Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2016 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 DSI0/DSI1 module
   8 *
   9 * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
  10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
  11 * controller.
  12 *
  13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
  14 * while the compute module brings both DSI0 and DSI1 out.
  15 *
  16 * This driver has been tested for DSI1 video-mode display only
  17 * currently, with most of the information necessary for DSI0
  18 * hopefully present.
  19 */
  20
  21#include <linux/clk-provider.h>
  22#include <linux/clk.h>
  23#include <linux/completion.h>
  24#include <linux/component.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/dmaengine.h>
  27#include <linux/i2c.h>
  28#include <linux/io.h>
 
  29#include <linux/of_address.h>
  30#include <linux/of_platform.h>
  31#include <linux/pm_runtime.h>
  32
  33#include <drm/drm_atomic_helper.h>
 
  34#include <drm/drm_edid.h>
  35#include <drm/drm_mipi_dsi.h>
  36#include <drm/drm_of.h>
  37#include <drm/drm_panel.h>
  38#include <drm/drm_probe_helper.h>
 
  39
  40#include "vc4_drv.h"
  41#include "vc4_regs.h"
  42
  43#define DSI_CMD_FIFO_DEPTH  16
  44#define DSI_PIX_FIFO_DEPTH 256
  45#define DSI_PIX_FIFO_WIDTH   4
  46
  47#define DSI0_CTRL		0x00
  48
  49/* Command packet control. */
  50#define DSI0_TXPKT1C		0x04 /* AKA PKTC */
  51#define DSI1_TXPKT1C		0x04
  52# define DSI_TXPKT1C_TRIG_CMD_MASK	VC4_MASK(31, 24)
  53# define DSI_TXPKT1C_TRIG_CMD_SHIFT	24
  54# define DSI_TXPKT1C_CMD_REPEAT_MASK	VC4_MASK(23, 10)
  55# define DSI_TXPKT1C_CMD_REPEAT_SHIFT	10
  56
  57# define DSI_TXPKT1C_DISPLAY_NO_MASK	VC4_MASK(9, 8)
  58# define DSI_TXPKT1C_DISPLAY_NO_SHIFT	8
  59/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
  60# define DSI_TXPKT1C_DISPLAY_NO_SHORT		0
  61/* Primary display where cmdfifo provides part of the payload and
  62 * pixelvalve the rest.
  63 */
  64# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY		1
  65/* Secondary display where cmdfifo provides part of the payload and
  66 * pixfifo the rest.
  67 */
  68# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY	2
  69
  70# define DSI_TXPKT1C_CMD_TX_TIME_MASK	VC4_MASK(7, 6)
  71# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT	6
  72
  73# define DSI_TXPKT1C_CMD_CTRL_MASK	VC4_MASK(5, 4)
  74# define DSI_TXPKT1C_CMD_CTRL_SHIFT	4
  75/* Command only.  Uses TXPKT1H and DISPLAY_NO */
  76# define DSI_TXPKT1C_CMD_CTRL_TX	0
  77/* Command with BTA for either ack or read data. */
  78# define DSI_TXPKT1C_CMD_CTRL_RX	1
  79/* Trigger according to TRIG_CMD */
  80# define DSI_TXPKT1C_CMD_CTRL_TRIG	2
  81/* BTA alone for getting error status after a command, or a TE trigger
  82 * without a previous command.
  83 */
  84# define DSI_TXPKT1C_CMD_CTRL_BTA	3
  85
  86# define DSI_TXPKT1C_CMD_MODE_LP	BIT(3)
  87# define DSI_TXPKT1C_CMD_TYPE_LONG	BIT(2)
  88# define DSI_TXPKT1C_CMD_TE_EN		BIT(1)
  89# define DSI_TXPKT1C_CMD_EN		BIT(0)
  90
  91/* Command packet header. */
  92#define DSI0_TXPKT1H		0x08 /* AKA PKTH */
  93#define DSI1_TXPKT1H		0x08
  94# define DSI_TXPKT1H_BC_CMDFIFO_MASK	VC4_MASK(31, 24)
  95# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT	24
  96# define DSI_TXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
  97# define DSI_TXPKT1H_BC_PARAM_SHIFT	8
  98# define DSI_TXPKT1H_BC_DT_MASK		VC4_MASK(7, 0)
  99# define DSI_TXPKT1H_BC_DT_SHIFT	0
 100
 101#define DSI0_RXPKT1H		0x0c /* AKA RX1_PKTH */
 102#define DSI1_RXPKT1H		0x14
 103# define DSI_RXPKT1H_CRC_ERR		BIT(31)
 104# define DSI_RXPKT1H_DET_ERR		BIT(30)
 105# define DSI_RXPKT1H_ECC_ERR		BIT(29)
 106# define DSI_RXPKT1H_COR_ERR		BIT(28)
 107# define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
 108# define DSI_RXPKT1H_PKT_TYPE_LONG	BIT(24)
 109/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
 110# define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
 111# define DSI_RXPKT1H_BC_PARAM_SHIFT	8
 112/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
 113# define DSI_RXPKT1H_SHORT_1_MASK	VC4_MASK(23, 16)
 114# define DSI_RXPKT1H_SHORT_1_SHIFT	16
 115# define DSI_RXPKT1H_SHORT_0_MASK	VC4_MASK(15, 8)
 116# define DSI_RXPKT1H_SHORT_0_SHIFT	8
 117# define DSI_RXPKT1H_DT_LP_CMD_MASK	VC4_MASK(7, 0)
 118# define DSI_RXPKT1H_DT_LP_CMD_SHIFT	0
 119
 120#define DSI0_RXPKT2H		0x10 /* AKA RX2_PKTH */
 121#define DSI1_RXPKT2H		0x18
 122# define DSI_RXPKT1H_DET_ERR		BIT(30)
 123# define DSI_RXPKT1H_ECC_ERR		BIT(29)
 124# define DSI_RXPKT1H_COR_ERR		BIT(28)
 125# define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
 126# define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
 127# define DSI_RXPKT1H_BC_PARAM_SHIFT	8
 128# define DSI_RXPKT1H_DT_MASK		VC4_MASK(7, 0)
 129# define DSI_RXPKT1H_DT_SHIFT		0
 130
 131#define DSI0_TXPKT_CMD_FIFO	0x14 /* AKA CMD_DATAF */
 132#define DSI1_TXPKT_CMD_FIFO	0x1c
 133
 134#define DSI0_DISP0_CTRL		0x18
 135# define DSI_DISP0_PIX_CLK_DIV_MASK	VC4_MASK(21, 13)
 136# define DSI_DISP0_PIX_CLK_DIV_SHIFT	13
 137# define DSI_DISP0_LP_STOP_CTRL_MASK	VC4_MASK(12, 11)
 138# define DSI_DISP0_LP_STOP_CTRL_SHIFT	11
 139# define DSI_DISP0_LP_STOP_DISABLE	0
 140# define DSI_DISP0_LP_STOP_PERLINE	1
 141# define DSI_DISP0_LP_STOP_PERFRAME	2
 142
 143/* Transmit RGB pixels and null packets only during HACTIVE, instead
 144 * of going to LP-STOP.
 145 */
 146# define DSI_DISP_HACTIVE_NULL		BIT(10)
 147/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
 148# define DSI_DISP_VBLP_CTRL		BIT(9)
 149/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
 150# define DSI_DISP_HFP_CTRL		BIT(8)
 151/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
 152# define DSI_DISP_HBP_CTRL		BIT(7)
 153# define DSI_DISP0_CHANNEL_MASK		VC4_MASK(6, 5)
 154# define DSI_DISP0_CHANNEL_SHIFT	5
 155/* Enables end events for HSYNC/VSYNC, not just start events. */
 156# define DSI_DISP0_ST_END		BIT(4)
 157# define DSI_DISP0_PFORMAT_MASK		VC4_MASK(3, 2)
 158# define DSI_DISP0_PFORMAT_SHIFT	2
 159# define DSI_PFORMAT_RGB565		0
 160# define DSI_PFORMAT_RGB666_PACKED	1
 161# define DSI_PFORMAT_RGB666		2
 162# define DSI_PFORMAT_RGB888		3
 163/* Default is VIDEO mode. */
 164# define DSI_DISP0_COMMAND_MODE		BIT(1)
 165# define DSI_DISP0_ENABLE		BIT(0)
 166
 167#define DSI0_DISP1_CTRL		0x1c
 168#define DSI1_DISP1_CTRL		0x2c
 169/* Format of the data written to TXPKT_PIX_FIFO. */
 170# define DSI_DISP1_PFORMAT_MASK		VC4_MASK(2, 1)
 171# define DSI_DISP1_PFORMAT_SHIFT	1
 172# define DSI_DISP1_PFORMAT_16BIT	0
 173# define DSI_DISP1_PFORMAT_24BIT	1
 174# define DSI_DISP1_PFORMAT_32BIT_LE	2
 175# define DSI_DISP1_PFORMAT_32BIT_BE	3
 176
 177/* DISP1 is always command mode. */
 178# define DSI_DISP1_ENABLE		BIT(0)
 179
 180#define DSI0_TXPKT_PIX_FIFO		0x20 /* AKA PIX_FIFO */
 181
 182#define DSI0_INT_STAT		0x24
 183#define DSI0_INT_EN		0x28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 184# define DSI1_INT_PHY_D3_ULPS		BIT(30)
 185# define DSI1_INT_PHY_D3_STOP		BIT(29)
 186# define DSI1_INT_PHY_D2_ULPS		BIT(28)
 187# define DSI1_INT_PHY_D2_STOP		BIT(27)
 188# define DSI1_INT_PHY_D1_ULPS		BIT(26)
 189# define DSI1_INT_PHY_D1_STOP		BIT(25)
 190# define DSI1_INT_PHY_D0_ULPS		BIT(24)
 191# define DSI1_INT_PHY_D0_STOP		BIT(23)
 192# define DSI1_INT_FIFO_ERR		BIT(22)
 193# define DSI1_INT_PHY_DIR_RTF		BIT(21)
 194# define DSI1_INT_PHY_RXLPDT		BIT(20)
 195# define DSI1_INT_PHY_RXTRIG		BIT(19)
 196# define DSI1_INT_PHY_D0_LPDT		BIT(18)
 197# define DSI1_INT_PHY_DIR_FTR		BIT(17)
 198
 199/* Signaled when the clock lane enters the given state. */
 200# define DSI1_INT_PHY_CLOCK_ULPS	BIT(16)
 201# define DSI1_INT_PHY_CLOCK_HS		BIT(15)
 202# define DSI1_INT_PHY_CLOCK_STOP	BIT(14)
 203
 204/* Signaled on timeouts */
 205# define DSI1_INT_PR_TO			BIT(13)
 206# define DSI1_INT_TA_TO			BIT(12)
 207# define DSI1_INT_LPRX_TO		BIT(11)
 208# define DSI1_INT_HSTX_TO		BIT(10)
 209
 210/* Contention on a line when trying to drive the line low */
 211# define DSI1_INT_ERR_CONT_LP1		BIT(9)
 212# define DSI1_INT_ERR_CONT_LP0		BIT(8)
 213
 214/* Control error: incorrect line state sequence on data lane 0. */
 215# define DSI1_INT_ERR_CONTROL		BIT(7)
 216/* LPDT synchronization error (bits received not a multiple of 8. */
 217
 218# define DSI1_INT_ERR_SYNC_ESC		BIT(6)
 219/* Signaled after receiving an error packet from the display in
 220 * response to a read.
 221 */
 222# define DSI1_INT_RXPKT2		BIT(5)
 223/* Signaled after receiving a packet.  The header and optional short
 224 * response will be in RXPKT1H, and a long response will be in the
 225 * RXPKT_FIFO.
 226 */
 227# define DSI1_INT_RXPKT1		BIT(4)
 228# define DSI1_INT_TXPKT2_DONE		BIT(3)
 229# define DSI1_INT_TXPKT2_END		BIT(2)
 230/* Signaled after all repeats of TXPKT1 are transferred. */
 231# define DSI1_INT_TXPKT1_DONE		BIT(1)
 232/* Signaled after each TXPKT1 repeat is scheduled. */
 233# define DSI1_INT_TXPKT1_END		BIT(0)
 234
 235#define DSI1_INTERRUPTS_ALWAYS_ENABLED	(DSI1_INT_ERR_SYNC_ESC | \
 236					 DSI1_INT_ERR_CONTROL |	 \
 237					 DSI1_INT_ERR_CONT_LP0 | \
 238					 DSI1_INT_ERR_CONT_LP1 | \
 239					 DSI1_INT_HSTX_TO |	 \
 240					 DSI1_INT_LPRX_TO |	 \
 241					 DSI1_INT_TA_TO |	 \
 242					 DSI1_INT_PR_TO)
 243
 244#define DSI0_STAT		0x2c
 245#define DSI0_HSTX_TO_CNT	0x30
 246#define DSI0_LPRX_TO_CNT	0x34
 247#define DSI0_TA_TO_CNT		0x38
 248#define DSI0_PR_TO_CNT		0x3c
 249#define DSI0_PHYC		0x40
 250# define DSI1_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(25, 20)
 251# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT	20
 252# define DSI1_PHYC_HS_CLK_CONTINUOUS	BIT(18)
 253# define DSI0_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(17, 12)
 254# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT	12
 255# define DSI1_PHYC_CLANE_ULPS		BIT(17)
 256# define DSI1_PHYC_CLANE_ENABLE		BIT(16)
 257# define DSI_PHYC_DLANE3_ULPS		BIT(13)
 258# define DSI_PHYC_DLANE3_ENABLE		BIT(12)
 259# define DSI0_PHYC_HS_CLK_CONTINUOUS	BIT(10)
 260# define DSI0_PHYC_CLANE_ULPS		BIT(9)
 261# define DSI_PHYC_DLANE2_ULPS		BIT(9)
 262# define DSI0_PHYC_CLANE_ENABLE		BIT(8)
 263# define DSI_PHYC_DLANE2_ENABLE		BIT(8)
 264# define DSI_PHYC_DLANE1_ULPS		BIT(5)
 265# define DSI_PHYC_DLANE1_ENABLE		BIT(4)
 266# define DSI_PHYC_DLANE0_FORCE_STOP	BIT(2)
 267# define DSI_PHYC_DLANE0_ULPS		BIT(1)
 268# define DSI_PHYC_DLANE0_ENABLE		BIT(0)
 269
 270#define DSI0_HS_CLT0		0x44
 271#define DSI0_HS_CLT1		0x48
 272#define DSI0_HS_CLT2		0x4c
 273#define DSI0_HS_DLT3		0x50
 274#define DSI0_HS_DLT4		0x54
 275#define DSI0_HS_DLT5		0x58
 276#define DSI0_HS_DLT6		0x5c
 277#define DSI0_HS_DLT7		0x60
 278
 279#define DSI0_PHY_AFEC0		0x64
 280# define DSI0_PHY_AFEC0_DDR2CLK_EN		BIT(26)
 281# define DSI0_PHY_AFEC0_DDRCLK_EN		BIT(25)
 282# define DSI0_PHY_AFEC0_LATCH_ULPS		BIT(24)
 283# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK		VC4_MASK(31, 29)
 284# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT	29
 285# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK		VC4_MASK(28, 26)
 286# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT	26
 287# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK		VC4_MASK(27, 23)
 288# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT	23
 289# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK		VC4_MASK(22, 20)
 290# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT	20
 291# define DSI1_PHY_AFEC0_IDR_CLANE_MASK		VC4_MASK(19, 17)
 292# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT		17
 293# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK	VC4_MASK(23, 20)
 294# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT	20
 295# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK	VC4_MASK(19, 16)
 296# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT	16
 297# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK	VC4_MASK(15, 12)
 298# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT	12
 299# define DSI1_PHY_AFEC0_DDR2CLK_EN		BIT(16)
 300# define DSI1_PHY_AFEC0_DDRCLK_EN		BIT(15)
 301# define DSI1_PHY_AFEC0_LATCH_ULPS		BIT(14)
 302# define DSI1_PHY_AFEC0_RESET			BIT(13)
 303# define DSI1_PHY_AFEC0_PD			BIT(12)
 304# define DSI0_PHY_AFEC0_RESET			BIT(11)
 305# define DSI1_PHY_AFEC0_PD_BG			BIT(11)
 306# define DSI0_PHY_AFEC0_PD			BIT(10)
 307# define DSI1_PHY_AFEC0_PD_DLANE3		BIT(10)
 308# define DSI0_PHY_AFEC0_PD_BG			BIT(9)
 309# define DSI1_PHY_AFEC0_PD_DLANE2		BIT(9)
 310# define DSI0_PHY_AFEC0_PD_DLANE1		BIT(8)
 311# define DSI1_PHY_AFEC0_PD_DLANE1		BIT(8)
 312# define DSI_PHY_AFEC0_PTATADJ_MASK		VC4_MASK(7, 4)
 313# define DSI_PHY_AFEC0_PTATADJ_SHIFT		4
 314# define DSI_PHY_AFEC0_CTATADJ_MASK		VC4_MASK(3, 0)
 315# define DSI_PHY_AFEC0_CTATADJ_SHIFT		0
 316
 317#define DSI0_PHY_AFEC1		0x68
 318# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK		VC4_MASK(10, 8)
 319# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT	8
 320# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK		VC4_MASK(6, 4)
 321# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT	4
 322# define DSI0_PHY_AFEC1_IDR_CLANE_MASK		VC4_MASK(2, 0)
 323# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT		0
 324
 325#define DSI0_TST_SEL		0x6c
 326#define DSI0_TST_MON		0x70
 327#define DSI0_ID			0x74
 328# define DSI_ID_VALUE		0x00647369
 329
 330#define DSI1_CTRL		0x00
 331# define DSI_CTRL_HS_CLKC_MASK		VC4_MASK(15, 14)
 332# define DSI_CTRL_HS_CLKC_SHIFT		14
 333# define DSI_CTRL_HS_CLKC_BYTE		0
 334# define DSI_CTRL_HS_CLKC_DDR2		1
 335# define DSI_CTRL_HS_CLKC_DDR		2
 336
 337# define DSI_CTRL_RX_LPDT_EOT_DISABLE	BIT(13)
 338# define DSI_CTRL_LPDT_EOT_DISABLE	BIT(12)
 339# define DSI_CTRL_HSDT_EOT_DISABLE	BIT(11)
 340# define DSI_CTRL_SOFT_RESET_CFG	BIT(10)
 341# define DSI_CTRL_CAL_BYTE		BIT(9)
 342# define DSI_CTRL_INV_BYTE		BIT(8)
 343# define DSI_CTRL_CLR_LDF		BIT(7)
 344# define DSI0_CTRL_CLR_PBCF		BIT(6)
 345# define DSI1_CTRL_CLR_RXF		BIT(6)
 346# define DSI0_CTRL_CLR_CPBCF		BIT(5)
 347# define DSI1_CTRL_CLR_PDF		BIT(5)
 348# define DSI0_CTRL_CLR_PDF		BIT(4)
 349# define DSI1_CTRL_CLR_CDF		BIT(4)
 350# define DSI0_CTRL_CLR_CDF		BIT(3)
 351# define DSI0_CTRL_CTRL2		BIT(2)
 352# define DSI1_CTRL_DISABLE_DISP_CRCC	BIT(2)
 353# define DSI0_CTRL_CTRL1		BIT(1)
 354# define DSI1_CTRL_DISABLE_DISP_ECCC	BIT(1)
 355# define DSI0_CTRL_CTRL0		BIT(0)
 356# define DSI1_CTRL_EN			BIT(0)
 357# define DSI0_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
 358					 DSI0_CTRL_CLR_PBCF | \
 359					 DSI0_CTRL_CLR_CPBCF |	\
 360					 DSI0_CTRL_CLR_PDF | \
 361					 DSI0_CTRL_CLR_CDF)
 362# define DSI1_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
 363					 DSI1_CTRL_CLR_RXF | \
 364					 DSI1_CTRL_CLR_PDF | \
 365					 DSI1_CTRL_CLR_CDF)
 366
 367#define DSI1_TXPKT2C		0x0c
 368#define DSI1_TXPKT2H		0x10
 369#define DSI1_TXPKT_PIX_FIFO	0x20
 370#define DSI1_RXPKT_FIFO		0x24
 371#define DSI1_DISP0_CTRL		0x28
 372#define DSI1_INT_STAT		0x30
 373#define DSI1_INT_EN		0x34
 374/* State reporting bits.  These mostly behave like INT_STAT, where
 375 * writing a 1 clears the bit.
 376 */
 377#define DSI1_STAT		0x38
 378# define DSI1_STAT_PHY_D3_ULPS		BIT(31)
 379# define DSI1_STAT_PHY_D3_STOP		BIT(30)
 380# define DSI1_STAT_PHY_D2_ULPS		BIT(29)
 381# define DSI1_STAT_PHY_D2_STOP		BIT(28)
 382# define DSI1_STAT_PHY_D1_ULPS		BIT(27)
 383# define DSI1_STAT_PHY_D1_STOP		BIT(26)
 384# define DSI1_STAT_PHY_D0_ULPS		BIT(25)
 385# define DSI1_STAT_PHY_D0_STOP		BIT(24)
 386# define DSI1_STAT_FIFO_ERR		BIT(23)
 387# define DSI1_STAT_PHY_RXLPDT		BIT(22)
 388# define DSI1_STAT_PHY_RXTRIG		BIT(21)
 389# define DSI1_STAT_PHY_D0_LPDT		BIT(20)
 390/* Set when in forward direction */
 391# define DSI1_STAT_PHY_DIR		BIT(19)
 392# define DSI1_STAT_PHY_CLOCK_ULPS	BIT(18)
 393# define DSI1_STAT_PHY_CLOCK_HS		BIT(17)
 394# define DSI1_STAT_PHY_CLOCK_STOP	BIT(16)
 395# define DSI1_STAT_PR_TO		BIT(15)
 396# define DSI1_STAT_TA_TO		BIT(14)
 397# define DSI1_STAT_LPRX_TO		BIT(13)
 398# define DSI1_STAT_HSTX_TO		BIT(12)
 399# define DSI1_STAT_ERR_CONT_LP1		BIT(11)
 400# define DSI1_STAT_ERR_CONT_LP0		BIT(10)
 401# define DSI1_STAT_ERR_CONTROL		BIT(9)
 402# define DSI1_STAT_ERR_SYNC_ESC		BIT(8)
 403# define DSI1_STAT_RXPKT2		BIT(7)
 404# define DSI1_STAT_RXPKT1		BIT(6)
 405# define DSI1_STAT_TXPKT2_BUSY		BIT(5)
 406# define DSI1_STAT_TXPKT2_DONE		BIT(4)
 407# define DSI1_STAT_TXPKT2_END		BIT(3)
 408# define DSI1_STAT_TXPKT1_BUSY		BIT(2)
 409# define DSI1_STAT_TXPKT1_DONE		BIT(1)
 410# define DSI1_STAT_TXPKT1_END		BIT(0)
 411
 412#define DSI1_HSTX_TO_CNT	0x3c
 413#define DSI1_LPRX_TO_CNT	0x40
 414#define DSI1_TA_TO_CNT		0x44
 415#define DSI1_PR_TO_CNT		0x48
 416#define DSI1_PHYC		0x4c
 417
 418#define DSI1_HS_CLT0		0x50
 419# define DSI_HS_CLT0_CZERO_MASK		VC4_MASK(26, 18)
 420# define DSI_HS_CLT0_CZERO_SHIFT	18
 421# define DSI_HS_CLT0_CPRE_MASK		VC4_MASK(17, 9)
 422# define DSI_HS_CLT0_CPRE_SHIFT		9
 423# define DSI_HS_CLT0_CPREP_MASK		VC4_MASK(8, 0)
 424# define DSI_HS_CLT0_CPREP_SHIFT	0
 425
 426#define DSI1_HS_CLT1		0x54
 427# define DSI_HS_CLT1_CTRAIL_MASK	VC4_MASK(17, 9)
 428# define DSI_HS_CLT1_CTRAIL_SHIFT	9
 429# define DSI_HS_CLT1_CPOST_MASK		VC4_MASK(8, 0)
 430# define DSI_HS_CLT1_CPOST_SHIFT	0
 431
 432#define DSI1_HS_CLT2		0x58
 433# define DSI_HS_CLT2_WUP_MASK		VC4_MASK(23, 0)
 434# define DSI_HS_CLT2_WUP_SHIFT		0
 435
 436#define DSI1_HS_DLT3		0x5c
 437# define DSI_HS_DLT3_EXIT_MASK		VC4_MASK(26, 18)
 438# define DSI_HS_DLT3_EXIT_SHIFT		18
 439# define DSI_HS_DLT3_ZERO_MASK		VC4_MASK(17, 9)
 440# define DSI_HS_DLT3_ZERO_SHIFT		9
 441# define DSI_HS_DLT3_PRE_MASK		VC4_MASK(8, 0)
 442# define DSI_HS_DLT3_PRE_SHIFT		0
 443
 444#define DSI1_HS_DLT4		0x60
 445# define DSI_HS_DLT4_ANLAT_MASK		VC4_MASK(22, 18)
 446# define DSI_HS_DLT4_ANLAT_SHIFT	18
 447# define DSI_HS_DLT4_TRAIL_MASK		VC4_MASK(17, 9)
 448# define DSI_HS_DLT4_TRAIL_SHIFT	9
 449# define DSI_HS_DLT4_LPX_MASK		VC4_MASK(8, 0)
 450# define DSI_HS_DLT4_LPX_SHIFT		0
 451
 452#define DSI1_HS_DLT5		0x64
 453# define DSI_HS_DLT5_INIT_MASK		VC4_MASK(23, 0)
 454# define DSI_HS_DLT5_INIT_SHIFT		0
 455
 456#define DSI1_HS_DLT6		0x68
 457# define DSI_HS_DLT6_TA_GET_MASK	VC4_MASK(31, 24)
 458# define DSI_HS_DLT6_TA_GET_SHIFT	24
 459# define DSI_HS_DLT6_TA_SURE_MASK	VC4_MASK(23, 16)
 460# define DSI_HS_DLT6_TA_SURE_SHIFT	16
 461# define DSI_HS_DLT6_TA_GO_MASK		VC4_MASK(15, 8)
 462# define DSI_HS_DLT6_TA_GO_SHIFT	8
 463# define DSI_HS_DLT6_LP_LPX_MASK	VC4_MASK(7, 0)
 464# define DSI_HS_DLT6_LP_LPX_SHIFT	0
 465
 466#define DSI1_HS_DLT7		0x6c
 467# define DSI_HS_DLT7_LP_WUP_MASK	VC4_MASK(23, 0)
 468# define DSI_HS_DLT7_LP_WUP_SHIFT	0
 469
 470#define DSI1_PHY_AFEC0		0x70
 471
 472#define DSI1_PHY_AFEC1		0x74
 473# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK	VC4_MASK(19, 16)
 474# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT	16
 475# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK	VC4_MASK(15, 12)
 476# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT	12
 477# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK	VC4_MASK(11, 8)
 478# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT	8
 479# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK	VC4_MASK(7, 4)
 480# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT	4
 481# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK	VC4_MASK(3, 0)
 482# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT	0
 483
 484#define DSI1_TST_SEL		0x78
 485#define DSI1_TST_MON		0x7c
 486#define DSI1_PHY_TST1		0x80
 487#define DSI1_PHY_TST2		0x84
 488#define DSI1_PHY_FIFO_STAT	0x88
 489/* Actually, all registers in the range that aren't otherwise claimed
 490 * will return the ID.
 491 */
 492#define DSI1_ID			0x8c
 493
 
