Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/lockdep.c
   4 *
   5 * Runtime locking correctness validator
   6 *
   7 * Started by Ingo Molnar:
   8 *
   9 *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  10 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  11 *
  12 * this code maps all the lock dependencies as they occur in a live kernel
  13 * and will warn about the following classes of locking bugs:
  14 *
  15 * - lock inversion scenarios
  16 * - circular lock dependencies
  17 * - hardirq/softirq safe/unsafe locking bugs
  18 *
  19 * Bugs are reported even if the current locking scenario does not cause
  20 * any deadlock at this point.
  21 *
  22 * I.e. if anytime in the past two locks were taken in a different order,
  23 * even if it happened for another task, even if those were different
  24 * locks (but of the same class as this lock), this code will detect it.
  25 *
  26 * Thanks to Arjan van de Ven for coming up with the initial idea of
  27 * mapping lock dependencies runtime.
  28 */
  29#define DISABLE_BRANCH_PROFILING
  30#include <linux/mutex.h>
  31#include <linux/sched.h>
  32#include <linux/sched/clock.h>
  33#include <linux/sched/task.h>
  34#include <linux/sched/mm.h>
  35#include <linux/delay.h>
  36#include <linux/module.h>
  37#include <linux/proc_fs.h>
  38#include <linux/seq_file.h>
  39#include <linux/spinlock.h>
  40#include <linux/kallsyms.h>
  41#include <linux/interrupt.h>
  42#include <linux/stacktrace.h>
  43#include <linux/debug_locks.h>
  44#include <linux/irqflags.h>
  45#include <linux/utsname.h>
  46#include <linux/hash.h>
  47#include <linux/ftrace.h>
  48#include <linux/stringify.h>
  49#include <linux/bitmap.h>
  50#include <linux/bitops.h>
  51#include <linux/gfp.h>
  52#include <linux/random.h>
  53#include <linux/jhash.h>
  54#include <linux/nmi.h>
  55#include <linux/rcupdate.h>
  56#include <linux/kprobes.h>
 
 
  57
  58#include <asm/sections.h>
  59
  60#include "lockdep_internals.h"
  61
  62#define CREATE_TRACE_POINTS
  63#include <trace/events/lock.h>
  64
  65#ifdef CONFIG_PROVE_LOCKING
  66int prove_locking = 1;
  67module_param(prove_locking, int, 0644);
  68#else
  69#define prove_locking 0
  70#endif
  71
  72#ifdef CONFIG_LOCK_STAT
  73int lock_stat = 1;
  74module_param(lock_stat, int, 0644);
  75#else
  76#define lock_stat 0
  77#endif
  78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79/*
  80 * lockdep_lock: protects the lockdep graph, the hashes and the
  81 *               class/list/hash allocators.
  82 *
  83 * This is one of the rare exceptions where it's justified
  84 * to use a raw spinlock - we really dont want the spinlock
  85 * code to recurse back into the lockdep code...
  86 */
  87static arch_spinlock_t lockdep_lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  88static struct task_struct *lockdep_selftest_task_struct;
  89
 
  90static int graph_lock(void)
  91{
  92	arch_spin_lock(&lockdep_lock);
  93	/*
  94	 * Make sure that if another CPU detected a bug while
  95	 * walking the graph we dont change it (while the other
  96	 * CPU is busy printing out stuff with the graph lock
  97	 * dropped already)
  98	 */
  99	if (!debug_locks) {
 100		arch_spin_unlock(&lockdep_lock);
 101		return 0;
 102	}
 103	/* prevent any recursions within lockdep from causing deadlocks */
 104	current->lockdep_recursion++;
 105	return 1;
 106}
 107
 108static inline int graph_unlock(void)
 109{
 110	if (debug_locks && !arch_spin_is_locked(&lockdep_lock)) {
 111		/*
 112		 * The lockdep graph lock isn't locked while we expect it to
 113		 * be, we're confused now, bye!
 114		 */
 115		return DEBUG_LOCKS_WARN_ON(1);
 116	}
 117
 118	current->lockdep_recursion--;
 119	arch_spin_unlock(&lockdep_lock);
 120	return 0;
 121}
 122
 123/*
 124 * Turn lock debugging off and return with 0 if it was off already,
 125 * and also release the graph lock:
 126 */
 127static inline int debug_locks_off_graph_unlock(void)
 128{
 129	int ret = debug_locks_off();
 130
 131	arch_spin_unlock(&lockdep_lock);
 132
 133	return ret;
 134}
 135
 136unsigned long nr_list_entries;
 137static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
 138static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
 139
 140/*
 141 * All data structures here are protected by the global debug_lock.
 142 *
 143 * nr_lock_classes is the number of elements of lock_classes[] that is
 144 * in use.
 145 */
 146#define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
 147#define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
 148static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
 149unsigned long nr_lock_classes;
 150#ifndef CONFIG_DEBUG_LOCKDEP
 151static
 152#endif
 153struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
 154static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
 155
 156static inline struct lock_class *hlock_class(struct held_lock *hlock)
 157{
 158	unsigned int class_idx = hlock->class_idx;
 159
 160	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
 161	barrier();
 162
 163	if (!test_bit(class_idx, lock_classes_in_use)) {
 164		/*
 165		 * Someone passed in garbage, we give up.
 166		 */
 167		DEBUG_LOCKS_WARN_ON(1);
 168		return NULL;
 169	}
 170
 171	/*
 172	 * At this point, if the passed hlock->class_idx is still garbage,
 173	 * we just have to live with it
 174	 */
 175	return lock_classes + class_idx;
 176}
 177
 178#ifdef CONFIG_LOCK_STAT
 179static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
 180
 181static inline u64 lockstat_clock(void)
 182{
 183	return local_clock();
 184}
 185
 186static int lock_point(unsigned long points[], unsigned long ip)
 187{
 188	int i;
 189
 190	for (i = 0; i < LOCKSTAT_POINTS; i++) {
 191		if (points[i] == 0) {
 192			points[i] = ip;
 193			break;
 194		}
 195		if (points[i] == ip)
 196			break;
 197	}
 198
 199	return i;
 200}
 201
 202static void lock_time_inc(struct lock_time *lt, u64 time)
 203{
 204	if (time > lt->max)
 205		lt->max = time;
 206
 207	if (time < lt->min || !lt->nr)
 208		lt->min = time;
 209
 210	lt->total += time;
 211	lt->nr++;
 212}
 213
 214static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
 215{
 216	if (!src->nr)
 217		return;
 218
 219	if (src->max > dst->max)
 220		dst->max = src->max;
 221
 222	if (src->min < dst->min || !dst->nr)
 223		dst->min = src->min;
 224
 225	dst->total += src->total;
 226	dst->nr += src->nr;
 227}
 228
 229struct lock_class_stats lock_stats(struct lock_class *class)
 230{
 231	struct lock_class_stats stats;
 232	int cpu, i;
 233
 234	memset(&stats, 0, sizeof(struct lock_class_stats));
 235	for_each_possible_cpu(cpu) {
 236		struct lock_class_stats *pcs =
 237			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
 238
 239		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
 240			stats.contention_point[i] += pcs->contention_point[i];
 241
 242		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
 243			stats.contending_point[i] += pcs->contending_point[i];
 244
 245		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
 246		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
 247
 248		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
 249		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
 250
 251		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
 252			stats.bounces[i] += pcs->bounces[i];
 253	}
 254
 255	return stats;
 256}
 257
 258void clear_lock_stats(struct lock_class *class)
 259{
 260	int cpu;
 261
 262	for_each_possible_cpu(cpu) {
 263		struct lock_class_stats *cpu_stats =
 264			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
 265
 266		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
 267	}
 268	memset(class->contention_point, 0, sizeof(class->contention_point));
 269	memset(class->contending_point, 0, sizeof(class->contending_point));
 270}
 271
 272static struct lock_class_stats *get_lock_stats(struct lock_class *class)
 273{
 274	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
 275}
 276
 277static void lock_release_holdtime(struct held_lock *hlock)
 278{
 279	struct lock_class_stats *stats;
 280	u64 holdtime;
 281
 282	if (!lock_stat)
 283		return;
 284
 285	holdtime = lockstat_clock() - hlock->holdtime_stamp;
 286
 287	stats = get_lock_stats(hlock_class(hlock));
 288	if (hlock->read)
 289		lock_time_inc(&stats->read_holdtime, holdtime);
 290	else
 291		lock_time_inc(&stats->write_holdtime, holdtime);
 292}
 293#else
 294static inline void lock_release_holdtime(struct held_lock *hlock)
 295{
 296}
 297#endif
 298
 299/*
 300 * We keep a global list of all lock classes. The list is only accessed with
 301 * the lockdep spinlock lock held. free_lock_classes is a list with free
 302 * elements. These elements are linked together by the lock_entry member in
 303 * struct lock_class.
 304 */
 305LIST_HEAD(all_lock_classes);
 306static LIST_HEAD(free_lock_classes);
 307
 308/**
 309 * struct pending_free - information about data structures about to be freed
 310 * @zapped: Head of a list with struct lock_class elements.
 311 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
 312 *	are about to be freed.
 313 */
 314struct pending_free {
 315	struct list_head zapped;
 316	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
 317};
 318
 319/**
 320 * struct delayed_free - data structures used for delayed freeing
 321 *
 322 * A data structure for delayed freeing of data structures that may be
 323 * accessed by RCU readers at the time these were freed.
 324 *
 325 * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
 326 * @index:     Index of @pf to which freed data structures are added.
 327 * @scheduled: Whether or not an RCU callback has been scheduled.
 328 * @pf:        Array with information about data structures about to be freed.
 329 */
 330static struct delayed_free {
 331	struct rcu_head		rcu_head;
 332	int			index;
 333	int			scheduled;
 334	struct pending_free	pf[2];
 335} delayed_free;
 336
 337/*
 338 * The lockdep classes are in a hash-table as well, for fast lookup:
 339 */
 340#define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
 341#define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
 342#define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
 343#define classhashentry(key)	(classhash_table + __classhashfn((key)))
 344
 345static struct hlist_head classhash_table[CLASSHASH_SIZE];
 346
 347/*
 348 * We put the lock dependency chains into a hash-table as well, to cache
 349 * their existence:
 350 */
 351#define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
 352#define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
 353#define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
 354#define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
 355
 356static struct hlist_head chainhash_table[CHAINHASH_SIZE];
 357
 358/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 359 * The hash key of the lock dependency chains is a hash itself too:
 360 * it's a hash of all locks taken up to that lock, including that lock.
 361 * It's a 64-bit hash, because it's important for the keys to be
 362 * unique.
 363 */
 364static inline u64 iterate_chain_key(u64 key, u32 idx)
 365{
 366	u32 k0 = key, k1 = key >> 32;
 367
 368	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
 369
 370	return k0 | (u64)k1 << 32;
 371}
 372
 373void lockdep_init_task(struct task_struct *task)
 374{
 375	task->lockdep_depth = 0; /* no locks held yet */
 376	task->curr_chain_key = INITIAL_CHAIN_KEY;
 377	task->lockdep_recursion = 0;
 378}
 379
 380void lockdep_off(void)
 381{
 382	current->lockdep_recursion++;
 383}
 384EXPORT_SYMBOL(lockdep_off);
 385
 386void lockdep_on(void)
 387{
 388	current->lockdep_recursion--;
 
 389}
 390EXPORT_SYMBOL(lockdep_on);
 391
 392void lockdep_set_selftest_task(struct task_struct *task)
 393{
 394	lockdep_selftest_task_struct = task;
 395}
 396
 397/*
 398 * Debugging switches:
 399 */
 400
 401#define VERBOSE			0
 402#define VERY_VERBOSE		0
 403
 404#if VERBOSE
 405# define HARDIRQ_VERBOSE	1
 406# define SOFTIRQ_VERBOSE	1
 407#else
 408# define HARDIRQ_VERBOSE	0
 409# define SOFTIRQ_VERBOSE	0
 410#endif
 411
 412#if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
 413/*
 414 * Quick filtering for interesting events:
 415 */
 416static int class_filter(struct lock_class *class)
 417{
 418#if 0
 419	/* Example */
 420	if (class->name_version == 1 &&
 421			!strcmp(class->name, "lockname"))
 422		return 1;
 423	if (class->name_version == 1 &&
 424			!strcmp(class->name, "&struct->lockfield"))
 425		return 1;
 426#endif
 427	/* Filter everything else. 1 would be to allow everything else */
 428	return 0;
 429}
 430#endif
 431
 432static int verbose(struct lock_class *class)
 433{
 434#if VERBOSE
 435	return class_filter(class);
 436#endif
 437	return 0;
 438}
 439
 440static void print_lockdep_off(const char *bug_msg)
 441{
 442	printk(KERN_DEBUG "%s\n", bug_msg);
 443	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
 444#ifdef CONFIG_LOCK_STAT
 445	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
 446#endif
 447}
 448
 449unsigned long nr_stack_trace_entries;
 450
 451#ifdef CONFIG_PROVE_LOCKING
 452/**
 453 * struct lock_trace - single stack backtrace
 454 * @hash_entry:	Entry in a stack_trace_hash[] list.
 455 * @hash:	jhash() of @entries.
 456 * @nr_entries:	Number of entries in @entries.
 457 * @entries:	Actual stack backtrace.
 458 */
 459struct lock_trace {
 460	struct hlist_node	hash_entry;
 461	u32			hash;
 462	u32			nr_entries;
 463	unsigned long		entries[0] __aligned(sizeof(unsigned long));
 464};
 465#define LOCK_TRACE_SIZE_IN_LONGS				\
 466	(sizeof(struct lock_trace) / sizeof(unsigned long))
 467/*
 468 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
 469 */
 470static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
 471static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
 472
 473static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
 474{
 475	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
 476		memcmp(t1->entries, t2->entries,
 477		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
 478}
 479
 480static struct lock_trace *save_trace(void)
 481{
 482	struct lock_trace *trace, *t2;
 483	struct hlist_head *hash_head;
 484	u32 hash;
 485	unsigned int max_entries;
 486
 487	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
 488	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
 489
 490	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
 491	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
 492		LOCK_TRACE_SIZE_IN_LONGS;
 493	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
 494
 495	if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES -
 496	    LOCK_TRACE_SIZE_IN_LONGS - 1) {
 497		if (!debug_locks_off_graph_unlock())
 498			return NULL;
 499
 500		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
 501		dump_stack();
 502
 503		return NULL;
 504	}
 
 505
 506	hash = jhash(trace->entries, trace->nr_entries *
 507		     sizeof(trace->entries[0]), 0);
 508	trace->hash = hash;
 509	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
 510	hlist_for_each_entry(t2, hash_head, hash_entry) {
 511		if (traces_identical(trace, t2))
 512			return t2;
 513	}
 514	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
 515	hlist_add_head(&trace->hash_entry, hash_head);
 516
 517	return trace;
 518}
 519
 520/* Return the number of stack traces in the stack_trace[] array. */
 521u64 lockdep_stack_trace_count(void)
 522{
 523	struct lock_trace *trace;
 524	u64 c = 0;
 525	int i;
 526
 527	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
 528		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
 529			c++;
 530		}
 531	}
 532
 533	return c;
 534}
 535
 536/* Return the number of stack hash chains that have at least one stack trace. */
 537u64 lockdep_stack_hash_count(void)
 538{
 539	u64 c = 0;
 540	int i;
 541
 542	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
 543		if (!hlist_empty(&stack_trace_hash[i]))
 544			c++;
 545
 546	return c;
 547}
 548#endif
 549
 550unsigned int nr_hardirq_chains;
 551unsigned int nr_softirq_chains;
 552unsigned int nr_process_chains;
 553unsigned int max_lockdep_depth;
 554
 555#ifdef CONFIG_DEBUG_LOCKDEP
 556/*
 557 * Various lockdep statistics:
 558 */
 559DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
 560#endif
 561
 562#ifdef CONFIG_PROVE_LOCKING
 563/*
 564 * Locking printouts:
 565 */
 566
 567#define __USAGE(__STATE)						\
 568	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
 569	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
 570	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
 571	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
 572
 573static const char *usage_str[] =
 574{
 575#define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
 576#include "lockdep_states.h"
 577#undef LOCKDEP_STATE
 578	[LOCK_USED] = "INITIAL USE",
 
 
 
 579};
 580#endif
 581
 582const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
 583{
 584	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
 585}
 586
 587static inline unsigned long lock_flag(enum lock_usage_bit bit)
 588{
 589	return 1UL << bit;
 590}
 591
 592static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
 593{
 594	/*
 595	 * The usage character defaults to '.' (i.e., irqs disabled and not in
 596	 * irq context), which is the safest usage category.
 597	 */
 598	char c = '.';
 599
 600	/*
 601	 * The order of the following usage checks matters, which will
 602	 * result in the outcome character as follows:
 603	 *
 604	 * - '+': irq is enabled and not in irq context
 605	 * - '-': in irq context and irq is disabled
 606	 * - '?': in irq context and irq is enabled
 607	 */
 608	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
 609		c = '+';
 610		if (class->usage_mask & lock_flag(bit))
 611			c = '?';
 612	} else if (class->usage_mask & lock_flag(bit))
 613		c = '-';
 614
 615	return c;
 616}
 617
 618void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
 619{
 620	int i = 0;
 621
 622#define LOCKDEP_STATE(__STATE) 						\
 623	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
 624	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
 625#include "lockdep_states.h"
 626#undef LOCKDEP_STATE
 627
 628	usage[i] = '\0';
 629}
 630
 631static void __print_lock_name(struct lock_class *class)
 632{
 633	char str[KSYM_NAME_LEN];
 634	const char *name;
 635
 636	name = class->name;
 637	if (!name) {
 638		name = __get_key_name(class->key, str);
 639		printk(KERN_CONT "%s", name);
 640	} else {
 641		printk(KERN_CONT "%s", name);
 642		if (class->name_version > 1)
 643			printk(KERN_CONT "#%d", class->name_version);
 644		if (class->subclass)
 645			printk(KERN_CONT "/%d", class->subclass);
 
 
 646	}
 647}
 648
 649static void print_lock_name(struct lock_class *class)
 650{
 651	char usage[LOCK_USAGE_CHARS];
 652
 653	get_usage_chars(class, usage);
 654
 655	printk(KERN_CONT " (");
 656	__print_lock_name(class);
 657	printk(KERN_CONT "){%s}", usage);
 
 
 658}
 659
 660static void print_lockdep_cache(struct lockdep_map *lock)
 661{
 662	const char *name;
 663	char str[KSYM_NAME_LEN];
 664
 665	name = lock->name;
 666	if (!name)
 667		name = __get_key_name(lock->key->subkeys, str);
 668
 669	printk(KERN_CONT "%s", name);
 670}
 671
 672static void print_lock(struct held_lock *hlock)
 673{
 674	/*
 675	 * We can be called locklessly through debug_show_all_locks() so be
 676	 * extra careful, the hlock might have been released and cleared.
 677	 *
 678	 * If this indeed happens, lets pretend it does not hurt to continue
 679	 * to print the lock unless the hlock class_idx does not point to a
 680	 * registered class. The rationale here is: since we don't attempt
 681	 * to distinguish whether we are in this situation, if it just
 682	 * happened we can't count on class_idx to tell either.
 683	 */
 684	struct lock_class *lock = hlock_class(hlock);
 685
 686	if (!lock) {
 687		printk(KERN_CONT "<RELEASED>\n");
 688		return;
 689	}
 690
 691	printk(KERN_CONT "%px", hlock->instance);
 692	print_lock_name(lock);
 693	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
 694}
 695
 696static void lockdep_print_held_locks(struct task_struct *p)
 697{
 698	int i, depth = READ_ONCE(p->lockdep_depth);
 699
 700	if (!depth)
 701		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
 702	else
 703		printk("%d lock%s held by %s/%d:\n", depth,
 704		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
 705	/*
 706	 * It's not reliable to print a task's held locks if it's not sleeping
 707	 * and it's not the current task.
 708	 */
 709	if (p->state == TASK_RUNNING && p != current)
 710		return;
 711	for (i = 0; i < depth; i++) {
 712		printk(" #%d: ", i);
 713		print_lock(p->held_locks + i);
 714	}
 715}
 716
 717static void print_kernel_ident(void)
 718{
 719	printk("%s %.*s %s\n", init_utsname()->release,
 720		(int)strcspn(init_utsname()->version, " "),
 721		init_utsname()->version,
 722		print_tainted());
 723}
 724
 725static int very_verbose(struct lock_class *class)
 726{
 727#if VERY_VERBOSE
 728	return class_filter(class);
 729#endif
 730	return 0;
 731}
 732
 733/*
 734 * Is this the address of a static object:
 735 */
 736#ifdef __KERNEL__
 737static int static_obj(const void *obj)
 738{
 739	unsigned long start = (unsigned long) &_stext,
 740		      end   = (unsigned long) &_end,
 741		      addr  = (unsigned long) obj;
 742
 743	if (arch_is_kernel_initmem_freed(addr))
 744		return 0;
 745
 746	/*
 747	 * static variable?
 748	 */
 749	if ((addr >= start) && (addr < end))
 750		return 1;
 751
 752	if (arch_is_kernel_data(addr))
 
 
 
 
 
 
 753		return 1;
 754
 755	/*
 756	 * in-kernel percpu var?
 757	 */
 758	if (is_kernel_percpu_address(addr))
 759		return 1;
 760
 761	/*
 762	 * module static or percpu var?
 763	 */
 764	return is_module_address(addr) || is_module_percpu_address(addr);
 765}
 766#endif
 767
 768/*
 769 * To make lock name printouts unique, we calculate a unique
 770 * class->name_version generation counter. The caller must hold the graph
 771 * lock.
 772 */
 773static int count_matching_names(struct lock_class *new_class)
 774{
 775	struct lock_class *class;
 776	int count = 0;
 777
 778	if (!new_class->name)
 779		return 0;
 780
 781	list_for_each_entry(class, &all_lock_classes, lock_entry) {
 782		if (new_class->key - new_class->subclass == class->key)
 783			return class->name_version;
 784		if (class->name && !strcmp(class->name, new_class->name))
 785			count = max(count, class->name_version);
 786	}
 787
 788	return count + 1;
 789}
 790
 791static inline struct lock_class *
 
 792look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
 793{
 794	struct lockdep_subclass_key *key;
 795	struct hlist_head *hash_head;
 796	struct lock_class *class;
 797
 798	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
 
 799		debug_locks_off();
 800		printk(KERN_ERR
 801			"BUG: looking up invalid subclass: %u\n", subclass);
 802		printk(KERN_ERR
 803			"turning off the locking correctness validator.\n");
 804		dump_stack();
 
 805		return NULL;
 806	}
 807
 808	/*
 809	 * If it is not initialised then it has never been locked,
 810	 * so it won't be present in the hash table.
 811	 */
 812	if (unlikely(!lock->key))
 813		return NULL;
 814
 815	/*
 816	 * NOTE: the class-key must be unique. For dynamic locks, a static
 817	 * lock_class_key variable is passed in through the mutex_init()
 818	 * (or spin_lock_init()) call - which acts as the key. For static
 819	 * locks we use the lock object itself as the key.
 820	 */
 821	BUILD_BUG_ON(sizeof(struct lock_class_key) >
 822			sizeof(struct lockdep_map));
 823
 824	key = lock->key->subkeys + subclass;
 825
 826	hash_head = classhashentry(key);
 827
 828	/*
 829	 * We do an RCU walk of the hash, see lockdep_free_key_range().
 830	 */
 831	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
 832		return NULL;
 833
 834	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
 835		if (class->key == key) {
 836			/*
 837			 * Huh! same key, different name? Did someone trample
 838			 * on some memory? We're most confused.
 839			 */
 840			WARN_ON_ONCE(class->name != lock->name &&
 841				     lock->key != &__lockdep_no_validate__);
 
 
 842			return class;
 843		}
 844	}
 845
 846	return NULL;
 847}
 848
 849/*
 850 * Static locks do not have their class-keys yet - for them the key is
 851 * the lock object itself. If the lock is in the per cpu area, the
 852 * canonical address of the lock (per cpu offset removed) is used.
 853 */
 854static bool assign_lock_key(struct lockdep_map *lock)
 855{
 856	unsigned long can_addr, addr = (unsigned long)lock;
 857
 858#ifdef __KERNEL__
 859	/*
 860	 * lockdep_free_key_range() assumes that struct lock_class_key
 861	 * objects do not overlap. Since we use the address of lock
 862	 * objects as class key for static objects, check whether the
 863	 * size of lock_class_key objects does not exceed the size of
 864	 * the smallest lock object.
 865	 */
 866	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
 867#endif
 868
 869	if (__is_kernel_percpu_address(addr, &can_addr))
 870		lock->key = (void *)can_addr;
 871	else if (__is_module_percpu_address(addr, &can_addr))
 872		lock->key = (void *)can_addr;
 873	else if (static_obj(lock))
 874		lock->key = (void *)lock;
 875	else {
 876		/* Debug-check: all keys must be persistent! */
 877		debug_locks_off();
 878		pr_err("INFO: trying to register non-static key.\n");
 879		pr_err("the code is fine but needs lockdep annotation.\n");
 
