Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v5.4
  1/* SPDX-License-Identifier: LGPL-2.1 OR MIT */
  2/*
  3 * rseq.h
  4 *
  5 * (C) Copyright 2016-2018 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
  6 */
  7
  8#ifndef RSEQ_H
  9#define RSEQ_H
 10
 11#include <stdint.h>
 12#include <stdbool.h>
 13#include <pthread.h>
 14#include <signal.h>
 15#include <sched.h>
 16#include <errno.h>
 17#include <stdio.h>
 18#include <stdlib.h>
 19#include <linux/rseq.h>
 
 
 
 
 
 
 
 
 
 
 
 20
 21/*
 22 * Empty code injection macros, override when testing.
 23 * It is important to consider that the ASM injection macros need to be
 24 * fully reentrant (e.g. do not modify the stack).
 25 */
 26#ifndef RSEQ_INJECT_ASM
 27#define RSEQ_INJECT_ASM(n)
 28#endif
 29
 30#ifndef RSEQ_INJECT_C
 31#define RSEQ_INJECT_C(n)
 32#endif
 33
 34#ifndef RSEQ_INJECT_INPUT
 35#define RSEQ_INJECT_INPUT
 36#endif
 37
 38#ifndef RSEQ_INJECT_CLOBBER
 39#define RSEQ_INJECT_CLOBBER
 40#endif
 41
 42#ifndef RSEQ_INJECT_FAILED
 43#define RSEQ_INJECT_FAILED
 44#endif
 45
 46extern __thread volatile struct rseq __rseq_abi;
 47extern int __rseq_handled;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 48
 49#define rseq_likely(x)		__builtin_expect(!!(x), 1)
 50#define rseq_unlikely(x)	__builtin_expect(!!(x), 0)
 51#define rseq_barrier()		__asm__ __volatile__("" : : : "memory")
 52
 53#define RSEQ_ACCESS_ONCE(x)	(*(__volatile__  __typeof__(x) *)&(x))
 54#define RSEQ_WRITE_ONCE(x, v)	__extension__ ({ RSEQ_ACCESS_ONCE(x) = (v); })
 55#define RSEQ_READ_ONCE(x)	RSEQ_ACCESS_ONCE(x)
 56
 57#define __rseq_str_1(x)	#x
 58#define __rseq_str(x)		__rseq_str_1(x)
 59
 60#define rseq_log(fmt, args...)						       \
 61	fprintf(stderr, fmt "(in %s() at " __FILE__ ":" __rseq_str(__LINE__)"\n", \
 62		## args, __func__)
 63
 64#define rseq_bug(fmt, args...)		\
 65	do {				\
 66		rseq_log(fmt, ##args);	\
 67		abort();		\
 68	} while (0)
 69
 70#if defined(__x86_64__) || defined(__i386__)
 71#include <rseq-x86.h>
 72#elif defined(__ARMEL__)
 73#include <rseq-arm.h>
 74#elif defined (__AARCH64EL__)
 75#include <rseq-arm64.h>
 76#elif defined(__PPC__)
 77#include <rseq-ppc.h>
 78#elif defined(__mips__)
 79#include <rseq-mips.h>
 80#elif defined(__s390__)
 81#include <rseq-s390.h>
 
 
 82#else
 83#error unsupported target
 84#endif
 85
 86/*
 87 * Register rseq for the current thread. This needs to be called once
 88 * by any thread which uses restartable sequences, before they start
 89 * using restartable sequences, to ensure restartable sequences
 90 * succeed. A restartable sequence executed from a non-registered
 91 * thread will always fail.
 92 */
 93int rseq_register_current_thread(void);
 94
 95/*
 96 * Unregister rseq for current thread.
 97 */
 98int rseq_unregister_current_thread(void);
 99
100/*
101 * Restartable sequence fallback for reading the current CPU number.
102 */
103int32_t rseq_fallback_current_cpu(void);
104
105/*
 
 
 
 
 