 
 
 
 
 
 
 
 
 
 
 
 494/* General DSI hardware state. */
 495struct vc4_dsi {
 
 
 
 
 
 496	struct platform_device *pdev;
 497
 498	struct mipi_dsi_host dsi_host;
 499	struct drm_encoder *encoder;
 500	struct drm_bridge *bridge;
 501
 502	void __iomem *regs;
 503
 504	struct dma_chan *reg_dma_chan;
 505	dma_addr_t reg_dma_paddr;
 506	u32 *reg_dma_mem;
 507	dma_addr_t reg_paddr;
 508
 509	/* Whether we're on bcm2835's DSI0 or DSI1. */
 510	int port;
 511
 512	/* DSI channel for the panel we're connected to. */
 513	u32 channel;
 514	u32 lanes;
 515	u32 format;
 516	u32 divider;
 517	u32 mode_flags;
 518
 519	/* Input clock from CPRMAN to the digital PHY, for the DSI
 520	 * escape clock.
 521	 */
 522	struct clk *escape_clock;
 523
 524	/* Input clock to the analog PHY, used to generate the DSI bit
 525	 * clock.
 526	 */
 527	struct clk *pll_phy_clock;
 528
 529	/* HS Clocks generated within the DSI analog PHY. */
 530	struct clk_fixed_factor phy_clocks[3];
 531
 532	struct clk_hw_onecell_data *clk_onecell;
 533
 534	/* Pixel clock output to the pixelvalve, generated from the HS
 535	 * clock.
 536	 */
 537	struct clk *pixel_clock;
 538
 539	struct completion xfer_completion;
 540	int xfer_result;
 541
 542	struct debugfs_regset32 regset;
 543};
 544
 545#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
 
 
 
 
 
 
 
 546
 547static inline void
 548dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
 549{
 550	struct dma_chan *chan = dsi->reg_dma_chan;
 551	struct dma_async_tx_descriptor *tx;
 552	dma_cookie_t cookie;
 553	int ret;
 554
 
 
 555	/* DSI0 should be able to write normally. */
 556	if (!chan) {
 557		writel(val, dsi->regs + offset);
 558		return;
 559	}
 560
 561	*dsi->reg_dma_mem = val;
 562
 563	tx = chan->device->device_prep_dma_memcpy(chan,
 564						  dsi->reg_paddr + offset,
 565						  dsi->reg_dma_paddr,
 566						  4, 0);
 567	if (!tx) {
 568		DRM_ERROR("Failed to set up DMA register write\n");
 569		return;
 570	}
 571
 572	cookie = tx->tx_submit(tx);
 573	ret = dma_submit_error(cookie);
 574	if (ret) {
 575		DRM_ERROR("Failed to submit DMA: %d\n", ret);
 576		return;
 577	}
 578	ret = dma_sync_wait(chan, cookie);
 579	if (ret)
 580		DRM_ERROR("Failed to wait for DMA: %d\n", ret);
 581}
 582
 583#define DSI_READ(offset) readl(dsi->regs + (offset))
 
 
 
 
 
 584#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
 585#define DSI_PORT_READ(offset) \
 586	DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
 587#define DSI_PORT_WRITE(offset, val) \
 588	DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
 589#define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
 590
 591/* VC4 DSI encoder KMS struct */
 592struct vc4_dsi_encoder {
 593	struct vc4_encoder base;
 594	struct vc4_dsi *dsi;
 595};
 596
 597static inline struct vc4_dsi_encoder *
 598to_vc4_dsi_encoder(struct drm_encoder *encoder)
 599{
 600	return container_of(encoder, struct vc4_dsi_encoder, base.base);
 601}
 602
 603static const struct debugfs_reg32 dsi0_regs[] = {
 604	VC4_REG32(DSI0_CTRL),
 605	VC4_REG32(DSI0_STAT),
 606	VC4_REG32(DSI0_HSTX_TO_CNT),
 607	VC4_REG32(DSI0_LPRX_TO_CNT),
 608	VC4_REG32(DSI0_TA_TO_CNT),
 609	VC4_REG32(DSI0_PR_TO_CNT),
 610	VC4_REG32(DSI0_DISP0_CTRL),
 611	VC4_REG32(DSI0_DISP1_CTRL),
 612	VC4_REG32(DSI0_INT_STAT),
 613	VC4_REG32(DSI0_INT_EN),
 614	VC4_REG32(DSI0_PHYC),
 615	VC4_REG32(DSI0_HS_CLT0),
 616	VC4_REG32(DSI0_HS_CLT1),
 617	VC4_REG32(DSI0_HS_CLT2),
 618	VC4_REG32(DSI0_HS_DLT3),
 619	VC4_REG32(DSI0_HS_DLT4),
 620	VC4_REG32(DSI0_HS_DLT5),
 621	VC4_REG32(DSI0_HS_DLT6),
 622	VC4_REG32(DSI0_HS_DLT7),
 623	VC4_REG32(DSI0_PHY_AFEC0),
 624	VC4_REG32(DSI0_PHY_AFEC1),
 625	VC4_REG32(DSI0_ID),
 626};
 627
 628static const struct debugfs_reg32 dsi1_regs[] = {
 629	VC4_REG32(DSI1_CTRL),
 630	VC4_REG32(DSI1_STAT),
 631	VC4_REG32(DSI1_HSTX_TO_CNT),
 632	VC4_REG32(DSI1_LPRX_TO_CNT),
 633	VC4_REG32(DSI1_TA_TO_CNT),
 634	VC4_REG32(DSI1_PR_TO_CNT),
 635	VC4_REG32(DSI1_DISP0_CTRL),
 636	VC4_REG32(DSI1_DISP1_CTRL),
 637	VC4_REG32(DSI1_INT_STAT),
 638	VC4_REG32(DSI1_INT_EN),
 639	VC4_REG32(DSI1_PHYC),
 640	VC4_REG32(DSI1_HS_CLT0),
 641	VC4_REG32(DSI1_HS_CLT1),
 642	VC4_REG32(DSI1_HS_CLT2),
 643	VC4_REG32(DSI1_HS_DLT3),
 644	VC4_REG32(DSI1_HS_DLT4),
 645	VC4_REG32(DSI1_HS_DLT5),
 646	VC4_REG32(DSI1_HS_DLT6),
 647	VC4_REG32(DSI1_HS_DLT7),
 648	VC4_REG32(DSI1_PHY_AFEC0),
 649	VC4_REG32(DSI1_PHY_AFEC1),
 650	VC4_REG32(DSI1_ID),
 651};
 652
 653static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
 654{
 655	drm_encoder_cleanup(encoder);
 656}
 657
 658static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
 659	.destroy = vc4_dsi_encoder_destroy,
 660};
 661
 662static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
 663{
 664	u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
 665
 666	if (latch)
 667		afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 668	else
 669		afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 670
 671	DSI_PORT_WRITE(PHY_AFEC0, afec0);
 672}
 673
 674/* Enters or exits Ultra Low Power State. */
 675static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
 676{
 677	bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
 678	u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
 679			 DSI_PHYC_DLANE0_ULPS |
 680			 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
 681			 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
 682			 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
 683	u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
 684			 DSI1_STAT_PHY_D0_ULPS |
 685			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
 686			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
 687			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
 688	u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
 689			 DSI1_STAT_PHY_D0_STOP |
 690			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
 691			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
 692			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
 693	int ret;
 694	bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
 695				       DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
 696
 697	if (ulps == ulps_currently_enabled)
 698		return;
 699
 700	DSI_PORT_WRITE(STAT, stat_ulps);
 701	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
 702	ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
 703	if (ret) {
 704		dev_warn(&dsi->pdev->dev,
 705			 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
 706			 DSI_PORT_READ(STAT));
 707		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 708		vc4_dsi_latch_ulps(dsi, false);
 709		return;
 710	}
 711
 712	/* The DSI module can't be disabled while the module is
 713	 * generating ULPS state.  So, to be able to disable the
 714	 * module, we have the AFE latch the ULPS state and continue
 715	 * on to having the module enter STOP.
 716	 */
 717	vc4_dsi_latch_ulps(dsi, ulps);
 718
 719	DSI_PORT_WRITE(STAT, stat_stop);
 720	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 721	ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
 722	if (ret) {
 723		dev_warn(&dsi->pdev->dev,
 724			 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
 725			 DSI_PORT_READ(STAT));
 726		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 727		return;
 728	}
 729}
 730
 731static u32
 732dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
 733{
 734	/* The HS timings have to be rounded up to a multiple of 8
 735	 * because we're using the byte clock.
 736	 */
 737	return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
 738}
 739
 740/* ESC always runs at 100Mhz. */
 741#define ESC_TIME_NS 10
 742
 743static u32
 744dsi_esc_timing(u32 ns)
 745{
 746	return DIV_ROUND_UP(ns, ESC_TIME_NS);
 747}
 748
 749static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
 
