814 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2815 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2816 /* We can skip this block, and probably several more */
2817 *skipped = 1;
2818 return sync_blocks;
2819 }
2820
2821 /*
2822 * If there is non-resync activity waiting for a turn, then let it
2823 * though before starting on this new sync request.
2824 */
2825 if (atomic_read(&conf->nr_waiting[idx]))
2826 schedule_timeout_uninterruptible(1);
2827
2828 /* we are incrementing sector_nr below. To be safe, we check against
2829 * sector_nr + two times RESYNC_SECTORS
2830 */
2831
2832 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2833 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2834
2835
2836 if (raise_barrier(conf, sector_nr))
2837 return 0;
2838
2839 r1_bio = raid1_alloc_init_r1buf(conf);
2840
2841 /*
2842 * If we get a correctably read error during resync or recovery,
2843 * we might want to read from a different device. So we
2844 * flag all drives that could conceivably be read from for READ,
2845 * and any others (which will be non-In_sync devices) for WRITE.
2846 * If a read fails, we try reading from something else for which READ
2847 * is OK.
2848 */
2849
2850 r1_bio->mddev = mddev;
2851 r1_bio->sector = sector_nr;
2852 r1_bio->state = 0;
2853 set_bit(R1BIO_IsSync, &r1_bio->state);
2854 /* make sure good_sectors won't go across barrier unit boundary */
2855 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2856
2857 for (i = 0; i < conf->raid_disks * 2; i++) {
2858 struct md_rdev *rdev;
2859 bio = r1_bio->bios[i];
2860
2861 rdev = conf->mirrors[i].rdev;
2862 if (rdev == NULL ||
2863 test_bit(Faulty, &rdev->flags)) {
2864 if (i < conf->raid_disks)
2865 still_degraded = 1;
2866 } else if (!test_bit(In_sync, &rdev->flags)) {
2867 bio->bi_opf = REQ_OP_WRITE;
2868 bio->bi_end_io = end_sync_write;
2869 write_targets ++;
2870 } else {
2871 /* may need to read from here */
2872 sector_t first_bad = MaxSector;
2873 int bad_sectors;
2874
2875 if (is_badblock(rdev, sector_nr, good_sectors,
2876 &first_bad, &bad_sectors)) {
2877 if (first_bad > sector_nr)
2878 good_sectors = first_bad - sector_nr;
2879 else {
2880 bad_sectors -= (sector_nr - first_bad);
2881 if (min_bad == 0 ||
2882 min_bad > bad_sectors)
2883 min_bad = bad_sectors;
2884 }
2885 }
2886 if (sector_nr < first_bad) {
2887 if (test_bit(WriteMostly, &rdev->flags)) {
2888 if (wonly < 0)
2889 wonly = i;
2890 } else {
2891 if (disk < 0)
2892 disk = i;
2893 }
2894 bio->bi_opf = REQ_OP_READ;
2895 bio->bi_end_io = end_sync_read;
2896 read_targets++;
2897 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2898 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2899 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2900 /*
2901 * The device is suitable for reading (InSync),
2902 * but has bad block(s) here. Let's try to correct them,
2903 * if we are doing resync or repair. Otherwise, leave
2904 * this device alone for this sync request.
2905 */
2906 bio->bi_opf = REQ_OP_WRITE;
2907 bio->bi_end_io = end_sync_write;
2908 write_targets++;
2909 }
2910 }
2911 if (rdev && bio->bi_end_io) {
2912 atomic_inc(&rdev->nr_pending);
2913 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2914 bio_set_dev(bio, rdev->bdev);
2915 if (test_bit(FailFast, &rdev->flags))
2916 bio->bi_opf |= MD_FAILFAST;
2917 }
2918 }
2919 if (disk < 0)
2920 disk = wonly;
2921 r1_bio->read_disk = disk;
2922
2923 if (read_targets == 0 && min_bad > 0) {
2924 /* These sectors are bad on all InSync devices, so we
2925 * need to mark them bad on all write targets
2926 */
2927 int ok = 1;
2928 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2929 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2930 struct md_rdev *rdev = conf->mirrors[i].rdev;
2931 ok = rdev_set_badblocks(rdev, sector_nr,
2932 min_bad, 0
2933 ) && ok;
2934 }
2935 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2936 *skipped = 1;
2937 put_buf(r1_bio);
2938
2939 if (!ok) {
2940 /* Cannot record the badblocks, so need to
2941 * abort the resync.