106 * Values returned can be either the current CPU number, -1 (rseq is
107 * uninitialized), or -2 (rseq initialization has failed).
108 */
109static inline int32_t rseq_current_cpu_raw(void)
110{
111	return RSEQ_ACCESS_ONCE(__rseq_abi.cpu_id);
112}
113
114/*
115 * Returns a possible CPU number, which is typically the current CPU.
116 * The returned CPU number can be used to prepare for an rseq critical
117 * section, which will confirm whether the cpu number is indeed the
118 * current one, and whether rseq is initialized.
119 *
120 * The CPU number returned by rseq_cpu_start should always be validated
121 * by passing it to a rseq asm sequence, or by comparing it to the
122 * return value of rseq_current_cpu_raw() if the rseq asm sequence
123 * does not need to be invoked.
124 */
125static inline uint32_t rseq_cpu_start(void)
126{
127	return RSEQ_ACCESS_ONCE(__rseq_abi.cpu_id_start);
128}
129
130static inline uint32_t rseq_current_cpu(void)
131{
132	int32_t cpu;
133
134	cpu = rseq_current_cpu_raw();
135	if (rseq_unlikely(cpu < 0))
136		cpu = rseq_fallback_current_cpu();
137	return cpu;
138}
139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140static inline void rseq_clear_rseq_cs(void)
141{
142#ifdef __LP64__
143	__rseq_abi.rseq_cs.ptr = 0;
144#else
145	__rseq_abi.rseq_cs.ptr.ptr32 = 0;
146#endif
147}
148
149/*
150 * rseq_prepare_unload() should be invoked by each thread executing a rseq
151 * critical section at least once between their last critical section and
152 * library unload of the library defining the rseq critical section
153 * (struct rseq_cs). This also applies to use of rseq in code generated by
154 * JIT: rseq_prepare_unload() should be invoked at least once by each
155 * thread executing a rseq critical section before reclaim of the memory
156 * holding the struct rseq_cs.
 