 750{
 751	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 752	struct vc4_dsi *dsi = vc4_encoder->dsi;
 753	struct device *dev = &dsi->pdev->dev;
 754
 755	drm_bridge_disable(dsi->bridge);
 756	vc4_dsi_ulps(dsi, true);
 757	drm_bridge_post_disable(dsi->bridge);
 
 
 
 
 
 
 
 758
 759	clk_disable_unprepare(dsi->pll_phy_clock);
 760	clk_disable_unprepare(dsi->escape_clock);
 761	clk_disable_unprepare(dsi->pixel_clock);
 762
 763	pm_runtime_put(dev);
 764}
 765
 766/* Extends the mode's blank intervals to handle BCM2835's integer-only
 767 * DSI PLL divider.
 768 *
 769 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
 770 * driver since most peripherals are hanging off of the PLLD_PER
 771 * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
 772 * the pixel clock), only has an integer divider off of DSI.
 773 *
 774 * To get our panel mode to refresh at the expected 60Hz, we need to
 775 * extend the horizontal blank time.  This means we drive a
 776 * higher-than-expected clock rate to the panel, but that's what the
 777 * firmware does too.
 778 */
 779static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
 780				       const struct drm_display_mode *mode,
 781				       struct drm_display_mode *adjusted_mode)
 782{
 783	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 784	struct vc4_dsi *dsi = vc4_encoder->dsi;
 785	struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
 786	unsigned long parent_rate = clk_get_rate(phy_parent);
 787	unsigned long pixel_clock_hz = mode->clock * 1000;
 788	unsigned long pll_clock = pixel_clock_hz * dsi->divider;
 789	int divider;
 790
 791	/* Find what divider gets us a faster clock than the requested
 792	 * pixel clock.
 793	 */
 794	for (divider = 1; divider < 8; divider++) {
 795		if (parent_rate / divider < pll_clock) {
 796			divider--;
 797			break;
 798		}
 799	}
 800
 801	/* Now that we've picked a PLL divider, calculate back to its
 802	 * pixel clock.
 803	 */
 804	pll_clock = parent_rate / divider;
 805	pixel_clock_hz = pll_clock / dsi->divider;
 806
 807	adjusted_mode->clock = pixel_clock_hz / 1000;
 808
 809	/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
 810	adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
 811				mode->clock;
 812	adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
 813	adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
 814
 815	return true;
 816}
 817
 818static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
 
 819{
 820	struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
 821	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 822	struct vc4_dsi *dsi = vc4_encoder->dsi;
 823	struct device *dev = &dsi->pdev->dev;
 
 
 824	bool debug_dump_regs = false;
 825	unsigned long hs_clock;
 
 826	u32 ui_ns;
 827	/* Minimum LP state duration in escape clock cycles. */
 828	u32 lpx = dsi_esc_timing(60);
 829	unsigned long pixel_clock_hz = mode->clock * 1000;
 830	unsigned long dsip_clock;
 831	unsigned long phy_clock;
 832	int ret;
 833
 834	ret = pm_runtime_get_sync(dev);
 835	if (ret) {
 836		DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
 837		return;
 838	}
 839
 840	if (debug_dump_regs) {
 841		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
 842		dev_info(&dsi->pdev->dev, "DSI regs before:\n");
 843		drm_print_regset32(&p, &dsi->regset);
 844	}
 845
 
 
 
 
 
 
 
 
 
 
 
 
 846	/* Round up the clk_set_rate() request slightly, since
 847	 * PLLD_DSI1 is an integer divider and its rate selection will
 848	 * never round up.
 849	 */
 850	phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
 851	ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
 852	if (ret) {
 853		dev_err(&dsi->pdev->dev,
 854			"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
 855	}
 856
 857	/* Reset the DSI and all its fifos. */
 858	DSI_PORT_WRITE(CTRL,
 859		       DSI_CTRL_SOFT_RESET_CFG |
 860		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
 861
 862	DSI_PORT_WRITE(CTRL,
 863		       DSI_CTRL_HSDT_EOT_DISABLE |
 864		       DSI_CTRL_RX_LPDT_EOT_DISABLE);
 865
 866	/* Clear all stat bits so we see what has happened during enable. */
 867	DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
 868
 869	/* Set AFE CTR00/CTR1 to release powerdown of analog. */
 870	if (dsi->port == 0) {
 871		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 872			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
 873
 874		if (dsi->lanes < 2)
 875			afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
 876
 877		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
 878			afec0 |= DSI0_PHY_AFEC0_RESET;
 879
 880		DSI_PORT_WRITE(PHY_AFEC0, afec0);
 881
 
 
 
 882		DSI_PORT_WRITE(PHY_AFEC1,
 883			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
 884			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
 885			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
 886	} else {
 887		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 888			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
 889			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
 890			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
 891			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
 892			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
 893			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
 894
 895		if (dsi->lanes < 4)
 896			afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
 897		if (dsi->lanes < 3)
 898			afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
 899		if (dsi->lanes < 2)
 900			afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
 901
 902		afec0 |= DSI1_PHY_AFEC0_RESET;
 903
 904		DSI_PORT_WRITE(PHY_AFEC0, afec0);
 905
 906		DSI_PORT_WRITE(PHY_AFEC1, 0);
 907
 908		/* AFEC reset hold time */
 909		mdelay(1);
 910	}
 911
 912	ret = clk_prepare_enable(dsi->escape_clock);
 913	if (ret) {
 914		DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
 915		return;
 916	}
 917
 918	ret = clk_prepare_enable(dsi->pll_phy_clock);
 919	if (ret) {
 920		DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
 921		return;
 922	}
 923
 924	hs_clock = clk_get_rate(dsi->pll_phy_clock);
 925
 926	/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
 927	 * not the pixel clock rate.  DSIxP take from the APHY's byte,
 928	 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
 929	 * that rate.  Separately, a value derived from PIX_CLK_DIV
 930	 * and HS_CLKC is fed into the PV to divide down to the actual
 931	 * pixel clock for pushing pixels into DSI.
 932	 */
 933	dsip_clock = phy_clock / 8;
 934	ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
 935	if (ret) {
 936		dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
 937			dsip_clock, ret);
 938	}
 939
 940	ret = clk_prepare_enable(dsi->pixel_clock);
 941	if (ret) {
 942		DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
 943		return;
 944	}
 945
 946	/* How many ns one DSI unit interval is.  Note that the clock
 947	 * is DDR, so there's an extra divide by 2.
 948	 */
 949	ui_ns = DIV_ROUND_UP(500000000, hs_clock);
 950
 951	DSI_PORT_WRITE(HS_CLT0,
 952		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
 953				     DSI_HS_CLT0_CZERO) |
 954		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
 955				     DSI_HS_CLT0_CPRE) |
 956		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
 957				     DSI_HS_CLT0_CPREP));
 958
 959	DSI_PORT_WRITE(HS_CLT1,
 960		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
 961				     DSI_HS_CLT1_CTRAIL) |
 962		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
 963				     DSI_HS_CLT1_CPOST));
 964
 965	DSI_PORT_WRITE(HS_CLT2,
 966		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
 967				     DSI_HS_CLT2_WUP));
 968
 969	DSI_PORT_WRITE(HS_DLT3,
 970		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
 971				     DSI_HS_DLT3_EXIT) |
 972		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
 973				     DSI_HS_DLT3_ZERO) |
 974		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
 975				     DSI_HS_DLT3_PRE));
 976
 977	DSI_PORT_WRITE(HS_DLT4,
 978		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
 979				     DSI_HS_DLT4_LPX) |
 980		       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
 981					 dsi_hs_timing(ui_ns, 60, 4)),
 982				     DSI_HS_DLT4_TRAIL) |
 983		       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
 984
 985	/* T_INIT is how long STOP is driven after power-up to
 986	 * indicate to the slave (also coming out of power-up) that
 987	 * master init is complete, and should be greater than the
 988	 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
 989	 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
 990	 * T_INIT,SLAVE, while allowing protocols on top of it to give
 991	 * greater minimums.  The vc4 firmware uses an extremely
 992	 * conservative 5ms, and we maintain that here.
 993	 */
 994	DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
 995							    5 * 1000 * 1000, 0),
 996					      DSI_HS_DLT5_INIT));
 997
 998	DSI_PORT_WRITE(HS_DLT6,
 999		       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1000		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1001		       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1002		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1003
1004	DSI_PORT_WRITE(HS_DLT7,
1005		       VC4_SET_FIELD(dsi_esc_timing(1000000),
1006				     DSI_HS_DLT7_LP_WUP));
1007
1008	DSI_PORT_WRITE(PHYC,
1009		       DSI_PHYC_DLANE0_ENABLE |
1010		       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1011		       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1012		       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1013		       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1014		       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1015			0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1016		       (dsi->port == 0 ?
1017			VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1018			VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1019
1020	DSI_PORT_WRITE(CTRL,
1021		       DSI_PORT_READ(CTRL) |
1022		       DSI_CTRL_CAL_BYTE);
1023
1024	/* HS timeout in HS clock cycles: disabled. */
1025	DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1026	/* LP receive timeout in HS clocks. */
1027	DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1028	/* Bus turnaround timeout */
1029	DSI_PORT_WRITE(TA_TO_CNT, 100000);
1030	/* Display reset sequence timeout */
1031	DSI_PORT_WRITE(PR_TO_CNT, 100000);
1032
1033	/* Set up DISP1 for transferring long command payloads through
1034	 * the pixfifo.
1035	 */
1036	DSI_PORT_WRITE(DISP1_CTRL,
1037		       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1038				     DSI_DISP1_PFORMAT) |
1039		       DSI_DISP1_ENABLE);
1040
1041	/* Ungate the block. */
1042	if (dsi->port == 0)
1043		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1044	else
1045		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1046
1047	/* Bring AFE out of reset. */
1048	if (dsi->port == 0) {
1049	} else {
1050		DSI_PORT_WRITE(PHY_AFEC0,
1051			       DSI_PORT_READ(PHY_AFEC0) &
1052			       ~DSI1_PHY_AFEC0_RESET);
1053	}
1054
1055	vc4_dsi_ulps(dsi, false);
1056
1057	drm_bridge_pre_enable(dsi->bridge);
1058
1059	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1060		DSI_PORT_WRITE(DISP0_CTRL,
1061			       VC4_SET_FIELD(dsi->divider,
1062					     DSI_DISP0_PIX_CLK_DIV) |
1063			       VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1064			       VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1065					     DSI_DISP0_LP_STOP_CTRL) |
1066			       DSI_DISP0_ST_END |
1067			       DSI_DISP0_ENABLE);
1068	} else {
1069		DSI_PORT_WRITE(DISP0_CTRL,
1070			       DSI_DISP0_COMMAND_MODE |
1071			       DSI_DISP0_ENABLE);
1072	}
 
 
 
 
 
 
 
 
1073
1074	drm_bridge_enable(dsi->bridge);
 
 
1075
1076	if (debug_dump_regs) {
1077		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1078		dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1079		drm_print_regset32(&p, &dsi->regset);
1080	}
1081}
1082
 
 
 
 
 
 
 
 
 
 
1083static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1084				     const struct mipi_dsi_msg *msg)
1085{
1086	struct vc4_dsi *dsi = host_to_dsi(host);
1087	struct mipi_dsi_packet packet;
1088	u32 pkth = 0, pktc = 0;
1089	int i, ret;
1090	bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1091	u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1092
1093	mipi_dsi_create_packet(&packet, msg);
1094
1095	pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1096	pkth |= VC4_SET_FIELD(packet.header[1] |
1097			      (packet.header[2] << 8),
1098			      DSI_TXPKT1H_BC_PARAM);
1099	if (is_long) {
1100		/* Divide data across the various FIFOs we have available.
1101		 * The command FIFO takes byte-oriented data, but is of
1102		 * limited size. The pixel FIFO (never actually used for
1103		 * pixel data in reality) is word oriented, and substantially
1104		 * larger. So, we use the pixel FIFO for most of the data,
1105		 * sending the residual bytes in the command FIFO at the start.
1106		 *
1107		 * With this arrangement, the command FIFO will never get full.
1108		 */
1109		if (packet.payload_length <= 16) {
1110			cmd_fifo_len = packet.payload_length;
1111			pix_fifo_len = 0;
1112		} else {
1113			cmd_fifo_len = (packet.payload_length %
1114					DSI_PIX_FIFO_WIDTH);
1115			pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1116					DSI_PIX_FIFO_WIDTH);
1117		}
1118
1119		WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1120
1121		pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1122	}
1123
1124	if (msg->rx_len) {
1125		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1126				      DSI_TXPKT1C_CMD_CTRL);
1127	} else {
1128		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1129				      DSI_TXPKT1C_CMD_CTRL);
1130	}
1131
1132	for (i = 0; i < cmd_fifo_len; i++)
1133		DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1134	for (i = 0; i < pix_fifo_len; i++) {
1135		const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1136
1137		DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1138			       pix[0] |
1139			       pix[1] << 8 |
1140			       pix[2] << 16 |
1141			       pix[3] << 24);
1142	}
1143
1144	if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1145		pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1146	if (is_long)
1147		pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1148
1149	/* Send one copy of the packet.  Larger repeats are used for pixel
1150	 * data in command mode.
1151	 */
1152	pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1153
1154	pktc |= DSI_TXPKT1C_CMD_EN;
1155	if (pix_fifo_len) {
1156		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1157				      DSI_TXPKT1C_DISPLAY_NO);
1158	} else {
1159		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1160				      DSI_TXPKT1C_DISPLAY_NO);
1161	}
1162
1163	/* Enable the appropriate interrupt for the transfer completion. */
1164	dsi->xfer_result = 0;
1165	reinit_completion(&dsi->xfer_completion);
1166	DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1167	if (msg->rx_len) {
1168		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1169					DSI1_INT_PHY_DIR_RTF));
 
 
 
 
 
 
 
 
1170	} else {
1171		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1172					DSI1_INT_TXPKT1_DONE));
 
 
 
 
 
 
 
1173	}
1174
1175	/* Send the packet. */
1176	DSI_PORT_WRITE(TXPKT1H, pkth);
1177	DSI_PORT_WRITE(TXPKT1C, pktc);
1178
1179	if (!wait_for_completion_timeout(&dsi->xfer_completion,
1180					 msecs_to_jiffies(1000))) {
1181		dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1182		dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1183			DSI_PORT_READ(INT_STAT));
1184		ret = -ETIMEDOUT;
1185	} else {
1186		ret = dsi->xfer_result;
1187	}
1188
1189	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1190
1191	if (ret)
1192		goto reset_fifo_and_return;
1193
1194	if (ret == 0 && msg->rx_len) {
1195		u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1196		u8 *msg_rx = msg->rx_buf;
1197
1198		if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1199			u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1200						  DSI_RXPKT1H_BC_PARAM);
1201
1202			if (rxlen != msg->rx_len) {
1203				DRM_ERROR("DSI returned %db, expecting %db\n",
1204					  rxlen, (int)msg->rx_len);
1205				ret = -ENXIO;
1206				goto reset_fifo_and_return;
1207			}
1208
1209			for (i = 0; i < msg->rx_len; i++)
1210				msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1211		} else {
1212			/* FINISHME: Handle AWER */
1213
1214			msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1215						  DSI_RXPKT1H_SHORT_0);
1216			if (msg->rx_len > 1) {
1217				msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1218							  DSI_RXPKT1H_SHORT_1);
1219			}
1220		}
1221	}
1222
1223	return ret;
1224
1225reset_fifo_and_return:
1226	DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1227
1228	DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1229	udelay(1);
1230	DSI_PORT_WRITE(CTRL,
1231		       DSI_PORT_READ(CTRL) |
1232		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1233
1234	DSI_PORT_WRITE(TXPKT1C, 0);
1235	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1236	return ret;
1237}
1238
 
1239static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1240			       struct mipi_dsi_device *device)
1241{
1242	struct vc4_dsi *dsi = host_to_dsi(host);
 
1243
1244	dsi->lanes = device->lanes;
1245	dsi->channel = device->channel;
1246	dsi->mode_flags = device->mode_flags;
1247
1248	switch (device->format) {
1249	case MIPI_DSI_FMT_RGB888:
1250		dsi->format = DSI_PFORMAT_RGB888;
1251		dsi->divider = 24 / dsi->lanes;
1252		break;
1253	case MIPI_DSI_FMT_RGB666:
1254		dsi->format = DSI_PFORMAT_RGB666;
1255		dsi->divider = 24 / dsi->lanes;
1256		break;
1257	case MIPI_DSI_FMT_RGB666_PACKED:
1258		dsi->format = DSI_PFORMAT_RGB666_PACKED;
1259		dsi->divider = 18 / dsi->lanes;
1260		break;
1261	case MIPI_DSI_FMT_RGB565:
1262		dsi->format = DSI_PFORMAT_RGB565;
1263		dsi->divider = 16 / dsi->lanes;
1264		break;
1265	default:
1266		dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1267			dsi->format);
1268		return 0;
1269	}
1270
1271	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1272		dev_err(&dsi->pdev->dev,
1273			"Only VIDEO mode panels supported currently.\n");
1274		return 0;
1275	}
1276
 
 
 
 
 
 
 
 
1277	return 0;
1278}
1279
1280static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1281			       struct mipi_dsi_device *device)
1282{
 
 
 
 
1283	return 0;
1284}
1285
1286static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1287	.attach = vc4_dsi_host_attach,
1288	.detach = vc4_dsi_host_detach,
1289	.transfer = vc4_dsi_host_transfer,
1290};
1291
1292static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1293	.disable = vc4_dsi_encoder_disable,
1294	.enable = vc4_dsi_encoder_enable,
1295	.mode_fixup = vc4_dsi_encoder_mode_fixup,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296};
1297
1298static const struct of_device_id vc4_dsi_dt_match[] = {
1299	{ .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
 