 880		pr_err("turning off the locking correctness validator.\n");
 881		dump_stack();
 882		return false;
 883	}
 884
 885	return true;
 886}
 887
 888#ifdef CONFIG_DEBUG_LOCKDEP
 889
 890/* Check whether element @e occurs in list @h */
 891static bool in_list(struct list_head *e, struct list_head *h)
 892{
 893	struct list_head *f;
 894
 895	list_for_each(f, h) {
 896		if (e == f)
 897			return true;
 898	}
 899
 900	return false;
 901}
 902
 903/*
 904 * Check whether entry @e occurs in any of the locks_after or locks_before
 905 * lists.
 906 */
 907static bool in_any_class_list(struct list_head *e)
 908{
 909	struct lock_class *class;
 910	int i;
 911
 912	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
 913		class = &lock_classes[i];
 914		if (in_list(e, &class->locks_after) ||
 915		    in_list(e, &class->locks_before))
 916			return true;
 917	}
 918	return false;
 919}
 920
 921static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
 922{
 923	struct lock_list *e;
 924
 925	list_for_each_entry(e, h, entry) {
 926		if (e->links_to != c) {
 927			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
 928			       c->name ? : "(?)",
 929			       (unsigned long)(e - list_entries),
 930			       e->links_to && e->links_to->name ?
 931			       e->links_to->name : "(?)",
 932			       e->class && e->class->name ? e->class->name :
 933			       "(?)");
 934			return false;
 935		}
 936	}
 937	return true;
 938}
 939
 940#ifdef CONFIG_PROVE_LOCKING
 941static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
 942#endif
 943
 944static bool check_lock_chain_key(struct lock_chain *chain)
 945{
 946#ifdef CONFIG_PROVE_LOCKING
 947	u64 chain_key = INITIAL_CHAIN_KEY;
 948	int i;
 949
 950	for (i = chain->base; i < chain->base + chain->depth; i++)
 951		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
 952	/*
 953	 * The 'unsigned long long' casts avoid that a compiler warning
 954	 * is reported when building tools/lib/lockdep.
 955	 */
 956	if (chain->chain_key != chain_key) {
 957		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
 958		       (unsigned long long)(chain - lock_chains),
 959		       (unsigned long long)chain->chain_key,
 960		       (unsigned long long)chain_key);
 961		return false;
 962	}
 963#endif
 964	return true;
 965}
 966
 967static bool in_any_zapped_class_list(struct lock_class *class)
 968{
 969	struct pending_free *pf;
 970	int i;
 971
 972	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
 973		if (in_list(&class->lock_entry, &pf->zapped))
 974			return true;
 975	}
 976
 977	return false;
 978}
 979
 980static bool __check_data_structures(void)
 981{
 982	struct lock_class *class;
 983	struct lock_chain *chain;
 984	struct hlist_head *head;
 985	struct lock_list *e;
 986	int i;
 987
 988	/* Check whether all classes occur in a lock list. */
 989	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
 990		class = &lock_classes[i];
 991		if (!in_list(&class->lock_entry, &all_lock_classes) &&
 992		    !in_list(&class->lock_entry, &free_lock_classes) &&
 993		    !in_any_zapped_class_list(class)) {
 994			printk(KERN_INFO "class %px/%s is not in any class list\n",
 995			       class, class->name ? : "(?)");
 996			return false;
 997		}
 998	}
 999
1000	/* Check whether all classes have valid lock lists. */
1001	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1002		class = &lock_classes[i];
1003		if (!class_lock_list_valid(class, &class->locks_before))
1004			return false;
1005		if (!class_lock_list_valid(class, &class->locks_after))
1006			return false;
1007	}
1008
1009	/* Check the chain_key of all lock chains. */
1010	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1011		head = chainhash_table + i;
1012		hlist_for_each_entry_rcu(chain, head, entry) {
1013			if (!check_lock_chain_key(chain))
1014				return false;
1015		}
1016	}
1017
1018	/*
1019	 * Check whether all list entries that are in use occur in a class
1020	 * lock list.
1021	 */
1022	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1023		e = list_entries + i;
1024		if (!in_any_class_list(&e->entry)) {
1025			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1026			       (unsigned int)(e - list_entries),
1027			       e->class->name ? : "(?)",
1028			       e->links_to->name ? : "(?)");
1029			return false;
1030		}
1031	}
1032
1033	/*
1034	 * Check whether all list entries that are not in use do not occur in
1035	 * a class lock list.
1036	 */
1037	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1038		e = list_entries + i;
1039		if (in_any_class_list(&e->entry)) {
1040			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1041			       (unsigned int)(e - list_entries),
1042			       e->class && e->class->name ? e->class->name :
1043			       "(?)",
1044			       e->links_to && e->links_to->name ?
1045			       e->links_to->name : "(?)");
1046			return false;
1047		}
1048	}
1049
1050	return true;
1051}
1052
1053int check_consistency = 0;
1054module_param(check_consistency, int, 0644);
1055
1056static void check_data_structures(void)
1057{
1058	static bool once = false;
1059
1060	if (check_consistency && !once) {
1061		if (!__check_data_structures()) {
1062			once = true;
1063			WARN_ON(once);
1064		}
1065	}
1066}
1067
1068#else /* CONFIG_DEBUG_LOCKDEP */
1069
1070static inline void check_data_structures(void) { }
1071
1072#endif /* CONFIG_DEBUG_LOCKDEP */
1073
 
 
1074/*
1075 * Initialize the lock_classes[] array elements, the free_lock_classes list
1076 * and also the delayed_free structure.
1077 */
1078static void init_data_structures_once(void)
1079{
1080	static bool ds_initialized, rcu_head_initialized;
1081	int i;
1082
1083	if (likely(rcu_head_initialized))
1084		return;
1085
1086	if (system_state >= SYSTEM_SCHEDULING) {
1087		init_rcu_head(&delayed_free.rcu_head);
1088		rcu_head_initialized = true;
1089	}
1090
1091	if (ds_initialized)
1092		return;
1093
1094	ds_initialized = true;
1095
1096	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1097	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1098
1099	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1100		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1101		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1102		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1103	}
 
1104}
1105
1106static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1107{
1108	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1109
1110	return lock_keys_hash + hash;
1111}
1112
1113/* Register a dynamically allocated key. */
1114void lockdep_register_key(struct lock_class_key *key)
1115{
1116	struct hlist_head *hash_head;
1117	struct lock_class_key *k;
1118	unsigned long flags;
1119
1120	if (WARN_ON_ONCE(static_obj(key)))
1121		return;
1122	hash_head = keyhashentry(key);
1123
1124	raw_local_irq_save(flags);
1125	if (!graph_lock())
1126		goto restore_irqs;
1127	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1128		if (WARN_ON_ONCE(k == key))
1129			goto out_unlock;
1130	}
1131	hlist_add_head_rcu(&key->hash_entry, hash_head);
1132out_unlock:
1133	graph_unlock();
1134restore_irqs:
1135	raw_local_irq_restore(flags);
1136}
1137EXPORT_SYMBOL_GPL(lockdep_register_key);
1138
1139/* Check whether a key has been registered as a dynamic key. */
1140static bool is_dynamic_key(const struct lock_class_key *key)
1141{
1142	struct hlist_head *hash_head;
1143	struct lock_class_key *k;
1144	bool found = false;
1145
1146	if (WARN_ON_ONCE(static_obj(key)))
1147		return false;
1148
1149	/*
1150	 * If lock debugging is disabled lock_keys_hash[] may contain
1151	 * pointers to memory that has already been freed. Avoid triggering
1152	 * a use-after-free in that case by returning early.
1153	 */
1154	if (!debug_locks)
1155		return true;
1156
1157	hash_head = keyhashentry(key);
1158
1159	rcu_read_lock();
1160	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1161		if (k == key) {
1162			found = true;
1163			break;
1164		}
1165	}
1166	rcu_read_unlock();
1167
1168	return found;
1169}
1170
1171/*
1172 * Register a lock's class in the hash-table, if the class is not present
1173 * yet. Otherwise we look it up. We cache the result in the lock object
1174 * itself, so actual lookup of the hash should be once per lock object.
1175 */
1176static struct lock_class *
1177register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1178{
1179	struct lockdep_subclass_key *key;
1180	struct hlist_head *hash_head;
1181	struct lock_class *class;
 
1182
1183	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1184
1185	class = look_up_lock_class(lock, subclass);
1186	if (likely(class))
1187		goto out_set_class_cache;
1188
1189	if (!lock->key) {
1190		if (!assign_lock_key(lock))
1191			return NULL;
1192	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1193		return NULL;
1194	}
1195
1196	key = lock->key->subkeys + subclass;
1197	hash_head = classhashentry(key);
1198
1199	if (!graph_lock()) {
1200		return NULL;
1201	}
1202	/*
1203	 * We have to do the hash-walk again, to avoid races
1204	 * with another CPU:
1205	 */
1206	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1207		if (class->key == key)
1208			goto out_unlock_set;
1209	}
1210
1211	init_data_structures_once();
1212
1213	/* Allocate a new lock class and add it to the hash. */
1214	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1215					 lock_entry);
1216	if (!class) {
1217		if (!debug_locks_off_graph_unlock()) {
1218			return NULL;
1219		}
1220
1221		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1222		dump_stack();
1223		return NULL;
1224	}
1225	nr_lock_classes++;
1226	__set_bit(class - lock_classes, lock_classes_in_use);
1227	debug_atomic_inc(nr_unused_locks);
1228	class->key = key;
1229	class->name = lock->name;
1230	class->subclass = subclass;
1231	WARN_ON_ONCE(!list_empty(&class->locks_before));
1232	WARN_ON_ONCE(!list_empty(&class->locks_after));
1233	class->name_version = count_matching_names(class);
 
 
 
1234	/*
1235	 * We use RCU's safe list-add method to make
1236	 * parallel walking of the hash-list safe:
1237	 */
1238	hlist_add_head_rcu(&class->hash_entry, hash_head);
1239	/*
1240	 * Remove the class from the free list and add it to the global list
1241	 * of classes.
1242	 */
1243	list_move_tail(&class->lock_entry, &all_lock_classes);
 
 
 
1244
1245	if (verbose(class)) {
1246		graph_unlock();
1247
1248		printk("\nnew class %px: %s", class->key, class->name);
1249		if (class->name_version > 1)
1250			printk(KERN_CONT "#%d", class->name_version);
1251		printk(KERN_CONT "\n");
1252		dump_stack();
1253
1254		if (!graph_lock()) {
1255			return NULL;
1256		}
1257	}
1258out_unlock_set:
1259	graph_unlock();
1260
1261out_set_class_cache:
1262	if (!subclass || force)
1263		lock->class_cache[0] = class;
1264	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1265		lock->class_cache[subclass] = class;
1266
1267	/*
1268	 * Hash collision, did we smoke some? We found a class with a matching
1269	 * hash but the subclass -- which is hashed in -- didn't match.
1270	 */
1271	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1272		return NULL;
1273
1274	return class;
1275}
1276
1277#ifdef CONFIG_PROVE_LOCKING
1278/*
1279 * Allocate a lockdep entry. (assumes the graph_lock held, returns
1280 * with NULL on failure)
1281 */
1282static struct lock_list *alloc_list_entry(void)
1283{
1284	int idx = find_first_zero_bit(list_entries_in_use,
1285				      ARRAY_SIZE(list_entries));
1286
1287	if (idx >= ARRAY_SIZE(list_entries)) {
1288		if (!debug_locks_off_graph_unlock())
1289			return NULL;
1290
1291		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1292		dump_stack();
1293		return NULL;
1294	}
1295	nr_list_entries++;
1296	__set_bit(idx, list_entries_in_use);
1297	return list_entries + idx;
1298}
1299
1300/*
1301 * Add a new dependency to the head of the list:
1302 */
1303static int add_lock_to_list(struct lock_class *this,
1304			    struct lock_class *links_to, struct list_head *head,
1305			    unsigned long ip, int distance,
1306			    const struct lock_trace *trace)
1307{
1308	struct lock_list *entry;
1309	/*
1310	 * Lock not present yet - get a new dependency struct and
1311	 * add it to the list:
1312	 */
1313	entry = alloc_list_entry();
1314	if (!entry)
1315		return 0;
1316
1317	entry->class = this;
1318	entry->links_to = links_to;
 
1319	entry->distance = distance;
1320	entry->trace = trace;
1321	/*
1322	 * Both allocation and removal are done under the graph lock; but
1323	 * iteration is under RCU-sched; see look_up_lock_class() and
1324	 * lockdep_free_key_range().
1325	 */
1326	list_add_tail_rcu(&entry->entry, head);
1327
1328	return 1;
1329}
1330
1331/*
1332 * For good efficiency of modular, we use power of 2
1333 */
1334#define MAX_CIRCULAR_QUEUE_SIZE		4096UL
1335#define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1336
1337/*
1338 * The circular_queue and helpers are used to implement graph
1339 * breadth-first search (BFS) algorithm, by which we can determine
1340 * whether there is a path from a lock to another. In deadlock checks,
1341 * a path from the next lock to be acquired to a previous held lock
1342 * indicates that adding the <prev> -> <next> lock dependency will
1343 * produce a circle in the graph. Breadth-first search instead of
1344 * depth-first search is used in order to find the shortest (circular)
1345 * path.
1346 */
1347struct circular_queue {
1348	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1349	unsigned int  front, rear;
1350};
1351
1352static struct circular_queue lock_cq;
1353
1354unsigned int max_bfs_queue_depth;
1355
1356static unsigned int lockdep_dependency_gen_id;
1357
1358static inline void __cq_init(struct circular_queue *cq)
1359{
1360	cq->front = cq->rear = 0;
1361	lockdep_dependency_gen_id++;
1362}
1363
1364static inline int __cq_empty(struct circular_queue *cq)
1365{
1366	return (cq->front == cq->rear);
1367}
1368
1369static inline int __cq_full(struct circular_queue *cq)
1370{
1371	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1372}
1373
1374static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1375{
1376	if (__cq_full(cq))
1377		return -1;
1378
1379	cq->element[cq->rear] = elem;
1380	cq->rear = (cq->rear + 1) & CQ_MASK;
1381	return 0;
1382}
1383
1384/*
1385 * Dequeue an element from the circular_queue, return a lock_list if
1386 * the queue is not empty, or NULL if otherwise.
1387 */
1388static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1389{
1390	struct lock_list * lock;
1391
1392	if (__cq_empty(cq))
1393		return NULL;
1394
1395	lock = cq->element[cq->front];
1396	cq->front = (cq->front + 1) & CQ_MASK;
1397
1398	return lock;
1399}
1400
1401static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1402{
1403	return (cq->rear - cq->front) & CQ_MASK;
1404}
1405
1406static inline void mark_lock_accessed(struct lock_list *lock,
1407					struct lock_list *parent)
1408{
1409	unsigned long nr;
 
1410
1411	nr = lock - list_entries;
1412	WARN_ON(nr >= ARRAY_SIZE(list_entries)); /* Out-of-bounds, input fail */
 
1413	lock->parent = parent;
1414	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1415}
1416
1417static inline unsigned long lock_accessed(struct lock_list *lock)
1418{
1419	unsigned long nr;
1420
1421	nr = lock - list_entries;
1422	WARN_ON(nr >= ARRAY_SIZE(list_entries)); /* Out-of-bounds, input fail */
1423	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1424}
1425
1426static inline struct lock_list *get_lock_parent(struct lock_list *child)
1427{
1428	return child->parent;
1429}
1430
1431static inline int get_lock_depth(struct lock_list *child)
1432{
1433	int depth = 0;
1434	struct lock_list *parent;
1435
1436	while ((parent = get_lock_parent(child))) {
1437		child = parent;
1438		depth++;
1439	}
1440	return depth;
1441}
1442
1443/*
1444 * Return the forward or backward dependency list.
1445 *
1446 * @lock:   the lock_list to get its class's dependency list
1447 * @offset: the offset to struct lock_class to determine whether it is
1448 *          locks_after or locks_before
1449 */
1450static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1451{
1452	void *lock_class = lock->class;
1453
1454	return lock_class + offset;
1455}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1456
1457/*
1458 * Forward- or backward-dependency search, used for both circular dependency
1459 * checking and hardirq-unsafe/softirq-unsafe checking.
 
 
 
 
1460 */
1461static int __bfs(struct lock_list *source_entry,
1462		 void *data,
1463		 int (*match)(struct lock_list *entry, void *data),
1464		 struct lock_list **target_entry,
1465		 int offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1466{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1467	struct lock_list *entry;
1468	struct lock_list *lock;
1469	struct list_head *head;
1470	struct circular_queue *cq = &lock_cq;
1471	int ret = 1;
1472
1473	if (match(source_entry, data)) {
1474		*target_entry = source_entry;
1475		ret = 0;
1476		goto exit;
1477	}
1478
1479	head = get_dep_list(source_entry, offset);
1480	if (list_empty(head))
1481		goto exit;
1482
1483	__cq_init(cq);
1484	__cq_enqueue(cq, source_entry);
1485
1486	while ((lock = __cq_dequeue(cq))) {
 
 
1487
1488		if (!lock->class) {
1489			ret = -2;
1490			goto exit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1491		}
1492
1493		head = get_dep_list(lock, offset);
 
 
 
 
 
 
 
1494
1495		DEBUG_LOCKS_WARN_ON(!irqs_disabled());
 
 
 
1496
 
 
 
 
 
 
 
1497		list_for_each_entry_rcu(entry, head, entry) {
1498			if (!lock_accessed(entry)) {
1499				unsigned int cq_depth;
1500				mark_lock_accessed(entry, lock);
1501				if (match(entry, data)) {
1502					*target_entry = entry;
1503					ret = 0;
1504					goto exit;
1505				}
1506
1507				if (__cq_enqueue(cq, entry)) {
1508					ret = -1;
1509					goto exit;
1510				}
1511				cq_depth = __cq_get_elem_count(cq);
1512				if (max_bfs_queue_depth < cq_depth)
1513					max_bfs_queue_depth = cq_depth;
1514			}
 
 
 
 
 
 
 
 
 
1515		}
1516	}
1517exit:
1518	return ret;
1519}
1520
1521static inline int __bfs_forwards(struct lock_list *src_entry,
1522			void *data,
1523			int (*match)(struct lock_list *entry, void *data),
1524			struct lock_list **target_entry)
 
 
1525{
1526	return __bfs(src_entry, data, match, target_entry,
1527		     offsetof(struct lock_class, locks_after));
1528
1529}
1530
1531static inline int __bfs_backwards(struct lock_list *src_entry,
1532			void *data,
1533			int (*match)(struct lock_list *entry, void *data),
1534			struct lock_list **target_entry)
 
 
1535{
1536	return __bfs(src_entry, data, match, target_entry,
1537		     offsetof(struct lock_class, locks_before));
1538
1539}
1540
1541static void print_lock_trace(const struct lock_trace *trace,
1542			     unsigned int spaces)
1543{
1544	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1545}
1546
1547/*
1548 * Print a dependency chain entry (this is only done when a deadlock
1549 * has been detected):
1550 */
1551static noinline void
1552print_circular_bug_entry(struct lock_list *target, int depth)
1553{
1554	if (debug_locks_silent)
1555		return;
1556	printk("\n-> #%u", depth);
1557	print_lock_name(target->class);
1558	printk(KERN_CONT ":\n");
1559	print_lock_trace(target->trace, 6);
1560}
1561
1562static void
1563print_circular_lock_scenario(struct held_lock *src,
1564			     struct held_lock *tgt,
1565			     struct lock_list *prt)
1566{
1567	struct lock_class *source = hlock_class(src);
1568	struct lock_class *target = hlock_class(tgt);
1569	struct lock_class *parent = prt->class;
 
 
1570
1571	/*
1572	 * A direct locking problem where unsafe_class lock is taken
1573	 * directly by safe_class lock, then all we need to show
1574	 * is the deadlock scenario, as it is obvious that the
1575	 * unsafe lock is taken under the safe lock.
1576	 *
1577	 * But if there is a chain instead, where the safe lock takes
1578	 * an intermediate lock (middle_class) where this lock is
1579	 * not the same as the safe lock, then the lock chain is
1580	 * used to describe the problem. Otherwise we would need
1581	 * to show a different CPU case for each link in the chain
1582	 * from the safe_class lock to the unsafe_class lock.
1583	 */
1584	if (parent != source) {
1585		printk("Chain exists of:\n  ");
1586		__print_lock_name(source);
1587		printk(KERN_CONT " --> ");
1588		__print_lock_name(parent);
1589		printk(KERN_CONT " --> ");
1590		__print_lock_name(target);
1591		printk(KERN_CONT "\n\n");
1592	}
1593
1594	printk(" Possible unsafe locking scenario:\n\n");
1595	printk("       CPU0                    CPU1\n");
1596	printk("       ----                    ----\n");
1597	printk("  lock(");
1598	__print_lock_name(target);
 
 
 
1599	printk(KERN_CONT ");\n");
1600	printk("                               lock(");
1601	__print_lock_name(parent);
1602	printk(KERN_CONT ");\n");
1603	printk("                               lock(");
1604	__print_lock_name(target);
1605	printk(KERN_CONT ");\n");
1606	printk("  lock(");
1607	__print_lock_name(source);
 
 
 
 
 
1608	printk(KERN_CONT ");\n");
1609	printk("\n *** DEADLOCK ***\n\n");
1610}
1611
1612/*
1613 * When a circular dependency is detected, print the
1614 * header first:
1615 */
1616static noinline void
1617print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1618			struct held_lock *check_src,
1619			struct held_lock *check_tgt)
1620{
1621	struct task_struct *curr = current;
1622
1623	if (debug_locks_silent)
1624		return;
1625
1626	pr_warn("\n");
1627	pr_warn("======================================================\n");
1628	pr_warn("WARNING: possible circular locking dependency detected\n");
1629	print_kernel_ident();
1630	pr_warn("------------------------------------------------------\n");
1631	pr_warn("%s/%d is trying to acquire lock:\n",
1632		curr->comm, task_pid_nr(curr));
1633	print_lock(check_src);
1634
1635	pr_warn("\nbut task is already holding lock:\n");
1636
1637	print_lock(check_tgt);
1638	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1639	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1640
1641	print_circular_bug_entry(entry, depth);
1642}
1643
1644static inline int class_equal(struct lock_list *entry, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1645{
1646	return entry->class == data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1647}
1648
1649static noinline void print_circular_bug(struct lock_list *this,
1650					struct lock_list *target,
1651					struct held_lock *check_src,
1652					struct held_lock *check_tgt)
1653{
1654	struct task_struct *curr = current;
1655	struct lock_list *parent;
1656	struct lock_list *first_parent;
1657	int depth;
1658
1659	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1660		return;
1661
1662	this->trace = save_trace();
1663	if (!this->trace)
1664		return;
1665
1666	depth = get_lock_depth(target);
1667
1668	print_circular_bug_header(target, depth, check_src, check_tgt);
1669
1670	parent = get_lock_parent(target);
1671	first_parent = parent;
1672
1673	while (parent) {
1674		print_circular_bug_entry(parent, --depth);
1675		parent = get_lock_parent(parent);
1676	}
1677
1678	printk("\nother info that might help us debug this:\n\n");
1679	print_circular_lock_scenario(check_src, check_tgt,
1680				     first_parent);
1681
1682	lockdep_print_held_locks(curr);
1683
1684	printk("\nstack backtrace:\n");
1685	dump_stack();
1686}
1687
1688static noinline void print_bfs_bug(int ret)
1689{
1690	if (!debug_locks_off_graph_unlock())
1691		return;
1692
1693	/*
1694	 * Breadth-first-search failed, graph got corrupted?
1695	 */
1696	WARN(1, "lockdep bfs error:%d\n", ret);
1697}
1698
1699static int noop_count(struct lock_list *entry, void *data)
1700{
1701	(*(unsigned long *)data)++;
1702	return 0;
1703}
1704
1705static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
1706{
1707	unsigned long  count = 0;
1708	struct lock_list *uninitialized_var(target_entry);
1709
1710	__bfs_forwards(this, (void *)&count, noop_count, &target_entry);
1711
1712	return count;
1713}
1714unsigned long lockdep_count_forward_deps(struct lock_class *class)
1715{
1716	unsigned long ret, flags;
1717	struct lock_list this;
1718
1719	this.parent = NULL;
1720	this.class = class;
1721
1722	raw_local_irq_save(flags);
1723	arch_spin_lock(&lockdep_lock);
1724	ret = __lockdep_count_forward_deps(&this);
1725	arch_spin_unlock(&lockdep_lock);
1726	raw_local_irq_restore(flags);
1727
1728	return ret;
1729}
1730
1731static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
1732{
1733	unsigned long  count = 0;
1734	struct lock_list *uninitialized_var(target_entry);
1735
1736	__bfs_backwards(this, (void *)&count, noop_count, &target_entry);
1737
1738	return count;
1739}
1740
1741unsigned long lockdep_count_backward_deps(struct lock_class *class)
1742{
1743	unsigned long ret, flags;
1744	struct lock_list this;
1745
1746	this.parent = NULL;
1747	this.class = class;
1748
1749	raw_local_irq_save(flags);
1750	arch_spin_lock(&lockdep_lock);
1751	ret = __lockdep_count_backward_deps(&this);
1752	arch_spin_unlock(&lockdep_lock);
1753	raw_local_irq_restore(flags);
1754
1755	return ret;
1756}
1757
1758/*
1759 * Check that the dependency graph starting at <src> can lead to
1760 * <target> or not. Print an error and return 0 if it does.
1761 */
1762static noinline int
1763check_path(struct lock_class *target, struct lock_list *src_entry,
 
 
1764	   struct lock_list **target_entry)
1765{
1766	int ret;
1767
1768	ret = __bfs_forwards(src_entry, (void *)target, class_equal,
1769			     target_entry);
1770
1771	if (unlikely(ret < 0))
1772		print_bfs_bug(ret);
1773
1774	return ret;
1775}
1776
 
 
1777/*
1778 * Prove that the dependency graph starting at <src> can not
1779 * lead to <target>. If it can, there is a circle when adding
1780 * <target> -> <src> dependency.
1781 *
1782 * Print an error and return 0 if it does.
1783 */
1784static noinline int
1785check_noncircular(struct held_lock *src, struct held_lock *target,
1786		  struct lock_trace **const trace)
1787{
1788	int ret;
1789	struct lock_list *uninitialized_var(target_entry);
1790	struct lock_list src_entry = {
1791		.class = hlock_class(src),
1792		.parent = NULL,
1793	};
1794
1795	debug_atomic_inc(nr_cyclic_checks);
1796
1797	ret = check_path(hlock_class(target), &src_entry, &target_entry);
1798
1799	if (unlikely(!ret)) {
1800		if (!*trace) {
1801			/*
1802			 * If save_trace fails here, the printing might
1803			 * trigger a WARN but because of the !nr_entries it
1804			 * should not do bad things.
1805			 */
1806			*trace = save_trace();
1807		}
1808
1809		print_circular_bug(&src_entry, target_entry, src, target);
 
 
 
1810	}
1811
1812	return ret;
1813}
1814
1815#ifdef CONFIG_LOCKDEP_SMALL
 
1816/*
1817 * Check that the dependency graph starting at <src> can lead to
1818 * <target> or not. If it can, <src> -> <target> dependency is already
1819 * in the graph.
 
