Loading...
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/module.h>
35
36#include <net/tcp.h>
37#include <net/inet_common.h>
38#include <linux/highmem.h>
39#include <linux/netdevice.h>
40#include <linux/sched/signal.h>
41#include <linux/inetdevice.h>
42#include <linux/inet_diag.h>
43
44#include <net/tls.h>
45
46MODULE_AUTHOR("Mellanox Technologies");
47MODULE_DESCRIPTION("Transport Layer Security Support");
48MODULE_LICENSE("Dual BSD/GPL");
49MODULE_ALIAS_TCP_ULP("tls");
50
51enum {
52 TLSV4,
53 TLSV6,
54 TLS_NUM_PROTS,
55};
56
57static struct proto *saved_tcpv6_prot;
58static DEFINE_MUTEX(tcpv6_prot_mutex);
59static struct proto *saved_tcpv4_prot;
60static DEFINE_MUTEX(tcpv4_prot_mutex);
61static LIST_HEAD(device_list);
62static DEFINE_SPINLOCK(device_spinlock);
63static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64static struct proto_ops tls_sw_proto_ops;
65static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66 struct proto *base);
67
68static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69{
70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
73}
74
75int wait_on_pending_writer(struct sock *sk, long *timeo)
76{
77 int rc = 0;
78 DEFINE_WAIT_FUNC(wait, woken_wake_function);
79
80 add_wait_queue(sk_sleep(sk), &wait);
81 while (1) {
82 if (!*timeo) {
83 rc = -EAGAIN;
84 break;
85 }
86
87 if (signal_pending(current)) {
88 rc = sock_intr_errno(*timeo);
89 break;
90 }
91
92 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
93 break;
94 }
95 remove_wait_queue(sk_sleep(sk), &wait);
96 return rc;
97}
98
99int tls_push_sg(struct sock *sk,
100 struct tls_context *ctx,
101 struct scatterlist *sg,
102 u16 first_offset,
103 int flags)
104{
105 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
106 int ret = 0;
107 struct page *p;
108 size_t size;
109 int offset = first_offset;
110
111 size = sg->length - offset;
112 offset += sg->offset;
113
114 ctx->in_tcp_sendpages = true;
115 while (1) {
116 if (sg_is_last(sg))
117 sendpage_flags = flags;
118
119 /* is sending application-limited? */
120 tcp_rate_check_app_limited(sk);
121 p = sg_page(sg);
122retry:
123 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
124
125 if (ret != size) {
126 if (ret > 0) {
127 offset += ret;
128 size -= ret;
129 goto retry;
130 }
131
132 offset -= sg->offset;
133 ctx->partially_sent_offset = offset;
134 ctx->partially_sent_record = (void *)sg;
135 ctx->in_tcp_sendpages = false;
136 return ret;
137 }
138
139 put_page(p);
140 sk_mem_uncharge(sk, sg->length);
141 sg = sg_next(sg);
142 if (!sg)
143 break;
144
145 offset = sg->offset;
146 size = sg->length;
147 }
148
149 ctx->in_tcp_sendpages = false;
150
151 return 0;
152}
153
154static int tls_handle_open_record(struct sock *sk, int flags)
155{
156 struct tls_context *ctx = tls_get_ctx(sk);
157
158 if (tls_is_pending_open_record(ctx))
159 return ctx->push_pending_record(sk, flags);
160
161 return 0;
162}
163
164int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
165 unsigned char *record_type)
166{
167 struct cmsghdr *cmsg;
168 int rc = -EINVAL;
169
170 for_each_cmsghdr(cmsg, msg) {
171 if (!CMSG_OK(msg, cmsg))
172 return -EINVAL;
173 if (cmsg->cmsg_level != SOL_TLS)
174 continue;
175
176 switch (cmsg->cmsg_type) {
177 case TLS_SET_RECORD_TYPE:
178 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
179 return -EINVAL;
180
181 if (msg->msg_flags & MSG_MORE)
182 return -EINVAL;
183
184 rc = tls_handle_open_record(sk, msg->msg_flags);
185 if (rc)
186 return rc;
187
188 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
189 rc = 0;
190 break;
191 default:
192 return -EINVAL;
193 }
194 }
195
196 return rc;
197}
198
199int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
200 int flags)
201{
202 struct scatterlist *sg;
203 u16 offset;
204
205 sg = ctx->partially_sent_record;
206 offset = ctx->partially_sent_offset;
207
208 ctx->partially_sent_record = NULL;
209 return tls_push_sg(sk, ctx, sg, offset, flags);
210}
211
212bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
213{
214 struct scatterlist *sg;
215
216 sg = ctx->partially_sent_record;
217 if (!sg)
218 return false;
219
220 while (1) {
221 put_page(sg_page(sg));
222 sk_mem_uncharge(sk, sg->length);
223
224 if (sg_is_last(sg))
225 break;
226 sg++;
227 }
228 ctx->partially_sent_record = NULL;
229 return true;
230}
231
232static void tls_write_space(struct sock *sk)
233{
234 struct tls_context *ctx = tls_get_ctx(sk);
235
236 /* If in_tcp_sendpages call lower protocol write space handler
237 * to ensure we wake up any waiting operations there. For example
238 * if do_tcp_sendpages where to call sk_wait_event.
239 */
240 if (ctx->in_tcp_sendpages) {
241 ctx->sk_write_space(sk);
242 return;
243 }
244
245#ifdef CONFIG_TLS_DEVICE
246 if (ctx->tx_conf == TLS_HW)
247 tls_device_write_space(sk, ctx);
248 else
249#endif
250 tls_sw_write_space(sk, ctx);
251
252 ctx->sk_write_space(sk);
253}
254
255/**
256 * tls_ctx_free() - free TLS ULP context
257 * @sk: socket to with @ctx is attached
258 * @ctx: TLS context structure
259 *
260 * Free TLS context. If @sk is %NULL caller guarantees that the socket
261 * to which @ctx was attached has no outstanding references.