 
1300	{}
1301};
1302
1303static void dsi_handle_error(struct vc4_dsi *dsi,
1304			     irqreturn_t *ret, u32 stat, u32 bit,
1305			     const char *type)
1306{
1307	if (!(stat & bit))
1308		return;
1309
1310	DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1311	*ret = IRQ_HANDLED;
1312}
1313
1314/*
1315 * Initial handler for port 1 where we need the reg_dma workaround.
1316 * The register DMA writes sleep, so we can't do it in the top half.
1317 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1318 * parent interrupt contrller until our interrupt thread is done.
1319 */
1320static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1321{
1322	struct vc4_dsi *dsi = data;
1323	u32 stat = DSI_PORT_READ(INT_STAT);
1324
1325	if (!stat)
1326		return IRQ_NONE;
1327
1328	return IRQ_WAKE_THREAD;
1329}
1330
1331/*
1332 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1333 * 1 where we need the reg_dma workaround.
1334 */
1335static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1336{
1337	struct vc4_dsi *dsi = data;
1338	u32 stat = DSI_PORT_READ(INT_STAT);
1339	irqreturn_t ret = IRQ_NONE;
1340
1341	DSI_PORT_WRITE(INT_STAT, stat);
1342
1343	dsi_handle_error(dsi, &ret, stat,
1344			 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1345	dsi_handle_error(dsi, &ret, stat,
1346			 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1347	dsi_handle_error(dsi, &ret, stat,
1348			 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1349	dsi_handle_error(dsi, &ret, stat,
1350			 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1351	dsi_handle_error(dsi, &ret, stat,
1352			 DSI1_INT_HSTX_TO, "HSTX timeout");
1353	dsi_handle_error(dsi, &ret, stat,
1354			 DSI1_INT_LPRX_TO, "LPRX timeout");
1355	dsi_handle_error(dsi, &ret, stat,
1356			 DSI1_INT_TA_TO, "turnaround timeout");
1357	dsi_handle_error(dsi, &ret, stat,
1358			 DSI1_INT_PR_TO, "peripheral reset timeout");
1359
1360	if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
 
 
1361		complete(&dsi->xfer_completion);
1362		ret = IRQ_HANDLED;
1363	} else if (stat & DSI1_INT_HSTX_TO) {
1364		complete(&dsi->xfer_completion);
1365		dsi->xfer_result = -ETIMEDOUT;
1366		ret = IRQ_HANDLED;
1367	}
1368
1369	return ret;
1370}
1371
1372/**
1373 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1374 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1375 * @dsi: DSI encoder
1376 */
1377static int
1378vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1379{
1380	struct device *dev = &dsi->pdev->dev;
1381	const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1382	static const struct {
1383		const char *dsi0_name, *dsi1_name;
1384		int div;
1385	} phy_clocks[] = {
1386		{ "dsi0_byte", "dsi1_byte", 8 },
1387		{ "dsi0_ddr2", "dsi1_ddr2", 4 },
1388		{ "dsi0_ddr", "dsi1_ddr", 2 },
1389	};
1390	int i;
1391
1392	dsi->clk_onecell = devm_kzalloc(dev,
1393					sizeof(*dsi->clk_onecell) +
1394					ARRAY_SIZE(phy_clocks) *
1395					sizeof(struct clk_hw *),
1396					GFP_KERNEL);
1397	if (!dsi->clk_onecell)
1398		return -ENOMEM;
1399	dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1400
1401	for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1402		struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1403		struct clk_init_data init;
 
1404		int ret;
1405
 
 
 
1406		/* We just use core fixed factor clock ops for the PHY
1407		 * clocks.  The clocks are actually gated by the
1408		 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1409		 * setting if we use the DDR/DDR2 clocks.  However,
1410		 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1411		 * setting both our parent DSI PLL's rate and this
1412		 * clock's rate, so it knows if DDR/DDR2 are going to
1413		 * be used and could enable the gates itself.
1414		 */
1415		fix->mult = 1;
1416		fix->div = phy_clocks[i].div;
1417		fix->hw.init = &init;
1418
1419		memset(&init, 0, sizeof(init));
1420		init.parent_names = &parent_name;
1421		init.num_parents = 1;
1422		if (dsi->port == 1)
1423			init.name = phy_clocks[i].dsi1_name;
1424		else
1425			init.name = phy_clocks[i].dsi0_name;
1426		init.ops = &clk_fixed_factor_ops;
1427
1428		ret = devm_clk_hw_register(dev, &fix->hw);
1429		if (ret)
1430			return ret;
1431
1432		dsi->clk_onecell->hws[i] = &fix->hw;
1433	}
1434
1435	return of_clk_add_hw_provider(dev->of_node,
1436				      of_clk_hw_onecell_get,
1437				      dsi->clk_onecell);
1438}
1439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1440static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1441{
1442	struct platform_device *pdev = to_platform_device(dev);
1443	struct drm_device *drm = dev_get_drvdata(master);
1444	struct vc4_dev *vc4 = to_vc4_dev(drm);
1445	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1446	struct vc4_dsi_encoder *vc4_dsi_encoder;
1447	struct drm_panel *panel;
1448	const struct of_device_id *match;
1449	dma_cap_mask_t dma_mask;
1450	int ret;
1451
1452	match = of_match_device(vc4_dsi_dt_match, dev);
1453	if (!match)
1454		return -ENODEV;
1455
1456	dsi->port = (uintptr_t)match->data;
 
 
1457
1458	vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1459				       GFP_KERNEL);
1460	if (!vc4_dsi_encoder)
1461		return -ENOMEM;
1462	vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1463	vc4_dsi_encoder->dsi = dsi;
1464	dsi->encoder = &vc4_dsi_encoder->base.base;
1465
1466	dsi->regs = vc4_ioremap_regs(pdev, 0);
1467	if (IS_ERR(dsi->regs))
1468		return PTR_ERR(dsi->regs);
1469
1470	dsi->regset.base = dsi->regs;
1471	if (dsi->port == 0) {
1472		dsi->regset.regs = dsi0_regs;
1473		dsi->regset.nregs = ARRAY_SIZE(dsi0_regs);
1474	} else {
1475		dsi->regset.regs = dsi1_regs;
1476		dsi->regset.nregs = ARRAY_SIZE(dsi1_regs);
1477	}
1478
1479	if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1480		dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1481			DSI_PORT_READ(ID), DSI_ID_VALUE);
1482		return -ENODEV;
1483	}
1484
1485	/* DSI1 has a broken AXI slave that doesn't respond to writes
1486	 * from the ARM.  It does handle writes from the DMA engine,
1487	 * so set up a channel for talking to it.
1488	 */
1489	if (dsi->port == 1) {
 
 
1490		dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1491						      &dsi->reg_dma_paddr,
1492						      GFP_KERNEL);
1493		if (!dsi->reg_dma_mem) {
1494			DRM_ERROR("Failed to get DMA memory\n");
1495			return -ENOMEM;
1496		}
1497
 
 
 
 
1498		dma_cap_zero(dma_mask);
1499		dma_cap_set(DMA_MEMCPY, dma_mask);
 
1500		dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1501		if (IS_ERR(dsi->reg_dma_chan)) {
1502			ret = PTR_ERR(dsi->reg_dma_chan);
1503			if (ret != -EPROBE_DEFER)
1504				DRM_ERROR("Failed to get DMA channel: %d\n",
1505					  ret);
1506			return ret;
1507		}
1508
 
 
 
 
1509		/* Get the physical address of the device's registers.  The
1510		 * struct resource for the regs gives us the bus address
1511		 * instead.
1512		 */
1513		dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1514							     0, NULL, NULL));
1515	}
1516
1517	init_completion(&dsi->xfer_completion);
1518	/* At startup enable error-reporting interrupts and nothing else. */
1519	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1520	/* Clear any existing interrupt state. */
1521	DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1522
1523	if (dsi->reg_dma_mem)
1524		ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1525						vc4_dsi_irq_defer_to_thread_handler,
1526						vc4_dsi_irq_handler,
1527						IRQF_ONESHOT,
1528						"vc4 dsi", dsi);
1529	else
1530		ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1531				       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1532	if (ret) {
1533		if (ret != -EPROBE_DEFER)
1534			dev_err(dev, "Failed to get interrupt: %d\n", ret);
1535		return ret;
1536	}
1537
1538	dsi->escape_clock = devm_clk_get(dev, "escape");
1539	if (IS_ERR(dsi->escape_clock)) {
1540		ret = PTR_ERR(dsi->escape_clock);
1541		if (ret != -EPROBE_DEFER)
1542			dev_err(dev, "Failed to get escape clock: %d\n", ret);
1543		return ret;
1544	}
1545
1546	dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1547	if (IS_ERR(dsi->pll_phy_clock)) {
1548		ret = PTR_ERR(dsi->pll_phy_clock);
1549		if (ret != -EPROBE_DEFER)
1550			dev_err(dev, "Failed to get phy clock: %d\n", ret);
1551		return ret;
1552	}
1553
1554	dsi->pixel_clock = devm_clk_get(dev, "pixel");
1555	if (IS_ERR(dsi->pixel_clock)) {
1556		ret = PTR_ERR(dsi->pixel_clock);
1557		if (ret != -EPROBE_DEFER)
1558			dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1559		return ret;
1560	}
1561
1562	ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
1563					  &panel, &dsi->bridge);
1564	if (ret) {
1565		/* If the bridge or panel pointed by dev->of_node is not
1566		 * enabled, just return 0 here so that we don't prevent the DRM
1567		 * dev from being registered. Of course that means the DSI
1568		 * encoder won't be exposed, but that's not a problem since
1569		 * nothing is connected to it.
1570		 */
1571		if (ret == -ENODEV)
1572			return 0;
1573
1574		return ret;
1575	}
1576
1577	if (panel) {
1578		dsi->bridge = devm_drm_panel_bridge_add(dev, panel,
1579							DRM_MODE_CONNECTOR_DSI);
1580		if (IS_ERR(dsi->bridge))
1581			return PTR_ERR(dsi->bridge);
1582	}
1583
1584	/* The esc clock rate is supposed to always be 100Mhz. */
1585	ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1586	if (ret) {
1587		dev_err(dev, "Failed to set esc clock: %d\n", ret);
1588		return ret;
1589	}
1590
1591	ret = vc4_dsi_init_phy_clocks(dsi);
1592	if (ret)
1593		return ret;
1594
1595	if (dsi->port == 1)
1596		vc4->dsi1 = dsi;
1597
1598	drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
1599			 DRM_MODE_ENCODER_DSI, NULL);
1600	drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1601
1602	ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
1603	if (ret) {
1604		dev_err(dev, "bridge attach failed: %d\n", ret);
1605		return ret;
1606	}
1607	/* Disable the atomic helper calls into the bridge.  We
1608	 * manually call the bridge pre_enable / enable / etc. calls
1609	 * from our driver, since we need to sequence them within the
1610	 * encoder's enable/disable paths.
1611	 */
1612	dsi->encoder->bridge = NULL;
1613
1614	if (dsi->port == 0)
1615		vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset);
1616	else
1617		vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset);
1618
1619	pm_runtime_enable(dev);
 
 
1620
1621	return 0;
1622}
1623
1624static void vc4_dsi_unbind(struct device *dev, struct device *master,
1625			   void *data)
1626{
1627	struct drm_device *drm = dev_get_drvdata(master);
1628	struct vc4_dev *vc4 = to_vc4_dev(drm);
1629	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1630
1631	if (dsi->bridge)
1632		pm_runtime_disable(dev);
1633
1634	vc4_dsi_encoder_destroy(dsi->encoder);
1635
1636	if (dsi->port == 1)
1637		vc4->dsi1 = NULL;
1638}
1639
1640static const struct component_ops vc4_dsi_ops = {
1641	.bind   = vc4_dsi_bind,
1642	.unbind = vc4_dsi_unbind,
1643};
1644
1645static int vc4_dsi_dev_probe(struct platform_device *pdev)
1646{
1647	struct device *dev = &pdev->dev;
1648	struct vc4_dsi *dsi;
1649	int ret;
1650
1651	dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1652	if (!dsi)
1653		return -ENOMEM;
1654	dev_set_drvdata(dev, dsi);
1655
1656	dsi->pdev = pdev;
1657
1658	/* Note, the initialization sequence for DSI and panels is
1659	 * tricky.  The component bind above won't get past its
1660	 * -EPROBE_DEFER until the panel/bridge probes.  The
1661	 * panel/bridge will return -EPROBE_DEFER until it has a
1662	 * mipi_dsi_host to register its device to.  So, we register
1663	 * the host during pdev probe time, so vc4 as a whole can then
1664	 * -EPROBE_DEFER its component bind process until the panel
1665	 * successfully attaches.
1666	 */
1667	dsi->dsi_host.ops = &vc4_dsi_host_ops;
1668	dsi->dsi_host.dev = dev;
1669	mipi_dsi_host_register(&dsi->dsi_host);
1670
1671	ret = component_add(&pdev->dev, &vc4_dsi_ops);
1672	if (ret) {
1673		mipi_dsi_host_unregister(&dsi->dsi_host);
1674		return ret;
1675	}
1676
1677	return 0;
1678}
1679
1680static int vc4_dsi_dev_remove(struct platform_device *pdev)
1681{
1682	struct device *dev = &pdev->dev;
1683	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1684
1685	component_del(&pdev->dev, &vc4_dsi_ops);
1686	mipi_dsi_host_unregister(&dsi->dsi_host);
1687
1688	return 0;
1689}
1690
1691struct platform_driver vc4_dsi_driver = {
1692	.probe = vc4_dsi_dev_probe,
1693	.remove = vc4_dsi_dev_remove,
1694	.driver = {
1695		.name = "vc4_dsi",
1696		.of_match_table = vc4_dsi_dt_match,
1697	},
1698};
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2016 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 DSI0/DSI1 module
   8 *
   9 * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
  10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
  11 * controller.
  12 *
  13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
  14 * while the compute module brings both DSI0 and DSI1 out.
  15 *
  16 * This driver has been tested for DSI1 video-mode display only
  17 * currently, with most of the information necessary for DSI0
  18 * hopefully present.
  19 */
  20
  21#include <linux/clk-provider.h>
  22#include <linux/clk.h>
  23#include <linux/completion.h>
  24#include <linux/component.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/dmaengine.h>
 