 
 
 
1820 *
1821 * Print an error and return 2 if it does or 1 if it does not.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1822 */
1823static noinline int
1824check_redundant(struct held_lock *src, struct held_lock *target)
1825{
1826	int ret;
1827	struct lock_list *uninitialized_var(target_entry);
1828	struct lock_list src_entry = {
1829		.class = hlock_class(src),
1830		.parent = NULL,
1831	};
1832
1833	debug_atomic_inc(nr_redundant_checks);
1834
1835	ret = check_path(hlock_class(target), &src_entry, &target_entry);
1836
1837	if (!ret) {
1838		debug_atomic_inc(nr_redundant);
1839		ret = 2;
1840	} else if (ret < 0)
1841		ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1842
1843	return ret;
1844}
1845#endif
1846
1847#ifdef CONFIG_TRACE_IRQFLAGS
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1848
1849static inline int usage_accumulate(struct lock_list *entry, void *mask)
1850{
1851	*(unsigned long *)mask |= entry->class->usage_mask;
 
1852
1853	return 0;
1854}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1855
1856/*
1857 * Forwards and backwards subgraph searching, for the purposes of
1858 * proving that two subgraphs can be connected by a new dependency
1859 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
1860 */
1861
1862static inline int usage_match(struct lock_list *entry, void *mask)
1863{
1864	return entry->class->usage_mask & *(unsigned long *)mask;
1865}
1866
1867/*
1868 * Find a node in the forwards-direction dependency sub-graph starting
1869 * at @root->class that matches @bit.
1870 *
1871 * Return 0 if such a node exists in the subgraph, and put that node
1872 * into *@target_entry.
1873 *
1874 * Return 1 otherwise and keep *@target_entry unchanged.
1875 * Return <0 on error.
1876 */
1877static int
1878find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
1879			struct lock_list **target_entry)
1880{
1881	int result;
1882
1883	debug_atomic_inc(nr_find_usage_forwards_checks);
1884
1885	result = __bfs_forwards(root, &usage_mask, usage_match, target_entry);
1886
1887	return result;
1888}
1889
1890/*
1891 * Find a node in the backwards-direction dependency sub-graph starting
1892 * at @root->class that matches @bit.
1893 *
1894 * Return 0 if such a node exists in the subgraph, and put that node
1895 * into *@target_entry.
1896 *
1897 * Return 1 otherwise and keep *@target_entry unchanged.
1898 * Return <0 on error.
1899 */
1900static int
1901find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
1902			struct lock_list **target_entry)
1903{
1904	int result;
1905
1906	debug_atomic_inc(nr_find_usage_backwards_checks);
1907
1908	result = __bfs_backwards(root, &usage_mask, usage_match, target_entry);
1909
1910	return result;
1911}
1912
1913static void print_lock_class_header(struct lock_class *class, int depth)
1914{
1915	int bit;
1916
1917	printk("%*s->", depth, "");
1918	print_lock_name(class);
1919#ifdef CONFIG_DEBUG_LOCKDEP
1920	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
1921#endif
1922	printk(KERN_CONT " {\n");
1923
1924	for (bit = 0; bit < LOCK_USAGE_STATES; bit++) {
1925		if (class->usage_mask & (1 << bit)) {
1926			int len = depth;
1927
1928			len += printk("%*s   %s", depth, "", usage_str[bit]);
1929			len += printk(KERN_CONT " at:\n");
1930			print_lock_trace(class->usage_traces[bit], len);
1931		}
1932	}
1933	printk("%*s }\n", depth, "");
1934
1935	printk("%*s ... key      at: [<%px>] %pS\n",
1936		depth, "", class->key, class->key);
1937}
1938
1939/*
1940 * printk the shortest lock dependencies from @start to @end in reverse order:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1941 */
1942static void __used
1943print_shortest_lock_dependencies(struct lock_list *leaf,
1944				 struct lock_list *root)
1945{
1946	struct lock_list *entry = leaf;
1947	int depth;
1948
1949	/*compute depth from generated tree by BFS*/
1950	depth = get_lock_depth(leaf);
1951
1952	do {
1953		print_lock_class_header(entry->class, depth);
1954		printk("%*s ... acquired at:\n", depth, "");
1955		print_lock_trace(entry->trace, 2);
1956		printk("\n");
1957
1958		if (depth == 0 && (entry != root)) {
1959			printk("lockdep:%s bad path found in chain graph\n", __func__);
1960			break;
1961		}
1962
1963		entry = get_lock_parent(entry);
1964		depth--;
1965	} while (entry && (depth >= 0));
1966}
1967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1968static void
1969print_irq_lock_scenario(struct lock_list *safe_entry,
1970			struct lock_list *unsafe_entry,
1971			struct lock_class *prev_class,
1972			struct lock_class *next_class)
1973{
1974	struct lock_class *safe_class = safe_entry->class;
1975	struct lock_class *unsafe_class = unsafe_entry->class;
1976	struct lock_class *middle_class = prev_class;
1977
1978	if (middle_class == safe_class)
1979		middle_class = next_class;
1980
1981	/*
1982	 * A direct locking problem where unsafe_class lock is taken
1983	 * directly by safe_class lock, then all we need to show
1984	 * is the deadlock scenario, as it is obvious that the
1985	 * unsafe lock is taken under the safe lock.
1986	 *
1987	 * But if there is a chain instead, where the safe lock takes
1988	 * an intermediate lock (middle_class) where this lock is
1989	 * not the same as the safe lock, then the lock chain is
1990	 * used to describe the problem. Otherwise we would need
1991	 * to show a different CPU case for each link in the chain
1992	 * from the safe_class lock to the unsafe_class lock.
1993	 */
1994	if (middle_class != unsafe_class) {
1995		printk("Chain exists of:\n  ");
1996		__print_lock_name(safe_class);
1997		printk(KERN_CONT " --> ");
1998		__print_lock_name(middle_class);
1999		printk(KERN_CONT " --> ");
2000		__print_lock_name(unsafe_class);
2001		printk(KERN_CONT "\n\n");
2002	}
2003
2004	printk(" Possible interrupt unsafe locking scenario:\n\n");
2005	printk("       CPU0                    CPU1\n");
2006	printk("       ----                    ----\n");
2007	printk("  lock(");
2008	__print_lock_name(unsafe_class);
2009	printk(KERN_CONT ");\n");
2010	printk("                               local_irq_disable();\n");
2011	printk("                               lock(");
2012	__print_lock_name(safe_class);
2013	printk(KERN_CONT ");\n");
2014	printk("                               lock(");
2015	__print_lock_name(middle_class);
2016	printk(KERN_CONT ");\n");
2017	printk("  <Interrupt>\n");
2018	printk("    lock(");
2019	__print_lock_name(safe_class);
2020	printk(KERN_CONT ");\n");
2021	printk("\n *** DEADLOCK ***\n\n");
2022}
2023
2024static void
2025print_bad_irq_dependency(struct task_struct *curr,
2026			 struct lock_list *prev_root,
2027			 struct lock_list *next_root,
2028			 struct lock_list *backwards_entry,
2029			 struct lock_list *forwards_entry,
2030			 struct held_lock *prev,
2031			 struct held_lock *next,
2032			 enum lock_usage_bit bit1,
2033			 enum lock_usage_bit bit2,
2034			 const char *irqclass)
2035{
2036	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2037		return;
2038
2039	pr_warn("\n");
2040	pr_warn("=====================================================\n");
2041	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2042		irqclass, irqclass);
2043	print_kernel_ident();
2044	pr_warn("-----------------------------------------------------\n");
2045	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2046		curr->comm, task_pid_nr(curr),
2047		curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT,
2048		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2049		curr->hardirqs_enabled,
2050		curr->softirqs_enabled);
2051	print_lock(next);
2052
2053	pr_warn("\nand this task is already holding:\n");
2054	print_lock(prev);
2055	pr_warn("which would create a new lock dependency:\n");
2056	print_lock_name(hlock_class(prev));
2057	pr_cont(" ->");
2058	print_lock_name(hlock_class(next));
2059	pr_cont("\n");
2060
2061	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2062		irqclass);
2063	print_lock_name(backwards_entry->class);
2064	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2065
2066	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2067
2068	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2069	print_lock_name(forwards_entry->class);
2070	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2071	pr_warn("...");
2072
2073	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2074
2075	pr_warn("\nother info that might help us debug this:\n\n");
2076	print_irq_lock_scenario(backwards_entry, forwards_entry,
2077				hlock_class(prev), hlock_class(next));
2078
2079	lockdep_print_held_locks(curr);
2080
2081	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2082	prev_root->trace = save_trace();
2083	if (!prev_root->trace)
2084		return;
2085	print_shortest_lock_dependencies(backwards_entry, prev_root);
2086
2087	pr_warn("\nthe dependencies between the lock to be acquired");
2088	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2089	next_root->trace = save_trace();
2090	if (!next_root->trace)
2091		return;
2092	print_shortest_lock_dependencies(forwards_entry, next_root);
2093
2094	pr_warn("\nstack backtrace:\n");
2095	dump_stack();
2096}
2097
2098static const char *state_names[] = {
2099#define LOCKDEP_STATE(__STATE) \
2100	__stringify(__STATE),
2101#include "lockdep_states.h"
2102#undef LOCKDEP_STATE
2103};
2104
2105static const char *state_rnames[] = {
2106#define LOCKDEP_STATE(__STATE) \
2107	__stringify(__STATE)"-READ",
2108#include "lockdep_states.h"
2109#undef LOCKDEP_STATE
2110};
2111
2112static inline const char *state_name(enum lock_usage_bit bit)
2113{
2114	if (bit & LOCK_USAGE_READ_MASK)
2115		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2116	else
2117		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2118}
2119
2120/*
2121 * The bit number is encoded like:
2122 *
2123 *  bit0: 0 exclusive, 1 read lock
2124 *  bit1: 0 used in irq, 1 irq enabled
2125 *  bit2-n: state
2126 */
2127static int exclusive_bit(int new_bit)
2128{
2129	int state = new_bit & LOCK_USAGE_STATE_MASK;
2130	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2131
2132	/*
2133	 * keep state, bit flip the direction and strip read.
2134	 */
2135	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2136}
2137
2138/*
2139 * Observe that when given a bitmask where each bitnr is encoded as above, a
2140 * right shift of the mask transforms the individual bitnrs as -1 and
2141 * conversely, a left shift transforms into +1 for the individual bitnrs.
2142 *
2143 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2144 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2145 * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2146 *
2147 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2148 *
2149 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2150 * all bits set) and recompose with bitnr1 flipped.
2151 */
2152static unsigned long invert_dir_mask(unsigned long mask)
2153{
2154	unsigned long excl = 0;
2155
2156	/* Invert dir */
2157	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2158	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2159
2160	return excl;
2161}
2162
2163/*
2164 * As above, we clear bitnr0 (LOCK_*_READ off) with bitmask ops. First, for all
2165 * bits with bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*).
2166 * And then mask out all bitnr0.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2167 */
2168static unsigned long exclusive_mask(unsigned long mask)
2169{
2170	unsigned long excl = invert_dir_mask(mask);
2171
2172	/* Strip read */
2173	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2174	excl &= ~LOCKF_IRQ_READ;
2175
2176	return excl;
2177}
2178
2179/*
2180 * Retrieve the _possible_ original mask to which @mask is
2181 * exclusive. Ie: this is the opposite of exclusive_mask().
2182 * Note that 2 possible original bits can match an exclusive
2183 * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2184 * cleared. So both are returned for each exclusive bit.
2185 */
2186static unsigned long original_mask(unsigned long mask)
2187{
2188	unsigned long excl = invert_dir_mask(mask);
2189
2190	/* Include read in existing usages */
 
2191	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2192
2193	return excl;
2194}
2195
2196/*
2197 * Find the first pair of bit match between an original
2198 * usage mask and an exclusive usage mask.
2199 */
2200static int find_exclusive_match(unsigned long mask,
2201				unsigned long excl_mask,
2202				enum lock_usage_bit *bitp,
2203				enum lock_usage_bit *excl_bitp)
2204{
2205	int bit, excl;
2206
2207	for_each_set_bit(bit, &mask, LOCK_USED) {
 
 
 
 
 
2208		excl = exclusive_bit(bit);
 
2209		if (excl_mask & lock_flag(excl)) {
2210			*bitp = bit;
2211			*excl_bitp = excl;
2212			return 0;
 
 
 
 
2213		}
2214	}
2215	return -1;
2216}
2217
2218/*
2219 * Prove that the new dependency does not connect a hardirq-safe(-read)
2220 * lock with a hardirq-unsafe lock - to achieve this we search
2221 * the backwards-subgraph starting at <prev>, and the
2222 * forwards-subgraph starting at <next>:
2223 */
2224static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2225			   struct held_lock *next)
2226{
2227	unsigned long usage_mask = 0, forward_mask, backward_mask;
2228	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2229	struct lock_list *uninitialized_var(target_entry1);
2230	struct lock_list *uninitialized_var(target_entry);
2231	struct lock_list this, that;
2232	int ret;
2233
2234	/*
2235	 * Step 1: gather all hard/soft IRQs usages backward in an
2236	 * accumulated usage mask.
2237	 */
2238	this.parent = NULL;
2239	this.class = hlock_class(prev);
2240
2241	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, NULL);
2242	if (ret < 0) {
2243		print_bfs_bug(ret);
2244		return 0;
2245	}
2246
2247	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2248	if (!usage_mask)
2249		return 1;
2250
2251	/*
2252	 * Step 2: find exclusive uses forward that match the previous
2253	 * backward accumulated mask.
2254	 */
2255	forward_mask = exclusive_mask(usage_mask);
2256
2257	that.parent = NULL;
2258	that.class = hlock_class(next);
2259
2260	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2261	if (ret < 0) {
2262		print_bfs_bug(ret);
2263		return 0;
2264	}
2265	if (ret == 1)
2266		return ret;
2267
2268	/*
2269	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2270	 * list whose usage mask matches the exclusive usage mask from the
2271	 * lock found on the forward list.
 
 
 
 
 
 
 
 
 
 
2272	 */
2273	backward_mask = original_mask(target_entry1->class->usage_mask);
2274
2275	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2276	if (ret < 0) {
2277		print_bfs_bug(ret);
2278		return 0;
2279	}
2280	if (DEBUG_LOCKS_WARN_ON(ret == 1))
2281		return 1;
2282
2283	/*
2284	 * Step 4: narrow down to a pair of incompatible usage bits
2285	 * and report it.
2286	 */
2287	ret = find_exclusive_match(target_entry->class->usage_mask,
2288				   target_entry1->class->usage_mask,
2289				   &backward_bit, &forward_bit);
2290	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2291		return 1;
2292
2293	print_bad_irq_dependency(curr, &this, &that,
2294				 target_entry, target_entry1,
2295				 prev, next,
2296				 backward_bit, forward_bit,
2297				 state_name(backward_bit));
2298
2299	return 0;
2300}
2301
2302static void inc_chains(void)
2303{
2304	if (current->hardirq_context)
2305		nr_hardirq_chains++;
2306	else {
2307		if (current->softirq_context)
2308			nr_softirq_chains++;
2309		else
2310			nr_process_chains++;
2311	}
2312}
2313
2314#else
2315
2316static inline int check_irq_usage(struct task_struct *curr,
2317				  struct held_lock *prev, struct held_lock *next)
2318{
2319	return 1;
2320}
2321
2322static inline void inc_chains(void)
2323{
2324	nr_process_chains++;
2325}
2326
2327#endif /* CONFIG_TRACE_IRQFLAGS */
2328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2329static void
2330print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2331{
2332	struct lock_class *next = hlock_class(nxt);
2333	struct lock_class *prev = hlock_class(prv);
2334
2335	printk(" Possible unsafe locking scenario:\n\n");
2336	printk("       CPU0\n");
2337	printk("       ----\n");
2338	printk("  lock(");
2339	__print_lock_name(prev);
2340	printk(KERN_CONT ");\n");
2341	printk("  lock(");
2342	__print_lock_name(next);
2343	printk(KERN_CONT ");\n");
2344	printk("\n *** DEADLOCK ***\n\n");
2345	printk(" May be due to missing lock nesting notation\n\n");
2346}
2347
2348static void
2349print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2350		   struct held_lock *next)
2351{
 
 
2352	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2353		return;
2354
2355	pr_warn("\n");
2356	pr_warn("============================================\n");
2357	pr_warn("WARNING: possible recursive locking detected\n");
2358	print_kernel_ident();
2359	pr_warn("--------------------------------------------\n");
2360	pr_warn("%s/%d is trying to acquire lock:\n",
2361		curr->comm, task_pid_nr(curr));
2362	print_lock(next);
2363	pr_warn("\nbut task is already holding lock:\n");
2364	print_lock(prev);
2365
 
 
 
 
 
2366	pr_warn("\nother info that might help us debug this:\n");
2367	print_deadlock_scenario(next, prev);
2368	lockdep_print_held_locks(curr);
2369
2370	pr_warn("\nstack backtrace:\n");
2371	dump_stack();
2372}
2373
2374/*
2375 * Check whether we are holding such a class already.
2376 *
2377 * (Note that this has to be done separately, because the graph cannot
2378 * detect such classes of deadlocks.)
2379 *
2380 * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read
 
 
2381 */
2382static int
2383check_deadlock(struct task_struct *curr, struct held_lock *next)
2384{
 
2385	struct held_lock *prev;
2386	struct held_lock *nest = NULL;
2387	int i;
2388
2389	for (i = 0; i < curr->lockdep_depth; i++) {
2390		prev = curr->held_locks + i;
2391
2392		if (prev->instance == next->nest_lock)
2393			nest = prev;
2394
2395		if (hlock_class(prev) != hlock_class(next))
2396			continue;
2397
2398		/*
2399		 * Allow read-after-read recursion of the same
2400		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2401		 */
2402		if ((next->read == 2) && prev->read)
2403			return 2;
 
 
 
 
 
 
2404
2405		/*
2406		 * We're holding the nest_lock, which serializes this lock's
2407		 * nesting behaviour.
2408		 */
2409		if (nest)
2410			return 2;
2411
2412		print_deadlock_bug(curr, prev, next);
2413		return 0;
2414	}
2415	return 1;
2416}
2417
2418/*
2419 * There was a chain-cache miss, and we are about to add a new dependency
2420 * to a previous lock. We validate the following rules:
2421 *
2422 *  - would the adding of the <prev> -> <next> dependency create a
2423 *    circular dependency in the graph? [== circular deadlock]
2424 *
2425 *  - does the new prev->next dependency connect any hardirq-safe lock
2426 *    (in the full backwards-subgraph starting at <prev>) with any
2427 *    hardirq-unsafe lock (in the full forwards-subgraph starting at
2428 *    <next>)? [== illegal lock inversion with hardirq contexts]
2429 *
2430 *  - does the new prev->next dependency connect any softirq-safe lock
2431 *    (in the full backwards-subgraph starting at <prev>) with any
2432 *    softirq-unsafe lock (in the full forwards-subgraph starting at
2433 *    <next>)? [== illegal lock inversion with softirq contexts]
2434 *
2435 * any of these scenarios could lead to a deadlock.
2436 *
2437 * Then if all the validations pass, we add the forwards and backwards
2438 * dependency.
2439 */
2440static int
2441check_prev_add(struct task_struct *curr, struct held_lock *prev,
2442	       struct held_lock *next, int distance,
2443	       struct lock_trace **const trace)
2444{
2445	struct lock_list *entry;
2446	int ret;
2447
2448	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2449		/*
2450		 * The warning statements below may trigger a use-after-free
2451		 * of the class name. It is better to trigger a use-after free
2452		 * and to have the class name most of the time instead of not
2453		 * having the class name available.
2454		 */
2455		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2456			  "Detected use-after-free of lock class %px/%s\n",
2457			  hlock_class(prev),
2458			  hlock_class(prev)->name);
2459		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2460			  "Detected use-after-free of lock class %px/%s\n",
2461			  hlock_class(next),
2462			  hlock_class(next)->name);
2463		return 2;
2464	}
2465
 
 
 
 
 
 
 
 
2466	/*
2467	 * Prove that the new <prev> -> <next> dependency would not
2468	 * create a circular dependency in the graph. (We do this by
2469	 * a breadth-first search into the graph starting at <next>,
2470	 * and check whether we can reach <prev>.)
2471	 *
2472	 * The search is limited by the size of the circular queue (i.e.,
2473	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2474	 * in the graph whose neighbours are to be checked.
2475	 */
2476	ret = check_noncircular(next, prev, trace);
2477	if (unlikely(ret <= 0))
2478		return 0;
2479
2480	if (!check_irq_usage(curr, prev, next))
2481		return 0;
2482
2483	/*
2484	 * For recursive read-locks we do all the dependency checks,
2485	 * but we dont store read-triggered dependencies (only
2486	 * write-triggered dependencies). This ensures that only the
2487	 * write-side dependencies matter, and that if for example a
2488	 * write-lock never takes any other locks, then the reads are
2489	 * equivalent to a NOP.
2490	 */
2491	if (next->read == 2 || prev->read == 2)
2492		return 1;
2493	/*
2494	 * Is the <prev> -> <next> dependency already present?
2495	 *
2496	 * (this may occur even though this is a new chain: consider
2497	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
2498	 *  chains - the second one will be new, but L1 already has
2499	 *  L2 added to its dependency list, due to the first chain.)
2500	 */
2501	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
2502		if (entry->class == hlock_class(next)) {
2503			if (distance == 1)
2504				entry->distance = 1;
2505			return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2506		}
2507	}
2508
2509#ifdef CONFIG_LOCKDEP_SMALL
2510	/*
2511	 * Is the <prev> -> <next> link redundant?
2512	 */
2513	ret = check_redundant(prev, next);
2514	if (ret != 1)
2515		return ret;
2516#endif
 
2517
2518	if (!*trace) {
2519		*trace = save_trace();
2520		if (!*trace)
2521			return 0;
2522	}
2523
2524	/*
2525	 * Ok, all validations passed, add the new lock
2526	 * to the previous lock's dependency list:
2527	 */
2528	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
2529			       &hlock_class(prev)->locks_after,
2530			       next->acquire_ip, distance, *trace);
2531
2532	if (!ret)
2533		return 0;
2534
2535	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
2536			       &hlock_class(next)->locks_before,
2537			       next->acquire_ip, distance, *trace);
2538	if (!ret)
2539		return 0;
2540
2541	return 2;
2542}
2543
2544/*
2545 * Add the dependency to all directly-previous locks that are 'relevant'.
2546 * The ones that are relevant are (in increasing distance from curr):
2547 * all consecutive trylock entries and the final non-trylock entry - or
2548 * the end of this context's lock-chain - whichever comes first.
2549 */
2550static int
2551check_prevs_add(struct task_struct *curr, struct held_lock *next)
2552{
2553	struct lock_trace *trace = NULL;
2554	int depth = curr->lockdep_depth;
2555	struct held_lock *hlock;
2556
2557	/*
2558	 * Debugging checks.
2559	 *
2560	 * Depth must not be zero for a non-head lock:
2561	 */
2562	if (!depth)
2563		goto out_bug;
2564	/*
2565	 * At least two relevant locks must exist for this
2566	 * to be a head:
2567	 */
2568	if (curr->held_locks[depth].irq_context !=
2569			curr->held_locks[depth-1].irq_context)
2570		goto out_bug;
2571
2572	for (;;) {
2573		int distance = curr->lockdep_depth - depth + 1;
2574		hlock = curr->held_locks + depth - 1;
2575
2576		/*
2577		 * Only non-recursive-read entries get new dependencies
2578		 * added:
2579		 */
2580		if (hlock->read != 2 && hlock->check) {
2581			int ret = check_prev_add(curr, hlock, next, distance,
2582						 &trace);
2583			if (!ret)
2584				return 0;
2585
2586			/*
2587			 * Stop after the first non-trylock entry,
2588			 * as non-trylock entries have added their
2589			 * own direct dependencies already, so this
2590			 * lock is connected to them indirectly:
2591			 */
2592			if (!hlock->trylock)
2593				break;
2594		}
2595
2596		depth--;
2597		/*
2598		 * End of lock-stack?
2599		 */
2600		if (!depth)
2601			break;
2602		/*
2603		 * Stop the search if we cross into another context:
2604		 */
2605		if (curr->held_locks[depth].irq_context !=
2606				curr->held_locks[depth-1].irq_context)
2607			break;
2608	}
2609	return 1;
2610out_bug:
2611	if (!debug_locks_off_graph_unlock())
2612		return 0;
2613
2614	/*
2615	 * Clearly we all shouldn't be here, but since we made it we
2616	 * can reliable say we messed up our state. See the above two
2617	 * gotos for reasons why we could possibly end up here.
2618	 */
2619	WARN_ON(1);
2620
2621	return 0;
2622}
2623
2624struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
2625static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
2626int nr_chain_hlocks;
2627static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2628
2629struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
2630{
2631	return lock_classes + chain_hlocks[chain->base + i];
 
 
 