262 */
263void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
264{
265 if (!ctx)
266 return;
267
268 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
269 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
270 mutex_destroy(&ctx->tx_lock);
271
272 if (sk)
273 kfree_rcu(ctx, rcu);
274 else
275 kfree(ctx);
276}
277
278static void tls_sk_proto_cleanup(struct sock *sk,
279 struct tls_context *ctx, long timeo)
280{
281 if (unlikely(sk->sk_write_pending) &&
282 !wait_on_pending_writer(sk, &timeo))
283 tls_handle_open_record(sk, 0);
284
285 /* We need these for tls_sw_fallback handling of other packets */
286 if (ctx->tx_conf == TLS_SW) {
287 kfree(ctx->tx.rec_seq);
288 kfree(ctx->tx.iv);
289 tls_sw_release_resources_tx(sk);
290 } else if (ctx->tx_conf == TLS_HW) {
291 tls_device_free_resources_tx(sk);
292 }
293
294 if (ctx->rx_conf == TLS_SW)
295 tls_sw_release_resources_rx(sk);
296 else if (ctx->rx_conf == TLS_HW)
297 tls_device_offload_cleanup_rx(sk);
298}
299
300static void tls_sk_proto_close(struct sock *sk, long timeout)
301{
302 struct inet_connection_sock *icsk = inet_csk(sk);
303 struct tls_context *ctx = tls_get_ctx(sk);
304 long timeo = sock_sndtimeo(sk, 0);
305 bool free_ctx;
306
307 if (ctx->tx_conf == TLS_SW)
308 tls_sw_cancel_work_tx(ctx);
309
310 lock_sock(sk);
311 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
312
313 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
314 tls_sk_proto_cleanup(sk, ctx, timeo);
315
316 write_lock_bh(&sk->sk_callback_lock);
317 if (free_ctx)
318 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
319 sk->sk_prot = ctx->sk_proto;
320 if (sk->sk_write_space == tls_write_space)
321 sk->sk_write_space = ctx->sk_write_space;
322 write_unlock_bh(&sk->sk_callback_lock);
323 release_sock(sk);
324 if (ctx->tx_conf == TLS_SW)
325 tls_sw_free_ctx_tx(ctx);
326 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
327 tls_sw_strparser_done(ctx);
328 if (ctx->rx_conf == TLS_SW)
329 tls_sw_free_ctx_rx(ctx);
330 ctx->sk_proto->close(sk, timeout);
331
332 if (free_ctx)
333 tls_ctx_free(sk, ctx);
334}
335
336static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
337 int __user *optlen)
338{
339 int rc = 0;
340 struct tls_context *ctx = tls_get_ctx(sk);
341 struct tls_crypto_info *crypto_info;
342 int len;
343
344 if (get_user(len, optlen))
345 return -EFAULT;
346
347 if (!optval || (len < sizeof(*crypto_info))) {
348 rc = -EINVAL;
349 goto out;
350 }
351
352 if (!ctx) {
353 rc = -EBUSY;
354 goto out;
355 }
356
357 /* get user crypto info */
358 crypto_info = &ctx->crypto_send.info;
359
360 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
361 rc = -EBUSY;
362 goto out;
363 }
364
365 if (len == sizeof(*crypto_info)) {
366 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
367 rc = -EFAULT;
368 goto out;
369 }
370
371 switch (crypto_info->cipher_type) {
372 case TLS_CIPHER_AES_GCM_128: {
373 struct tls12_crypto_info_aes_gcm_128 *
374 crypto_info_aes_gcm_128 =
375 container_of(crypto_info,
376 struct tls12_crypto_info_aes_gcm_128,
377 info);
378
379 if (len != sizeof(*crypto_info_aes_gcm_128)) {
380 rc = -EINVAL;
381 goto out;
382 }
383 lock_sock(sk);
384 memcpy(crypto_info_aes_gcm_128->iv,
385 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
386 TLS_CIPHER_AES_GCM_128_IV_SIZE);
387 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
388 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
389 release_sock(sk);
390 if (copy_to_user(optval,
391 crypto_info_aes_gcm_128,
392 sizeof(*crypto_info_aes_gcm_128)))
393 rc = -EFAULT;
394 break;
395 }
396 case TLS_CIPHER_AES_GCM_256: {
397 struct tls12_crypto_info_aes_gcm_256 *
398 crypto_info_aes_gcm_256 =
399 container_of(crypto_info,
400 struct tls12_crypto_info_aes_gcm_256,
401 info);
402
403 if (len != sizeof(*crypto_info_aes_gcm_256)) {
404 rc = -EINVAL;
405 goto out;
406 }
407 lock_sock(sk);
408 memcpy(crypto_info_aes_gcm_256->iv,
409 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
410 TLS_CIPHER_AES_GCM_256_IV_SIZE);
411 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
412 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
413 release_sock(sk);
414 if (copy_to_user(optval,
415 crypto_info_aes_gcm_256,
416 sizeof(*crypto_info_aes_gcm_256)))
417 rc = -EFAULT;
418 break;
419 }
420 default:
421 rc = -EINVAL;
422 }
423
424out:
425 return rc;
426}
427
428static int do_tls_getsockopt(struct sock *sk, int optname,
429 char __user *optval, int __user *optlen)
430{
431 int rc = 0;
432
433 switch (optname) {
434 case TLS_TX:
435 rc = do_tls_getsockopt_tx(sk, optval, optlen);
436 break;
437 default:
438 rc = -ENOPROTOOPT;
439 break;
440 }
441 return rc;
442}
443
444static int tls_getsockopt(struct sock *sk, int level, int optname,
445 char __user *optval, int __user *optlen)
446{
447 struct tls_context *ctx = tls_get_ctx(sk);
448
449 if (level != SOL_TLS)
450 return ctx->sk_proto->getsockopt(sk, level,
451 optname, optval, optlen);
452
453 return do_tls_getsockopt(sk, optname, optval, optlen);
454}
455
456static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
457 unsigned int optlen, int tx)
458{
459 struct tls_crypto_info *crypto_info;
460 struct tls_crypto_info *alt_crypto_info;
461 struct tls_context *ctx = tls_get_ctx(sk);
462 size_t optsize;
463 int rc = 0;
464 int conf;
465
466 if (!optval || (optlen < sizeof(*crypto_info))) {
467 rc = -EINVAL;
468 goto out;
469 }
470
471 if (tx) {
472 crypto_info = &ctx->crypto_send.info;
473 alt_crypto_info = &ctx->crypto_recv.info;
474 } else {
475 crypto_info = &ctx->crypto_recv.info;
476 alt_crypto_info = &ctx->crypto_send.info;
477 }
478
479 /* Currently we don't support set crypto info more than one time */
480 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
481 rc = -EBUSY;
482 goto out;
483 }
484
485 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
486 if (rc) {
487 rc = -EFAULT;
488 goto err_crypto_info;
489 }
490
491 /* check version */
492 if (crypto_info->version != TLS_1_2_VERSION &&
493 crypto_info->version != TLS_1_3_VERSION) {
494 rc = -ENOTSUPP;
495 goto err_crypto_info;
496 }
497
498 /* Ensure that TLS version and ciphers are same in both directions */
499 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
500 if (alt_crypto_info->version != crypto_info->version ||
501 alt_crypto_info->cipher_type != crypto_info->cipher_type) {
502 rc = -EINVAL;
503 goto err_crypto_info;
504 }
505 }
506
507 switch (crypto_info->cipher_type) {
508 case TLS_CIPHER_AES_GCM_128:
509 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
510 break;
511 case TLS_CIPHER_AES_GCM_256: {
512 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
513 break;
514 }
515 case TLS_CIPHER_AES_CCM_128:
516 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
517 break;
518 default:
519 rc = -EINVAL;
520 goto err_crypto_info;
521 }
522
523 if (optlen != optsize) {
524 rc = -EINVAL;
525 goto err_crypto_info;
526 }
527
528 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
