Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Takashi Iwai <tiwai@suse.de>
5 *
6 * Generic memory allocators
7 */
8
9#include <linux/slab.h>
10#include <linux/mm.h>
11#include <linux/dma-mapping.h>
12#include <linux/genalloc.h>
13#ifdef CONFIG_X86
14#include <asm/set_memory.h>
15#endif
16#include <sound/memalloc.h>
17
18/*
19 *
20 * Bus-specific memory allocators
21 *
22 */
23
24#ifdef CONFIG_HAS_DMA
25/* allocate the coherent DMA pages */
26static void snd_malloc_dev_pages(struct snd_dma_buffer *dmab, size_t size)
27{
28 gfp_t gfp_flags;
29
30 gfp_flags = GFP_KERNEL
31 | __GFP_COMP /* compound page lets parts be mapped */
32 | __GFP_NORETRY /* don't trigger OOM-killer */
33 | __GFP_NOWARN; /* no stack trace print - this call is non-critical */
34 dmab->area = dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr,
35 gfp_flags);
36#ifdef CONFIG_X86
37 if (dmab->area && dmab->dev.type == SNDRV_DMA_TYPE_DEV_UC)
38 set_memory_wc((unsigned long)dmab->area,
39 PAGE_ALIGN(size) >> PAGE_SHIFT);
40#endif
41}
42
43/* free the coherent DMA pages */
44static void snd_free_dev_pages(struct snd_dma_buffer *dmab)
45{
46#ifdef CONFIG_X86
47 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_UC)
48 set_memory_wb((unsigned long)dmab->area,
49 PAGE_ALIGN(dmab->bytes) >> PAGE_SHIFT);
50#endif
51 dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
52}
53
54#ifdef CONFIG_GENERIC_ALLOCATOR
55/**
56 * snd_malloc_dev_iram - allocate memory from on-chip internal ram
57 * @dmab: buffer allocation record to store the allocated data
58 * @size: number of bytes to allocate from the iram
59 *
60 * This function requires iram phandle provided via of_node
61 */
62static void snd_malloc_dev_iram(struct snd_dma_buffer *dmab, size_t size)
63{
64 struct device *dev = dmab->dev.dev;
65 struct gen_pool *pool = NULL;
66
67 dmab->area = NULL;
68 dmab->addr = 0;
69
70 if (dev->of_node)
71 pool = of_gen_pool_get(dev->of_node, "iram", 0);
72
73 if (!pool)
74 return;
75
76 /* Assign the pool into private_data field */
77 dmab->private_data = pool;
78
79 dmab->area = gen_pool_dma_alloc(pool, size, &dmab->addr);
80}
81
82/**
83 * snd_free_dev_iram - free allocated specific memory from on-chip internal ram
84 * @dmab: buffer allocation record to store the allocated data
85 */
86static void snd_free_dev_iram(struct snd_dma_buffer *dmab)
87{
88 struct gen_pool *pool = dmab->private_data;
89
90 if (pool && dmab->area)
91 gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes);
92}
93#endif /* CONFIG_GENERIC_ALLOCATOR */
94#endif /* CONFIG_HAS_DMA */
95
96/*
97 *
98 * ALSA generic memory management
99 *
100 */
101
102
103/**
104 * snd_dma_alloc_pages - allocate the buffer area according to the given type
105 * @type: the DMA buffer type
106 * @device: the device pointer
107 * @size: the buffer size to allocate
108 * @dmab: buffer allocation record to store the allocated data
109 *
110 * Calls the memory-allocator function for the corresponding
111 * buffer type.
112 *
113 * Return: Zero if the buffer with the given size is allocated successfully,
114 * otherwise a negative value on error.
115 */
116int snd_dma_alloc_pages(int type, struct device *device, size_t size,
117 struct snd_dma_buffer *dmab)
118{
119 if (WARN_ON(!size))
120 return -ENXIO;
121 if (WARN_ON(!dmab))
122 return -ENXIO;
123 if (WARN_ON(!device))
124 return -EINVAL;
125
126 dmab->dev.type = type;
127 dmab->dev.dev = device;
128 dmab->bytes = 0;
129 switch (type) {
130 case SNDRV_DMA_TYPE_CONTINUOUS:
131 dmab->area = alloc_pages_exact(size,
132 (__force gfp_t)(unsigned long)device);
133 dmab->addr = 0;
134 break;
135#ifdef CONFIG_HAS_DMA
136#ifdef CONFIG_GENERIC_ALLOCATOR
137 case SNDRV_DMA_TYPE_DEV_IRAM:
138 snd_malloc_dev_iram(dmab, size);
139 if (dmab->area)
140 break;
141 /* Internal memory might have limited size and no enough space,
142 * so if we fail to malloc, try to fetch memory traditionally.