2632}
2633
2634/*
2635 * Returns the index of the first held_lock of the current chain
2636 */
2637static inline int get_first_held_lock(struct task_struct *curr,
2638					struct held_lock *hlock)
2639{
2640	int i;
2641	struct held_lock *hlock_curr;
2642
2643	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
2644		hlock_curr = curr->held_locks + i;
2645		if (hlock_curr->irq_context != hlock->irq_context)
2646			break;
2647
2648	}
2649
2650	return ++i;
2651}
2652
2653#ifdef CONFIG_DEBUG_LOCKDEP
2654/*
2655 * Returns the next chain_key iteration
2656 */
2657static u64 print_chain_key_iteration(int class_idx, u64 chain_key)
2658{
2659	u64 new_chain_key = iterate_chain_key(chain_key, class_idx);
2660
2661	printk(" class_idx:%d -> chain_key:%016Lx",
2662		class_idx,
2663		(unsigned long long)new_chain_key);
2664	return new_chain_key;
2665}
2666
2667static void
2668print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
2669{
2670	struct held_lock *hlock;
2671	u64 chain_key = INITIAL_CHAIN_KEY;
2672	int depth = curr->lockdep_depth;
2673	int i = get_first_held_lock(curr, hlock_next);
2674
2675	printk("depth: %u (irq_context %u)\n", depth - i + 1,
2676		hlock_next->irq_context);
2677	for (; i < depth; i++) {
2678		hlock = curr->held_locks + i;
2679		chain_key = print_chain_key_iteration(hlock->class_idx, chain_key);
2680
2681		print_lock(hlock);
2682	}
2683
2684	print_chain_key_iteration(hlock_next->class_idx, chain_key);
2685	print_lock(hlock_next);
2686}
2687
2688static void print_chain_keys_chain(struct lock_chain *chain)
2689{
2690	int i;
2691	u64 chain_key = INITIAL_CHAIN_KEY;
2692	int class_id;
2693
2694	printk("depth: %u\n", chain->depth);
2695	for (i = 0; i < chain->depth; i++) {
2696		class_id = chain_hlocks[chain->base + i];
2697		chain_key = print_chain_key_iteration(class_id, chain_key);
2698
2699		print_lock_name(lock_classes + class_id);
2700		printk("\n");
2701	}
2702}
2703
2704static void print_collision(struct task_struct *curr,
2705			struct held_lock *hlock_next,
2706			struct lock_chain *chain)
2707{
2708	pr_warn("\n");
2709	pr_warn("============================\n");
2710	pr_warn("WARNING: chain_key collision\n");
2711	print_kernel_ident();
2712	pr_warn("----------------------------\n");
2713	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
2714	pr_warn("Hash chain already cached but the contents don't match!\n");
2715
2716	pr_warn("Held locks:");
2717	print_chain_keys_held_locks(curr, hlock_next);
2718
2719	pr_warn("Locks in cached chain:");
2720	print_chain_keys_chain(chain);
2721
2722	pr_warn("\nstack backtrace:\n");
2723	dump_stack();
2724}
2725#endif
2726
2727/*
2728 * Checks whether the chain and the current held locks are consistent
2729 * in depth and also in content. If they are not it most likely means
2730 * that there was a collision during the calculation of the chain_key.
2731 * Returns: 0 not passed, 1 passed
2732 */
2733static int check_no_collision(struct task_struct *curr,
2734			struct held_lock *hlock,
2735			struct lock_chain *chain)
2736{
2737#ifdef CONFIG_DEBUG_LOCKDEP
2738	int i, j, id;
2739
2740	i = get_first_held_lock(curr, hlock);
2741
2742	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
2743		print_collision(curr, hlock, chain);
2744		return 0;
2745	}
2746
2747	for (j = 0; j < chain->depth - 1; j++, i++) {
2748		id = curr->held_locks[i].class_idx;
2749
2750		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
2751			print_collision(curr, hlock, chain);
2752			return 0;
2753		}
2754	}
2755#endif
2756	return 1;
2757}
2758
2759/*
2760 * Given an index that is >= -1, return the index of the next lock chain.
2761 * Return -2 if there is no next lock chain.
2762 */
2763long lockdep_next_lockchain(long i)
2764{
2765	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
2766	return i < ARRAY_SIZE(lock_chains) ? i : -2;
2767}
2768
2769unsigned long lock_chain_count(void)
2770{
2771	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
2772}
2773
2774/* Must be called with the graph lock held. */
2775static struct lock_chain *alloc_lock_chain(void)
2776{
2777	int idx = find_first_zero_bit(lock_chains_in_use,
2778				      ARRAY_SIZE(lock_chains));
2779
2780	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
2781		return NULL;
2782	__set_bit(idx, lock_chains_in_use);
2783	return lock_chains + idx;
2784}
2785
2786/*
2787 * Adds a dependency chain into chain hashtable. And must be called with
2788 * graph_lock held.
2789 *
2790 * Return 0 if fail, and graph_lock is released.
2791 * Return 1 if succeed, with graph_lock held.
2792 */
2793static inline int add_chain_cache(struct task_struct *curr,
2794				  struct held_lock *hlock,
2795				  u64 chain_key)
2796{
2797	struct lock_class *class = hlock_class(hlock);
2798	struct hlist_head *hash_head = chainhashentry(chain_key);
2799	struct lock_chain *chain;
2800	int i, j;
2801
2802	/*
2803	 * The caller must hold the graph lock, ensure we've got IRQs
2804	 * disabled to make this an IRQ-safe lock.. for recursion reasons
2805	 * lockdep won't complain about its own locking errors.
2806	 */
2807	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2808		return 0;
2809
2810	chain = alloc_lock_chain();
2811	if (!chain) {
2812		if (!debug_locks_off_graph_unlock())
2813			return 0;
2814
2815		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
2816		dump_stack();
2817		return 0;
2818	}
2819	chain->chain_key = chain_key;
2820	chain->irq_context = hlock->irq_context;
2821	i = get_first_held_lock(curr, hlock);
2822	chain->depth = curr->lockdep_depth + 1 - i;
2823
2824	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
2825	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
2826	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
2827
2828	if (likely(nr_chain_hlocks + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) {
2829		chain->base = nr_chain_hlocks;
2830		for (j = 0; j < chain->depth - 1; j++, i++) {
2831			int lock_id = curr->held_locks[i].class_idx;
2832			chain_hlocks[chain->base + j] = lock_id;
2833		}
2834		chain_hlocks[chain->base + j] = class - lock_classes;
2835		nr_chain_hlocks += chain->depth;
2836	} else {
2837		if (!debug_locks_off_graph_unlock())
2838			return 0;
2839
2840		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
2841		dump_stack();
2842		return 0;
2843	}
2844
 
 
 
 
 
 
 
2845	hlist_add_head_rcu(&chain->entry, hash_head);
2846	debug_atomic_inc(chain_lookup_misses);
2847	inc_chains();
2848
2849	return 1;
2850}
2851
2852/*
2853 * Look up a dependency chain. Must be called with either the graph lock or
2854 * the RCU read lock held.
2855 */
2856static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
2857{
2858	struct hlist_head *hash_head = chainhashentry(chain_key);
2859	struct lock_chain *chain;
2860
2861	hlist_for_each_entry_rcu(chain, hash_head, entry) {
2862		if (READ_ONCE(chain->chain_key) == chain_key) {
2863			debug_atomic_inc(chain_lookup_hits);
2864			return chain;
2865		}
2866	}
2867	return NULL;
2868}
2869
2870/*
2871 * If the key is not present yet in dependency chain cache then
2872 * add it and return 1 - in this case the new dependency chain is
2873 * validated. If the key is already hashed, return 0.
2874 * (On return with 1 graph_lock is held.)
2875 */
2876static inline int lookup_chain_cache_add(struct task_struct *curr,
2877					 struct held_lock *hlock,
2878					 u64 chain_key)
2879{
2880	struct lock_class *class = hlock_class(hlock);
2881	struct lock_chain *chain = lookup_chain_cache(chain_key);
2882
2883	if (chain) {
2884cache_hit:
2885		if (!check_no_collision(curr, hlock, chain))
2886			return 0;
2887
2888		if (very_verbose(class)) {
2889			printk("\nhash chain already cached, key: "
2890					"%016Lx tail class: [%px] %s\n",
2891					(unsigned long long)chain_key,
2892					class->key, class->name);
2893		}
2894
2895		return 0;
2896	}
2897
2898	if (very_verbose(class)) {
2899		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
2900			(unsigned long long)chain_key, class->key, class->name);
2901	}
2902
2903	if (!graph_lock())
2904		return 0;
2905
2906	/*
2907	 * We have to walk the chain again locked - to avoid duplicates:
2908	 */
2909	chain = lookup_chain_cache(chain_key);
2910	if (chain) {
2911		graph_unlock();
2912		goto cache_hit;
2913	}
2914
2915	if (!add_chain_cache(curr, hlock, chain_key))
2916		return 0;
2917
2918	return 1;
2919}
2920
2921static int validate_chain(struct task_struct *curr,
2922			  struct held_lock *hlock,
2923			  int chain_head, u64 chain_key)
2924{
2925	/*
2926	 * Trylock needs to maintain the stack of held locks, but it
2927	 * does not add new dependencies, because trylock can be done
2928	 * in any order.
2929	 *
2930	 * We look up the chain_key and do the O(N^2) check and update of
2931	 * the dependencies only if this is a new dependency chain.
2932	 * (If lookup_chain_cache_add() return with 1 it acquires
2933	 * graph_lock for us)
2934	 */
2935	if (!hlock->trylock && hlock->check &&
2936	    lookup_chain_cache_add(curr, hlock, chain_key)) {
2937		/*
2938		 * Check whether last held lock:
2939		 *
2940		 * - is irq-safe, if this lock is irq-unsafe
2941		 * - is softirq-safe, if this lock is hardirq-unsafe
2942		 *
2943		 * And check whether the new lock's dependency graph
2944		 * could lead back to the previous lock:
2945		 *
2946		 * - within the current held-lock stack
2947		 * - across our accumulated lock dependency records
2948		 *
2949		 * any of these scenarios could lead to a deadlock.
2950		 */
2951		/*
2952		 * The simple case: does the current hold the same lock
2953		 * already?
2954		 */
2955		int ret = check_deadlock(curr, hlock);
2956
2957		if (!ret)
2958			return 0;
2959		/*
2960		 * Mark recursive read, as we jump over it when
2961		 * building dependencies (just like we jump over
2962		 * trylock entries):
2963		 */
2964		if (ret == 2)
2965			hlock->read = 2;
2966		/*
2967		 * Add dependency only if this lock is not the head
2968		 * of the chain, and if it's not a secondary read-lock:
 
 
 
 
2969		 */
2970		if (!chain_head && ret != 2) {
2971			if (!check_prevs_add(curr, hlock))
2972				return 0;
2973		}
2974
2975		graph_unlock();
2976	} else {
2977		/* after lookup_chain_cache_add(): */
2978		if (unlikely(!debug_locks))
2979			return 0;
2980	}
2981
2982	return 1;
2983}
2984#else
2985static inline int validate_chain(struct task_struct *curr,
2986				 struct held_lock *hlock,
2987				 int chain_head, u64 chain_key)
2988{
2989	return 1;
2990}
 
 
2991#endif /* CONFIG_PROVE_LOCKING */
2992
2993/*
2994 * We are building curr_chain_key incrementally, so double-check
2995 * it from scratch, to make sure that it's done correctly:
2996 */
2997static void check_chain_key(struct task_struct *curr)
2998{
2999#ifdef CONFIG_DEBUG_LOCKDEP
3000	struct held_lock *hlock, *prev_hlock = NULL;
3001	unsigned int i;
3002	u64 chain_key = INITIAL_CHAIN_KEY;
3003
3004	for (i = 0; i < curr->lockdep_depth; i++) {
3005		hlock = curr->held_locks + i;
3006		if (chain_key != hlock->prev_chain_key) {
3007			debug_locks_off();
3008			/*
3009			 * We got mighty confused, our chain keys don't match
3010			 * with what we expect, someone trample on our task state?
3011			 */
3012			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3013				curr->lockdep_depth, i,
3014				(unsigned long long)chain_key,
3015				(unsigned long long)hlock->prev_chain_key);
3016			return;
3017		}
3018
3019		/*
3020		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3021		 * it registered lock class index?
3022		 */
3023		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3024			return;
3025
3026		if (prev_hlock && (prev_hlock->irq_context !=
3027							hlock->irq_context))
3028			chain_key = INITIAL_CHAIN_KEY;
3029		chain_key = iterate_chain_key(chain_key, hlock->class_idx);
3030		prev_hlock = hlock;
3031	}
3032	if (chain_key != curr->curr_chain_key) {
3033		debug_locks_off();
3034		/*
3035		 * More smoking hash instead of calculating it, damn see these
3036		 * numbers float.. I bet that a pink elephant stepped on my memory.
3037		 */
3038		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3039			curr->lockdep_depth, i,
3040			(unsigned long long)chain_key,
3041			(unsigned long long)curr->curr_chain_key);
3042	}
3043#endif
3044}
3045
3046#ifdef CONFIG_PROVE_LOCKING
3047static int mark_lock(struct task_struct *curr, struct held_lock *this,
3048		     enum lock_usage_bit new_bit);
3049
3050static void print_usage_bug_scenario(struct held_lock *lock)
3051{
3052	struct lock_class *class = hlock_class(lock);
3053
3054	printk(" Possible unsafe locking scenario:\n\n");
3055	printk("       CPU0\n");
3056	printk("       ----\n");
3057	printk("  lock(");
3058	__print_lock_name(class);
3059	printk(KERN_CONT ");\n");
3060	printk("  <Interrupt>\n");
3061	printk("    lock(");
3062	__print_lock_name(class);
3063	printk(KERN_CONT ");\n");
3064	printk("\n *** DEADLOCK ***\n\n");
3065}
3066
3067static void
3068print_usage_bug(struct task_struct *curr, struct held_lock *this,
3069		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3070{
3071	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3072		return;
3073
3074	pr_warn("\n");
3075	pr_warn("================================\n");
3076	pr_warn("WARNING: inconsistent lock state\n");
3077	print_kernel_ident();
3078	pr_warn("--------------------------------\n");
3079
3080	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3081		usage_str[prev_bit], usage_str[new_bit]);
3082
3083	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3084		curr->comm, task_pid_nr(curr),
3085		trace_hardirq_context(curr), hardirq_count() >> HARDIRQ_SHIFT,
3086		trace_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3087		trace_hardirqs_enabled(curr),
3088		trace_softirqs_enabled(curr));
3089	print_lock(this);
3090
3091	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3092	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3093
3094	print_irqtrace_events(curr);
3095	pr_warn("\nother info that might help us debug this:\n");
3096	print_usage_bug_scenario(this);
3097
3098	lockdep_print_held_locks(curr);
3099
3100	pr_warn("\nstack backtrace:\n");
3101	dump_stack();
3102}
3103
3104/*
3105 * Print out an error if an invalid bit is set:
3106 */
3107static inline int
3108valid_state(struct task_struct *curr, struct held_lock *this,
3109	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3110{
3111	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
 
3112		print_usage_bug(curr, this, bad_bit, new_bit);
3113		return 0;
3114	}
3115	return 1;
3116}
3117
3118
3119/*
3120 * print irq inversion bug:
3121 */
3122static void
3123print_irq_inversion_bug(struct task_struct *curr,
3124			struct lock_list *root, struct lock_list *other,
3125			struct held_lock *this, int forwards,
3126			const char *irqclass)
3127{
3128	struct lock_list *entry = other;
3129	struct lock_list *middle = NULL;
3130	int depth;
3131
3132	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3133		return;
3134
3135	pr_warn("\n");
3136	pr_warn("========================================================\n");
3137	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3138	print_kernel_ident();
3139	pr_warn("--------------------------------------------------------\n");
3140	pr_warn("%s/%d just changed the state of lock:\n",
3141		curr->comm, task_pid_nr(curr));
3142	print_lock(this);
3143	if (forwards)
3144		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3145	else
3146		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3147	print_lock_name(other->class);
3148	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3149
3150	pr_warn("\nother info that might help us debug this:\n");
3151
3152	/* Find a middle lock (if one exists) */
3153	depth = get_lock_depth(other);
3154	do {
3155		if (depth == 0 && (entry != root)) {
3156			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3157			break;
3158		}
3159		middle = entry;
3160		entry = get_lock_parent(entry);
3161		depth--;
3162	} while (entry && entry != root && (depth >= 0));
3163	if (forwards)
3164		print_irq_lock_scenario(root, other,
3165			middle ? middle->class : root->class, other->class);
3166	else
3167		print_irq_lock_scenario(other, root,
3168			middle ? middle->class : other->class, root->class);
3169
3170	lockdep_print_held_locks(curr);
3171
3172	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3173	root->trace = save_trace();
3174	if (!root->trace)
3175		return;
3176	print_shortest_lock_dependencies(other, root);
3177
3178	pr_warn("\nstack backtrace:\n");
3179	dump_stack();
3180}
3181
3182/*
3183 * Prove that in the forwards-direction subgraph starting at <this>
3184 * there is no lock matching <mask>:
3185 */
3186static int
3187check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3188		     enum lock_usage_bit bit, const char *irqclass)
3189{
3190	int ret;
3191	struct lock_list root;
3192	struct lock_list *uninitialized_var(target_entry);
3193
3194	root.parent = NULL;
3195	root.class = hlock_class(this);
3196	ret = find_usage_forwards(&root, lock_flag(bit), &target_entry);
3197	if (ret < 0) {
 
3198		print_bfs_bug(ret);
3199		return 0;
3200	}
3201	if (ret == 1)
3202		return ret;
 
 
 
 
 
 
 
 
 
3203
3204	print_irq_inversion_bug(curr, &root, target_entry,
3205				this, 1, irqclass);
3206	return 0;
3207}
3208
3209/*
3210 * Prove that in the backwards-direction subgraph starting at <this>
3211 * there is no lock matching <mask>:
3212 */
3213static int
3214check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3215		      enum lock_usage_bit bit, const char *irqclass)
3216{
3217	int ret;
3218	struct lock_list root;
3219	struct lock_list *uninitialized_var(target_entry);
3220
3221	root.parent = NULL;
3222	root.class = hlock_class(this);
3223	ret = find_usage_backwards(&root, lock_flag(bit), &target_entry);
3224	if (ret < 0) {
 
3225		print_bfs_bug(ret);
3226		return 0;
3227	}
3228	if (ret == 1)
3229		return ret;
 
 
 
 
 
 
 
 
 
3230
3231	print_irq_inversion_bug(curr, &root, target_entry,
3232				this, 0, irqclass);
3233	return 0;
3234}
3235
3236void print_irqtrace_events(struct task_struct *curr)
3237{
3238	printk("irq event stamp: %u\n", curr->irq_events);
 
 
3239	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
3240		curr->hardirq_enable_event, (void *)curr->hardirq_enable_ip,
3241		(void *)curr->hardirq_enable_ip);
3242	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
3243		curr->hardirq_disable_event, (void *)curr->hardirq_disable_ip,
3244		(void *)curr->hardirq_disable_ip);
3245	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
3246		curr->softirq_enable_event, (void *)curr->softirq_enable_ip,
3247		(void *)curr->softirq_enable_ip);
3248	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
3249		curr->softirq_disable_event, (void *)curr->softirq_disable_ip,
3250		(void *)curr->softirq_disable_ip);
3251}
3252
3253static int HARDIRQ_verbose(struct lock_class *class)
3254{
3255#if HARDIRQ_VERBOSE
3256	return class_filter(class);
3257#endif
3258	return 0;
3259}
3260
3261static int SOFTIRQ_verbose(struct lock_class *class)
3262{
3263#if SOFTIRQ_VERBOSE
3264	return class_filter(class);
3265#endif
3266	return 0;
3267}
3268
3269#define STRICT_READ_CHECKS	1
3270
3271static int (*state_verbose_f[])(struct lock_class *class) = {
3272#define LOCKDEP_STATE(__STATE) \
3273	__STATE##_verbose,
3274#include "lockdep_states.h"
3275#undef LOCKDEP_STATE
3276};
3277
3278static inline int state_verbose(enum lock_usage_bit bit,
3279				struct lock_class *class)
3280{
3281	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
3282}
3283
3284typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
3285			     enum lock_usage_bit bit, const char *name);
3286
3287static int
3288mark_lock_irq(struct task_struct *curr, struct held_lock *this,
3289		enum lock_usage_bit new_bit)
3290{
3291	int excl_bit = exclusive_bit(new_bit);
3292	int read = new_bit & LOCK_USAGE_READ_MASK;
3293	int dir = new_bit & LOCK_USAGE_DIR_MASK;
3294
3295	/*
3296	 * mark USED_IN has to look forwards -- to ensure no dependency
3297	 * has ENABLED state, which would allow recursion deadlocks.
3298	 *
3299	 * mark ENABLED has to look backwards -- to ensure no dependee
3300	 * has USED_IN state, which, again, would allow  recursion deadlocks.
3301	 */
3302	check_usage_f usage = dir ?
3303		check_usage_backwards : check_usage_forwards;
3304
3305	/*
3306	 * Validate that this particular lock does not have conflicting
3307	 * usage states.
3308	 */
3309	if (!valid_state(curr, this, new_bit, excl_bit))
3310		return 0;
3311
3312	/*
3313	 * Validate that the lock dependencies don't have conflicting usage
3314	 * states.
3315	 */
3316	if ((!read || STRICT_READ_CHECKS) &&
3317			!usage(curr, this, excl_bit, state_name(new_bit & ~LOCK_USAGE_READ_MASK)))
3318		return 0;
3319
 
3320	/*
3321	 * Check for read in write conflicts
 
3322	 */
3323	if (!read) {
3324		if (!valid_state(curr, this, new_bit, excl_bit + LOCK_USAGE_READ_MASK))
 
 
 
 
3325			return 0;
3326
3327		if (STRICT_READ_CHECKS &&
3328			!usage(curr, this, excl_bit + LOCK_USAGE_READ_MASK,
3329				state_name(new_bit + LOCK_USAGE_READ_MASK)))
 
 
3330			return 0;
3331	}
3332
3333	if (state_verbose(new_bit, hlock_class(this)))
3334		return 2;
3335
3336	return 1;
3337}
3338
3339/*
3340 * Mark all held locks with a usage bit:
3341 */
3342static int
3343mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
3344{
3345	struct held_lock *hlock;
3346	int i;
3347
3348	for (i = 0; i < curr->lockdep_depth; i++) {
3349		enum lock_usage_bit hlock_bit = base_bit;
3350		hlock = curr->held_locks + i;
3351
3352		if (hlock->read)
3353			hlock_bit += LOCK_USAGE_READ_MASK;
3354
3355		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
3356
3357		if (!hlock->check)
3358			continue;
3359
3360		if (!mark_lock(curr, hlock, hlock_bit))
3361			return 0;
3362	}
3363
3364	return 1;
3365}
3366
3367/*
3368 * Hardirqs will be enabled:
3369 */
3370static void __trace_hardirqs_on_caller(unsigned long ip)
3371{
3372	struct task_struct *curr = current;
3373
3374	/* we'll do an OFF -> ON transition: */
3375	curr->hardirqs_enabled = 1;
3376
3377	/*
3378	 * We are going to turn hardirqs on, so set the
3379	 * usage bit for all held locks:
3380	 */
3381	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
3382		return;
3383	/*
3384	 * If we have softirqs enabled, then set the usage
3385	 * bit for all held locks. (disabled hardirqs prevented
3386	 * this bit from being set before)
3387	 */
3388	if (curr->softirqs_enabled)
3389		if (!mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ))
3390			return;
3391
3392	curr->hardirq_enable_ip = ip;
3393	curr->hardirq_enable_event = ++curr->irq_events;
3394	debug_atomic_inc(hardirqs_on_events);
3395}
3396
3397void lockdep_hardirqs_on(unsigned long ip)
 
 
 
 
 
 
 
 
3398{
3399	if (unlikely(!debug_locks || current->lockdep_recursion))
 
 
 
 
 
 
 
 
 
3400		return;
3401
3402	if (unlikely(current->hardirqs_enabled)) {
3403		/*
3404		 * Neither irq nor preemption are disabled here
3405		 * so this is racy by nature but losing one hit
3406		 * in a stat is not a big deal.
3407		 */
3408		__debug_atomic_inc(redundant_hardirqs_on);
3409		return;
3410	}
3411
3412	/*
3413	 * We're enabling irqs and according to our state above irqs weren't
3414	 * already enabled, yet we find the hardware thinks they are in fact
3415	 * enabled.. someone messed up their IRQ state tracing.
3416	 */
3417	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3418		return;
3419
3420	/*
3421	 * See the fine text that goes along with this variable definition.
3422	 */
3423	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
3424		return;
3425
3426	/*
3427	 * Can't allow enabling interrupts while in an interrupt handler,
3428	 * that's general bad form and such. Recursion, limited stack etc..
3429	 */
3430	if (DEBUG_LOCKS_WARN_ON(current->hardirq_context))
3431		return;
3432
3433	current->lockdep_recursion = 1;
3434	__trace_hardirqs_on_caller(ip);
3435	current->lockdep_recursion = 0;
 
 
3436}
3437NOKPROBE_SYMBOL(lockdep_hardirqs_on);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3438
3439/*
3440 * Hardirqs were disabled:
3441 */
3442void lockdep_hardirqs_off(unsigned long ip)
3443{
3444	struct task_struct *curr = current;
 
3445
3446	if (unlikely(!debug_locks || current->lockdep_recursion))
 
 
 
 
 
 
 
 
3447		return;
3448
3449	/*
3450	 * So we're supposed to get called after you mask local IRQs, but for
3451	 * some reason the hardware doesn't quite think you did a proper job.
3452	 */
3453	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3454		return;
3455
3456	if (curr->hardirqs_enabled) {
 
 
3457		/*
3458		 * We have done an ON -> OFF transition:
3459		 */
3460		curr->hardirqs_enabled = 0;
3461		curr->hardirq_disable_ip = ip;
3462		curr->hardirq_disable_event = ++curr->irq_events;
3463		debug_atomic_inc(hardirqs_off_events);
3464	} else
3465		debug_atomic_inc(redundant_hardirqs_off);
 
3466}
3467NOKPROBE_SYMBOL(lockdep_hardirqs_off);
3468
3469/*
3470 * Softirqs will be enabled:
3471 */
3472void trace_softirqs_on(unsigned long ip)
3473{
3474	struct task_struct *curr = current;
3475
3476	if (unlikely(!debug_locks || current->lockdep_recursion))
3477		return;
3478
3479	/*
3480	 * We fancy IRQs being disabled here, see softirq.c, avoids
3481	 * funny state and nesting things.
3482	 */
3483	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3484		return;
3485
3486	if (curr->softirqs_enabled) {
3487		debug_atomic_inc(redundant_softirqs_on);
3488		return;
3489	}
3490
3491	current->lockdep_recursion = 1;
3492	/*
3493	 * We'll do an OFF -> ON transition:
3494	 */
3495	curr->softirqs_enabled = 1;
3496	curr->softirq_enable_ip = ip;
3497	curr->softirq_enable_event = ++curr->irq_events;
3498	debug_atomic_inc(softirqs_on_events);
3499	/*
3500	 * We are going to turn softirqs on, so set the
3501	 * usage bit for all held locks, if hardirqs are
3502	 * enabled too:
3503	 */
3504	if (curr->hardirqs_enabled)
3505		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
3506	current->lockdep_recursion = 0;
3507}
3508
3509/*
3510 * Softirqs were disabled:
3511 */
3512void trace_softirqs_off(unsigned long ip)
3513{
3514	struct task_struct *curr = current;
3515
3516	if (unlikely(!debug_locks || current->lockdep_recursion))
3517		return;
3518
3519	/*
3520	 * We fancy IRQs being disabled here, see softirq.c
3521	 */
3522	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3523		return;
3524
3525	if (curr->softirqs_enabled) {
 