529 optlen - sizeof(*crypto_info));
530 if (rc) {
531 rc = -EFAULT;
532 goto err_crypto_info;
533 }
534
535 if (tx) {
536 rc = tls_set_device_offload(sk, ctx);
537 conf = TLS_HW;
538 if (rc) {
539 rc = tls_set_sw_offload(sk, ctx, 1);
540 if (rc)
541 goto err_crypto_info;
542 conf = TLS_SW;
543 }
544 } else {
545 rc = tls_set_device_offload_rx(sk, ctx);
546 conf = TLS_HW;
547 if (rc) {
548 rc = tls_set_sw_offload(sk, ctx, 0);
549 if (rc)
550 goto err_crypto_info;
551 conf = TLS_SW;
552 }
553 tls_sw_strparser_arm(sk, ctx);
554 }
555
556 if (tx)
557 ctx->tx_conf = conf;
558 else
559 ctx->rx_conf = conf;
560 update_sk_prot(sk, ctx);
561 if (tx) {
562 ctx->sk_write_space = sk->sk_write_space;
563 sk->sk_write_space = tls_write_space;
564 } else {
565 sk->sk_socket->ops = &tls_sw_proto_ops;
566 }
567 goto out;
568
569err_crypto_info:
570 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
571out:
572 return rc;
573}
574
575static int do_tls_setsockopt(struct sock *sk, int optname,
576 char __user *optval, unsigned int optlen)
577{
578 int rc = 0;
579
580 switch (optname) {
581 case TLS_TX:
582 case TLS_RX:
583 lock_sock(sk);
584 rc = do_tls_setsockopt_conf(sk, optval, optlen,
585 optname == TLS_TX);
586 release_sock(sk);
587 break;
588 default:
589 rc = -ENOPROTOOPT;
590 break;
591 }
592 return rc;
593}
594
595static int tls_setsockopt(struct sock *sk, int level, int optname,
596 char __user *optval, unsigned int optlen)
597{
598 struct tls_context *ctx = tls_get_ctx(sk);
599
600 if (level != SOL_TLS)
601 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
602 optlen);
603
604 return do_tls_setsockopt(sk, optname, optval, optlen);
605}
606
607static struct tls_context *create_ctx(struct sock *sk)
608{
609 struct inet_connection_sock *icsk = inet_csk(sk);
610 struct tls_context *ctx;
611
612 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
613 if (!ctx)
614 return NULL;
615
616 mutex_init(&ctx->tx_lock);
617 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
618 ctx->sk_proto = sk->sk_prot;
619 return ctx;
620}
621
622static void tls_build_proto(struct sock *sk)
623{
624 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
625
626 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
627 if (ip_ver == TLSV6 &&
628 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
629 mutex_lock(&tcpv6_prot_mutex);
630 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
631 build_protos(tls_prots[TLSV6], sk->sk_prot);
632 smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
633 }
634 mutex_unlock(&tcpv6_prot_mutex);
635 }
636
637 if (ip_ver == TLSV4 &&
638 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
639 mutex_lock(&tcpv4_prot_mutex);
640 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
641 build_protos(tls_prots[TLSV4], sk->sk_prot);
642 smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
643 }
644 mutex_unlock(&tcpv4_prot_mutex);
645 }
646}
647
648static void tls_hw_sk_destruct(struct sock *sk)
649{
650 struct tls_context *ctx = tls_get_ctx(sk);
651 struct inet_connection_sock *icsk = inet_csk(sk);
652
653 ctx->sk_destruct(sk);
654 /* Free ctx */
655 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
656 tls_ctx_free(sk, ctx);
657}
658
659static int tls_hw_prot(struct sock *sk)
660{
661 struct tls_context *ctx;
662 struct tls_device *dev;
663 int rc = 0;
664
665 spin_lock_bh(&device_spinlock);
666 list_for_each_entry(dev, &device_list, dev_list) {
667 if (dev->feature && dev->feature(dev)) {
668 ctx = create_ctx(sk);
669 if (!ctx)
670 goto out;
671
672 spin_unlock_bh(&device_spinlock);
673 tls_build_proto(sk);
674 ctx->sk_destruct = sk->sk_destruct;
675 sk->sk_destruct = tls_hw_sk_destruct;
676 ctx->rx_conf = TLS_HW_RECORD;
677 ctx->tx_conf = TLS_HW_RECORD;
678 update_sk_prot(sk, ctx);
679 spin_lock_bh(&device_spinlock);
680 rc = 1;
681 break;
682 }
683 }
684out:
685 spin_unlock_bh(&device_spinlock);
686 return rc;
687}
688
689static void tls_hw_unhash(struct sock *sk)
690{
691 struct tls_context *ctx = tls_get_ctx(sk);
692 struct tls_device *dev;
693
694 spin_lock_bh(&device_spinlock);
695 list_for_each_entry(dev, &device_list, dev_list) {
696 if (dev->unhash) {
697 kref_get(&dev->kref);
698 spin_unlock_bh(&device_spinlock);
699 dev->unhash(dev, sk);
700 kref_put(&dev->kref, dev->release);
701 spin_lock_bh(&device_spinlock);
702 }
703 }
704 spin_unlock_bh(&device_spinlock);
705 ctx->sk_proto->unhash(sk);
706}
707
708static int tls_hw_hash(struct sock *sk)
709{
710 struct tls_context *ctx = tls_get_ctx(sk);
711 struct tls_device *dev;
712 int err;
713
714 err = ctx->sk_proto->hash(sk);
715 spin_lock_bh(&device_spinlock);
716 list_for_each_entry(dev, &device_list, dev_list) {
717 if (dev->hash) {
718 kref_get(&dev->kref);
719 spin_unlock_bh(&device_spinlock);
720 err |= dev->hash(dev, sk);
721 kref_put(&dev->kref, dev->release);
722 spin_lock_bh(&device_spinlock);
723 }
724 }
725 spin_unlock_bh(&device_spinlock);
726
727 if (err)
728 tls_hw_unhash(sk);
729 return err;
730}
731
732static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
733 struct proto *base)
734{
735 prot[TLS_BASE][TLS_BASE] = *base;
736 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
737 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
738 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
739
740 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
741 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
742 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
743
744 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
745 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
746 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
747 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
748
749 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
750 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
751 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
752 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
753
754#ifdef CONFIG_TLS_DEVICE
755 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
756 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
757 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
758
759 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
760 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
761 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
762
763 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
764
765 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
766
767 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
768#endif
769
770 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
771 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash;
772 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash;
773}
774
775static int tls_init(struct sock *sk)
776{
777 struct tls_context *ctx;
778 int rc = 0;
779
780 if (tls_hw_prot(sk))
781 return 0;
782
783 /* The TLS ulp is currently supported only for TCP sockets
784 * in ESTABLISHED state.
