Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid1.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   6 *
   7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   8 *
   9 * RAID-1 management functions.
  10 *
  11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  12 *
  13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  15 *
  16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  17 * bitmapped intelligence in resync:
  18 *
  19 *      - bitmap marked during normal i/o
  20 *      - bitmap used to skip nondirty blocks during sync
  21 *
  22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  23 * - persistent bitmap code
  24 */
  25
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/blkdev.h>
  29#include <linux/module.h>
  30#include <linux/seq_file.h>
  31#include <linux/ratelimit.h>
 
  32
  33#include <trace/events/block.h>
  34
  35#include "md.h"
  36#include "raid1.h"
  37#include "md-bitmap.h"
  38
  39#define UNSUPPORTED_MDDEV_FLAGS		\
  40	((1L << MD_HAS_JOURNAL) |	\
  41	 (1L << MD_JOURNAL_CLEAN) |	\
  42	 (1L << MD_HAS_PPL) |		\
  43	 (1L << MD_HAS_MULTIPLE_PPLS))
  44
  45static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
  46static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
  47
  48#define raid1_log(md, fmt, args...)				\
  49	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
  50
  51#include "raid1-10.c"
  52
  53static int check_and_add_wb(struct md_rdev *rdev, sector_t lo, sector_t hi)
 
 
 
 
 
 
  54{
  55	struct wb_info *wi, *temp_wi;
  56	unsigned long flags;
  57	int ret = 0;
  58	struct mddev *mddev = rdev->mddev;
  59
  60	wi = mempool_alloc(mddev->wb_info_pool, GFP_NOIO);
  61
  62	spin_lock_irqsave(&rdev->wb_list_lock, flags);
  63	list_for_each_entry(temp_wi, &rdev->wb_list, list) {
  64		/* collision happened */
  65		if (hi > temp_wi->lo && lo < temp_wi->hi) {
  66			ret = -EBUSY;
  67			break;
  68		}
 
  69	}
  70
  71	if (!ret) {
  72		wi->lo = lo;
  73		wi->hi = hi;
  74		list_add(&wi->list, &rdev->wb_list);
  75	} else
  76		mempool_free(wi, mddev->wb_info_pool);
  77	spin_unlock_irqrestore(&rdev->wb_list_lock, flags);
  78
  79	return ret;
  80}
  81
  82static void remove_wb(struct md_rdev *rdev, sector_t lo, sector_t hi)
  83{
  84	struct wb_info *wi;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85	unsigned long flags;
  86	int found = 0;
  87	struct mddev *mddev = rdev->mddev;
 
 
  88
  89	spin_lock_irqsave(&rdev->wb_list_lock, flags);
  90	list_for_each_entry(wi, &rdev->wb_list, list)
  91		if (hi == wi->hi && lo == wi->lo) {
  92			list_del(&wi->list);
  93			mempool_free(wi, mddev->wb_info_pool);
 
  94			found = 1;
  95			break;
  96		}
  97
  98	if (!found)
  99		WARN(1, "The write behind IO is not recorded\n");
 100	spin_unlock_irqrestore(&rdev->wb_list_lock, flags);
 101	wake_up(&rdev->wb_io_wait);
 102}
 103
 104/*
 105 * for resync bio, r1bio pointer can be retrieved from the per-bio
 106 * 'struct resync_pages'.
 107 */
 108static inline struct r1bio *get_resync_r1bio(struct bio *bio)
 109{
 110	return get_resync_pages(bio)->raid_bio;
 111}
 112
 113static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
 114{
 115	struct pool_info *pi = data;
 116	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
 117
 118	/* allocate a r1bio with room for raid_disks entries in the bios array */
 119	return kzalloc(size, gfp_flags);
 120}
 121
 122#define RESYNC_DEPTH 32
 123#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 124#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 125#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 126#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 127#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 128
 129static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 130{
 131	struct pool_info *pi = data;
 132	struct r1bio *r1_bio;
 133	struct bio *bio;
 134	int need_pages;
 135	int j;
 136	struct resync_pages *rps;
 137
 138	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 139	if (!r1_bio)
 140		return NULL;
 141
 142	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
 143			    gfp_flags);
 144	if (!rps)
 145		goto out_free_r1bio;
 146
 147	/*
 148	 * Allocate bios : 1 for reading, n-1 for writing
 149	 */
 150	for (j = pi->raid_disks ; j-- ; ) {
 151		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 152		if (!bio)
 153			goto out_free_bio;
 
 154		r1_bio->bios[j] = bio;
 155	}
 156	/*
 157	 * Allocate RESYNC_PAGES data pages and attach them to
 158	 * the first bio.
 159	 * If this is a user-requested check/repair, allocate
 160	 * RESYNC_PAGES for each bio.
 161	 */
 162	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 163		need_pages = pi->raid_disks;
 164	else
 165		need_pages = 1;
 166	for (j = 0; j < pi->raid_disks; j++) {
 167		struct resync_pages *rp = &rps[j];
 168
 169		bio = r1_bio->bios[j];
 170
 171		if (j < need_pages) {
 172			if (resync_alloc_pages(rp, gfp_flags))
 173				goto out_free_pages;
 174		} else {
 175			memcpy(rp, &rps[0], sizeof(*rp));
 176			resync_get_all_pages(rp);
 177		}
 178
 179		rp->raid_bio = r1_bio;
 180		bio->bi_private = rp;
 181	}
 182
 183	r1_bio->master_bio = NULL;
 184
 185	return r1_bio;
 186
 187out_free_pages:
 188	while (--j >= 0)
 189		resync_free_pages(&rps[j]);
 190
 191out_free_bio:
 192	while (++j < pi->raid_disks)
 193		bio_put(r1_bio->bios[j]);
 
 
 194	kfree(rps);
 195
 196out_free_r1bio:
 197	rbio_pool_free(r1_bio, data);
 198	return NULL;
 199}
 200
 201static void r1buf_pool_free(void *__r1_bio, void *data)
 202{
 203	struct pool_info *pi = data;
 204	int i;
 205	struct r1bio *r1bio = __r1_bio;
 206	struct resync_pages *rp = NULL;
 207
 208	for (i = pi->raid_disks; i--; ) {
 209		rp = get_resync_pages(r1bio->bios[i]);
 210		resync_free_pages(rp);
 211		bio_put(r1bio->bios[i]);
 
 212	}
 213
 214	/* resync pages array stored in the 1st bio's .bi_private */
 215	kfree(rp);
 216
 217	rbio_pool_free(r1bio, data);
 218}
 219
 220static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 221{
 222	int i;
 223
 224	for (i = 0; i < conf->raid_disks * 2; i++) {
 225		struct bio **bio = r1_bio->bios + i;
 226		if (!BIO_SPECIAL(*bio))
 227			bio_put(*bio);
 228		*bio = NULL;
 229	}
 230}
 231
 232static void free_r1bio(struct r1bio *r1_bio)
 233{
 234	struct r1conf *conf = r1_bio->mddev->private;
 235
 236	put_all_bios(conf, r1_bio);
 237	mempool_free(r1_bio, &conf->r1bio_pool);
 238}
 239
 240static void put_buf(struct r1bio *r1_bio)
 241{
 242	struct r1conf *conf = r1_bio->mddev->private;
 243	sector_t sect = r1_bio->sector;
 244	int i;
 245
 246	for (i = 0; i < conf->raid_disks * 2; i++) {
 247		struct bio *bio = r1_bio->bios[i];
 248		if (bio->bi_end_io)
 249			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 250	}
 251
 252	mempool_free(r1_bio, &conf->r1buf_pool);
 253
 254	lower_barrier(conf, sect);
 255}
 256
 257static void reschedule_retry(struct r1bio *r1_bio)
 258{
 259	unsigned long flags;
 260	struct mddev *mddev = r1_bio->mddev;
 261	struct r1conf *conf = mddev->private;
 262	int idx;
 263
 264	idx = sector_to_idx(r1_bio->sector);
 265	spin_lock_irqsave(&conf->device_lock, flags);
 266	list_add(&r1_bio->retry_list, &conf->retry_list);
 267	atomic_inc(&conf->nr_queued[idx]);
 268	spin_unlock_irqrestore(&conf->device_lock, flags);
 269
 270	wake_up(&conf->wait_barrier);
 271	md_wakeup_thread(mddev->thread);
 272}
 273
 274/*
 275 * raid_end_bio_io() is called when we have finished servicing a mirrored
 276 * operation and are ready to return a success/failure code to the buffer
 277 * cache layer.
 278 */
 279static void call_bio_endio(struct r1bio *r1_bio)
 280{
 281	struct bio *bio = r1_bio->master_bio;
 282	struct r1conf *conf = r1_bio->mddev->private;
 283
 284	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 285		bio->bi_status = BLK_STS_IOERR;
 286
 287	bio_endio(bio);
 288	/*
 289	 * Wake up any possible resync thread that waits for the device
 290	 * to go idle.
 291	 */
 292	allow_barrier(conf, r1_bio->sector);
 293}
 294
 295static void raid_end_bio_io(struct r1bio *r1_bio)
 296{
 297	struct bio *bio = r1_bio->master_bio;
 
 
 298
 299	/* if nobody has done the final endio yet, do it now */
 300	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 301		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 302			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 303			 (unsigned long long) bio->bi_iter.bi_sector,
 304			 (unsigned long long) bio_end_sector(bio) - 1);
 305
 306		call_bio_endio(r1_bio);
 307	}
 
 308	free_r1bio(r1_bio);
 
 
 
 
 
 309}
 310
 311/*
 312 * Update disk head position estimator based on IRQ completion info.
 313 */
 314static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 315{
 316	struct r1conf *conf = r1_bio->mddev->private;
 317
 318	conf->mirrors[disk].head_position =
 319		r1_bio->sector + (r1_bio->sectors);
 320}
 321
 322/*
 323 * Find the disk number which triggered given bio
 324 */
 325static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 326{
 327	int mirror;
 328	struct r1conf *conf = r1_bio->mddev->private;
 329	int raid_disks = conf->raid_disks;
 330
 331	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 332		if (r1_bio->bios[mirror] == bio)
 333			break;
 334
 335	BUG_ON(mirror == raid_disks * 2);
 336	update_head_pos(mirror, r1_bio);
 337
 338	return mirror;
 339}
 340
 341static void raid1_end_read_request(struct bio *bio)
 342{
 343	int uptodate = !bio->bi_status;
 344	struct r1bio *r1_bio = bio->bi_private;
 345	struct r1conf *conf = r1_bio->mddev->private;
 346	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 347
 348	/*
 349	 * this branch is our 'one mirror IO has finished' event handler:
 350	 */
 351	update_head_pos(r1_bio->read_disk, r1_bio);
 352
 353	if (uptodate)
 354		set_bit(R1BIO_Uptodate, &r1_bio->state);
 355	else if (test_bit(FailFast, &rdev->flags) &&
 356		 test_bit(R1BIO_FailFast, &r1_bio->state))
 357		/* This was a fail-fast read so we definitely
 358		 * want to retry */
 359		;
 360	else {
 361		/* If all other devices have failed, we want to return
 362		 * the error upwards rather than fail the last device.
 363		 * Here we redefine "uptodate" to mean "Don't want to retry"
 364		 */
 365		unsigned long flags;
 366		spin_lock_irqsave(&conf->device_lock, flags);
 367		if (r1_bio->mddev->degraded == conf->raid_disks ||
 368		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 369		     test_bit(In_sync, &rdev->flags)))
 370			uptodate = 1;
 371		spin_unlock_irqrestore(&conf->device_lock, flags);
 372	}
 373
 374	if (uptodate) {
 375		raid_end_bio_io(r1_bio);
 376		rdev_dec_pending(rdev, conf->mddev);
 377	} else {
 378		/*
 379		 * oops, read error:
 380		 */
 381		char b[BDEVNAME_SIZE];
 382		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
 383				   mdname(conf->mddev),
 384				   bdevname(rdev->bdev, b),
 385				   (unsigned long long)r1_bio->sector);
 386		set_bit(R1BIO_ReadError, &r1_bio->state);
 387		reschedule_retry(r1_bio);
 388		/* don't drop the reference on read_disk yet */
 389	}
 390}
 391
 392static void close_write(struct r1bio *r1_bio)
 393{
 394	/* it really is the end of this request */
 395	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 396		bio_free_pages(r1_bio->behind_master_bio);
 397		bio_put(r1_bio->behind_master_bio);
 398		r1_bio->behind_master_bio = NULL;
 399	}
 400	/* clear the bitmap if all writes complete successfully */
 401	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 402			   r1_bio->sectors,
 403			   !test_bit(R1BIO_Degraded, &r1_bio->state),
 404			   test_bit(R1BIO_BehindIO, &r1_bio->state));
 405	md_write_end(r1_bio->mddev);
 406}
 407
 408static void r1_bio_write_done(struct r1bio *r1_bio)
 409{
 410	if (!atomic_dec_and_test(&r1_bio->remaining))
 411		return;
 412
 413	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 414		reschedule_retry(r1_bio);
 415	else {
 416		close_write(r1_bio);
 417		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 418			reschedule_retry(r1_bio);
 419		else
 420			raid_end_bio_io(r1_bio);
 421	}
 422}
 423
 424static void raid1_end_write_request(struct bio *bio)
 425{
 426	struct r1bio *r1_bio = bio->bi_private;
 427	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 428	struct r1conf *conf = r1_bio->mddev->private;
 429	struct bio *to_put = NULL;
 430	int mirror = find_bio_disk(r1_bio, bio);
 431	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 432	bool discard_error;
 
 
 433
 434	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 435
 436	/*
 437	 * 'one mirror IO has finished' event handler:
 438	 */
 439	if (bio->bi_status && !discard_error) {
 440		set_bit(WriteErrorSeen,	&rdev->flags);
 441		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 442			set_bit(MD_RECOVERY_NEEDED, &
 443				conf->mddev->recovery);
 444
 445		if (test_bit(FailFast, &rdev->flags) &&
 446		    (bio->bi_opf & MD_FAILFAST) &&
 447		    /* We never try FailFast to WriteMostly devices */
 448		    !test_bit(WriteMostly, &rdev->flags)) {
 449			md_error(r1_bio->mddev, rdev);
 450		}
 451
 452		/*
 453		 * When the device is faulty, it is not necessary to
 454		 * handle write error.
 455		 * For failfast, this is the only remaining device,
 456		 * We need to retry the write without FailFast.
 457		 */
 458		if (!test_bit(Faulty, &rdev->flags))
 459			set_bit(R1BIO_WriteError, &r1_bio->state);
 460		else {
 
 
 461			/* Finished with this branch */
 462			r1_bio->bios[mirror] = NULL;
 463			to_put = bio;
 464		}
 465	} else {
 466		/*
 467		 * Set R1BIO_Uptodate in our master bio, so that we
 468		 * will return a good error code for to the higher
 469		 * levels even if IO on some other mirrored buffer
 470		 * fails.
 471		 *
 472		 * The 'master' represents the composite IO operation
 473		 * to user-side. So if something waits for IO, then it
 474		 * will wait for the 'master' bio.
 475		 */
 476		sector_t first_bad;
 477		int bad_sectors;
 478
 479		r1_bio->bios[mirror] = NULL;
 480		to_put = bio;
 481		/*
 482		 * Do not set R1BIO_Uptodate if the current device is
 483		 * rebuilding or Faulty. This is because we cannot use
 484		 * such device for properly reading the data back (we could
 485		 * potentially use it, if the current write would have felt
 486		 * before rdev->recovery_offset, but for simplicity we don't
 487		 * check this here.
 488		 */
 489		if (test_bit(In_sync, &rdev->flags) &&
 490		    !test_bit(Faulty, &rdev->flags))
 491			set_bit(R1BIO_Uptodate, &r1_bio->state);
 492
 493		/* Maybe we can clear some bad blocks. */
 494		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 495				&first_bad, &bad_sectors) && !discard_error) {
 496			r1_bio->bios[mirror] = IO_MADE_GOOD;
 497			set_bit(R1BIO_MadeGood, &r1_bio->state);
 498		}
 499	}
 500
 501	if (behind) {
 502		if (test_bit(WBCollisionCheck, &rdev->flags)) {
 503			sector_t lo = r1_bio->sector;
 504			sector_t hi = r1_bio->sector + r1_bio->sectors;
 505
 506			remove_wb(rdev, lo, hi);
 507		}
 508		if (test_bit(WriteMostly, &rdev->flags))
 509			atomic_dec(&r1_bio->behind_remaining);
 510
 511		/*
 512		 * In behind mode, we ACK the master bio once the I/O
 513		 * has safely reached all non-writemostly
 514		 * disks. Setting the Returned bit ensures that this
 515		 * gets done only once -- we don't ever want to return
 516		 * -EIO here, instead we'll wait
 517		 */
 518		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 519		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 520			/* Maybe we can return now */
 521			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 522				struct bio *mbio = r1_bio->master_bio;
 523				pr_debug("raid1: behind end write sectors"
 524					 " %llu-%llu\n",
 525					 (unsigned long long) mbio->bi_iter.bi_sector,
 526					 (unsigned long long) bio_end_sector(mbio) - 1);
 527				call_bio_endio(r1_bio);
 528			}
 529		}
 530	}
 
 531	if (r1_bio->bios[mirror] == NULL)
 532		rdev_dec_pending(rdev, conf->mddev);
 533
 534	/*
 535	 * Let's see if all mirrored write operations have finished
 536	 * already.
 537	 */
 538	r1_bio_write_done(r1_bio);
 539
 540	if (to_put)
 541		bio_put(to_put);
 542}
 543
 544static sector_t align_to_barrier_unit_end(sector_t start_sector,
 545					  sector_t sectors)
 546{
 547	sector_t len;
 548
 549	WARN_ON(sectors == 0);
 550	/*
 551	 * len is the number of sectors from start_sector to end of the
 552	 * barrier unit which start_sector belongs to.
 553	 */
 554	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 555	      start_sector;
 556
 557	if (len > sectors)
 558		len = sectors;
 559
 560	return len;
 561}
 562
 563/*
 564 * This routine returns the disk from which the requested read should
 565 * be done. There is a per-array 'next expected sequential IO' sector
 566 * number - if this matches on the next IO then we use the last disk.
 567 * There is also a per-disk 'last know head position' sector that is
 568 * maintained from IRQ contexts, both the normal and the resync IO
 569 * completion handlers update this position correctly. If there is no
 570 * perfect sequential match then we pick the disk whose head is closest.
 571 *
 572 * If there are 2 mirrors in the same 2 devices, performance degrades
 573 * because position is mirror, not device based.
 574 *
 575 * The rdev for the device selected will have nr_pending incremented.
 576 */
 577static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 578{
 579	const sector_t this_sector = r1_bio->sector;
 580	int sectors;
 581	int best_good_sectors;
 582	int best_disk, best_dist_disk, best_pending_disk;
 583	int has_nonrot_disk;
 
 
 
 
 
 
 
 
 584	int disk;
 585	sector_t best_dist;
 586	unsigned int min_pending;
 587	struct md_rdev *rdev;
 588	int choose_first;
 589	int choose_next_idle;
 590
 591	rcu_read_lock();
 592	/*
 593	 * Check if we can balance. We can balance on the whole
 594	 * device if no resync is going on, or below the resync window.
 595	 * We take the first readable disk when above the resync window.
 596	 */
 597 retry:
 598	sectors = r1_bio->sectors;
 599	best_disk = -1;
 600	best_dist_disk = -1;
 601	best_dist = MaxSector;
 602	best_pending_disk = -1;
 603	min_pending = UINT_MAX;
 604	best_good_sectors = 0;
 605	has_nonrot_disk = 0;
 606	choose_next_idle = 0;
 607	clear_bit(R1BIO_FailFast, &r1_bio->state);
 608
 609	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 610	    (mddev_is_clustered(conf->mddev) &&
 611	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 612		    this_sector + sectors)))
 613		choose_first = 1;
 614	else
 615		choose_first = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 616
 617	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 618		sector_t dist;
 619		sector_t first_bad;
 620		int bad_sectors;
 621		unsigned int pending;
 622		bool nonrot;
 623
 624		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 625		if (r1_bio->bios[disk] == IO_BLOCKED
 626		    || rdev == NULL
 627		    || test_bit(Faulty, &rdev->flags))
 628			continue;
 629		if (!test_bit(In_sync, &rdev->flags) &&
 630		    rdev->recovery_offset < this_sector + sectors)
 
 
 631			continue;
 632		if (test_bit(WriteMostly, &rdev->flags)) {
 633			/* Don't balance among write-mostly, just
 634			 * use the first as a last resort */
 635			if (best_dist_disk < 0) {
 636				if (is_badblock(rdev, this_sector, sectors,
 637						&first_bad, &bad_sectors)) {
 638					if (first_bad <= this_sector)
 639						/* Cannot use this */
 640						continue;
 641					best_good_sectors = first_bad - this_sector;
 642				} else
 643					best_good_sectors = sectors;
 644				best_dist_disk = disk;
 645				best_pending_disk = disk;
 646			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 647			continue;
 
 
 
 
 
 
 
 648		}
 649		/* This is a reasonable device to use.  It might
 650		 * even be best.
 
 
 651		 */
 652		if (is_badblock(rdev, this_sector, sectors,
 653				&first_bad, &bad_sectors)) {
 654			if (best_dist < MaxSector)
 655				/* already have a better device */
 656				continue;
 657			if (first_bad <= this_sector) {
 658				/* cannot read here. If this is the 'primary'
 659				 * device, then we must not read beyond
 660				 * bad_sectors from another device..
 661				 */
 662				bad_sectors -= (this_sector - first_bad);
 663				if (choose_first && sectors > bad_sectors)
 664					sectors = bad_sectors;
 665				if (best_good_sectors > sectors)
 666					best_good_sectors = sectors;
 667
 668			} else {
 669				sector_t good_sectors = first_bad - this_sector;
 670				if (good_sectors > best_good_sectors) {
 671					best_good_sectors = good_sectors;
 672					best_disk = disk;
 673				}
 674				if (choose_first)
 675					break;
 676			}
 677			continue;
 678		} else {
 679			if ((sectors > best_good_sectors) && (best_disk >= 0))
 680				best_disk = -1;
 681			best_good_sectors = sectors;
 682		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683
 684		if (best_disk >= 0)
 685			/* At least two disks to choose from so failfast is OK */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 686			set_bit(R1BIO_FailFast, &r1_bio->state);
 687
 688		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 689		has_nonrot_disk |= nonrot;
 690		pending = atomic_read(&rdev->nr_pending);
 691		dist = abs(this_sector - conf->mirrors[disk].head_position);
 692		if (choose_first) {
 693			best_disk = disk;
 694			break;
 695		}
 696		/* Don't change to another disk for sequential reads */
 697		if (conf->mirrors[disk].next_seq_sect == this_sector
 698		    || dist == 0) {
 699			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 700			struct raid1_info *mirror = &conf->mirrors[disk];
 701
 702			best_disk = disk;
 703			/*
 704			 * If buffered sequential IO size exceeds optimal
 705			 * iosize, check if there is idle disk. If yes, choose
 706			 * the idle disk. read_balance could already choose an
 707			 * idle disk before noticing it's a sequential IO in
 708			 * this disk. This doesn't matter because this disk
 709			 * will idle, next time it will be utilized after the
 710			 * first disk has IO size exceeds optimal iosize. In
 711			 * this way, iosize of the first disk will be optimal
 712			 * iosize at least. iosize of the second disk might be
 713			 * small, but not a big deal since when the second disk
 714			 * starts IO, the first disk is likely still busy.
 715			 */
 716			if (nonrot && opt_iosize > 0 &&
 717			    mirror->seq_start != MaxSector &&
 718			    mirror->next_seq_sect > opt_iosize &&
 719			    mirror->next_seq_sect - opt_iosize >=
 720			    mirror->seq_start) {
 721				choose_next_idle = 1;
 722				continue;
 723			}
 724			break;
 725		}
 726
 727		if (choose_next_idle)
 728			continue;
 729
 730		if (min_pending > pending) {
 731			min_pending = pending;
 732			best_pending_disk = disk;
 733		}
 734
 735		if (dist < best_dist) {
 736			best_dist = dist;
 737			best_dist_disk = disk;
 738		}
 739	}
 740
 741	/*
 
 
 
 
 
 
 
 742	 * If all disks are rotational, choose the closest disk. If any disk is
 743	 * non-rotational, choose the disk with less pending request even the
 744	 * disk is rotational, which might/might not be optimal for raids with
 745	 * mixed ratation/non-rotational disks depending on workload.
 746	 */
 747	if (best_disk == -1) {
 748		if (has_nonrot_disk || min_pending == 0)
 749			best_disk = best_pending_disk;
 750		else
 751			best_disk = best_dist_disk;
 752	}
 753
 754	if (best_disk >= 0) {
 755		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 756		if (!rdev)
 757			goto retry;
 758		atomic_inc(&rdev->nr_pending);
 759		sectors = best_good_sectors;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760
 761		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 762			conf->mirrors[best_disk].seq_start = this_sector;
 
 763
 764		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 
 
 
 
 
 765	}
 766	rcu_read_unlock();
 767	*max_sectors = sectors;
 768
 769	return best_disk;
 
 
 
 
 
 
 
 
 
 770}
 771
 772static int raid1_congested(struct mddev *mddev, int bits)
 773{
 774	struct r1conf *conf = mddev->private;
 775	int i, ret = 0;
 776
 777	if ((bits & (1 << WB_async_congested)) &&
 778	    conf->pending_count >= max_queued_requests)
 779		return 1;
 780
 781	rcu_read_lock();
 782	for (i = 0; i < conf->raid_disks * 2; i++) {
 783		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 784		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 785			struct request_queue *q = bdev_get_queue(rdev->bdev);
 786
 787			BUG_ON(!q);
 788
 789			/* Note the '|| 1' - when read_balance prefers
 790			 * non-congested targets, it can be removed
 791			 */
 792			if ((bits & (1 << WB_async_congested)) || 1)
 793				ret |= bdi_congested(q->backing_dev_info, bits);
 794			else
 795				ret &= bdi_congested(q->backing_dev_info, bits);
 796		}
 797	}
 798	rcu_read_unlock();
 799	return ret;
 800}
 801
 802static void flush_bio_list(struct r1conf *conf, struct bio *bio)
 803{
 804	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
 805	md_bitmap_unplug(conf->mddev->bitmap);
 806	wake_up(&conf->wait_barrier);
 807
 808	while (bio) { /* submit pending writes */
 809		struct bio *next = bio->bi_next;
 810		struct md_rdev *rdev = (void *)bio->bi_disk;
 811		bio->bi_next = NULL;
 812		bio_set_dev(bio, rdev->bdev);
 813		if (test_bit(Faulty, &rdev->flags)) {
 814			bio_io_error(bio);
 815		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
 816				    !blk_queue_discard(bio->bi_disk->queue)))
 817			/* Just ignore it */
 818			bio_endio(bio);
 819		else
 820			generic_make_request(bio);
 821		bio = next;
 