 
3526		/*
3527		 * We have done an ON -> OFF transition:
3528		 */
3529		curr->softirqs_enabled = 0;
3530		curr->softirq_disable_ip = ip;
3531		curr->softirq_disable_event = ++curr->irq_events;
3532		debug_atomic_inc(softirqs_off_events);
3533		/*
3534		 * Whoops, we wanted softirqs off, so why aren't they?
3535		 */
3536		DEBUG_LOCKS_WARN_ON(!softirq_count());
3537	} else
3538		debug_atomic_inc(redundant_softirqs_off);
3539}
3540
3541static int
3542mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
3543{
3544	if (!check)
3545		goto lock_used;
3546
3547	/*
3548	 * If non-trylock use in a hardirq or softirq context, then
3549	 * mark the lock as used in these contexts:
3550	 */
3551	if (!hlock->trylock) {
3552		if (hlock->read) {
3553			if (curr->hardirq_context)
3554				if (!mark_lock(curr, hlock,
3555						LOCK_USED_IN_HARDIRQ_READ))
3556					return 0;
3557			if (curr->softirq_context)
3558				if (!mark_lock(curr, hlock,
3559						LOCK_USED_IN_SOFTIRQ_READ))
3560					return 0;
3561		} else {
3562			if (curr->hardirq_context)
3563				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
3564					return 0;
3565			if (curr->softirq_context)
3566				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
3567					return 0;
3568		}
3569	}
3570	if (!hlock->hardirqs_off) {
 
 
 
 
 
 
3571		if (hlock->read) {
3572			if (!mark_lock(curr, hlock,
3573					LOCK_ENABLED_HARDIRQ_READ))
3574				return 0;
3575			if (curr->softirqs_enabled)
3576				if (!mark_lock(curr, hlock,
3577						LOCK_ENABLED_SOFTIRQ_READ))
3578					return 0;
3579		} else {
3580			if (!mark_lock(curr, hlock,
3581					LOCK_ENABLED_HARDIRQ))
3582				return 0;
3583			if (curr->softirqs_enabled)
3584				if (!mark_lock(curr, hlock,
3585						LOCK_ENABLED_SOFTIRQ))
3586					return 0;
3587		}
3588	}
3589
3590lock_used:
3591	/* mark it as used: */
3592	if (!mark_lock(curr, hlock, LOCK_USED))
3593		return 0;
3594
3595	return 1;
3596}
3597
3598static inline unsigned int task_irq_context(struct task_struct *task)
3599{
3600	return 2 * !!task->hardirq_context + !!task->softirq_context;
 
3601}
3602
3603static int separate_irq_context(struct task_struct *curr,
3604		struct held_lock *hlock)
3605{
3606	unsigned int depth = curr->lockdep_depth;
3607
3608	/*
3609	 * Keep track of points where we cross into an interrupt context:
3610	 */
3611	if (depth) {
3612		struct held_lock *prev_hlock;
3613
3614		prev_hlock = curr->held_locks + depth-1;
3615		/*
3616		 * If we cross into another context, reset the
3617		 * hash key (this also prevents the checking and the
3618		 * adding of the dependency to 'prev'):
3619		 */
3620		if (prev_hlock->irq_context != hlock->irq_context)
3621			return 1;
3622	}
3623	return 0;
3624}
3625
3626/*
3627 * Mark a lock with a usage bit, and validate the state transition:
3628 */
3629static int mark_lock(struct task_struct *curr, struct held_lock *this,
3630			     enum lock_usage_bit new_bit)
3631{
3632	unsigned int new_mask = 1 << new_bit, ret = 1;
3633
3634	if (new_bit >= LOCK_USAGE_STATES) {
3635		DEBUG_LOCKS_WARN_ON(1);
3636		return 0;
3637	}
3638
 
 
 
 
 
3639	/*
3640	 * If already set then do not dirty the cacheline,
3641	 * nor do any checks:
3642	 */
3643	if (likely(hlock_class(this)->usage_mask & new_mask))
3644		return 1;
3645
3646	if (!graph_lock())
3647		return 0;
3648	/*
3649	 * Make sure we didn't race:
3650	 */
3651	if (unlikely(hlock_class(this)->usage_mask & new_mask)) {
3652		graph_unlock();
3653		return 1;
3654	}
 
3655
3656	hlock_class(this)->usage_mask |= new_mask;
3657
3658	if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
3659		return 0;
 
 
3660
3661	switch (new_bit) {
3662	case LOCK_USED:
3663		debug_atomic_dec(nr_unused_locks);
3664		break;
3665	default:
3666		ret = mark_lock_irq(curr, this, new_bit);
3667		if (!ret)
3668			return 0;
3669	}
3670
 
3671	graph_unlock();
3672
3673	/*
3674	 * We must printk outside of the graph_lock:
3675	 */
3676	if (ret == 2) {
3677		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
3678		print_lock(this);
3679		print_irqtrace_events(curr);
3680		dump_stack();
3681	}
3682
3683	return ret;
3684}
3685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3686#else /* CONFIG_PROVE_LOCKING */
3687
3688static inline int
3689mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
3690{
3691	return 1;
3692}
3693
3694static inline unsigned int task_irq_context(struct task_struct *task)
3695{
3696	return 0;
3697}
3698
3699static inline int separate_irq_context(struct task_struct *curr,
3700		struct held_lock *hlock)
3701{
3702	return 0;
3703}
3704
 
 
 
 
 
 
3705#endif /* CONFIG_PROVE_LOCKING */
3706
3707/*
3708 * Initialize a lock instance's lock-class mapping info:
3709 */
3710void lockdep_init_map(struct lockdep_map *lock, const char *name,
3711		      struct lock_class_key *key, int subclass)
 
3712{
3713	int i;
3714
3715	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
3716		lock->class_cache[i] = NULL;
3717
3718#ifdef CONFIG_LOCK_STAT
3719	lock->cpu = raw_smp_processor_id();
3720#endif
3721
3722	/*
3723	 * Can't be having no nameless bastards around this place!
3724	 */
3725	if (DEBUG_LOCKS_WARN_ON(!name)) {
3726		lock->name = "NULL";
3727		return;
3728	}
3729
3730	lock->name = name;
3731
 
 
 
 
3732	/*
3733	 * No key, no joy, we need to hash something.
3734	 */
3735	if (DEBUG_LOCKS_WARN_ON(!key))
3736		return;
3737	/*
3738	 * Sanity check, the lock-class key must either have been allocated
3739	 * statically or must have been registered as a dynamic key.
3740	 */
3741	if (!static_obj(key) && !is_dynamic_key(key)) {
3742		if (debug_locks)
3743			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
3744		DEBUG_LOCKS_WARN_ON(1);
3745		return;
3746	}
3747	lock->key = key;
3748
3749	if (unlikely(!debug_locks))
3750		return;
3751
3752	if (subclass) {
3753		unsigned long flags;
3754
3755		if (DEBUG_LOCKS_WARN_ON(current->lockdep_recursion))
3756			return;
3757
3758		raw_local_irq_save(flags);
3759		current->lockdep_recursion = 1;
3760		register_lock_class(lock, subclass, 1);
3761		current->lockdep_recursion = 0;
3762		raw_local_irq_restore(flags);
3763	}
3764}
3765EXPORT_SYMBOL_GPL(lockdep_init_map);
3766
3767struct lock_class_key __lockdep_no_validate__;
3768EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
3769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3770static void
3771print_lock_nested_lock_not_held(struct task_struct *curr,
3772				struct held_lock *hlock,
3773				unsigned long ip)
3774{
3775	if (!debug_locks_off())
3776		return;
3777	if (debug_locks_silent)
3778		return;
3779
3780	pr_warn("\n");
3781	pr_warn("==================================\n");
3782	pr_warn("WARNING: Nested lock was not taken\n");
3783	print_kernel_ident();
3784	pr_warn("----------------------------------\n");
3785
3786	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
3787	print_lock(hlock);
3788
3789	pr_warn("\nbut this task is not holding:\n");
3790	pr_warn("%s\n", hlock->nest_lock->name);
3791
3792	pr_warn("\nstack backtrace:\n");
3793	dump_stack();
3794
3795	pr_warn("\nother info that might help us debug this:\n");
3796	lockdep_print_held_locks(curr);
3797
3798	pr_warn("\nstack backtrace:\n");
3799	dump_stack();
3800}
3801
3802static int __lock_is_held(const struct lockdep_map *lock, int read);
3803
3804/*
3805 * This gets called for every mutex_lock*()/spin_lock*() operation.
3806 * We maintain the dependency maps and validate the locking attempt:
3807 *
3808 * The callers must make sure that IRQs are disabled before calling it,
3809 * otherwise we could get an interrupt which would want to take locks,
3810 * which would end up in lockdep again.
3811 */
3812static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
3813			  int trylock, int read, int check, int hardirqs_off,
3814			  struct lockdep_map *nest_lock, unsigned long ip,
3815			  int references, int pin_count)
3816{
3817	struct task_struct *curr = current;
3818	struct lock_class *class = NULL;
3819	struct held_lock *hlock;
3820	unsigned int depth;
3821	int chain_head = 0;
3822	int class_idx;
3823	u64 chain_key;
3824
3825	if (unlikely(!debug_locks))
3826		return 0;
3827
3828	if (!prove_locking || lock->key == &__lockdep_no_validate__)
3829		check = 0;
3830
3831	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
3832		class = lock->class_cache[subclass];
3833	/*
3834	 * Not cached?
3835	 */
3836	if (unlikely(!class)) {
3837		class = register_lock_class(lock, subclass, 0);
3838		if (!class)
3839			return 0;
3840	}
3841
3842	debug_class_ops_inc(class);
3843
3844	if (very_verbose(class)) {
3845		printk("\nacquire class [%px] %s", class->key, class->name);
3846		if (class->name_version > 1)
3847			printk(KERN_CONT "#%d", class->name_version);
3848		printk(KERN_CONT "\n");
3849		dump_stack();
3850	}
3851
3852	/*
3853	 * Add the lock to the list of currently held locks.
3854	 * (we dont increase the depth just yet, up until the
3855	 * dependency checks are done)
3856	 */
3857	depth = curr->lockdep_depth;
3858	/*
3859	 * Ran out of static storage for our per-task lock stack again have we?
3860	 */
3861	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
3862		return 0;
3863
3864	class_idx = class - lock_classes;
3865
3866	if (depth) {
 
3867		hlock = curr->held_locks + depth - 1;
3868		if (hlock->class_idx == class_idx && nest_lock) {
3869			if (!references)
3870				references++;
3871
3872			if (!hlock->references)
3873				hlock->references++;
3874
3875			hlock->references += references;
3876
3877			/* Overflow */
3878			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
3879				return 0;
3880
3881			return 2;
3882		}
3883	}
3884
3885	hlock = curr->held_locks + depth;
3886	/*
3887	 * Plain impossible, we just registered it and checked it weren't no
3888	 * NULL like.. I bet this mushroom I ate was good!
3889	 */
3890	if (DEBUG_LOCKS_WARN_ON(!class))
3891		return 0;
3892	hlock->class_idx = class_idx;
3893	hlock->acquire_ip = ip;
3894	hlock->instance = lock;
3895	hlock->nest_lock = nest_lock;
3896	hlock->irq_context = task_irq_context(curr);
3897	hlock->trylock = trylock;
3898	hlock->read = read;
3899	hlock->check = check;
 
3900	hlock->hardirqs_off = !!hardirqs_off;
3901	hlock->references = references;
3902#ifdef CONFIG_LOCK_STAT
3903	hlock->waittime_stamp = 0;
3904	hlock->holdtime_stamp = lockstat_clock();
3905#endif
3906	hlock->pin_count = pin_count;
3907
 
 
 
3908	/* Initialize the lock usage bit */
3909	if (!mark_usage(curr, hlock, check))
3910		return 0;
3911
3912	/*
3913	 * Calculate the chain hash: it's the combined hash of all the
3914	 * lock keys along the dependency chain. We save the hash value
3915	 * at every step so that we can get the current hash easily
3916	 * after unlock. The chain hash is then used to cache dependency
3917	 * results.
3918	 *
3919	 * The 'key ID' is what is the most compact key value to drive
3920	 * the hash, not class->key.
3921	 */
3922	/*
3923	 * Whoops, we did it again.. class_idx is invalid.
3924	 */
3925	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
3926		return 0;
3927
3928	chain_key = curr->curr_chain_key;
3929	if (!depth) {
3930		/*
3931		 * How can we have a chain hash when we ain't got no keys?!
3932		 */
3933		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
3934			return 0;
3935		chain_head = 1;
3936	}
3937
3938	hlock->prev_chain_key = chain_key;
3939	if (separate_irq_context(curr, hlock)) {
3940		chain_key = INITIAL_CHAIN_KEY;
3941		chain_head = 1;
3942	}
3943	chain_key = iterate_chain_key(chain_key, class_idx);
3944
3945	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
3946		print_lock_nested_lock_not_held(curr, hlock, ip);
3947		return 0;
3948	}
3949
3950	if (!debug_locks_silent) {
3951		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
3952		WARN_ON_ONCE(!hlock_class(hlock)->key);
3953	}
3954
3955	if (!validate_chain(curr, hlock, chain_head, chain_key))
3956		return 0;
3957
 
 
 
 
3958	curr->curr_chain_key = chain_key;
3959	curr->lockdep_depth++;
3960	check_chain_key(curr);
3961#ifdef CONFIG_DEBUG_LOCKDEP
3962	if (unlikely(!debug_locks))
3963		return 0;
3964#endif
3965	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
3966		debug_locks_off();
3967		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
3968		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
3969		       curr->lockdep_depth, MAX_LOCK_DEPTH);
3970
3971		lockdep_print_held_locks(current);
3972		debug_show_all_locks();
3973		dump_stack();
3974
3975		return 0;
3976	}
3977
3978	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
3979		max_lockdep_depth = curr->lockdep_depth;
3980
3981	return 1;
3982}
3983
3984static void print_unlock_imbalance_bug(struct task_struct *curr,
3985				       struct lockdep_map *lock,
3986				       unsigned long ip)
3987{
3988	if (!debug_locks_off())
3989		return;
3990	if (debug_locks_silent)
3991		return;
3992
3993	pr_warn("\n");
3994	pr_warn("=====================================\n");
3995	pr_warn("WARNING: bad unlock balance detected!\n");
3996	print_kernel_ident();
3997	pr_warn("-------------------------------------\n");
3998	pr_warn("%s/%d is trying to release lock (",
3999		curr->comm, task_pid_nr(curr));
4000	print_lockdep_cache(lock);
4001	pr_cont(") at:\n");
4002	print_ip_sym(ip);
4003	pr_warn("but there are no more locks to release!\n");
4004	pr_warn("\nother info that might help us debug this:\n");
4005	lockdep_print_held_locks(curr);
4006
4007	pr_warn("\nstack backtrace:\n");
4008	dump_stack();
4009}
4010
4011static int match_held_lock(const struct held_lock *hlock,
4012					const struct lockdep_map *lock)
4013{
4014	if (hlock->instance == lock)
4015		return 1;
4016
4017	if (hlock->references) {
4018		const struct lock_class *class = lock->class_cache[0];
4019
4020		if (!class)
4021			class = look_up_lock_class(lock, 0);
4022
4023		/*
4024		 * If look_up_lock_class() failed to find a class, we're trying
4025		 * to test if we hold a lock that has never yet been acquired.
4026		 * Clearly if the lock hasn't been acquired _ever_, we're not
4027		 * holding it either, so report failure.
4028		 */
4029		if (!class)
4030			return 0;
4031
4032		/*
4033		 * References, but not a lock we're actually ref-counting?
4034		 * State got messed up, follow the sites that change ->references
4035		 * and try to make sense of it.
4036		 */
4037		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
4038			return 0;
4039
4040		if (hlock->class_idx == class - lock_classes)
4041			return 1;
4042	}
4043
4044	return 0;
4045}
4046
4047/* @depth must not be zero */
4048static struct held_lock *find_held_lock(struct task_struct *curr,
4049					struct lockdep_map *lock,
4050					unsigned int depth, int *idx)
4051{
4052	struct held_lock *ret, *hlock, *prev_hlock;
4053	int i;
4054
4055	i = depth - 1;
4056	hlock = curr->held_locks + i;
4057	ret = hlock;
4058	if (match_held_lock(hlock, lock))
4059		goto out;
4060
4061	ret = NULL;
4062	for (i--, prev_hlock = hlock--;
4063	     i >= 0;
4064	     i--, prev_hlock = hlock--) {
4065		/*
4066		 * We must not cross into another context:
4067		 */
4068		if (prev_hlock->irq_context != hlock->irq_context) {
4069			ret = NULL;
4070			break;
4071		}
4072		if (match_held_lock(hlock, lock)) {
4073			ret = hlock;
4074			break;
4075		}
4076	}
4077
4078out:
4079	*idx = i;
4080	return ret;
4081}
4082
4083static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
4084				int idx, unsigned int *merged)
4085{
4086	struct held_lock *hlock;
4087	int first_idx = idx;
4088
4089	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4090		return 0;
4091
4092	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
4093		switch (__lock_acquire(hlock->instance,
4094				    hlock_class(hlock)->subclass,
4095				    hlock->trylock,
4096				    hlock->read, hlock->check,
4097				    hlock->hardirqs_off,
4098				    hlock->nest_lock, hlock->acquire_ip,
4099				    hlock->references, hlock->pin_count)) {
4100		case 0:
4101			return 1;
4102		case 1:
4103			break;
4104		case 2:
4105			*merged += (idx == first_idx);
4106			break;
4107		default:
4108			WARN_ON(1);
4109			return 0;
4110		}
4111	}
4112	return 0;
4113}
4114
4115static int
4116__lock_set_class(struct lockdep_map *lock, const char *name,
4117		 struct lock_class_key *key, unsigned int subclass,
4118		 unsigned long ip)
4119{
4120	struct task_struct *curr = current;
4121	unsigned int depth, merged = 0;
4122	struct held_lock *hlock;
4123	struct lock_class *class;
4124	int i;
4125
4126	if (unlikely(!debug_locks))
4127		return 0;
4128
4129	depth = curr->lockdep_depth;
4130	/*
4131	 * This function is about (re)setting the class of a held lock,
4132	 * yet we're not actually holding any locks. Naughty user!
4133	 */
4134	if (DEBUG_LOCKS_WARN_ON(!depth))
4135		return 0;
4136
4137	hlock = find_held_lock(curr, lock, depth, &i);
4138	if (!hlock) {
4139		print_unlock_imbalance_bug(curr, lock, ip);
4140		return 0;
4141	}
4142
4143	lockdep_init_map(lock, name, key, 0);
 
 
 
4144	class = register_lock_class(lock, subclass, 0);
4145	hlock->class_idx = class - lock_classes;
4146
4147	curr->lockdep_depth = i;
4148	curr->curr_chain_key = hlock->prev_chain_key;
4149
4150	if (reacquire_held_locks(curr, depth, i, &merged))
4151		return 0;
4152
4153	/*
4154	 * I took it apart and put it back together again, except now I have
4155	 * these 'spare' parts.. where shall I put them.
4156	 */
4157	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
4158		return 0;
4159	return 1;
4160}
4161
4162static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
4163{
4164	struct task_struct *curr = current;
4165	unsigned int depth, merged = 0;
4166	struct held_lock *hlock;
4167	int i;
4168
4169	if (unlikely(!debug_locks))
4170		return 0;
4171
4172	depth = curr->lockdep_depth;
4173	/*
4174	 * This function is about (re)setting the class of a held lock,
4175	 * yet we're not actually holding any locks. Naughty user!
4176	 */
4177	if (DEBUG_LOCKS_WARN_ON(!depth))
4178		return 0;
4179
4180	hlock = find_held_lock(curr, lock, depth, &i);
4181	if (!hlock) {
4182		print_unlock_imbalance_bug(curr, lock, ip);
4183		return 0;
4184	}
4185
4186	curr->lockdep_depth = i;
4187	curr->curr_chain_key = hlock->prev_chain_key;
4188
4189	WARN(hlock->read, "downgrading a read lock");
4190	hlock->read = 1;
4191	hlock->acquire_ip = ip;
4192
4193	if (reacquire_held_locks(curr, depth, i, &merged))
4194		return 0;
4195
4196	/* Merging can't happen with unchanged classes.. */
4197	if (DEBUG_LOCKS_WARN_ON(merged))
4198		return 0;
4199
4200	/*
4201	 * I took it apart and put it back together again, except now I have
4202	 * these 'spare' parts.. where shall I put them.
4203	 */
4204	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
4205		return 0;
4206
4207	return 1;
4208}
4209
4210/*
4211 * Remove the lock to the list of currently held locks - this gets
4212 * called on mutex_unlock()/spin_unlock*() (or on a failed
4213 * mutex_lock_interruptible()).
4214 *
4215 * @nested is an hysterical artifact, needs a tree wide cleanup.
4216 */
4217static int
4218__lock_release(struct lockdep_map *lock, unsigned long ip)
4219{
4220	struct task_struct *curr = current;
4221	unsigned int depth, merged = 1;
4222	struct held_lock *hlock;
4223	int i;
4224
4225	if (unlikely(!debug_locks))
4226		return 0;
4227
4228	depth = curr->lockdep_depth;
4229	/*
4230	 * So we're all set to release this lock.. wait what lock? We don't
4231	 * own any locks, you've been drinking again?
4232	 */
4233	if (depth <= 0) {
4234		print_unlock_imbalance_bug(curr, lock, ip);
4235		return 0;
4236	}
4237
4238	/*
4239	 * Check whether the lock exists in the current stack
4240	 * of held locks:
4241	 */
4242	hlock = find_held_lock(curr, lock, depth, &i);
4243	if (!hlock) {
4244		print_unlock_imbalance_bug(curr, lock, ip);
4245		return 0;
4246	}
4247
4248	if (hlock->instance == lock)
4249		lock_release_holdtime(hlock);
4250
4251	WARN(hlock->pin_count, "releasing a pinned lock\n");
4252
4253	if (hlock->references) {
4254		hlock->references--;
4255		if (hlock->references) {
4256			/*
4257			 * We had, and after removing one, still have
4258			 * references, the current lock stack is still
4259			 * valid. We're done!
4260			 */
4261			return 1;
4262		}
4263	}
4264
4265	/*
4266	 * We have the right lock to unlock, 'hlock' points to it.
4267	 * Now we remove it from the stack, and add back the other
4268	 * entries (if any), recalculating the hash along the way:
4269	 */
4270
4271	curr->lockdep_depth = i;
4272	curr->curr_chain_key = hlock->prev_chain_key;
4273
4274	/*
4275	 * The most likely case is when the unlock is on the innermost
4276	 * lock. In this case, we are done!
4277	 */
4278	if (i == depth-1)
4279		return 1;
4280
4281	if (reacquire_held_locks(curr, depth, i + 1, &merged))
4282		return 0;
4283
4284	/*
4285	 * We had N bottles of beer on the wall, we drank one, but now
4286	 * there's not N-1 bottles of beer left on the wall...
4287	 * Pouring two of the bottles together is acceptable.
4288	 */
4289	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
4290
4291	/*
4292	 * Since reacquire_held_locks() would have called check_chain_key()
4293	 * indirectly via __lock_acquire(), we don't need to do it again
4294	 * on return.
4295	 */
4296	return 0;
4297}
4298
4299static nokprobe_inline
4300int __lock_is_held(const struct lockdep_map *lock, int read)
4301{
4302	struct task_struct *curr = current;
4303	int i;
4304
4305	for (i = 0; i < curr->lockdep_depth; i++) {
4306		struct held_lock *hlock = curr->held_locks + i;
4307
4308		if (match_held_lock(hlock, lock)) {
4309			if (read == -1 || hlock->read == read)
4310				return 1;
4311
4312			return 0;
4313		}
4314	}
4315
4316	return 0;
4317}
4318
4319static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
4320{
4321	struct pin_cookie cookie = NIL_COOKIE;
4322	struct task_struct *curr = current;
4323	int i;
4324
4325	if (unlikely(!debug_locks))
4326		return cookie;
4327
4328	for (i = 0; i < curr->lockdep_depth; i++) {
4329		struct held_lock *hlock = curr->held_locks + i;
4330
4331		if (match_held_lock(hlock, lock)) {
4332			/*
4333			 * Grab 16bits of randomness; this is sufficient to not
4334			 * be guessable and still allows some pin nesting in
4335			 * our u32 pin_count.
4336			 */
4337			cookie.val = 1 + (prandom_u32() >> 16);
4338			hlock->pin_count += cookie.val;
4339			return cookie;
4340		}
4341	}
4342
4343	WARN(1, "pinning an unheld lock\n");
4344	return cookie;
4345}
4346
4347static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4348{
4349	struct task_struct *curr = current;
4350	int i;
4351
4352	if (unlikely(!debug_locks))
4353		return;
4354
4355	for (i = 0; i < curr->lockdep_depth; i++) {
4356		struct held_lock *hlock = curr->held_locks + i;
4357
4358		if (match_held_lock(hlock, lock)) {
4359			hlock->pin_count += cookie.val;
4360			return;
4361		}
4362	}
4363
4364	WARN(1, "pinning an unheld lock\n");
4365}
4366
4367static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4368{
4369	struct task_struct *curr = current;
4370	int i;
4371
4372	if (unlikely(!debug_locks))
4373		return;
4374
4375	for (i = 0; i < curr->lockdep_depth; i++) {
4376		struct held_lock *hlock = curr->held_locks + i;
4377
4378		if (match_held_lock(hlock, lock)) {
4379			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
4380				return;
4381
4382			hlock->pin_count -= cookie.val;
4383
4384			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
4385				hlock->pin_count = 0;
4386
4387			return;
4388		}
4389	}
4390
4391	WARN(1, "unpinning an unheld lock\n");
4392}
4393
4394/*
4395 * Check whether we follow the irq-flags state precisely:
4396 */
4397static void check_flags(unsigned long flags)
4398{
4399#if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
4400	if (!debug_locks)
4401		return;
4402
 
 
 
4403	if (irqs_disabled_flags(flags)) {
4404		if (DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)) {
4405			printk("possible reason: unannotated irqs-off.\n");
4406		}
4407	} else {
4408		if (DEBUG_LOCKS_WARN_ON(!current->hardirqs_enabled)) {
4409			printk("possible reason: unannotated irqs-on.\n");
4410		}
4411	}
4412
 