143 */
144 dmab->dev.type = SNDRV_DMA_TYPE_DEV;
145#endif /* CONFIG_GENERIC_ALLOCATOR */
146 /* fall through */
147 case SNDRV_DMA_TYPE_DEV:
148 case SNDRV_DMA_TYPE_DEV_UC:
149 snd_malloc_dev_pages(dmab, size);
150 break;
151#endif
152#ifdef CONFIG_SND_DMA_SGBUF
153 case SNDRV_DMA_TYPE_DEV_SG:
154 case SNDRV_DMA_TYPE_DEV_UC_SG:
155 snd_malloc_sgbuf_pages(device, size, dmab, NULL);
156 break;
157#endif
158 default:
159 pr_err("snd-malloc: invalid device type %d\n", type);
160 dmab->area = NULL;
161 dmab->addr = 0;
162 return -ENXIO;
163 }
164 if (! dmab->area)
165 return -ENOMEM;
166 dmab->bytes = size;
167 return 0;
168}
169EXPORT_SYMBOL(snd_dma_alloc_pages);
170
171/**
172 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
173 * @type: the DMA buffer type
174 * @device: the device pointer
175 * @size: the buffer size to allocate
176 * @dmab: buffer allocation record to store the allocated data
177 *
178 * Calls the memory-allocator function for the corresponding
179 * buffer type. When no space is left, this function reduces the size and
180 * tries to allocate again. The size actually allocated is stored in
181 * res_size argument.
182 *
183 * Return: Zero if the buffer with the given size is allocated successfully,
184 * otherwise a negative value on error.
185 */
186int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
187 struct snd_dma_buffer *dmab)
188{
189 int err;
190
191 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
192 if (err != -ENOMEM)
193 return err;
194 if (size <= PAGE_SIZE)
195 return -ENOMEM;
196 size >>= 1;
197 size = PAGE_SIZE << get_order(size);
198 }
199 if (! dmab->area)
200 return -ENOMEM;
201 return 0;
202}
203EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
204
205
206/**
207 * snd_dma_free_pages - release the allocated buffer
208 * @dmab: the buffer allocation record to release
209 *
210 * Releases the allocated buffer via snd_dma_alloc_pages().
211 */
212void snd_dma_free_pages(struct snd_dma_buffer *dmab)
213{
214 switch (dmab->dev.type) {
215 case SNDRV_DMA_TYPE_CONTINUOUS:
216 free_pages_exact(dmab->area, dmab->bytes);
217 break;
218#ifdef CONFIG_HAS_DMA
219#ifdef CONFIG_GENERIC_ALLOCATOR
220 case SNDRV_DMA_TYPE_DEV_IRAM:
221 snd_free_dev_iram(dmab);
222 break;
223#endif /* CONFIG_GENERIC_ALLOCATOR */
224 case SNDRV_DMA_TYPE_DEV:
225 case SNDRV_DMA_TYPE_DEV_UC:
226 snd_free_dev_pages(dmab);
227 break;
228#endif
229#ifdef CONFIG_SND_DMA_SGBUF
230 case SNDRV_DMA_TYPE_DEV_SG:
231 case SNDRV_DMA_TYPE_DEV_UC_SG:
232 snd_free_sgbuf_pages(dmab);
233 break;
234#endif
235 default:
236 pr_err("snd-malloc: invalid device type %d\n", dmab->dev.type);
237 }
238}
239EXPORT_SYMBOL(snd_dma_free_pages);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Takashi Iwai <tiwai@suse.de>
5 *
6 * Generic memory allocators
7 */
8
9#include <linux/slab.h>
10#include <linux/mm.h>
11#include <linux/dma-mapping.h>
12#include <linux/dma-map-ops.h>
13#include <linux/genalloc.h>
14#include <linux/highmem.h>
15#include <linux/vmalloc.h>
16#ifdef CONFIG_X86
17#include <asm/set_memory.h>
18#endif
19#include <sound/memalloc.h>
20#include "memalloc_local.h"
21
22#define DEFAULT_GFP \
23 (GFP_KERNEL | \
24 __GFP_RETRY_MAYFAIL | /* don't trigger OOM-killer */ \
25 __GFP_NOWARN) /* no stack trace print - this call is non-critical */
26
27static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab);
28
29#ifdef CONFIG_SND_DMA_SGBUF
30static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size);
31#endif
32
33static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size)
34{
35 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
36
37 if (WARN_ON_ONCE(!ops || !ops->alloc))
38 return NULL;
39 return ops->alloc(dmab, size);
40}
41
42/**
43 * snd_dma_alloc_dir_pages - allocate the buffer area according to the given
44 * type and direction
45 * @type: the DMA buffer type
46 * @device: the device pointer
47 * @dir: DMA direction
48 * @size: the buffer size to allocate
49 * @dmab: buffer allocation record to store the allocated data
50 *
51 * Calls the memory-allocator function for the corresponding
52 * buffer type.
53 *
54 * Return: Zero if the buffer with the given size is allocated successfully,
55 * otherwise a negative value on error.