 
157 */
158static inline void rseq_prepare_unload(void)
159{
160	rseq_clear_rseq_cs();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161}
162
163#endif  /* RSEQ_H_ */
v6.8
  1/* SPDX-License-Identifier: LGPL-2.1 OR MIT */
  2/*
  3 * rseq.h
  4 *
  5 * (C) Copyright 2016-2018 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
  6 */
  7
  8#ifndef RSEQ_H
  9#define RSEQ_H
 10
 11#include <stdint.h>
 12#include <stdbool.h>
 13#include <pthread.h>
 14#include <signal.h>
 15#include <sched.h>
 16#include <errno.h>
 17#include <stdio.h>
 18#include <stdlib.h>
 19#include <stddef.h>
 20#include "rseq-abi.h"
 21#include "compiler.h"
 22
 23#ifndef rseq_sizeof_field
 24#define rseq_sizeof_field(TYPE, MEMBER) sizeof((((TYPE *)0)->MEMBER))
 25#endif
 26
 27#ifndef rseq_offsetofend
 28#define rseq_offsetofend(TYPE, MEMBER) \
 29	(offsetof(TYPE, MEMBER)	+ rseq_sizeof_field(TYPE, MEMBER))
 30#endif
 31
 32/*
 33 * Empty code injection macros, override when testing.
 34 * It is important to consider that the ASM injection macros need to be
 35 * fully reentrant (e.g. do not modify the stack).
 36 */
 37#ifndef RSEQ_INJECT_ASM
 38#define RSEQ_INJECT_ASM(n)
 39#endif
 40
 41#ifndef RSEQ_INJECT_C
 42#define RSEQ_INJECT_C(n)
 43#endif
 44
 45#ifndef RSEQ_INJECT_INPUT
 46#define RSEQ_INJECT_INPUT
 47#endif
 48
 49#ifndef RSEQ_INJECT_CLOBBER
 50#define RSEQ_INJECT_CLOBBER
 51#endif
 52
 53#ifndef RSEQ_INJECT_FAILED
 54#define RSEQ_INJECT_FAILED
 55#endif
 56
 57#include "rseq-thread-pointer.h"
 58
 59/* Offset from the thread pointer to the rseq area. */
 60extern ptrdiff_t rseq_offset;
 61
 62/*
 63 * Size of the registered rseq area. 0 if the registration was
 64 * unsuccessful.
 65 */
 66extern unsigned int rseq_size;
 67
 68/* Flags used during rseq registration. */
 69extern unsigned int rseq_flags;
 70
 71/*
 72 * rseq feature size supported by the kernel. 0 if the registration was
 73 * unsuccessful.
 74 */
 75extern unsigned int rseq_feature_size;
 76
 77enum rseq_mo {
 78	RSEQ_MO_RELAXED = 0,
 79	RSEQ_MO_CONSUME = 1,	/* Unused */
 80	RSEQ_MO_ACQUIRE = 2,	/* Unused */
 81	RSEQ_MO_RELEASE = 3,
 82	RSEQ_MO_ACQ_REL = 4,	/* Unused */
 83	RSEQ_MO_SEQ_CST = 5,	/* Unused */
 84};
 85
 86enum rseq_percpu_mode {
 87	RSEQ_PERCPU_CPU_ID = 0,
 88	RSEQ_PERCPU_MM_CID = 1,
 89};
 90
 91static inline struct rseq_abi *rseq_get_abi(void)
 92{
 93	return (struct rseq_abi *) ((uintptr_t) rseq_thread_pointer() + rseq_offset);
 94}
 95
 96#define rseq_likely(x)		__builtin_expect(!!(x), 1)
 97#define rseq_unlikely(x)	__builtin_expect(!!(x), 0)
 98#define rseq_barrier()		__asm__ __volatile__("" : : : "memory")
 99
100#define RSEQ_ACCESS_ONCE(x)	(*(__volatile__  __typeof__(x) *)&(x))
101#define RSEQ_WRITE_ONCE(x, v)	__extension__ ({ RSEQ_ACCESS_ONCE(x) = (v); })
102#define RSEQ_READ_ONCE(x)	RSEQ_ACCESS_ONCE(x)
103
104#define __rseq_str_1(x)	#x
105#define __rseq_str(x)		__rseq_str_1(x)
106
107#define rseq_log(fmt, args...)						       \
108	fprintf(stderr, fmt "(in %s() at " __FILE__ ":" __rseq_str(__LINE__)"\n", \
109		## args, __func__)
110
111#define rseq_bug(fmt, args...)		\
112	do {				\