 822	}
 823}
 824
 825static void flush_pending_writes(struct r1conf *conf)
 826{
 827	/* Any writes that have been queued but are awaiting
 828	 * bitmap updates get flushed here.
 829	 */
 830	spin_lock_irq(&conf->device_lock);
 831
 832	if (conf->pending_bio_list.head) {
 833		struct blk_plug plug;
 834		struct bio *bio;
 835
 836		bio = bio_list_get(&conf->pending_bio_list);
 837		conf->pending_count = 0;
 838		spin_unlock_irq(&conf->device_lock);
 839
 840		/*
 841		 * As this is called in a wait_event() loop (see freeze_array),
 842		 * current->state might be TASK_UNINTERRUPTIBLE which will
 843		 * cause a warning when we prepare to wait again.  As it is
 844		 * rare that this path is taken, it is perfectly safe to force
 845		 * us to go around the wait_event() loop again, so the warning
 846		 * is a false-positive.  Silence the warning by resetting
 847		 * thread state
 848		 */
 849		__set_current_state(TASK_RUNNING);
 850		blk_start_plug(&plug);
 851		flush_bio_list(conf, bio);
 852		blk_finish_plug(&plug);
 853	} else
 854		spin_unlock_irq(&conf->device_lock);
 855}
 856
 857/* Barriers....
 858 * Sometimes we need to suspend IO while we do something else,
 859 * either some resync/recovery, or reconfigure the array.
 860 * To do this we raise a 'barrier'.
 861 * The 'barrier' is a counter that can be raised multiple times
 862 * to count how many activities are happening which preclude
 863 * normal IO.
 864 * We can only raise the barrier if there is no pending IO.
 865 * i.e. if nr_pending == 0.
 866 * We choose only to raise the barrier if no-one is waiting for the
 867 * barrier to go down.  This means that as soon as an IO request
 868 * is ready, no other operations which require a barrier will start
 869 * until the IO request has had a chance.
 870 *
 871 * So: regular IO calls 'wait_barrier'.  When that returns there
 872 *    is no backgroup IO happening,  It must arrange to call
 873 *    allow_barrier when it has finished its IO.
 874 * backgroup IO calls must call raise_barrier.  Once that returns
 875 *    there is no normal IO happeing.  It must arrange to call
 876 *    lower_barrier when the particular background IO completes.
 877 *
 878 * If resync/recovery is interrupted, returns -EINTR;
 879 * Otherwise, returns 0.
 880 */
 881static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
 882{
 883	int idx = sector_to_idx(sector_nr);
 884
 885	spin_lock_irq(&conf->resync_lock);
 886
 887	/* Wait until no block IO is waiting */
 888	wait_event_lock_irq(conf->wait_barrier,
 889			    !atomic_read(&conf->nr_waiting[idx]),
 890			    conf->resync_lock);
 891
 892	/* block any new IO from starting */
 893	atomic_inc(&conf->barrier[idx]);
 894	/*
 895	 * In raise_barrier() we firstly increase conf->barrier[idx] then
 896	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 897	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
 898	 * A memory barrier here to make sure conf->nr_pending[idx] won't
 899	 * be fetched before conf->barrier[idx] is increased. Otherwise
 900	 * there will be a race between raise_barrier() and _wait_barrier().
 901	 */
 902	smp_mb__after_atomic();
 903
 904	/* For these conditions we must wait:
 905	 * A: while the array is in frozen state
 906	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 907	 *    existing in corresponding I/O barrier bucket.
 908	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 909	 *    max resync count which allowed on current I/O barrier bucket.
 910	 */
 911	wait_event_lock_irq(conf->wait_barrier,
 912			    (!conf->array_frozen &&
 913			     !atomic_read(&conf->nr_pending[idx]) &&
 914			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
 915				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
 916			    conf->resync_lock);
 917
 918	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
 919		atomic_dec(&conf->barrier[idx]);
 920		spin_unlock_irq(&conf->resync_lock);
 921		wake_up(&conf->wait_barrier);
 922		return -EINTR;
 923	}
 924
 925	atomic_inc(&conf->nr_sync_pending);
 926	spin_unlock_irq(&conf->resync_lock);
 927
 928	return 0;
 929}
 930
 931static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
 932{
 933	int idx = sector_to_idx(sector_nr);
 934
 935	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
 936
 937	atomic_dec(&conf->barrier[idx]);
 938	atomic_dec(&conf->nr_sync_pending);
 939	wake_up(&conf->wait_barrier);
 940}
 941
 942static void _wait_barrier(struct r1conf *conf, int idx)
 943{
 
 
 944	/*
 945	 * We need to increase conf->nr_pending[idx] very early here,
 946	 * then raise_barrier() can be blocked when it waits for
 947	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
 948	 * conf->resync_lock when there is no barrier raised in same
 949	 * barrier unit bucket. Also if the array is frozen, I/O
 950	 * should be blocked until array is unfrozen.
 951	 */
 952	atomic_inc(&conf->nr_pending[idx]);
 953	/*
 954	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
 955	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
 956	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
 957	 * barrier is necessary here to make sure conf->barrier[idx] won't be
 958	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
 959	 * will be a race between _wait_barrier() and raise_barrier().
 960	 */
 961	smp_mb__after_atomic();
 962
 963	/*
 964	 * Don't worry about checking two atomic_t variables at same time
 965	 * here. If during we check conf->barrier[idx], the array is
 966	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
 967	 * 0, it is safe to return and make the I/O continue. Because the
 968	 * array is frozen, all I/O returned here will eventually complete
 969	 * or be queued, no race will happen. See code comment in
 970	 * frozen_array().
 971	 */
 972	if (!READ_ONCE(conf->array_frozen) &&
 973	    !atomic_read(&conf->barrier[idx]))
 974		return;
 975
 976	/*
 977	 * After holding conf->resync_lock, conf->nr_pending[idx]
 978	 * should be decreased before waiting for barrier to drop.
 979	 * Otherwise, we may encounter a race condition because
 980	 * raise_barrer() might be waiting for conf->nr_pending[idx]
 981	 * to be 0 at same time.
 982	 */
 983	spin_lock_irq(&conf->resync_lock);
 984	atomic_inc(&conf->nr_waiting[idx]);
 985	atomic_dec(&conf->nr_pending[idx]);
 986	/*
 987	 * In case freeze_array() is waiting for
 988	 * get_unqueued_pending() == extra
 989	 */
 990	wake_up(&conf->wait_barrier);
 991	/* Wait for the barrier in same barrier unit bucket to drop. */
 992	wait_event_lock_irq(conf->wait_barrier,
 993			    !conf->array_frozen &&
 994			     !atomic_read(&conf->barrier[idx]),
 995			    conf->resync_lock);
 996	atomic_inc(&conf->nr_pending[idx]);
 
 
 
 
 
 
 
 997	atomic_dec(&conf->nr_waiting[idx]);
 998	spin_unlock_irq(&conf->resync_lock);
 
 999}
1000
1001static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
1002{
1003	int idx = sector_to_idx(sector_nr);
 
1004
1005	/*
1006	 * Very similar to _wait_barrier(). The difference is, for read
1007	 * I/O we don't need wait for sync I/O, but if the whole array
1008	 * is frozen, the read I/O still has to wait until the array is
1009	 * unfrozen. Since there is no ordering requirement with
1010	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1011	 */
1012	atomic_inc(&conf->nr_pending[idx]);
1013
1014	if (!READ_ONCE(conf->array_frozen))
1015		return;
1016
1017	spin_lock_irq(&conf->resync_lock);
1018	atomic_inc(&conf->nr_waiting[idx]);
1019	atomic_dec(&conf->nr_pending[idx]);
1020	/*
1021	 * In case freeze_array() is waiting for
1022	 * get_unqueued_pending() == extra
1023	 */
1024	wake_up(&conf->wait_barrier);
1025	/* Wait for array to be unfrozen */
1026	wait_event_lock_irq(conf->wait_barrier,
1027			    !conf->array_frozen,
1028			    conf->resync_lock);
1029	atomic_inc(&conf->nr_pending[idx]);
 
 
 
 
 
 
 
 
1030	atomic_dec(&conf->nr_waiting[idx]);
1031	spin_unlock_irq(&conf->resync_lock);
 
1032}
1033
1034static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1035{
1036	int idx = sector_to_idx(sector_nr);
1037
1038	_wait_barrier(conf, idx);
1039}
1040
1041static void _allow_barrier(struct r1conf *conf, int idx)
1042{
1043	atomic_dec(&conf->nr_pending[idx]);
1044	wake_up(&conf->wait_barrier);
1045}
1046
1047static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1048{
1049	int idx = sector_to_idx(sector_nr);
1050
1051	_allow_barrier(conf, idx);
1052}
1053
1054/* conf->resync_lock should be held */
1055static int get_unqueued_pending(struct r1conf *conf)
1056{
1057	int idx, ret;
1058
1059	ret = atomic_read(&conf->nr_sync_pending);
1060	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1061		ret += atomic_read(&conf->nr_pending[idx]) -
1062			atomic_read(&conf->nr_queued[idx]);
1063
1064	return ret;
1065}
1066
1067static void freeze_array(struct r1conf *conf, int extra)
1068{
1069	/* Stop sync I/O and normal I/O and wait for everything to
1070	 * go quiet.
1071	 * This is called in two situations:
1072	 * 1) management command handlers (reshape, remove disk, quiesce).
1073	 * 2) one normal I/O request failed.
1074
1075	 * After array_frozen is set to 1, new sync IO will be blocked at
1076	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1077	 * or wait_read_barrier(). The flying I/Os will either complete or be
1078	 * queued. When everything goes quite, there are only queued I/Os left.
1079
1080	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1081	 * barrier bucket index which this I/O request hits. When all sync and
1082	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1083	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1084	 * in handle_read_error(), we may call freeze_array() before trying to
1085	 * fix the read error. In this case, the error read I/O is not queued,
1086	 * so get_unqueued_pending() == 1.
1087	 *
1088	 * Therefore before this function returns, we need to wait until
1089	 * get_unqueued_pendings(conf) gets equal to extra. For
1090	 * normal I/O context, extra is 1, in rested situations extra is 0.
1091	 */
1092	spin_lock_irq(&conf->resync_lock);
1093	conf->array_frozen = 1;
1094	raid1_log(conf->mddev, "wait freeze");
1095	wait_event_lock_irq_cmd(
1096		conf->wait_barrier,
1097		get_unqueued_pending(conf) == extra,
1098		conf->resync_lock,
1099		flush_pending_writes(conf));
1100	spin_unlock_irq(&conf->resync_lock);
1101}
1102static void unfreeze_array(struct r1conf *conf)
1103{
1104	/* reverse the effect of the freeze */
1105	spin_lock_irq(&conf->resync_lock);
1106	conf->array_frozen = 0;
1107	spin_unlock_irq(&conf->resync_lock);
1108	wake_up(&conf->wait_barrier);
1109}
1110
1111static void alloc_behind_master_bio(struct r1bio *r1_bio,
1112					   struct bio *bio)
1113{
1114	int size = bio->bi_iter.bi_size;
1115	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1116	int i = 0;
1117	struct bio *behind_bio = NULL;
1118
1119	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1120	if (!behind_bio)
1121		return;
1122
1123	/* discard op, we don't support writezero/writesame yet */
1124	if (!bio_has_data(bio)) {
1125		behind_bio->bi_iter.bi_size = size;
1126		goto skip_copy;
1127	}
1128
1129	behind_bio->bi_write_hint = bio->bi_write_hint;
1130
1131	while (i < vcnt && size) {
1132		struct page *page;
1133		int len = min_t(int, PAGE_SIZE, size);
1134
1135		page = alloc_page(GFP_NOIO);
1136		if (unlikely(!page))
1137			goto free_pages;
1138
1139		bio_add_page(behind_bio, page, len, 0);
 
 
 
1140
1141		size -= len;
1142		i++;
1143	}
1144
1145	bio_copy_data(behind_bio, bio);
1146skip_copy:
1147	r1_bio->behind_master_bio = behind_bio;
1148	set_bit(R1BIO_BehindIO, &r1_bio->state);
1149
1150	return;
1151
1152free_pages:
1153	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1154		 bio->bi_iter.bi_size);
1155	bio_free_pages(behind_bio);
1156	bio_put(behind_bio);
1157}
1158
1159struct raid1_plug_cb {
1160	struct blk_plug_cb	cb;
1161	struct bio_list		pending;
1162	int			pending_cnt;
1163};
1164
1165static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1166{
1167	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1168						  cb);
1169	struct mddev *mddev = plug->cb.data;
1170	struct r1conf *conf = mddev->private;
1171	struct bio *bio;
1172
1173	if (from_schedule || current->bio_list) {
1174		spin_lock_irq(&conf->device_lock);
1175		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1176		conf->pending_count += plug->pending_cnt;
1177		spin_unlock_irq(&conf->device_lock);
1178		wake_up(&conf->wait_barrier);
1179		md_wakeup_thread(mddev->thread);
1180		kfree(plug);
1181		return;
1182	}
1183
1184	/* we aren't scheduling, so we can do the write-out directly. */
1185	bio = bio_list_get(&plug->pending);
1186	flush_bio_list(conf, bio);
1187	kfree(plug);
1188}
1189
1190static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1191{
1192	r1_bio->master_bio = bio;
1193	r1_bio->sectors = bio_sectors(bio);
1194	r1_bio->state = 0;
1195	r1_bio->mddev = mddev;
1196	r1_bio->sector = bio->bi_iter.bi_sector;
1197}
1198
1199static inline struct r1bio *
1200alloc_r1bio(struct mddev *mddev, struct bio *bio)
1201{
1202	struct r1conf *conf = mddev->private;
1203	struct r1bio *r1_bio;
1204
1205	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1206	/* Ensure no bio records IO_BLOCKED */
1207	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1208	init_r1bio(r1_bio, mddev, bio);
1209	return r1_bio;
1210}
1211
1212static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1213			       int max_read_sectors, struct r1bio *r1_bio)
1214{
1215	struct r1conf *conf = mddev->private;
1216	struct raid1_info *mirror;
1217	struct bio *read_bio;
1218	struct bitmap *bitmap = mddev->bitmap;
1219	const int op = bio_op(bio);
1220	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1221	int max_sectors;
1222	int rdisk;
1223	bool print_msg = !!r1_bio;
1224	char b[BDEVNAME_SIZE];
1225
1226	/*
1227	 * If r1_bio is set, we are blocking the raid1d thread
1228	 * so there is a tiny risk of deadlock.  So ask for
1229	 * emergency memory if needed.
1230	 */
1231	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1232
1233	if (print_msg) {
1234		/* Need to get the block device name carefully */
1235		struct md_rdev *rdev;
1236		rcu_read_lock();
1237		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1238		if (rdev)
1239			bdevname(rdev->bdev, b);
1240		else
1241			strcpy(b, "???");
1242		rcu_read_unlock();
1243	}
1244
1245	/*
1246	 * Still need barrier for READ in case that whole
1247	 * array is frozen.
1248	 */
1249	wait_read_barrier(conf, bio->bi_iter.bi_sector);
 
 
 
 
1250
1251	if (!r1_bio)
1252		r1_bio = alloc_r1bio(mddev, bio);
1253	else
1254		init_r1bio(r1_bio, mddev, bio);
1255	r1_bio->sectors = max_read_sectors;
1256
1257	/*
1258	 * make_request() can abort the operation when read-ahead is being
1259	 * used and no empty request is available.
1260	 */
1261	rdisk = read_balance(conf, r1_bio, &max_sectors);
1262
1263	if (rdisk < 0) {
1264		/* couldn't find anywhere to read from */
1265		if (print_msg) {
1266			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1267					    mdname(mddev),
1268					    b,
1269					    (unsigned long long)r1_bio->sector);
1270		}
1271		raid_end_bio_io(r1_bio);
1272		return;
1273	}
1274	mirror = conf->mirrors + rdisk;
1275
1276	if (print_msg)
1277		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1278				    mdname(mddev),
1279				    (unsigned long long)r1_bio->sector,
1280				    bdevname(mirror->rdev->bdev, b));
1281
1282	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1283	    bitmap) {
1284		/*
1285		 * Reading from a write-mostly device must take care not to
1286		 * over-take any writes that are 'behind'
1287		 */
1288		raid1_log(mddev, "wait behind writes");
1289		wait_event(bitmap->behind_wait,
1290			   atomic_read(&bitmap->behind_writes) == 0);
1291	}
1292
1293	if (max_sectors < bio_sectors(bio)) {
1294		struct bio *split = bio_split(bio, max_sectors,
1295					      gfp, &conf->bio_split);
1296		bio_chain(split, bio);
1297		generic_make_request(bio);
1298		bio = split;
1299		r1_bio->master_bio = bio;
1300		r1_bio->sectors = max_sectors;
1301	}
1302
1303	r1_bio->read_disk = rdisk;
1304
1305	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
 
 
 
 
1306
1307	r1_bio->bios[rdisk] = read_bio;
1308
1309	read_bio->bi_iter.bi_sector = r1_bio->sector +
1310		mirror->rdev->data_offset;
1311	bio_set_dev(read_bio, mirror->rdev->bdev);
1312	read_bio->bi_end_io = raid1_end_read_request;
1313	bio_set_op_attrs(read_bio, op, do_sync);
1314	if (test_bit(FailFast, &mirror->rdev->flags) &&
1315	    test_bit(R1BIO_FailFast, &r1_bio->state))
1316	        read_bio->bi_opf |= MD_FAILFAST;
1317	read_bio->bi_private = r1_bio;
1318
1319	if (mddev->gendisk)
1320	        trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1321				disk_devt(mddev->gendisk), r1_bio->sector);
1322
1323	generic_make_request(read_bio);
1324}
1325
1326static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1327				int max_write_sectors)
1328{
1329	struct r1conf *conf = mddev->private;
1330	struct r1bio *r1_bio;
1331	int i, disks;
1332	struct bitmap *bitmap = mddev->bitmap;
1333	unsigned long flags;
1334	struct md_rdev *blocked_rdev;
1335	struct blk_plug_cb *cb;
1336	struct raid1_plug_cb *plug = NULL;
1337	int first_clone;
1338	int max_sectors;
 
 
1339
1340	if (mddev_is_clustered(mddev) &&
1341	     md_cluster_ops->area_resyncing(mddev, WRITE,
1342		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1343
1344		DEFINE_WAIT(w);
 
 
 
 
1345		for (;;) {
1346			prepare_to_wait(&conf->wait_barrier,
1347					&w, TASK_IDLE);
1348			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1349							bio->bi_iter.bi_sector,
1350							bio_end_sector(bio)))
1351				break;
1352			schedule();
1353		}
1354		finish_wait(&conf->wait_barrier, &w);
1355	}
1356
1357	/*
1358	 * Register the new request and wait if the reconstruction
1359	 * thread has put up a bar for new requests.
1360	 * Continue immediately if no resync is active currently.
1361	 */
1362	wait_barrier(conf, bio->bi_iter.bi_sector);
 
 
 
 
1363
 
1364	r1_bio = alloc_r1bio(mddev, bio);
1365	r1_bio->sectors = max_write_sectors;
1366
1367	if (conf->pending_count >= max_queued_requests) {
1368		md_wakeup_thread(mddev->thread);
1369		raid1_log(mddev, "wait queued");
1370		wait_event(conf->wait_barrier,
1371			   conf->pending_count < max_queued_requests);
1372	}
1373	/* first select target devices under rcu_lock and
1374	 * inc refcount on their rdev.  Record them by setting
1375	 * bios[x] to bio
1376	 * If there are known/acknowledged bad blocks on any device on
1377	 * which we have seen a write error, we want to avoid writing those
1378	 * blocks.
1379	 * This potentially requires several writes to write around
1380	 * the bad blocks.  Each set of writes gets it's own r1bio
1381	 * with a set of bios attached.
1382	 */
1383
1384	disks = conf->raid_disks * 2;
1385 retry_write:
1386	blocked_rdev = NULL;
1387	rcu_read_lock();
1388	max_sectors = r1_bio->sectors;
1389	for (i = 0;  i < disks; i++) {
1390		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 
 
 
 
 
 
 
 
 
1391		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1392			atomic_inc(&rdev->nr_pending);
1393			blocked_rdev = rdev;
1394			break;
1395		}
1396		r1_bio->bios[i] = NULL;
1397		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1398			if (i < conf->raid_disks)
1399				set_bit(R1BIO_Degraded, &r1_bio->state);
1400			continue;
1401		}
1402
1403		atomic_inc(&rdev->nr_pending);
1404		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1405			sector_t first_bad;
1406			int bad_sectors;
1407			int is_bad;
1408
1409			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1410					     &first_bad, &bad_sectors);
1411			if (is_bad < 0) {
1412				/* mustn't write here until the bad block is
1413				 * acknowledged*/
1414				set_bit(BlockedBadBlocks, &rdev->flags);
1415				blocked_rdev = rdev;
1416				break;
1417			}
1418			if (is_bad && first_bad <= r1_bio->sector) {
1419				/* Cannot write here at all */
1420				bad_sectors -= (r1_bio->sector - first_bad);
1421				if (bad_sectors < max_sectors)
1422					/* mustn't write more than bad_sectors
1423					 * to other devices yet
1424					 */
1425					max_sectors = bad_sectors;
1426				rdev_dec_pending(rdev, mddev);
1427				/* We don't set R1BIO_Degraded as that
1428				 * only applies if the disk is
1429				 * missing, so it might be re-added,
1430				 * and we want to know to recover this
1431				 * chunk.
1432				 * In this case the device is here,
1433				 * and the fact that this chunk is not
1434				 * in-sync is recorded in the bad
1435				 * block log
1436				 */
1437				continue;
1438			}
1439			if (is_bad) {
1440				int good_sectors = first_bad - r1_bio->sector;
1441				if (good_sectors < max_sectors)
1442					max_sectors = good_sectors;
1443			}
1444		}
1445		r1_bio->bios[i] = bio;
1446	}
1447	rcu_read_unlock();
1448
1449	if (unlikely(blocked_rdev)) {
1450		/* Wait for this device to become unblocked */
1451		int j;
1452
1453		for (j = 0; j < i; j++)
1454			if (r1_bio->bios[j])
1455				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1456		r1_bio->state = 0;
1457		allow_barrier(conf, bio->bi_iter.bi_sector);
1458		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
 
 
 
 
 
 
1459		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1460		wait_barrier(conf, bio->bi_iter.bi_sector);
1461		goto retry_write;
1462	}
1463
 
 
 
 
 
 
 
 
 
1464	if (max_sectors < bio_sectors(bio)) {
1465		struct bio *split = bio_split(bio, max_sectors,
1466					      GFP_NOIO, &conf->bio_split);
1467		bio_chain(split, bio);
1468		generic_make_request(bio);
1469		bio = split;
1470		r1_bio->master_bio = bio;
1471		r1_bio->sectors = max_sectors;
1472	}
1473
 
 
1474	atomic_set(&r1_bio->remaining, 1);
1475	atomic_set(&r1_bio->behind_remaining, 0);
1476
1477	first_clone = 1;
1478
1479	for (i = 0; i < disks; i++) {
1480		struct bio *mbio = NULL;
 
1481		if (!r1_bio->bios[i])
1482			continue;
1483
1484		if (first_clone) {
1485			/* do behind I/O ?
1486			 * Not if there are too many, or cannot
1487			 * allocate memory, or a reader on WriteMostly
1488			 * is waiting for behind writes to flush */
1489			if (bitmap &&
1490			    (atomic_read(&bitmap->behind_writes)
1491			     < mddev->bitmap_info.max_write_behind) &&
1492			    !waitqueue_active(&bitmap->behind_wait)) {
1493				alloc_behind_master_bio(r1_bio, bio);
1494			}
1495
1496			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1497					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1498			first_clone = 0;
1499		}
1500
1501		if (r1_bio->behind_master_bio)
1502			mbio = bio_clone_fast(r1_bio->behind_master_bio,
1503					      GFP_NOIO, &mddev->bio_set);
1504		else
1505			mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1506
1507		if (r1_bio->behind_master_bio) {
1508			struct md_rdev *rdev = conf->mirrors[i].rdev;
1509
1510			if (test_bit(WBCollisionCheck, &rdev->flags)) {
1511				sector_t lo = r1_bio->sector;
1512				sector_t hi = r1_bio->sector + r1_bio->sectors;
1513
1514				wait_event(rdev->wb_io_wait,
1515					   check_and_add_wb(rdev, lo, hi) == 0);
1516			}
1517			if (test_bit(WriteMostly, &rdev->flags))
1518				atomic_inc(&r1_bio->behind_remaining);
 
 
 
 
 
 
1519		}
1520
1521		r1_bio->bios[i] = mbio;
1522
1523		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1524				   conf->mirrors[i].rdev->data_offset);
1525		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1526		mbio->bi_end_io	= raid1_end_write_request;
1527		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1528		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1529		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1530		    conf->raid_disks - mddev->degraded > 1)
1531			mbio->bi_opf |= MD_FAILFAST;
1532		mbio->bi_private = r1_bio;
1533
1534		atomic_inc(&r1_bio->remaining);
1535
1536		if (mddev->gendisk)
1537			trace_block_bio_remap(mbio->bi_disk->queue,
1538					      mbio, disk_devt(mddev->gendisk),
1539					      r1_bio->sector);
1540		/* flush_pending_writes() needs access to the rdev so...*/
1541		mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1542
1543		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1544		if (cb)
1545			plug = container_of(cb, struct raid1_plug_cb, cb);
1546		else
1547			plug = NULL;
1548		if (plug) {
1549			bio_list_add(&plug->pending, mbio);
1550			plug->pending_cnt++;
1551		} else {
1552			spin_lock_irqsave(&conf->device_lock, flags);
1553			bio_list_add(&conf->pending_bio_list, mbio);
1554			conf->pending_count++;
1555			spin_unlock_irqrestore(&conf->device_lock, flags);
1556			md_wakeup_thread(mddev->thread);
1557		}
1558	}
1559
1560	r1_bio_write_done(r1_bio);
1561
1562	/* In case raid1d snuck in to freeze_array */
1563	wake_up(&conf->wait_barrier);
1564}
1565
1566static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1567{
1568	sector_t sectors;
1569
1570	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1571		md_flush_request(mddev, bio);
1572		return true;
1573	}
1574
1575	/*
1576	 * There is a limit to the maximum size, but
1577	 * the read/write handler might find a lower limit
1578	 * due to bad blocks.  To avoid multiple splits,
1579	 * we pass the maximum number of sectors down
1580	 * and let the lower level perform the split.
1581	 */
1582	sectors = align_to_barrier_unit_end(
1583		bio->bi_iter.bi_sector, bio_sectors(bio));
1584
1585	if (bio_data_dir(bio) == READ)
1586		raid1_read_request(mddev, bio, sectors, NULL);
1587	else {
1588		if (!md_write_start(mddev,bio))
1589			return false;
1590		raid1_write_request(mddev, bio, sectors);
1591	}
1592	return true;
1593}
1594
1595static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1596{
1597	struct r1conf *conf = mddev->private;
1598	int i;
1599
 