785 * Supporting sockets in LISTEN state will require us
786 * to modify the accept implementation to clone rather then
787 * share the ulp context.
788 */
789 if (sk->sk_state != TCP_ESTABLISHED)
790 return -ENOTSUPP;
791
792 tls_build_proto(sk);
793
794 /* allocate tls context */
795 write_lock_bh(&sk->sk_callback_lock);
796 ctx = create_ctx(sk);
797 if (!ctx) {
798 rc = -ENOMEM;
799 goto out;
800 }
801
802 ctx->tx_conf = TLS_BASE;
803 ctx->rx_conf = TLS_BASE;
804 update_sk_prot(sk, ctx);
805out:
806 write_unlock_bh(&sk->sk_callback_lock);
807 return rc;
808}
809
810static void tls_update(struct sock *sk, struct proto *p)
811{
812 struct tls_context *ctx;
813
814 ctx = tls_get_ctx(sk);
815 if (likely(ctx))
816 ctx->sk_proto = p;
817 else
818 sk->sk_prot = p;
819}
820
821static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
822{
823 u16 version, cipher_type;
824 struct tls_context *ctx;
825 struct nlattr *start;
826 int err;
827
828 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
829 if (!start)
830 return -EMSGSIZE;
831
832 rcu_read_lock();
833 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
834 if (!ctx) {
835 err = 0;
836 goto nla_failure;
837 }
838 version = ctx->prot_info.version;
839 if (version) {
840 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
841 if (err)
842 goto nla_failure;
843 }
844 cipher_type = ctx->prot_info.cipher_type;
845 if (cipher_type) {
846 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
847 if (err)
848 goto nla_failure;
849 }
850 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
851 if (err)
852 goto nla_failure;
853
854 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
855 if (err)
856 goto nla_failure;
857
858 rcu_read_unlock();
859 nla_nest_end(skb, start);
860 return 0;
861
862nla_failure:
863 rcu_read_unlock();
864 nla_nest_cancel(skb, start);
865 return err;
866}
867
868static size_t tls_get_info_size(const struct sock *sk)
869{
870 size_t size = 0;
871
872 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
873 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
874 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
875 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
876 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
877 0;
878
879 return size;
880}
881
882void tls_register_device(struct tls_device *device)
883{
884 spin_lock_bh(&device_spinlock);
885 list_add_tail(&device->dev_list, &device_list);
886 spin_unlock_bh(&device_spinlock);
887}
888EXPORT_SYMBOL(tls_register_device);
889
890void tls_unregister_device(struct tls_device *device)
891{
892 spin_lock_bh(&device_spinlock);
893 list_del(&device->dev_list);
894 spin_unlock_bh(&device_spinlock);
895}
896EXPORT_SYMBOL(tls_unregister_device);
897
898static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
899 .name = "tls",
900 .owner = THIS_MODULE,
901 .init = tls_init,
902 .update = tls_update,
903 .get_info = tls_get_info,
904 .get_info_size = tls_get_info_size,
905};
906
907static int __init tls_register(void)
908{
909 tls_sw_proto_ops = inet_stream_ops;
910 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
911 tls_sw_proto_ops.sendpage_locked = tls_sw_sendpage_locked,
912
913 tls_device_init();
914 tcp_register_ulp(&tcp_tls_ulp_ops);
915
916 return 0;
917}
918
919static void __exit tls_unregister(void)
920{
921 tcp_unregister_ulp(&tcp_tls_ulp_ops);
922 tls_device_cleanup();
923}
924
925module_init(tls_register);
926module_exit(tls_unregister);
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/module.h>
35
36#include <net/tcp.h>
37#include <net/inet_common.h>
38#include <linux/highmem.h>
39#include <linux/netdevice.h>
40#include <linux/sched/signal.h>
41#include <linux/inetdevice.h>
42#include <linux/inet_diag.h>
43
44#include <net/snmp.h>
45#include <net/tls.h>
46#include <net/tls_toe.h>
47
48#include "tls.h"
49
50MODULE_AUTHOR("Mellanox Technologies");
51MODULE_DESCRIPTION("Transport Layer Security Support");
52MODULE_LICENSE("Dual BSD/GPL");
53MODULE_ALIAS_TCP_ULP("tls");
54
55enum {
56 TLSV4,
57 TLSV6,
58 TLS_NUM_PROTS,
59};
60
61#define CHECK_CIPHER_DESC(cipher,ci) \
62 static_assert(cipher ## _IV_SIZE <= TLS_MAX_IV_SIZE); \
63 static_assert(cipher ## _SALT_SIZE <= TLS_MAX_SALT_SIZE); \
64 static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE); \
65 static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE); \
66 static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE); \
67 static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE); \
68 static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE); \
69 static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
70
71#define __CIPHER_DESC(ci) \
72 .iv_offset = offsetof(struct ci, iv), \
73 .key_offset = offsetof(struct ci, key), \
74 .salt_offset = offsetof(struct ci, salt), \
75 .rec_seq_offset = offsetof(struct ci, rec_seq), \
76 .crypto_info = sizeof(struct ci)
77
78#define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
79 .nonce = cipher ## _IV_SIZE, \
80 .iv = cipher ## _IV_SIZE, \
81 .key = cipher ## _KEY_SIZE, \
82 .salt = cipher ## _SALT_SIZE, \
83 .tag = cipher ## _TAG_SIZE, \
84 .rec_seq = cipher ## _REC_SEQ_SIZE, \
85 .cipher_name = algname, \
86 .offloadable = _offloadable, \
87 __CIPHER_DESC(ci), \
88}
89
90#define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
91 .nonce = 0, \
92 .iv = cipher ## _IV_SIZE, \
93 .key = cipher ## _KEY_SIZE, \
94 .salt = cipher ## _SALT_SIZE, \
95 .tag = cipher ## _TAG_SIZE, \
96 .rec_seq = cipher ## _REC_SEQ_SIZE, \
97 .cipher_name = algname, \
98 .offloadable = _offloadable, \
99 __CIPHER_DESC(ci), \
100}
101
102const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
103 CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