4413	/*
4414	 * We dont accurately track softirq state in e.g.
4415	 * hardirq contexts (such as on 4KSTACKS), so only
4416	 * check if not in hardirq contexts:
4417	 */
4418	if (!hardirq_count()) {
4419		if (softirq_count()) {
4420			/* like the above, but with softirqs */
4421			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
4422		} else {
4423			/* lick the above, does it taste good? */
4424			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
4425		}
4426	}
 
4427
4428	if (!debug_locks)
4429		print_irqtrace_events(current);
 
 
4430#endif
4431}
4432
4433void lock_set_class(struct lockdep_map *lock, const char *name,
4434		    struct lock_class_key *key, unsigned int subclass,
4435		    unsigned long ip)
4436{
4437	unsigned long flags;
4438
4439	if (unlikely(current->lockdep_recursion))
4440		return;
4441
4442	raw_local_irq_save(flags);
4443	current->lockdep_recursion = 1;
4444	check_flags(flags);
4445	if (__lock_set_class(lock, name, key, subclass, ip))
4446		check_chain_key(current);
4447	current->lockdep_recursion = 0;
4448	raw_local_irq_restore(flags);
4449}
4450EXPORT_SYMBOL_GPL(lock_set_class);
4451
4452void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
4453{
4454	unsigned long flags;
4455
4456	if (unlikely(current->lockdep_recursion))
4457		return;
4458
4459	raw_local_irq_save(flags);
4460	current->lockdep_recursion = 1;
4461	check_flags(flags);
4462	if (__lock_downgrade(lock, ip))
4463		check_chain_key(current);
4464	current->lockdep_recursion = 0;
4465	raw_local_irq_restore(flags);
4466}
4467EXPORT_SYMBOL_GPL(lock_downgrade);
4468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4469/*
4470 * We are not always called with irqs disabled - do that here,
4471 * and also avoid lockdep recursion:
4472 */
4473void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4474			  int trylock, int read, int check,
4475			  struct lockdep_map *nest_lock, unsigned long ip)
4476{
4477	unsigned long flags;
4478
4479	if (unlikely(current->lockdep_recursion))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4480		return;
 
4481
4482	raw_local_irq_save(flags);
4483	check_flags(flags);
4484
4485	current->lockdep_recursion = 1;
4486	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
4487	__lock_acquire(lock, subclass, trylock, read, check,
4488		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
4489	current->lockdep_recursion = 0;
4490	raw_local_irq_restore(flags);
4491}
4492EXPORT_SYMBOL_GPL(lock_acquire);
4493
4494void lock_release(struct lockdep_map *lock, int nested,
4495			  unsigned long ip)
4496{
4497	unsigned long flags;
4498
4499	if (unlikely(current->lockdep_recursion))
 
 
4500		return;
4501
4502	raw_local_irq_save(flags);
4503	check_flags(flags);
4504	current->lockdep_recursion = 1;
4505	trace_lock_release(lock, ip);
4506	if (__lock_release(lock, ip))
4507		check_chain_key(current);
4508	current->lockdep_recursion = 0;
4509	raw_local_irq_restore(flags);
4510}
4511EXPORT_SYMBOL_GPL(lock_release);
4512
4513int lock_is_held_type(const struct lockdep_map *lock, int read)
 
 
 
 
 
 
 
 
 
4514{
4515	unsigned long flags;
4516	int ret = 0;
4517
4518	if (unlikely(current->lockdep_recursion))
4519		return 1; /* avoid false negative lockdep_assert_held() */
4520
4521	raw_local_irq_save(flags);
4522	check_flags(flags);
4523
4524	current->lockdep_recursion = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4525	ret = __lock_is_held(lock, read);
4526	current->lockdep_recursion = 0;
4527	raw_local_irq_restore(flags);
4528
4529	return ret;
4530}
4531EXPORT_SYMBOL_GPL(lock_is_held_type);
4532NOKPROBE_SYMBOL(lock_is_held_type);
4533
4534struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
4535{
4536	struct pin_cookie cookie = NIL_COOKIE;
4537	unsigned long flags;
4538
4539	if (unlikely(current->lockdep_recursion))
4540		return cookie;
4541
4542	raw_local_irq_save(flags);
4543	check_flags(flags);
4544
4545	current->lockdep_recursion = 1;
4546	cookie = __lock_pin_lock(lock);
4547	current->lockdep_recursion = 0;
4548	raw_local_irq_restore(flags);
4549
4550	return cookie;
4551}
4552EXPORT_SYMBOL_GPL(lock_pin_lock);
4553
4554void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4555{
4556	unsigned long flags;
4557
4558	if (unlikely(current->lockdep_recursion))
4559		return;
4560
4561	raw_local_irq_save(flags);
4562	check_flags(flags);
4563
4564	current->lockdep_recursion = 1;
4565	__lock_repin_lock(lock, cookie);
4566	current->lockdep_recursion = 0;
4567	raw_local_irq_restore(flags);
4568}
4569EXPORT_SYMBOL_GPL(lock_repin_lock);
4570
4571void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4572{
4573	unsigned long flags;
4574
4575	if (unlikely(current->lockdep_recursion))
4576		return;
4577
4578	raw_local_irq_save(flags);
4579	check_flags(flags);
4580
4581	current->lockdep_recursion = 1;
4582	__lock_unpin_lock(lock, cookie);
4583	current->lockdep_recursion = 0;
4584	raw_local_irq_restore(flags);
4585}
4586EXPORT_SYMBOL_GPL(lock_unpin_lock);
4587
4588#ifdef CONFIG_LOCK_STAT
4589static void print_lock_contention_bug(struct task_struct *curr,
4590				      struct lockdep_map *lock,
4591				      unsigned long ip)
4592{
4593	if (!debug_locks_off())
4594		return;
4595	if (debug_locks_silent)
4596		return;
4597
4598	pr_warn("\n");
4599	pr_warn("=================================\n");
4600	pr_warn("WARNING: bad contention detected!\n");
4601	print_kernel_ident();
4602	pr_warn("---------------------------------\n");
4603	pr_warn("%s/%d is trying to contend lock (",
4604		curr->comm, task_pid_nr(curr));
4605	print_lockdep_cache(lock);
4606	pr_cont(") at:\n");
4607	print_ip_sym(ip);
4608	pr_warn("but there are no locks held!\n");
4609	pr_warn("\nother info that might help us debug this:\n");
4610	lockdep_print_held_locks(curr);
4611
4612	pr_warn("\nstack backtrace:\n");
4613	dump_stack();
4614}
4615
4616static void
4617__lock_contended(struct lockdep_map *lock, unsigned long ip)
4618{
4619	struct task_struct *curr = current;
4620	struct held_lock *hlock;
4621	struct lock_class_stats *stats;
4622	unsigned int depth;
4623	int i, contention_point, contending_point;
4624
4625	depth = curr->lockdep_depth;
4626	/*
4627	 * Whee, we contended on this lock, except it seems we're not
4628	 * actually trying to acquire anything much at all..
4629	 */
4630	if (DEBUG_LOCKS_WARN_ON(!depth))
4631		return;
4632
4633	hlock = find_held_lock(curr, lock, depth, &i);
4634	if (!hlock) {
4635		print_lock_contention_bug(curr, lock, ip);
4636		return;
4637	}
4638
4639	if (hlock->instance != lock)
4640		return;
4641
4642	hlock->waittime_stamp = lockstat_clock();
4643
4644	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
4645	contending_point = lock_point(hlock_class(hlock)->contending_point,
4646				      lock->ip);
4647
4648	stats = get_lock_stats(hlock_class(hlock));
4649	if (contention_point < LOCKSTAT_POINTS)
4650		stats->contention_point[contention_point]++;
4651	if (contending_point < LOCKSTAT_POINTS)
4652		stats->contending_point[contending_point]++;
4653	if (lock->cpu != smp_processor_id())
4654		stats->bounces[bounce_contended + !!hlock->read]++;
4655}
4656
4657static void
4658__lock_acquired(struct lockdep_map *lock, unsigned long ip)
4659{
4660	struct task_struct *curr = current;
4661	struct held_lock *hlock;
4662	struct lock_class_stats *stats;
4663	unsigned int depth;
4664	u64 now, waittime = 0;
4665	int i, cpu;
4666
4667	depth = curr->lockdep_depth;
4668	/*
4669	 * Yay, we acquired ownership of this lock we didn't try to
4670	 * acquire, how the heck did that happen?
4671	 */
4672	if (DEBUG_LOCKS_WARN_ON(!depth))
4673		return;
4674
4675	hlock = find_held_lock(curr, lock, depth, &i);
4676	if (!hlock) {
4677		print_lock_contention_bug(curr, lock, _RET_IP_);
4678		return;
4679	}
4680
4681	if (hlock->instance != lock)
4682		return;
4683
4684	cpu = smp_processor_id();
4685	if (hlock->waittime_stamp) {
4686		now = lockstat_clock();
4687		waittime = now - hlock->waittime_stamp;
4688		hlock->holdtime_stamp = now;
4689	}
4690
4691	trace_lock_acquired(lock, ip);
4692
4693	stats = get_lock_stats(hlock_class(hlock));
4694	if (waittime) {
4695		if (hlock->read)
4696			lock_time_inc(&stats->read_waittime, waittime);
4697		else
4698			lock_time_inc(&stats->write_waittime, waittime);
4699	}
4700	if (lock->cpu != cpu)
4701		stats->bounces[bounce_acquired + !!hlock->read]++;
4702
4703	lock->cpu = cpu;
4704	lock->ip = ip;
4705}
4706
4707void lock_contended(struct lockdep_map *lock, unsigned long ip)
4708{
4709	unsigned long flags;
4710
4711	if (unlikely(!lock_stat || !debug_locks))
4712		return;
4713
4714	if (unlikely(current->lockdep_recursion))
4715		return;
4716
4717	raw_local_irq_save(flags);
4718	check_flags(flags);
4719	current->lockdep_recursion = 1;
4720	trace_lock_contended(lock, ip);
4721	__lock_contended(lock, ip);
4722	current->lockdep_recursion = 0;
4723	raw_local_irq_restore(flags);
4724}
4725EXPORT_SYMBOL_GPL(lock_contended);
4726
4727void lock_acquired(struct lockdep_map *lock, unsigned long ip)
4728{
4729	unsigned long flags;
4730
4731	if (unlikely(!lock_stat || !debug_locks))
4732		return;
4733
4734	if (unlikely(current->lockdep_recursion))
4735		return;
4736
4737	raw_local_irq_save(flags);
4738	check_flags(flags);
4739	current->lockdep_recursion = 1;
4740	__lock_acquired(lock, ip);
4741	current->lockdep_recursion = 0;
4742	raw_local_irq_restore(flags);
4743}
4744EXPORT_SYMBOL_GPL(lock_acquired);
4745#endif
4746
4747/*
4748 * Used by the testsuite, sanitize the validator state
4749 * after a simulated failure:
4750 */
4751
4752void lockdep_reset(void)
4753{
4754	unsigned long flags;
4755	int i;
4756
4757	raw_local_irq_save(flags);
4758	lockdep_init_task(current);
4759	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
4760	nr_hardirq_chains = 0;
4761	nr_softirq_chains = 0;
4762	nr_process_chains = 0;
4763	debug_locks = 1;
4764	for (i = 0; i < CHAINHASH_SIZE; i++)
4765		INIT_HLIST_HEAD(chainhash_table + i);
4766	raw_local_irq_restore(flags);
4767}
4768
4769/* Remove a class from a lock chain. Must be called with the graph lock held. */
4770static void remove_class_from_lock_chain(struct pending_free *pf,
4771					 struct lock_chain *chain,
4772					 struct lock_class *class)
4773{
4774#ifdef CONFIG_PROVE_LOCKING
4775	struct lock_chain *new_chain;
4776	u64 chain_key;
4777	int i;
4778
4779	for (i = chain->base; i < chain->base + chain->depth; i++) {
4780		if (chain_hlocks[i] != class - lock_classes)
4781			continue;
4782		/* The code below leaks one chain_hlock[] entry. */
4783		if (--chain->depth > 0) {
4784			memmove(&chain_hlocks[i], &chain_hlocks[i + 1],
4785				(chain->base + chain->depth - i) *
4786				sizeof(chain_hlocks[0]));
4787		}
4788		/*
4789		 * Each lock class occurs at most once in a lock chain so once
4790		 * we found a match we can break out of this loop.
4791		 */
4792		goto recalc;
4793	}
4794	/* Since the chain has not been modified, return. */
4795	return;
4796
4797recalc:
4798	chain_key = INITIAL_CHAIN_KEY;
4799	for (i = chain->base; i < chain->base + chain->depth; i++)
4800		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
4801	if (chain->depth && chain->chain_key == chain_key)
4802		return;
4803	/* Overwrite the chain key for concurrent RCU readers. */
4804	WRITE_ONCE(chain->chain_key, chain_key);
 
 
4805	/*
4806	 * Note: calling hlist_del_rcu() from inside a
4807	 * hlist_for_each_entry_rcu() loop is safe.
4808	 */
4809	hlist_del_rcu(&chain->entry);
4810	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
4811	if (chain->depth == 0)
4812		return;
4813	/*
4814	 * If the modified lock chain matches an existing lock chain, drop
4815	 * the modified lock chain.
4816	 */
4817	if (lookup_chain_cache(chain_key))
4818		return;
4819	new_chain = alloc_lock_chain();
4820	if (WARN_ON_ONCE(!new_chain)) {
4821		debug_locks_off();
4822		return;
4823	}
4824	*new_chain = *chain;
4825	hlist_add_head_rcu(&new_chain->entry, chainhashentry(chain_key));
4826#endif
4827}
4828
4829/* Must be called with the graph lock held. */
4830static void remove_class_from_lock_chains(struct pending_free *pf,
4831					  struct lock_class *class)
4832{
4833	struct lock_chain *chain;
4834	struct hlist_head *head;
4835	int i;
4836
4837	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
4838		head = chainhash_table + i;
4839		hlist_for_each_entry_rcu(chain, head, entry) {
4840			remove_class_from_lock_chain(pf, chain, class);
4841		}
4842	}
4843}
4844
4845/*
4846 * Remove all references to a lock class. The caller must hold the graph lock.
4847 */
4848static void zap_class(struct pending_free *pf, struct lock_class *class)
4849{
4850	struct lock_list *entry;
4851	int i;
4852
4853	WARN_ON_ONCE(!class->key);
4854
4855	/*
4856	 * Remove all dependencies this lock is
4857	 * involved in:
4858	 */
4859	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
4860		entry = list_entries + i;
4861		if (entry->class != class && entry->links_to != class)
4862			continue;
4863		__clear_bit(i, list_entries_in_use);
4864		nr_list_entries--;
4865		list_del_rcu(&entry->entry);
4866	}
4867	if (list_empty(&class->locks_after) &&
4868	    list_empty(&class->locks_before)) {
4869		list_move_tail(&class->lock_entry, &pf->zapped);
4870		hlist_del_rcu(&class->hash_entry);
4871		WRITE_ONCE(class->key, NULL);
4872		WRITE_ONCE(class->name, NULL);
4873		nr_lock_classes--;
4874		__clear_bit(class - lock_classes, lock_classes_in_use);
 
 
4875	} else {
4876		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
4877			  class->name);
4878	}
4879
4880	remove_class_from_lock_chains(pf, class);
 
4881}
4882
4883static void reinit_class(struct lock_class *class)
4884{
4885	void *const p = class;
4886	const unsigned int offset = offsetof(struct lock_class, key);
4887
4888	WARN_ON_ONCE(!class->lock_entry.next);
4889	WARN_ON_ONCE(!list_empty(&class->locks_after));
4890	WARN_ON_ONCE(!list_empty(&class->locks_before));
4891	memset(p + offset, 0, sizeof(*class) - offset);
4892	WARN_ON_ONCE(!class->lock_entry.next);
4893	WARN_ON_ONCE(!list_empty(&class->locks_after));
4894	WARN_ON_ONCE(!list_empty(&class->locks_before));
4895}
4896
4897static inline int within(const void *addr, void *start, unsigned long size)
4898{
4899	return addr >= start && addr < start + size;
4900}
4901
4902static bool inside_selftest(void)
4903{
4904	return current == lockdep_selftest_task_struct;
4905}
4906
4907/* The caller must hold the graph lock. */
4908static struct pending_free *get_pending_free(void)
4909{
4910	return delayed_free.pf + delayed_free.index;
4911}
4912
4913static void free_zapped_rcu(struct rcu_head *cb);
4914
4915/*
4916 * Schedule an RCU callback if no RCU callback is pending. Must be called with
4917 * the graph lock held.
4918 */
4919static void call_rcu_zapped(struct pending_free *pf)
4920{
4921	WARN_ON_ONCE(inside_selftest());
4922
4923	if (list_empty(&pf->zapped))
4924		return;
4925
4926	if (delayed_free.scheduled)
4927		return;
4928
4929	delayed_free.scheduled = true;
4930
4931	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
4932	delayed_free.index ^= 1;
4933
4934	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
4935}
4936
4937/* The caller must hold the graph lock. May be called from RCU context. */
4938static void __free_zapped_classes(struct pending_free *pf)
4939{
4940	struct lock_class *class;
4941
4942	check_data_structures();
4943
4944	list_for_each_entry(class, &pf->zapped, lock_entry)
4945		reinit_class(class);
4946
4947	list_splice_init(&pf->zapped, &free_lock_classes);
4948
4949#ifdef CONFIG_PROVE_LOCKING
4950	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
4951		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
4952	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
4953#endif
4954}
4955
4956static void free_zapped_rcu(struct rcu_head *ch)
4957{
4958	struct pending_free *pf;
4959	unsigned long flags;
4960
4961	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
4962		return;
4963
4964	raw_local_irq_save(flags);
4965	arch_spin_lock(&lockdep_lock);
4966	current->lockdep_recursion = 1;
4967
4968	/* closed head */
4969	pf = delayed_free.pf + (delayed_free.index ^ 1);
4970	__free_zapped_classes(pf);
4971	delayed_free.scheduled = false;
4972
4973	/*
4974	 * If there's anything on the open list, close and start a new callback.
4975	 */
4976	call_rcu_zapped(delayed_free.pf + delayed_free.index);
4977
4978	current->lockdep_recursion = 0;
4979	arch_spin_unlock(&lockdep_lock);
4980	raw_local_irq_restore(flags);
4981}
4982
4983/*
4984 * Remove all lock classes from the class hash table and from the
4985 * all_lock_classes list whose key or name is in the address range [start,
4986 * start + size). Move these lock classes to the zapped_classes list. Must
4987 * be called with the graph lock held.
4988 */
4989static void __lockdep_free_key_range(struct pending_free *pf, void *start,
4990				     unsigned long size)
4991{
4992	struct lock_class *class;
4993	struct hlist_head *head;
4994	int i;
4995
4996	/* Unhash all classes that were created by a module. */
4997	for (i = 0; i < CLASSHASH_SIZE; i++) {
4998		head = classhash_table + i;
4999		hlist_for_each_entry_rcu(class, head, hash_entry) {
5000			if (!within(class->key, start, size) &&
5001			    !within(class->name, start, size))
5002				continue;
5003			zap_class(pf, class);
5004		}
5005	}
5006}
5007
5008/*
5009 * Used in module.c to remove lock classes from memory that is going to be
5010 * freed; and possibly re-used by other modules.
5011 *
5012 * We will have had one synchronize_rcu() before getting here, so we're
5013 * guaranteed nobody will look up these exact classes -- they're properly dead
5014 * but still allocated.
5015 */
5016static void lockdep_free_key_range_reg(void *start, unsigned long size)
5017{
5018	struct pending_free *pf;
5019	unsigned long flags;
5020
5021	init_data_structures_once();
5022
5023	raw_local_irq_save(flags);
5024	arch_spin_lock(&lockdep_lock);
5025	current->lockdep_recursion = 1;
5026	pf = get_pending_free();
5027	__lockdep_free_key_range(pf, start, size);
5028	call_rcu_zapped(pf);
5029	current->lockdep_recursion = 0;
5030	arch_spin_unlock(&lockdep_lock);
5031	raw_local_irq_restore(flags);
5032
5033	/*
5034	 * Wait for any possible iterators from look_up_lock_class() to pass
5035	 * before continuing to free the memory they refer to.
5036	 */
5037	synchronize_rcu();
5038}
5039
5040/*
5041 * Free all lockdep keys in the range [start, start+size). Does not sleep.
5042 * Ignores debug_locks. Must only be used by the lockdep selftests.
5043 */
5044static void lockdep_free_key_range_imm(void *start, unsigned long size)
5045{
5046	struct pending_free *pf = delayed_free.pf;
5047	unsigned long flags;
5048
5049	init_data_structures_once();
5050
5051	raw_local_irq_save(flags);
5052	arch_spin_lock(&lockdep_lock);
5053	__lockdep_free_key_range(pf, start, size);
5054	__free_zapped_classes(pf);
5055	arch_spin_unlock(&lockdep_lock);
5056	raw_local_irq_restore(flags);
5057}
5058
5059void lockdep_free_key_range(void *start, unsigned long size)
5060{
5061	init_data_structures_once();
5062
5063	if (inside_selftest())
5064		lockdep_free_key_range_imm(start, size);
5065	else
5066		lockdep_free_key_range_reg(start, size);
5067}
5068
5069/*
5070 * Check whether any element of the @lock->class_cache[] array refers to a
5071 * registered lock class. The caller must hold either the graph lock or the
5072 * RCU read lock.
5073 */
5074static bool lock_class_cache_is_registered(struct lockdep_map *lock)
5075{
5076	struct lock_class *class;
5077	struct hlist_head *head;
5078	int i, j;
5079
5080	for (i = 0; i < CLASSHASH_SIZE; i++) {
5081		head = classhash_table + i;
5082		hlist_for_each_entry_rcu(class, head, hash_entry) {
5083			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
5084				if (lock->class_cache[j] == class)
5085					return true;
5086		}
5087	}
5088	return false;
5089}
5090
5091/* The caller must hold the graph lock. Does not sleep. */
5092static void __lockdep_reset_lock(struct pending_free *pf,
5093				 struct lockdep_map *lock)
5094{
5095	struct lock_class *class;
5096	int j;
5097
5098	/*
5099	 * Remove all classes this lock might have:
5100	 */
5101	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
5102		/*
5103		 * If the class exists we look it up and zap it:
5104		 */
5105		class = look_up_lock_class(lock, j);
5106		if (class)
5107			zap_class(pf, class);
5108	}
5109	/*
5110	 * Debug check: in the end all mapped classes should
5111	 * be gone.
5112	 */
5113	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
5114		debug_locks_off();
5115}
5116
5117/*
5118 * Remove all information lockdep has about a lock if debug_locks == 1. Free
5119 * released data structures from RCU context.
5120 */
5121static void lockdep_reset_lock_reg(struct lockdep_map *lock)
5122{
5123	struct pending_free *pf;
5124	unsigned long flags;
5125	int locked;
5126
5127	raw_local_irq_save(flags);
5128	locked = graph_lock();
5129	if (!locked)
5130		goto out_irq;
5131
5132	pf = get_pending_free();
5133	__lockdep_reset_lock(pf, lock);
5134	call_rcu_zapped(pf);
5135
5136	graph_unlock();
5137out_irq:
5138	raw_local_irq_restore(flags);
5139}
5140
5141/*
5142 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
5143 * lockdep selftests.
5144 */
5145static void lockdep_reset_lock_imm(struct lockdep_map *lock)
5146{
5147	struct pending_free *pf = delayed_free.pf;
5148	unsigned long flags;
5149
5150	raw_local_irq_save(flags);
5151	arch_spin_lock(&lockdep_lock);
5152	__lockdep_reset_lock(pf, lock);
5153	__free_zapped_classes(pf);
5154	arch_spin_unlock(&lockdep_lock);
5155	raw_local_irq_restore(flags);
5156}
5157
5158void lockdep_reset_lock(struct lockdep_map *lock)
5159{
5160	init_data_structures_once();
5161
5162	if (inside_selftest())
5163		lockdep_reset_lock_imm(lock);
5164	else
5165		lockdep_reset_lock_reg(lock);
5166}
5167
5168/* Unregister a dynamically allocated key. */
 
 
 
 
 
 
5169void lockdep_unregister_key(struct lock_class_key *key)
5170{
5171	struct hlist_head *hash_head = keyhashentry(key);
5172	struct lock_class_key *k;
5173	struct pending_free *pf;
5174	unsigned long flags;
5175	bool found = false;
5176
5177	might_sleep();
5178
5179	if (WARN_ON_ONCE(static_obj(key)))
5180		return;
5181
5182	raw_local_irq_save(flags);
5183	if (!graph_lock())
5184		goto out_irq;
5185
5186	pf = get_pending_free();
5187	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
5188		if (k == key) {
5189			hlist_del_rcu(&k->hash_entry);
5190			found = true;
5191			break;
5192		}
5193	}
5194	WARN_ON_ONCE(!found);
5195	__lockdep_free_key_range(pf, key, 1);
5196	call_rcu_zapped(pf);
5197	graph_unlock();
5198out_irq:
 