 
1600	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1601		   conf->raid_disks - mddev->degraded);
1602	rcu_read_lock();
1603	for (i = 0; i < conf->raid_disks; i++) {
1604		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 
1605		seq_printf(seq, "%s",
1606			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1607	}
1608	rcu_read_unlock();
1609	seq_printf(seq, "]");
1610}
1611
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1612static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1613{
1614	char b[BDEVNAME_SIZE];
1615	struct r1conf *conf = mddev->private;
1616	unsigned long flags;
1617
1618	/*
1619	 * If it is not operational, then we have already marked it as dead
1620	 * else if it is the last working disks with "fail_last_dev == false",
1621	 * ignore the error, let the next level up know.
1622	 * else mark the drive as failed
1623	 */
1624	spin_lock_irqsave(&conf->device_lock, flags);
1625	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1626	    && (conf->raid_disks - mddev->degraded) == 1) {
1627		/*
1628		 * Don't fail the drive, act as though we were just a
1629		 * normal single drive.
1630		 * However don't try a recovery from this drive as
1631		 * it is very likely to fail.
1632		 */
1633		conf->recovery_disabled = mddev->recovery_disabled;
1634		spin_unlock_irqrestore(&conf->device_lock, flags);
1635		return;
1636	}
1637	set_bit(Blocked, &rdev->flags);
1638	if (test_and_clear_bit(In_sync, &rdev->flags))
1639		mddev->degraded++;
1640	set_bit(Faulty, &rdev->flags);
1641	spin_unlock_irqrestore(&conf->device_lock, flags);
1642	/*
1643	 * if recovery is running, make sure it aborts.
1644	 */
1645	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1646	set_mask_bits(&mddev->sb_flags, 0,
1647		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1648	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1649		"md/raid1:%s: Operation continuing on %d devices.\n",
1650		mdname(mddev), bdevname(rdev->bdev, b),
1651		mdname(mddev), conf->raid_disks - mddev->degraded);
1652}
1653
1654static void print_conf(struct r1conf *conf)
1655{
1656	int i;
1657
1658	pr_debug("RAID1 conf printout:\n");
1659	if (!conf) {
1660		pr_debug("(!conf)\n");
1661		return;
1662	}
1663	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1664		 conf->raid_disks);
1665
1666	rcu_read_lock();
1667	for (i = 0; i < conf->raid_disks; i++) {
1668		char b[BDEVNAME_SIZE];
1669		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1670		if (rdev)
1671			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1672				 i, !test_bit(In_sync, &rdev->flags),
1673				 !test_bit(Faulty, &rdev->flags),
1674				 bdevname(rdev->bdev,b));
1675	}
1676	rcu_read_unlock();
1677}
1678
1679static void close_sync(struct r1conf *conf)
1680{
1681	int idx;
1682
1683	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1684		_wait_barrier(conf, idx);
1685		_allow_barrier(conf, idx);
1686	}
1687
1688	mempool_exit(&conf->r1buf_pool);
1689}
1690
1691static int raid1_spare_active(struct mddev *mddev)
1692{
1693	int i;
1694	struct r1conf *conf = mddev->private;
1695	int count = 0;
1696	unsigned long flags;
1697
1698	/*
1699	 * Find all failed disks within the RAID1 configuration
1700	 * and mark them readable.
1701	 * Called under mddev lock, so rcu protection not needed.
1702	 * device_lock used to avoid races with raid1_end_read_request
1703	 * which expects 'In_sync' flags and ->degraded to be consistent.
1704	 */
1705	spin_lock_irqsave(&conf->device_lock, flags);
1706	for (i = 0; i < conf->raid_disks; i++) {
1707		struct md_rdev *rdev = conf->mirrors[i].rdev;
1708		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1709		if (repl
1710		    && !test_bit(Candidate, &repl->flags)
1711		    && repl->recovery_offset == MaxSector
1712		    && !test_bit(Faulty, &repl->flags)
1713		    && !test_and_set_bit(In_sync, &repl->flags)) {
1714			/* replacement has just become active */
1715			if (!rdev ||
1716			    !test_and_clear_bit(In_sync, &rdev->flags))
1717				count++;
1718			if (rdev) {
1719				/* Replaced device not technically
1720				 * faulty, but we need to be sure
1721				 * it gets removed and never re-added
1722				 */
1723				set_bit(Faulty, &rdev->flags);
1724				sysfs_notify_dirent_safe(
1725					rdev->sysfs_state);
1726			}
1727		}
1728		if (rdev
1729		    && rdev->recovery_offset == MaxSector
1730		    && !test_bit(Faulty, &rdev->flags)
1731		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1732			count++;
1733			sysfs_notify_dirent_safe(rdev->sysfs_state);
1734		}
1735	}
1736	mddev->degraded -= count;
1737	spin_unlock_irqrestore(&conf->device_lock, flags);
1738
1739	print_conf(conf);
1740	return count;
1741}
1742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1743static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1744{
1745	struct r1conf *conf = mddev->private;
1746	int err = -EEXIST;
1747	int mirror = 0;
1748	struct raid1_info *p;
1749	int first = 0;
1750	int last = conf->raid_disks - 1;
1751
1752	if (mddev->recovery_disabled == conf->recovery_disabled)
1753		return -EBUSY;
1754
1755	if (md_integrity_add_rdev(rdev, mddev))
1756		return -ENXIO;
1757
1758	if (rdev->raid_disk >= 0)
1759		first = last = rdev->raid_disk;
1760
1761	/*
1762	 * find the disk ... but prefer rdev->saved_raid_disk
1763	 * if possible.
1764	 */
1765	if (rdev->saved_raid_disk >= 0 &&
1766	    rdev->saved_raid_disk >= first &&
1767	    rdev->saved_raid_disk < conf->raid_disks &&
1768	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1769		first = last = rdev->saved_raid_disk;
1770
1771	for (mirror = first; mirror <= last; mirror++) {
1772		p = conf->mirrors + mirror;
1773		if (!p->rdev) {
1774			if (mddev->gendisk)
1775				disk_stack_limits(mddev->gendisk, rdev->bdev,
1776						  rdev->data_offset << 9);
1777
1778			p->head_position = 0;
1779			rdev->raid_disk = mirror;
1780			err = 0;
1781			/* As all devices are equivalent, we don't need a full recovery
1782			 * if this was recently any drive of the array
1783			 */
1784			if (rdev->saved_raid_disk < 0)
1785				conf->fullsync = 1;
1786			rcu_assign_pointer(p->rdev, rdev);
1787			break;
1788		}
1789		if (test_bit(WantReplacement, &p->rdev->flags) &&
1790		    p[conf->raid_disks].rdev == NULL) {
1791			/* Add this device as a replacement */
1792			clear_bit(In_sync, &rdev->flags);
1793			set_bit(Replacement, &rdev->flags);
1794			rdev->raid_disk = mirror;
1795			err = 0;
1796			conf->fullsync = 1;
1797			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1798			break;
1799		}
1800	}
1801	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1802		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
 
 
 
 
 
 
 
 
1803	print_conf(conf);
1804	return err;
1805}
1806
1807static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1808{
1809	struct r1conf *conf = mddev->private;
1810	int err = 0;
1811	int number = rdev->raid_disk;
1812	struct raid1_info *p = conf->mirrors + number;
1813
1814	if (rdev != p->rdev)
1815		p = conf->mirrors + conf->raid_disks + number;
 
 
 
 
 
1816
1817	print_conf(conf);
1818	if (rdev == p->rdev) {
1819		if (test_bit(In_sync, &rdev->flags) ||
1820		    atomic_read(&rdev->nr_pending)) {
1821			err = -EBUSY;
1822			goto abort;
1823		}
1824		/* Only remove non-faulty devices if recovery
1825		 * is not possible.
1826		 */
1827		if (!test_bit(Faulty, &rdev->flags) &&
1828		    mddev->recovery_disabled != conf->recovery_disabled &&
1829		    mddev->degraded < conf->raid_disks) {
1830			err = -EBUSY;
1831			goto abort;
1832		}
1833		p->rdev = NULL;
1834		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1835			synchronize_rcu();
1836			if (atomic_read(&rdev->nr_pending)) {
1837				/* lost the race, try later */
1838				err = -EBUSY;
1839				p->rdev = rdev;
1840				goto abort;
1841			}
1842		}
1843		if (conf->mirrors[conf->raid_disks + number].rdev) {
1844			/* We just removed a device that is being replaced.
1845			 * Move down the replacement.  We drain all IO before
1846			 * doing this to avoid confusion.
1847			 */
1848			struct md_rdev *repl =
1849				conf->mirrors[conf->raid_disks + number].rdev;
1850			freeze_array(conf, 0);
1851			if (atomic_read(&repl->nr_pending)) {
1852				/* It means that some queued IO of retry_list
1853				 * hold repl. Thus, we cannot set replacement
1854				 * as NULL, avoiding rdev NULL pointer
1855				 * dereference in sync_request_write and
1856				 * handle_write_finished.
1857				 */
1858				err = -EBUSY;
1859				unfreeze_array(conf);
1860				goto abort;
1861			}
1862			clear_bit(Replacement, &repl->flags);
1863			p->rdev = repl;
1864			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1865			unfreeze_array(conf);
1866		}
1867
1868		clear_bit(WantReplacement, &rdev->flags);
1869		err = md_integrity_register(mddev);
1870	}
1871abort:
1872
1873	print_conf(conf);
1874	return err;
1875}
1876
1877static void end_sync_read(struct bio *bio)
1878{
1879	struct r1bio *r1_bio = get_resync_r1bio(bio);
1880
1881	update_head_pos(r1_bio->read_disk, r1_bio);
1882
1883	/*
1884	 * we have read a block, now it needs to be re-written,
1885	 * or re-read if the read failed.
1886	 * We don't do much here, just schedule handling by raid1d
1887	 */
1888	if (!bio->bi_status)
1889		set_bit(R1BIO_Uptodate, &r1_bio->state);
1890
1891	if (atomic_dec_and_test(&r1_bio->remaining))
1892		reschedule_retry(r1_bio);
1893}
1894
1895static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1896{
1897	sector_t sync_blocks = 0;
1898	sector_t s = r1_bio->sector;
1899	long sectors_to_go = r1_bio->sectors;
1900
1901	/* make sure these bits don't get cleared. */
1902	do {
1903		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1904		s += sync_blocks;
1905		sectors_to_go -= sync_blocks;
1906	} while (sectors_to_go > 0);
1907}
1908
1909static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1910{
1911	if (atomic_dec_and_test(&r1_bio->remaining)) {
1912		struct mddev *mddev = r1_bio->mddev;
1913		int s = r1_bio->sectors;
1914
1915		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1916		    test_bit(R1BIO_WriteError, &r1_bio->state))
1917			reschedule_retry(r1_bio);
1918		else {
1919			put_buf(r1_bio);
1920			md_done_sync(mddev, s, uptodate);
1921		}
1922	}
1923}
1924
1925static void end_sync_write(struct bio *bio)
1926{
1927	int uptodate = !bio->bi_status;
1928	struct r1bio *r1_bio = get_resync_r1bio(bio);
1929	struct mddev *mddev = r1_bio->mddev;
1930	struct r1conf *conf = mddev->private;
1931	sector_t first_bad;
1932	int bad_sectors;
1933	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1934
1935	if (!uptodate) {
1936		abort_sync_write(mddev, r1_bio);
1937		set_bit(WriteErrorSeen, &rdev->flags);
1938		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1939			set_bit(MD_RECOVERY_NEEDED, &
1940				mddev->recovery);
1941		set_bit(R1BIO_WriteError, &r1_bio->state);
1942	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1943			       &first_bad, &bad_sectors) &&
1944		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1945				r1_bio->sector,
1946				r1_bio->sectors,
1947				&first_bad, &bad_sectors)
1948		)
1949		set_bit(R1BIO_MadeGood, &r1_bio->state);
 
1950
1951	put_sync_write_buf(r1_bio, uptodate);
1952}
1953
1954static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1955			    int sectors, struct page *page, int rw)
1956{
1957	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1958		/* success */
1959		return 1;
1960	if (rw == WRITE) {
1961		set_bit(WriteErrorSeen, &rdev->flags);
1962		if (!test_and_set_bit(WantReplacement,
1963				      &rdev->flags))
1964			set_bit(MD_RECOVERY_NEEDED, &
1965				rdev->mddev->recovery);
1966	}
1967	/* need to record an error - either for the block or the device */
1968	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1969		md_error(rdev->mddev, rdev);
1970	return 0;
1971}
1972
1973static int fix_sync_read_error(struct r1bio *r1_bio)
1974{
1975	/* Try some synchronous reads of other devices to get
1976	 * good data, much like with normal read errors.  Only
1977	 * read into the pages we already have so we don't
1978	 * need to re-issue the read request.
1979	 * We don't need to freeze the array, because being in an
1980	 * active sync request, there is no normal IO, and
1981	 * no overlapping syncs.
1982	 * We don't need to check is_badblock() again as we
1983	 * made sure that anything with a bad block in range
1984	 * will have bi_end_io clear.
1985	 */
1986	struct mddev *mddev = r1_bio->mddev;
1987	struct r1conf *conf = mddev->private;
1988	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1989	struct page **pages = get_resync_pages(bio)->pages;
1990	sector_t sect = r1_bio->sector;
1991	int sectors = r1_bio->sectors;
1992	int idx = 0;
1993	struct md_rdev *rdev;
1994
1995	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1996	if (test_bit(FailFast, &rdev->flags)) {
1997		/* Don't try recovering from here - just fail it
1998		 * ... unless it is the last working device of course */
1999		md_error(mddev, rdev);
2000		if (test_bit(Faulty, &rdev->flags))
2001			/* Don't try to read from here, but make sure
2002			 * put_buf does it's thing
2003			 */
2004			bio->bi_end_io = end_sync_write;
2005	}
2006
2007	while(sectors) {
2008		int s = sectors;
2009		int d = r1_bio->read_disk;
2010		int success = 0;
2011		int start;
2012
2013		if (s > (PAGE_SIZE>>9))
2014			s = PAGE_SIZE >> 9;
2015		do {
2016			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2017				/* No rcu protection needed here devices
2018				 * can only be removed when no resync is
2019				 * active, and resync is currently active
2020				 */
2021				rdev = conf->mirrors[d].rdev;
2022				if (sync_page_io(rdev, sect, s<<9,
2023						 pages[idx],
2024						 REQ_OP_READ, 0, false)) {
2025					success = 1;
2026					break;
2027				}
2028			}
2029			d++;
2030			if (d == conf->raid_disks * 2)
2031				d = 0;
2032		} while (!success && d != r1_bio->read_disk);
2033
2034		if (!success) {
2035			char b[BDEVNAME_SIZE];
2036			int abort = 0;
2037			/* Cannot read from anywhere, this block is lost.
2038			 * Record a bad block on each device.  If that doesn't
2039			 * work just disable and interrupt the recovery.
2040			 * Don't fail devices as that won't really help.
2041			 */
2042			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2043					    mdname(mddev), bio_devname(bio, b),
2044					    (unsigned long long)r1_bio->sector);
2045			for (d = 0; d < conf->raid_disks * 2; d++) {
2046				rdev = conf->mirrors[d].rdev;
2047				if (!rdev || test_bit(Faulty, &rdev->flags))
2048					continue;
2049				if (!rdev_set_badblocks(rdev, sect, s, 0))
2050					abort = 1;
2051			}
2052			if (abort) {
2053				conf->recovery_disabled =
2054					mddev->recovery_disabled;
2055				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2056				md_done_sync(mddev, r1_bio->sectors, 0);
2057				put_buf(r1_bio);
2058				return 0;
2059			}
2060			/* Try next page */
2061			sectors -= s;
2062			sect += s;
2063			idx++;
2064			continue;
2065		}
2066
2067		start = d;
2068		/* write it back and re-read */
2069		while (d != r1_bio->read_disk) {
2070			if (d == 0)
2071				d = conf->raid_disks * 2;
2072			d--;
2073			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2074				continue;
2075			rdev = conf->mirrors[d].rdev;
2076			if (r1_sync_page_io(rdev, sect, s,
2077					    pages[idx],
2078					    WRITE) == 0) {
2079				r1_bio->bios[d]->bi_end_io = NULL;
2080				rdev_dec_pending(rdev, mddev);
2081			}
2082		}
2083		d = start;
2084		while (d != r1_bio->read_disk) {
2085			if (d == 0)
2086				d = conf->raid_disks * 2;
2087			d--;
2088			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2089				continue;
2090			rdev = conf->mirrors[d].rdev;
2091			if (r1_sync_page_io(rdev, sect, s,
2092					    pages[idx],
2093					    READ) != 0)
2094				atomic_add(s, &rdev->corrected_errors);
2095		}
2096		sectors -= s;
2097		sect += s;
2098		idx ++;
2099	}
2100	set_bit(R1BIO_Uptodate, &r1_bio->state);
2101	bio->bi_status = 0;
2102	return 1;
2103}
2104
2105static void process_checks(struct r1bio *r1_bio)
2106{
2107	/* We have read all readable devices.  If we haven't
2108	 * got the block, then there is no hope left.
2109	 * If we have, then we want to do a comparison
2110	 * and skip the write if everything is the same.
2111	 * If any blocks failed to read, then we need to
2112	 * attempt an over-write
2113	 */
2114	struct mddev *mddev = r1_bio->mddev;
2115	struct r1conf *conf = mddev->private;
2116	int primary;
2117	int i;
2118	int vcnt;
2119
2120	/* Fix variable parts of all bios */
2121	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2122	for (i = 0; i < conf->raid_disks * 2; i++) {
2123		blk_status_t status;
2124		struct bio *b = r1_bio->bios[i];
2125		struct resync_pages *rp = get_resync_pages(b);
2126		if (b->bi_end_io != end_sync_read)
2127			continue;
2128		/* fixup the bio for reuse, but preserve errno */
2129		status = b->bi_status;
2130		bio_reset(b);
2131		b->bi_status = status;
2132		b->bi_iter.bi_sector = r1_bio->sector +
2133			conf->mirrors[i].rdev->data_offset;
2134		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2135		b->bi_end_io = end_sync_read;
2136		rp->raid_bio = r1_bio;
2137		b->bi_private = rp;
2138
2139		/* initialize bvec table again */
2140		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2141	}
2142	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2143		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2144		    !r1_bio->bios[primary]->bi_status) {
2145			r1_bio->bios[primary]->bi_end_io = NULL;
2146			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2147			break;
2148		}
2149	r1_bio->read_disk = primary;
2150	for (i = 0; i < conf->raid_disks * 2; i++) {
2151		int j = 0;
2152		struct bio *pbio = r1_bio->bios[primary];
2153		struct bio *sbio = r1_bio->bios[i];
2154		blk_status_t status = sbio->bi_status;
2155		struct page **ppages = get_resync_pages(pbio)->pages;
2156		struct page **spages = get_resync_pages(sbio)->pages;
2157		struct bio_vec *bi;
2158		int page_len[RESYNC_PAGES] = { 0 };
2159		struct bvec_iter_all iter_all;
2160
2161		if (sbio->bi_end_io != end_sync_read)
2162			continue;
2163		/* Now we can 'fixup' the error value */
2164		sbio->bi_status = 0;
2165
2166		bio_for_each_segment_all(bi, sbio, iter_all)
2167			page_len[j++] = bi->bv_len;
2168
2169		if (!status) {
2170			for (j = vcnt; j-- ; ) {
2171				if (memcmp(page_address(ppages[j]),
2172					   page_address(spages[j]),
2173					   page_len[j]))
2174					break;
2175			}
2176		} else
2177			j = 0;
2178		if (j >= 0)
2179			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2180		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2181			      && !status)) {
2182			/* No need to write to this device. */
2183			sbio->bi_end_io = NULL;
2184			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2185			continue;
2186		}
2187
2188		bio_copy_data(sbio, pbio);
2189	}
2190}
2191
2192static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2193{
2194	struct r1conf *conf = mddev->private;
2195	int i;
2196	int disks = conf->raid_disks * 2;
2197	struct bio *wbio;
2198
2199	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2200		/* ouch - failed to read all of that. */
2201		if (!fix_sync_read_error(r1_bio))
2202			return;
2203
2204	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2205		process_checks(r1_bio);
2206
2207	/*
2208	 * schedule writes
2209	 */
2210	atomic_set(&r1_bio->remaining, 1);
2211	for (i = 0; i < disks ; i++) {
2212		wbio = r1_bio->bios[i];
2213		if (wbio->bi_end_io == NULL ||
2214		    (wbio->bi_end_io == end_sync_read &&
2215		     (i == r1_bio->read_disk ||
2216		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2217			continue;
2218		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2219			abort_sync_write(mddev, r1_bio);
2220			continue;
2221		}
2222
2223		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2224		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2225			wbio->bi_opf |= MD_FAILFAST;
2226
2227		wbio->bi_end_io = end_sync_write;
2228		atomic_inc(&r1_bio->remaining);
2229		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2230
2231		generic_make_request(wbio);
2232	}
2233
2234	put_sync_write_buf(r1_bio, 1);
2235}
2236
2237/*
2238 * This is a kernel thread which:
2239 *
2240 *	1.	Retries failed read operations on working mirrors.
2241 *	2.	Updates the raid superblock when problems encounter.
2242 *	3.	Performs writes following reads for array synchronising.
2243 */
2244
2245static void fix_read_error(struct r1conf *conf, int read_disk,
2246			   sector_t sect, int sectors)
2247{
 
 
 
2248	struct mddev *mddev = conf->mddev;
 
 
 
 
 
 
 
2249	while(sectors) {
2250		int s = sectors;
2251		int d = read_disk;
2252		int success = 0;
2253		int start;
2254		struct md_rdev *rdev;
2255
2256		if (s > (PAGE_SIZE>>9))
2257			s = PAGE_SIZE >> 9;
2258
2259		do {
2260			sector_t first_bad;
2261			int bad_sectors;
2262
2263			rcu_read_lock();
2264			rdev = rcu_dereference(conf->mirrors[d].rdev);
2265			if (rdev &&
2266			    (test_bit(In_sync, &rdev->flags) ||
2267			     (!test_bit(Faulty, &rdev->flags) &&
2268			      rdev->recovery_offset >= sect + s)) &&
2269			    is_badblock(rdev, sect, s,
2270					&first_bad, &bad_sectors) == 0) {
2271				atomic_inc(&rdev->nr_pending);
2272				rcu_read_unlock();
2273				if (sync_page_io(rdev, sect, s<<9,
2274					 conf->tmppage, REQ_OP_READ, 0, false))
2275					success = 1;
2276				rdev_dec_pending(rdev, mddev);
2277				if (success)
2278					break;
2279			} else
2280				rcu_read_unlock();
2281			d++;
2282			if (d == conf->raid_disks * 2)
2283				d = 0;
2284		} while (!success && d != read_disk);
2285
2286		if (!success) {
2287			/* Cannot read from anywhere - mark it bad */
2288			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2289			if (!rdev_set_badblocks(rdev, sect, s, 0))
2290				md_error(mddev, rdev);
2291			break;
2292		}
2293		/* write it back and re-read */
2294		start = d;
2295		while (d != read_disk) {
2296			if (d==0)
2297				d = conf->raid_disks * 2;
2298			d--;
2299			rcu_read_lock();
2300			rdev = rcu_dereference(conf->mirrors[d].rdev);
2301			if (rdev &&
2302			    !test_bit(Faulty, &rdev->flags)) {
2303				atomic_inc(&rdev->nr_pending);
2304				rcu_read_unlock();
2305				r1_sync_page_io(rdev, sect, s,
2306						conf->tmppage, WRITE);
2307				rdev_dec_pending(rdev, mddev);
2308			} else
2309				rcu_read_unlock();
2310		}
2311		d = start;
2312		while (d != read_disk) {
2313			char b[BDEVNAME_SIZE];
2314			if (d==0)
2315				d = conf->raid_disks * 2;
2316			d--;
2317			rcu_read_lock();
2318			rdev = rcu_dereference(conf->mirrors[d].rdev);
2319			if (rdev &&
2320			    !test_bit(Faulty, &rdev->flags)) {
2321				atomic_inc(&rdev->nr_pending);
2322				rcu_read_unlock();
2323				if (r1_sync_page_io(rdev, sect, s,
2324						    conf->tmppage, READ)) {
2325					atomic_add(s, &rdev->corrected_errors);
2326					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2327						mdname(mddev), s,
2328						(unsigned long long)(sect +
2329								     rdev->data_offset),
2330						bdevname(rdev->bdev, b));
2331				}
2332				rdev_dec_pending(rdev, mddev);
2333			} else
2334				rcu_read_unlock();
2335		}
2336		sectors -= s;
2337		sect += s;
2338	}
2339}
2340
2341static int narrow_write_error(struct r1bio *r1_bio, int i)
2342{
2343	struct mddev *mddev = r1_bio->mddev;
2344	struct r1conf *conf = mddev->private;
2345	struct md_rdev *rdev = conf->mirrors[i].rdev;
2346
2347	/* bio has the data to be written to device 'i' where
2348	 * we just recently had a write error.
2349	 * We repeatedly clone the bio and trim down to one block,
2350	 * then try the write.  Where the write fails we record
2351	 * a bad block.
2352	 * It is conceivable that the bio doesn't exactly align with
2353	 * blocks.  We must handle this somehow.
2354	 *
2355	 * We currently own a reference on the rdev.
2356	 */
2357
2358	int block_sectors;
2359	sector_t sector;
2360	int sectors;
2361	int sect_to_write = r1_bio->sectors;
2362	int ok = 1;
2363
2364	if (rdev->badblocks.shift < 0)
2365		return 0;
2366
2367	block_sectors = roundup(1 << rdev->badblocks.shift,
2368				bdev_logical_block_size(rdev->bdev) >> 9);
2369	sector = r1_bio->sector;
2370	sectors = ((sector + block_sectors)
2371		   & ~(sector_t)(block_sectors - 1))
2372		- sector;
2373
2374	while (sect_to_write) {
2375		struct bio *wbio;
2376		if (sectors > sect_to_write)
2377			sectors = sect_to_write;
2378		/* Write at 'sector' for 'sectors'*/
2379
2380		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2381			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2382					      GFP_NOIO,
2383					      &mddev->bio_set);
2384		} else {
2385			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2386					      &mddev->bio_set);
2387		}
2388
2389		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2390		wbio->bi_iter.bi_sector = r1_bio->sector;
2391		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2392
2393		bio_trim(wbio, sector - r1_bio->sector, sectors);
2394		wbio->bi_iter.bi_sector += rdev->data_offset;
2395		bio_set_dev(wbio, rdev->bdev);
2396
2397		if (submit_bio_wait(wbio) < 0)
2398			/* failure! */
2399			ok = rdev_set_badblocks(rdev, sector,
2400						sectors, 0)
2401				&& ok;
2402
2403		bio_put(wbio);
2404		sect_to_write -= sectors;
2405		sector += sectors;
2406		sectors = block_sectors;
2407	}
2408	return ok;
2409}
2410
2411static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2412{
2413	int m;
2414	int s = r1_bio->sectors;
2415	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2416		struct md_rdev *rdev = conf->mirrors[m].rdev;
2417		struct bio *bio = r1_bio->bios[m];
2418		if (bio->bi_end_io == NULL)
2419			continue;
2420		if (!bio->bi_status &&
2421		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2422			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2423		}
2424		if (bio->bi_status &&
2425		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2426			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2427				md_error(conf->mddev, rdev);
2428		}
2429	}
2430	put_buf(r1_bio);
2431	md_done_sync(conf->mddev, s, 1);
2432}
2433
2434static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2435{
2436	int m, idx;
2437	bool fail = false;
2438
2439	for (m = 0; m < conf->raid_disks * 2 ; m++)
2440		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2441			struct md_rdev *rdev = conf->mirrors[m].rdev;
2442			rdev_clear_badblocks(rdev,
2443					     r1_bio->sector,
2444					     r1_bio->sectors, 0);
2445			rdev_dec_pending(rdev, conf->mddev);
2446		} else if (r1_bio->bios[m] != NULL) {
2447			/* This drive got a write error.  We need to
2448			 * narrow down and record precise write
2449			 * errors.
2450			 */
2451			fail = true;
2452			if (!narrow_write_error(r1_bio, m)) {
2453				md_error(conf->mddev,
2454					 conf->mirrors[m].rdev);
2455				/* an I/O failed, we can't clear the bitmap */
2456				set_bit(R1BIO_Degraded, &r1_bio->state);
2457			}
2458			rdev_dec_pending(conf->mirrors[m].rdev,
2459					 conf->mddev);
2460		}
2461	if (fail) {
2462		spin_lock_irq(&conf->device_lock);
2463		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2464		idx = sector_to_idx(r1_bio->sector);
2465		atomic_inc(&conf->nr_queued[idx]);
2466		spin_unlock_irq(&conf->device_lock);
2467		/*
2468		 * In case freeze_array() is waiting for condition
2469		 * get_unqueued_pending() == extra to be true.
2470		 */
2471		wake_up(&conf->wait_barrier);
2472		md_wakeup_thread(conf->mddev->thread);
2473	} else {
2474		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2475			close_write(r1_bio);
2476		raid_end_bio_io(r1_bio);
2477	}
2478}
2479
2480static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2481{
2482	struct mddev *mddev = conf->mddev;
2483	struct bio *bio;
2484	struct md_rdev *rdev;
 
2485
2486	clear_bit(R1BIO_ReadError, &r1_bio->state);
2487	/* we got a read error. Maybe the drive is bad.  Maybe just
2488	 * the block and we can fix it.
2489	 * We freeze all other IO, and try reading the block from
2490	 * other devices.  When we find one, we re-write
2491	 * and check it that fixes the read error.
2492	 * This is all done synchronously while the array is
2493	 * frozen
2494	 */
2495
2496	bio = r1_bio->bios[r1_bio->read_disk];
2497	bio_put(bio);
2498	r1_bio->bios[r1_bio->read_disk] = NULL;
2499
2500	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2501	if (mddev->ro == 0
2502	    && !test_bit(FailFast, &rdev->flags)) {
2503		freeze_array(conf, 1);
2504		fix_read_error(conf, r1_bio->read_disk,
2505			       r1_bio->sector, r1_bio->sectors);
2506		unfreeze_array(conf);
2507	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2508		md_error(mddev, rdev);
2509	} else {
2510		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2511	}
2512
2513	rdev_dec_pending(rdev, conf->mddev);
2514	allow_barrier(conf, r1_bio->sector);
2515	bio = r1_bio->master_bio;
2516
2517	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2518	r1_bio->state = 0;
2519	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
 