56 */
57int snd_dma_alloc_dir_pages(int type, struct device *device,
58 enum dma_data_direction dir, size_t size,
59 struct snd_dma_buffer *dmab)
60{
61 if (WARN_ON(!size))
62 return -ENXIO;
63 if (WARN_ON(!dmab))
64 return -ENXIO;
65
66 size = PAGE_ALIGN(size);
67 dmab->dev.type = type;
68 dmab->dev.dev = device;
69 dmab->dev.dir = dir;
70 dmab->bytes = 0;
71 dmab->addr = 0;
72 dmab->private_data = NULL;
73 dmab->area = __snd_dma_alloc_pages(dmab, size);
74 if (!dmab->area)
75 return -ENOMEM;
76 dmab->bytes = size;
77 return 0;
78}
79EXPORT_SYMBOL(snd_dma_alloc_dir_pages);
80
81/**
82 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
83 * @type: the DMA buffer type
84 * @device: the device pointer
85 * @size: the buffer size to allocate
86 * @dmab: buffer allocation record to store the allocated data
87 *
88 * Calls the memory-allocator function for the corresponding
89 * buffer type. When no space is left, this function reduces the size and
90 * tries to allocate again. The size actually allocated is stored in
91 * res_size argument.
92 *
93 * Return: Zero if the buffer with the given size is allocated successfully,
94 * otherwise a negative value on error.
95 */
96int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
97 struct snd_dma_buffer *dmab)
98{
99 int err;
100
101 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
102 if (err != -ENOMEM)
103 return err;
104 if (size <= PAGE_SIZE)
105 return -ENOMEM;
106 size >>= 1;
107 size = PAGE_SIZE << get_order(size);
108 }
109 if (! dmab->area)
110 return -ENOMEM;
111 return 0;
112}
113EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
114
115/**
116 * snd_dma_free_pages - release the allocated buffer
117 * @dmab: the buffer allocation record to release
118 *
119 * Releases the allocated buffer via snd_dma_alloc_pages().
120 */
121void snd_dma_free_pages(struct snd_dma_buffer *dmab)
122{
123 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
124
125 if (ops && ops->free)
126 ops->free(dmab);
127}
128EXPORT_SYMBOL(snd_dma_free_pages);
129
130/* called by devres */
131static void __snd_release_pages(struct device *dev, void *res)
132{
133 snd_dma_free_pages(res);
134}
135
136/**
137 * snd_devm_alloc_dir_pages - allocate the buffer and manage with devres
138 * @dev: the device pointer
139 * @type: the DMA buffer type
140 * @dir: DMA direction
141 * @size: the buffer size to allocate
142 *
143 * Allocate buffer pages depending on the given type and manage using devres.
144 * The pages will be released automatically at the device removal.
145 *
146 * Unlike snd_dma_alloc_pages(), this function requires the real device pointer,
147 * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or
148 * SNDRV_DMA_TYPE_VMALLOC type.
149 *
150 * Return: the snd_dma_buffer object at success, or NULL if failed
151 */
152struct snd_dma_buffer *
153snd_devm_alloc_dir_pages(struct device *dev, int type,
154 enum dma_data_direction dir, size_t size)
155{
156 struct snd_dma_buffer *dmab;
157 int err;
158
159 if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS ||
160 type == SNDRV_DMA_TYPE_VMALLOC))
161 return NULL;
162
163 dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL);
164 if (!dmab)
165 return NULL;
166
167 err = snd_dma_alloc_dir_pages(type, dev, dir, size, dmab);
168 if (err < 0) {
169 devres_free(dmab);
170 return NULL;
171 }
172
173 devres_add(dev, dmab);
174 return dmab;
175}
176EXPORT_SYMBOL_GPL(snd_devm_alloc_dir_pages);
177
178/**
179 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer
180 * @dmab: buffer allocation information
181 * @area: VM area information
182 *
183 * Return: zero if successful, or a negative error code
184 */
185int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab,
186 struct vm_area_struct *area)
187{
188 const struct snd_malloc_ops *ops;
189
190 if (!dmab)
191 return -ENOENT;
192 ops = snd_dma_get_ops(dmab);
193 if (ops && ops->mmap)
194 return ops->mmap(dmab, area);
195 else
196 return -ENOENT;
197}
198EXPORT_SYMBOL(snd_dma_buffer_mmap);
199
200#ifdef CONFIG_HAS_DMA
201/**
202 * snd_dma_buffer_sync - sync DMA buffer between CPU and device
203 * @dmab: buffer allocation information
204 * @mode: sync mode
205 */
206void snd_dma_buffer_sync(struct snd_dma_buffer *dmab,
207 enum snd_dma_sync_mode mode)
208{
209 const struct snd_malloc_ops *ops;
210
211 if (!dmab || !dmab->dev.need_sync)
212 return;
213 ops = snd_dma_get_ops(dmab);
214 if (ops && ops->sync)
215 ops->sync(dmab, mode);
216}
217EXPORT_SYMBOL_GPL(snd_dma_buffer_sync);
218#endif /* CONFIG_HAS_DMA */
219
220/**
221 * snd_sgbuf_get_addr - return the physical address at the corresponding offset
222 * @dmab: buffer allocation information
223 * @offset: offset in the ring buffer
224 *
225 * Return: the physical address
226 */
227dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset)
228{
229 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
230
231 if (ops && ops->get_addr)
232 return ops->get_addr(dmab, offset);
233 else
234 return dmab->addr + offset;
235}
236EXPORT_SYMBOL(snd_sgbuf_get_addr);
237
238/**
239 * snd_sgbuf_get_page - return the physical page at the corresponding offset