  27#include <linux/io.h>
  28#include <linux/of.h>
  29#include <linux/of_address.h>
  30#include <linux/platform_device.h>
  31#include <linux/pm_runtime.h>
  32
  33#include <drm/drm_atomic_helper.h>
  34#include <drm/drm_bridge.h>
  35#include <drm/drm_edid.h>
  36#include <drm/drm_mipi_dsi.h>
  37#include <drm/drm_of.h>
  38#include <drm/drm_panel.h>
  39#include <drm/drm_probe_helper.h>
  40#include <drm/drm_simple_kms_helper.h>
  41
  42#include "vc4_drv.h"
  43#include "vc4_regs.h"
  44
  45#define DSI_CMD_FIFO_DEPTH  16
  46#define DSI_PIX_FIFO_DEPTH 256
  47#define DSI_PIX_FIFO_WIDTH   4
  48
  49#define DSI0_CTRL		0x00
  50
  51/* Command packet control. */
  52#define DSI0_TXPKT1C		0x04 /* AKA PKTC */
  53#define DSI1_TXPKT1C		0x04
  54# define DSI_TXPKT1C_TRIG_CMD_MASK	VC4_MASK(31, 24)
  55# define DSI_TXPKT1C_TRIG_CMD_SHIFT	24
  56# define DSI_TXPKT1C_CMD_REPEAT_MASK	VC4_MASK(23, 10)
  57# define DSI_TXPKT1C_CMD_REPEAT_SHIFT	10
  58
  59# define DSI_TXPKT1C_DISPLAY_NO_MASK	VC4_MASK(9, 8)
  60# define DSI_TXPKT1C_DISPLAY_NO_SHIFT	8
  61/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
  62# define DSI_TXPKT1C_DISPLAY_NO_SHORT		0
  63/* Primary display where cmdfifo provides part of the payload and
  64 * pixelvalve the rest.
  65 */
  66# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY		1
  67/* Secondary display where cmdfifo provides part of the payload and
  68 * pixfifo the rest.
  69 */
  70# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY	2
  71
  72# define DSI_TXPKT1C_CMD_TX_TIME_MASK	VC4_MASK(7, 6)
  73# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT	6
  74
  75# define DSI_TXPKT1C_CMD_CTRL_MASK	VC4_MASK(5, 4)
  76# define DSI_TXPKT1C_CMD_CTRL_SHIFT	4
  77/* Command only.  Uses TXPKT1H and DISPLAY_NO */
  78# define DSI_TXPKT1C_CMD_CTRL_TX	0
  79/* Command with BTA for either ack or read data. */
  80# define DSI_TXPKT1C_CMD_CTRL_RX	1
  81/* Trigger according to TRIG_CMD */
  82# define DSI_TXPKT1C_CMD_CTRL_TRIG	2
  83/* BTA alone for getting error status after a command, or a TE trigger
  84 * without a previous command.
  85 */
  86# define DSI_TXPKT1C_CMD_CTRL_BTA	3
  87
  88# define DSI_TXPKT1C_CMD_MODE_LP	BIT(3)
  89# define DSI_TXPKT1C_CMD_TYPE_LONG	BIT(2)
  90# define DSI_TXPKT1C_CMD_TE_EN		BIT(1)
  91# define DSI_TXPKT1C_CMD_EN		BIT(0)
  92
  93/* Command packet header. */
  94#define DSI0_TXPKT1H		0x08 /* AKA PKTH */
  95#define DSI1_TXPKT1H		0x08
  96# define DSI_TXPKT1H_BC_CMDFIFO_MASK	VC4_MASK(31, 24)
  97# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT	24
  98# define DSI_TXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
  99# define DSI_TXPKT1H_BC_PARAM_SHIFT	8
 100# define DSI_TXPKT1H_BC_DT_MASK		VC4_MASK(7, 0)
 101# define DSI_TXPKT1H_BC_DT_SHIFT	0
 102
 103#define DSI0_RXPKT1H		0x0c /* AKA RX1_PKTH */
 104#define DSI1_RXPKT1H		0x14
 105# define DSI_RXPKT1H_CRC_ERR		BIT(31)
 106# define DSI_RXPKT1H_DET_ERR		BIT(30)
 107# define DSI_RXPKT1H_ECC_ERR		BIT(29)
 108# define DSI_RXPKT1H_COR_ERR		BIT(28)
 109# define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
 110# define DSI_RXPKT1H_PKT_TYPE_LONG	BIT(24)
 111/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
 112# define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
 113# define DSI_RXPKT1H_BC_PARAM_SHIFT	8
 114/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
 115# define DSI_RXPKT1H_SHORT_1_MASK	VC4_MASK(23, 16)
 116# define DSI_RXPKT1H_SHORT_1_SHIFT	16
 117# define DSI_RXPKT1H_SHORT_0_MASK	VC4_MASK(15, 8)
 118# define DSI_RXPKT1H_SHORT_0_SHIFT	8
 119# define DSI_RXPKT1H_DT_LP_CMD_MASK	VC4_MASK(7, 0)
 120# define DSI_RXPKT1H_DT_LP_CMD_SHIFT	0
 121
 122#define DSI0_RXPKT2H		0x10 /* AKA RX2_PKTH */
 123#define DSI1_RXPKT2H		0x18
 124# define DSI_RXPKT1H_DET_ERR		BIT(30)
 125# define DSI_RXPKT1H_ECC_ERR		BIT(29)
 126# define DSI_RXPKT1H_COR_ERR		BIT(28)
 127# define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
 128# define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
 129# define DSI_RXPKT1H_BC_PARAM_SHIFT	8
 130# define DSI_RXPKT1H_DT_MASK		VC4_MASK(7, 0)
 131# define DSI_RXPKT1H_DT_SHIFT		0
 132
 133#define DSI0_TXPKT_CMD_FIFO	0x14 /* AKA CMD_DATAF */
 134#define DSI1_TXPKT_CMD_FIFO	0x1c
 135
 136#define DSI0_DISP0_CTRL		0x18
 137# define DSI_DISP0_PIX_CLK_DIV_MASK	VC4_MASK(21, 13)
 138# define DSI_DISP0_PIX_CLK_DIV_SHIFT	13
 139# define DSI_DISP0_LP_STOP_CTRL_MASK	VC4_MASK(12, 11)
 140# define DSI_DISP0_LP_STOP_CTRL_SHIFT	11
 141# define DSI_DISP0_LP_STOP_DISABLE	0
 142# define DSI_DISP0_LP_STOP_PERLINE	1
 143# define DSI_DISP0_LP_STOP_PERFRAME	2
 144
 145/* Transmit RGB pixels and null packets only during HACTIVE, instead
 146 * of going to LP-STOP.
 147 */
 148# define DSI_DISP_HACTIVE_NULL		BIT(10)
 149/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
 150# define DSI_DISP_VBLP_CTRL		BIT(9)
 151/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
 152# define DSI_DISP_HFP_CTRL		BIT(8)
 153/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
 154# define DSI_DISP_HBP_CTRL		BIT(7)
 155# define DSI_DISP0_CHANNEL_MASK		VC4_MASK(6, 5)
 156# define DSI_DISP0_CHANNEL_SHIFT	5
 157/* Enables end events for HSYNC/VSYNC, not just start events. */
 158# define DSI_DISP0_ST_END		BIT(4)
 159# define DSI_DISP0_PFORMAT_MASK		VC4_MASK(3, 2)
 160# define DSI_DISP0_PFORMAT_SHIFT	2
 161# define DSI_PFORMAT_RGB565		0
 162# define DSI_PFORMAT_RGB666_PACKED	1
 163# define DSI_PFORMAT_RGB666		2
 164# define DSI_PFORMAT_RGB888		3
 165/* Default is VIDEO mode. */
 166# define DSI_DISP0_COMMAND_MODE		BIT(1)
 167# define DSI_DISP0_ENABLE		BIT(0)
 168
 169#define DSI0_DISP1_CTRL		0x1c
 170#define DSI1_DISP1_CTRL		0x2c
 171/* Format of the data written to TXPKT_PIX_FIFO. */
 172# define DSI_DISP1_PFORMAT_MASK		VC4_MASK(2, 1)
 173# define DSI_DISP1_PFORMAT_SHIFT	1
 174# define DSI_DISP1_PFORMAT_16BIT	0
 175# define DSI_DISP1_PFORMAT_24BIT	1
 176# define DSI_DISP1_PFORMAT_32BIT_LE	2
 177# define DSI_DISP1_PFORMAT_32BIT_BE	3
 178
 179/* DISP1 is always command mode. */
 180# define DSI_DISP1_ENABLE		BIT(0)
 181
 182#define DSI0_TXPKT_PIX_FIFO		0x20 /* AKA PIX_FIFO */
 183
 184#define DSI0_INT_STAT			0x24
 185#define DSI0_INT_EN			0x28
 186# define DSI0_INT_FIFO_ERR		BIT(25)
 187# define DSI0_INT_CMDC_DONE_MASK	VC4_MASK(24, 23)
 188# define DSI0_INT_CMDC_DONE_SHIFT	23
 189#  define DSI0_INT_CMDC_DONE_NO_REPEAT		1
 190#  define DSI0_INT_CMDC_DONE_REPEAT		3
 191# define DSI0_INT_PHY_DIR_RTF		BIT(22)
 192# define DSI0_INT_PHY_D1_ULPS		BIT(21)
 193# define DSI0_INT_PHY_D1_STOP		BIT(20)
 194# define DSI0_INT_PHY_RXLPDT		BIT(19)
 195# define DSI0_INT_PHY_RXTRIG		BIT(18)
 196# define DSI0_INT_PHY_D0_ULPS		BIT(17)
 197# define DSI0_INT_PHY_D0_LPDT		BIT(16)
 198# define DSI0_INT_PHY_D0_FTR		BIT(15)
 199# define DSI0_INT_PHY_D0_STOP		BIT(14)
 200/* Signaled when the clock lane enters the given state. */
 201# define DSI0_INT_PHY_CLK_ULPS		BIT(13)
 202# define DSI0_INT_PHY_CLK_HS		BIT(12)
 203# define DSI0_INT_PHY_CLK_FTR		BIT(11)
 204/* Signaled on timeouts */
 205# define DSI0_INT_PR_TO			BIT(10)
 206# define DSI0_INT_TA_TO			BIT(9)
 207# define DSI0_INT_LPRX_TO		BIT(8)
 208# define DSI0_INT_HSTX_TO		BIT(7)
 209/* Contention on a line when trying to drive the line low */
 210# define DSI0_INT_ERR_CONT_LP1		BIT(6)
 211# define DSI0_INT_ERR_CONT_LP0		BIT(5)
 212/* Control error: incorrect line state sequence on data lane 0. */
 213# define DSI0_INT_ERR_CONTROL		BIT(4)
 214# define DSI0_INT_ERR_SYNC_ESC		BIT(3)
 215# define DSI0_INT_RX2_PKT		BIT(2)
 216# define DSI0_INT_RX1_PKT		BIT(1)
 217# define DSI0_INT_CMD_PKT		BIT(0)
 218
 219#define DSI0_INTERRUPTS_ALWAYS_ENABLED	(DSI0_INT_ERR_SYNC_ESC | \
 220					 DSI0_INT_ERR_CONTROL |	 \
 221					 DSI0_INT_ERR_CONT_LP0 | \
 222					 DSI0_INT_ERR_CONT_LP1 | \
 223					 DSI0_INT_HSTX_TO |	 \
 224					 DSI0_INT_LPRX_TO |	 \
 225					 DSI0_INT_TA_TO |	 \
 226					 DSI0_INT_PR_TO)
 227
 228# define DSI1_INT_PHY_D3_ULPS		BIT(30)
 229# define DSI1_INT_PHY_D3_STOP		BIT(29)
 230# define DSI1_INT_PHY_D2_ULPS		BIT(28)
 231# define DSI1_INT_PHY_D2_STOP		BIT(27)
 232# define DSI1_INT_PHY_D1_ULPS		BIT(26)
 233# define DSI1_INT_PHY_D1_STOP		BIT(25)
 234# define DSI1_INT_PHY_D0_ULPS		BIT(24)
 235# define DSI1_INT_PHY_D0_STOP		BIT(23)
 236# define DSI1_INT_FIFO_ERR		BIT(22)
 237# define DSI1_INT_PHY_DIR_RTF		BIT(21)
 238# define DSI1_INT_PHY_RXLPDT		BIT(20)
 239# define DSI1_INT_PHY_RXTRIG		BIT(19)
 240# define DSI1_INT_PHY_D0_LPDT		BIT(18)
 241# define DSI1_INT_PHY_DIR_FTR		BIT(17)
 242
 243/* Signaled when the clock lane enters the given state. */
 244# define DSI1_INT_PHY_CLOCK_ULPS	BIT(16)
 245# define DSI1_INT_PHY_CLOCK_HS		BIT(15)
 246# define DSI1_INT_PHY_CLOCK_STOP	BIT(14)
 247
 248/* Signaled on timeouts */
 249# define DSI1_INT_PR_TO			BIT(13)
 250# define DSI1_INT_TA_TO			BIT(12)
 251# define DSI1_INT_LPRX_TO		BIT(11)
 252# define DSI1_INT_HSTX_TO		BIT(10)
 253
 254/* Contention on a line when trying to drive the line low */
 255# define DSI1_INT_ERR_CONT_LP1		BIT(9)
 256# define DSI1_INT_ERR_CONT_LP0		BIT(8)
 257
 258/* Control error: incorrect line state sequence on data lane 0. */
 259# define DSI1_INT_ERR_CONTROL		BIT(7)
 260/* LPDT synchronization error (bits received not a multiple of 8. */
 261
 262# define DSI1_INT_ERR_SYNC_ESC		BIT(6)
 263/* Signaled after receiving an error packet from the display in
 264 * response to a read.
 265 */
 266# define DSI1_INT_RXPKT2		BIT(5)
 267/* Signaled after receiving a packet.  The header and optional short
 268 * response will be in RXPKT1H, and a long response will be in the
 269 * RXPKT_FIFO.
 270 */
 271# define DSI1_INT_RXPKT1		BIT(4)
 272# define DSI1_INT_TXPKT2_DONE		BIT(3)
 273# define DSI1_INT_TXPKT2_END		BIT(2)
 274/* Signaled after all repeats of TXPKT1 are transferred. */
 275# define DSI1_INT_TXPKT1_DONE		BIT(1)
 276/* Signaled after each TXPKT1 repeat is scheduled. */
 277# define DSI1_INT_TXPKT1_END		BIT(0)
 278
 279#define DSI1_INTERRUPTS_ALWAYS_ENABLED	(DSI1_INT_ERR_SYNC_ESC | \
 280					 DSI1_INT_ERR_CONTROL |	 \
 281					 DSI1_INT_ERR_CONT_LP0 | \
 282					 DSI1_INT_ERR_CONT_LP1 | \
 283					 DSI1_INT_HSTX_TO |	 \
 284					 DSI1_INT_LPRX_TO |	 \
 285					 DSI1_INT_TA_TO |	 \
 286					 DSI1_INT_PR_TO)
 287
 288#define DSI0_STAT		0x2c
 289#define DSI0_HSTX_TO_CNT	0x30
 290#define DSI0_LPRX_TO_CNT	0x34
 291#define DSI0_TA_TO_CNT		0x38
 292#define DSI0_PR_TO_CNT		0x3c
 293#define DSI0_PHYC		0x40
 294# define DSI1_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(25, 20)
 295# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT	20
 296# define DSI1_PHYC_HS_CLK_CONTINUOUS	BIT(18)
 297# define DSI0_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(17, 12)
 298# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT	12
 299# define DSI1_PHYC_CLANE_ULPS		BIT(17)
 300# define DSI1_PHYC_CLANE_ENABLE		BIT(16)
 301# define DSI_PHYC_DLANE3_ULPS		BIT(13)
 302# define DSI_PHYC_DLANE3_ENABLE		BIT(12)
 303# define DSI0_PHYC_HS_CLK_CONTINUOUS	BIT(10)
 304# define DSI0_PHYC_CLANE_ULPS		BIT(9)
 305# define DSI_PHYC_DLANE2_ULPS		BIT(9)
 306# define DSI0_PHYC_CLANE_ENABLE		BIT(8)
 307# define DSI_PHYC_DLANE2_ENABLE		BIT(8)
 308# define DSI_PHYC_DLANE1_ULPS		BIT(5)
 309# define DSI_PHYC_DLANE1_ENABLE		BIT(4)
 310# define DSI_PHYC_DLANE0_FORCE_STOP	BIT(2)
 311# define DSI_PHYC_DLANE0_ULPS		BIT(1)
 312# define DSI_PHYC_DLANE0_ENABLE		BIT(0)
 313
 314#define DSI0_HS_CLT0		0x44
 315#define DSI0_HS_CLT1		0x48
 316#define DSI0_HS_CLT2		0x4c
 317#define DSI0_HS_DLT3		0x50
 318#define DSI0_HS_DLT4		0x54
 319#define DSI0_HS_DLT5		0x58
 320#define DSI0_HS_DLT6		0x5c
 321#define DSI0_HS_DLT7		0x60
 322
 323#define DSI0_PHY_AFEC0		0x64
 324# define DSI0_PHY_AFEC0_DDR2CLK_EN		BIT(26)
 325# define DSI0_PHY_AFEC0_DDRCLK_EN		BIT(25)
 326# define DSI0_PHY_AFEC0_LATCH_ULPS		BIT(24)
 327# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK		VC4_MASK(31, 29)
 328# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT	29
 329# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK		VC4_MASK(28, 26)
 330# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT	26
 331# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK		VC4_MASK(27, 23)
 332# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT	23
 333# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK		VC4_MASK(22, 20)
 334# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT	20
 335# define DSI1_PHY_AFEC0_IDR_CLANE_MASK		VC4_MASK(19, 17)
 336# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT		17
 337# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK	VC4_MASK(23, 20)
 338# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT	20
 339# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK	VC4_MASK(19, 16)
 340# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT	16
 341# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK	VC4_MASK(15, 12)
 342# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT	12
 343# define DSI1_PHY_AFEC0_DDR2CLK_EN		BIT(16)
 344# define DSI1_PHY_AFEC0_DDRCLK_EN		BIT(15)
 345# define DSI1_PHY_AFEC0_LATCH_ULPS		BIT(14)
 346# define DSI1_PHY_AFEC0_RESET			BIT(13)
 347# define DSI1_PHY_AFEC0_PD			BIT(12)
 348# define DSI0_PHY_AFEC0_RESET			BIT(11)
 349# define DSI1_PHY_AFEC0_PD_BG			BIT(11)
 350# define DSI0_PHY_AFEC0_PD			BIT(10)
 351# define DSI1_PHY_AFEC0_PD_DLANE1		BIT(10)
 352# define DSI0_PHY_AFEC0_PD_BG			BIT(9)
 353# define DSI1_PHY_AFEC0_PD_DLANE2		BIT(9)
 354# define DSI0_PHY_AFEC0_PD_DLANE1		BIT(8)
 355# define DSI1_PHY_AFEC0_PD_DLANE3		BIT(8)
 356# define DSI_PHY_AFEC0_PTATADJ_MASK		VC4_MASK(7, 4)
 357# define DSI_PHY_AFEC0_PTATADJ_SHIFT		4
 358# define DSI_PHY_AFEC0_CTATADJ_MASK		VC4_MASK(3, 0)
 359# define DSI_PHY_AFEC0_CTATADJ_SHIFT		0
 360
 361#define DSI0_PHY_AFEC1		0x68
 362# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK		VC4_MASK(10, 8)
 363# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT	8
 364# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK		VC4_MASK(6, 4)
 365# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT	4
 366# define DSI0_PHY_AFEC1_IDR_CLANE_MASK		VC4_MASK(2, 0)
 367# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT		0
 368
 369#define DSI0_TST_SEL		0x6c
 370#define DSI0_TST_MON		0x70
 371#define DSI0_ID			0x74
 372# define DSI_ID_VALUE		0x00647369
 373
 374#define DSI1_CTRL		0x00
 375# define DSI_CTRL_HS_CLKC_MASK		VC4_MASK(15, 14)
 376# define DSI_CTRL_HS_CLKC_SHIFT		14
 377# define DSI_CTRL_HS_CLKC_BYTE		0
 378# define DSI_CTRL_HS_CLKC_DDR2		1
 379# define DSI_CTRL_HS_CLKC_DDR		2
 380
 381# define DSI_CTRL_RX_LPDT_EOT_DISABLE	BIT(13)
 382# define DSI_CTRL_LPDT_EOT_DISABLE	BIT(12)
 383# define DSI_CTRL_HSDT_EOT_DISABLE	BIT(11)
 384# define DSI_CTRL_SOFT_RESET_CFG	BIT(10)
 385# define DSI_CTRL_CAL_BYTE		BIT(9)
 386# define DSI_CTRL_INV_BYTE		BIT(8)
 387# define DSI_CTRL_CLR_LDF		BIT(7)
 388# define DSI0_CTRL_CLR_PBCF		BIT(6)
 389# define DSI1_CTRL_CLR_RXF		BIT(6)
 390# define DSI0_CTRL_CLR_CPBCF		BIT(5)
 391# define DSI1_CTRL_CLR_PDF		BIT(5)
 392# define DSI0_CTRL_CLR_PDF		BIT(4)
 393# define DSI1_CTRL_CLR_CDF		BIT(4)
 394# define DSI0_CTRL_CLR_CDF		BIT(3)
 395# define DSI0_CTRL_CTRL2		BIT(2)
 396# define DSI1_CTRL_DISABLE_DISP_CRCC	BIT(2)
 397# define DSI0_CTRL_CTRL1		BIT(1)
 398# define DSI1_CTRL_DISABLE_DISP_ECCC	BIT(1)
 399# define DSI0_CTRL_CTRL0		BIT(0)
 400# define DSI1_CTRL_EN			BIT(0)
 401# define DSI0_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
 402					 DSI0_CTRL_CLR_PBCF | \
 403					 DSI0_CTRL_CLR_CPBCF |	\
 404					 DSI0_CTRL_CLR_PDF | \
 405					 DSI0_CTRL_CLR_CDF)
 406# define DSI1_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
 407					 DSI1_CTRL_CLR_RXF | \
 408					 DSI1_CTRL_CLR_PDF | \
 409					 DSI1_CTRL_CLR_CDF)
 410
 411#define DSI1_TXPKT2C		0x0c
 412#define DSI1_TXPKT2H		0x10
 413#define DSI1_TXPKT_PIX_FIFO	0x20
 414#define DSI1_RXPKT_FIFO		0x24
 415#define DSI1_DISP0_CTRL		0x28
 416#define DSI1_INT_STAT		0x30
 417#define DSI1_INT_EN		0x34
 418/* State reporting bits.  These mostly behave like INT_STAT, where
 419 * writing a 1 clears the bit.
 420 */
 421#define DSI1_STAT		0x38
 422# define DSI1_STAT_PHY_D3_ULPS		BIT(31)
 423# define DSI1_STAT_PHY_D3_STOP		BIT(30)
 424# define DSI1_STAT_PHY_D2_ULPS		BIT(29)
 425# define DSI1_STAT_PHY_D2_STOP		BIT(28)
 426# define DSI1_STAT_PHY_D1_ULPS		BIT(27)
 427# define DSI1_STAT_PHY_D1_STOP		BIT(26)
 428# define DSI1_STAT_PHY_D0_ULPS		BIT(25)
 429# define DSI1_STAT_PHY_D0_STOP		BIT(24)
 430# define DSI1_STAT_FIFO_ERR		BIT(23)
 431# define DSI1_STAT_PHY_RXLPDT		BIT(22)
 432# define DSI1_STAT_PHY_RXTRIG		BIT(21)
 433# define DSI1_STAT_PHY_D0_LPDT		BIT(20)
 434/* Set when in forward direction */
 435# define DSI1_STAT_PHY_DIR		BIT(19)
 436# define DSI1_STAT_PHY_CLOCK_ULPS	BIT(18)
 437# define DSI1_STAT_PHY_CLOCK_HS		BIT(17)
 438# define DSI1_STAT_PHY_CLOCK_STOP	BIT(16)
 439# define DSI1_STAT_PR_TO		BIT(15)
 440# define DSI1_STAT_TA_TO		BIT(14)
 441# define DSI1_STAT_LPRX_TO		BIT(13)
 442# define DSI1_STAT_HSTX_TO		BIT(12)
 443# define DSI1_STAT_ERR_CONT_LP1		BIT(11)
 444# define DSI1_STAT_ERR_CONT_LP0		BIT(10)
 445# define DSI1_STAT_ERR_CONTROL		BIT(9)
 446# define DSI1_STAT_ERR_SYNC_ESC		BIT(8)
 447# define DSI1_STAT_RXPKT2		BIT(7)
 448# define DSI1_STAT_RXPKT1		BIT(6)
 449# define DSI1_STAT_TXPKT2_BUSY		BIT(5)
 450# define DSI1_STAT_TXPKT2_DONE		BIT(4)
 451# define DSI1_STAT_TXPKT2_END		BIT(3)
 452# define DSI1_STAT_TXPKT1_BUSY		BIT(2)
 453# define DSI1_STAT_TXPKT1_DONE		BIT(1)
 454# define DSI1_STAT_TXPKT1_END		BIT(0)
 455
 456#define DSI1_HSTX_TO_CNT	0x3c
 457#define DSI1_LPRX_TO_CNT	0x40
 458#define DSI1_TA_TO_CNT		0x44
 459#define DSI1_PR_TO_CNT		0x48
 460#define DSI1_PHYC		0x4c
 461
 462#define DSI1_HS_CLT0		0x50
 463# define DSI_HS_CLT0_CZERO_MASK		VC4_MASK(26, 18)
 464# define DSI_HS_CLT0_CZERO_SHIFT	18
 465# define DSI_HS_CLT0_CPRE_MASK		VC4_MASK(17, 9)
 466# define DSI_HS_CLT0_CPRE_SHIFT		9
 467# define DSI_HS_CLT0_CPREP_MASK		VC4_MASK(8, 0)
 468# define DSI_HS_CLT0_CPREP_SHIFT	0
 469
 470#define DSI1_HS_CLT1		0x54
 471# define DSI_HS_CLT1_CTRAIL_MASK	VC4_MASK(17, 9)
 472# define DSI_HS_CLT1_CTRAIL_SHIFT	9
 473# define DSI_HS_CLT1_CPOST_MASK		VC4_MASK(8, 0)
 474# define DSI_HS_CLT1_CPOST_SHIFT	0
 475
 476#define DSI1_HS_CLT2		0x58
 477# define DSI_HS_CLT2_WUP_MASK		VC4_MASK(23, 0)
 478# define DSI_HS_CLT2_WUP_SHIFT		0
 479
 480#define DSI1_HS_DLT3		0x5c
 481# define DSI_HS_DLT3_EXIT_MASK		VC4_MASK(26, 18)
 482# define DSI_HS_DLT3_EXIT_SHIFT		18
 483# define DSI_HS_DLT3_ZERO_MASK		VC4_MASK(17, 9)
 484# define DSI_HS_DLT3_ZERO_SHIFT		9
 485# define DSI_HS_DLT3_PRE_MASK		VC4_MASK(8, 0)
 486# define DSI_HS_DLT3_PRE_SHIFT		0
 487
 488#define DSI1_HS_DLT4		0x60
 489# define DSI_HS_DLT4_ANLAT_MASK		VC4_MASK(22, 18)
 490# define DSI_HS_DLT4_ANLAT_SHIFT	18
 491# define DSI_HS_DLT4_TRAIL_MASK		VC4_MASK(17, 9)
 492# define DSI_HS_DLT4_TRAIL_SHIFT	9
 493# define DSI_HS_DLT4_LPX_MASK		VC4_MASK(8, 0)
 494# define DSI_HS_DLT4_LPX_SHIFT		0
 495
 496#define DSI1_HS_DLT5		0x64
 497# define DSI_HS_DLT5_INIT_MASK		VC4_MASK(23, 0)
 498# define DSI_HS_DLT5_INIT_SHIFT		0
 499
 500#define DSI1_HS_DLT6		0x68
 501# define DSI_HS_DLT6_TA_GET_MASK	VC4_MASK(31, 24)
 502# define DSI_HS_DLT6_TA_GET_SHIFT	24
 503# define DSI_HS_DLT6_TA_SURE_MASK	VC4_MASK(23, 16)
 504# define DSI_HS_DLT6_TA_SURE_SHIFT	16
 505# define DSI_HS_DLT6_TA_GO_MASK		VC4_MASK(15, 8)
 506# define DSI_HS_DLT6_TA_GO_SHIFT	8
 507# define DSI_HS_DLT6_LP_LPX_MASK	VC4_MASK(7, 0)
 508# define DSI_HS_DLT6_LP_LPX_SHIFT	0
 509
 510#define DSI1_HS_DLT7		0x6c
 511# define DSI_HS_DLT7_LP_WUP_MASK	VC4_MASK(23, 0)
 512# define DSI_HS_DLT7_LP_WUP_SHIFT	0
 513
 514#define DSI1_PHY_AFEC0		0x70
 515
 516#define DSI1_PHY_AFEC1		0x74
 517# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK	VC4_MASK(19, 16)
 518# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT	16
 519# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK	VC4_MASK(15, 12)
 520# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT	12
 521# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK	VC4_MASK(11, 8)
 522# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT	8
 523# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK	VC4_MASK(7, 4)
 524# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT	4
 525# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK	VC4_MASK(3, 0)
 526# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT	0
 527
 528#define DSI1_TST_SEL		0x78
 529#define DSI1_TST_MON		0x7c
 530#define DSI1_PHY_TST1		0x80
 531#define DSI1_PHY_TST2		0x84
 532#define DSI1_PHY_FIFO_STAT	0x88
 533/* Actually, all registers in the range that aren't otherwise claimed
 534 * will return the ID.
 535 */
 536#define DSI1_ID			0x8c
 537
 538struct vc4_dsi_variant {
 539	/* Whether we're on bcm2835's DSI0 or DSI1. */
 540	unsigned int port;
 541
 542	bool broken_axi_workaround;
 543
 544	const char *debugfs_name;
 545	const struct debugfs_reg32 *regs;
 546	size_t nregs;
 547
 548};
 549
 550/* General DSI hardware state. */
 551struct vc4_dsi {
 552	struct vc4_encoder encoder;
 553	struct mipi_dsi_host dsi_host;
 554
 555	struct kref kref;
 556
 557	struct platform_device *pdev;
 558
 559	struct drm_bridge *out_bridge;
 560	struct drm_bridge bridge;
 