 
5199	raw_local_irq_restore(flags);
5200
5201	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
5202	synchronize_rcu();
5203}
5204EXPORT_SYMBOL_GPL(lockdep_unregister_key);
5205
5206void __init lockdep_init(void)
5207{
5208	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
5209
5210	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
5211	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
5212	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
5213	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
5214	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
5215	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
5216	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
5217
5218	printk(" memory used by lock dependency info: %zu kB\n",
5219	       (sizeof(lock_classes) +
5220		sizeof(lock_classes_in_use) +
5221		sizeof(classhash_table) +
5222		sizeof(list_entries) +
5223		sizeof(list_entries_in_use) +
5224		sizeof(chainhash_table) +
5225		sizeof(delayed_free)
5226#ifdef CONFIG_PROVE_LOCKING
5227		+ sizeof(lock_cq)
5228		+ sizeof(lock_chains)
5229		+ sizeof(lock_chains_in_use)
5230		+ sizeof(chain_hlocks)
5231#endif
5232		) / 1024
5233		);
5234
5235#if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
5236	printk(" memory used for stack traces: %zu kB\n",
5237	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
5238	       );
5239#endif
5240
5241	printk(" per task-struct memory footprint: %zu bytes\n",
5242	       sizeof(((struct task_struct *)NULL)->held_locks));
5243}
5244
5245static void
5246print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
5247		     const void *mem_to, struct held_lock *hlock)
5248{
5249	if (!debug_locks_off())
5250		return;
5251	if (debug_locks_silent)
5252		return;
5253
5254	pr_warn("\n");
5255	pr_warn("=========================\n");
5256	pr_warn("WARNING: held lock freed!\n");
5257	print_kernel_ident();
5258	pr_warn("-------------------------\n");
5259	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
5260		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
5261	print_lock(hlock);
5262	lockdep_print_held_locks(curr);
5263
5264	pr_warn("\nstack backtrace:\n");
5265	dump_stack();
5266}
5267
5268static inline int not_in_range(const void* mem_from, unsigned long mem_len,
5269				const void* lock_from, unsigned long lock_len)
5270{
5271	return lock_from + lock_len <= mem_from ||
5272		mem_from + mem_len <= lock_from;
5273}
5274
5275/*
5276 * Called when kernel memory is freed (or unmapped), or if a lock
5277 * is destroyed or reinitialized - this code checks whether there is
5278 * any held lock in the memory range of <from> to <to>:
5279 */
5280void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
5281{
5282	struct task_struct *curr = current;
5283	struct held_lock *hlock;
5284	unsigned long flags;
5285	int i;
5286
5287	if (unlikely(!debug_locks))
5288		return;
5289
5290	raw_local_irq_save(flags);
5291	for (i = 0; i < curr->lockdep_depth; i++) {
5292		hlock = curr->held_locks + i;
5293
5294		if (not_in_range(mem_from, mem_len, hlock->instance,
5295					sizeof(*hlock->instance)))
5296			continue;
5297
5298		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
5299		break;
5300	}
5301	raw_local_irq_restore(flags);
5302}
5303EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
5304
5305static void print_held_locks_bug(void)
5306{
5307	if (!debug_locks_off())
5308		return;
5309	if (debug_locks_silent)
5310		return;
5311
5312	pr_warn("\n");
5313	pr_warn("====================================\n");
5314	pr_warn("WARNING: %s/%d still has locks held!\n",
5315	       current->comm, task_pid_nr(current));
5316	print_kernel_ident();
5317	pr_warn("------------------------------------\n");
5318	lockdep_print_held_locks(current);
5319	pr_warn("\nstack backtrace:\n");
5320	dump_stack();
5321}
5322
5323void debug_check_no_locks_held(void)
5324{
5325	if (unlikely(current->lockdep_depth > 0))
5326		print_held_locks_bug();
5327}
5328EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
5329
5330#ifdef __KERNEL__
5331void debug_show_all_locks(void)
5332{
5333	struct task_struct *g, *p;
5334
5335	if (unlikely(!debug_locks)) {
5336		pr_warn("INFO: lockdep is turned off.\n");
5337		return;
5338	}
5339	pr_warn("\nShowing all locks held in the system:\n");
5340
5341	rcu_read_lock();
5342	for_each_process_thread(g, p) {
5343		if (!p->lockdep_depth)
5344			continue;
5345		lockdep_print_held_locks(p);
5346		touch_nmi_watchdog();
5347		touch_all_softlockup_watchdogs();
5348	}
5349	rcu_read_unlock();
5350
5351	pr_warn("\n");
5352	pr_warn("=============================================\n\n");
5353}
5354EXPORT_SYMBOL_GPL(debug_show_all_locks);
5355#endif
5356
5357/*
5358 * Careful: only use this function if you are sure that
5359 * the task cannot run in parallel!
5360 */
5361void debug_show_held_locks(struct task_struct *task)
5362{
5363	if (unlikely(!debug_locks)) {
5364		printk("INFO: lockdep is turned off.\n");
5365		return;
5366	}
5367	lockdep_print_held_locks(task);
5368}
5369EXPORT_SYMBOL_GPL(debug_show_held_locks);
5370
5371asmlinkage __visible void lockdep_sys_exit(void)
5372{
5373	struct task_struct *curr = current;
5374
5375	if (unlikely(curr->lockdep_depth)) {
5376		if (!debug_locks_off())
5377			return;
5378		pr_warn("\n");
5379		pr_warn("================================================\n");
5380		pr_warn("WARNING: lock held when returning to user space!\n");
5381		print_kernel_ident();
5382		pr_warn("------------------------------------------------\n");
5383		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
5384				curr->comm, curr->pid);
5385		lockdep_print_held_locks(curr);
5386	}
5387
5388	/*
5389	 * The lock history for each syscall should be independent. So wipe the
5390	 * slate clean on return to userspace.
5391	 */
5392	lockdep_invariant_state(false);
5393}
5394
5395void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
5396{
5397	struct task_struct *curr = current;
 
 
5398
5399	/* Note: the following can be executed concurrently, so be careful. */
5400	pr_warn("\n");
5401	pr_warn("=============================\n");
5402	pr_warn("WARNING: suspicious RCU usage\n");
5403	print_kernel_ident();
5404	pr_warn("-----------------------------\n");
5405	pr_warn("%s:%d %s!\n", file, line, s);
5406	pr_warn("\nother info that might help us debug this:\n\n");
5407	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
5408	       !rcu_lockdep_current_cpu_online()
5409			? "RCU used illegally from offline CPU!\n"
5410			: !rcu_is_watching()
5411				? "RCU used illegally from idle CPU!\n"
5412				: "",
5413	       rcu_scheduler_active, debug_locks);
5414
5415	/*
5416	 * If a CPU is in the RCU-free window in idle (ie: in the section
5417	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
5418	 * considers that CPU to be in an "extended quiescent state",
5419	 * which means that RCU will be completely ignoring that CPU.
5420	 * Therefore, rcu_read_lock() and friends have absolutely no
5421	 * effect on a CPU running in that state. In other words, even if
5422	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
5423	 * delete data structures out from under it.  RCU really has no
5424	 * choice here: we need to keep an RCU-free window in idle where
5425	 * the CPU may possibly enter into low power mode. This way we can
5426	 * notice an extended quiescent state to other CPUs that started a grace
5427	 * period. Otherwise we would delay any grace period as long as we run
5428	 * in the idle task.
5429	 *
5430	 * So complain bitterly if someone does call rcu_read_lock(),
5431	 * rcu_read_lock_bh() and so on from extended quiescent states.
5432	 */
5433	if (!rcu_is_watching())
5434		pr_warn("RCU used illegally from extended quiescent state!\n");
5435
5436	lockdep_print_held_locks(curr);
5437	pr_warn("\nstack backtrace:\n");
5438	dump_stack();
 
5439}
5440EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/lockdep.c
   4 *
   5 * Runtime locking correctness validator
   6 *
   7 * Started by Ingo Molnar:
   8 *
   9 *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  10 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  11 *
  12 * this code maps all the lock dependencies as they occur in a live kernel
  13 * and will warn about the following classes of locking bugs:
  14 *
  15 * - lock inversion scenarios
  16 * - circular lock dependencies
  17 * - hardirq/softirq safe/unsafe locking bugs
  18 *
  19 * Bugs are reported even if the current locking scenario does not cause
  20 * any deadlock at this point.
  21 *
  22 * I.e. if anytime in the past two locks were taken in a different order,
  23 * even if it happened for another task, even if those were different
  24 * locks (but of the same class as this lock), this code will detect it.
  25 *
  26 * Thanks to Arjan van de Ven for coming up with the initial idea of
  27 * mapping lock dependencies runtime.
  28 */
  29#define DISABLE_BRANCH_PROFILING
  30#include <linux/mutex.h>
  31#include <linux/sched.h>
  32#include <linux/sched/clock.h>
  33#include <linux/sched/task.h>
  34#include <linux/sched/mm.h>
  35#include <linux/delay.h>
  36#include <linux/module.h>
  37#include <linux/proc_fs.h>
  38#include <linux/seq_file.h>
  39#include <linux/spinlock.h>
  40#include <linux/kallsyms.h>
  41#include <linux/interrupt.h>
  42#include <linux/stacktrace.h>
  43#include <linux/debug_locks.h>
  44#include <linux/irqflags.h>
  45#include <linux/utsname.h>
  46#include <linux/hash.h>
  47#include <linux/ftrace.h>
  48#include <linux/stringify.h>
  49#include <linux/bitmap.h>
  50#include <linux/bitops.h>
  51#include <linux/gfp.h>
  52#include <linux/random.h>
  53#include <linux/jhash.h>
  54#include <linux/nmi.h>
  55#include <linux/rcupdate.h>
  56#include <linux/kprobes.h>
  57#include <linux/lockdep.h>
  58#include <linux/context_tracking.h>
  59
  60#include <asm/sections.h>
  61
  62#include "lockdep_internals.h"
  63
 
  64#include <trace/events/lock.h>
  65
  66#ifdef CONFIG_PROVE_LOCKING
  67static int prove_locking = 1;
  68module_param(prove_locking, int, 0644);
  69#else
  70#define prove_locking 0
  71#endif
  72
  73#ifdef CONFIG_LOCK_STAT
  74static int lock_stat = 1;
  75module_param(lock_stat, int, 0644);
  76#else
  77#define lock_stat 0
  78#endif
  79
  80#ifdef CONFIG_SYSCTL
  81static struct ctl_table kern_lockdep_table[] = {
  82#ifdef CONFIG_PROVE_LOCKING
  83	{
  84		.procname       = "prove_locking",
  85		.data           = &prove_locking,
  86		.maxlen         = sizeof(int),
  87		.mode           = 0644,
  88		.proc_handler   = proc_dointvec,
  89	},
  90#endif /* CONFIG_PROVE_LOCKING */
  91#ifdef CONFIG_LOCK_STAT
  92	{
  93		.procname       = "lock_stat",
  94		.data           = &lock_stat,
  95		.maxlen         = sizeof(int),
  96		.mode           = 0644,
  97		.proc_handler   = proc_dointvec,
  98	},
  99#endif /* CONFIG_LOCK_STAT */
 100	{ }
 101};
 102
 103static __init int kernel_lockdep_sysctls_init(void)
 104{
 105	register_sysctl_init("kernel", kern_lockdep_table);
 106	return 0;
 107}
 108late_initcall(kernel_lockdep_sysctls_init);
 109#endif /* CONFIG_SYSCTL */
 110
 111DEFINE_PER_CPU(unsigned int, lockdep_recursion);
 112EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
 113
 114static __always_inline bool lockdep_enabled(void)
 115{
 116	if (!debug_locks)
 117		return false;
 118
 119	if (this_cpu_read(lockdep_recursion))
 120		return false;
 121
 122	if (current->lockdep_recursion)
 123		return false;
 124
 125	return true;
 126}
 127
 128/*
 129 * lockdep_lock: protects the lockdep graph, the hashes and the
 130 *               class/list/hash allocators.
 131 *
 132 * This is one of the rare exceptions where it's justified
 133 * to use a raw spinlock - we really dont want the spinlock
 134 * code to recurse back into the lockdep code...
 135 */
 136static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
 137static struct task_struct *__owner;
 138
 139static inline void lockdep_lock(void)
 140{
 141	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
 142
 143	__this_cpu_inc(lockdep_recursion);
 144	arch_spin_lock(&__lock);
 145	__owner = current;
 146}
 147
 148static inline void lockdep_unlock(void)
 149{
 150	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
 151
 152	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
 153		return;
 154
 155	__owner = NULL;
 156	arch_spin_unlock(&__lock);
 157	__this_cpu_dec(lockdep_recursion);
 158}
 159
 160static inline bool lockdep_assert_locked(void)
 161{
 162	return DEBUG_LOCKS_WARN_ON(__owner != current);
 163}
 164
 165static struct task_struct *lockdep_selftest_task_struct;
 166
 167
 168static int graph_lock(void)
 169{
 170	lockdep_lock();
 171	/*
 172	 * Make sure that if another CPU detected a bug while
 173	 * walking the graph we dont change it (while the other
 174	 * CPU is busy printing out stuff with the graph lock
 175	 * dropped already)
 176	 */
 177	if (!debug_locks) {
 178		lockdep_unlock();
 179		return 0;
 180	}
 
 
 181	return 1;
 182}
 183
 184static inline void graph_unlock(void)
 185{
 186	lockdep_unlock();
 
 
 
 
 
 
 
 
 
 
 187}
 188
 189/*
 190 * Turn lock debugging off and return with 0 if it was off already,
 191 * and also release the graph lock:
 192 */
 193static inline int debug_locks_off_graph_unlock(void)
 194{
 195	int ret = debug_locks_off();
 196
 197	lockdep_unlock();
 198
 199	return ret;
 200}
 201
 202unsigned long nr_list_entries;
 203static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
 204static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
 205
 206/*
 207 * All data structures here are protected by the global debug_lock.
 208 *
 209 * nr_lock_classes is the number of elements of lock_classes[] that is
 210 * in use.
 211 */
 212#define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
 213#define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
 214static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
 215unsigned long nr_lock_classes;
 216unsigned long nr_zapped_classes;
 217unsigned long max_lock_class_idx;
 
 218struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
 219DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
 220
 221static inline struct lock_class *hlock_class(struct held_lock *hlock)
 222{
 223	unsigned int class_idx = hlock->class_idx;
 224
 225	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
 226	barrier();
 227
 228	if (!test_bit(class_idx, lock_classes_in_use)) {
 229		/*
 230		 * Someone passed in garbage, we give up.
 231		 */
 232		DEBUG_LOCKS_WARN_ON(1);
 233		return NULL;
 234	}
 235
 236	/*
 237	 * At this point, if the passed hlock->class_idx is still garbage,
 238	 * we just have to live with it
 239	 */
 240	return lock_classes + class_idx;
 241}
 242
 243#ifdef CONFIG_LOCK_STAT
 244static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
 245
 246static inline u64 lockstat_clock(void)
 247{
 248	return local_clock();
 249}
 250
 251static int lock_point(unsigned long points[], unsigned long ip)
 252{
 253	int i;
 254
 255	for (i = 0; i < LOCKSTAT_POINTS; i++) {
 256		if (points[i] == 0) {
 257			points[i] = ip;
 258			break;
 259		}
 260		if (points[i] == ip)
 261			break;
 262	}
 263
 264	return i;
 265}
 266
 267static void lock_time_inc(struct lock_time *lt, u64 time)
 268{
 269	if (time > lt->max)
 270		lt->max = time;
 271
 272	if (time < lt->min || !lt->nr)
 273		lt->min = time;
 274
 275	lt->total += time;
 276	lt->nr++;
 277}
 278
 279static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
 280{
 281	if (!src->nr)
 282		return;
 283
 284	if (src->max > dst->max)
 285		dst->max = src->max;
 286
 287	if (src->min < dst->min || !dst->nr)
 288		dst->min = src->min;
 289
 290	dst->total += src->total;
 291	dst->nr += src->nr;
 292}
 293
 294struct lock_class_stats lock_stats(struct lock_class *class)
 295{
 296	struct lock_class_stats stats;
 297	int cpu, i;
 298
 299	memset(&stats, 0, sizeof(struct lock_class_stats));
 300	for_each_possible_cpu(cpu) {
 301		struct lock_class_stats *pcs =
 302			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
 303
 304		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
 305			stats.contention_point[i] += pcs->contention_point[i];
 306
 307		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
 308			stats.contending_point[i] += pcs->contending_point[i];
 309
 310		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
 311		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
 312
 313		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
 314		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
 315
 316		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
 317			stats.bounces[i] += pcs->bounces[i];
 318	}
 319
 320	return stats;
 321}
 322
 323void clear_lock_stats(struct lock_class *class)
 324{
 325	int cpu;
 326
 327	for_each_possible_cpu(cpu) {
 328		struct lock_class_stats *cpu_stats =
 329			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
 330
 331		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
 332	}
 333	memset(class->contention_point, 0, sizeof(class->contention_point));
 334	memset(class->contending_point, 0, sizeof(class->contending_point));
 335}
 336
 337static struct lock_class_stats *get_lock_stats(struct lock_class *class)
 338{
 339	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
 340}
 341
 342static void lock_release_holdtime(struct held_lock *hlock)
 343{
 344	struct lock_class_stats *stats;
 345	u64 holdtime;
 346
 347	if (!lock_stat)
 348		return;
 349
 350	holdtime = lockstat_clock() - hlock->holdtime_stamp;
 351
 352	stats = get_lock_stats(hlock_class(hlock));
 353	if (hlock->read)
 354		lock_time_inc(&stats->read_holdtime, holdtime);
 355	else
 356		lock_time_inc(&stats->write_holdtime, holdtime);
 357}
 358#else
 359static inline void lock_release_holdtime(struct held_lock *hlock)
 360{
 361}
 362#endif
 363
 364/*
 365 * We keep a global list of all lock classes. The list is only accessed with
 366 * the lockdep spinlock lock held. free_lock_classes is a list with free
 367 * elements. These elements are linked together by the lock_entry member in
 368 * struct lock_class.
 369 */
 370static LIST_HEAD(all_lock_classes);
 371static LIST_HEAD(free_lock_classes);
 372
 373/**
 374 * struct pending_free - information about data structures about to be freed
 375 * @zapped: Head of a list with struct lock_class elements.
 376 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
 377 *	are about to be freed.
 378 */
 379struct pending_free {
 380	struct list_head zapped;
 381	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
 382};
 383
 384/**
 385 * struct delayed_free - data structures used for delayed freeing
 386 *
 387 * A data structure for delayed freeing of data structures that may be
 388 * accessed by RCU readers at the time these were freed.
 389 *
 390 * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
 391 * @index:     Index of @pf to which freed data structures are added.
 392 * @scheduled: Whether or not an RCU callback has been scheduled.
 393 * @pf:        Array with information about data structures about to be freed.
 394 */
 395static struct delayed_free {
 396	struct rcu_head		rcu_head;
 397	int			index;
 398	int			scheduled;
 399	struct pending_free	pf[2];
 400} delayed_free;
 401
 402/*
 403 * The lockdep classes are in a hash-table as well, for fast lookup:
 404 */
 405#define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
 406#define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
 407#define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
 408#define classhashentry(key)	(classhash_table + __classhashfn((key)))
 409
 410static struct hlist_head classhash_table[CLASSHASH_SIZE];
 411
 412/*
 413 * We put the lock dependency chains into a hash-table as well, to cache
 414 * their existence:
 415 */
 416#define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
 417#define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
 418#define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
 419#define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
 420
 421static struct hlist_head chainhash_table[CHAINHASH_SIZE];
 422
 423/*
 424 * the id of held_lock
 425 */
 426static inline u16 hlock_id(struct held_lock *hlock)
 427{
 428	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
 429
 430	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
 431}
 432
 433static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
 434{
 435	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
 436}
 437
 438/*
 439 * The hash key of the lock dependency chains is a hash itself too:
 440 * it's a hash of all locks taken up to that lock, including that lock.
 441 * It's a 64-bit hash, because it's important for the keys to be
 442 * unique.
 443 */
 444static inline u64 iterate_chain_key(u64 key, u32 idx)
 445{
 446	u32 k0 = key, k1 = key >> 32;
 447
 448	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
 449
 450	return k0 | (u64)k1 << 32;
 451}
 452
 453void lockdep_init_task(struct task_struct *task)
 454{
 455	task->lockdep_depth = 0; /* no locks held yet */
 456	task->curr_chain_key = INITIAL_CHAIN_KEY;
 457	task->lockdep_recursion = 0;
 458}
 459
 460static __always_inline void lockdep_recursion_inc(void)
 461{
 462	__this_cpu_inc(lockdep_recursion);
 463}
 
 464
 465static __always_inline void lockdep_recursion_finish(void)
 466{
 467	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
 468		__this_cpu_write(lockdep_recursion, 0);
 469}
 
 470
 471void lockdep_set_selftest_task(struct task_struct *task)
 472{
 473	lockdep_selftest_task_struct = task;
 474}
 475
 476/*
 477 * Debugging switches:
 478 */
 479
 480#define VERBOSE			0
 481#define VERY_VERBOSE		0
 482
 483#if VERBOSE
 484# define HARDIRQ_VERBOSE	1
 485# define SOFTIRQ_VERBOSE	1
 486#else
 487# define HARDIRQ_VERBOSE	0
 488# define SOFTIRQ_VERBOSE	0
 489#endif
 490
 491#if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
 492/*
 493 * Quick filtering for interesting events:
 494 */
 495static int class_filter(struct lock_class *class)
 496{
 497#if 0
 498	/* Example */
 499	if (class->name_version == 1 &&
 500			!strcmp(class->name, "lockname"))
 501		return 1;
 502	if (class->name_version == 1 &&
 503			!strcmp(class->name, "&struct->lockfield"))
 504		return 1;
 505#endif
 506	/* Filter everything else. 1 would be to allow everything else */
 507	return 0;
 508}
 509#endif
 510
 511static int verbose(struct lock_class *class)
 512{
 513#if VERBOSE
 514	return class_filter(class);
 515#endif
 516	return 0;
 517}
 518
 519static void print_lockdep_off(const char *bug_msg)
 520{
 521	printk(KERN_DEBUG "%s\n", bug_msg);
 522	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
 523#ifdef CONFIG_LOCK_STAT
 524	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
 525#endif
 526}
 527
 528unsigned long nr_stack_trace_entries;
 529
 530#ifdef CONFIG_PROVE_LOCKING
 531/**
 532 * struct lock_trace - single stack backtrace
 533 * @hash_entry:	Entry in a stack_trace_hash[] list.
 534 * @hash:	jhash() of @entries.
 535 * @nr_entries:	Number of entries in @entries.
 536 * @entries:	Actual stack backtrace.
 537 */
 538struct lock_trace {
 539	struct hlist_node	hash_entry;
 540	u32			hash;
 541	u32			nr_entries;
 542	unsigned long		entries[] __aligned(sizeof(unsigned long));
 543};
 544#define LOCK_TRACE_SIZE_IN_LONGS				\
 545	(sizeof(struct lock_trace) / sizeof(unsigned long))
 546/*
 547 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
 548 */
 549static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
 550static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
 551
 552static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
 553{
 554	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
 555		memcmp(t1->entries, t2->entries,
 556		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
 557}
 558
 559static struct lock_trace *save_trace(void)
 560{
 561	struct lock_trace *trace, *t2;
 562	struct hlist_head *hash_head;
 563	u32 hash;
 564	int max_entries;
 565
 566	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
 567	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
 568
 569	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
 570	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
 571		LOCK_TRACE_SIZE_IN_LONGS;
 
 572
 573	if (max_entries <= 0) {
 
 574		if (!debug_locks_off_graph_unlock())
 575			return NULL;
 576
 577		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
 578		dump_stack();
 579
 580		return NULL;
 581	}
 582	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
 583
 584	hash = jhash(trace->entries, trace->nr_entries *
 585		     sizeof(trace->entries[0]), 0);
 586	trace->hash = hash;
 587	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
 588	hlist_for_each_entry(t2, hash_head, hash_entry) {
 589		if (traces_identical(trace, t2))
 590			return t2;
 591	}
 592	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
 593	hlist_add_head(&trace->hash_entry, hash_head);
 594
 595	return trace;
 596}
 597
 598/* Return the number of stack traces in the stack_trace[] array. */
 599u64 lockdep_stack_trace_count(void)
 600{
 601	struct lock_trace *trace;
 602	u64 c = 0;
 603	int i;
 604
 605	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
 606		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
 607			c++;
 608		}
 609	}
 610
 611	return c;
 612}
 613
 614/* Return the number of stack hash chains that have at least one stack trace. */
 615u64 lockdep_stack_hash_count(void)
 616{
 617	u64 c = 0;
 618	int i;
 619
 620	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
 621		if (!hlist_empty(&stack_trace_hash[i]))
 622			c++;
 623
 624	return c;
 625}
 626#endif
 627
 628unsigned int nr_hardirq_chains;
 629unsigned int nr_softirq_chains;
 630unsigned int nr_process_chains;
 631unsigned int max_lockdep_depth;
 632
 633#ifdef CONFIG_DEBUG_LOCKDEP
 634/*
 635 * Various lockdep statistics:
 636 */
 637DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
 638#endif
 639
 640#ifdef CONFIG_PROVE_LOCKING
 641/*
 642 * Locking printouts:
 643 */
 644
 645#define __USAGE(__STATE)						\
 646	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
 647	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
 648	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
 649	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
 650
 651static const char *usage_str[] =
 652{
 653#define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
 654#include "lockdep_states.h"
 655#undef LOCKDEP_STATE
 656	[LOCK_USED] = "INITIAL USE",
 657	[LOCK_USED_READ] = "INITIAL READ USE",
 658	/* abused as string storage for verify_lock_unused() */
 659	[LOCK_USAGE_STATES] = "IN-NMI",
 660};
 661#endif
 662
 663const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
 664{
 665	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
 666}
 667
 668static inline unsigned long lock_flag(enum lock_usage_bit bit)
 669{
 670	return 1UL << bit;
 671}
 672
 673static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
 674{
 675	/*
 676	 * The usage character defaults to '.' (i.e., irqs disabled and not in
 677	 * irq context), which is the safest usage category.
 678	 */
 679	char c = '.';
 680
 681	/*
 682	 * The order of the following usage checks matters, which will
 683	 * result in the outcome character as follows:
 684	 *
 685	 * - '+': irq is enabled and not in irq context
 686	 * - '-': in irq context and irq is disabled
 687	 * - '?': in irq context and irq is enabled
 688	 */
 689	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
 690		c = '+';
 691		if (class->usage_mask & lock_flag(bit))
 692			c = '?';
 693	} else if (class->usage_mask & lock_flag(bit))
 694		c = '-';
 695
 696	return c;
 697}
 698
 699void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
 700{
 701	int i = 0;
 702
 703#define LOCKDEP_STATE(__STATE) 						\
 704	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
 705	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
 706#include "lockdep_states.h"
 707#undef LOCKDEP_STATE
 708
 709	usage[i] = '\0';
 710}
 711
 712static void __print_lock_name(struct held_lock *hlock, struct lock_class *class)
 713{
 714	char str[KSYM_NAME_LEN];
 715	const char *name;
 716
 717	name = class->name;
 718	if (!name) {
 719		name = __get_key_name(class->key, str);
 720		printk(KERN_CONT "%s", name);
 721	} else {
 722		printk(KERN_CONT "%s", name);
 723		if (class->name_version > 1)
 724			printk(KERN_CONT "#%d", class->name_version);
 725		if (class->subclass)
 726			printk(KERN_CONT "/%d", class->subclass);
 727		if (hlock && class->print_fn)
 728			class->print_fn(hlock->instance);
 729	}
 730}
 731
 732static void print_lock_name(struct held_lock *hlock, struct lock_class *class)
 733{
 734	char usage[LOCK_USAGE_CHARS];
 735
 736	get_usage_chars(class, usage);
 737
 738	printk(KERN_CONT " (");
 739	__print_lock_name(hlock, class);
 740	printk(KERN_CONT "){%s}-{%d:%d}", usage,
 741			class->wait_type_outer ?: class->wait_type_inner,
 742			class->wait_type_inner);
 743}
 744
 745static void print_lockdep_cache(struct lockdep_map *lock)
 746{
 747	const char *name;
 748	char str[KSYM_NAME_LEN];
 749
 750	name = lock->name;
 751	if (!name)
 752		name = __get_key_name(lock->key->subkeys, str);
 753
 754	printk(KERN_CONT "%s", name);
 755}
 756
 757static void print_lock(struct held_lock *hlock)
 758{
 759	/*
 760	 * We can be called locklessly through debug_show_all_locks() so be
 761	 * extra careful, the hlock might have been released and cleared.
 762	 *
 763	 * If this indeed happens, lets pretend it does not hurt to continue
 764	 * to print the lock unless the hlock class_idx does not point to a
 765	 * registered class. The rationale here is: since we don't attempt
 766	 * to distinguish whether we are in this situation, if it just
 767	 * happened we can't count on class_idx to tell either.
 768	 */
 769	struct lock_class *lock = hlock_class(hlock);
 770
 771	if (!lock) {
 772		printk(KERN_CONT "<RELEASED>\n");
 773		return;
 774	}
 775
 776	printk(KERN_CONT "%px", hlock->instance);
 777	print_lock_name(hlock, lock);
 778	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
 779}
 780
 781static void lockdep_print_held_locks(struct task_struct *p)
 782{
 783	int i, depth = READ_ONCE(p->lockdep_depth);
 784
 785	if (!depth)
 786		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
 787	else
 788		printk("%d lock%s held by %s/%d:\n", depth,
 789		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
 790	/*
 791	 * It's not reliable to print a task's held locks if it's not sleeping
 792	 * and it's not the current task.
 793	 */
 794	if (p != current && task_is_running(p))
 795		return;
 796	for (i = 0; i < depth; i++) {
 797		printk(" #%d: ", i);
 798		print_lock(p->held_locks + i);
 799	}
 800}
 801
 802static void print_kernel_ident(void)
 803{
 804	printk("%s %.*s %s\n", init_utsname()->release,
 805		(int)strcspn(init_utsname()->version, " "),
 806		init_utsname()->version,
 807		print_tainted());
 808}
 809
 810static int very_verbose(struct lock_class *class)
 811{
 812#if VERY_VERBOSE
 813	return class_filter(class);
 814#endif
 815	return 0;
 816}
 817
 818/*
 819 * Is this the address of a static object:
 820 */
 821#ifdef __KERNEL__
 822static int static_obj(const void *obj)
 823{
 824	unsigned long addr = (unsigned long) obj;
 