240 * @dmab: buffer allocation information
241 * @offset: offset in the ring buffer
242 *
243 * Return: the page pointer
244 */
245struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset)
246{
247 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
248
249 if (ops && ops->get_page)
250 return ops->get_page(dmab, offset);
251 else
252 return virt_to_page(dmab->area + offset);
253}
254EXPORT_SYMBOL(snd_sgbuf_get_page);
255
256/**
257 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages
258 * on sg-buffer
259 * @dmab: buffer allocation information
260 * @ofs: offset in the ring buffer
261 * @size: the requested size
262 *
263 * Return: the chunk size
264 */
265unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab,
266 unsigned int ofs, unsigned int size)
267{
268 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
269
270 if (ops && ops->get_chunk_size)
271 return ops->get_chunk_size(dmab, ofs, size);
272 else
273 return size;
274}
275EXPORT_SYMBOL(snd_sgbuf_get_chunk_size);
276
277/*
278 * Continuous pages allocator
279 */
280static void *do_alloc_pages(struct device *dev, size_t size, dma_addr_t *addr,
281 bool wc)
282{
283 void *p;
284 gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
285
286 again:
287 p = alloc_pages_exact(size, gfp);
288 if (!p)
289 return NULL;
290 *addr = page_to_phys(virt_to_page(p));
291 if (!dev)
292 return p;
293 if ((*addr + size - 1) & ~dev->coherent_dma_mask) {
294 if (IS_ENABLED(CONFIG_ZONE_DMA32) && !(gfp & GFP_DMA32)) {
295 gfp |= GFP_DMA32;
296 goto again;
297 }
298 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
299 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
300 goto again;
301 }
302 }
303#ifdef CONFIG_X86
304 if (wc)
305 set_memory_wc((unsigned long)(p), size >> PAGE_SHIFT);
306#endif
307 return p;
308}
309
310static void do_free_pages(void *p, size_t size, bool wc)
311{
312#ifdef CONFIG_X86
313 if (wc)
314 set_memory_wb((unsigned long)(p), size >> PAGE_SHIFT);
315#endif
316 free_pages_exact(p, size);
317}
318
319
320static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size)
321{
322 return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, false);
323}
324
325static void snd_dma_continuous_free(struct snd_dma_buffer *dmab)
326{
327 do_free_pages(dmab->area, dmab->bytes, false);
328}
329
330static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab,
331 struct vm_area_struct *area)
332{
333 return remap_pfn_range(area, area->vm_start,
334 dmab->addr >> PAGE_SHIFT,
335 area->vm_end - area->vm_start,
336 area->vm_page_prot);
337}
338
339static const struct snd_malloc_ops snd_dma_continuous_ops = {
340 .alloc = snd_dma_continuous_alloc,
341 .free = snd_dma_continuous_free,
342 .mmap = snd_dma_continuous_mmap,
343};
344
345/*
346 * VMALLOC allocator
347 */
348static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size)
349{
350 return vmalloc(size);
351}
352
353static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab)
354{
355 vfree(dmab->area);
356}
357
358static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab,
359 struct vm_area_struct *area)
360{
361 return remap_vmalloc_range(area, dmab->area, 0);
362}
363
364#define get_vmalloc_page_addr(dmab, offset) \
365 page_to_phys(vmalloc_to_page((dmab)->area + (offset)))
366
367static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab,
368 size_t offset)
369{
370 return get_vmalloc_page_addr(dmab, offset) + offset % PAGE_SIZE;
371}
372
373static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab,
374 size_t offset)
375{
376 return vmalloc_to_page(dmab->area + offset);
377}
378
379static unsigned int
380snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab,
381 unsigned int ofs, unsigned int size)
382{
383 unsigned int start, end;
384 unsigned long addr;
385
386 start = ALIGN_DOWN(ofs, PAGE_SIZE);
387 end = ofs + size - 1; /* the last byte address */
388 /* check page continuity */
389 addr = get_vmalloc_page_addr(dmab, start);
390 for (;;) {
391 start += PAGE_SIZE;
392 if (start > end)
393 break;
394 addr += PAGE_SIZE;
395 if (get_vmalloc_page_addr(dmab, start) != addr)
396 return start - ofs;
397 }
398 /* ok, all on continuous pages */
399 return size;
400}
401
402static const struct snd_malloc_ops snd_dma_vmalloc_ops = {
403 .alloc = snd_dma_vmalloc_alloc,
404 .free = snd_dma_vmalloc_free,
405 .mmap = snd_dma_vmalloc_mmap,
406 .get_addr = snd_dma_vmalloc_get_addr,
407 .get_page = snd_dma_vmalloc_get_page,
408 .get_chunk_size = snd_dma_vmalloc_get_chunk_size,
409};
410
411#ifdef CONFIG_HAS_DMA
412/*
413 * IRAM allocator
414 */
415#ifdef CONFIG_GENERIC_ALLOCATOR
416static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size)
417{
418 struct device *dev = dmab->dev.dev;
419 struct gen_pool *pool;
420 void *p;
421
422 if (dev->of_node) {
423 pool = of_gen_pool_get(dev->of_node, "iram", 0);
424 /* Assign the pool into private_data field */
425 dmab->private_data = pool;
426
427 p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE);
428 if (p)
429 return p;
430 }
431
432 /* Internal memory might have limited size and no enough space,
433 * so if we fail to malloc, try to fetch memory traditionally.