2942 * If there are multiple read targets, could just
2943 * fail the really bad ones ???
2944 */
2945 conf->recovery_disabled = mddev->recovery_disabled;
2946 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2947 return 0;
2948 } else
2949 return min_bad;
2950
2951 }
2952 if (min_bad > 0 && min_bad < good_sectors) {
2953 /* only resync enough to reach the next bad->good
2954 * transition */
2955 good_sectors = min_bad;
2956 }
2957
2958 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2959 /* extra read targets are also write targets */
2960 write_targets += read_targets-1;
2961
2962 if (write_targets == 0 || read_targets == 0) {
2963 /* There is nowhere to write, so all non-sync
2964 * drives must be failed - so we are finished
2965 */
2966 sector_t rv;
2967 if (min_bad > 0)
2968 max_sector = sector_nr + min_bad;
2969 rv = max_sector - sector_nr;
2970 *skipped = 1;
2971 put_buf(r1_bio);
2972 return rv;
2973 }
2974
2975 if (max_sector > mddev->resync_max)
2976 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2977 if (max_sector > sector_nr + good_sectors)
2978 max_sector = sector_nr + good_sectors;
2979 nr_sectors = 0;
2980 sync_blocks = 0;
2981 do {
2982 struct page *page;
2983 int len = PAGE_SIZE;
2984 if (sector_nr + (len>>9) > max_sector)
2985 len = (max_sector - sector_nr) << 9;
2986 if (len == 0)
2987 break;
2988 if (sync_blocks == 0) {
2989 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2990 &sync_blocks, still_degraded) &&
2991 !conf->fullsync &&
2992 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2993 break;
2994 if ((len >> 9) > sync_blocks)
2995 len = sync_blocks<<9;
2996 }
2997
2998 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2999 struct resync_pages *rp;
3000
3001 bio = r1_bio->bios[i];
3002 rp = get_resync_pages(bio);
3003 if (bio->bi_end_io) {
3004 page = resync_fetch_page(rp, page_idx);
3005
3006 /*
3007 * won't fail because the vec table is big
3008 * enough to hold all these pages
3009 */
3010 __bio_add_page(bio, page, len, 0);
3011 }
3012 }
3013 nr_sectors += len>>9;
3014 sector_nr += len>>9;
3015 sync_blocks -= (len>>9);
3016 } while (++page_idx < RESYNC_PAGES);
3017
3018 r1_bio->sectors = nr_sectors;
3019
3020 if (mddev_is_clustered(mddev) &&
3021 conf->cluster_sync_high < sector_nr + nr_sectors) {
3022 conf->cluster_sync_low = mddev->curr_resync_completed;
3023 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
3024 /* Send resync message */
3025 md_cluster_ops->resync_info_update(mddev,
3026 conf->cluster_sync_low,
3027 conf->cluster_sync_high);
3028 }
3029
3030 /* For a user-requested sync, we read all readable devices and do a
3031 * compare
3032 */
3033 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3034 atomic_set(&r1_bio->remaining, read_targets);
3035 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
3036 bio = r1_bio->bios[i];
3037 if (bio->bi_end_io == end_sync_read) {
3038 read_targets--;
3039 md_sync_acct_bio(bio, nr_sectors);
3040 if (read_targets == 1)
3041 bio->bi_opf &= ~MD_FAILFAST;
3042 submit_bio_noacct(bio);
3043 }
3044 }
3045 } else {
3046 atomic_set(&r1_bio->remaining, 1);
3047 bio = r1_bio->bios[r1_bio->read_disk];
3048 md_sync_acct_bio(bio, nr_sectors);
3049 if (read_targets == 1)
3050 bio->bi_opf &= ~MD_FAILFAST;
3051 submit_bio_noacct(bio);
3052 }
3053 return nr_sectors;
3054}
3055
3056static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3057{