 561
 562	void __iomem *regs;
 563
 564	struct dma_chan *reg_dma_chan;
 565	dma_addr_t reg_dma_paddr;
 566	u32 *reg_dma_mem;
 567	dma_addr_t reg_paddr;
 568
 569	const struct vc4_dsi_variant *variant;
 
 570
 571	/* DSI channel for the panel we're connected to. */
 572	u32 channel;
 573	u32 lanes;
 574	u32 format;
 575	u32 divider;
 576	u32 mode_flags;
 577
 578	/* Input clock from CPRMAN to the digital PHY, for the DSI
 579	 * escape clock.
 580	 */
 581	struct clk *escape_clock;
 582
 583	/* Input clock to the analog PHY, used to generate the DSI bit
 584	 * clock.
 585	 */
 586	struct clk *pll_phy_clock;
 587
 588	/* HS Clocks generated within the DSI analog PHY. */
 589	struct clk_fixed_factor phy_clocks[3];
 590
 591	struct clk_hw_onecell_data *clk_onecell;
 592
 593	/* Pixel clock output to the pixelvalve, generated from the HS
 594	 * clock.
 595	 */
 596	struct clk *pixel_clock;
 597
 598	struct completion xfer_completion;
 599	int xfer_result;
 600
 601	struct debugfs_regset32 regset;
 602};
 603
 604#define host_to_dsi(host)					\
 605	container_of_const(host, struct vc4_dsi, dsi_host)
 606
 607#define to_vc4_dsi(_encoder)					\
 608	container_of_const(_encoder, struct vc4_dsi, encoder.base)
 609
 610#define bridge_to_vc4_dsi(_bridge)				\
 611	container_of_const(_bridge, struct vc4_dsi, bridge)
 612
 613static inline void
 614dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
 615{
 616	struct dma_chan *chan = dsi->reg_dma_chan;
 617	struct dma_async_tx_descriptor *tx;
 618	dma_cookie_t cookie;
 619	int ret;
 620
 621	kunit_fail_current_test("Accessing a register in a unit test!\n");
 622
 623	/* DSI0 should be able to write normally. */
 624	if (!chan) {
 625		writel(val, dsi->regs + offset);
 626		return;
 627	}
 628
 629	*dsi->reg_dma_mem = val;
 630
 631	tx = chan->device->device_prep_dma_memcpy(chan,
 632						  dsi->reg_paddr + offset,
 633						  dsi->reg_dma_paddr,
 634						  4, 0);
 635	if (!tx) {
 636		DRM_ERROR("Failed to set up DMA register write\n");
 637		return;
 638	}
 639
 640	cookie = tx->tx_submit(tx);
 641	ret = dma_submit_error(cookie);
 642	if (ret) {
 643		DRM_ERROR("Failed to submit DMA: %d\n", ret);
 644		return;
 645	}
 646	ret = dma_sync_wait(chan, cookie);
 647	if (ret)
 648		DRM_ERROR("Failed to wait for DMA: %d\n", ret);
 649}
 650
 651#define DSI_READ(offset)								\
 652	({										\
 653		kunit_fail_current_test("Accessing a register in a unit test!\n");	\
 654		readl(dsi->regs + (offset));						\
 655	})
 656
 657#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
 658#define DSI_PORT_READ(offset) \
 659	DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset)
 660#define DSI_PORT_WRITE(offset, val) \
 661	DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val)
 662#define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit)
 
 
 
 
 
 
 
 
 
 
 
 
 663
 664static const struct debugfs_reg32 dsi0_regs[] = {
 665	VC4_REG32(DSI0_CTRL),
 666	VC4_REG32(DSI0_STAT),
 667	VC4_REG32(DSI0_HSTX_TO_CNT),
 668	VC4_REG32(DSI0_LPRX_TO_CNT),
 669	VC4_REG32(DSI0_TA_TO_CNT),
 670	VC4_REG32(DSI0_PR_TO_CNT),
 671	VC4_REG32(DSI0_DISP0_CTRL),
 672	VC4_REG32(DSI0_DISP1_CTRL),
 673	VC4_REG32(DSI0_INT_STAT),
 674	VC4_REG32(DSI0_INT_EN),
 675	VC4_REG32(DSI0_PHYC),
 676	VC4_REG32(DSI0_HS_CLT0),
 677	VC4_REG32(DSI0_HS_CLT1),
 678	VC4_REG32(DSI0_HS_CLT2),
 679	VC4_REG32(DSI0_HS_DLT3),
 680	VC4_REG32(DSI0_HS_DLT4),
 681	VC4_REG32(DSI0_HS_DLT5),
 682	VC4_REG32(DSI0_HS_DLT6),
 683	VC4_REG32(DSI0_HS_DLT7),
 684	VC4_REG32(DSI0_PHY_AFEC0),
 685	VC4_REG32(DSI0_PHY_AFEC1),
 686	VC4_REG32(DSI0_ID),
 687};
 688
 689static const struct debugfs_reg32 dsi1_regs[] = {
 690	VC4_REG32(DSI1_CTRL),
 691	VC4_REG32(DSI1_STAT),
 692	VC4_REG32(DSI1_HSTX_TO_CNT),
 693	VC4_REG32(DSI1_LPRX_TO_CNT),
 694	VC4_REG32(DSI1_TA_TO_CNT),
 695	VC4_REG32(DSI1_PR_TO_CNT),
 696	VC4_REG32(DSI1_DISP0_CTRL),
 697	VC4_REG32(DSI1_DISP1_CTRL),
 698	VC4_REG32(DSI1_INT_STAT),
 699	VC4_REG32(DSI1_INT_EN),
 700	VC4_REG32(DSI1_PHYC),
 701	VC4_REG32(DSI1_HS_CLT0),
 702	VC4_REG32(DSI1_HS_CLT1),
 703	VC4_REG32(DSI1_HS_CLT2),
 704	VC4_REG32(DSI1_HS_DLT3),
 705	VC4_REG32(DSI1_HS_DLT4),
 706	VC4_REG32(DSI1_HS_DLT5),
 707	VC4_REG32(DSI1_HS_DLT6),
 708	VC4_REG32(DSI1_HS_DLT7),
 709	VC4_REG32(DSI1_PHY_AFEC0),
 710	VC4_REG32(DSI1_PHY_AFEC1),
 711	VC4_REG32(DSI1_ID),
 712};
 713
 
 
 
 
 
 
 
 
 
 714static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
 715{
 716	u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
 717
 718	if (latch)
 719		afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 720	else
 721		afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 722
 723	DSI_PORT_WRITE(PHY_AFEC0, afec0);
 724}
 725
 726/* Enters or exits Ultra Low Power State. */
 727static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
 728{
 729	bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
 730	u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
 731			 DSI_PHYC_DLANE0_ULPS |
 732			 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
 733			 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
 734			 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
 735	u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
 736			 DSI1_STAT_PHY_D0_ULPS |
 737			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
 738			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
 739			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
 740	u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
 741			 DSI1_STAT_PHY_D0_STOP |
 742			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
 743			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
 744			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
 745	int ret;
 746	bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
 747				       DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
 748
 749	if (ulps == ulps_currently_enabled)
 750		return;
 751
 752	DSI_PORT_WRITE(STAT, stat_ulps);
 753	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
 754	ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
 755	if (ret) {
 756		dev_warn(&dsi->pdev->dev,
 757			 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
 758			 DSI_PORT_READ(STAT));
 759		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 760		vc4_dsi_latch_ulps(dsi, false);
 761		return;
 762	}
 763
 764	/* The DSI module can't be disabled while the module is
 765	 * generating ULPS state.  So, to be able to disable the
 766	 * module, we have the AFE latch the ULPS state and continue
 767	 * on to having the module enter STOP.
 768	 */
 769	vc4_dsi_latch_ulps(dsi, ulps);
 770
 771	DSI_PORT_WRITE(STAT, stat_stop);
 772	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 773	ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
 774	if (ret) {
 775		dev_warn(&dsi->pdev->dev,
 776			 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
 777			 DSI_PORT_READ(STAT));
 778		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 779		return;
 780	}
 781}
 782
 783static u32
 784dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
 785{
 786	/* The HS timings have to be rounded up to a multiple of 8
 787	 * because we're using the byte clock.
 788	 */
 789	return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
 790}
 791
 792/* ESC always runs at 100Mhz. */
 793#define ESC_TIME_NS 10
 794
 795static u32
 796dsi_esc_timing(u32 ns)
 797{
 798	return DIV_ROUND_UP(ns, ESC_TIME_NS);
 799}
 800
 801static void vc4_dsi_bridge_disable(struct drm_bridge *bridge,
 802				   struct drm_bridge_state *state)
 803{
 804	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
 805	u32 disp0_ctrl;
 