434 */
435 dmab->dev.type = SNDRV_DMA_TYPE_DEV;
436 return __snd_dma_alloc_pages(dmab, size);
437}
438
439static void snd_dma_iram_free(struct snd_dma_buffer *dmab)
440{
441 struct gen_pool *pool = dmab->private_data;
442
443 if (pool && dmab->area)
444 gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes);
445}
446
447static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab,
448 struct vm_area_struct *area)
449{
450 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
451 return remap_pfn_range(area, area->vm_start,
452 dmab->addr >> PAGE_SHIFT,
453 area->vm_end - area->vm_start,
454 area->vm_page_prot);
455}
456
457static const struct snd_malloc_ops snd_dma_iram_ops = {
458 .alloc = snd_dma_iram_alloc,
459 .free = snd_dma_iram_free,
460 .mmap = snd_dma_iram_mmap,
461};
462#endif /* CONFIG_GENERIC_ALLOCATOR */
463
464/*
465 * Coherent device pages allocator
466 */
467static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size)
468{
469 return dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
470}
471
472static void snd_dma_dev_free(struct snd_dma_buffer *dmab)
473{
474 dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
475}
476
477static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab,
478 struct vm_area_struct *area)
479{
480 return dma_mmap_coherent(dmab->dev.dev, area,
481 dmab->area, dmab->addr, dmab->bytes);
482}
483
484static const struct snd_malloc_ops snd_dma_dev_ops = {
485 .alloc = snd_dma_dev_alloc,
486 .free = snd_dma_dev_free,
487 .mmap = snd_dma_dev_mmap,
488};
489
490/*
491 * Write-combined pages
492 */
493/* x86-specific allocations */
494#ifdef CONFIG_SND_DMA_SGBUF
495static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
496{
497 return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, true);
498}
499
500static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
501{
502 do_free_pages(dmab->area, dmab->bytes, true);
503}
504
505static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
506 struct vm_area_struct *area)
507{
508 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
509 return snd_dma_continuous_mmap(dmab, area);
510}
511#else
512static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
513{
514 return dma_alloc_wc(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
515}
516
517static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
518{
519 dma_free_wc(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
520}
521
522static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
523 struct vm_area_struct *area)
524{
525 return dma_mmap_wc(dmab->dev.dev, area,
526 dmab->area, dmab->addr, dmab->bytes);
527}
528#endif /* CONFIG_SND_DMA_SGBUF */
529
530static const struct snd_malloc_ops snd_dma_wc_ops = {
531 .alloc = snd_dma_wc_alloc,
532 .free = snd_dma_wc_free,
533 .mmap = snd_dma_wc_mmap,
534};
535
536/*
537 * Non-contiguous pages allocator
538 */
539static void *snd_dma_noncontig_alloc(struct snd_dma_buffer *dmab, size_t size)
540{
541 struct sg_table *sgt;
542 void *p;
543
544#ifdef CONFIG_SND_DMA_SGBUF
545 if (cpu_feature_enabled(X86_FEATURE_XENPV))
546 return snd_dma_sg_fallback_alloc(dmab, size);
547#endif
548 sgt = dma_alloc_noncontiguous(dmab->dev.dev, size, dmab->dev.dir,
549 DEFAULT_GFP, 0);
550#ifdef CONFIG_SND_DMA_SGBUF
551 if (!sgt && !get_dma_ops(dmab->dev.dev))
552 return snd_dma_sg_fallback_alloc(dmab, size);
553#endif
554 if (!sgt)
555 return NULL;
556
557 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev,
558 sg_dma_address(sgt->sgl));
559 p = dma_vmap_noncontiguous(dmab->dev.dev, size, sgt);
560 if (p) {
561 dmab->private_data = sgt;
562 /* store the first page address for convenience */
563 dmab->addr = snd_sgbuf_get_addr(dmab, 0);
564 } else {
565 dma_free_noncontiguous(dmab->dev.dev, size, sgt, dmab->dev.dir);
566 }
567 return p;
568}
569
570static void snd_dma_noncontig_free(struct snd_dma_buffer *dmab)
571{