2520}
2521
2522static void raid1d(struct md_thread *thread)
2523{
2524	struct mddev *mddev = thread->mddev;
2525	struct r1bio *r1_bio;
2526	unsigned long flags;
2527	struct r1conf *conf = mddev->private;
2528	struct list_head *head = &conf->retry_list;
2529	struct blk_plug plug;
2530	int idx;
2531
2532	md_check_recovery(mddev);
2533
2534	if (!list_empty_careful(&conf->bio_end_io_list) &&
2535	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2536		LIST_HEAD(tmp);
2537		spin_lock_irqsave(&conf->device_lock, flags);
2538		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2539			list_splice_init(&conf->bio_end_io_list, &tmp);
2540		spin_unlock_irqrestore(&conf->device_lock, flags);
2541		while (!list_empty(&tmp)) {
2542			r1_bio = list_first_entry(&tmp, struct r1bio,
2543						  retry_list);
2544			list_del(&r1_bio->retry_list);
2545			idx = sector_to_idx(r1_bio->sector);
2546			atomic_dec(&conf->nr_queued[idx]);
2547			if (mddev->degraded)
2548				set_bit(R1BIO_Degraded, &r1_bio->state);
2549			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2550				close_write(r1_bio);
2551			raid_end_bio_io(r1_bio);
2552		}
2553	}
2554
2555	blk_start_plug(&plug);
2556	for (;;) {
2557
2558		flush_pending_writes(conf);
2559
2560		spin_lock_irqsave(&conf->device_lock, flags);
2561		if (list_empty(head)) {
2562			spin_unlock_irqrestore(&conf->device_lock, flags);
2563			break;
2564		}
2565		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2566		list_del(head->prev);
2567		idx = sector_to_idx(r1_bio->sector);
2568		atomic_dec(&conf->nr_queued[idx]);
2569		spin_unlock_irqrestore(&conf->device_lock, flags);
2570
2571		mddev = r1_bio->mddev;
2572		conf = mddev->private;
2573		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2574			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2575			    test_bit(R1BIO_WriteError, &r1_bio->state))
2576				handle_sync_write_finished(conf, r1_bio);
2577			else
2578				sync_request_write(mddev, r1_bio);
2579		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2580			   test_bit(R1BIO_WriteError, &r1_bio->state))
2581			handle_write_finished(conf, r1_bio);
2582		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2583			handle_read_error(conf, r1_bio);
2584		else
2585			WARN_ON_ONCE(1);
2586
2587		cond_resched();
2588		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2589			md_check_recovery(mddev);
2590	}
2591	blk_finish_plug(&plug);
2592}
2593
2594static int init_resync(struct r1conf *conf)
2595{
2596	int buffs;
2597
2598	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2599	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2600
2601	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2602			    r1buf_pool_free, conf->poolinfo);
2603}
2604
2605static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2606{
2607	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2608	struct resync_pages *rps;
2609	struct bio *bio;
2610	int i;
2611
2612	for (i = conf->poolinfo->raid_disks; i--; ) {
2613		bio = r1bio->bios[i];
2614		rps = bio->bi_private;
2615		bio_reset(bio);
2616		bio->bi_private = rps;
2617	}
2618	r1bio->master_bio = NULL;
2619	return r1bio;
2620}
2621
2622/*
2623 * perform a "sync" on one "block"
2624 *
2625 * We need to make sure that no normal I/O request - particularly write
2626 * requests - conflict with active sync requests.
2627 *
2628 * This is achieved by tracking pending requests and a 'barrier' concept
2629 * that can be installed to exclude normal IO requests.
2630 */
2631
2632static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2633				   int *skipped)
2634{
2635	struct r1conf *conf = mddev->private;
2636	struct r1bio *r1_bio;
2637	struct bio *bio;
2638	sector_t max_sector, nr_sectors;
2639	int disk = -1;
2640	int i;
2641	int wonly = -1;
2642	int write_targets = 0, read_targets = 0;
2643	sector_t sync_blocks;
2644	int still_degraded = 0;
2645	int good_sectors = RESYNC_SECTORS;
2646	int min_bad = 0; /* number of sectors that are bad in all devices */
2647	int idx = sector_to_idx(sector_nr);
2648	int page_idx = 0;
2649
2650	if (!mempool_initialized(&conf->r1buf_pool))
2651		if (init_resync(conf))
2652			return 0;
2653
2654	max_sector = mddev->dev_sectors;
2655	if (sector_nr >= max_sector) {
2656		/* If we aborted, we need to abort the
2657		 * sync on the 'current' bitmap chunk (there will
2658		 * only be one in raid1 resync.
2659		 * We can find the current addess in mddev->curr_resync
2660		 */
2661		if (mddev->curr_resync < max_sector) /* aborted */
2662			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2663					   &sync_blocks, 1);
2664		else /* completed sync */
2665			conf->fullsync = 0;
2666
2667		md_bitmap_close_sync(mddev->bitmap);
2668		close_sync(conf);
2669
2670		if (mddev_is_clustered(mddev)) {
2671			conf->cluster_sync_low = 0;
2672			conf->cluster_sync_high = 0;
2673		}
2674		return 0;
2675	}
2676
2677	if (mddev->bitmap == NULL &&
2678	    mddev->recovery_cp == MaxSector &&
2679	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2680	    conf->fullsync == 0) {
2681		*skipped = 1;
2682		return max_sector - sector_nr;
2683	}
2684	/* before building a request, check if we can skip these blocks..
2685	 * This call the bitmap_start_sync doesn't actually record anything
2686	 */
2687	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2688	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2689		/* We can skip this block, and probably several more */
2690		*skipped = 1;
2691		return sync_blocks;
2692	}
2693
2694	/*
2695	 * If there is non-resync activity waiting for a turn, then let it
2696	 * though before starting on this new sync request.
2697	 */
2698	if (atomic_read(&conf->nr_waiting[idx]))
2699		schedule_timeout_uninterruptible(1);
2700
2701	/* we are incrementing sector_nr below. To be safe, we check against
2702	 * sector_nr + two times RESYNC_SECTORS
2703	 */
2704
2705	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2706		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2707
2708
2709	if (raise_barrier(conf, sector_nr))
2710		return 0;
2711
2712	r1_bio = raid1_alloc_init_r1buf(conf);
2713
2714	rcu_read_lock();
2715	/*
2716	 * If we get a correctably read error during resync or recovery,
2717	 * we might want to read from a different device.  So we
2718	 * flag all drives that could conceivably be read from for READ,
2719	 * and any others (which will be non-In_sync devices) for WRITE.
2720	 * If a read fails, we try reading from something else for which READ
2721	 * is OK.
2722	 */
2723
2724	r1_bio->mddev = mddev;
2725	r1_bio->sector = sector_nr;
2726	r1_bio->state = 0;
2727	set_bit(R1BIO_IsSync, &r1_bio->state);
2728	/* make sure good_sectors won't go across barrier unit boundary */
2729	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2730
2731	for (i = 0; i < conf->raid_disks * 2; i++) {
2732		struct md_rdev *rdev;
2733		bio = r1_bio->bios[i];
2734
2735		rdev = rcu_dereference(conf->mirrors[i].rdev);
2736		if (rdev == NULL ||
2737		    test_bit(Faulty, &rdev->flags)) {
2738			if (i < conf->raid_disks)
2739				still_degraded = 1;
2740		} else if (!test_bit(In_sync, &rdev->flags)) {
2741			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2742			bio->bi_end_io = end_sync_write;
2743			write_targets ++;
2744		} else {
2745			/* may need to read from here */
2746			sector_t first_bad = MaxSector;
2747			int bad_sectors;
2748
2749			if (is_badblock(rdev, sector_nr, good_sectors,
2750					&first_bad, &bad_sectors)) {
2751				if (first_bad > sector_nr)
2752					good_sectors = first_bad - sector_nr;
2753				else {
2754					bad_sectors -= (sector_nr - first_bad);
2755					if (min_bad == 0 ||
2756					    min_bad > bad_sectors)
2757						min_bad = bad_sectors;
2758				}
2759			}
2760			if (sector_nr < first_bad) {
2761				if (test_bit(WriteMostly, &rdev->flags)) {
2762					if (wonly < 0)
2763						wonly = i;
2764				} else {
2765					if (disk < 0)
2766						disk = i;
2767				}
2768				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2769				bio->bi_end_io = end_sync_read;
2770				read_targets++;
2771			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2772				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2773				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2774				/*
2775				 * The device is suitable for reading (InSync),
2776				 * but has bad block(s) here. Let's try to correct them,
2777				 * if we are doing resync or repair. Otherwise, leave
2778				 * this device alone for this sync request.
2779				 */
2780				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2781				bio->bi_end_io = end_sync_write;
2782				write_targets++;
2783			}
2784		}
2785		if (bio->bi_end_io) {
2786			atomic_inc(&rdev->nr_pending);
2787			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2788			bio_set_dev(bio, rdev->bdev);
2789			if (test_bit(FailFast, &rdev->flags))
2790				bio->bi_opf |= MD_FAILFAST;
2791		}
2792	}
2793	rcu_read_unlock();
2794	if (disk < 0)
2795		disk = wonly;
2796	r1_bio->read_disk = disk;
2797
2798	if (read_targets == 0 && min_bad > 0) {
2799		/* These sectors are bad on all InSync devices, so we
2800		 * need to mark them bad on all write targets
2801		 */
2802		int ok = 1;
2803		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2804			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2805				struct md_rdev *rdev = conf->mirrors[i].rdev;
2806				ok = rdev_set_badblocks(rdev, sector_nr,
2807							min_bad, 0
2808					) && ok;
2809			}
2810		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2811		*skipped = 1;
2812		put_buf(r1_bio);
2813
2814		if (!ok) {
2815			/* Cannot record the badblocks, so need to
2816			 * abort the resync.
2817			 * If there are multiple read targets, could just
2818			 * fail the really bad ones ???
2819			 */
2820			conf->recovery_disabled = mddev->recovery_disabled;
2821			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2822			return 0;
2823		} else
2824			return min_bad;
2825
2826	}
2827	if (min_bad > 0 && min_bad < good_sectors) {
2828		/* only resync enough to reach the next bad->good
2829		 * transition */
2830		good_sectors = min_bad;
2831	}
2832
2833	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2834		/* extra read targets are also write targets */
2835		write_targets += read_targets-1;
2836
2837	if (write_targets == 0 || read_targets == 0) {
2838		/* There is nowhere to write, so all non-sync
2839		 * drives must be failed - so we are finished
2840		 */
2841		sector_t rv;
2842		if (min_bad > 0)
2843			max_sector = sector_nr + min_bad;
2844		rv = max_sector - sector_nr;
2845		*skipped = 1;
2846		put_buf(r1_bio);
2847		return rv;
2848	}
2849
2850	if (max_sector > mddev->resync_max)
2851		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2852	if (max_sector > sector_nr + good_sectors)
2853		max_sector = sector_nr + good_sectors;
2854	nr_sectors = 0;
2855	sync_blocks = 0;
2856	do {
2857		struct page *page;
2858		int len = PAGE_SIZE;
2859		if (sector_nr + (len>>9) > max_sector)
2860			len = (max_sector - sector_nr) << 9;
2861		if (len == 0)
2862			break;
2863		if (sync_blocks == 0) {
2864			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2865						  &sync_blocks, still_degraded) &&
2866			    !conf->fullsync &&
2867			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2868				break;
2869			if ((len >> 9) > sync_blocks)
2870				len = sync_blocks<<9;
2871		}
2872
2873		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2874			struct resync_pages *rp;
2875
2876			bio = r1_bio->bios[i];
2877			rp = get_resync_pages(bio);
2878			if (bio->bi_end_io) {
2879				page = resync_fetch_page(rp, page_idx);
2880
2881				/*
2882				 * won't fail because the vec table is big
2883				 * enough to hold all these pages
2884				 */
2885				bio_add_page(bio, page, len, 0);
2886			}
2887		}
2888		nr_sectors += len>>9;
2889		sector_nr += len>>9;
2890		sync_blocks -= (len>>9);
2891	} while (++page_idx < RESYNC_PAGES);
2892
2893	r1_bio->sectors = nr_sectors;
2894
2895	if (mddev_is_clustered(mddev) &&
2896			conf->cluster_sync_high < sector_nr + nr_sectors) {
2897		conf->cluster_sync_low = mddev->curr_resync_completed;
2898		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2899		/* Send resync message */
2900		md_cluster_ops->resync_info_update(mddev,
2901				conf->cluster_sync_low,
2902				conf->cluster_sync_high);
2903	}
2904
2905	/* For a user-requested sync, we read all readable devices and do a
2906	 * compare
2907	 */
2908	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2909		atomic_set(&r1_bio->remaining, read_targets);
2910		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2911			bio = r1_bio->bios[i];
2912			if (bio->bi_end_io == end_sync_read) {
2913				read_targets--;
2914				md_sync_acct_bio(bio, nr_sectors);
2915				if (read_targets == 1)
2916					bio->bi_opf &= ~MD_FAILFAST;
2917				generic_make_request(bio);
2918			}
2919		}
2920	} else {
2921		atomic_set(&r1_bio->remaining, 1);
2922		bio = r1_bio->bios[r1_bio->read_disk];
2923		md_sync_acct_bio(bio, nr_sectors);
2924		if (read_targets == 1)
2925			bio->bi_opf &= ~MD_FAILFAST;
2926		generic_make_request(bio);
2927	}
2928	return nr_sectors;
2929}
2930
2931static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2932{
2933	if (sectors)
2934		return sectors;
2935
2936	return mddev->dev_sectors;
2937}
2938
2939static struct r1conf *setup_conf(struct mddev *mddev)
2940{
2941	struct r1conf *conf;
2942	int i;
2943	struct raid1_info *disk;
2944	struct md_rdev *rdev;
2945	int err = -ENOMEM;
2946
2947	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2948	if (!conf)
2949		goto abort;
2950
2951	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2952				   sizeof(atomic_t), GFP_KERNEL);
2953	if (!conf->nr_pending)
2954		goto abort;
2955
2956	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2957				   sizeof(atomic_t), GFP_KERNEL);
2958	if (!conf->nr_waiting)
2959		goto abort;
2960
2961	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2962				  sizeof(atomic_t), GFP_KERNEL);
2963	if (!conf->nr_queued)
2964		goto abort;
2965
2966	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2967				sizeof(atomic_t), GFP_KERNEL);
2968	if (!conf->barrier)
2969		goto abort;
2970
2971	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2972					    mddev->raid_disks, 2),
2973				GFP_KERNEL);
2974	if (!conf->mirrors)
2975		goto abort;
2976
2977	conf->tmppage = alloc_page(GFP_KERNEL);
2978	if (!conf->tmppage)
2979		goto abort;
2980
2981	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2982	if (!conf->poolinfo)
2983		goto abort;
2984	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2985	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2986			   rbio_pool_free, conf->poolinfo);
2987	if (err)
2988		goto abort;
2989
2990	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2991	if (err)
2992		goto abort;
2993
2994	conf->poolinfo->mddev = mddev;
2995
2996	err = -EINVAL;
2997	spin_lock_init(&conf->device_lock);
 
2998	rdev_for_each(rdev, mddev) {
2999		int disk_idx = rdev->raid_disk;
3000		if (disk_idx >= mddev->raid_disks
3001		    || disk_idx < 0)
3002			continue;
3003		if (test_bit(Replacement, &rdev->flags))
3004			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3005		else
3006			disk = conf->mirrors + disk_idx;
3007
3008		if (disk->rdev)
 
3009			goto abort;
3010		disk->rdev = rdev;
3011		disk->head_position = 0;
3012		disk->seq_start = MaxSector;
3013	}
3014	conf->raid_disks = mddev->raid_disks;
3015	conf->mddev = mddev;
3016	INIT_LIST_HEAD(&conf->retry_list);
3017	INIT_LIST_HEAD(&conf->bio_end_io_list);
3018
3019	spin_lock_init(&conf->resync_lock);
3020	init_waitqueue_head(&conf->wait_barrier);
3021
3022	bio_list_init(&conf->pending_bio_list);
3023	conf->pending_count = 0;
3024	conf->recovery_disabled = mddev->recovery_disabled - 1;
3025
3026	err = -EIO;
3027	for (i = 0; i < conf->raid_disks * 2; i++) {
3028
3029		disk = conf->mirrors + i;
3030
3031		if (i < conf->raid_disks &&
3032		    disk[conf->raid_disks].rdev) {
3033			/* This slot has a replacement. */
3034			if (!disk->rdev) {
3035				/* No original, just make the replacement
3036				 * a recovering spare
3037				 */
3038				disk->rdev =
3039					disk[conf->raid_disks].rdev;
3040				disk[conf->raid_disks].rdev = NULL;
3041			} else if (!test_bit(In_sync, &disk->rdev->flags))
3042				/* Original is not in_sync - bad */
3043				goto abort;
3044		}
3045
3046		if (!disk->rdev ||
3047		    !test_bit(In_sync, &disk->rdev->flags)) {
3048			disk->head_position = 0;
3049			if (disk->rdev &&
3050			    (disk->rdev->saved_raid_disk < 0))
3051				conf->fullsync = 1;
3052		}
3053	}
3054
3055	err = -ENOMEM;
3056	conf->thread = md_register_thread(raid1d, mddev, "raid1");
 
3057	if (!conf->thread)
3058		goto abort;
3059
3060	return conf;
3061
3062 abort:
3063	if (conf) {
3064		mempool_exit(&conf->r1bio_pool);
3065		kfree(conf->mirrors);
3066		safe_put_page(conf->tmppage);
3067		kfree(conf->poolinfo);
3068		kfree(conf->nr_pending);
3069		kfree(conf->nr_waiting);
3070		kfree(conf->nr_queued);
3071		kfree(conf->barrier);
3072		bioset_exit(&conf->bio_split);
3073		kfree(conf);
3074	}
3075	return ERR_PTR(err);
3076}
3077
 
 
 
 
 
 
 
 
 
 
3078static void raid1_free(struct mddev *mddev, void *priv);
3079static int raid1_run(struct mddev *mddev)
3080{
3081	struct r1conf *conf;
3082	int i;
3083	struct md_rdev *rdev;
3084	int ret;
3085	bool discard_supported = false;
3086
3087	if (mddev->level != 1) {
3088		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3089			mdname(mddev), mddev->level);
3090		return -EIO;
3091	}
3092	if (mddev->reshape_position != MaxSector) {
3093		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3094			mdname(mddev));
3095		return -EIO;
3096	}
3097	if (mddev_init_writes_pending(mddev) < 0)
3098		return -ENOMEM;
3099	/*
3100	 * copy the already verified devices into our private RAID1
3101	 * bookkeeping area. [whatever we allocate in run(),
3102	 * should be freed in raid1_free()]
3103	 */
3104	if (mddev->private == NULL)
3105		conf = setup_conf(mddev);
3106	else
3107		conf = mddev->private;
3108
3109	if (IS_ERR(conf))
3110		return PTR_ERR(conf);
3111
3112	if (mddev->queue) {
3113		blk_queue_max_write_same_sectors(mddev->queue, 0);
3114		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3115	}
3116
3117	rdev_for_each(rdev, mddev) {
3118		if (!mddev->gendisk)
3119			continue;
3120		disk_stack_limits(mddev->gendisk, rdev->bdev,
3121				  rdev->data_offset << 9);
3122		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3123			discard_supported = true;
3124	}
3125
3126	mddev->degraded = 0;
3127	for (i = 0; i < conf->raid_disks; i++)
3128		if (conf->mirrors[i].rdev == NULL ||
3129		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3130		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3131			mddev->degraded++;
3132	/*
3133	 * RAID1 needs at least one disk in active
3134	 */
3135	if (conf->raid_disks - mddev->degraded < 1) {
 
3136		ret = -EINVAL;
3137		goto abort;
3138	}
3139
3140	if (conf->raid_disks - mddev->degraded == 1)
3141		mddev->recovery_cp = MaxSector;
3142
3143	if (mddev->recovery_cp != MaxSector)
3144		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3145			mdname(mddev));
3146	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3147		mdname(mddev), mddev->raid_disks - mddev->degraded,
3148		mddev->raid_disks);
3149
3150	/*
3151	 * Ok, everything is just fine now
3152	 */
3153	mddev->thread = conf->thread;
3154	conf->thread = NULL;
3155	mddev->private = conf;
3156	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3157
3158	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3159
3160	if (mddev->queue) {
3161		if (discard_supported)
3162			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3163						mddev->queue);
3164		else
3165			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3166						  mddev->queue);
3167	}
3168
3169	ret = md_integrity_register(mddev);
3170	if (ret) {
3171		md_unregister_thread(&mddev->thread);
3172		goto abort;
3173	}
3174	return 0;
3175
3176abort:
3177	raid1_free(mddev, conf);
3178	return ret;
3179}
3180
3181static void raid1_free(struct mddev *mddev, void *priv)
3182{
3183	struct r1conf *conf = priv;
3184
3185	mempool_exit(&conf->r1bio_pool);
3186	kfree(conf->mirrors);
3187	safe_put_page(conf->tmppage);
3188	kfree(conf->poolinfo);
3189	kfree(conf->nr_pending);
3190	kfree(conf->nr_waiting);
3191	kfree(conf->nr_queued);
3192	kfree(conf->barrier);
3193	bioset_exit(&conf->bio_split);
3194	kfree(conf);
3195}
3196
3197static int raid1_resize(struct mddev *mddev, sector_t sectors)
3198{
3199	/* no resync is happening, and there is enough space
3200	 * on all devices, so we can resize.
3201	 * We need to make sure resync covers any new space.
3202	 * If the array is shrinking we should possibly wait until
3203	 * any io in the removed space completes, but it hardly seems
3204	 * worth it.
3205	 */
3206	sector_t newsize = raid1_size(mddev, sectors, 0);
3207	if (mddev->external_size &&
3208	    mddev->array_sectors > newsize)
3209		return -EINVAL;
3210	if (mddev->bitmap) {
3211		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3212		if (ret)
3213			return ret;
3214	}
3215	md_set_array_sectors(mddev, newsize);
3216	if (sectors > mddev->dev_sectors &&
3217	    mddev->recovery_cp > mddev->dev_sectors) {
3218		mddev->recovery_cp = mddev->dev_sectors;
3219		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3220	}
3221	mddev->dev_sectors = sectors;
3222	mddev->resync_max_sectors = sectors;
3223	return 0;
3224}
3225
3226static int raid1_reshape(struct mddev *mddev)
3227{
3228	/* We need to:
3229	 * 1/ resize the r1bio_pool
3230	 * 2/ resize conf->mirrors
3231	 *
3232	 * We allocate a new r1bio_pool if we can.
3233	 * Then raise a device barrier and wait until all IO stops.
3234	 * Then resize conf->mirrors and swap in the new r1bio pool.
3235	 *
3236	 * At the same time, we "pack" the devices so that all the missing
3237	 * devices have the higher raid_disk numbers.
3238	 */
3239	mempool_t newpool, oldpool;
3240	struct pool_info *newpoolinfo;
3241	struct raid1_info *newmirrors;
3242	struct r1conf *conf = mddev->private;
3243	int cnt, raid_disks;
3244	unsigned long flags;
3245	int d, d2;
3246	int ret;
3247
3248	memset(&newpool, 0, sizeof(newpool));
3249	memset(&oldpool, 0, sizeof(oldpool));
3250
3251	/* Cannot change chunk_size, layout, or level */
3252	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3253	    mddev->layout != mddev->new_layout ||
3254	    mddev->level != mddev->new_level) {
3255		mddev->new_chunk_sectors = mddev->chunk_sectors;
3256		mddev->new_layout = mddev->layout;
3257		mddev->new_level = mddev->level;
3258		return -EINVAL;
3259	}
3260
3261	if (!mddev_is_clustered(mddev))
3262		md_allow_write(mddev);
3263
3264	raid_disks = mddev->raid_disks + mddev->delta_disks;
3265
3266	if (raid_disks < conf->raid_disks) {
3267		cnt=0;
3268		for (d= 0; d < conf->raid_disks; d++)
3269			if (conf->mirrors[d].rdev)
3270				cnt++;
3271		if (cnt > raid_disks)
3272			return -EBUSY;
3273	}
3274
3275	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3276	if (!newpoolinfo)
3277		return -ENOMEM;
3278	newpoolinfo->mddev = mddev;
3279	newpoolinfo->raid_disks = raid_disks * 2;
3280
3281	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3282			   rbio_pool_free, newpoolinfo);
3283	if (ret) {
3284		kfree(newpoolinfo);
3285		return ret;
3286	}
3287	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3288					 raid_disks, 2),
3289			     GFP_KERNEL);
3290	if (!newmirrors) {
3291		kfree(newpoolinfo);
3292		mempool_exit(&newpool);
3293		return -ENOMEM;
3294	}
3295
3296	freeze_array(conf, 0);
3297
3298	/* ok, everything is stopped */
3299	oldpool = conf->r1bio_pool;
3300	conf->r1bio_pool = newpool;
3301
3302	for (d = d2 = 0; d < conf->raid_disks; d++) {
3303		struct md_rdev *rdev = conf->mirrors[d].rdev;
3304		if (rdev && rdev->raid_disk != d2) {
3305			sysfs_unlink_rdev(mddev, rdev);
3306			rdev->raid_disk = d2;
3307			sysfs_unlink_rdev(mddev, rdev);
3308			if (sysfs_link_rdev(mddev, rdev))
3309				pr_warn("md/raid1:%s: cannot register rd%d\n",
3310					mdname(mddev), rdev->raid_disk);
3311		}
3312		if (rdev)
3313			newmirrors[d2++].rdev = rdev;
3314	}
3315	kfree(conf->mirrors);
3316	conf->mirrors = newmirrors;
3317	kfree(conf->poolinfo);
3318	conf->poolinfo = newpoolinfo;
3319
3320	spin_lock_irqsave(&conf->device_lock, flags);
3321	mddev->degraded += (raid_disks - conf->raid_disks);
3322	spin_unlock_irqrestore(&conf->device_lock, flags);
3323	conf->raid_disks = mddev->raid_disks = raid_disks;
3324	mddev->delta_disks = 0;
3325
3326	unfreeze_array(conf);
3327
3328	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3329	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3330	md_wakeup_thread(mddev->thread);
3331
3332	mempool_exit(&oldpool);
3333	return 0;
3334}
3335
3336static void raid1_quiesce(struct mddev *mddev, int quiesce)
3337{
3338	struct r1conf *conf = mddev->private;
3339
3340	if (quiesce)
3341		freeze_array(conf, 0);
3342	else
3343		unfreeze_array(conf);
3344}
3345
3346static void *raid1_takeover(struct mddev *mddev)
3347{
3348	/* raid1 can take over:
3349	 *  raid5 with 2 devices, any layout or chunk size
3350	 */
3351	if (mddev->level == 5 && mddev->raid_disks == 2) {
3352		struct r1conf *conf;
3353		mddev->new_level = 1;
3354		mddev->new_layout = 0;
3355		mddev->new_chunk_sectors = 0;
3356		conf = setup_conf(mddev);
3357		if (!IS_ERR(conf)) {
3358			/* Array must appear to be quiesced */
3359			conf->array_frozen = 1;
3360			mddev_clear_unsupported_flags(mddev,
3361				UNSUPPORTED_MDDEV_FLAGS);
3362		}
3363		return conf;
3364	}
3365	return ERR_PTR(-EINVAL);
3366}
3367
3368static struct md_personality raid1_personality =
3369{
3370	.name		= "raid1",
3371	.level		= 1,
3372	.owner		= THIS_MODULE,
3373	.make_request	= raid1_make_request,
3374	.run		= raid1_run,
3375	.free		= raid1_free,
3376	.status		= raid1_status,
3377	.error_handler	= raid1_error,
3378	.hot_add_disk	= raid1_add_disk,
3379	.hot_remove_disk= raid1_remove_disk,
3380	.spare_active	= raid1_spare_active,
3381	.sync_request	= raid1_sync_request,
3382	.resize		= raid1_resize,
3383	.size		= raid1_size,
3384	.check_reshape	= raid1_reshape,
3385	.quiesce	= raid1_quiesce,
3386	.takeover	= raid1_takeover,
3387	.congested	= raid1_congested,
3388};
3389
3390static int __init raid_init(void)
3391{
3392	return register_md_personality(&raid1_personality);
3393}
3394
3395static void raid_exit(void)
3396{
3397	unregister_md_personality(&raid1_personality);
3398}
3399
3400module_init(raid_init);
3401module_exit(raid_exit);
3402MODULE_LICENSE("GPL");
3403MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3404MODULE_ALIAS("md-personality-3"); /* RAID1 */
3405MODULE_ALIAS("md-raid1");
3406MODULE_ALIAS("md-level-1");
3407
3408module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid1.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   6 *
   7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   8 *
   9 * RAID-1 management functions.
  10 *
  11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  12 *
  13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  15 *
  16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  17 * bitmapped intelligence in resync:
  18 *
  19 *      - bitmap marked during normal i/o
  20 *      - bitmap used to skip nondirty blocks during sync
  21 *
  22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  23 * - persistent bitmap code
  24 */
  25
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/blkdev.h>
  29#include <linux/module.h>
  30#include <linux/seq_file.h>
  31#include <linux/ratelimit.h>
  32#include <linux/interval_tree_generic.h>
  33
  34#include <trace/events/block.h>
  35
  36#include "md.h"
  37#include "raid1.h"
  38#include "md-bitmap.h"
  39
  40#define UNSUPPORTED_MDDEV_FLAGS		\
  41	((1L << MD_HAS_JOURNAL) |	\
  42	 (1L << MD_JOURNAL_CLEAN) |	\
  43	 (1L << MD_HAS_PPL) |		\
  44	 (1L << MD_HAS_MULTIPLE_PPLS))
  45
  46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
  47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
  48
  49#define RAID_1_10_NAME "raid1"
 
 
  50#include "raid1-10.c"
  51
  52#define START(node) ((node)->start)
  53#define LAST(node) ((node)->last)
  54INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
  55		     START, LAST, static inline, raid1_rb);
  56
  57static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
  58				struct serial_info *si, int idx)
  59{
 