3058 if (sectors)
3059 return sectors;
3060
3061 return mddev->dev_sectors;
3062}
3063
3064static struct r1conf *setup_conf(struct mddev *mddev)
3065{
3066 struct r1conf *conf;
3067 int i;
3068 struct raid1_info *disk;
3069 struct md_rdev *rdev;
3070 int err = -ENOMEM;
3071
3072 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3073 if (!conf)
3074 goto abort;
3075
3076 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3077 sizeof(atomic_t), GFP_KERNEL);
3078 if (!conf->nr_pending)
3079 goto abort;
3080
3081 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3082 sizeof(atomic_t), GFP_KERNEL);
3083 if (!conf->nr_waiting)
3084 goto abort;
3085
3086 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3087 sizeof(atomic_t), GFP_KERNEL);
3088 if (!conf->nr_queued)
3089 goto abort;
3090
3091 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3092 sizeof(atomic_t), GFP_KERNEL);
3093 if (!conf->barrier)
3094 goto abort;
3095
3096 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3097 mddev->raid_disks, 2),
3098 GFP_KERNEL);
3099 if (!conf->mirrors)
3100 goto abort;
3101
3102 conf->tmppage = alloc_page(GFP_KERNEL);
3103 if (!conf->tmppage)
3104 goto abort;
3105
3106 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3107 if (!conf->poolinfo)
3108 goto abort;
3109 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3110 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3111 rbio_pool_free, conf->poolinfo);
3112 if (err)
3113 goto abort;
3114
3115 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3116 if (err)
3117 goto abort;
3118
3119 conf->poolinfo->mddev = mddev;
3120
3121 err = -EINVAL;
3122 spin_lock_init(&conf->device_lock);
3123 conf->raid_disks = mddev->raid_disks;
3124 rdev_for_each(rdev, mddev) {
3125 int disk_idx = rdev->raid_disk;
3126
3127 if (disk_idx >= conf->raid_disks || disk_idx < 0)
3128 continue;
3129
3130 if (!raid1_add_conf(conf, rdev, disk_idx,
3131 test_bit(Replacement, &rdev->flags)))
3132 goto abort;
3133 }
3134 conf->mddev = mddev;
3135 INIT_LIST_HEAD(&conf->retry_list);
3136 INIT_LIST_HEAD(&conf->bio_end_io_list);
3137
3138 spin_lock_init(&conf->resync_lock);
3139 init_waitqueue_head(&conf->wait_barrier);
3140
3141 bio_list_init(&conf->pending_bio_list);
3142 conf->recovery_disabled = mddev->recovery_disabled - 1;
3143
3144 err = -EIO;
3145 for (i = 0; i < conf->raid_disks * 2; i++) {
3146
3147 disk = conf->mirrors + i;
3148
3149 if (i < conf->raid_disks &&
3150 disk[conf->raid_disks].rdev) {
3151 /* This slot has a replacement. */
3152 if (!disk->rdev) {
3153 /* No original, just make the replacement
3154 * a recovering spare
3155 */
3156 disk->rdev =
3157 disk[conf->raid_disks].rdev;
3158 disk[conf->raid_disks].rdev = NULL;
3159 } else if (!test_bit(In_sync, &disk->rdev->flags))
3160 /* Original is not in_sync - bad */
3161 goto abort;
3162 }
3163
3164 if (!disk->rdev ||
3165 !test_bit(In_sync, &disk->rdev->flags)) {
3166 disk->head_position = 0;
3167 if (disk->rdev &&
3168 (disk->rdev->saved_raid_disk < 0))
3169 conf->fullsync = 1;
3170 }
3171 }
3172
3173 err = -ENOMEM;
3174 rcu_assign_pointer(conf->thread,
3175 md_register_thread(raid1d, mddev, "raid1"));
3176 if (!conf->thread)
3177 goto abort;
3178
3179 return conf;
3180
3181 abort:
3182 if (conf) {
3183 mempool_exit(&conf->r1bio_pool);
3184 kfree(conf->mirrors);
3185 safe_put_page(conf->tmppage);