572 dma_vunmap_noncontiguous(dmab->dev.dev, dmab->area);
573 dma_free_noncontiguous(dmab->dev.dev, dmab->bytes, dmab->private_data,
574 dmab->dev.dir);
575}
576
577static int snd_dma_noncontig_mmap(struct snd_dma_buffer *dmab,
578 struct vm_area_struct *area)
579{
580 return dma_mmap_noncontiguous(dmab->dev.dev, area,
581 dmab->bytes, dmab->private_data);
582}
583
584static void snd_dma_noncontig_sync(struct snd_dma_buffer *dmab,
585 enum snd_dma_sync_mode mode)
586{
587 if (mode == SNDRV_DMA_SYNC_CPU) {
588 if (dmab->dev.dir == DMA_TO_DEVICE)
589 return;
590 invalidate_kernel_vmap_range(dmab->area, dmab->bytes);
591 dma_sync_sgtable_for_cpu(dmab->dev.dev, dmab->private_data,
592 dmab->dev.dir);
593 } else {
594 if (dmab->dev.dir == DMA_FROM_DEVICE)
595 return;
596 flush_kernel_vmap_range(dmab->area, dmab->bytes);
597 dma_sync_sgtable_for_device(dmab->dev.dev, dmab->private_data,
598 dmab->dev.dir);
599 }
600}
601
602static inline void snd_dma_noncontig_iter_set(struct snd_dma_buffer *dmab,
603 struct sg_page_iter *piter,
604 size_t offset)
605{
606 struct sg_table *sgt = dmab->private_data;
607
608 __sg_page_iter_start(piter, sgt->sgl, sgt->orig_nents,
609 offset >> PAGE_SHIFT);
610}
611
612static dma_addr_t snd_dma_noncontig_get_addr(struct snd_dma_buffer *dmab,
613 size_t offset)
614{
615 struct sg_dma_page_iter iter;
616
617 snd_dma_noncontig_iter_set(dmab, &iter.base, offset);
618 __sg_page_iter_dma_next(&iter);
619 return sg_page_iter_dma_address(&iter) + offset % PAGE_SIZE;
620}
621
622static struct page *snd_dma_noncontig_get_page(struct snd_dma_buffer *dmab,
623 size_t offset)
624{
625 struct sg_page_iter iter;
626
627 snd_dma_noncontig_iter_set(dmab, &iter, offset);
628 __sg_page_iter_next(&iter);
629 return sg_page_iter_page(&iter);
630}
631
632static unsigned int
633snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer *dmab,
634 unsigned int ofs, unsigned int size)
635{
636 struct sg_dma_page_iter iter;
637 unsigned int start, end;
638 unsigned long addr;
639
640 start = ALIGN_DOWN(ofs, PAGE_SIZE);
641 end = ofs + size - 1; /* the last byte address */
642 snd_dma_noncontig_iter_set(dmab, &iter.base, start);
643 if (!__sg_page_iter_dma_next(&iter))
644 return 0;
645 /* check page continuity */
646 addr = sg_page_iter_dma_address(&iter);
647 for (;;) {
648 start += PAGE_SIZE;
649 if (start > end)
650 break;
651 addr += PAGE_SIZE;
652 if (!__sg_page_iter_dma_next(&iter) ||
653 sg_page_iter_dma_address(&iter) != addr)
654 return start - ofs;
655 }
656 /* ok, all on continuous pages */
657 return size;
658}
659
660static const struct snd_malloc_ops snd_dma_noncontig_ops = {
661 .alloc = snd_dma_noncontig_alloc,
662 .free = snd_dma_noncontig_free,
663 .mmap = snd_dma_noncontig_mmap,
664 .sync = snd_dma_noncontig_sync,
665 .get_addr = snd_dma_noncontig_get_addr,
666 .get_page = snd_dma_noncontig_get_page,
667 .get_chunk_size = snd_dma_noncontig_get_chunk_size,
668};
669
670/* x86-specific SG-buffer with WC pages */
671#ifdef CONFIG_SND_DMA_SGBUF
672#define sg_wc_address(it) ((unsigned long)page_address(sg_page_iter_page(it)))
673
674static void *snd_dma_sg_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
675{
676 void *p = snd_dma_noncontig_alloc(dmab, size);
677 struct sg_table *sgt = dmab->private_data;
678 struct sg_page_iter iter;
679
680 if (!p)
681 return NULL;
682 if (dmab->dev.type != SNDRV_DMA_TYPE_DEV_WC_SG)
683 return p;
684 for_each_sgtable_page(sgt, &iter, 0)
685 set_memory_wc(sg_wc_address(&iter), 1);
686 return p;
687}
688
689static void snd_dma_sg_wc_free(struct snd_dma_buffer *dmab)
690{
691 struct sg_table *sgt = dmab->private_data;
692 struct sg_page_iter iter;
693
694 for_each_sgtable_page(sgt, &iter, 0)
695 set_memory_wb(sg_wc_address(&iter), 1);
696 snd_dma_noncontig_free(dmab);
697}
698
699static int snd_dma_sg_wc_mmap(struct snd_dma_buffer *dmab,
700 struct vm_area_struct *area)
701{
702 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