  60	unsigned long flags;
  61	int ret = 0;
  62	sector_t lo = r1_bio->sector;
  63	sector_t hi = lo + r1_bio->sectors;
  64	struct serial_in_rdev *serial = &rdev->serial[idx];
  65
  66	spin_lock_irqsave(&serial->serial_lock, flags);
  67	/* collision happened */
  68	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
  69		ret = -EBUSY;
  70	else {
  71		si->start = lo;
  72		si->last = hi;
  73		raid1_rb_insert(si, &serial->serial_rb);
  74	}
  75	spin_unlock_irqrestore(&serial->serial_lock, flags);
 
 
 
 
 
 
 
  76
  77	return ret;
  78}
  79
  80static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
  81{
  82	struct mddev *mddev = rdev->mddev;
  83	struct serial_info *si;
  84	int idx = sector_to_idx(r1_bio->sector);
  85	struct serial_in_rdev *serial = &rdev->serial[idx];
  86
  87	if (WARN_ON(!mddev->serial_info_pool))
  88		return;
  89	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
  90	wait_event(serial->serial_io_wait,
  91		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
  92}
  93
  94static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
  95{
  96	struct serial_info *si;
  97	unsigned long flags;
  98	int found = 0;
  99	struct mddev *mddev = rdev->mddev;
 100	int idx = sector_to_idx(lo);
 101	struct serial_in_rdev *serial = &rdev->serial[idx];
 102
 103	spin_lock_irqsave(&serial->serial_lock, flags);
 104	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
 105	     si; si = raid1_rb_iter_next(si, lo, hi)) {
 106		if (si->start == lo && si->last == hi) {
 107			raid1_rb_remove(si, &serial->serial_rb);
 108			mempool_free(si, mddev->serial_info_pool);
 109			found = 1;
 110			break;
 111		}
 112	}
 113	if (!found)
 114		WARN(1, "The write IO is not recorded for serialization\n");
 115	spin_unlock_irqrestore(&serial->serial_lock, flags);
 116	wake_up(&serial->serial_io_wait);
 117}
 118
 119/*
 120 * for resync bio, r1bio pointer can be retrieved from the per-bio
 121 * 'struct resync_pages'.
 122 */
 123static inline struct r1bio *get_resync_r1bio(struct bio *bio)
 124{
 125	return get_resync_pages(bio)->raid_bio;
 126}
 127
 128static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
 129{
 130	struct pool_info *pi = data;
 131	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
 132
 133	/* allocate a r1bio with room for raid_disks entries in the bios array */
 134	return kzalloc(size, gfp_flags);
 135}
 136
 137#define RESYNC_DEPTH 32
 138#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 139#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 140#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 141#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 142#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 143
 144static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 145{
 146	struct pool_info *pi = data;
 147	struct r1bio *r1_bio;
 148	struct bio *bio;
 149	int need_pages;
 150	int j;
 151	struct resync_pages *rps;
 152
 153	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 154	if (!r1_bio)
 155		return NULL;
 156
 157	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
 158			    gfp_flags);
 159	if (!rps)
 160		goto out_free_r1bio;
 161
 162	/*
 163	 * Allocate bios : 1 for reading, n-1 for writing
 164	 */
 165	for (j = pi->raid_disks ; j-- ; ) {
 166		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
 167		if (!bio)
 168			goto out_free_bio;
 169		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
 170		r1_bio->bios[j] = bio;
 171	}
 172	/*
 173	 * Allocate RESYNC_PAGES data pages and attach them to
 174	 * the first bio.
 175	 * If this is a user-requested check/repair, allocate
 176	 * RESYNC_PAGES for each bio.
 177	 */
 178	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 179		need_pages = pi->raid_disks;
 180	else
 181		need_pages = 1;
 182	for (j = 0; j < pi->raid_disks; j++) {
 183		struct resync_pages *rp = &rps[j];
 184
 185		bio = r1_bio->bios[j];
 186
 187		if (j < need_pages) {
 188			if (resync_alloc_pages(rp, gfp_flags))
 189				goto out_free_pages;
 190		} else {
 191			memcpy(rp, &rps[0], sizeof(*rp));
 192			resync_get_all_pages(rp);
 193		}
 194
 195		rp->raid_bio = r1_bio;
 196		bio->bi_private = rp;
 197	}
 198
 199	r1_bio->master_bio = NULL;
 200
 201	return r1_bio;
 202
 203out_free_pages:
 204	while (--j >= 0)
 205		resync_free_pages(&rps[j]);
 206
 207out_free_bio:
 208	while (++j < pi->raid_disks) {
 209		bio_uninit(r1_bio->bios[j]);
 210		kfree(r1_bio->bios[j]);
 211	}
 212	kfree(rps);
 213
 214out_free_r1bio:
 215	rbio_pool_free(r1_bio, data);
 216	return NULL;
 217}
 218
 219static void r1buf_pool_free(void *__r1_bio, void *data)
 220{
 221	struct pool_info *pi = data;
 222	int i;
 223	struct r1bio *r1bio = __r1_bio;
 224	struct resync_pages *rp = NULL;
 225
 226	for (i = pi->raid_disks; i--; ) {
 227		rp = get_resync_pages(r1bio->bios[i]);
 228		resync_free_pages(rp);
 229		bio_uninit(r1bio->bios[i]);
 230		kfree(r1bio->bios[i]);
 231	}
 232
 233	/* resync pages array stored in the 1st bio's .bi_private */
 234	kfree(rp);
 235
 236	rbio_pool_free(r1bio, data);
 237}
 238
 239static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 240{
 241	int i;
 242
 243	for (i = 0; i < conf->raid_disks * 2; i++) {
 244		struct bio **bio = r1_bio->bios + i;
 245		if (!BIO_SPECIAL(*bio))
 246			bio_put(*bio);
 247		*bio = NULL;
 248	}
 249}
 250
 251static void free_r1bio(struct r1bio *r1_bio)
 252{
 253	struct r1conf *conf = r1_bio->mddev->private;
 254
 255	put_all_bios(conf, r1_bio);
 256	mempool_free(r1_bio, &conf->r1bio_pool);
 257}
 258
 259static void put_buf(struct r1bio *r1_bio)
 260{
 261	struct r1conf *conf = r1_bio->mddev->private;
 262	sector_t sect = r1_bio->sector;
 263	int i;
 264
 265	for (i = 0; i < conf->raid_disks * 2; i++) {
 266		struct bio *bio = r1_bio->bios[i];
 267		if (bio->bi_end_io)
 268			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 269	}
 270
 271	mempool_free(r1_bio, &conf->r1buf_pool);
 272
 273	lower_barrier(conf, sect);
 274}
 275
 276static void reschedule_retry(struct r1bio *r1_bio)
 277{
 278	unsigned long flags;
 279	struct mddev *mddev = r1_bio->mddev;
 280	struct r1conf *conf = mddev->private;
 281	int idx;
 282
 283	idx = sector_to_idx(r1_bio->sector);
 284	spin_lock_irqsave(&conf->device_lock, flags);
 285	list_add(&r1_bio->retry_list, &conf->retry_list);
 286	atomic_inc(&conf->nr_queued[idx]);
 287	spin_unlock_irqrestore(&conf->device_lock, flags);
 288
 289	wake_up(&conf->wait_barrier);
 290	md_wakeup_thread(mddev->thread);
 291}
 292
 293/*
 294 * raid_end_bio_io() is called when we have finished servicing a mirrored
 295 * operation and are ready to return a success/failure code to the buffer
 296 * cache layer.
 297 */
 298static void call_bio_endio(struct r1bio *r1_bio)
 299{
 300	struct bio *bio = r1_bio->master_bio;
 
 301
 302	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 303		bio->bi_status = BLK_STS_IOERR;
 304
 305	bio_endio(bio);
 
 
 
 
 
 306}
 307
 308static void raid_end_bio_io(struct r1bio *r1_bio)
 309{
 310	struct bio *bio = r1_bio->master_bio;
 311	struct r1conf *conf = r1_bio->mddev->private;
 312	sector_t sector = r1_bio->sector;
 313
 314	/* if nobody has done the final endio yet, do it now */
 315	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 316		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 317			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 318			 (unsigned long long) bio->bi_iter.bi_sector,
 319			 (unsigned long long) bio_end_sector(bio) - 1);
 320
 321		call_bio_endio(r1_bio);
 322	}
 323
 324	free_r1bio(r1_bio);
 325	/*
 326	 * Wake up any possible resync thread that waits for the device
 327	 * to go idle.  All I/Os, even write-behind writes, are done.
 328	 */
 329	allow_barrier(conf, sector);
 330}
 331
 332/*
 333 * Update disk head position estimator based on IRQ completion info.
 334 */
 335static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 336{
 337	struct r1conf *conf = r1_bio->mddev->private;
 338
 339	conf->mirrors[disk].head_position =
 340		r1_bio->sector + (r1_bio->sectors);
 341}
 342
 343/*
 344 * Find the disk number which triggered given bio
 345 */
 346static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 347{
 348	int mirror;
 349	struct r1conf *conf = r1_bio->mddev->private;
 350	int raid_disks = conf->raid_disks;
 351
 352	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 353		if (r1_bio->bios[mirror] == bio)
 354			break;
 355
 356	BUG_ON(mirror == raid_disks * 2);
 357	update_head_pos(mirror, r1_bio);
 358
 359	return mirror;
 360}
 361
 362static void raid1_end_read_request(struct bio *bio)
 363{
 364	int uptodate = !bio->bi_status;
 365	struct r1bio *r1_bio = bio->bi_private;
 366	struct r1conf *conf = r1_bio->mddev->private;
 367	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 368
 369	/*
 370	 * this branch is our 'one mirror IO has finished' event handler:
 371	 */
 372	update_head_pos(r1_bio->read_disk, r1_bio);
 373
 374	if (uptodate)
 375		set_bit(R1BIO_Uptodate, &r1_bio->state);
 376	else if (test_bit(FailFast, &rdev->flags) &&
 377		 test_bit(R1BIO_FailFast, &r1_bio->state))
 378		/* This was a fail-fast read so we definitely
 379		 * want to retry */
 380		;
 381	else {
 382		/* If all other devices have failed, we want to return
 383		 * the error upwards rather than fail the last device.
 384		 * Here we redefine "uptodate" to mean "Don't want to retry"
 385		 */
 386		unsigned long flags;
 387		spin_lock_irqsave(&conf->device_lock, flags);
 388		if (r1_bio->mddev->degraded == conf->raid_disks ||
 389		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 390		     test_bit(In_sync, &rdev->flags)))
 391			uptodate = 1;
 392		spin_unlock_irqrestore(&conf->device_lock, flags);
 393	}
 394
 395	if (uptodate) {
 396		raid_end_bio_io(r1_bio);
 397		rdev_dec_pending(rdev, conf->mddev);
 398	} else {
 399		/*
 400		 * oops, read error:
 401		 */
 402		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
 
 403				   mdname(conf->mddev),
 404				   rdev->bdev,
 405				   (unsigned long long)r1_bio->sector);
 406		set_bit(R1BIO_ReadError, &r1_bio->state);
 407		reschedule_retry(r1_bio);
 408		/* don't drop the reference on read_disk yet */
 409	}
 410}
 411
 412static void close_write(struct r1bio *r1_bio)
 413{
 414	/* it really is the end of this request */
 415	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 416		bio_free_pages(r1_bio->behind_master_bio);
 417		bio_put(r1_bio->behind_master_bio);
 418		r1_bio->behind_master_bio = NULL;
 419	}
 420	/* clear the bitmap if all writes complete successfully */
 421	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 422			   r1_bio->sectors,
 423			   !test_bit(R1BIO_Degraded, &r1_bio->state),
 424			   test_bit(R1BIO_BehindIO, &r1_bio->state));
 425	md_write_end(r1_bio->mddev);
 426}
 427
 428static void r1_bio_write_done(struct r1bio *r1_bio)
 429{
 430	if (!atomic_dec_and_test(&r1_bio->remaining))
 431		return;
 432
 433	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 434		reschedule_retry(r1_bio);
 435	else {
 436		close_write(r1_bio);
 437		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 438			reschedule_retry(r1_bio);
 439		else
 440			raid_end_bio_io(r1_bio);
 441	}
 442}
 443
 444static void raid1_end_write_request(struct bio *bio)
 445{
 446	struct r1bio *r1_bio = bio->bi_private;
 447	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 448	struct r1conf *conf = r1_bio->mddev->private;
 449	struct bio *to_put = NULL;
 450	int mirror = find_bio_disk(r1_bio, bio);
 451	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 452	bool discard_error;
 453	sector_t lo = r1_bio->sector;
 454	sector_t hi = r1_bio->sector + r1_bio->sectors;
 455
 456	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 457
 458	/*
 459	 * 'one mirror IO has finished' event handler:
 460	 */
 461	if (bio->bi_status && !discard_error) {
 462		set_bit(WriteErrorSeen,	&rdev->flags);
 463		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 464			set_bit(MD_RECOVERY_NEEDED, &
 465				conf->mddev->recovery);
 466
 467		if (test_bit(FailFast, &rdev->flags) &&
 468		    (bio->bi_opf & MD_FAILFAST) &&
 469		    /* We never try FailFast to WriteMostly devices */
 470		    !test_bit(WriteMostly, &rdev->flags)) {
 471			md_error(r1_bio->mddev, rdev);
 472		}
 473
 474		/*
 475		 * When the device is faulty, it is not necessary to
 476		 * handle write error.
 
 
 477		 */
 478		if (!test_bit(Faulty, &rdev->flags))
 479			set_bit(R1BIO_WriteError, &r1_bio->state);
 480		else {
 481			/* Fail the request */
 482			set_bit(R1BIO_Degraded, &r1_bio->state);
 483			/* Finished with this branch */
 484			r1_bio->bios[mirror] = NULL;
 485			to_put = bio;
 486		}
 487	} else {
 488		/*
 489		 * Set R1BIO_Uptodate in our master bio, so that we
 490		 * will return a good error code for to the higher
 491		 * levels even if IO on some other mirrored buffer
 492		 * fails.
 493		 *
 494		 * The 'master' represents the composite IO operation
 495		 * to user-side. So if something waits for IO, then it
 496		 * will wait for the 'master' bio.
 497		 */
 
 
 
 498		r1_bio->bios[mirror] = NULL;
 499		to_put = bio;
 500		/*
 501		 * Do not set R1BIO_Uptodate if the current device is
 502		 * rebuilding or Faulty. This is because we cannot use
 503		 * such device for properly reading the data back (we could
 504		 * potentially use it, if the current write would have felt
 505		 * before rdev->recovery_offset, but for simplicity we don't
 506		 * check this here.
 507		 */
 508		if (test_bit(In_sync, &rdev->flags) &&
 509		    !test_bit(Faulty, &rdev->flags))
 510			set_bit(R1BIO_Uptodate, &r1_bio->state);
 511
 512		/* Maybe we can clear some bad blocks. */
 513		if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
 514		    !discard_error) {
 515			r1_bio->bios[mirror] = IO_MADE_GOOD;
 516			set_bit(R1BIO_MadeGood, &r1_bio->state);
 517		}
 518	}
 519
 520	if (behind) {
 521		if (test_bit(CollisionCheck, &rdev->flags))
 522			remove_serial(rdev, lo, hi);
 
 
 
 
 523		if (test_bit(WriteMostly, &rdev->flags))
 524			atomic_dec(&r1_bio->behind_remaining);
 525
 526		/*
 527		 * In behind mode, we ACK the master bio once the I/O
 528		 * has safely reached all non-writemostly
 529		 * disks. Setting the Returned bit ensures that this
 530		 * gets done only once -- we don't ever want to return
 531		 * -EIO here, instead we'll wait
 532		 */
 533		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 534		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 535			/* Maybe we can return now */
 536			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 537				struct bio *mbio = r1_bio->master_bio;
 538				pr_debug("raid1: behind end write sectors"
 539					 " %llu-%llu\n",
 540					 (unsigned long long) mbio->bi_iter.bi_sector,
 541					 (unsigned long long) bio_end_sector(mbio) - 1);
 542				call_bio_endio(r1_bio);
 543			}
 544		}
 545	} else if (rdev->mddev->serialize_policy)
 546		remove_serial(rdev, lo, hi);
 547	if (r1_bio->bios[mirror] == NULL)
 548		rdev_dec_pending(rdev, conf->mddev);
 549
 550	/*
 551	 * Let's see if all mirrored write operations have finished
 552	 * already.
 553	 */
 554	r1_bio_write_done(r1_bio);
 555
 556	if (to_put)
 557		bio_put(to_put);
 558}
 559
 560static sector_t align_to_barrier_unit_end(sector_t start_sector,
 561					  sector_t sectors)
 562{
 563	sector_t len;
 564
 565	WARN_ON(sectors == 0);
 566	/*
 567	 * len is the number of sectors from start_sector to end of the
 568	 * barrier unit which start_sector belongs to.
 569	 */
 570	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 571	      start_sector;
 572
 573	if (len > sectors)
 574		len = sectors;
 575
 576	return len;
 577}
 578
 579static void update_read_sectors(struct r1conf *conf, int disk,
 580				sector_t this_sector, int len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 581{
 582	struct raid1_info *info = &conf->mirrors[disk];
 583
 584	atomic_inc(&info->rdev->nr_pending);
 585	if (info->next_seq_sect != this_sector)
 586		info->seq_start = this_sector;
 587	info->next_seq_sect = this_sector + len;
 588}
 589
 590static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
 591			     int *max_sectors)
 592{
 593	sector_t this_sector = r1_bio->sector;
 594	int len = r1_bio->sectors;
 595	int disk;
 
 
 
 
 
 596
 597	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 598		struct md_rdev *rdev;
 599		int read_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600
 601		if (r1_bio->bios[disk] == IO_BLOCKED)
 602			continue;
 603
 604		rdev = conf->mirrors[disk].rdev;
 605		if (!rdev || test_bit(Faulty, &rdev->flags))
 606			continue;
 607
 608		/* choose the first disk even if it has some bad blocks. */
 609		read_len = raid1_check_read_range(rdev, this_sector, &len);
 610		if (read_len > 0) {
 611			update_read_sectors(conf, disk, this_sector, read_len);
 612			*max_sectors = read_len;
 613			return disk;
 614		}
 615	}
 616
 617	return -1;
 618}
 619
 620static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
 621			  int *max_sectors)
 622{
 623	sector_t this_sector = r1_bio->sector;
 624	int best_disk = -1;
 625	int best_len = 0;
 626	int disk;
 627
 628	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 629		struct md_rdev *rdev;
 630		int len;
 631		int read_len;
 
 
 632
 633		if (r1_bio->bios[disk] == IO_BLOCKED)
 
 
 
 634			continue;
 635
 636		rdev = conf->mirrors[disk].rdev;
 637		if (!rdev || test_bit(Faulty, &rdev->flags) ||
 638		    test_bit(WriteMostly, &rdev->flags))
 639			continue;
 640
 641		/* keep track of the disk with the most readable sectors. */
 642		len = r1_bio->sectors;
 643		read_len = raid1_check_read_range(rdev, this_sector, &len);
 644		if (read_len > best_len) {
 645			best_disk = disk;
 646			best_len = read_len;
 647		}
 648	}
 649
 650	if (best_disk != -1) {
 651		*max_sectors = best_len;
 652		update_read_sectors(conf, best_disk, this_sector, best_len);
 653	}
 654
 655	return best_disk;
 656}
 657
 658static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
 659			    int *max_sectors)
 660{
 661	sector_t this_sector = r1_bio->sector;
 662	int bb_disk = -1;
 663	int bb_read_len = 0;
 664	int disk;
 665
 666	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 667		struct md_rdev *rdev;
 668		int len;
 669		int read_len;
 670
 671		if (r1_bio->bios[disk] == IO_BLOCKED)
 672			continue;
 673
 674		rdev = conf->mirrors[disk].rdev;
 675		if (!rdev || test_bit(Faulty, &rdev->flags) ||
 676		    !test_bit(WriteMostly, &rdev->flags))
 677			continue;
 678
 679		/* there are no bad blocks, we can use this disk */
 680		len = r1_bio->sectors;
 681		read_len = raid1_check_read_range(rdev, this_sector, &len);
 682		if (read_len == r1_bio->sectors) {
 683			update_read_sectors(conf, disk, this_sector, read_len);
 684			return disk;
 685		}
 686
 687		/*
 688		 * there are partial bad blocks, choose the rdev with largest
 689		 * read length.
 690		 */
 691		if (read_len > bb_read_len) {
 692			bb_disk = disk;
 693			bb_read_len = read_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 694		}
 695	}
 696
 697	if (bb_disk != -1) {
 698		*max_sectors = bb_read_len;
 699		update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
 700	}
 701
 702	return bb_disk;
 703}
 704
 705static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
 706{
 707	/* TODO: address issues with this check and concurrency. */
 708	return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
 709	       conf->mirrors[disk].head_position == r1_bio->sector;
 710}
 711
 712/*
 713 * If buffered sequential IO size exceeds optimal iosize, check if there is idle
 714 * disk. If yes, choose the idle disk.
 715 */
 716static bool should_choose_next(struct r1conf *conf, int disk)
 717{
 718	struct raid1_info *mirror = &conf->mirrors[disk];
 719	int opt_iosize;
 720
 721	if (!test_bit(Nonrot, &mirror->rdev->flags))
 722		return false;
 723
 724	opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
 725	return opt_iosize > 0 && mirror->seq_start != MaxSector &&
 726	       mirror->next_seq_sect > opt_iosize &&
 727	       mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
 728}
 729
 730static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
 731{
 732	if (!rdev || test_bit(Faulty, &rdev->flags))
 733		return false;
 734
 735	/* still in recovery */
 736	if (!test_bit(In_sync, &rdev->flags) &&
 737	    rdev->recovery_offset < r1_bio->sector + r1_bio->sectors)
 738		return false;
 739
 740	/* don't read from slow disk unless have to */
 741	if (test_bit(WriteMostly, &rdev->flags))
 742		return false;
 743
 744	/* don't split IO for bad blocks unless have to */
 745	if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
 746		return false;
 747
 748	return true;
 749}
 750
 751struct read_balance_ctl {
 752	sector_t closest_dist;
 753	int closest_dist_disk;
 754	int min_pending;
 755	int min_pending_disk;
 756	int sequential_disk;
 757	int readable_disks;
 758};
 759
 760static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
 761{
 762	int disk;
 763	struct read_balance_ctl ctl = {
 764		.closest_dist_disk      = -1,
 765		.closest_dist           = MaxSector,
 766		.min_pending_disk       = -1,
 767		.min_pending            = UINT_MAX,
 768		.sequential_disk	= -1,
 769	};
 770
 771	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 772		struct md_rdev *rdev;
 773		sector_t dist;
 774		unsigned int pending;
 775
 776		if (r1_bio->bios[disk] == IO_BLOCKED)
 777			continue;
 778
 779		rdev = conf->mirrors[disk].rdev;
 780		if (!rdev_readable(rdev, r1_bio))
 781			continue;
 782
 783		/* At least two disks to choose from so failfast is OK */
 784		if (ctl.readable_disks++ == 1)
 785			set_bit(R1BIO_FailFast, &r1_bio->state);
 786
 
 
 787		pending = atomic_read(&rdev->nr_pending);
 788		dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
 789
 
 
 
 790		/* Don't change to another disk for sequential reads */
 791		if (is_sequential(conf, disk, r1_bio)) {
 792			if (!should_choose_next(conf, disk))
 793				return disk;
 
 794
 
 795			/*
 796			 * Add 'pending' to avoid choosing this disk if
 797			 * there is other idle disk.
 
 
 
 
 
 
 
 
 
 798			 */
 799			pending++;
 800			/*
 801			 * If there is no other idle disk, this disk
 802			 * will be chosen.
 803			 */
 804			ctl.sequential_disk = disk;
 
 
 
 805		}
 806
 807		if (ctl.min_pending > pending) {
 808			ctl.min_pending = pending;
 809			ctl.min_pending_disk = disk;
 
 
 
 810		}
 811
 812		if (ctl.closest_dist > dist) {
 813			ctl.closest_dist = dist;
 814			ctl.closest_dist_disk = disk;
 815		}
 816	}
 817
 818	/*
 819	 * sequential IO size exceeds optimal iosize, however, there is no other
 820	 * idle disk, so choose the sequential disk.
 821	 */
 822	if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
 823		return ctl.sequential_disk;
 824
 825	/*
 826	 * If all disks are rotational, choose the closest disk. If any disk is
 827	 * non-rotational, choose the disk with less pending request even the
 828	 * disk is rotational, which might/might not be optimal for raids with
 829	 * mixed ratation/non-rotational disks depending on workload.
 830	 */
 831	if (ctl.min_pending_disk != -1 &&
 832	    (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
 833		return ctl.min_pending_disk;
 834	else
 835		return ctl.closest_dist_disk;
 836}
 837
 838/*
 839 * This routine returns the disk from which the requested read should be done.
 840 *
 841 * 1) If resync is in progress, find the first usable disk and use it even if it
 842 * has some bad blocks.
 843 *
 844 * 2) Now that there is no resync, loop through all disks and skipping slow
 845 * disks and disks with bad blocks for now. Only pay attention to key disk
 846 * choice.
 847 *
 848 * 3) If we've made it this far, now look for disks with bad blocks and choose
 849 * the one with most number of sectors.
 850 *
 851 * 4) If we are all the way at the end, we have no choice but to use a disk even
 852 * if it is write mostly.
 853 *
 854 * The rdev for the device selected will have nr_pending incremented.
 855 */
 856static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
 857			int *max_sectors)
 858{
 859	int disk;
 860
 861	clear_bit(R1BIO_FailFast, &r1_bio->state);
 862
 863	if (raid1_should_read_first(conf->mddev, r1_bio->sector,
 864				    r1_bio->sectors))
 865		return choose_first_rdev(conf, r1_bio, max_sectors);
 866
 867	disk = choose_best_rdev(conf, r1_bio);
 868	if (disk >= 0) {
 869		*max_sectors = r1_bio->sectors;
 870		update_read_sectors(conf, disk, r1_bio->sector,
 871				    r1_bio->sectors);
 872		return disk;
 873	}
 
 
 874
 875	/*
 876	 * If we are here it means we didn't find a perfectly good disk so
 877	 * now spend a bit more time trying to find one with the most good
 878	 * sectors.
 879	 */
 880	disk = choose_bb_rdev(conf, r1_bio, max_sectors);
 881	if (disk >= 0)
 882		return disk;
 883
 884	return choose_slow_rdev(conf, r1_bio, max_sectors);
 885}
 886
 887static void wake_up_barrier(struct r1conf *conf)
 888{
 889	if (wq_has_sleeper(&conf->wait_barrier))
 890		wake_up(&conf->wait_barrier);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 891}
 892
 893static void flush_bio_list(struct r1conf *conf, struct bio *bio)
 894{
 895	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
 896	raid1_prepare_flush_writes(conf->mddev->bitmap);
 897	wake_up_barrier(conf);
 898
 899	while (bio) { /* submit pending writes */
 900		struct bio *next = bio->bi_next;
 901
 902		raid1_submit_write(bio);
 
 
 
 
 
 
 
 
 
 903		bio = next;
 904		cond_resched();
 905	}
 906}
 907
 908static void flush_pending_writes(struct r1conf *conf)
 909{
 910	/* Any writes that have been queued but are awaiting
 911	 * bitmap updates get flushed here.
 912	 */
 913	spin_lock_irq(&conf->device_lock);
 914
 915	if (conf->pending_bio_list.head) {
 916		struct blk_plug plug;
 917		struct bio *bio;
 918
 919		bio = bio_list_get(&conf->pending_bio_list);
 