3186 kfree(conf->poolinfo);
3187 kfree(conf->nr_pending);
3188 kfree(conf->nr_waiting);
3189 kfree(conf->nr_queued);
3190 kfree(conf->barrier);
3191 bioset_exit(&conf->bio_split);
3192 kfree(conf);
3193 }
3194 return ERR_PTR(err);
3195}
3196
3197static int raid1_set_limits(struct mddev *mddev)
3198{
3199 struct queue_limits lim;
3200
3201 blk_set_stacking_limits(&lim);
3202 lim.max_write_zeroes_sectors = 0;
3203 mddev_stack_rdev_limits(mddev, &lim);
3204 return queue_limits_set(mddev->gendisk->queue, &lim);
3205}
3206
3207static void raid1_free(struct mddev *mddev, void *priv);
3208static int raid1_run(struct mddev *mddev)
3209{
3210 struct r1conf *conf;
3211 int i;
3212 int ret;
3213
3214 if (mddev->level != 1) {
3215 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3216 mdname(mddev), mddev->level);
3217 return -EIO;
3218 }
3219 if (mddev->reshape_position != MaxSector) {
3220 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3221 mdname(mddev));
3222 return -EIO;
3223 }
3224
3225 /*
3226 * copy the already verified devices into our private RAID1
3227 * bookkeeping area. [whatever we allocate in run(),
3228 * should be freed in raid1_free()]
3229 */
3230 if (mddev->private == NULL)
3231 conf = setup_conf(mddev);
3232 else
3233 conf = mddev->private;
3234
3235 if (IS_ERR(conf))
3236 return PTR_ERR(conf);
3237
3238 if (!mddev_is_dm(mddev)) {
3239 ret = raid1_set_limits(mddev);
3240 if (ret)
3241 goto abort;
3242 }
3243
3244 mddev->degraded = 0;
3245 for (i = 0; i < conf->raid_disks; i++)
3246 if (conf->mirrors[i].rdev == NULL ||
3247 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3248 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3249 mddev->degraded++;
3250 /*
3251 * RAID1 needs at least one disk in active
3252 */
3253 if (conf->raid_disks - mddev->degraded < 1) {
3254 md_unregister_thread(mddev, &conf->thread);
3255 ret = -EINVAL;
3256 goto abort;
3257 }
3258
3259 if (conf->raid_disks - mddev->degraded == 1)
3260 mddev->recovery_cp = MaxSector;
3261
3262 if (mddev->recovery_cp != MaxSector)
3263 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3264 mdname(mddev));
3265 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3266 mdname(mddev), mddev->raid_disks - mddev->degraded,
3267 mddev->raid_disks);
3268
3269 /*
3270 * Ok, everything is just fine now
3271 */
3272 rcu_assign_pointer(mddev->thread, conf->thread);
3273 rcu_assign_pointer(conf->thread, NULL);
3274 mddev->private = conf;
3275 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3276
3277 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3278
3279 ret = md_integrity_register(mddev);
3280 if (ret) {
3281 md_unregister_thread(mddev, &mddev->thread);
3282 goto abort;
3283 }
3284 return 0;
3285
3286abort:
3287 raid1_free(mddev, conf);
3288 return ret;
3289}
3290
3291static void raid1_free(struct mddev *mddev, void *priv)
3292{
3293 struct r1conf *conf = priv;
3294
3295 mempool_exit(&conf->r1bio_pool);
3296 kfree(conf->mirrors);
3297 safe_put_page(conf->tmppage);
3298 kfree(conf->poolinfo);
3299 kfree(conf->nr_pending);
3300 kfree(conf->nr_waiting);
3301 kfree(conf->nr_queued);
3302 kfree(conf->barrier);
3303 bioset_exit(&conf->bio_split);
3304 kfree(conf);
3305}
3306
3307static int raid1_resize(struct mddev *mddev, sector_t sectors)
3308{
3309 /* no resync is happening, and there is enough space
3310 * on all devices, so we can resize.