703 return dma_mmap_noncontiguous(dmab->dev.dev, area,
704 dmab->bytes, dmab->private_data);
705}
706
707static const struct snd_malloc_ops snd_dma_sg_wc_ops = {
708 .alloc = snd_dma_sg_wc_alloc,
709 .free = snd_dma_sg_wc_free,
710 .mmap = snd_dma_sg_wc_mmap,
711 .sync = snd_dma_noncontig_sync,
712 .get_addr = snd_dma_noncontig_get_addr,
713 .get_page = snd_dma_noncontig_get_page,
714 .get_chunk_size = snd_dma_noncontig_get_chunk_size,
715};
716
717/* Fallback SG-buffer allocations for x86 */
718struct snd_dma_sg_fallback {
719 bool use_dma_alloc_coherent;
720 size_t count;
721 struct page **pages;
722 /* DMA address array; the first page contains #pages in ~PAGE_MASK */
723 dma_addr_t *addrs;
724};
725
726static void __snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab,
727 struct snd_dma_sg_fallback *sgbuf)
728{
729 size_t i, size;
730
731 if (sgbuf->pages && sgbuf->addrs) {
732 i = 0;
733 while (i < sgbuf->count) {
734 if (!sgbuf->pages[i] || !sgbuf->addrs[i])
735 break;
736 size = sgbuf->addrs[i] & ~PAGE_MASK;
737 if (WARN_ON(!size))
738 break;
739 if (sgbuf->use_dma_alloc_coherent)
740 dma_free_coherent(dmab->dev.dev, size << PAGE_SHIFT,
741 page_address(sgbuf->pages[i]),
742 sgbuf->addrs[i] & PAGE_MASK);
743 else
744 do_free_pages(page_address(sgbuf->pages[i]),
745 size << PAGE_SHIFT, false);
746 i += size;
747 }
748 }
749 kvfree(sgbuf->pages);
750 kvfree(sgbuf->addrs);
751 kfree(sgbuf);
752}
753
754static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size)
755{
756 struct snd_dma_sg_fallback *sgbuf;
757 struct page **pagep, *curp;
758 size_t chunk, npages;
759 dma_addr_t *addrp;
760 dma_addr_t addr;
761 void *p;
762
763 /* correct the type */
764 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_SG)
765 dmab->dev.type = SNDRV_DMA_TYPE_DEV_SG_FALLBACK;
766 else if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG)
767 dmab->dev.type = SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK;
768
769 sgbuf = kzalloc(sizeof(*sgbuf), GFP_KERNEL);
770 if (!sgbuf)
771 return NULL;
772 sgbuf->use_dma_alloc_coherent = cpu_feature_enabled(X86_FEATURE_XENPV);
773 size = PAGE_ALIGN(size);
774 sgbuf->count = size >> PAGE_SHIFT;
775 sgbuf->pages = kvcalloc(sgbuf->count, sizeof(*sgbuf->pages), GFP_KERNEL);
776 sgbuf->addrs = kvcalloc(sgbuf->count, sizeof(*sgbuf->addrs), GFP_KERNEL);
777 if (!sgbuf->pages || !sgbuf->addrs)
778 goto error;
779
780 pagep = sgbuf->pages;
781 addrp = sgbuf->addrs;
782 chunk = (PAGE_SIZE - 1) << PAGE_SHIFT; /* to fit in low bits in addrs */
783 while (size > 0) {
784 chunk = min(size, chunk);
785 if (sgbuf->use_dma_alloc_coherent)
786 p = dma_alloc_coherent(dmab->dev.dev, chunk, &addr, DEFAULT_GFP);
787 else
788 p = do_alloc_pages(dmab->dev.dev, chunk, &addr, false);
789 if (!p) {
790 if (chunk <= PAGE_SIZE)
791 goto error;
792 chunk >>= 1;
793 chunk = PAGE_SIZE << get_order(chunk);
794 continue;
795 }
796
797 size -= chunk;
798 /* fill pages */
799 npages = chunk >> PAGE_SHIFT;
800 *addrp = npages; /* store in lower bits */
801 curp = virt_to_page(p);
802 while (npages--) {
803 *pagep++ = curp++;
804 *addrp++ |= addr;
805 addr += PAGE_SIZE;
806 }
807 }
808
809 p = vmap(sgbuf->pages, sgbuf->count, VM_MAP, PAGE_KERNEL);
810 if (!p)
811 goto error;
812
813 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK)
814 set_pages_array_wc(sgbuf->pages, sgbuf->count);
815
816 dmab->private_data = sgbuf;
817 /* store the first page address for convenience */
818 dmab->addr = sgbuf->addrs[0] & PAGE_MASK;
819 return p;
820
821 error:
822 __snd_dma_sg_fallback_free(dmab, sgbuf);
823 return NULL;
824}
825
826static void snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab)
827{
828 struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
829
830 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK)
831 set_pages_array_wb(sgbuf->pages, sgbuf->count);
832 vunmap(dmab->area);