 920		spin_unlock_irq(&conf->device_lock);
 921
 922		/*
 923		 * As this is called in a wait_event() loop (see freeze_array),
 924		 * current->state might be TASK_UNINTERRUPTIBLE which will
 925		 * cause a warning when we prepare to wait again.  As it is
 926		 * rare that this path is taken, it is perfectly safe to force
 927		 * us to go around the wait_event() loop again, so the warning
 928		 * is a false-positive.  Silence the warning by resetting
 929		 * thread state
 930		 */
 931		__set_current_state(TASK_RUNNING);
 932		blk_start_plug(&plug);
 933		flush_bio_list(conf, bio);
 934		blk_finish_plug(&plug);
 935	} else
 936		spin_unlock_irq(&conf->device_lock);
 937}
 938
 939/* Barriers....
 940 * Sometimes we need to suspend IO while we do something else,
 941 * either some resync/recovery, or reconfigure the array.
 942 * To do this we raise a 'barrier'.
 943 * The 'barrier' is a counter that can be raised multiple times
 944 * to count how many activities are happening which preclude
 945 * normal IO.
 946 * We can only raise the barrier if there is no pending IO.
 947 * i.e. if nr_pending == 0.
 948 * We choose only to raise the barrier if no-one is waiting for the
 949 * barrier to go down.  This means that as soon as an IO request
 950 * is ready, no other operations which require a barrier will start
 951 * until the IO request has had a chance.
 952 *
 953 * So: regular IO calls 'wait_barrier'.  When that returns there
 954 *    is no backgroup IO happening,  It must arrange to call
 955 *    allow_barrier when it has finished its IO.
 956 * backgroup IO calls must call raise_barrier.  Once that returns
 957 *    there is no normal IO happeing.  It must arrange to call
 958 *    lower_barrier when the particular background IO completes.
 959 *
 960 * If resync/recovery is interrupted, returns -EINTR;
 961 * Otherwise, returns 0.
 962 */
 963static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
 964{
 965	int idx = sector_to_idx(sector_nr);
 966
 967	spin_lock_irq(&conf->resync_lock);
 968
 969	/* Wait until no block IO is waiting */
 970	wait_event_lock_irq(conf->wait_barrier,
 971			    !atomic_read(&conf->nr_waiting[idx]),
 972			    conf->resync_lock);
 973
 974	/* block any new IO from starting */
 975	atomic_inc(&conf->barrier[idx]);
 976	/*
 977	 * In raise_barrier() we firstly increase conf->barrier[idx] then
 978	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 979	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
 980	 * A memory barrier here to make sure conf->nr_pending[idx] won't
 981	 * be fetched before conf->barrier[idx] is increased. Otherwise
 982	 * there will be a race between raise_barrier() and _wait_barrier().
 983	 */
 984	smp_mb__after_atomic();
 985
 986	/* For these conditions we must wait:
 987	 * A: while the array is in frozen state
 988	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 989	 *    existing in corresponding I/O barrier bucket.
 990	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 991	 *    max resync count which allowed on current I/O barrier bucket.
 992	 */
 993	wait_event_lock_irq(conf->wait_barrier,
 994			    (!conf->array_frozen &&
 995			     !atomic_read(&conf->nr_pending[idx]) &&
 996			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
 997				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
 998			    conf->resync_lock);
 999
1000	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
1001		atomic_dec(&conf->barrier[idx]);
1002		spin_unlock_irq(&conf->resync_lock);
1003		wake_up(&conf->wait_barrier);
1004		return -EINTR;
1005	}
1006
1007	atomic_inc(&conf->nr_sync_pending);
1008	spin_unlock_irq(&conf->resync_lock);
1009
1010	return 0;
1011}
1012
1013static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
1014{
1015	int idx = sector_to_idx(sector_nr);
1016
1017	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
1018
1019	atomic_dec(&conf->barrier[idx]);
1020	atomic_dec(&conf->nr_sync_pending);
1021	wake_up(&conf->wait_barrier);
1022}
1023
1024static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
1025{
1026	bool ret = true;
1027
1028	/*
1029	 * We need to increase conf->nr_pending[idx] very early here,
1030	 * then raise_barrier() can be blocked when it waits for
1031	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
1032	 * conf->resync_lock when there is no barrier raised in same
1033	 * barrier unit bucket. Also if the array is frozen, I/O
1034	 * should be blocked until array is unfrozen.
1035	 */
1036	atomic_inc(&conf->nr_pending[idx]);
1037	/*
1038	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
1039	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
1040	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
1041	 * barrier is necessary here to make sure conf->barrier[idx] won't be
1042	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
1043	 * will be a race between _wait_barrier() and raise_barrier().
1044	 */
1045	smp_mb__after_atomic();
1046
1047	/*
1048	 * Don't worry about checking two atomic_t variables at same time
1049	 * here. If during we check conf->barrier[idx], the array is
1050	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
1051	 * 0, it is safe to return and make the I/O continue. Because the
1052	 * array is frozen, all I/O returned here will eventually complete
1053	 * or be queued, no race will happen. See code comment in
1054	 * frozen_array().
1055	 */
1056	if (!READ_ONCE(conf->array_frozen) &&
1057	    !atomic_read(&conf->barrier[idx]))
1058		return ret;
1059
1060	/*
1061	 * After holding conf->resync_lock, conf->nr_pending[idx]
1062	 * should be decreased before waiting for barrier to drop.
1063	 * Otherwise, we may encounter a race condition because
1064	 * raise_barrer() might be waiting for conf->nr_pending[idx]
1065	 * to be 0 at same time.
1066	 */
1067	spin_lock_irq(&conf->resync_lock);
1068	atomic_inc(&conf->nr_waiting[idx]);
1069	atomic_dec(&conf->nr_pending[idx]);
1070	/*
1071	 * In case freeze_array() is waiting for
1072	 * get_unqueued_pending() == extra
1073	 */
1074	wake_up_barrier(conf);
1075	/* Wait for the barrier in same barrier unit bucket to drop. */
1076
1077	/* Return false when nowait flag is set */
1078	if (nowait) {
1079		ret = false;
1080	} else {
1081		wait_event_lock_irq(conf->wait_barrier,
1082				!conf->array_frozen &&
1083				!atomic_read(&conf->barrier[idx]),
1084				conf->resync_lock);
1085		atomic_inc(&conf->nr_pending[idx]);
1086	}
1087
1088	atomic_dec(&conf->nr_waiting[idx]);
1089	spin_unlock_irq(&conf->resync_lock);
1090	return ret;
1091}
1092
1093static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1094{
1095	int idx = sector_to_idx(sector_nr);
1096	bool ret = true;
1097
1098	/*
1099	 * Very similar to _wait_barrier(). The difference is, for read
1100	 * I/O we don't need wait for sync I/O, but if the whole array
1101	 * is frozen, the read I/O still has to wait until the array is
1102	 * unfrozen. Since there is no ordering requirement with
1103	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1104	 */
1105	atomic_inc(&conf->nr_pending[idx]);
1106
1107	if (!READ_ONCE(conf->array_frozen))
1108		return ret;
1109
1110	spin_lock_irq(&conf->resync_lock);
1111	atomic_inc(&conf->nr_waiting[idx]);
1112	atomic_dec(&conf->nr_pending[idx]);
1113	/*
1114	 * In case freeze_array() is waiting for
1115	 * get_unqueued_pending() == extra
1116	 */
1117	wake_up_barrier(conf);
1118	/* Wait for array to be unfrozen */
1119
1120	/* Return false when nowait flag is set */
1121	if (nowait) {
1122		/* Return false when nowait flag is set */
1123		ret = false;
1124	} else {
1125		wait_event_lock_irq(conf->wait_barrier,
1126				!conf->array_frozen,
1127				conf->resync_lock);
1128		atomic_inc(&conf->nr_pending[idx]);
1129	}
1130
1131	atomic_dec(&conf->nr_waiting[idx]);
1132	spin_unlock_irq(&conf->resync_lock);
1133	return ret;
1134}
1135
1136static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1137{
1138	int idx = sector_to_idx(sector_nr);
1139
1140	return _wait_barrier(conf, idx, nowait);
1141}
1142
1143static void _allow_barrier(struct r1conf *conf, int idx)
1144{
1145	atomic_dec(&conf->nr_pending[idx]);
1146	wake_up_barrier(conf);
1147}
1148
1149static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1150{
1151	int idx = sector_to_idx(sector_nr);
1152
1153	_allow_barrier(conf, idx);
1154}
1155
1156/* conf->resync_lock should be held */
1157static int get_unqueued_pending(struct r1conf *conf)
1158{
1159	int idx, ret;
1160
1161	ret = atomic_read(&conf->nr_sync_pending);
1162	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1163		ret += atomic_read(&conf->nr_pending[idx]) -
1164			atomic_read(&conf->nr_queued[idx]);
1165
1166	return ret;
1167}
1168
1169static void freeze_array(struct r1conf *conf, int extra)
1170{
1171	/* Stop sync I/O and normal I/O and wait for everything to
1172	 * go quiet.
1173	 * This is called in two situations:
1174	 * 1) management command handlers (reshape, remove disk, quiesce).
1175	 * 2) one normal I/O request failed.
1176
1177	 * After array_frozen is set to 1, new sync IO will be blocked at
1178	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1179	 * or wait_read_barrier(). The flying I/Os will either complete or be
1180	 * queued. When everything goes quite, there are only queued I/Os left.
1181
1182	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1183	 * barrier bucket index which this I/O request hits. When all sync and
1184	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1185	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1186	 * in handle_read_error(), we may call freeze_array() before trying to
1187	 * fix the read error. In this case, the error read I/O is not queued,
1188	 * so get_unqueued_pending() == 1.
1189	 *
1190	 * Therefore before this function returns, we need to wait until
1191	 * get_unqueued_pendings(conf) gets equal to extra. For
1192	 * normal I/O context, extra is 1, in rested situations extra is 0.
1193	 */
1194	spin_lock_irq(&conf->resync_lock);
1195	conf->array_frozen = 1;
1196	mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
1197	wait_event_lock_irq_cmd(
1198		conf->wait_barrier,
1199		get_unqueued_pending(conf) == extra,
1200		conf->resync_lock,
1201		flush_pending_writes(conf));
1202	spin_unlock_irq(&conf->resync_lock);
1203}
1204static void unfreeze_array(struct r1conf *conf)
1205{
1206	/* reverse the effect of the freeze */
1207	spin_lock_irq(&conf->resync_lock);
1208	conf->array_frozen = 0;
1209	spin_unlock_irq(&conf->resync_lock);
1210	wake_up(&conf->wait_barrier);
1211}
1212
1213static void alloc_behind_master_bio(struct r1bio *r1_bio,
1214					   struct bio *bio)
1215{
1216	int size = bio->bi_iter.bi_size;
1217	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1218	int i = 0;
1219	struct bio *behind_bio = NULL;
1220
1221	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1222				      &r1_bio->mddev->bio_set);
 
1223
1224	/* discard op, we don't support writezero/writesame yet */
1225	if (!bio_has_data(bio)) {
1226		behind_bio->bi_iter.bi_size = size;
1227		goto skip_copy;
1228	}
1229
 
 
1230	while (i < vcnt && size) {
1231		struct page *page;
1232		int len = min_t(int, PAGE_SIZE, size);
1233
1234		page = alloc_page(GFP_NOIO);
1235		if (unlikely(!page))
1236			goto free_pages;
1237
1238		if (!bio_add_page(behind_bio, page, len, 0)) {
1239			put_page(page);
1240			goto free_pages;
1241		}
1242
1243		size -= len;
1244		i++;
1245	}
1246
1247	bio_copy_data(behind_bio, bio);
1248skip_copy:
1249	r1_bio->behind_master_bio = behind_bio;
1250	set_bit(R1BIO_BehindIO, &r1_bio->state);
1251
1252	return;
1253
1254free_pages:
1255	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1256		 bio->bi_iter.bi_size);
1257	bio_free_pages(behind_bio);
1258	bio_put(behind_bio);
1259}
1260
 
 
 
 
 
 
1261static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1262{
1263	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1264						  cb);
1265	struct mddev *mddev = plug->cb.data;
1266	struct r1conf *conf = mddev->private;
1267	struct bio *bio;
1268
1269	if (from_schedule) {
1270		spin_lock_irq(&conf->device_lock);
1271		bio_list_merge(&conf->pending_bio_list, &plug->pending);
 
1272		spin_unlock_irq(&conf->device_lock);
1273		wake_up_barrier(conf);
1274		md_wakeup_thread(mddev->thread);
1275		kfree(plug);
1276		return;
1277	}
1278
1279	/* we aren't scheduling, so we can do the write-out directly. */
1280	bio = bio_list_get(&plug->pending);
1281	flush_bio_list(conf, bio);
1282	kfree(plug);
1283}
1284
1285static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1286{
1287	r1_bio->master_bio = bio;
1288	r1_bio->sectors = bio_sectors(bio);
1289	r1_bio->state = 0;
1290	r1_bio->mddev = mddev;
1291	r1_bio->sector = bio->bi_iter.bi_sector;
1292}
1293
1294static inline struct r1bio *
1295alloc_r1bio(struct mddev *mddev, struct bio *bio)
1296{
1297	struct r1conf *conf = mddev->private;
1298	struct r1bio *r1_bio;
1299
1300	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1301	/* Ensure no bio records IO_BLOCKED */
1302	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1303	init_r1bio(r1_bio, mddev, bio);
1304	return r1_bio;
1305}
1306
1307static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1308			       int max_read_sectors, struct r1bio *r1_bio)
1309{
1310	struct r1conf *conf = mddev->private;
1311	struct raid1_info *mirror;
1312	struct bio *read_bio;
1313	struct bitmap *bitmap = mddev->bitmap;
1314	const enum req_op op = bio_op(bio);
1315	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1316	int max_sectors;
1317	int rdisk;
1318	bool r1bio_existed = !!r1_bio;
1319	char b[BDEVNAME_SIZE];
1320
1321	/*
1322	 * If r1_bio is set, we are blocking the raid1d thread
1323	 * so there is a tiny risk of deadlock.  So ask for
1324	 * emergency memory if needed.
1325	 */
1326	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1327
1328	if (r1bio_existed) {
1329		/* Need to get the block device name carefully */
1330		struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1331
 
1332		if (rdev)
1333			snprintf(b, sizeof(b), "%pg", rdev->bdev);
1334		else
1335			strcpy(b, "???");
 
1336	}
1337
1338	/*
1339	 * Still need barrier for READ in case that whole
1340	 * array is frozen.
1341	 */
1342	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1343				bio->bi_opf & REQ_NOWAIT)) {
1344		bio_wouldblock_error(bio);
1345		return;
1346	}
1347
1348	if (!r1_bio)
1349		r1_bio = alloc_r1bio(mddev, bio);
1350	else
1351		init_r1bio(r1_bio, mddev, bio);
1352	r1_bio->sectors = max_read_sectors;
1353
1354	/*
1355	 * make_request() can abort the operation when read-ahead is being
1356	 * used and no empty request is available.
1357	 */
1358	rdisk = read_balance(conf, r1_bio, &max_sectors);
1359
1360	if (rdisk < 0) {
1361		/* couldn't find anywhere to read from */
1362		if (r1bio_existed) {
1363			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1364					    mdname(mddev),
1365					    b,
1366					    (unsigned long long)r1_bio->sector);
1367		}
1368		raid_end_bio_io(r1_bio);
1369		return;
1370	}
1371	mirror = conf->mirrors + rdisk;
1372
1373	if (r1bio_existed)
1374		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1375				    mdname(mddev),
1376				    (unsigned long long)r1_bio->sector,
1377				    mirror->rdev->bdev);
1378
1379	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1380	    bitmap) {
1381		/*
1382		 * Reading from a write-mostly device must take care not to
1383		 * over-take any writes that are 'behind'
1384		 */
1385		mddev_add_trace_msg(mddev, "raid1 wait behind writes");
1386		wait_event(bitmap->behind_wait,
1387			   atomic_read(&bitmap->behind_writes) == 0);
1388	}
1389
1390	if (max_sectors < bio_sectors(bio)) {
1391		struct bio *split = bio_split(bio, max_sectors,
1392					      gfp, &conf->bio_split);
1393		bio_chain(split, bio);
1394		submit_bio_noacct(bio);
1395		bio = split;
1396		r1_bio->master_bio = bio;
1397		r1_bio->sectors = max_sectors;
1398	}
1399
1400	r1_bio->read_disk = rdisk;
1401	if (!r1bio_existed) {
1402		md_account_bio(mddev, &bio);
1403		r1_bio->master_bio = bio;
1404	}
1405	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1406				   &mddev->bio_set);
1407
1408	r1_bio->bios[rdisk] = read_bio;
1409
1410	read_bio->bi_iter.bi_sector = r1_bio->sector +
1411		mirror->rdev->data_offset;
 
1412	read_bio->bi_end_io = raid1_end_read_request;
1413	read_bio->bi_opf = op | do_sync;
1414	if (test_bit(FailFast, &mirror->rdev->flags) &&
1415	    test_bit(R1BIO_FailFast, &r1_bio->state))
1416	        read_bio->bi_opf |= MD_FAILFAST;
1417	read_bio->bi_private = r1_bio;
1418	mddev_trace_remap(mddev, read_bio, r1_bio->sector);
1419	submit_bio_noacct(read_bio);
 
 
 
 
1420}
1421
1422static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1423				int max_write_sectors)
1424{
1425	struct r1conf *conf = mddev->private;
1426	struct r1bio *r1_bio;
1427	int i, disks;
1428	struct bitmap *bitmap = mddev->bitmap;
1429	unsigned long flags;
1430	struct md_rdev *blocked_rdev;
 
 
1431	int first_clone;
1432	int max_sectors;
1433	bool write_behind = false;
1434	bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1435
1436	if (mddev_is_clustered(mddev) &&
1437	     md_cluster_ops->area_resyncing(mddev, WRITE,
1438		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1439
1440		DEFINE_WAIT(w);
1441		if (bio->bi_opf & REQ_NOWAIT) {
1442			bio_wouldblock_error(bio);
1443			return;
1444		}
1445		for (;;) {
1446			prepare_to_wait(&conf->wait_barrier,
1447					&w, TASK_IDLE);
1448			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1449							bio->bi_iter.bi_sector,
1450							bio_end_sector(bio)))
1451				break;
1452			schedule();
1453		}
1454		finish_wait(&conf->wait_barrier, &w);
1455	}
1456
1457	/*
1458	 * Register the new request and wait if the reconstruction
1459	 * thread has put up a bar for new requests.
1460	 * Continue immediately if no resync is active currently.
1461	 */
1462	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1463				bio->bi_opf & REQ_NOWAIT)) {
1464		bio_wouldblock_error(bio);
1465		return;
1466	}
1467
1468 retry_write:
1469	r1_bio = alloc_r1bio(mddev, bio);
1470	r1_bio->sectors = max_write_sectors;
1471
 
 
 
 
 
 
1472	/* first select target devices under rcu_lock and
1473	 * inc refcount on their rdev.  Record them by setting
1474	 * bios[x] to bio
1475	 * If there are known/acknowledged bad blocks on any device on
1476	 * which we have seen a write error, we want to avoid writing those
1477	 * blocks.
1478	 * This potentially requires several writes to write around
1479	 * the bad blocks.  Each set of writes gets it's own r1bio
1480	 * with a set of bios attached.
1481	 */
1482
1483	disks = conf->raid_disks * 2;
 
1484	blocked_rdev = NULL;
 
1485	max_sectors = r1_bio->sectors;
1486	for (i = 0;  i < disks; i++) {
1487		struct md_rdev *rdev = conf->mirrors[i].rdev;
1488
1489		/*
1490		 * The write-behind io is only attempted on drives marked as
1491		 * write-mostly, which means we could allocate write behind
1492		 * bio later.
1493		 */
1494		if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1495			write_behind = true;
1496
1497		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1498			atomic_inc(&rdev->nr_pending);
1499			blocked_rdev = rdev;
1500			break;
1501		}
1502		r1_bio->bios[i] = NULL;
1503		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1504			if (i < conf->raid_disks)
1505				set_bit(R1BIO_Degraded, &r1_bio->state);
1506			continue;
1507		}
1508
1509		atomic_inc(&rdev->nr_pending);
1510		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1511			sector_t first_bad;
1512			int bad_sectors;
1513			int is_bad;
1514
1515			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1516					     &first_bad, &bad_sectors);
1517			if (is_bad < 0) {
1518				/* mustn't write here until the bad block is
1519				 * acknowledged*/
1520				set_bit(BlockedBadBlocks, &rdev->flags);
1521				blocked_rdev = rdev;
1522				break;
1523			}
1524			if (is_bad && first_bad <= r1_bio->sector) {
1525				/* Cannot write here at all */
1526				bad_sectors -= (r1_bio->sector - first_bad);
1527				if (bad_sectors < max_sectors)
1528					/* mustn't write more than bad_sectors
1529					 * to other devices yet
1530					 */
1531					max_sectors = bad_sectors;
1532				rdev_dec_pending(rdev, mddev);
1533				/* We don't set R1BIO_Degraded as that
1534				 * only applies if the disk is
1535				 * missing, so it might be re-added,
1536				 * and we want to know to recover this
1537				 * chunk.
1538				 * In this case the device is here,
1539				 * and the fact that this chunk is not
1540				 * in-sync is recorded in the bad
1541				 * block log
1542				 */
1543				continue;
1544			}
1545			if (is_bad) {
1546				int good_sectors = first_bad - r1_bio->sector;
1547				if (good_sectors < max_sectors)
1548					max_sectors = good_sectors;
1549			}
1550		}
1551		r1_bio->bios[i] = bio;
1552	}
 
1553
1554	if (unlikely(blocked_rdev)) {
1555		/* Wait for this device to become unblocked */
1556		int j;
1557
1558		for (j = 0; j < i; j++)
1559			if (r1_bio->bios[j])
1560				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1561		mempool_free(r1_bio, &conf->r1bio_pool);
1562		allow_barrier(conf, bio->bi_iter.bi_sector);
1563
1564		if (bio->bi_opf & REQ_NOWAIT) {
1565			bio_wouldblock_error(bio);
1566			return;
1567		}
1568		mddev_add_trace_msg(mddev, "raid1 wait rdev %d blocked",
1569				blocked_rdev->raid_disk);
1570		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1571		wait_barrier(conf, bio->bi_iter.bi_sector, false);
1572		goto retry_write;
1573	}
1574
1575	/*
1576	 * When using a bitmap, we may call alloc_behind_master_bio below.
1577	 * alloc_behind_master_bio allocates a copy of the data payload a page
1578	 * at a time and thus needs a new bio that can fit the whole payload
1579	 * this bio in page sized chunks.
1580	 */
1581	if (write_behind && bitmap)
1582		max_sectors = min_t(int, max_sectors,
1583				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1584	if (max_sectors < bio_sectors(bio)) {
1585		struct bio *split = bio_split(bio, max_sectors,
1586					      GFP_NOIO, &conf->bio_split);
1587		bio_chain(split, bio);
1588		submit_bio_noacct(bio);
1589		bio = split;
1590		r1_bio->master_bio = bio;
1591		r1_bio->sectors = max_sectors;
1592	}
1593
1594	md_account_bio(mddev, &bio);
1595	r1_bio->master_bio = bio;
1596	atomic_set(&r1_bio->remaining, 1);
1597	atomic_set(&r1_bio->behind_remaining, 0);
1598
1599	first_clone = 1;
1600
1601	for (i = 0; i < disks; i++) {
1602		struct bio *mbio = NULL;
1603		struct md_rdev *rdev = conf->mirrors[i].rdev;
1604		if (!r1_bio->bios[i])
1605			continue;
1606
1607		if (first_clone) {
1608			/* do behind I/O ?
1609			 * Not if there are too many, or cannot
1610			 * allocate memory, or a reader on WriteMostly
1611			 * is waiting for behind writes to flush */
1612			if (bitmap && write_behind &&
1613			    (atomic_read(&bitmap->behind_writes)
1614			     < mddev->bitmap_info.max_write_behind) &&
1615			    !waitqueue_active(&bitmap->behind_wait)) {
1616				alloc_behind_master_bio(r1_bio, bio);
1617			}
1618
1619			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1620					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1621			first_clone = 0;
1622		}
1623
 
 
 
 
 
 
1624		if (r1_bio->behind_master_bio) {
1625			mbio = bio_alloc_clone(rdev->bdev,
1626					       r1_bio->behind_master_bio,
1627					       GFP_NOIO, &mddev->bio_set);
1628			if (test_bit(CollisionCheck, &rdev->flags))
1629				wait_for_serialization(rdev, r1_bio);
 
 
 
 
1630			if (test_bit(WriteMostly, &rdev->flags))
1631				atomic_inc(&r1_bio->behind_remaining);
1632		} else {
1633			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1634					       &mddev->bio_set);
1635
1636			if (mddev->serialize_policy)
1637				wait_for_serialization(rdev, r1_bio);
1638		}
1639
1640		r1_bio->bios[i] = mbio;
1641
1642		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
 
 
1643		mbio->bi_end_io	= raid1_end_write_request;
1644		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1645		if (test_bit(FailFast, &rdev->flags) &&
1646		    !test_bit(WriteMostly, &rdev->flags) &&
1647		    conf->raid_disks - mddev->degraded > 1)
1648			mbio->bi_opf |= MD_FAILFAST;
1649		mbio->bi_private = r1_bio;
1650
1651		atomic_inc(&r1_bio->remaining);
1652		mddev_trace_remap(mddev, mbio, r1_bio->sector);
 
 
 
 
1653		/* flush_pending_writes() needs access to the rdev so...*/
1654		mbio->bi_bdev = (void *)rdev;
1655		if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
 
 
 
 
 
 
 
 
 
1656			spin_lock_irqsave(&conf->device_lock, flags);
1657			bio_list_add(&conf->pending_bio_list, mbio);
 
1658			spin_unlock_irqrestore(&conf->device_lock, flags);
1659			md_wakeup_thread(mddev->thread);
1660		}
1661	}
1662
1663	r1_bio_write_done(r1_bio);
1664
1665	/* In case raid1d snuck in to freeze_array */
1666	wake_up_barrier(conf);
1667}
1668
1669static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1670{
1671	sector_t sectors;
1672
1673	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1674	    && md_flush_request(mddev, bio))
1675		return true;
 
1676
1677	/*
1678	 * There is a limit to the maximum size, but
1679	 * the read/write handler might find a lower limit
1680	 * due to bad blocks.  To avoid multiple splits,
1681	 * we pass the maximum number of sectors down
1682	 * and let the lower level perform the split.
1683	 */
1684	sectors = align_to_barrier_unit_end(
1685		bio->bi_iter.bi_sector, bio_sectors(bio));
1686
1687	if (bio_data_dir(bio) == READ)
1688		raid1_read_request(mddev, bio, sectors, NULL);
1689	else {
1690		if (!md_write_start(mddev,bio))
1691			return false;
1692		raid1_write_request(mddev, bio, sectors);
1693	}
1694	return true;
1695}
1696
1697static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1698{
1699	struct r1conf *conf = mddev->private;
1700	int i;
1701
1702	lockdep_assert_held(&mddev->lock);
1703
1704	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1705		   conf->raid_disks - mddev->degraded);
 
1706	for (i = 0; i < conf->raid_disks; i++) {
1707		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1708
1709		seq_printf(seq, "%s",
1710			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1711	}
 
1712	seq_printf(seq, "]");
1713}
1714
1715/**
1716 * raid1_error() - RAID1 error handler.
1717 * @mddev: affected md device.
1718 * @rdev: member device to fail.
1719 *
1720 * The routine acknowledges &rdev failure and determines new @mddev state.
1721 * If it failed, then:
1722 *	- &MD_BROKEN flag is set in &mddev->flags.
1723 *	- recovery is disabled.
1724 * Otherwise, it must be degraded:
1725 *	- recovery is interrupted.
1726 *	- &mddev->degraded is bumped.
1727 *
1728 * @rdev is marked as &Faulty excluding case when array is failed and
1729 * &mddev->fail_last_dev is off.
1730 */
1731static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1732{
 
1733	struct r1conf *conf = mddev->private;
1734	unsigned long flags;
1735
 
 
 
 
 
 
1736	spin_lock_irqsave(&conf->device_lock, flags);
1737
1738	if (test_bit(In_sync, &rdev->flags) &&
1739	    (conf->raid_disks - mddev->degraded) == 1) {
1740		set_bit(MD_BROKEN, &mddev->flags);
1741
1742		if (!mddev->fail_last_dev) {
1743			conf->recovery_disabled = mddev->recovery_disabled;
1744			spin_unlock_irqrestore(&conf->device_lock, flags);
1745			return;
1746		}
 
1747	}
1748	set_bit(Blocked, &rdev->flags);
1749	if (test_and_clear_bit(In_sync, &rdev->flags))
1750		mddev->degraded++;
1751	set_bit(Faulty, &rdev->flags);
1752	spin_unlock_irqrestore(&conf->device_lock, flags);
1753	/*
1754	 * if recovery is running, make sure it aborts.
1755	 */
1756	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1757	set_mask_bits(&mddev->sb_flags, 0,
1758		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1759	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1760		"md/raid1:%s: Operation continuing on %d devices.\n",
1761		mdname(mddev), rdev->bdev,
1762		mdname(mddev), conf->raid_disks - mddev->degraded);
1763}
1764
1765static void print_conf(struct r1conf *conf)
1766{
1767	int i;
1768
1769	pr_debug("RAID1 conf printout:\n");
1770	if (!conf) {
1771		pr_debug("(!conf)\n");
1772		return;
1773	}
1774	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1775		 conf->raid_disks);
1776
1777	lockdep_assert_held(&conf->mddev->reconfig_mutex);
1778	for (i = 0; i < conf->raid_disks; i++) {
1779		struct md_rdev *rdev = conf->mirrors[i].rdev;
 