104 CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
105 CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
106 CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
107 CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
108 CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
109 CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
110 CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
111};
112
113CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
114CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
115CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
116CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
117CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
118CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
119CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
120CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
121
122static const struct proto *saved_tcpv6_prot;
123static DEFINE_MUTEX(tcpv6_prot_mutex);
124static const struct proto *saved_tcpv4_prot;
125static DEFINE_MUTEX(tcpv4_prot_mutex);
126static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
127static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
128static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
129 const struct proto *base);
130
131void update_sk_prot(struct sock *sk, struct tls_context *ctx)
132{
133 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
134
135 WRITE_ONCE(sk->sk_prot,
136 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
137 WRITE_ONCE(sk->sk_socket->ops,
138 &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
139}
140
141int wait_on_pending_writer(struct sock *sk, long *timeo)
142{
143 DEFINE_WAIT_FUNC(wait, woken_wake_function);
144 int ret, rc = 0;
145
146 add_wait_queue(sk_sleep(sk), &wait);
147 while (1) {
148 if (!*timeo) {
149 rc = -EAGAIN;
150 break;
151 }
152
153 if (signal_pending(current)) {
154 rc = sock_intr_errno(*timeo);
155 break;
156 }
157
158 ret = sk_wait_event(sk, timeo,
159 !READ_ONCE(sk->sk_write_pending), &wait);
160 if (ret) {
161 if (ret < 0)
162 rc = ret;
163 break;
164 }
165 }
166 remove_wait_queue(sk_sleep(sk), &wait);
167 return rc;
168}
169
170int tls_push_sg(struct sock *sk,
171 struct tls_context *ctx,
172 struct scatterlist *sg,
173 u16 first_offset,
174 int flags)
175{
176 struct bio_vec bvec;
177 struct msghdr msg = {
178 .msg_flags = MSG_SPLICE_PAGES | flags,
179 };
180 int ret = 0;
181 struct page *p;
182 size_t size;
183 int offset = first_offset;
184
185 size = sg->length - offset;
186 offset += sg->offset;
187
188 ctx->splicing_pages = true;
189 while (1) {
190 /* is sending application-limited? */
191 tcp_rate_check_app_limited(sk);
192 p = sg_page(sg);
193retry:
194 bvec_set_page(&bvec, p, size, offset);
195 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
196
197 ret = tcp_sendmsg_locked(sk, &msg, size);
198
199 if (ret != size) {
200 if (ret > 0) {
201 offset += ret;
202 size -= ret;
203 goto retry;
204 }
205
206 offset -= sg->offset;
207 ctx->partially_sent_offset = offset;
208 ctx->partially_sent_record = (void *)sg;
209 ctx->splicing_pages = false;
210 return ret;
211 }
212
213 put_page(p);
214 sk_mem_uncharge(sk, sg->length);
215 sg = sg_next(sg);
216 if (!sg)
217 break;
218
219 offset = sg->offset;
220 size = sg->length;
221 }
222
223 ctx->splicing_pages = false;
224
225 return 0;
226}
227
228static int tls_handle_open_record(struct sock *sk, int flags)
229{
230 struct tls_context *ctx = tls_get_ctx(sk);
231
232 if (tls_is_pending_open_record(ctx))
233 return ctx->push_pending_record(sk, flags);
234
235 return 0;
236}
237
238int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
239 unsigned char *record_type)
240{
241 struct cmsghdr *cmsg;
242 int rc = -EINVAL;
243
244 for_each_cmsghdr(cmsg, msg) {
245 if (!CMSG_OK(msg, cmsg))
246 return -EINVAL;
247 if (cmsg->cmsg_level != SOL_TLS)
248 continue;
249
250 switch (cmsg->cmsg_type) {
251 case TLS_SET_RECORD_TYPE:
252 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
253 return -EINVAL;
254
255 if (msg->msg_flags & MSG_MORE)
256 return -EINVAL;
257
258 rc = tls_handle_open_record(sk, msg->msg_flags);
259 if (rc)
260 return rc;
261
262 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
263 rc = 0;
264 break;
265 default:
266 return -EINVAL;
267 }
268 }
269
270 return rc;
271}
272
273int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
274 int flags)
275{
276 struct scatterlist *sg;
277 u16 offset;
278
279 sg = ctx->partially_sent_record;
280 offset = ctx->partially_sent_offset;
281
282 ctx->partially_sent_record = NULL;
283 return tls_push_sg(sk, ctx, sg, offset, flags);
284}
285
286void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
287{
288 struct scatterlist *sg;
289
290 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
291 put_page(sg_page(sg));
292 sk_mem_uncharge(sk, sg->length);
293 }
294 ctx->partially_sent_record = NULL;
295}
296
297static void tls_write_space(struct sock *sk)
298{
299 struct tls_context *ctx = tls_get_ctx(sk);
300
301 /* If splicing_pages call lower protocol write space handler
302 * to ensure we wake up any waiting operations there. For example
303 * if splicing pages where to call sk_wait_event.
304 */
305 if (ctx->splicing_pages) {
306 ctx->sk_write_space(sk);
307 return;
308 }
309
310#ifdef CONFIG_TLS_DEVICE
311 if (ctx->tx_conf == TLS_HW)
312 tls_device_write_space(sk, ctx);
313 else
314#endif
315 tls_sw_write_space(sk, ctx);
316
317 ctx->sk_write_space(sk);
318}
319
320/**
321 * tls_ctx_free() - free TLS ULP context
322 * @sk: socket to with @ctx is attached
323 * @ctx: TLS context structure
324 *
325 * Free TLS context. If @sk is %NULL caller guarantees that the socket
326 * to which @ctx was attached has no outstanding references.