113		rseq_log(fmt, ##args);	\
114		abort();		\
115	} while (0)
116
117#if defined(__x86_64__) || defined(__i386__)
118#include <rseq-x86.h>
119#elif defined(__ARMEL__)
120#include <rseq-arm.h>
121#elif defined (__AARCH64EL__)
122#include <rseq-arm64.h>
123#elif defined(__PPC__)
124#include <rseq-ppc.h>
125#elif defined(__mips__)
126#include <rseq-mips.h>
127#elif defined(__s390__)
128#include <rseq-s390.h>
129#elif defined(__riscv)
130#include <rseq-riscv.h>
131#else
132#error unsupported target
133#endif
134
135/*
136 * Register rseq for the current thread. This needs to be called once
137 * by any thread which uses restartable sequences, before they start
138 * using restartable sequences, to ensure restartable sequences
139 * succeed. A restartable sequence executed from a non-registered
140 * thread will always fail.
141 */
142int rseq_register_current_thread(void);
143
144/*
145 * Unregister rseq for current thread.
146 */
147int rseq_unregister_current_thread(void);
148
149/*
150 * Restartable sequence fallback for reading the current CPU number.
151 */
152int32_t rseq_fallback_current_cpu(void);
153
154/*
155 * Restartable sequence fallback for reading the current node number.
156 */
157int32_t rseq_fallback_current_node(void);
158
159/*
160 * Values returned can be either the current CPU number, -1 (rseq is
161 * uninitialized), or -2 (rseq initialization has failed).
162 */
163static inline int32_t rseq_current_cpu_raw(void)
164{
165	return RSEQ_ACCESS_ONCE(rseq_get_abi()->cpu_id);
166}
167
168/*
169 * Returns a possible CPU number, which is typically the current CPU.
170 * The returned CPU number can be used to prepare for an rseq critical
171 * section, which will confirm whether the cpu number is indeed the
172 * current one, and whether rseq is initialized.
173 *
174 * The CPU number returned by rseq_cpu_start should always be validated
175 * by passing it to a rseq asm sequence, or by comparing it to the
176 * return value of rseq_current_cpu_raw() if the rseq asm sequence
177 * does not need to be invoked.
178 */
179static inline uint32_t rseq_cpu_start(void)
180{
181	return RSEQ_ACCESS_ONCE(rseq_get_abi()->cpu_id_start);
182}
183
184static inline uint32_t rseq_current_cpu(void)
185{
186	int32_t cpu;
187
188	cpu = rseq_current_cpu_raw();
189	if (rseq_unlikely(cpu < 0))
190		cpu = rseq_fallback_current_cpu();
191	return cpu;
192}
193
194static inline bool rseq_node_id_available(void)
195{
196	return (int) rseq_feature_size >= rseq_offsetofend(struct rseq_abi, node_id);
197}
198
199/*
200 * Current NUMA node number.
201 */
202static inline uint32_t rseq_current_node_id(void)
203{
204	assert(rseq_node_id_available());
205	return RSEQ_ACCESS_ONCE(rseq_get_abi()->node_id);
206}
207
208static inline bool rseq_mm_cid_available(void)
209{
210	return (int) rseq_feature_size >= rseq_offsetofend(struct rseq_abi, mm_cid);
211}
212
213static inline uint32_t rseq_current_mm_cid(void)
214{
215	return RSEQ_ACCESS_ONCE(rseq_get_abi()->mm_cid);
216}
217
218static inline void rseq_clear_rseq_cs(void)
219{
220	RSEQ_WRITE_ONCE(rseq_get_abi()->rseq_cs.arch.ptr, 0);
 