1780		if (rdev)
1781			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1782				 i, !test_bit(In_sync, &rdev->flags),
1783				 !test_bit(Faulty, &rdev->flags),
1784				 rdev->bdev);
1785	}
 
1786}
1787
1788static void close_sync(struct r1conf *conf)
1789{
1790	int idx;
1791
1792	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1793		_wait_barrier(conf, idx, false);
1794		_allow_barrier(conf, idx);
1795	}
1796
1797	mempool_exit(&conf->r1buf_pool);
1798}
1799
1800static int raid1_spare_active(struct mddev *mddev)
1801{
1802	int i;
1803	struct r1conf *conf = mddev->private;
1804	int count = 0;
1805	unsigned long flags;
1806
1807	/*
1808	 * Find all failed disks within the RAID1 configuration
1809	 * and mark them readable.
1810	 * Called under mddev lock, so rcu protection not needed.
1811	 * device_lock used to avoid races with raid1_end_read_request
1812	 * which expects 'In_sync' flags and ->degraded to be consistent.
1813	 */
1814	spin_lock_irqsave(&conf->device_lock, flags);
1815	for (i = 0; i < conf->raid_disks; i++) {
1816		struct md_rdev *rdev = conf->mirrors[i].rdev;
1817		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1818		if (repl
1819		    && !test_bit(Candidate, &repl->flags)
1820		    && repl->recovery_offset == MaxSector
1821		    && !test_bit(Faulty, &repl->flags)
1822		    && !test_and_set_bit(In_sync, &repl->flags)) {
1823			/* replacement has just become active */
1824			if (!rdev ||
1825			    !test_and_clear_bit(In_sync, &rdev->flags))
1826				count++;
1827			if (rdev) {
1828				/* Replaced device not technically
1829				 * faulty, but we need to be sure
1830				 * it gets removed and never re-added
1831				 */
1832				set_bit(Faulty, &rdev->flags);
1833				sysfs_notify_dirent_safe(
1834					rdev->sysfs_state);
1835			}
1836		}
1837		if (rdev
1838		    && rdev->recovery_offset == MaxSector
1839		    && !test_bit(Faulty, &rdev->flags)
1840		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1841			count++;
1842			sysfs_notify_dirent_safe(rdev->sysfs_state);
1843		}
1844	}
1845	mddev->degraded -= count;
1846	spin_unlock_irqrestore(&conf->device_lock, flags);
1847
1848	print_conf(conf);
1849	return count;
1850}
1851
1852static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
1853			   bool replacement)
1854{
1855	struct raid1_info *info = conf->mirrors + disk;
1856
1857	if (replacement)
1858		info += conf->raid_disks;
1859
1860	if (info->rdev)
1861		return false;
1862
1863	if (bdev_nonrot(rdev->bdev)) {
1864		set_bit(Nonrot, &rdev->flags);
1865		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
1866	}
1867
1868	rdev->raid_disk = disk;
1869	info->head_position = 0;
1870	info->seq_start = MaxSector;
1871	WRITE_ONCE(info->rdev, rdev);
1872
1873	return true;
1874}
1875
1876static bool raid1_remove_conf(struct r1conf *conf, int disk)
1877{
1878	struct raid1_info *info = conf->mirrors + disk;
1879	struct md_rdev *rdev = info->rdev;
1880
1881	if (!rdev || test_bit(In_sync, &rdev->flags) ||
1882	    atomic_read(&rdev->nr_pending))
1883		return false;
1884
1885	/* Only remove non-faulty devices if recovery is not possible. */
1886	if (!test_bit(Faulty, &rdev->flags) &&
1887	    rdev->mddev->recovery_disabled != conf->recovery_disabled &&
1888	    rdev->mddev->degraded < conf->raid_disks)
1889		return false;
1890
1891	if (test_and_clear_bit(Nonrot, &rdev->flags))
1892		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
1893
1894	WRITE_ONCE(info->rdev, NULL);
1895	return true;
1896}
1897
1898static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1899{
1900	struct r1conf *conf = mddev->private;
1901	int err = -EEXIST;
1902	int mirror = 0, repl_slot = -1;
1903	struct raid1_info *p;
1904	int first = 0;
1905	int last = conf->raid_disks - 1;
1906
1907	if (mddev->recovery_disabled == conf->recovery_disabled)
1908		return -EBUSY;
1909
1910	if (md_integrity_add_rdev(rdev, mddev))
1911		return -ENXIO;
1912
1913	if (rdev->raid_disk >= 0)
1914		first = last = rdev->raid_disk;
1915
1916	/*
1917	 * find the disk ... but prefer rdev->saved_raid_disk
1918	 * if possible.
1919	 */
1920	if (rdev->saved_raid_disk >= 0 &&
1921	    rdev->saved_raid_disk >= first &&
1922	    rdev->saved_raid_disk < conf->raid_disks &&
1923	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1924		first = last = rdev->saved_raid_disk;
1925
1926	for (mirror = first; mirror <= last; mirror++) {
1927		p = conf->mirrors + mirror;
1928		if (!p->rdev) {
1929			err = mddev_stack_new_rdev(mddev, rdev);
1930			if (err)
1931				return err;
1932
1933			raid1_add_conf(conf, rdev, mirror, false);
 
 
1934			/* As all devices are equivalent, we don't need a full recovery
1935			 * if this was recently any drive of the array
1936			 */
1937			if (rdev->saved_raid_disk < 0)
1938				conf->fullsync = 1;
 
1939			break;
1940		}
1941		if (test_bit(WantReplacement, &p->rdev->flags) &&
1942		    p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1943			repl_slot = mirror;
 
 
 
 
 
 
 
 
1944	}
1945
1946	if (err && repl_slot >= 0) {
1947		/* Add this device as a replacement */
1948		clear_bit(In_sync, &rdev->flags);
1949		set_bit(Replacement, &rdev->flags);
1950		raid1_add_conf(conf, rdev, repl_slot, true);
1951		err = 0;
1952		conf->fullsync = 1;
1953	}
1954
1955	print_conf(conf);
1956	return err;
1957}
1958
1959static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1960{
1961	struct r1conf *conf = mddev->private;
1962	int err = 0;
1963	int number = rdev->raid_disk;
1964	struct raid1_info *p = conf->mirrors + number;
1965
1966	if (unlikely(number >= conf->raid_disks))
1967		goto abort;
1968
1969	if (rdev != p->rdev) {
1970		number += conf->raid_disks;
1971		p = conf->mirrors + number;
1972	}
1973
1974	print_conf(conf);
1975	if (rdev == p->rdev) {
1976		if (!raid1_remove_conf(conf, number)) {
 
1977			err = -EBUSY;
1978			goto abort;
1979		}
1980
1981		if (number < conf->raid_disks &&
1982		    conf->mirrors[conf->raid_disks + number].rdev) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1983			/* We just removed a device that is being replaced.
1984			 * Move down the replacement.  We drain all IO before
1985			 * doing this to avoid confusion.
1986			 */
1987			struct md_rdev *repl =
1988				conf->mirrors[conf->raid_disks + number].rdev;
1989			freeze_array(conf, 0);
1990			if (atomic_read(&repl->nr_pending)) {
1991				/* It means that some queued IO of retry_list
1992				 * hold repl. Thus, we cannot set replacement
1993				 * as NULL, avoiding rdev NULL pointer
1994				 * dereference in sync_request_write and
1995				 * handle_write_finished.
1996				 */
1997				err = -EBUSY;
1998				unfreeze_array(conf);
1999				goto abort;
2000			}
2001			clear_bit(Replacement, &repl->flags);
2002			WRITE_ONCE(p->rdev, repl);
2003			conf->mirrors[conf->raid_disks + number].rdev = NULL;
2004			unfreeze_array(conf);
2005		}
2006
2007		clear_bit(WantReplacement, &rdev->flags);
2008		err = md_integrity_register(mddev);
2009	}
2010abort:
2011
2012	print_conf(conf);
2013	return err;
2014}
2015
2016static void end_sync_read(struct bio *bio)
2017{
2018	struct r1bio *r1_bio = get_resync_r1bio(bio);
2019
2020	update_head_pos(r1_bio->read_disk, r1_bio);
2021
2022	/*
2023	 * we have read a block, now it needs to be re-written,
2024	 * or re-read if the read failed.
2025	 * We don't do much here, just schedule handling by raid1d
2026	 */
2027	if (!bio->bi_status)
2028		set_bit(R1BIO_Uptodate, &r1_bio->state);
2029
2030	if (atomic_dec_and_test(&r1_bio->remaining))
2031		reschedule_retry(r1_bio);
2032}
2033
2034static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
2035{
2036	sector_t sync_blocks = 0;
2037	sector_t s = r1_bio->sector;
2038	long sectors_to_go = r1_bio->sectors;
2039
2040	/* make sure these bits don't get cleared. */
2041	do {
2042		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
2043		s += sync_blocks;
2044		sectors_to_go -= sync_blocks;
2045	} while (sectors_to_go > 0);
2046}
2047
2048static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
2049{
2050	if (atomic_dec_and_test(&r1_bio->remaining)) {
2051		struct mddev *mddev = r1_bio->mddev;
2052		int s = r1_bio->sectors;
2053
2054		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2055		    test_bit(R1BIO_WriteError, &r1_bio->state))
2056			reschedule_retry(r1_bio);
2057		else {
2058			put_buf(r1_bio);
2059			md_done_sync(mddev, s, uptodate);
2060		}
2061	}
2062}
2063
2064static void end_sync_write(struct bio *bio)
2065{
2066	int uptodate = !bio->bi_status;
2067	struct r1bio *r1_bio = get_resync_r1bio(bio);
2068	struct mddev *mddev = r1_bio->mddev;
2069	struct r1conf *conf = mddev->private;
 
 
2070	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
2071
2072	if (!uptodate) {
2073		abort_sync_write(mddev, r1_bio);
2074		set_bit(WriteErrorSeen, &rdev->flags);
2075		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2076			set_bit(MD_RECOVERY_NEEDED, &
2077				mddev->recovery);
2078		set_bit(R1BIO_WriteError, &r1_bio->state);
2079	} else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
2080		   !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
2081				      r1_bio->sector, r1_bio->sectors)) {
 
 
 
 
2082		set_bit(R1BIO_MadeGood, &r1_bio->state);
2083	}
2084
2085	put_sync_write_buf(r1_bio, uptodate);
2086}
2087
2088static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
2089			   int sectors, struct page *page, blk_opf_t rw)
2090{
2091	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2092		/* success */
2093		return 1;
2094	if (rw == REQ_OP_WRITE) {
2095		set_bit(WriteErrorSeen, &rdev->flags);
2096		if (!test_and_set_bit(WantReplacement,
2097				      &rdev->flags))
2098			set_bit(MD_RECOVERY_NEEDED, &
2099				rdev->mddev->recovery);
2100	}
2101	/* need to record an error - either for the block or the device */
2102	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2103		md_error(rdev->mddev, rdev);
2104	return 0;
2105}
2106
2107static int fix_sync_read_error(struct r1bio *r1_bio)
2108{
2109	/* Try some synchronous reads of other devices to get
2110	 * good data, much like with normal read errors.  Only
2111	 * read into the pages we already have so we don't
2112	 * need to re-issue the read request.
2113	 * We don't need to freeze the array, because being in an
2114	 * active sync request, there is no normal IO, and
2115	 * no overlapping syncs.
2116	 * We don't need to check is_badblock() again as we
2117	 * made sure that anything with a bad block in range
2118	 * will have bi_end_io clear.
2119	 */
2120	struct mddev *mddev = r1_bio->mddev;
2121	struct r1conf *conf = mddev->private;
2122	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2123	struct page **pages = get_resync_pages(bio)->pages;
2124	sector_t sect = r1_bio->sector;
2125	int sectors = r1_bio->sectors;
2126	int idx = 0;
2127	struct md_rdev *rdev;
2128
2129	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2130	if (test_bit(FailFast, &rdev->flags)) {
2131		/* Don't try recovering from here - just fail it
2132		 * ... unless it is the last working device of course */
2133		md_error(mddev, rdev);
2134		if (test_bit(Faulty, &rdev->flags))
2135			/* Don't try to read from here, but make sure
2136			 * put_buf does it's thing
2137			 */
2138			bio->bi_end_io = end_sync_write;
2139	}
2140
2141	while(sectors) {
2142		int s = sectors;
2143		int d = r1_bio->read_disk;
2144		int success = 0;
2145		int start;
2146
2147		if (s > (PAGE_SIZE>>9))
2148			s = PAGE_SIZE >> 9;
2149		do {
2150			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2151				/* No rcu protection needed here devices
2152				 * can only be removed when no resync is
2153				 * active, and resync is currently active
2154				 */
2155				rdev = conf->mirrors[d].rdev;
2156				if (sync_page_io(rdev, sect, s<<9,
2157						 pages[idx],
2158						 REQ_OP_READ, false)) {
2159					success = 1;
2160					break;
2161				}
2162			}
2163			d++;
2164			if (d == conf->raid_disks * 2)
2165				d = 0;
2166		} while (!success && d != r1_bio->read_disk);
2167
2168		if (!success) {
 
2169			int abort = 0;
2170			/* Cannot read from anywhere, this block is lost.
2171			 * Record a bad block on each device.  If that doesn't
2172			 * work just disable and interrupt the recovery.
2173			 * Don't fail devices as that won't really help.
2174			 */
2175			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2176					    mdname(mddev), bio->bi_bdev,
2177					    (unsigned long long)r1_bio->sector);
2178			for (d = 0; d < conf->raid_disks * 2; d++) {
2179				rdev = conf->mirrors[d].rdev;
2180				if (!rdev || test_bit(Faulty, &rdev->flags))
2181					continue;
2182				if (!rdev_set_badblocks(rdev, sect, s, 0))
2183					abort = 1;
2184			}
2185			if (abort) {
2186				conf->recovery_disabled =
2187					mddev->recovery_disabled;
2188				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2189				md_done_sync(mddev, r1_bio->sectors, 0);
2190				put_buf(r1_bio);
2191				return 0;
2192			}
2193			/* Try next page */
2194			sectors -= s;
2195			sect += s;
2196			idx++;
2197			continue;
2198		}
2199
2200		start = d;
2201		/* write it back and re-read */
2202		while (d != r1_bio->read_disk) {
2203			if (d == 0)
2204				d = conf->raid_disks * 2;
2205			d--;
2206			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2207				continue;
2208			rdev = conf->mirrors[d].rdev;
2209			if (r1_sync_page_io(rdev, sect, s,
2210					    pages[idx],
2211					    REQ_OP_WRITE) == 0) {
2212				r1_bio->bios[d]->bi_end_io = NULL;
2213				rdev_dec_pending(rdev, mddev);
2214			}
2215		}
2216		d = start;
2217		while (d != r1_bio->read_disk) {
2218			if (d == 0)
2219				d = conf->raid_disks * 2;
2220			d--;
2221			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2222				continue;
2223			rdev = conf->mirrors[d].rdev;
2224			if (r1_sync_page_io(rdev, sect, s,
2225					    pages[idx],
2226					    REQ_OP_READ) != 0)
2227				atomic_add(s, &rdev->corrected_errors);
2228		}
2229		sectors -= s;
2230		sect += s;
2231		idx ++;
2232	}
2233	set_bit(R1BIO_Uptodate, &r1_bio->state);
2234	bio->bi_status = 0;
2235	return 1;
2236}
2237
2238static void process_checks(struct r1bio *r1_bio)
2239{
2240	/* We have read all readable devices.  If we haven't
2241	 * got the block, then there is no hope left.
2242	 * If we have, then we want to do a comparison
2243	 * and skip the write if everything is the same.
2244	 * If any blocks failed to read, then we need to
2245	 * attempt an over-write
2246	 */
2247	struct mddev *mddev = r1_bio->mddev;
2248	struct r1conf *conf = mddev->private;
2249	int primary;
2250	int i;
2251	int vcnt;
2252
2253	/* Fix variable parts of all bios */
2254	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2255	for (i = 0; i < conf->raid_disks * 2; i++) {
2256		blk_status_t status;
2257		struct bio *b = r1_bio->bios[i];
2258		struct resync_pages *rp = get_resync_pages(b);
2259		if (b->bi_end_io != end_sync_read)
2260			continue;
2261		/* fixup the bio for reuse, but preserve errno */
2262		status = b->bi_status;
2263		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2264		b->bi_status = status;
2265		b->bi_iter.bi_sector = r1_bio->sector +
2266			conf->mirrors[i].rdev->data_offset;
 
2267		b->bi_end_io = end_sync_read;
2268		rp->raid_bio = r1_bio;
2269		b->bi_private = rp;
2270
2271		/* initialize bvec table again */
2272		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2273	}
2274	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2275		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2276		    !r1_bio->bios[primary]->bi_status) {
2277			r1_bio->bios[primary]->bi_end_io = NULL;
2278			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2279			break;
2280		}
2281	r1_bio->read_disk = primary;
2282	for (i = 0; i < conf->raid_disks * 2; i++) {
2283		int j = 0;
2284		struct bio *pbio = r1_bio->bios[primary];
2285		struct bio *sbio = r1_bio->bios[i];
2286		blk_status_t status = sbio->bi_status;
2287		struct page **ppages = get_resync_pages(pbio)->pages;
2288		struct page **spages = get_resync_pages(sbio)->pages;
2289		struct bio_vec *bi;
2290		int page_len[RESYNC_PAGES] = { 0 };
2291		struct bvec_iter_all iter_all;
2292
2293		if (sbio->bi_end_io != end_sync_read)
2294			continue;
2295		/* Now we can 'fixup' the error value */
2296		sbio->bi_status = 0;
2297
2298		bio_for_each_segment_all(bi, sbio, iter_all)
2299			page_len[j++] = bi->bv_len;
2300
2301		if (!status) {
2302			for (j = vcnt; j-- ; ) {
2303				if (memcmp(page_address(ppages[j]),
2304					   page_address(spages[j]),
2305					   page_len[j]))
2306					break;
2307			}
2308		} else
2309			j = 0;
2310		if (j >= 0)
2311			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2312		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2313			      && !status)) {
2314			/* No need to write to this device. */
2315			sbio->bi_end_io = NULL;
2316			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2317			continue;
2318		}
2319
2320		bio_copy_data(sbio, pbio);
2321	}
2322}
2323
2324static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2325{
2326	struct r1conf *conf = mddev->private;
2327	int i;
2328	int disks = conf->raid_disks * 2;
2329	struct bio *wbio;
2330
2331	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2332		/* ouch - failed to read all of that. */
2333		if (!fix_sync_read_error(r1_bio))
2334			return;
2335
2336	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2337		process_checks(r1_bio);
2338
2339	/*
2340	 * schedule writes
2341	 */
2342	atomic_set(&r1_bio->remaining, 1);
2343	for (i = 0; i < disks ; i++) {
2344		wbio = r1_bio->bios[i];
2345		if (wbio->bi_end_io == NULL ||
2346		    (wbio->bi_end_io == end_sync_read &&
2347		     (i == r1_bio->read_disk ||
2348		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2349			continue;
2350		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2351			abort_sync_write(mddev, r1_bio);
2352			continue;
2353		}
2354
2355		wbio->bi_opf = REQ_OP_WRITE;
2356		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2357			wbio->bi_opf |= MD_FAILFAST;
2358
2359		wbio->bi_end_io = end_sync_write;
2360		atomic_inc(&r1_bio->remaining);
2361		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2362
2363		submit_bio_noacct(wbio);
2364	}
2365
2366	put_sync_write_buf(r1_bio, 1);
2367}
2368
2369/*
2370 * This is a kernel thread which:
2371 *
2372 *	1.	Retries failed read operations on working mirrors.
2373 *	2.	Updates the raid superblock when problems encounter.
2374 *	3.	Performs writes following reads for array synchronising.
2375 */
2376
2377static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
 
2378{
2379	sector_t sect = r1_bio->sector;
2380	int sectors = r1_bio->sectors;
2381	int read_disk = r1_bio->read_disk;
2382	struct mddev *mddev = conf->mddev;
2383	struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2384
2385	if (exceed_read_errors(mddev, rdev)) {
2386		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2387		return;
2388	}
2389
2390	while(sectors) {
2391		int s = sectors;
2392		int d = read_disk;
2393		int success = 0;
2394		int start;
 
2395
2396		if (s > (PAGE_SIZE>>9))
2397			s = PAGE_SIZE >> 9;
2398
2399		do {
2400			rdev = conf->mirrors[d].rdev;
 
 
 
 
2401			if (rdev &&
2402			    (test_bit(In_sync, &rdev->flags) ||
2403			     (!test_bit(Faulty, &rdev->flags) &&
2404			      rdev->recovery_offset >= sect + s)) &&
2405			    rdev_has_badblock(rdev, sect, s) == 0) {
 
2406				atomic_inc(&rdev->nr_pending);
 
2407				if (sync_page_io(rdev, sect, s<<9,
2408					 conf->tmppage, REQ_OP_READ, false))
2409					success = 1;
2410				rdev_dec_pending(rdev, mddev);
2411				if (success)
2412					break;
2413			}
2414
2415			d++;
2416			if (d == conf->raid_disks * 2)
2417				d = 0;
2418		} while (d != read_disk);
2419
2420		if (!success) {
2421			/* Cannot read from anywhere - mark it bad */
2422			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2423			if (!rdev_set_badblocks(rdev, sect, s, 0))
2424				md_error(mddev, rdev);
2425			break;
2426		}
2427		/* write it back and re-read */
2428		start = d;
2429		while (d != read_disk) {
2430			if (d==0)
2431				d = conf->raid_disks * 2;
2432			d--;
2433			rdev = conf->mirrors[d].rdev;
 
2434			if (rdev &&
2435			    !test_bit(Faulty, &rdev->flags)) {
2436				atomic_inc(&rdev->nr_pending);
 
2437				r1_sync_page_io(rdev, sect, s,
2438						conf->tmppage, REQ_OP_WRITE);
2439				rdev_dec_pending(rdev, mddev);
2440			}
 
2441		}
2442		d = start;
2443		while (d != read_disk) {
 
2444			if (d==0)
2445				d = conf->raid_disks * 2;
2446			d--;
2447			rdev = conf->mirrors[d].rdev;
 
2448			if (rdev &&
2449			    !test_bit(Faulty, &rdev->flags)) {
2450				atomic_inc(&rdev->nr_pending);
 
2451				if (r1_sync_page_io(rdev, sect, s,
2452						conf->tmppage, REQ_OP_READ)) {
2453					atomic_add(s, &rdev->corrected_errors);
2454					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2455						mdname(mddev), s,
2456						(unsigned long long)(sect +
2457								     rdev->data_offset),
2458						rdev->bdev);
2459				}
2460				rdev_dec_pending(rdev, mddev);
2461			}
 
2462		}
2463		sectors -= s;
2464		sect += s;
2465	}
2466}
2467
2468static int narrow_write_error(struct r1bio *r1_bio, int i)
2469{
2470	struct mddev *mddev = r1_bio->mddev;
2471	struct r1conf *conf = mddev->private;
2472	struct md_rdev *rdev = conf->mirrors[i].rdev;
2473
2474	/* bio has the data to be written to device 'i' where
2475	 * we just recently had a write error.
2476	 * We repeatedly clone the bio and trim down to one block,
2477	 * then try the write.  Where the write fails we record
2478	 * a bad block.
2479	 * It is conceivable that the bio doesn't exactly align with
2480	 * blocks.  We must handle this somehow.
2481	 *
2482	 * We currently own a reference on the rdev.
2483	 */
2484
2485	int block_sectors;
2486	sector_t sector;
2487	int sectors;
2488	int sect_to_write = r1_bio->sectors;
2489	int ok = 1;
2490
2491	if (rdev->badblocks.shift < 0)
2492		return 0;
2493
2494	block_sectors = roundup(1 << rdev->badblocks.shift,
2495				bdev_logical_block_size(rdev->bdev) >> 9);
2496	sector = r1_bio->sector;
2497	sectors = ((sector + block_sectors)
2498		   & ~(sector_t)(block_sectors - 1))
2499		- sector;
2500
2501	while (sect_to_write) {
2502		struct bio *wbio;
2503		if (sectors > sect_to_write)
2504			sectors = sect_to_write;
2505		/* Write at 'sector' for 'sectors'*/
2506
2507		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2508			wbio = bio_alloc_clone(rdev->bdev,
2509					       r1_bio->behind_master_bio,
2510					       GFP_NOIO, &mddev->bio_set);
2511		} else {
2512			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2513					       GFP_NOIO, &mddev->bio_set);
2514		}
2515
2516		wbio->bi_opf = REQ_OP_WRITE;
2517		wbio->bi_iter.bi_sector = r1_bio->sector;
2518		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2519
2520		bio_trim(wbio, sector - r1_bio->sector, sectors);
2521		wbio->bi_iter.bi_sector += rdev->data_offset;
 
2522
2523		if (submit_bio_wait(wbio) < 0)
2524			/* failure! */
2525			ok = rdev_set_badblocks(rdev, sector,
2526						sectors, 0)
2527				&& ok;
2528
2529		bio_put(wbio);
2530		sect_to_write -= sectors;
2531		sector += sectors;
2532		sectors = block_sectors;
2533	}
2534	return ok;
2535}
2536
2537static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2538{
2539	int m;
2540	int s = r1_bio->sectors;
2541	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2542		struct md_rdev *rdev = conf->mirrors[m].rdev;
2543		struct bio *bio = r1_bio->bios[m];
2544		if (bio->bi_end_io == NULL)
2545			continue;
2546		if (!bio->bi_status &&
2547		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2548			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2549		}
2550		if (bio->bi_status &&
2551		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2552			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2553				md_error(conf->mddev, rdev);
2554		}
2555	}
2556	put_buf(r1_bio);
2557	md_done_sync(conf->mddev, s, 1);
2558}
2559
2560static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2561{
2562	int m, idx;
2563	bool fail = false;
2564
2565	for (m = 0; m < conf->raid_disks * 2 ; m++)
2566		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2567			struct md_rdev *rdev = conf->mirrors[m].rdev;
2568			rdev_clear_badblocks(rdev,
2569					     r1_bio->sector,
2570					     r1_bio->sectors, 0);
2571			rdev_dec_pending(rdev, conf->mddev);
2572		} else if (r1_bio->bios[m] != NULL) {
2573			/* This drive got a write error.  We need to
2574			 * narrow down and record precise write
2575			 * errors.
2576			 */
2577			fail = true;
2578			if (!narrow_write_error(r1_bio, m)) {
2579				md_error(conf->mddev,
2580					 conf->mirrors[m].rdev);
2581				/* an I/O failed, we can't clear the bitmap */
2582				set_bit(R1BIO_Degraded, &r1_bio->state);
2583			}
2584			rdev_dec_pending(conf->mirrors[m].rdev,
2585					 conf->mddev);
2586		}
2587	if (fail) {
2588		spin_lock_irq(&conf->device_lock);
2589		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2590		idx = sector_to_idx(r1_bio->sector);
2591		atomic_inc(&conf->nr_queued[idx]);
2592		spin_unlock_irq(&conf->device_lock);
2593		/*
2594		 * In case freeze_array() is waiting for condition
2595		 * get_unqueued_pending() == extra to be true.
2596		 */
2597		wake_up(&conf->wait_barrier);
2598		md_wakeup_thread(conf->mddev->thread);
2599	} else {
2600		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2601			close_write(r1_bio);
2602		raid_end_bio_io(r1_bio);
2603	}
2604}
2605
2606static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2607{
2608	struct mddev *mddev = conf->mddev;
2609	struct bio *bio;
2610	struct md_rdev *rdev;
2611	sector_t sector;
2612
2613	clear_bit(R1BIO_ReadError, &r1_bio->state);
2614	/* we got a read error. Maybe the drive is bad.  Maybe just
2615	 * the block and we can fix it.
2616	 * We freeze all other IO, and try reading the block from
2617	 * other devices.  When we find one, we re-write
2618	 * and check it that fixes the read error.
2619	 * This is all done synchronously while the array is
2620	 * frozen
2621	 */
2622
2623	bio = r1_bio->bios[r1_bio->read_disk];
2624	bio_put(bio);
2625	r1_bio->bios[r1_bio->read_disk] = NULL;
2626
2627	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2628	if (mddev->ro == 0
2629	    && !test_bit(FailFast, &rdev->flags)) {
2630		freeze_array(conf, 1);
2631		fix_read_error(conf, r1_bio);
 