327 */
328void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
329{
330 if (!ctx)
331 return;
332
333 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
334 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
335 mutex_destroy(&ctx->tx_lock);
336
337 if (sk)
338 kfree_rcu(ctx, rcu);
339 else
340 kfree(ctx);
341}
342
343static void tls_sk_proto_cleanup(struct sock *sk,
344 struct tls_context *ctx, long timeo)
345{
346 if (unlikely(sk->sk_write_pending) &&
347 !wait_on_pending_writer(sk, &timeo))
348 tls_handle_open_record(sk, 0);
349
350 /* We need these for tls_sw_fallback handling of other packets */
351 if (ctx->tx_conf == TLS_SW) {
352 tls_sw_release_resources_tx(sk);
353 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
354 } else if (ctx->tx_conf == TLS_HW) {
355 tls_device_free_resources_tx(sk);
356 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
357 }
358
359 if (ctx->rx_conf == TLS_SW) {
360 tls_sw_release_resources_rx(sk);
361 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
362 } else if (ctx->rx_conf == TLS_HW) {
363 tls_device_offload_cleanup_rx(sk);
364 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
365 }
366}
367
368static void tls_sk_proto_close(struct sock *sk, long timeout)
369{
370 struct inet_connection_sock *icsk = inet_csk(sk);
371 struct tls_context *ctx = tls_get_ctx(sk);
372 long timeo = sock_sndtimeo(sk, 0);
373 bool free_ctx;
374
375 if (ctx->tx_conf == TLS_SW)
376 tls_sw_cancel_work_tx(ctx);
377
378 lock_sock(sk);
379 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
380
381 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
382 tls_sk_proto_cleanup(sk, ctx, timeo);
383
384 write_lock_bh(&sk->sk_callback_lock);
385 if (free_ctx)
386 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
387 WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
388 if (sk->sk_write_space == tls_write_space)
389 sk->sk_write_space = ctx->sk_write_space;
390 write_unlock_bh(&sk->sk_callback_lock);
391 release_sock(sk);
392 if (ctx->tx_conf == TLS_SW)
393 tls_sw_free_ctx_tx(ctx);
394 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
395 tls_sw_strparser_done(ctx);
396 if (ctx->rx_conf == TLS_SW)
397 tls_sw_free_ctx_rx(ctx);
398 ctx->sk_proto->close(sk, timeout);
399
400 if (free_ctx)
401 tls_ctx_free(sk, ctx);
402}
403
404static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
405 struct poll_table_struct *wait)
406{
407 struct tls_sw_context_rx *ctx;
408 struct tls_context *tls_ctx;
409 struct sock *sk = sock->sk;
410 struct sk_psock *psock;
411 __poll_t mask = 0;
412 u8 shutdown;
413 int state;
414
415 mask = tcp_poll(file, sock, wait);
416
417 state = inet_sk_state_load(sk);
418 shutdown = READ_ONCE(sk->sk_shutdown);
419 if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
420 return mask;
421
422 tls_ctx = tls_get_ctx(sk);
423 ctx = tls_sw_ctx_rx(tls_ctx);
424 psock = sk_psock_get(sk);
425
426 if (skb_queue_empty_lockless(&ctx->rx_list) &&
427 !tls_strp_msg_ready(ctx) &&
428 sk_psock_queue_empty(psock))
429 mask &= ~(EPOLLIN | EPOLLRDNORM);
430
431 if (psock)
432 sk_psock_put(sk, psock);
433
434 return mask;
435}
436
437static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
438 int __user *optlen, int tx)
439{
440 int rc = 0;
441 const struct tls_cipher_desc *cipher_desc;
442 struct tls_context *ctx = tls_get_ctx(sk);
443 struct tls_crypto_info *crypto_info;
444 struct cipher_context *cctx;
445 int len;
446
447 if (get_user(len, optlen))
448 return -EFAULT;
449
450 if (!optval || (len < sizeof(*crypto_info))) {
451 rc = -EINVAL;
452 goto out;
453 }
454
455 if (!ctx) {
456 rc = -EBUSY;
457 goto out;
458 }
459
460 /* get user crypto info */
461 if (tx) {
462 crypto_info = &ctx->crypto_send.info;
463 cctx = &ctx->tx;
464 } else {
465 crypto_info = &ctx->crypto_recv.info;
466 cctx = &ctx->rx;
467 }
468
469 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
470 rc = -EBUSY;
471 goto out;
472 }
473
474 if (len == sizeof(*crypto_info)) {
475 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
476 rc = -EFAULT;
477 goto out;
478 }
479
480 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
481 if (!cipher_desc || len != cipher_desc->crypto_info) {
482 rc = -EINVAL;
483 goto out;
484 }
485
486 memcpy(crypto_info_iv(crypto_info, cipher_desc),
487 cctx->iv + cipher_desc->salt, cipher_desc->iv);
488 memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
489 cctx->rec_seq, cipher_desc->rec_seq);
490
491 if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
492 rc = -EFAULT;
493
494out:
495 return rc;
496}
497
498static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
499 int __user *optlen)
500{
501 struct tls_context *ctx = tls_get_ctx(sk);
502 unsigned int value;
503 int len;
504
505 if (get_user(len, optlen))
506 return -EFAULT;
507
508 if (len != sizeof(value))
509 return -EINVAL;
510
511 value = ctx->zerocopy_sendfile;
512 if (copy_to_user(optval, &value, sizeof(value)))
513 return -EFAULT;
514
515 return 0;
516}
517
518static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
519 int __user *optlen)
520{
521 struct tls_context *ctx = tls_get_ctx(sk);
522 int value, len;
523
524 if (ctx->prot_info.version != TLS_1_3_VERSION)
525 return -EINVAL;
526
527 if (get_user(len, optlen))
528 return -EFAULT;
529 if (len < sizeof(value))
530 return -EINVAL;
531
532 value = -EINVAL;
533 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
534 value = ctx->rx_no_pad;
535 if (value < 0)
536 return value;
537
538 if (put_user(sizeof(value), optlen))
539 return -EFAULT;
540 if (copy_to_user(optval, &value, sizeof(value)))
541 return -EFAULT;
542
543 return 0;
544}
545
546static int do_tls_getsockopt(struct sock *sk, int optname,
547 char __user *optval, int __user *optlen)
548{
549 int rc = 0;
550
551 lock_sock(sk);
552
553 switch (optname) {
554 case TLS_TX:
555 case TLS_RX:
556 rc = do_tls_getsockopt_conf(sk, optval, optlen,
557 optname == TLS_TX);
558 break;
559 case TLS_TX_ZEROCOPY_RO:
560 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
561 break;
562 case TLS_RX_EXPECT_NO_PAD:
563 rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
564 break;
565 default:
566 rc = -ENOPROTOOPT;
567 break;
568 }
569
570 release_sock(sk);
571
572 return rc;
573}
574
575static int tls_getsockopt(struct sock *sk, int level, int optname,
576 char __user *optval, int __user *optlen)
577{
578 struct tls_context *ctx = tls_get_ctx(sk);
579
580 if (level != SOL_TLS)
581 return ctx->sk_proto->getsockopt(sk, level,
582 optname, optval, optlen);
583
584 return do_tls_getsockopt(sk, optname, optval, optlen);
585}
586
587static int validate_crypto_info(const struct tls_crypto_info *crypto_info,
588 const struct tls_crypto_info *alt_crypto_info)
589{
590 if (crypto_info->version != TLS_1_2_VERSION &&
591 crypto_info->version != TLS_1_3_VERSION)
592 return -EINVAL;
593
594 switch (crypto_info->cipher_type) {
595 case TLS_CIPHER_ARIA_GCM_128:
596 case TLS_CIPHER_ARIA_GCM_256:
597 if (crypto_info->version != TLS_1_2_VERSION)
598 return -EINVAL;
599 break;
600 }
601
602 /* Ensure that TLS version and ciphers are same in both directions */
603 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
604 if (alt_crypto_info->version != crypto_info->version ||
605 alt_crypto_info->cipher_type != crypto_info->cipher_type)
606 return -EINVAL;
607 }
608
609 return 0;
610}
611
612static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
613 unsigned int optlen, int tx)
614{
615 struct tls_crypto_info *crypto_info;
616 struct tls_crypto_info *alt_crypto_info;
617 struct tls_context *ctx = tls_get_ctx(sk);
618 const struct tls_cipher_desc *cipher_desc;
619 int rc = 0;
620 int conf;
621
622 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
623 return -EINVAL;
624
625 if (tx) {
626 crypto_info = &ctx->crypto_send.info;
627 alt_crypto_info = &ctx->crypto_recv.info;
628 } else {
629 crypto_info = &ctx->crypto_recv.info;
630 alt_crypto_info = &ctx->crypto_send.info;
631 }
632
633 /* Currently we don't support set crypto info more than one time */
634 if (TLS_CRYPTO_INFO_READY(crypto_info))
635 return -EBUSY;
636
637 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
638 if (rc) {
639 rc = -EFAULT;
640 goto err_crypto_info;
641 }
642
643 rc = validate_crypto_info(crypto_info, alt_crypto_info);
644 if (rc)
645 goto err_crypto_info;
646
647 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
648 if (!cipher_desc) {
649 rc = -EINVAL;
650 goto err_crypto_info;