 
 
 
221}
222
223/*
224 * rseq_prepare_unload() should be invoked by each thread executing a rseq
225 * critical section at least once between their last critical section and
226 * library unload of the library defining the rseq critical section (struct
227 * rseq_cs) or the code referred to by the struct rseq_cs start_ip and
228 * post_commit_offset fields. This also applies to use of rseq in code
229 * generated by JIT: rseq_prepare_unload() should be invoked at least once by
230 * each thread executing a rseq critical section before reclaim of the memory
231 * holding the struct rseq_cs or reclaim of the code pointed to by struct
232 * rseq_cs start_ip and post_commit_offset fields.
233 */
234static inline void rseq_prepare_unload(void)
235{
236	rseq_clear_rseq_cs();
237}
238
239static inline __attribute__((always_inline))
240int rseq_cmpeqv_storev(enum rseq_mo rseq_mo, enum rseq_percpu_mode percpu_mode,
241		       intptr_t *v, intptr_t expect,
242		       intptr_t newv, int cpu)
243{
244	if (rseq_mo != RSEQ_MO_RELAXED)
245		return -1;
246	switch (percpu_mode) {
247	case RSEQ_PERCPU_CPU_ID:
248		return rseq_cmpeqv_storev_relaxed_cpu_id(v, expect, newv, cpu);
249	case RSEQ_PERCPU_MM_CID:
250		return rseq_cmpeqv_storev_relaxed_mm_cid(v, expect, newv, cpu);
251	}
252	return -1;
253}
254
255/*
256 * Compare @v against @expectnot. When it does _not_ match, load @v
257 * into @load, and store the content of *@v + voffp into @v.
258 */
259static inline __attribute__((always_inline))
260int rseq_cmpnev_storeoffp_load(enum rseq_mo rseq_mo, enum rseq_percpu_mode percpu_mode,
261			       intptr_t *v, intptr_t expectnot, long voffp, intptr_t *load,
262			       int cpu)
263{
264	if (rseq_mo != RSEQ_MO_RELAXED)
265		return -1;
266	switch (percpu_mode) {
267	case RSEQ_PERCPU_CPU_ID:
268		return rseq_cmpnev_storeoffp_load_relaxed_cpu_id(v, expectnot, voffp, load, cpu);
269	case RSEQ_PERCPU_MM_CID:
270		return rseq_cmpnev_storeoffp_load_relaxed_mm_cid(v, expectnot, voffp, load, cpu);
271	}
272	return -1;
273}
274
275static inline __attribute__((always_inline))
276int rseq_addv(enum rseq_mo rseq_mo, enum rseq_percpu_mode percpu_mode,
277	      intptr_t *v, intptr_t count, int cpu)
278{
279	if (rseq_mo != RSEQ_MO_RELAXED)
280		return -1;
281	switch (percpu_mode) {
282	case RSEQ_PERCPU_CPU_ID:
283		return rseq_addv_relaxed_cpu_id(v, count, cpu);
284	case RSEQ_PERCPU_MM_CID:
285		return rseq_addv_relaxed_mm_cid(v, count, cpu);
286	}
287	return -1;
288}
289
290#ifdef RSEQ_ARCH_HAS_OFFSET_DEREF_ADDV
291/*
292 *   pval = *(ptr+off)
293 *  *pval += inc;
294 */
295static inline __attribute__((always_inline))
296int rseq_offset_deref_addv(enum rseq_mo rseq_mo, enum rseq_percpu_mode percpu_mode,
297			   intptr_t *ptr, long off, intptr_t inc, int cpu)
298{
299	if (rseq_mo != RSEQ_MO_RELAXED)
300		return -1;
301	switch (percpu_mode) {
302	case RSEQ_PERCPU_CPU_ID:
303		return rseq_offset_deref_addv_relaxed_cpu_id(ptr, off, inc, cpu);
304	case RSEQ_PERCPU_MM_CID:
305		return rseq_offset_deref_addv_relaxed_mm_cid(ptr, off, inc, cpu);
306	}
307	return -1;
308}
309#endif
310
311static inline __attribute__((always_inline))
312int rseq_cmpeqv_trystorev_storev(enum rseq_mo rseq_mo, enum rseq_percpu_mode percpu_mode,
313				 intptr_t *v, intptr_t expect,
314				 intptr_t *v2, intptr_t newv2,
315				 intptr_t newv, int cpu)
316{
317	switch (rseq_mo) {
318	case RSEQ_MO_RELAXED:
319		switch (percpu_mode) {
320		case RSEQ_PERCPU_CPU_ID:
321			return rseq_cmpeqv_trystorev_storev_relaxed_cpu_id(v, expect, v2, newv2, newv, cpu);
322		case RSEQ_PERCPU_MM_CID:
323			return rseq_cmpeqv_trystorev_storev_relaxed_mm_cid(v, expect, v2, newv2, newv, cpu);
324		}
325		return -1;
326	case RSEQ_MO_RELEASE:
327		switch (percpu_mode) {
328		case RSEQ_PERCPU_CPU_ID:
329			return rseq_cmpeqv_trystorev_storev_release_cpu_id(v, expect, v2, newv2, newv, cpu);
330		case RSEQ_PERCPU_MM_CID:
331			return rseq_cmpeqv_trystorev_storev_release_mm_cid(v, expect, v2, newv2, newv, cpu);
332		}
333		return -1;
334	default:
335		return -1;
336	}
337}
338
339static inline __attribute__((always_inline))
340int rseq_cmpeqv_cmpeqv_storev(enum rseq_mo rseq_mo, enum rseq_percpu_mode percpu_mode,
341			      intptr_t *v, intptr_t expect,
342			      intptr_t *v2, intptr_t expect2,
343			      intptr_t newv, int cpu)
344{
345	if (rseq_mo != RSEQ_MO_RELAXED)
346		return -1;
347	switch (percpu_mode) {
348	case RSEQ_PERCPU_CPU_ID:
349		return rseq_cmpeqv_cmpeqv_storev_relaxed_cpu_id(v, expect, v2, expect2, newv, cpu);
350	case RSEQ_PERCPU_MM_CID:
351		return rseq_cmpeqv_cmpeqv_storev_relaxed_mm_cid(v, expect, v2, expect2, newv, cpu);
352	}
353	return -1;
354}
355
356static inline __attribute__((always_inline))
357int rseq_cmpeqv_trymemcpy_storev(enum rseq_mo rseq_mo, enum rseq_percpu_mode percpu_mode,
358				 intptr_t *v, intptr_t expect,
359				 void *dst, void *src, size_t len,
360				 intptr_t newv, int cpu)
361{
362	switch (rseq_mo) {
363	case RSEQ_MO_RELAXED:
364		switch (percpu_mode) {
365		case RSEQ_PERCPU_CPU_ID:
366			return rseq_cmpeqv_trymemcpy_storev_relaxed_cpu_id(v, expect, dst, src, len, newv, cpu);
367		case RSEQ_PERCPU_MM_CID:
368			return rseq_cmpeqv_trymemcpy_storev_relaxed_mm_cid(v, expect, dst, src, len, newv, cpu);
369		}
370		return -1;
371	case RSEQ_MO_RELEASE:
372		switch (percpu_mode) {
373		case RSEQ_PERCPU_CPU_ID:
374			return rseq_cmpeqv_trymemcpy_storev_release_cpu_id(v, expect, dst, src, len, newv, cpu);
375		case RSEQ_PERCPU_MM_CID:
376			return rseq_cmpeqv_trymemcpy_storev_release_mm_cid(v, expect, dst, src, len, newv, cpu);
377		}
378		return -1;
379	default:
380		return -1;
381	}
382}
383
384#endif  /* RSEQ_H_ */