 806
 807	disp0_ctrl = DSI_PORT_READ(DISP0_CTRL);
 808	disp0_ctrl &= ~DSI_DISP0_ENABLE;
 809	DSI_PORT_WRITE(DISP0_CTRL, disp0_ctrl);
 810}
 811
 812static void vc4_dsi_bridge_post_disable(struct drm_bridge *bridge,
 813					struct drm_bridge_state *state)
 814{
 815	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
 816	struct device *dev = &dsi->pdev->dev;
 817
 818	clk_disable_unprepare(dsi->pll_phy_clock);
 819	clk_disable_unprepare(dsi->escape_clock);
 820	clk_disable_unprepare(dsi->pixel_clock);
 821
 822	pm_runtime_put(dev);
 823}
 824
 825/* Extends the mode's blank intervals to handle BCM2835's integer-only
 826 * DSI PLL divider.
 827 *
 828 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
 829 * driver since most peripherals are hanging off of the PLLD_PER
 830 * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
 831 * the pixel clock), only has an integer divider off of DSI.
 832 *
 833 * To get our panel mode to refresh at the expected 60Hz, we need to
 834 * extend the horizontal blank time.  This means we drive a
 835 * higher-than-expected clock rate to the panel, but that's what the
 836 * firmware does too.
 837 */
 838static bool vc4_dsi_bridge_mode_fixup(struct drm_bridge *bridge,
 839				      const struct drm_display_mode *mode,
 840				      struct drm_display_mode *adjusted_mode)
 841{
 842	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
 
 843	struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
 844	unsigned long parent_rate = clk_get_rate(phy_parent);
 845	unsigned long pixel_clock_hz = mode->clock * 1000;
 846	unsigned long pll_clock = pixel_clock_hz * dsi->divider;
 847	int divider;
 848
 849	/* Find what divider gets us a faster clock than the requested
 850	 * pixel clock.
 851	 */
 852	for (divider = 1; divider < 255; divider++) {
 853		if (parent_rate / (divider + 1) < pll_clock)
 
 854			break;
 
 855	}
 856
 857	/* Now that we've picked a PLL divider, calculate back to its
 858	 * pixel clock.
 859	 */
 860	pll_clock = parent_rate / divider;
 861	pixel_clock_hz = pll_clock / dsi->divider;
 862
 863	adjusted_mode->clock = pixel_clock_hz / 1000;
 864
 865	/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
 866	adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
 867				mode->clock;
 868	adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
 869	adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
 870
 871	return true;
 872}
 873
 874static void vc4_dsi_bridge_pre_enable(struct drm_bridge *bridge,
 875				      struct drm_bridge_state *old_state)
 876{
 877	struct drm_atomic_state *state = old_state->base.state;
 878	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
 879	const struct drm_crtc_state *crtc_state;
 880	struct device *dev = &dsi->pdev->dev;
 881	const struct drm_display_mode *mode;
 882	struct drm_connector *connector;
 883	bool debug_dump_regs = false;
 884	unsigned long hs_clock;
 885	struct drm_crtc *crtc;
 886	u32 ui_ns;
 887	/* Minimum LP state duration in escape clock cycles. */
 888	u32 lpx = dsi_esc_timing(60);
 889	unsigned long pixel_clock_hz;
 890	unsigned long dsip_clock;
 891	unsigned long phy_clock;
 892	int ret;
 893
 894	ret = pm_runtime_resume_and_get(dev);
 895	if (ret) {
 896		DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port);
 897		return;
 898	}
 899
 900	if (debug_dump_regs) {
 901		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
 902		dev_info(&dsi->pdev->dev, "DSI regs before:\n");
 903		drm_print_regset32(&p, &dsi->regset);
 904	}
 905
 906	/*
 907	 * Retrieve the CRTC adjusted mode. This requires a little dance to go
 908	 * from the bridge to the encoder, to the connector and to the CRTC.
 909	 */
 910	connector = drm_atomic_get_new_connector_for_encoder(state,
 911							     bridge->encoder);
 912	crtc = drm_atomic_get_new_connector_state(state, connector)->crtc;
 913	crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
 914	mode = &crtc_state->adjusted_mode;
 915
 916	pixel_clock_hz = mode->clock * 1000;
 917
 918	/* Round up the clk_set_rate() request slightly, since
 919	 * PLLD_DSI1 is an integer divider and its rate selection will
 920	 * never round up.
 921	 */
 922	phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
 923	ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
 924	if (ret) {
 925		dev_err(&dsi->pdev->dev,
 926			"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
 927	}
 928
 929	/* Reset the DSI and all its fifos. */
 930	DSI_PORT_WRITE(CTRL,
 931		       DSI_CTRL_SOFT_RESET_CFG |
 932		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
 933
 934	DSI_PORT_WRITE(CTRL,
 935		       DSI_CTRL_HSDT_EOT_DISABLE |
 936		       DSI_CTRL_RX_LPDT_EOT_DISABLE);
 937
 938	/* Clear all stat bits so we see what has happened during enable. */
 939	DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
 940
 941	/* Set AFE CTR00/CTR1 to release powerdown of analog. */
 942	if (dsi->variant->port == 0) {
 943		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 944			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
 945
 946		if (dsi->lanes < 2)
 947			afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
 948
 949		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
 950			afec0 |= DSI0_PHY_AFEC0_RESET;
 951
 952		DSI_PORT_WRITE(PHY_AFEC0, afec0);
 953
 954		/* AFEC reset hold time */
 955		mdelay(1);
 956
 957		DSI_PORT_WRITE(PHY_AFEC1,
 958			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
 959			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
 960			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
 961	} else {
 962		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 963			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
 964			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
 965			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
 966			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
 967			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
 968			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
 969
 970		if (dsi->lanes < 4)
 971			afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
 972		if (dsi->lanes < 3)
 973			afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
 974		if (dsi->lanes < 2)
 975			afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
 976
 977		afec0 |= DSI1_PHY_AFEC0_RESET;
 978
 979		DSI_PORT_WRITE(PHY_AFEC0, afec0);
 980
 981		DSI_PORT_WRITE(PHY_AFEC1, 0);
 982
 983		/* AFEC reset hold time */
 984		mdelay(1);
 985	}
 986
 987	ret = clk_prepare_enable(dsi->escape_clock);
 988	if (ret) {
 989		DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
 990		return;
 991	}
 992
 993	ret = clk_prepare_enable(dsi->pll_phy_clock);
 994	if (ret) {
 995		DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
 996		return;
 997	}
 998
 999	hs_clock = clk_get_rate(dsi->pll_phy_clock);
1000
1001	/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
1002	 * not the pixel clock rate.  DSIxP take from the APHY's byte,
1003	 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
1004	 * that rate.  Separately, a value derived from PIX_CLK_DIV
1005	 * and HS_CLKC is fed into the PV to divide down to the actual
1006	 * pixel clock for pushing pixels into DSI.
1007	 */
1008	dsip_clock = phy_clock / 8;
1009	ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
1010	if (ret) {
1011		dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
1012			dsip_clock, ret);
1013	}
1014
1015	ret = clk_prepare_enable(dsi->pixel_clock);
1016	if (ret) {
1017		DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
1018		return;
1019	}
1020
1021	/* How many ns one DSI unit interval is.  Note that the clock
1022	 * is DDR, so there's an extra divide by 2.
1023	 */
1024	ui_ns = DIV_ROUND_UP(500000000, hs_clock);
1025
1026	DSI_PORT_WRITE(HS_CLT0,
1027		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
1028				     DSI_HS_CLT0_CZERO) |
1029		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
1030				     DSI_HS_CLT0_CPRE) |
1031		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
1032				     DSI_HS_CLT0_CPREP));
1033
1034	DSI_PORT_WRITE(HS_CLT1,
1035		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
1036				     DSI_HS_CLT1_CTRAIL) |
1037		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
1038				     DSI_HS_CLT1_CPOST));
1039
1040	DSI_PORT_WRITE(HS_CLT2,
1041		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
1042				     DSI_HS_CLT2_WUP));
1043
1044	DSI_PORT_WRITE(HS_DLT3,
1045		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
1046				     DSI_HS_DLT3_EXIT) |
1047		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
1048				     DSI_HS_DLT3_ZERO) |
1049		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
1050				     DSI_HS_DLT3_PRE));
1051
1052	DSI_PORT_WRITE(HS_DLT4,
1053		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
1054				     DSI_HS_DLT4_LPX) |
1055		       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
1056					 dsi_hs_timing(ui_ns, 60, 4)),
1057				     DSI_HS_DLT4_TRAIL) |
1058		       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1059
1060	/* T_INIT is how long STOP is driven after power-up to
1061	 * indicate to the slave (also coming out of power-up) that
1062	 * master init is complete, and should be greater than the
1063	 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
1064	 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1065	 * T_INIT,SLAVE, while allowing protocols on top of it to give
1066	 * greater minimums.  The vc4 firmware uses an extremely
1067	 * conservative 5ms, and we maintain that here.
1068	 */
1069	DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
1070							    5 * 1000 * 1000, 0),
1071					      DSI_HS_DLT5_INIT));
1072
1073	DSI_PORT_WRITE(HS_DLT6,
1074		       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1075		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1076		       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1077		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1078
1079	DSI_PORT_WRITE(HS_DLT7,
1080		       VC4_SET_FIELD(dsi_esc_timing(1000000),
1081				     DSI_HS_DLT7_LP_WUP));
1082
1083	DSI_PORT_WRITE(PHYC,
1084		       DSI_PHYC_DLANE0_ENABLE |
1085		       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1086		       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1087		       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1088		       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1089		       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1090			0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1091		       (dsi->variant->port == 0 ?
1092			VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1093			VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1094
1095	DSI_PORT_WRITE(CTRL,
1096		       DSI_PORT_READ(CTRL) |
1097		       DSI_CTRL_CAL_BYTE);
1098
1099	/* HS timeout in HS clock cycles: disabled. */
1100	DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1101	/* LP receive timeout in HS clocks. */
1102	DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1103	/* Bus turnaround timeout */
1104	DSI_PORT_WRITE(TA_TO_CNT, 100000);
1105	/* Display reset sequence timeout */
1106	DSI_PORT_WRITE(PR_TO_CNT, 100000);
1107
1108	/* Set up DISP1 for transferring long command payloads through
1109	 * the pixfifo.
1110	 */
1111	DSI_PORT_WRITE(DISP1_CTRL,
1112		       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1113				     DSI_DISP1_PFORMAT) |
1114		       DSI_DISP1_ENABLE);
1115
1116	/* Ungate the block. */
1117	if (dsi->variant->port == 0)
1118		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1119	else
1120		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1121
1122	/* Bring AFE out of reset. */
1123	DSI_PORT_WRITE(PHY_AFEC0,
1124		       DSI_PORT_READ(PHY_AFEC0) &
1125		       ~DSI_PORT_BIT(PHY_AFEC0_RESET));
 
 
 
1126
1127	vc4_dsi_ulps(dsi, false);
1128
 
 
1129	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1130		DSI_PORT_WRITE(DISP0_CTRL,
1131			       VC4_SET_FIELD(dsi->divider,
1132					     DSI_DISP0_PIX_CLK_DIV) |
1133			       VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1134			       VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1135					     DSI_DISP0_LP_STOP_CTRL) |
1136			       DSI_DISP0_ST_END);
 
1137	} else {
1138		DSI_PORT_WRITE(DISP0_CTRL,
1139			       DSI_DISP0_COMMAND_MODE);
 