651 }
652
653 if (optlen != cipher_desc->crypto_info) {
654 rc = -EINVAL;
655 goto err_crypto_info;
656 }
657
658 rc = copy_from_sockptr_offset(crypto_info + 1, optval,
659 sizeof(*crypto_info),
660 optlen - sizeof(*crypto_info));
661 if (rc) {
662 rc = -EFAULT;
663 goto err_crypto_info;
664 }
665
666 if (tx) {
667 rc = tls_set_device_offload(sk);
668 conf = TLS_HW;
669 if (!rc) {
670 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
671 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
672 } else {
673 rc = tls_set_sw_offload(sk, 1);
674 if (rc)
675 goto err_crypto_info;
676 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
677 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
678 conf = TLS_SW;
679 }
680 } else {
681 rc = tls_set_device_offload_rx(sk, ctx);
682 conf = TLS_HW;
683 if (!rc) {
684 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
685 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
686 } else {
687 rc = tls_set_sw_offload(sk, 0);
688 if (rc)
689 goto err_crypto_info;
690 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
691 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
692 conf = TLS_SW;
693 }
694 tls_sw_strparser_arm(sk, ctx);
695 }
696
697 if (tx)
698 ctx->tx_conf = conf;
699 else
700 ctx->rx_conf = conf;
701 update_sk_prot(sk, ctx);
702 if (tx) {
703 ctx->sk_write_space = sk->sk_write_space;
704 sk->sk_write_space = tls_write_space;
705 } else {
706 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
707
708 tls_strp_check_rcv(&rx_ctx->strp);
709 }
710 return 0;
711
712err_crypto_info:
713 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
714 return rc;
715}
716
717static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
718 unsigned int optlen)
719{
720 struct tls_context *ctx = tls_get_ctx(sk);
721 unsigned int value;
722
723 if (sockptr_is_null(optval) || optlen != sizeof(value))
724 return -EINVAL;
725
726 if (copy_from_sockptr(&value, optval, sizeof(value)))
727 return -EFAULT;
728
729 if (value > 1)
730 return -EINVAL;
731
732 ctx->zerocopy_sendfile = value;
733
734 return 0;
735}
736
737static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
738 unsigned int optlen)
739{
740 struct tls_context *ctx = tls_get_ctx(sk);
741 u32 val;
742 int rc;
743
744 if (ctx->prot_info.version != TLS_1_3_VERSION ||
745 sockptr_is_null(optval) || optlen < sizeof(val))
746 return -EINVAL;
747
748 rc = copy_from_sockptr(&val, optval, sizeof(val));
749 if (rc)
750 return -EFAULT;
751 if (val > 1)
752 return -EINVAL;
753 rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
754 if (rc < 1)
755 return rc == 0 ? -EINVAL : rc;
756
757 lock_sock(sk);
758 rc = -EINVAL;
759 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
760 ctx->rx_no_pad = val;
761 tls_update_rx_zc_capable(ctx);
762 rc = 0;
763 }
764 release_sock(sk);
765
766 return rc;
767}
768
769static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
770 unsigned int optlen)
771{
772 int rc = 0;
773
774 switch (optname) {
775 case TLS_TX:
776 case TLS_RX:
777 lock_sock(sk);
778 rc = do_tls_setsockopt_conf(sk, optval, optlen,
779 optname == TLS_TX);
780 release_sock(sk);
781 break;
782 case TLS_TX_ZEROCOPY_RO:
783 lock_sock(sk);
784 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
785 release_sock(sk);
786 break;
787 case TLS_RX_EXPECT_NO_PAD:
788 rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
789 break;
790 default:
791 rc = -ENOPROTOOPT;
792 break;
793 }
794 return rc;
795}
796
797static int tls_setsockopt(struct sock *sk, int level, int optname,
798 sockptr_t optval, unsigned int optlen)
799{
800 struct tls_context *ctx = tls_get_ctx(sk);
801
802 if (level != SOL_TLS)
803 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
804 optlen);
805
806 return do_tls_setsockopt(sk, optname, optval, optlen);
807}
808
809struct tls_context *tls_ctx_create(struct sock *sk)
810{
811 struct inet_connection_sock *icsk = inet_csk(sk);
812 struct tls_context *ctx;
813
814 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
815 if (!ctx)
816 return NULL;
817
818 mutex_init(&ctx->tx_lock);
819 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
820 ctx->sk_proto = READ_ONCE(sk->sk_prot);
821 ctx->sk = sk;
822 return ctx;
823}
824
825static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
826 const struct proto_ops *base)
827{
828 ops[TLS_BASE][TLS_BASE] = *base;
829
830 ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
831 ops[TLS_SW ][TLS_BASE].splice_eof = tls_sw_splice_eof;
832
833 ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE];
834 ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read;
835 ops[TLS_BASE][TLS_SW ].poll = tls_sk_poll;
836 ops[TLS_BASE][TLS_SW ].read_sock = tls_sw_read_sock;
837
838 ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE];
839 ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read;
840 ops[TLS_SW ][TLS_SW ].poll = tls_sk_poll;
841 ops[TLS_SW ][TLS_SW ].read_sock = tls_sw_read_sock;
842
843#ifdef CONFIG_TLS_DEVICE
844 ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
845
846 ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ];
847
848 ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ];
849
850 ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ];
851
852 ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ];
853#endif
854#ifdef CONFIG_TLS_TOE
855 ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
856#endif
857}
858
859static void tls_build_proto(struct sock *sk)
860{
861 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
862 struct proto *prot = READ_ONCE(sk->sk_prot);
863
864 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
865 if (ip_ver == TLSV6 &&
866 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
867 mutex_lock(&tcpv6_prot_mutex);
868 if (likely(prot != saved_tcpv6_prot)) {
869 build_protos(tls_prots[TLSV6], prot);
870 build_proto_ops(tls_proto_ops[TLSV6],
871 sk->sk_socket->ops);
872 smp_store_release(&saved_tcpv6_prot, prot);
873 }
874 mutex_unlock(&tcpv6_prot_mutex);
875 }
876
877 if (ip_ver == TLSV4 &&
878 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
879 mutex_lock(&tcpv4_prot_mutex);
880 if (likely(prot != saved_tcpv4_prot)) {
881 build_protos(tls_prots[TLSV4], prot);
882 build_proto_ops(tls_proto_ops[TLSV4],
883 sk->sk_socket->ops);
884 smp_store_release(&saved_tcpv4_prot, prot);
885 }
886 mutex_unlock(&tcpv4_prot_mutex);
887 }
888}
889
890static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
891 const struct proto *base)
892{
893 prot[TLS_BASE][TLS_BASE] = *base;
894 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
895 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
896 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
897
898 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
899 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
900 prot[TLS_SW][TLS_BASE].splice_eof = tls_sw_splice_eof;
901
902 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
903 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
904 prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
905 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
906
907 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
908 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
909 prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
910 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
911
912#ifdef CONFIG_TLS_DEVICE
913 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
914 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
915 prot[TLS_HW][TLS_BASE].splice_eof = tls_device_splice_eof;
916
917 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
918 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
919 prot[TLS_HW][TLS_SW].splice_eof = tls_device_splice_eof;
920
921 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
922
923 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
924
925 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
926#endif
927#ifdef CONFIG_TLS_TOE
928 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
929 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash;
930 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash;
931#endif
932}
933
934static int tls_init(struct sock *sk)
935{
936 struct tls_context *ctx;
937 int rc = 0;
938
939 tls_build_proto(sk);
940
941#ifdef CONFIG_TLS_TOE
942 if (tls_toe_bypass(sk))
943 return 0;
944#endif
945
946 /* The TLS ulp is currently supported only for TCP sockets
947 * in ESTABLISHED state.