833 __snd_dma_sg_fallback_free(dmab, dmab->private_data);
834}
835
836static dma_addr_t snd_dma_sg_fallback_get_addr(struct snd_dma_buffer *dmab,
837 size_t offset)
838{
839 struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
840 size_t index = offset >> PAGE_SHIFT;
841
842 return (sgbuf->addrs[index] & PAGE_MASK) | (offset & ~PAGE_MASK);
843}
844
845static int snd_dma_sg_fallback_mmap(struct snd_dma_buffer *dmab,
846 struct vm_area_struct *area)
847{
848 struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
849
850 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK)
851 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
852 return vm_map_pages(area, sgbuf->pages, sgbuf->count);
853}
854
855static const struct snd_malloc_ops snd_dma_sg_fallback_ops = {
856 .alloc = snd_dma_sg_fallback_alloc,
857 .free = snd_dma_sg_fallback_free,
858 .mmap = snd_dma_sg_fallback_mmap,
859 .get_addr = snd_dma_sg_fallback_get_addr,
860 /* reuse vmalloc helpers */
861 .get_page = snd_dma_vmalloc_get_page,
862 .get_chunk_size = snd_dma_vmalloc_get_chunk_size,
863};
864#endif /* CONFIG_SND_DMA_SGBUF */
865
866/*
867 * Non-coherent pages allocator
868 */
869static void *snd_dma_noncoherent_alloc(struct snd_dma_buffer *dmab, size_t size)
870{
871 void *p;
872
873 p = dma_alloc_noncoherent(dmab->dev.dev, size, &dmab->addr,
874 dmab->dev.dir, DEFAULT_GFP);
875 if (p)
876 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->addr);
877 return p;
878}
879
880static void snd_dma_noncoherent_free(struct snd_dma_buffer *dmab)
881{
882 dma_free_noncoherent(dmab->dev.dev, dmab->bytes, dmab->area,
883 dmab->addr, dmab->dev.dir);
884}
885
886static int snd_dma_noncoherent_mmap(struct snd_dma_buffer *dmab,
887 struct vm_area_struct *area)
888{
889 area->vm_page_prot = vm_get_page_prot(area->vm_flags);
890 return dma_mmap_pages(dmab->dev.dev, area,
891 area->vm_end - area->vm_start,
892 virt_to_page(dmab->area));
893}
894
895static void snd_dma_noncoherent_sync(struct snd_dma_buffer *dmab,
896 enum snd_dma_sync_mode mode)
897{
898 if (mode == SNDRV_DMA_SYNC_CPU) {
899 if (dmab->dev.dir != DMA_TO_DEVICE)
900 dma_sync_single_for_cpu(dmab->dev.dev, dmab->addr,
901 dmab->bytes, dmab->dev.dir);
902 } else {
903 if (dmab->dev.dir != DMA_FROM_DEVICE)
904 dma_sync_single_for_device(dmab->dev.dev, dmab->addr,
905 dmab->bytes, dmab->dev.dir);
906 }
907}
908
909static const struct snd_malloc_ops snd_dma_noncoherent_ops = {
910 .alloc = snd_dma_noncoherent_alloc,
911 .free = snd_dma_noncoherent_free,
912 .mmap = snd_dma_noncoherent_mmap,
913 .sync = snd_dma_noncoherent_sync,
914};
915
916#endif /* CONFIG_HAS_DMA */
917
918/*
919 * Entry points
920 */
921static const struct snd_malloc_ops *snd_dma_ops[] = {
922 [SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops,
923 [SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops,
924#ifdef CONFIG_HAS_DMA
925 [SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops,
926 [SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_wc_ops,
927 [SNDRV_DMA_TYPE_NONCONTIG] = &snd_dma_noncontig_ops,
928 [SNDRV_DMA_TYPE_NONCOHERENT] = &snd_dma_noncoherent_ops,
929#ifdef CONFIG_SND_DMA_SGBUF
930 [SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_wc_ops,
931#endif
932#ifdef CONFIG_GENERIC_ALLOCATOR
933 [SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops,
934#endif /* CONFIG_GENERIC_ALLOCATOR */
935#ifdef CONFIG_SND_DMA_SGBUF
936 [SNDRV_DMA_TYPE_DEV_SG_FALLBACK] = &snd_dma_sg_fallback_ops,
937 [SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK] = &snd_dma_sg_fallback_ops,
938#endif
939#endif /* CONFIG_HAS_DMA */
940};
941
942static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab)
943{
944 if (WARN_ON_ONCE(!dmab))
945 return NULL;
946 if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN ||
947 dmab->dev.type >= ARRAY_SIZE(snd_dma_ops)))
948 return NULL;
949 return snd_dma_ops[dmab->dev.type];
950}