3311 * We need to make sure resync covers any new space.
3312 * If the array is shrinking we should possibly wait until
3313 * any io in the removed space completes, but it hardly seems
3314 * worth it.
3315 */
3316 sector_t newsize = raid1_size(mddev, sectors, 0);
3317 if (mddev->external_size &&
3318 mddev->array_sectors > newsize)
3319 return -EINVAL;
3320 if (mddev->bitmap) {
3321 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3322 if (ret)
3323 return ret;
3324 }
3325 md_set_array_sectors(mddev, newsize);
3326 if (sectors > mddev->dev_sectors &&
3327 mddev->recovery_cp > mddev->dev_sectors) {
3328 mddev->recovery_cp = mddev->dev_sectors;
3329 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3330 }
3331 mddev->dev_sectors = sectors;
3332 mddev->resync_max_sectors = sectors;
3333 return 0;
3334}
3335
3336static int raid1_reshape(struct mddev *mddev)
3337{
3338 /* We need to:
3339 * 1/ resize the r1bio_pool
3340 * 2/ resize conf->mirrors
3341 *
3342 * We allocate a new r1bio_pool if we can.
3343 * Then raise a device barrier and wait until all IO stops.
3344 * Then resize conf->mirrors and swap in the new r1bio pool.
3345 *
3346 * At the same time, we "pack" the devices so that all the missing
3347 * devices have the higher raid_disk numbers.
3348 */
3349 mempool_t newpool, oldpool;
3350 struct pool_info *newpoolinfo;
3351 struct raid1_info *newmirrors;
3352 struct r1conf *conf = mddev->private;
3353 int cnt, raid_disks;
3354 unsigned long flags;
3355 int d, d2;
3356 int ret;
3357
3358 memset(&newpool, 0, sizeof(newpool));
3359 memset(&oldpool, 0, sizeof(oldpool));
3360
3361 /* Cannot change chunk_size, layout, or level */
3362 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3363 mddev->layout != mddev->new_layout ||
3364 mddev->level != mddev->new_level) {
3365 mddev->new_chunk_sectors = mddev->chunk_sectors;
3366 mddev->new_layout = mddev->layout;
3367 mddev->new_level = mddev->level;
3368 return -EINVAL;
3369 }
3370
3371 if (!mddev_is_clustered(mddev))
3372 md_allow_write(mddev);
3373
3374 raid_disks = mddev->raid_disks + mddev->delta_disks;
3375
3376 if (raid_disks < conf->raid_disks) {
3377 cnt=0;
3378 for (d= 0; d < conf->raid_disks; d++)
3379 if (conf->mirrors[d].rdev)
3380 cnt++;
3381 if (cnt > raid_disks)
3382 return -EBUSY;
3383 }
3384
3385 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3386 if (!newpoolinfo)
3387 return -ENOMEM;
3388 newpoolinfo->mddev = mddev;
3389 newpoolinfo->raid_disks = raid_disks * 2;
3390
3391 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3392 rbio_pool_free, newpoolinfo);
3393 if (ret) {
3394 kfree(newpoolinfo);
3395 return ret;
3396 }
3397 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3398 raid_disks, 2),
3399 GFP_KERNEL);
3400 if (!newmirrors) {
3401 kfree(newpoolinfo);
3402 mempool_exit(&newpool);
3403 return -ENOMEM;
3404 }
3405
3406 freeze_array(conf, 0);
3407
3408 /* ok, everything is stopped */
3409 oldpool = conf->r1bio_pool;