948 * Supporting sockets in LISTEN state will require us
949 * to modify the accept implementation to clone rather then
950 * share the ulp context.
951 */
952 if (sk->sk_state != TCP_ESTABLISHED)
953 return -ENOTCONN;
954
955 /* allocate tls context */
956 write_lock_bh(&sk->sk_callback_lock);
957 ctx = tls_ctx_create(sk);
958 if (!ctx) {
959 rc = -ENOMEM;
960 goto out;
961 }
962
963 ctx->tx_conf = TLS_BASE;
964 ctx->rx_conf = TLS_BASE;
965 update_sk_prot(sk, ctx);
966out:
967 write_unlock_bh(&sk->sk_callback_lock);
968 return rc;
969}
970
971static void tls_update(struct sock *sk, struct proto *p,
972 void (*write_space)(struct sock *sk))
973{
974 struct tls_context *ctx;
975
976 WARN_ON_ONCE(sk->sk_prot == p);
977
978 ctx = tls_get_ctx(sk);
979 if (likely(ctx)) {
980 ctx->sk_write_space = write_space;
981 ctx->sk_proto = p;
982 } else {
983 /* Pairs with lockless read in sk_clone_lock(). */
984 WRITE_ONCE(sk->sk_prot, p);
985 sk->sk_write_space = write_space;
986 }
987}
988
989static u16 tls_user_config(struct tls_context *ctx, bool tx)
990{
991 u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
992
993 switch (config) {
994 case TLS_BASE:
995 return TLS_CONF_BASE;
996 case TLS_SW:
997 return TLS_CONF_SW;
998 case TLS_HW:
999 return TLS_CONF_HW;
1000 case TLS_HW_RECORD:
1001 return TLS_CONF_HW_RECORD;
1002 }
1003 return 0;
1004}
1005
1006static int tls_get_info(struct sock *sk, struct sk_buff *skb)
1007{
1008 u16 version, cipher_type;
1009 struct tls_context *ctx;
1010 struct nlattr *start;
1011 int err;
1012
1013 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1014 if (!start)
1015 return -EMSGSIZE;
1016
1017 rcu_read_lock();
1018 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1019 if (!ctx) {
1020 err = 0;
1021 goto nla_failure;
1022 }
1023 version = ctx->prot_info.version;
1024 if (version) {
1025 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1026 if (err)
1027 goto nla_failure;
1028 }
1029 cipher_type = ctx->prot_info.cipher_type;
1030 if (cipher_type) {
1031 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1032 if (err)
1033 goto nla_failure;
1034 }
1035 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1036 if (err)
1037 goto nla_failure;
1038
1039 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1040 if (err)
1041 goto nla_failure;
1042
1043 if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1044 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1045 if (err)
1046 goto nla_failure;
1047 }
1048 if (ctx->rx_no_pad) {
1049 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1050 if (err)
1051 goto nla_failure;
1052 }
1053
1054 rcu_read_unlock();
1055 nla_nest_end(skb, start);
1056 return 0;
1057
1058nla_failure:
1059 rcu_read_unlock();
1060 nla_nest_cancel(skb, start);
1061 return err;
1062}
1063
1064static size_t tls_get_info_size(const struct sock *sk)
1065{
1066 size_t size = 0;
1067
1068 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
1069 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
1070 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
1071 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
1072 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
1073 nla_total_size(0) + /* TLS_INFO_ZC_RO_TX */
1074 nla_total_size(0) + /* TLS_INFO_RX_NO_PAD */
1075 0;
1076
1077 return size;
1078}
1079
1080static int __net_init tls_init_net(struct net *net)
1081{
1082 int err;
1083
1084 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1085 if (!net->mib.tls_statistics)
1086 return -ENOMEM;
1087
1088 err = tls_proc_init(net);
1089 if (err)
1090 goto err_free_stats;
1091
1092 return 0;
1093err_free_stats:
1094 free_percpu(net->mib.tls_statistics);
1095 return err;
1096}
1097
1098static void __net_exit tls_exit_net(struct net *net)
1099{
1100 tls_proc_fini(net);
1101 free_percpu(net->mib.tls_statistics);
1102}
1103
1104static struct pernet_operations tls_proc_ops = {
1105 .init = tls_init_net,
1106 .exit = tls_exit_net,
1107};
1108
1109static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1110 .name = "tls",
1111 .owner = THIS_MODULE,
1112 .init = tls_init,
1113 .update = tls_update,
1114 .get_info = tls_get_info,
1115 .get_info_size = tls_get_info_size,
1116};
1117
1118static int __init tls_register(void)
1119{
1120 int err;
1121
1122 err = register_pernet_subsys(&tls_proc_ops);
1123 if (err)
1124 return err;
1125
1126 err = tls_strp_dev_init();
1127 if (err)
1128 goto err_pernet;
1129
1130 err = tls_device_init();
1131 if (err)
1132 goto err_strp;
1133
1134 tcp_register_ulp(&tcp_tls_ulp_ops);
1135
1136 return 0;
1137err_strp:
1138 tls_strp_dev_exit();
1139err_pernet:
1140 unregister_pernet_subsys(&tls_proc_ops);
1141 return err;
1142}
1143
1144static void __exit tls_unregister(void)
1145{
1146 tcp_unregister_ulp(&tcp_tls_ulp_ops);
1147 tls_strp_dev_exit();
1148 tls_device_cleanup();
1149 unregister_pernet_subsys(&tls_proc_ops);
1150}
1151
1152module_init(tls_register);
1153module_exit(tls_unregister);