1140	}
1141}
1142
1143static void vc4_dsi_bridge_enable(struct drm_bridge *bridge,
1144				  struct drm_bridge_state *old_state)
1145{
1146	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
1147	bool debug_dump_regs = false;
1148	u32 disp0_ctrl;
1149
1150	disp0_ctrl = DSI_PORT_READ(DISP0_CTRL);
1151	disp0_ctrl |= DSI_DISP0_ENABLE;
1152	DSI_PORT_WRITE(DISP0_CTRL, disp0_ctrl);
1153
1154	if (debug_dump_regs) {
1155		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1156		dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1157		drm_print_regset32(&p, &dsi->regset);
1158	}
1159}
1160
1161static int vc4_dsi_bridge_attach(struct drm_bridge *bridge,
1162				 enum drm_bridge_attach_flags flags)
1163{
1164	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
1165
1166	/* Attach the panel or bridge to the dsi bridge */
1167	return drm_bridge_attach(bridge->encoder, dsi->out_bridge,
1168				 &dsi->bridge, flags);
1169}
1170
1171static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1172				     const struct mipi_dsi_msg *msg)
1173{
1174	struct vc4_dsi *dsi = host_to_dsi(host);
1175	struct mipi_dsi_packet packet;
1176	u32 pkth = 0, pktc = 0;
1177	int i, ret;
1178	bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1179	u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1180
1181	mipi_dsi_create_packet(&packet, msg);
1182
1183	pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1184	pkth |= VC4_SET_FIELD(packet.header[1] |
1185			      (packet.header[2] << 8),
1186			      DSI_TXPKT1H_BC_PARAM);
1187	if (is_long) {
1188		/* Divide data across the various FIFOs we have available.
1189		 * The command FIFO takes byte-oriented data, but is of
1190		 * limited size. The pixel FIFO (never actually used for
1191		 * pixel data in reality) is word oriented, and substantially
1192		 * larger. So, we use the pixel FIFO for most of the data,
1193		 * sending the residual bytes in the command FIFO at the start.
1194		 *
1195		 * With this arrangement, the command FIFO will never get full.
1196		 */
1197		if (packet.payload_length <= 16) {
1198			cmd_fifo_len = packet.payload_length;
1199			pix_fifo_len = 0;
1200		} else {
1201			cmd_fifo_len = (packet.payload_length %
1202					DSI_PIX_FIFO_WIDTH);
1203			pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1204					DSI_PIX_FIFO_WIDTH);
1205		}
1206
1207		WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1208
1209		pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1210	}
1211
1212	if (msg->rx_len) {
1213		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1214				      DSI_TXPKT1C_CMD_CTRL);
1215	} else {
1216		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1217				      DSI_TXPKT1C_CMD_CTRL);
1218	}
1219
1220	for (i = 0; i < cmd_fifo_len; i++)
1221		DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1222	for (i = 0; i < pix_fifo_len; i++) {
1223		const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1224
1225		DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1226			       pix[0] |
1227			       pix[1] << 8 |
1228			       pix[2] << 16 |
1229			       pix[3] << 24);
1230	}
1231
1232	if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1233		pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1234	if (is_long)
1235		pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1236
1237	/* Send one copy of the packet.  Larger repeats are used for pixel
1238	 * data in command mode.
1239	 */
1240	pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1241
1242	pktc |= DSI_TXPKT1C_CMD_EN;
1243	if (pix_fifo_len) {
1244		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1245				      DSI_TXPKT1C_DISPLAY_NO);
1246	} else {
1247		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1248				      DSI_TXPKT1C_DISPLAY_NO);
1249	}
1250
1251	/* Enable the appropriate interrupt for the transfer completion. */
1252	dsi->xfer_result = 0;
1253	reinit_completion(&dsi->xfer_completion);
1254	if (dsi->variant->port == 0) {
1255		DSI_PORT_WRITE(INT_STAT,
1256			       DSI0_INT_CMDC_DONE_MASK | DSI1_INT_PHY_DIR_RTF);
1257		if (msg->rx_len) {
1258			DSI_PORT_WRITE(INT_EN, (DSI0_INTERRUPTS_ALWAYS_ENABLED |
1259						DSI0_INT_PHY_DIR_RTF));
1260		} else {
1261			DSI_PORT_WRITE(INT_EN,
1262				       (DSI0_INTERRUPTS_ALWAYS_ENABLED |
1263					VC4_SET_FIELD(DSI0_INT_CMDC_DONE_NO_REPEAT,
1264						      DSI0_INT_CMDC_DONE)));
1265		}
1266	} else {
1267		DSI_PORT_WRITE(INT_STAT,
1268			       DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1269		if (msg->rx_len) {
1270			DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1271						DSI1_INT_PHY_DIR_RTF));
1272		} else {
1273			DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1274						DSI1_INT_TXPKT1_DONE));
1275		}
1276	}
1277
1278	/* Send the packet. */
1279	DSI_PORT_WRITE(TXPKT1H, pkth);
1280	DSI_PORT_WRITE(TXPKT1C, pktc);
1281
1282	if (!wait_for_completion_timeout(&dsi->xfer_completion,
1283					 msecs_to_jiffies(1000))) {
1284		dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1285		dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1286			DSI_PORT_READ(INT_STAT));
1287		ret = -ETIMEDOUT;
1288	} else {
1289		ret = dsi->xfer_result;
1290	}
1291
1292	DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
1293
1294	if (ret)
1295		goto reset_fifo_and_return;
1296
1297	if (ret == 0 && msg->rx_len) {
1298		u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1299		u8 *msg_rx = msg->rx_buf;
1300
1301		if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1302			u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1303						  DSI_RXPKT1H_BC_PARAM);
1304
1305			if (rxlen != msg->rx_len) {
1306				DRM_ERROR("DSI returned %db, expecting %db\n",
1307					  rxlen, (int)msg->rx_len);
1308				ret = -ENXIO;
1309				goto reset_fifo_and_return;
1310			}
1311
1312			for (i = 0; i < msg->rx_len; i++)
1313				msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1314		} else {
1315			/* FINISHME: Handle AWER */
1316
1317			msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1318						  DSI_RXPKT1H_SHORT_0);
1319			if (msg->rx_len > 1) {
1320				msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1321							  DSI_RXPKT1H_SHORT_1);
1322			}
1323		}
1324	}
1325
1326	return ret;
1327
1328reset_fifo_and_return:
1329	DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1330
1331	DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1332	udelay(1);
1333	DSI_PORT_WRITE(CTRL,
1334		       DSI_PORT_READ(CTRL) |
1335		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1336
1337	DSI_PORT_WRITE(TXPKT1C, 0);
1338	DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
1339	return ret;
1340}
1341
1342static const struct component_ops vc4_dsi_ops;
1343static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1344			       struct mipi_dsi_device *device)
1345{
1346	struct vc4_dsi *dsi = host_to_dsi(host);
1347	int ret;
1348
1349	dsi->lanes = device->lanes;
1350	dsi->channel = device->channel;
1351	dsi->mode_flags = device->mode_flags;
1352
1353	switch (device->format) {
1354	case MIPI_DSI_FMT_RGB888:
1355		dsi->format = DSI_PFORMAT_RGB888;
1356		dsi->divider = 24 / dsi->lanes;
1357		break;
1358	case MIPI_DSI_FMT_RGB666:
1359		dsi->format = DSI_PFORMAT_RGB666;
1360		dsi->divider = 24 / dsi->lanes;
1361		break;
1362	case MIPI_DSI_FMT_RGB666_PACKED:
1363		dsi->format = DSI_PFORMAT_RGB666_PACKED;
1364		dsi->divider = 18 / dsi->lanes;
1365		break;
1366	case MIPI_DSI_FMT_RGB565:
1367		dsi->format = DSI_PFORMAT_RGB565;
1368		dsi->divider = 16 / dsi->lanes;
1369		break;
1370	default:
1371		dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1372			dsi->format);
1373		return 0;
1374	}
1375
1376	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1377		dev_err(&dsi->pdev->dev,
1378			"Only VIDEO mode panels supported currently.\n");
1379		return 0;
1380	}
1381
1382	drm_bridge_add(&dsi->bridge);
1383
1384	ret = component_add(&dsi->pdev->dev, &vc4_dsi_ops);
1385	if (ret) {
1386		drm_bridge_remove(&dsi->bridge);
1387		return ret;
1388	}
1389
1390	return 0;
1391}
1392
1393static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1394			       struct mipi_dsi_device *device)
1395{
1396	struct vc4_dsi *dsi = host_to_dsi(host);
1397
1398	component_del(&dsi->pdev->dev, &vc4_dsi_ops);
1399	drm_bridge_remove(&dsi->bridge);
1400	return 0;
1401}
1402
1403static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1404	.attach = vc4_dsi_host_attach,
1405	.detach = vc4_dsi_host_detach,
1406	.transfer = vc4_dsi_host_transfer,
1407};
1408
1409static const struct drm_bridge_funcs vc4_dsi_bridge_funcs = {
1410	.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1411	.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1412	.atomic_reset = drm_atomic_helper_bridge_reset,
1413	.atomic_pre_enable = vc4_dsi_bridge_pre_enable,
1414	.atomic_enable = vc4_dsi_bridge_enable,
1415	.atomic_disable = vc4_dsi_bridge_disable,
1416	.atomic_post_disable = vc4_dsi_bridge_post_disable,
1417	.attach = vc4_dsi_bridge_attach,
1418	.mode_fixup = vc4_dsi_bridge_mode_fixup,
1419};
1420
1421static int vc4_dsi_late_register(struct drm_encoder *encoder)
1422{
1423	struct drm_device *drm = encoder->dev;
1424	struct vc4_dsi *dsi = to_vc4_dsi(encoder);
1425
1426	vc4_debugfs_add_regset32(drm, dsi->variant->debugfs_name, &dsi->regset);
1427
1428	return 0;
1429}
1430
1431static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
1432	.late_register = vc4_dsi_late_register,
1433};
1434
1435static const struct vc4_dsi_variant bcm2711_dsi1_variant = {
1436	.port			= 1,
1437	.debugfs_name		= "dsi1_regs",
1438	.regs			= dsi1_regs,
1439	.nregs			= ARRAY_SIZE(dsi1_regs),
1440};
1441
1442static const struct vc4_dsi_variant bcm2835_dsi0_variant = {
1443	.port			= 0,
1444	.debugfs_name		= "dsi0_regs",
1445	.regs			= dsi0_regs,
1446	.nregs			= ARRAY_SIZE(dsi0_regs),
1447};
1448
1449static const struct vc4_dsi_variant bcm2835_dsi1_variant = {
1450	.port			= 1,
1451	.broken_axi_workaround	= true,
1452	.debugfs_name		= "dsi1_regs",
1453	.regs			= dsi1_regs,
1454	.nregs			= ARRAY_SIZE(dsi1_regs),
1455};
1456
1457static const struct of_device_id vc4_dsi_dt_match[] = {
1458	{ .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant },
1459	{ .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant },
1460	{ .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant },
1461	{}
1462};
1463
1464static void dsi_handle_error(struct vc4_dsi *dsi,
1465			     irqreturn_t *ret, u32 stat, u32 bit,
1466			     const char *type)
1467{
1468	if (!(stat & bit))
1469		return;
1470
1471	DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type);
1472	*ret = IRQ_HANDLED;
1473}
1474
1475/*
1476 * Initial handler for port 1 where we need the reg_dma workaround.
1477 * The register DMA writes sleep, so we can't do it in the top half.
1478 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1479 * parent interrupt contrller until our interrupt thread is done.
1480 */
1481static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1482{
1483	struct vc4_dsi *dsi = data;
1484	u32 stat = DSI_PORT_READ(INT_STAT);
1485
1486	if (!stat)
1487		return IRQ_NONE;
1488
1489	return IRQ_WAKE_THREAD;
1490}
1491
1492/*
1493 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1494 * 1 where we need the reg_dma workaround.
1495 */
1496static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1497{
1498	struct vc4_dsi *dsi = data;
1499	u32 stat = DSI_PORT_READ(INT_STAT);
1500	irqreturn_t ret = IRQ_NONE;
1501
1502	DSI_PORT_WRITE(INT_STAT, stat);
1503
1504	dsi_handle_error(dsi, &ret, stat,
1505			 DSI_PORT_BIT(INT_ERR_SYNC_ESC), "LPDT sync");
1506	dsi_handle_error(dsi, &ret, stat,
1507			 DSI_PORT_BIT(INT_ERR_CONTROL), "data lane 0 sequence");
1508	dsi_handle_error(dsi, &ret, stat,
1509			 DSI_PORT_BIT(INT_ERR_CONT_LP0), "LP0 contention");
1510	dsi_handle_error(dsi, &ret, stat,
1511			 DSI_PORT_BIT(INT_ERR_CONT_LP1), "LP1 contention");
1512	dsi_handle_error(dsi, &ret, stat,
1513			 DSI_PORT_BIT(INT_HSTX_TO), "HSTX timeout");
1514	dsi_handle_error(dsi, &ret, stat,
1515			 DSI_PORT_BIT(INT_LPRX_TO), "LPRX timeout");
1516	dsi_handle_error(dsi, &ret, stat,
1517			 DSI_PORT_BIT(INT_TA_TO), "turnaround timeout");
1518	dsi_handle_error(dsi, &ret, stat,
1519			 DSI_PORT_BIT(INT_PR_TO), "peripheral reset timeout");
1520
1521	if (stat & ((dsi->variant->port ? DSI1_INT_TXPKT1_DONE :
1522					  DSI0_INT_CMDC_DONE_MASK) |
1523		    DSI_PORT_BIT(INT_PHY_DIR_RTF))) {
1524		complete(&dsi->xfer_completion);
1525		ret = IRQ_HANDLED;
1526	} else if (stat & DSI_PORT_BIT(INT_HSTX_TO)) {
1527		complete(&dsi->xfer_completion);
1528		dsi->xfer_result = -ETIMEDOUT;
1529		ret = IRQ_HANDLED;
1530	}
1531
1532	return ret;
1533}
1534
1535/**
1536 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1537 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1538 * @dsi: DSI encoder
1539 */
1540static int
1541vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1542{
1543	struct device *dev = &dsi->pdev->dev;
1544	const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1545	static const struct {
1546		const char *name;
1547		int div;
1548	} phy_clocks[] = {
1549		{ "byte", 8 },
1550		{ "ddr2", 4 },
1551		{ "ddr", 2 },
1552	};
1553	int i;
1554
1555	dsi->clk_onecell = devm_kzalloc(dev,
1556					sizeof(*dsi->clk_onecell) +
1557					ARRAY_SIZE(phy_clocks) *
1558					sizeof(struct clk_hw *),
1559					GFP_KERNEL);
1560	if (!dsi->clk_onecell)
1561		return -ENOMEM;
1562	dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1563
1564	for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1565		struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1566		struct clk_init_data init;
1567		char clk_name[16];
1568		int ret;
1569
1570		snprintf(clk_name, sizeof(clk_name),
1571			 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name);
1572
1573		/* We just use core fixed factor clock ops for the PHY
1574		 * clocks.  The clocks are actually gated by the
1575		 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1576		 * setting if we use the DDR/DDR2 clocks.  However,
1577		 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1578		 * setting both our parent DSI PLL's rate and this
1579		 * clock's rate, so it knows if DDR/DDR2 are going to
1580		 * be used and could enable the gates itself.
1581		 */
1582		fix->mult = 1;
1583		fix->div = phy_clocks[i].div;
1584		fix->hw.init = &init;
1585
1586		memset(&init, 0, sizeof(init));
1587		init.parent_names = &parent_name;
1588		init.num_parents = 1;
1589		init.name = clk_name;
 
 
 
1590		init.ops = &clk_fixed_factor_ops;
1591
1592		ret = devm_clk_hw_register(dev, &fix->hw);
1593		if (ret)
1594			return ret;
1595
1596		dsi->clk_onecell->hws[i] = &fix->hw;
1597	}
1598
1599	return of_clk_add_hw_provider(dev->of_node,
1600				      of_clk_hw_onecell_get,
1601				      dsi->clk_onecell);
1602}
1603
1604static void vc4_dsi_dma_mem_release(void *ptr)
1605{
1606	struct vc4_dsi *dsi = ptr;
1607	struct device *dev = &dsi->pdev->dev;
1608
1609	dma_free_coherent(dev, 4, dsi->reg_dma_mem, dsi->reg_dma_paddr);
1610	dsi->reg_dma_mem = NULL;
1611}
1612
1613static void vc4_dsi_dma_chan_release(void *ptr)
1614{
1615	struct vc4_dsi *dsi = ptr;
1616
1617	dma_release_channel(dsi->reg_dma_chan);
1618	dsi->reg_dma_chan = NULL;
1619}
1620
1621static void vc4_dsi_release(struct kref *kref)
1622{
1623	struct vc4_dsi *dsi =
1624		container_of(kref, struct vc4_dsi, kref);
1625
1626	kfree(dsi);
1627}
1628
1629static void vc4_dsi_get(struct vc4_dsi *dsi)
1630{
1631	kref_get(&dsi->kref);
1632}
1633
1634static void vc4_dsi_put(struct vc4_dsi *dsi)
1635{
1636	kref_put(&dsi->kref, &vc4_dsi_release);
1637}
1638
1639static void vc4_dsi_release_action(struct drm_device *drm, void *ptr)
1640{
1641	struct vc4_dsi *dsi = ptr;
1642
1643	vc4_dsi_put(dsi);
1644}
1645
1646static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1647{
1648	struct platform_device *pdev = to_platform_device(dev);
1649	struct drm_device *drm = dev_get_drvdata(master);
 
1650	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1651	struct drm_encoder *encoder = &dsi->encoder.base;
 
 
 
1652	int ret;
1653
1654	vc4_dsi_get(dsi);
 
 
1655
1656	ret = drmm_add_action_or_reset(drm, vc4_dsi_release_action, dsi);
1657	if (ret)
1658		return ret;
1659
1660	dsi->variant = of_device_get_match_data(dev);
1661
1662	dsi->encoder.type = dsi->variant->port ?
1663		VC4_ENCODER_TYPE_DSI1 : VC4_ENCODER_TYPE_DSI0;
 
 
 
1664
1665	dsi->regs = vc4_ioremap_regs(pdev, 0);
1666	if (IS_ERR(dsi->regs))
1667		return PTR_ERR(dsi->regs);
1668
1669	dsi->regset.base = dsi->regs;
1670	dsi->regset.regs = dsi->variant->regs;
1671	dsi->regset.nregs = dsi->variant->nregs;
 
 
 
 
 
1672
1673	if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1674		dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1675			DSI_PORT_READ(ID), DSI_ID_VALUE);
1676		return -ENODEV;
1677	}
1678
1679	/* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to
1680	 * writes from the ARM.  It does handle writes from the DMA engine,
1681	 * so set up a channel for talking to it.
1682	 */
1683	if (dsi->variant->broken_axi_workaround) {
1684		dma_cap_mask_t dma_mask;
1685
1686		dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1687						      &dsi->reg_dma_paddr,
1688						      GFP_KERNEL);
1689		if (!dsi->reg_dma_mem) {
1690			DRM_ERROR("Failed to get DMA memory\n");
1691			return -ENOMEM;
1692		}
1693
1694		ret = devm_add_action_or_reset(dev, vc4_dsi_dma_mem_release, dsi);
1695		if (ret)
1696			return ret;
1697
1698		dma_cap_zero(dma_mask);
1699		dma_cap_set(DMA_MEMCPY, dma_mask);
1700
1701		dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1702		if (IS_ERR(dsi->reg_dma_chan)) {
1703			ret = PTR_ERR(dsi->reg_dma_chan);
1704			if (ret != -EPROBE_DEFER)
1705				DRM_ERROR("Failed to get DMA channel: %d\n",
1706					  ret);
1707			return ret;
1708		}
1709
1710		ret = devm_add_action_or_reset(dev, vc4_dsi_dma_chan_release, dsi);
1711		if (ret)
1712			return ret;
1713
1714		/* Get the physical address of the device's registers.  The
1715		 * struct resource for the regs gives us the bus address
1716		 * instead.
1717		 */
1718		dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1719							     0, NULL, NULL));
1720	}
1721
1722	init_completion(&dsi->xfer_completion);
1723	/* At startup enable error-reporting interrupts and nothing else. */
1724	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1725	/* Clear any existing interrupt state. */
1726	DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1727
1728	if (dsi->reg_dma_mem)
1729		ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1730						vc4_dsi_irq_defer_to_thread_handler,
1731						vc4_dsi_irq_handler,
1732						IRQF_ONESHOT,
1733						"vc4 dsi", dsi);
1734	else
1735		ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1736				       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1737	if (ret) {
1738		if (ret != -EPROBE_DEFER)
1739			dev_err(dev, "Failed to get interrupt: %d\n", ret);
1740		return ret;
1741	}
1742
1743	dsi->escape_clock = devm_clk_get(dev, "escape");
1744	if (IS_ERR(dsi->escape_clock)) {
1745		ret = PTR_ERR(dsi->escape_clock);
1746		if (ret != -EPROBE_DEFER)
1747			dev_err(dev, "Failed to get escape clock: %d\n", ret);
1748		return ret;
1749	}
1750
1751	dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1752	if (IS_ERR(dsi->pll_phy_clock)) {
1753		ret = PTR_ERR(dsi->pll_phy_clock);
1754		if (ret != -EPROBE_DEFER)
1755			dev_err(dev, "Failed to get phy clock: %d\n", ret);
1756		return ret;
1757	}
1758
1759	dsi->pixel_clock = devm_clk_get(dev, "pixel");
1760	if (IS_ERR(dsi->pixel_clock)) {
1761		ret = PTR_ERR(dsi->pixel_clock);
1762		if (ret != -EPROBE_DEFER)
1763			dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1764		return ret;
1765	}
1766
1767	dsi->out_bridge = drmm_of_get_bridge(drm, dev->of_node, 0, 0);
1768	if (IS_ERR(dsi->out_bridge))
1769		return PTR_ERR(dsi->out_bridge);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1770
1771	/* The esc clock rate is supposed to always be 100Mhz. */
1772	ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1773	if (ret) {
1774		dev_err(dev, "Failed to set esc clock: %d\n", ret);
1775		return ret;
1776	}
1777
1778	ret = vc4_dsi_init_phy_clocks(dsi);
1779	if (ret)
1780		return ret;
1781
1782	ret = drmm_encoder_init(drm, encoder,
1783				&vc4_dsi_encoder_funcs,
1784				DRM_MODE_ENCODER_DSI,
1785				NULL);
1786	if (ret)
 
 
 
 
 
1787		return ret;
 
 
 
 
 
 
 
1788
1789	ret = devm_pm_runtime_enable(dev);
1790	if (ret)
1791		return ret;
 
1792
1793	ret = drm_bridge_attach(encoder, &dsi->bridge, NULL, 0);
1794	if (ret)
1795		return ret;
1796
1797	return 0;
1798}
1799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1800static const struct component_ops vc4_dsi_ops = {
1801	.bind   = vc4_dsi_bind,
 
1802};
1803
1804static int vc4_dsi_dev_probe(struct platform_device *pdev)
1805{
1806	struct device *dev = &pdev->dev;
1807	struct vc4_dsi *dsi;
 
1808
1809	dsi = kzalloc(sizeof(*dsi), GFP_KERNEL);
1810	if (!dsi)
1811		return -ENOMEM;
1812	dev_set_drvdata(dev, dsi);
1813
1814	kref_init(&dsi->kref);
1815
1816	dsi->pdev = pdev;
1817	dsi->bridge.funcs = &vc4_dsi_bridge_funcs;
1818#ifdef CONFIG_OF
1819	dsi->bridge.of_node = dev->of_node;
1820#endif
1821	dsi->bridge.type = DRM_MODE_CONNECTOR_DSI;
 
 
 
1822	dsi->dsi_host.ops = &vc4_dsi_host_ops;
1823	dsi->dsi_host.dev = dev;
1824	mipi_dsi_host_register(&dsi->dsi_host);
1825
 
 
 
 
 
 
1826	return 0;
1827}
1828
1829static void vc4_dsi_dev_remove(struct platform_device *pdev)
1830{
1831	struct device *dev = &pdev->dev;
1832	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1833
 
1834	mipi_dsi_host_unregister(&dsi->dsi_host);
1835	vc4_dsi_put(dsi);
 
1836}
1837
1838struct platform_driver vc4_dsi_driver = {
1839	.probe = vc4_dsi_dev_probe,
1840	.remove_new = vc4_dsi_dev_remove,
1841	.driver = {
1842		.name = "vc4_dsi",
1843		.of_match_table = vc4_dsi_dt_match,
1844	},
1845};