3410 conf->r1bio_pool = newpool;
3411
3412 for (d = d2 = 0; d < conf->raid_disks; d++) {
3413 struct md_rdev *rdev = conf->mirrors[d].rdev;
3414 if (rdev && rdev->raid_disk != d2) {
3415 sysfs_unlink_rdev(mddev, rdev);
3416 rdev->raid_disk = d2;
3417 sysfs_unlink_rdev(mddev, rdev);
3418 if (sysfs_link_rdev(mddev, rdev))
3419 pr_warn("md/raid1:%s: cannot register rd%d\n",
3420 mdname(mddev), rdev->raid_disk);
3421 }
3422 if (rdev)
3423 newmirrors[d2++].rdev = rdev;
3424 }
3425 kfree(conf->mirrors);
3426 conf->mirrors = newmirrors;
3427 kfree(conf->poolinfo);
3428 conf->poolinfo = newpoolinfo;
3429
3430 spin_lock_irqsave(&conf->device_lock, flags);
3431 mddev->degraded += (raid_disks - conf->raid_disks);
3432 spin_unlock_irqrestore(&conf->device_lock, flags);
3433 conf->raid_disks = mddev->raid_disks = raid_disks;
3434 mddev->delta_disks = 0;
3435
3436 unfreeze_array(conf);
3437
3438 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3439 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3440 md_wakeup_thread(mddev->thread);
3441
3442 mempool_exit(&oldpool);
3443 return 0;
3444}
3445
3446static void raid1_quiesce(struct mddev *mddev, int quiesce)
3447{
3448 struct r1conf *conf = mddev->private;
3449
3450 if (quiesce)
3451 freeze_array(conf, 0);
3452 else
3453 unfreeze_array(conf);
3454}
3455
3456static void *raid1_takeover(struct mddev *mddev)
3457{
3458 /* raid1 can take over:
3459 * raid5 with 2 devices, any layout or chunk size
3460 */
3461 if (mddev->level == 5 && mddev->raid_disks == 2) {
3462 struct r1conf *conf;
3463 mddev->new_level = 1;
3464 mddev->new_layout = 0;
3465 mddev->new_chunk_sectors = 0;
3466 conf = setup_conf(mddev);
3467 if (!IS_ERR(conf)) {
3468 /* Array must appear to be quiesced */
3469 conf->array_frozen = 1;
3470 mddev_clear_unsupported_flags(mddev,
3471 UNSUPPORTED_MDDEV_FLAGS);
3472 }
3473 return conf;
3474 }
3475 return ERR_PTR(-EINVAL);
3476}
3477
3478static struct md_personality raid1_personality =
3479{
3480 .name = "raid1",
3481 .level = 1,
3482 .owner = THIS_MODULE,
3483 .make_request = raid1_make_request,
3484 .run = raid1_run,
3485 .free = raid1_free,
3486 .status = raid1_status,
3487 .error_handler = raid1_error,
3488 .hot_add_disk = raid1_add_disk,
3489 .hot_remove_disk= raid1_remove_disk,
3490 .spare_active = raid1_spare_active,
3491 .sync_request = raid1_sync_request,
3492 .resize = raid1_resize,
3493 .size = raid1_size,
3494 .check_reshape = raid1_reshape,
3495 .quiesce = raid1_quiesce,
3496 .takeover = raid1_takeover,
3497};
3498
3499static int __init raid_init(void)
3500{
3501 return register_md_personality(&raid1_personality);
3502}
3503
3504static void raid_exit(void)
3505{
3506 unregister_md_personality(&raid1_personality);
3507}
3508
3509module_init(raid_init);
3510module_exit(raid_exit);
3511MODULE_LICENSE("GPL");
3512MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3513MODULE_ALIAS("md-personality-3"); /* RAID1 */
3514MODULE_ALIAS("md-raid1");
3515MODULE_ALIAS("md-level-1");