2632		unfreeze_array(conf);
2633	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2634		md_error(mddev, rdev);
2635	} else {
2636		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2637	}
2638
2639	rdev_dec_pending(rdev, conf->mddev);
2640	sector = r1_bio->sector;
2641	bio = r1_bio->master_bio;
2642
2643	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2644	r1_bio->state = 0;
2645	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2646	allow_barrier(conf, sector);
2647}
2648
2649static void raid1d(struct md_thread *thread)
2650{
2651	struct mddev *mddev = thread->mddev;
2652	struct r1bio *r1_bio;
2653	unsigned long flags;
2654	struct r1conf *conf = mddev->private;
2655	struct list_head *head = &conf->retry_list;
2656	struct blk_plug plug;
2657	int idx;
2658
2659	md_check_recovery(mddev);
2660
2661	if (!list_empty_careful(&conf->bio_end_io_list) &&
2662	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2663		LIST_HEAD(tmp);
2664		spin_lock_irqsave(&conf->device_lock, flags);
2665		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2666			list_splice_init(&conf->bio_end_io_list, &tmp);
2667		spin_unlock_irqrestore(&conf->device_lock, flags);
2668		while (!list_empty(&tmp)) {
2669			r1_bio = list_first_entry(&tmp, struct r1bio,
2670						  retry_list);
2671			list_del(&r1_bio->retry_list);
2672			idx = sector_to_idx(r1_bio->sector);
2673			atomic_dec(&conf->nr_queued[idx]);
2674			if (mddev->degraded)
2675				set_bit(R1BIO_Degraded, &r1_bio->state);
2676			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2677				close_write(r1_bio);
2678			raid_end_bio_io(r1_bio);
2679		}
2680	}
2681
2682	blk_start_plug(&plug);
2683	for (;;) {
2684
2685		flush_pending_writes(conf);
2686
2687		spin_lock_irqsave(&conf->device_lock, flags);
2688		if (list_empty(head)) {
2689			spin_unlock_irqrestore(&conf->device_lock, flags);
2690			break;
2691		}
2692		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2693		list_del(head->prev);
2694		idx = sector_to_idx(r1_bio->sector);
2695		atomic_dec(&conf->nr_queued[idx]);
2696		spin_unlock_irqrestore(&conf->device_lock, flags);
2697
2698		mddev = r1_bio->mddev;
2699		conf = mddev->private;
2700		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2701			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2702			    test_bit(R1BIO_WriteError, &r1_bio->state))
2703				handle_sync_write_finished(conf, r1_bio);
2704			else
2705				sync_request_write(mddev, r1_bio);
2706		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2707			   test_bit(R1BIO_WriteError, &r1_bio->state))
2708			handle_write_finished(conf, r1_bio);
2709		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2710			handle_read_error(conf, r1_bio);
2711		else
2712			WARN_ON_ONCE(1);
2713
2714		cond_resched();
2715		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2716			md_check_recovery(mddev);
2717	}
2718	blk_finish_plug(&plug);
2719}
2720
2721static int init_resync(struct r1conf *conf)
2722{
2723	int buffs;
2724
2725	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2726	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2727
2728	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2729			    r1buf_pool_free, conf->poolinfo);
2730}
2731
2732static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2733{
2734	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2735	struct resync_pages *rps;
2736	struct bio *bio;
2737	int i;
2738
2739	for (i = conf->poolinfo->raid_disks; i--; ) {
2740		bio = r1bio->bios[i];
2741		rps = bio->bi_private;
2742		bio_reset(bio, NULL, 0);
2743		bio->bi_private = rps;
2744	}
2745	r1bio->master_bio = NULL;
2746	return r1bio;
2747}
2748
2749/*
2750 * perform a "sync" on one "block"
2751 *
2752 * We need to make sure that no normal I/O request - particularly write
2753 * requests - conflict with active sync requests.
2754 *
2755 * This is achieved by tracking pending requests and a 'barrier' concept
2756 * that can be installed to exclude normal IO requests.
2757 */
2758
2759static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2760				   int *skipped)
2761{
2762	struct r1conf *conf = mddev->private;
2763	struct r1bio *r1_bio;
2764	struct bio *bio;
2765	sector_t max_sector, nr_sectors;
2766	int disk = -1;
2767	int i;
2768	int wonly = -1;
2769	int write_targets = 0, read_targets = 0;
2770	sector_t sync_blocks;
2771	int still_degraded = 0;
2772	int good_sectors = RESYNC_SECTORS;
2773	int min_bad = 0; /* number of sectors that are bad in all devices */
2774	int idx = sector_to_idx(sector_nr);
2775	int page_idx = 0;
2776
2777	if (!mempool_initialized(&conf->r1buf_pool))
2778		if (init_resync(conf))
2779			return 0;
2780
2781	max_sector = mddev->dev_sectors;
2782	if (sector_nr >= max_sector) {
2783		/* If we aborted, we need to abort the
2784		 * sync on the 'current' bitmap chunk (there will
2785		 * only be one in raid1 resync.
2786		 * We can find the current addess in mddev->curr_resync
2787		 */
2788		if (mddev->curr_resync < max_sector) /* aborted */
2789			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2790					   &sync_blocks, 1);
2791		else /* completed sync */
2792			conf->fullsync = 0;
2793
2794		md_bitmap_close_sync(mddev->bitmap);
2795		close_sync(conf);
2796
2797		if (mddev_is_clustered(mddev)) {
2798			conf->cluster_sync_low = 0;
2799			conf->cluster_sync_high = 0;
2800		}
2801		return 0;
2802	}
2803
2804	if (mddev->bitmap == NULL &&
2805	    mddev->recovery_cp == MaxSector &&
2806	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2807	    conf->fullsync == 0) {
2808		*skipped = 1;
2809		return max_sector - sector_nr;
2810	}
2811	/* before building a request, check if we can skip these blocks..
2812	 * This call the bitmap_start_sync doesn't actually record anything
2813	 */
2814	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2815	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2816		/* We can skip this block, and probably several more */
2817		*skipped = 1;
2818		return sync_blocks;
2819	}
2820
2821	/*
2822	 * If there is non-resync activity waiting for a turn, then let it
2823	 * though before starting on this new sync request.
2824	 */
2825	if (atomic_read(&conf->nr_waiting[idx]))
2826		schedule_timeout_uninterruptible(1);
2827
2828	/* we are incrementing sector_nr below. To be safe, we check against
2829	 * sector_nr + two times RESYNC_SECTORS
2830	 */
2831
2832	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2833		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2834
2835
2836	if (raise_barrier(conf, sector_nr))
2837		return 0;
2838
2839	r1_bio = raid1_alloc_init_r1buf(conf);
2840
 
2841	/*
2842	 * If we get a correctably read error during resync or recovery,
2843	 * we might want to read from a different device.  So we
2844	 * flag all drives that could conceivably be read from for READ,
2845	 * and any others (which will be non-In_sync devices) for WRITE.
2846	 * If a read fails, we try reading from something else for which READ
2847	 * is OK.
2848	 */
2849
2850	r1_bio->mddev = mddev;
2851	r1_bio->sector = sector_nr;
2852	r1_bio->state = 0;
2853	set_bit(R1BIO_IsSync, &r1_bio->state);
2854	/* make sure good_sectors won't go across barrier unit boundary */
2855	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2856
2857	for (i = 0; i < conf->raid_disks * 2; i++) {
2858		struct md_rdev *rdev;
2859		bio = r1_bio->bios[i];
2860
2861		rdev = conf->mirrors[i].rdev;
2862		if (rdev == NULL ||
2863		    test_bit(Faulty, &rdev->flags)) {
2864			if (i < conf->raid_disks)
2865				still_degraded = 1;
2866		} else if (!test_bit(In_sync, &rdev->flags)) {
2867			bio->bi_opf = REQ_OP_WRITE;
2868			bio->bi_end_io = end_sync_write;
2869			write_targets ++;
2870		} else {
2871			/* may need to read from here */
2872			sector_t first_bad = MaxSector;
2873			int bad_sectors;
2874
2875			if (is_badblock(rdev, sector_nr, good_sectors,
2876					&first_bad, &bad_sectors)) {
2877				if (first_bad > sector_nr)
2878					good_sectors = first_bad - sector_nr;
2879				else {
2880					bad_sectors -= (sector_nr - first_bad);
2881					if (min_bad == 0 ||
2882					    min_bad > bad_sectors)
2883						min_bad = bad_sectors;
2884				}
2885			}
2886			if (sector_nr < first_bad) {
2887				if (test_bit(WriteMostly, &rdev->flags)) {
2888					if (wonly < 0)
2889						wonly = i;
2890				} else {
2891					if (disk < 0)
2892						disk = i;
2893				}
2894				bio->bi_opf = REQ_OP_READ;
2895				bio->bi_end_io = end_sync_read;
2896				read_targets++;
2897			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2898				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2899				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2900				/*
2901				 * The device is suitable for reading (InSync),
2902				 * but has bad block(s) here. Let's try to correct them,
2903				 * if we are doing resync or repair. Otherwise, leave
2904				 * this device alone for this sync request.
2905				 */
2906				bio->bi_opf = REQ_OP_WRITE;
2907				bio->bi_end_io = end_sync_write;
2908				write_targets++;
2909			}
2910		}
2911		if (rdev && bio->bi_end_io) {
2912			atomic_inc(&rdev->nr_pending);
2913			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2914			bio_set_dev(bio, rdev->bdev);
2915			if (test_bit(FailFast, &rdev->flags))
2916				bio->bi_opf |= MD_FAILFAST;
2917		}
2918	}
 
2919	if (disk < 0)
2920		disk = wonly;
2921	r1_bio->read_disk = disk;
2922
2923	if (read_targets == 0 && min_bad > 0) {
2924		/* These sectors are bad on all InSync devices, so we
2925		 * need to mark them bad on all write targets
2926		 */
2927		int ok = 1;
2928		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2929			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2930				struct md_rdev *rdev = conf->mirrors[i].rdev;
2931				ok = rdev_set_badblocks(rdev, sector_nr,
2932							min_bad, 0
2933					) && ok;
2934			}
2935		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2936		*skipped = 1;
2937		put_buf(r1_bio);
2938
2939		if (!ok) {
2940			/* Cannot record the badblocks, so need to
2941			 * abort the resync.
2942			 * If there are multiple read targets, could just
2943			 * fail the really bad ones ???
2944			 */
2945			conf->recovery_disabled = mddev->recovery_disabled;
2946			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2947			return 0;
2948		} else
2949			return min_bad;
2950
2951	}
2952	if (min_bad > 0 && min_bad < good_sectors) {
2953		/* only resync enough to reach the next bad->good
2954		 * transition */
2955		good_sectors = min_bad;
2956	}
2957
2958	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2959		/* extra read targets are also write targets */
2960		write_targets += read_targets-1;
2961
2962	if (write_targets == 0 || read_targets == 0) {
2963		/* There is nowhere to write, so all non-sync
2964		 * drives must be failed - so we are finished
2965		 */
2966		sector_t rv;
2967		if (min_bad > 0)
2968			max_sector = sector_nr + min_bad;
2969		rv = max_sector - sector_nr;
2970		*skipped = 1;
2971		put_buf(r1_bio);
2972		return rv;
2973	}
2974
2975	if (max_sector > mddev->resync_max)
2976		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2977	if (max_sector > sector_nr + good_sectors)
2978		max_sector = sector_nr + good_sectors;
2979	nr_sectors = 0;
2980	sync_blocks = 0;
2981	do {
2982		struct page *page;
2983		int len = PAGE_SIZE;
2984		if (sector_nr + (len>>9) > max_sector)
2985			len = (max_sector - sector_nr) << 9;
2986		if (len == 0)
2987			break;
2988		if (sync_blocks == 0) {
2989			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2990						  &sync_blocks, still_degraded) &&
2991			    !conf->fullsync &&
2992			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2993				break;
2994			if ((len >> 9) > sync_blocks)
2995				len = sync_blocks<<9;
2996		}
2997
2998		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2999			struct resync_pages *rp;
3000
3001			bio = r1_bio->bios[i];
3002			rp = get_resync_pages(bio);
3003			if (bio->bi_end_io) {
3004				page = resync_fetch_page(rp, page_idx);
3005
3006				/*
3007				 * won't fail because the vec table is big
3008				 * enough to hold all these pages
3009				 */
3010				__bio_add_page(bio, page, len, 0);
3011			}
3012		}
3013		nr_sectors += len>>9;
3014		sector_nr += len>>9;
3015		sync_blocks -= (len>>9);
3016	} while (++page_idx < RESYNC_PAGES);
3017
3018	r1_bio->sectors = nr_sectors;
3019
3020	if (mddev_is_clustered(mddev) &&
3021			conf->cluster_sync_high < sector_nr + nr_sectors) {
3022		conf->cluster_sync_low = mddev->curr_resync_completed;
3023		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
3024		/* Send resync message */
3025		md_cluster_ops->resync_info_update(mddev,
3026				conf->cluster_sync_low,
3027				conf->cluster_sync_high);
3028	}
3029
3030	/* For a user-requested sync, we read all readable devices and do a
3031	 * compare
3032	 */
3033	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3034		atomic_set(&r1_bio->remaining, read_targets);
3035		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
3036			bio = r1_bio->bios[i];
3037			if (bio->bi_end_io == end_sync_read) {
3038				read_targets--;
3039				md_sync_acct_bio(bio, nr_sectors);
3040				if (read_targets == 1)
3041					bio->bi_opf &= ~MD_FAILFAST;
3042				submit_bio_noacct(bio);
3043			}
3044		}
3045	} else {
3046		atomic_set(&r1_bio->remaining, 1);
3047		bio = r1_bio->bios[r1_bio->read_disk];
3048		md_sync_acct_bio(bio, nr_sectors);
3049		if (read_targets == 1)
3050			bio->bi_opf &= ~MD_FAILFAST;
3051		submit_bio_noacct(bio);
3052	}
3053	return nr_sectors;
3054}
3055
3056static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3057{
3058	if (sectors)
3059		return sectors;
3060
3061	return mddev->dev_sectors;
3062}
3063
3064static struct r1conf *setup_conf(struct mddev *mddev)
3065{
3066	struct r1conf *conf;
3067	int i;
3068	struct raid1_info *disk;
3069	struct md_rdev *rdev;
3070	int err = -ENOMEM;
3071
3072	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3073	if (!conf)
3074		goto abort;
3075
3076	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3077				   sizeof(atomic_t), GFP_KERNEL);
3078	if (!conf->nr_pending)
3079		goto abort;
3080
3081	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3082				   sizeof(atomic_t), GFP_KERNEL);
3083	if (!conf->nr_waiting)
3084		goto abort;
3085
3086	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3087				  sizeof(atomic_t), GFP_KERNEL);
3088	if (!conf->nr_queued)
3089		goto abort;
3090
3091	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3092				sizeof(atomic_t), GFP_KERNEL);
3093	if (!conf->barrier)
3094		goto abort;
3095
3096	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3097					    mddev->raid_disks, 2),
3098				GFP_KERNEL);
3099	if (!conf->mirrors)
3100		goto abort;
3101
3102	conf->tmppage = alloc_page(GFP_KERNEL);
3103	if (!conf->tmppage)
3104		goto abort;
3105
3106	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3107	if (!conf->poolinfo)
3108		goto abort;
3109	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3110	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3111			   rbio_pool_free, conf->poolinfo);
3112	if (err)
3113		goto abort;
3114
3115	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3116	if (err)
3117		goto abort;
3118
3119	conf->poolinfo->mddev = mddev;
3120
3121	err = -EINVAL;
3122	spin_lock_init(&conf->device_lock);
3123	conf->raid_disks = mddev->raid_disks;
3124	rdev_for_each(rdev, mddev) {
3125		int disk_idx = rdev->raid_disk;
3126
3127		if (disk_idx >= conf->raid_disks || disk_idx < 0)
3128			continue;
 
 
 
 
3129
3130		if (!raid1_add_conf(conf, rdev, disk_idx,
3131				    test_bit(Replacement, &rdev->flags)))
3132			goto abort;
 
 
 
3133	}
 
3134	conf->mddev = mddev;
3135	INIT_LIST_HEAD(&conf->retry_list);
3136	INIT_LIST_HEAD(&conf->bio_end_io_list);
3137
3138	spin_lock_init(&conf->resync_lock);
3139	init_waitqueue_head(&conf->wait_barrier);
3140
3141	bio_list_init(&conf->pending_bio_list);
 
3142	conf->recovery_disabled = mddev->recovery_disabled - 1;
3143
3144	err = -EIO;
3145	for (i = 0; i < conf->raid_disks * 2; i++) {
3146
3147		disk = conf->mirrors + i;
3148
3149		if (i < conf->raid_disks &&
3150		    disk[conf->raid_disks].rdev) {
3151			/* This slot has a replacement. */
3152			if (!disk->rdev) {
3153				/* No original, just make the replacement
3154				 * a recovering spare
3155				 */
3156				disk->rdev =
3157					disk[conf->raid_disks].rdev;
3158				disk[conf->raid_disks].rdev = NULL;
3159			} else if (!test_bit(In_sync, &disk->rdev->flags))
3160				/* Original is not in_sync - bad */
3161				goto abort;
3162		}
3163
3164		if (!disk->rdev ||
3165		    !test_bit(In_sync, &disk->rdev->flags)) {
3166			disk->head_position = 0;
3167			if (disk->rdev &&
3168			    (disk->rdev->saved_raid_disk < 0))
3169				conf->fullsync = 1;
3170		}
3171	}
3172
3173	err = -ENOMEM;
3174	rcu_assign_pointer(conf->thread,
3175			   md_register_thread(raid1d, mddev, "raid1"));
3176	if (!conf->thread)
3177		goto abort;
3178
3179	return conf;
3180
3181 abort:
3182	if (conf) {
3183		mempool_exit(&conf->r1bio_pool);
3184		kfree(conf->mirrors);
3185		safe_put_page(conf->tmppage);
3186		kfree(conf->poolinfo);
3187		kfree(conf->nr_pending);
3188		kfree(conf->nr_waiting);
3189		kfree(conf->nr_queued);
3190		kfree(conf->barrier);
3191		bioset_exit(&conf->bio_split);
3192		kfree(conf);
3193	}
3194	return ERR_PTR(err);
3195}
3196
3197static int raid1_set_limits(struct mddev *mddev)
3198{
3199	struct queue_limits lim;
3200
3201	blk_set_stacking_limits(&lim);
3202	lim.max_write_zeroes_sectors = 0;
3203	mddev_stack_rdev_limits(mddev, &lim);
3204	return queue_limits_set(mddev->gendisk->queue, &lim);
3205}
3206
3207static void raid1_free(struct mddev *mddev, void *priv);
3208static int raid1_run(struct mddev *mddev)
3209{
3210	struct r1conf *conf;
3211	int i;
 
3212	int ret;
 
3213
3214	if (mddev->level != 1) {
3215		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3216			mdname(mddev), mddev->level);
3217		return -EIO;
3218	}
3219	if (mddev->reshape_position != MaxSector) {
3220		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3221			mdname(mddev));
3222		return -EIO;
3223	}
3224
 
3225	/*
3226	 * copy the already verified devices into our private RAID1
3227	 * bookkeeping area. [whatever we allocate in run(),
3228	 * should be freed in raid1_free()]
3229	 */
3230	if (mddev->private == NULL)
3231		conf = setup_conf(mddev);
3232	else
3233		conf = mddev->private;
3234
3235	if (IS_ERR(conf))
3236		return PTR_ERR(conf);
3237
3238	if (!mddev_is_dm(mddev)) {
3239		ret = raid1_set_limits(mddev);
3240		if (ret)
3241			goto abort;
 
 
 
 
 
 
 
 
3242	}
3243
3244	mddev->degraded = 0;
3245	for (i = 0; i < conf->raid_disks; i++)
3246		if (conf->mirrors[i].rdev == NULL ||
3247		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3248		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3249			mddev->degraded++;
3250	/*
3251	 * RAID1 needs at least one disk in active
3252	 */
3253	if (conf->raid_disks - mddev->degraded < 1) {
3254		md_unregister_thread(mddev, &conf->thread);
3255		ret = -EINVAL;
3256		goto abort;
3257	}
3258
3259	if (conf->raid_disks - mddev->degraded == 1)
3260		mddev->recovery_cp = MaxSector;
3261
3262	if (mddev->recovery_cp != MaxSector)
3263		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3264			mdname(mddev));
3265	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3266		mdname(mddev), mddev->raid_disks - mddev->degraded,
3267		mddev->raid_disks);
3268
3269	/*
3270	 * Ok, everything is just fine now
3271	 */
3272	rcu_assign_pointer(mddev->thread, conf->thread);
3273	rcu_assign_pointer(conf->thread, NULL);
3274	mddev->private = conf;
3275	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3276
3277	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3278
 
 
 
 
 
 
 
 
 
3279	ret = md_integrity_register(mddev);
3280	if (ret) {
3281		md_unregister_thread(mddev, &mddev->thread);
3282		goto abort;
3283	}
3284	return 0;
3285
3286abort:
3287	raid1_free(mddev, conf);
3288	return ret;
3289}
3290
3291static void raid1_free(struct mddev *mddev, void *priv)
3292{
3293	struct r1conf *conf = priv;
3294
3295	mempool_exit(&conf->r1bio_pool);
3296	kfree(conf->mirrors);
3297	safe_put_page(conf->tmppage);
3298	kfree(conf->poolinfo);
3299	kfree(conf->nr_pending);
3300	kfree(conf->nr_waiting);
3301	kfree(conf->nr_queued);
3302	kfree(conf->barrier);
3303	bioset_exit(&conf->bio_split);
3304	kfree(conf);
3305}
3306
3307static int raid1_resize(struct mddev *mddev, sector_t sectors)
3308{
3309	/* no resync is happening, and there is enough space
3310	 * on all devices, so we can resize.
3311	 * We need to make sure resync covers any new space.
3312	 * If the array is shrinking we should possibly wait until
3313	 * any io in the removed space completes, but it hardly seems
3314	 * worth it.
3315	 */
3316	sector_t newsize = raid1_size(mddev, sectors, 0);
3317	if (mddev->external_size &&
3318	    mddev->array_sectors > newsize)
3319		return -EINVAL;
3320	if (mddev->bitmap) {
3321		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3322		if (ret)
3323			return ret;
3324	}
3325	md_set_array_sectors(mddev, newsize);
3326	if (sectors > mddev->dev_sectors &&
3327	    mddev->recovery_cp > mddev->dev_sectors) {
3328		mddev->recovery_cp = mddev->dev_sectors;
3329		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3330	}
3331	mddev->dev_sectors = sectors;
3332	mddev->resync_max_sectors = sectors;
3333	return 0;
3334}
3335
3336static int raid1_reshape(struct mddev *mddev)
3337{
3338	/* We need to:
3339	 * 1/ resize the r1bio_pool
3340	 * 2/ resize conf->mirrors
3341	 *
3342	 * We allocate a new r1bio_pool if we can.
3343	 * Then raise a device barrier and wait until all IO stops.
3344	 * Then resize conf->mirrors and swap in the new r1bio pool.
3345	 *
3346	 * At the same time, we "pack" the devices so that all the missing
3347	 * devices have the higher raid_disk numbers.
3348	 */
3349	mempool_t newpool, oldpool;
3350	struct pool_info *newpoolinfo;
3351	struct raid1_info *newmirrors;
3352	struct r1conf *conf = mddev->private;
3353	int cnt, raid_disks;
3354	unsigned long flags;
3355	int d, d2;
3356	int ret;
3357
3358	memset(&newpool, 0, sizeof(newpool));
3359	memset(&oldpool, 0, sizeof(oldpool));
3360
3361	/* Cannot change chunk_size, layout, or level */
3362	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3363	    mddev->layout != mddev->new_layout ||
3364	    mddev->level != mddev->new_level) {
3365		mddev->new_chunk_sectors = mddev->chunk_sectors;
3366		mddev->new_layout = mddev->layout;
3367		mddev->new_level = mddev->level;
3368		return -EINVAL;
3369	}
3370
3371	if (!mddev_is_clustered(mddev))
3372		md_allow_write(mddev);
3373
3374	raid_disks = mddev->raid_disks + mddev->delta_disks;
3375
3376	if (raid_disks < conf->raid_disks) {
3377		cnt=0;
3378		for (d= 0; d < conf->raid_disks; d++)
3379			if (conf->mirrors[d].rdev)
3380				cnt++;
3381		if (cnt > raid_disks)
3382			return -EBUSY;
3383	}
3384
3385	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3386	if (!newpoolinfo)
3387		return -ENOMEM;
3388	newpoolinfo->mddev = mddev;
3389	newpoolinfo->raid_disks = raid_disks * 2;
3390
3391	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3392			   rbio_pool_free, newpoolinfo);
3393	if (ret) {
3394		kfree(newpoolinfo);
3395		return ret;
3396	}
3397	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3398					 raid_disks, 2),
3399			     GFP_KERNEL);
3400	if (!newmirrors) {
3401		kfree(newpoolinfo);
3402		mempool_exit(&newpool);
3403		return -ENOMEM;
3404	}
3405
3406	freeze_array(conf, 0);
3407
3408	/* ok, everything is stopped */
3409	oldpool = conf->r1bio_pool;
3410	conf->r1bio_pool = newpool;
3411
3412	for (d = d2 = 0; d < conf->raid_disks; d++) {
3413		struct md_rdev *rdev = conf->mirrors[d].rdev;
3414		if (rdev && rdev->raid_disk != d2) {
3415			sysfs_unlink_rdev(mddev, rdev);
3416			rdev->raid_disk = d2;
3417			sysfs_unlink_rdev(mddev, rdev);
3418			if (sysfs_link_rdev(mddev, rdev))
3419				pr_warn("md/raid1:%s: cannot register rd%d\n",
3420					mdname(mddev), rdev->raid_disk);
3421		}
3422		if (rdev)
3423			newmirrors[d2++].rdev = rdev;
3424	}
3425	kfree(conf->mirrors);
3426	conf->mirrors = newmirrors;
3427	kfree(conf->poolinfo);
3428	conf->poolinfo = newpoolinfo;
3429
3430	spin_lock_irqsave(&conf->device_lock, flags);
3431	mddev->degraded += (raid_disks - conf->raid_disks);
3432	spin_unlock_irqrestore(&conf->device_lock, flags);
3433	conf->raid_disks = mddev->raid_disks = raid_disks;
3434	mddev->delta_disks = 0;
3435
3436	unfreeze_array(conf);
3437
3438	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3439	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3440	md_wakeup_thread(mddev->thread);
3441
3442	mempool_exit(&oldpool);
3443	return 0;
3444}
3445
3446static void raid1_quiesce(struct mddev *mddev, int quiesce)
3447{
3448	struct r1conf *conf = mddev->private;
3449
3450	if (quiesce)
3451		freeze_array(conf, 0);
3452	else
3453		unfreeze_array(conf);
3454}
3455
3456static void *raid1_takeover(struct mddev *mddev)
3457{
3458	/* raid1 can take over:
3459	 *  raid5 with 2 devices, any layout or chunk size
3460	 */
3461	if (mddev->level == 5 && mddev->raid_disks == 2) {
3462		struct r1conf *conf;
3463		mddev->new_level = 1;
3464		mddev->new_layout = 0;
3465		mddev->new_chunk_sectors = 0;
3466		conf = setup_conf(mddev);
3467		if (!IS_ERR(conf)) {
3468			/* Array must appear to be quiesced */
3469			conf->array_frozen = 1;
3470			mddev_clear_unsupported_flags(mddev,
3471				UNSUPPORTED_MDDEV_FLAGS);
3472		}
3473		return conf;
3474	}
3475	return ERR_PTR(-EINVAL);
3476}
3477
3478static struct md_personality raid1_personality =
3479{
3480	.name		= "raid1",
3481	.level		= 1,
3482	.owner		= THIS_MODULE,
3483	.make_request	= raid1_make_request,
3484	.run		= raid1_run,
3485	.free		= raid1_free,
3486	.status		= raid1_status,
3487	.error_handler	= raid1_error,
3488	.hot_add_disk	= raid1_add_disk,
3489	.hot_remove_disk= raid1_remove_disk,
3490	.spare_active	= raid1_spare_active,
3491	.sync_request	= raid1_sync_request,
3492	.resize		= raid1_resize,
3493	.size		= raid1_size,
3494	.check_reshape	= raid1_reshape,
3495	.quiesce	= raid1_quiesce,
3496	.takeover	= raid1_takeover,
 
3497};
3498
3499static int __init raid_init(void)
3500{
3501	return register_md_personality(&raid1_personality);
3502}
3503
3504static void raid_exit(void)
3505{
3506	unregister_md_personality(&raid1_personality);
3507}
3508
3509module_init(raid_init);
3510module_exit(raid_exit);
3511MODULE_LICENSE("GPL");
3512MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3513MODULE_ALIAS("md-personality-3"); /* RAID1 */
3514MODULE_ALIAS("md-raid1");
3515MODULE_ALIAS("md-level-1");