 
 825
 826	if (is_kernel_core_data(addr))
 827		return 1;
 828
 829	/*
 830	 * keys are allowed in the __ro_after_init section.
 831	 */
 832	if (is_kernel_rodata(addr))
 833		return 1;
 834
 835	/*
 836	 * in initdata section and used during bootup only?
 837	 * NOTE: On some platforms the initdata section is
 838	 * outside of the _stext ... _end range.
 839	 */
 840	if (system_state < SYSTEM_FREEING_INITMEM &&
 841		init_section_contains((void *)addr, 1))
 842		return 1;
 843
 844	/*
 845	 * in-kernel percpu var?
 846	 */
 847	if (is_kernel_percpu_address(addr))
 848		return 1;
 849
 850	/*
 851	 * module static or percpu var?
 852	 */
 853	return is_module_address(addr) || is_module_percpu_address(addr);
 854}
 855#endif
 856
 857/*
 858 * To make lock name printouts unique, we calculate a unique
 859 * class->name_version generation counter. The caller must hold the graph
 860 * lock.
 861 */
 862static int count_matching_names(struct lock_class *new_class)
 863{
 864	struct lock_class *class;
 865	int count = 0;
 866
 867	if (!new_class->name)
 868		return 0;
 869
 870	list_for_each_entry(class, &all_lock_classes, lock_entry) {
 871		if (new_class->key - new_class->subclass == class->key)
 872			return class->name_version;
 873		if (class->name && !strcmp(class->name, new_class->name))
 874			count = max(count, class->name_version);
 875	}
 876
 877	return count + 1;
 878}
 879
 880/* used from NMI context -- must be lockless */
 881static noinstr struct lock_class *
 882look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
 883{
 884	struct lockdep_subclass_key *key;
 885	struct hlist_head *hash_head;
 886	struct lock_class *class;
 887
 888	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
 889		instrumentation_begin();
 890		debug_locks_off();
 891		printk(KERN_ERR
 892			"BUG: looking up invalid subclass: %u\n", subclass);
 893		printk(KERN_ERR
 894			"turning off the locking correctness validator.\n");
 895		dump_stack();
 896		instrumentation_end();
 897		return NULL;
 898	}
 899
 900	/*
 901	 * If it is not initialised then it has never been locked,
 902	 * so it won't be present in the hash table.
 903	 */
 904	if (unlikely(!lock->key))
 905		return NULL;
 906
 907	/*
 908	 * NOTE: the class-key must be unique. For dynamic locks, a static
 909	 * lock_class_key variable is passed in through the mutex_init()
 910	 * (or spin_lock_init()) call - which acts as the key. For static
 911	 * locks we use the lock object itself as the key.
 912	 */
 913	BUILD_BUG_ON(sizeof(struct lock_class_key) >
 914			sizeof(struct lockdep_map));
 915
 916	key = lock->key->subkeys + subclass;
 917
 918	hash_head = classhashentry(key);
 919
 920	/*
 921	 * We do an RCU walk of the hash, see lockdep_free_key_range().
 922	 */
 923	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
 924		return NULL;
 925
 926	hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
 927		if (class->key == key) {
 928			/*
 929			 * Huh! same key, different name? Did someone trample
 930			 * on some memory? We're most confused.
 931			 */
 932			WARN_ONCE(class->name != lock->name &&
 933				  lock->key != &__lockdep_no_validate__,
 934				  "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
 935				  lock->name, lock->key, class->name);
 936			return class;
 937		}
 938	}
 939
 940	return NULL;
 941}
 942
 943/*
 944 * Static locks do not have their class-keys yet - for them the key is
 945 * the lock object itself. If the lock is in the per cpu area, the
 946 * canonical address of the lock (per cpu offset removed) is used.
 947 */
 948static bool assign_lock_key(struct lockdep_map *lock)
 949{
 950	unsigned long can_addr, addr = (unsigned long)lock;
 951
 952#ifdef __KERNEL__
 953	/*
 954	 * lockdep_free_key_range() assumes that struct lock_class_key
 955	 * objects do not overlap. Since we use the address of lock
 956	 * objects as class key for static objects, check whether the
 957	 * size of lock_class_key objects does not exceed the size of
 958	 * the smallest lock object.
 959	 */
 960	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
 961#endif
 962
 963	if (__is_kernel_percpu_address(addr, &can_addr))
 964		lock->key = (void *)can_addr;
 965	else if (__is_module_percpu_address(addr, &can_addr))
 966		lock->key = (void *)can_addr;
 967	else if (static_obj(lock))
 968		lock->key = (void *)lock;
 969	else {
 970		/* Debug-check: all keys must be persistent! */
 971		debug_locks_off();
 972		pr_err("INFO: trying to register non-static key.\n");
 973		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
 974		pr_err("you didn't initialize this object before use?\n");
 975		pr_err("turning off the locking correctness validator.\n");
 976		dump_stack();
 977		return false;
 978	}
 979
 980	return true;
 981}
 982
 983#ifdef CONFIG_DEBUG_LOCKDEP
 984
 985/* Check whether element @e occurs in list @h */
 986static bool in_list(struct list_head *e, struct list_head *h)
 987{
 988	struct list_head *f;
 989
 990	list_for_each(f, h) {
 991		if (e == f)
 992			return true;
 993	}
 994
 995	return false;
 996}
 997
 998/*
 999 * Check whether entry @e occurs in any of the locks_after or locks_before
1000 * lists.
1001 */
1002static bool in_any_class_list(struct list_head *e)
1003{
1004	struct lock_class *class;
1005	int i;
1006
1007	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1008		class = &lock_classes[i];
1009		if (in_list(e, &class->locks_after) ||
1010		    in_list(e, &class->locks_before))
1011			return true;
1012	}
1013	return false;
1014}
1015
1016static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1017{
1018	struct lock_list *e;
1019
1020	list_for_each_entry(e, h, entry) {
1021		if (e->links_to != c) {
1022			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1023			       c->name ? : "(?)",
1024			       (unsigned long)(e - list_entries),
1025			       e->links_to && e->links_to->name ?
1026			       e->links_to->name : "(?)",
1027			       e->class && e->class->name ? e->class->name :
1028			       "(?)");
1029			return false;
1030		}
1031	}
1032	return true;
1033}
1034
1035#ifdef CONFIG_PROVE_LOCKING
1036static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1037#endif
1038
1039static bool check_lock_chain_key(struct lock_chain *chain)
1040{
1041#ifdef CONFIG_PROVE_LOCKING
1042	u64 chain_key = INITIAL_CHAIN_KEY;
1043	int i;
1044
1045	for (i = chain->base; i < chain->base + chain->depth; i++)
1046		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1047	/*
1048	 * The 'unsigned long long' casts avoid that a compiler warning
1049	 * is reported when building tools/lib/lockdep.
1050	 */
1051	if (chain->chain_key != chain_key) {
1052		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1053		       (unsigned long long)(chain - lock_chains),
1054		       (unsigned long long)chain->chain_key,
1055		       (unsigned long long)chain_key);
1056		return false;
1057	}
1058#endif
1059	return true;
1060}
1061
1062static bool in_any_zapped_class_list(struct lock_class *class)
1063{
1064	struct pending_free *pf;
1065	int i;
1066
1067	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1068		if (in_list(&class->lock_entry, &pf->zapped))
1069			return true;
1070	}
1071
1072	return false;
1073}
1074
1075static bool __check_data_structures(void)
1076{
1077	struct lock_class *class;
1078	struct lock_chain *chain;
1079	struct hlist_head *head;
1080	struct lock_list *e;
1081	int i;
1082
1083	/* Check whether all classes occur in a lock list. */
1084	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1085		class = &lock_classes[i];
1086		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1087		    !in_list(&class->lock_entry, &free_lock_classes) &&
1088		    !in_any_zapped_class_list(class)) {
1089			printk(KERN_INFO "class %px/%s is not in any class list\n",
1090			       class, class->name ? : "(?)");
1091			return false;
1092		}
1093	}
1094
1095	/* Check whether all classes have valid lock lists. */
1096	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1097		class = &lock_classes[i];
1098		if (!class_lock_list_valid(class, &class->locks_before))
1099			return false;
1100		if (!class_lock_list_valid(class, &class->locks_after))
1101			return false;
1102	}
1103
1104	/* Check the chain_key of all lock chains. */
1105	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1106		head = chainhash_table + i;
1107		hlist_for_each_entry_rcu(chain, head, entry) {
1108			if (!check_lock_chain_key(chain))
1109				return false;
1110		}
1111	}
1112
1113	/*
1114	 * Check whether all list entries that are in use occur in a class
1115	 * lock list.
1116	 */
1117	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1118		e = list_entries + i;
1119		if (!in_any_class_list(&e->entry)) {
1120			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1121			       (unsigned int)(e - list_entries),
1122			       e->class->name ? : "(?)",
1123			       e->links_to->name ? : "(?)");
1124			return false;
1125		}
1126	}
1127
1128	/*
1129	 * Check whether all list entries that are not in use do not occur in
1130	 * a class lock list.
1131	 */
1132	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1133		e = list_entries + i;
1134		if (in_any_class_list(&e->entry)) {
1135			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1136			       (unsigned int)(e - list_entries),
1137			       e->class && e->class->name ? e->class->name :
1138			       "(?)",
1139			       e->links_to && e->links_to->name ?
1140			       e->links_to->name : "(?)");
1141			return false;
1142		}
1143	}
1144
1145	return true;
1146}
1147
1148int check_consistency = 0;
1149module_param(check_consistency, int, 0644);
1150
1151static void check_data_structures(void)
1152{
1153	static bool once = false;
1154
1155	if (check_consistency && !once) {
1156		if (!__check_data_structures()) {
1157			once = true;
1158			WARN_ON(once);
1159		}
1160	}
1161}
1162
1163#else /* CONFIG_DEBUG_LOCKDEP */
1164
1165static inline void check_data_structures(void) { }
1166
1167#endif /* CONFIG_DEBUG_LOCKDEP */
1168
1169static void init_chain_block_buckets(void);
1170
1171/*
1172 * Initialize the lock_classes[] array elements, the free_lock_classes list
1173 * and also the delayed_free structure.
1174 */
1175static void init_data_structures_once(void)
1176{
1177	static bool __read_mostly ds_initialized, rcu_head_initialized;
1178	int i;
1179
1180	if (likely(rcu_head_initialized))
1181		return;
1182
1183	if (system_state >= SYSTEM_SCHEDULING) {
1184		init_rcu_head(&delayed_free.rcu_head);
1185		rcu_head_initialized = true;
1186	}
1187
1188	if (ds_initialized)
1189		return;
1190
1191	ds_initialized = true;
1192
1193	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1194	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1195
1196	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1197		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1198		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1199		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1200	}
1201	init_chain_block_buckets();
1202}
1203
1204static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1205{
1206	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1207
1208	return lock_keys_hash + hash;
1209}
1210
1211/* Register a dynamically allocated key. */
1212void lockdep_register_key(struct lock_class_key *key)
1213{
1214	struct hlist_head *hash_head;
1215	struct lock_class_key *k;
1216	unsigned long flags;
1217
1218	if (WARN_ON_ONCE(static_obj(key)))
1219		return;
1220	hash_head = keyhashentry(key);
1221
1222	raw_local_irq_save(flags);
1223	if (!graph_lock())
1224		goto restore_irqs;
1225	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1226		if (WARN_ON_ONCE(k == key))
1227			goto out_unlock;
1228	}
1229	hlist_add_head_rcu(&key->hash_entry, hash_head);
1230out_unlock:
1231	graph_unlock();
1232restore_irqs:
1233	raw_local_irq_restore(flags);
1234}
1235EXPORT_SYMBOL_GPL(lockdep_register_key);
1236
1237/* Check whether a key has been registered as a dynamic key. */
1238static bool is_dynamic_key(const struct lock_class_key *key)
1239{
1240	struct hlist_head *hash_head;
1241	struct lock_class_key *k;
1242	bool found = false;
1243
1244	if (WARN_ON_ONCE(static_obj(key)))
1245		return false;
1246
1247	/*
1248	 * If lock debugging is disabled lock_keys_hash[] may contain
1249	 * pointers to memory that has already been freed. Avoid triggering
1250	 * a use-after-free in that case by returning early.
1251	 */
1252	if (!debug_locks)
1253		return true;
1254
1255	hash_head = keyhashentry(key);
1256
1257	rcu_read_lock();
1258	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1259		if (k == key) {
1260			found = true;
1261			break;
1262		}
1263	}
1264	rcu_read_unlock();
1265
1266	return found;
1267}
1268
1269/*
1270 * Register a lock's class in the hash-table, if the class is not present
1271 * yet. Otherwise we look it up. We cache the result in the lock object
1272 * itself, so actual lookup of the hash should be once per lock object.
1273 */
1274static struct lock_class *
1275register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1276{
1277	struct lockdep_subclass_key *key;
1278	struct hlist_head *hash_head;
1279	struct lock_class *class;
1280	int idx;
1281
1282	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1283
1284	class = look_up_lock_class(lock, subclass);
1285	if (likely(class))
1286		goto out_set_class_cache;
1287
1288	if (!lock->key) {
1289		if (!assign_lock_key(lock))
1290			return NULL;
1291	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1292		return NULL;
1293	}
1294
1295	key = lock->key->subkeys + subclass;
1296	hash_head = classhashentry(key);
1297
1298	if (!graph_lock()) {
1299		return NULL;
1300	}
1301	/*
1302	 * We have to do the hash-walk again, to avoid races
1303	 * with another CPU:
1304	 */
1305	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1306		if (class->key == key)
1307			goto out_unlock_set;
1308	}
1309
1310	init_data_structures_once();
1311
1312	/* Allocate a new lock class and add it to the hash. */
1313	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1314					 lock_entry);
1315	if (!class) {
1316		if (!debug_locks_off_graph_unlock()) {
1317			return NULL;
1318		}
1319
1320		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1321		dump_stack();
1322		return NULL;
1323	}
1324	nr_lock_classes++;
1325	__set_bit(class - lock_classes, lock_classes_in_use);
1326	debug_atomic_inc(nr_unused_locks);
1327	class->key = key;
1328	class->name = lock->name;
1329	class->subclass = subclass;
1330	WARN_ON_ONCE(!list_empty(&class->locks_before));
1331	WARN_ON_ONCE(!list_empty(&class->locks_after));
1332	class->name_version = count_matching_names(class);
1333	class->wait_type_inner = lock->wait_type_inner;
1334	class->wait_type_outer = lock->wait_type_outer;
1335	class->lock_type = lock->lock_type;
1336	/*
1337	 * We use RCU's safe list-add method to make
1338	 * parallel walking of the hash-list safe:
1339	 */
1340	hlist_add_head_rcu(&class->hash_entry, hash_head);
1341	/*
1342	 * Remove the class from the free list and add it to the global list
1343	 * of classes.
1344	 */
1345	list_move_tail(&class->lock_entry, &all_lock_classes);
1346	idx = class - lock_classes;
1347	if (idx > max_lock_class_idx)
1348		max_lock_class_idx = idx;
1349
1350	if (verbose(class)) {
1351		graph_unlock();
1352
1353		printk("\nnew class %px: %s", class->key, class->name);
1354		if (class->name_version > 1)
1355			printk(KERN_CONT "#%d", class->name_version);
1356		printk(KERN_CONT "\n");
1357		dump_stack();
1358
1359		if (!graph_lock()) {
1360			return NULL;
1361		}
1362	}
1363out_unlock_set:
1364	graph_unlock();
1365
1366out_set_class_cache:
1367	if (!subclass || force)
1368		lock->class_cache[0] = class;
1369	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1370		lock->class_cache[subclass] = class;
1371
1372	/*
1373	 * Hash collision, did we smoke some? We found a class with a matching
1374	 * hash but the subclass -- which is hashed in -- didn't match.
1375	 */
1376	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1377		return NULL;
1378
1379	return class;
1380}
1381
1382#ifdef CONFIG_PROVE_LOCKING
1383/*
1384 * Allocate a lockdep entry. (assumes the graph_lock held, returns
1385 * with NULL on failure)
1386 */
1387static struct lock_list *alloc_list_entry(void)
1388{
1389	int idx = find_first_zero_bit(list_entries_in_use,
1390				      ARRAY_SIZE(list_entries));
1391
1392	if (idx >= ARRAY_SIZE(list_entries)) {
1393		if (!debug_locks_off_graph_unlock())
1394			return NULL;
1395
1396		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1397		dump_stack();
1398		return NULL;
1399	}
1400	nr_list_entries++;
1401	__set_bit(idx, list_entries_in_use);
1402	return list_entries + idx;
1403}
1404
1405/*
1406 * Add a new dependency to the head of the list:
1407 */
1408static int add_lock_to_list(struct lock_class *this,
1409			    struct lock_class *links_to, struct list_head *head,
1410			    u16 distance, u8 dep,
1411			    const struct lock_trace *trace)
1412{
1413	struct lock_list *entry;
1414	/*
1415	 * Lock not present yet - get a new dependency struct and
1416	 * add it to the list:
1417	 */
1418	entry = alloc_list_entry();
1419	if (!entry)
1420		return 0;
1421
1422	entry->class = this;
1423	entry->links_to = links_to;
1424	entry->dep = dep;
1425	entry->distance = distance;
1426	entry->trace = trace;
1427	/*
1428	 * Both allocation and removal are done under the graph lock; but
1429	 * iteration is under RCU-sched; see look_up_lock_class() and
1430	 * lockdep_free_key_range().
1431	 */
1432	list_add_tail_rcu(&entry->entry, head);
1433
1434	return 1;
1435}
1436
1437/*
1438 * For good efficiency of modular, we use power of 2
1439 */
1440#define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1441#define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1442
1443/*
1444 * The circular_queue and helpers are used to implement graph
1445 * breadth-first search (BFS) algorithm, by which we can determine
1446 * whether there is a path from a lock to another. In deadlock checks,
1447 * a path from the next lock to be acquired to a previous held lock
1448 * indicates that adding the <prev> -> <next> lock dependency will
1449 * produce a circle in the graph. Breadth-first search instead of
1450 * depth-first search is used in order to find the shortest (circular)
1451 * path.
1452 */
1453struct circular_queue {
1454	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1455	unsigned int  front, rear;
1456};
1457
1458static struct circular_queue lock_cq;
1459
1460unsigned int max_bfs_queue_depth;
1461
1462static unsigned int lockdep_dependency_gen_id;
1463
1464static inline void __cq_init(struct circular_queue *cq)
1465{
1466	cq->front = cq->rear = 0;
1467	lockdep_dependency_gen_id++;
1468}
1469
1470static inline int __cq_empty(struct circular_queue *cq)
1471{
1472	return (cq->front == cq->rear);
1473}
1474
1475static inline int __cq_full(struct circular_queue *cq)
1476{
1477	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1478}
1479
1480static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1481{
1482	if (__cq_full(cq))
1483		return -1;
1484
1485	cq->element[cq->rear] = elem;
1486	cq->rear = (cq->rear + 1) & CQ_MASK;
1487	return 0;
1488}
1489
1490/*
1491 * Dequeue an element from the circular_queue, return a lock_list if
1492 * the queue is not empty, or NULL if otherwise.
1493 */
1494static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1495{
1496	struct lock_list * lock;
1497
1498	if (__cq_empty(cq))
1499		return NULL;
1500
1501	lock = cq->element[cq->front];
1502	cq->front = (cq->front + 1) & CQ_MASK;
1503
1504	return lock;
1505}
1506
1507static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1508{
1509	return (cq->rear - cq->front) & CQ_MASK;
1510}
1511
1512static inline void mark_lock_accessed(struct lock_list *lock)
 
1513{
1514	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1515}
1516
1517static inline void visit_lock_entry(struct lock_list *lock,
1518				    struct lock_list *parent)
1519{
1520	lock->parent = parent;
 
1521}
1522
1523static inline unsigned long lock_accessed(struct lock_list *lock)
1524{
 
 
 
 
1525	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1526}
1527
1528static inline struct lock_list *get_lock_parent(struct lock_list *child)
1529{
1530	return child->parent;
1531}
1532
1533static inline int get_lock_depth(struct lock_list *child)
1534{
1535	int depth = 0;
1536	struct lock_list *parent;
1537
1538	while ((parent = get_lock_parent(child))) {
1539		child = parent;
1540		depth++;
1541	}
1542	return depth;
1543}
1544
1545/*
1546 * Return the forward or backward dependency list.
1547 *
1548 * @lock:   the lock_list to get its class's dependency list
1549 * @offset: the offset to struct lock_class to determine whether it is
1550 *          locks_after or locks_before
1551 */
1552static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1553{
1554	void *lock_class = lock->class;
1555
1556	return lock_class + offset;
1557}
1558/*
1559 * Return values of a bfs search:
1560 *
1561 * BFS_E* indicates an error
1562 * BFS_R* indicates a result (match or not)
1563 *
1564 * BFS_EINVALIDNODE: Find a invalid node in the graph.
1565 *
1566 * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1567 *
1568 * BFS_RMATCH: Find the matched node in the graph, and put that node into
1569 *             *@target_entry.
1570 *
1571 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1572 *               _unchanged_.
1573 */
1574enum bfs_result {
1575	BFS_EINVALIDNODE = -2,
1576	BFS_EQUEUEFULL = -1,
1577	BFS_RMATCH = 0,
1578	BFS_RNOMATCH = 1,
1579};
1580
1581/*
1582 * bfs_result < 0 means error
1583 */
1584static inline bool bfs_error(enum bfs_result res)
1585{
1586	return res < 0;
1587}
1588
1589/*
1590 * DEP_*_BIT in lock_list::dep
1591 *
1592 * For dependency @prev -> @next:
1593 *
1594 *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1595 *       (->read == 2)
1596 *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1597 *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1598 *   EN: @prev is exclusive locker and @next is non-recursive locker
1599 *
1600 * Note that we define the value of DEP_*_BITs so that:
1601 *   bit0 is prev->read == 0
1602 *   bit1 is next->read != 2
1603 */
1604#define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1605#define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1606#define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1607#define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1608
1609#define DEP_SR_MASK (1U << (DEP_SR_BIT))
1610#define DEP_ER_MASK (1U << (DEP_ER_BIT))
1611#define DEP_SN_MASK (1U << (DEP_SN_BIT))
1612#define DEP_EN_MASK (1U << (DEP_EN_BIT))
1613
1614static inline unsigned int
1615__calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1616{
1617	return (prev->read == 0) + ((next->read != 2) << 1);
1618}
1619
1620static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1621{
1622	return 1U << __calc_dep_bit(prev, next);
1623}
1624
1625/*
1626 * calculate the dep_bit for backwards edges. We care about whether @prev is
1627 * shared and whether @next is recursive.
1628 */
1629static inline unsigned int
1630__calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1631{
1632	return (next->read != 2) + ((prev->read == 0) << 1);
1633}
1634
1635static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1636{
1637	return 1U << __calc_dep_bitb(prev, next);
1638}
1639
1640/*
1641 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1642 * search.
1643 */
1644static inline void __bfs_init_root(struct lock_list *lock,
1645				   struct lock_class *class)
1646{
1647	lock->class = class;
1648	lock->parent = NULL;
1649	lock->only_xr = 0;
1650}
1651
1652/*
1653 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1654 * root for a BFS search.
1655 *
1656 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1657 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1658 * and -(S*)->.
1659 */
1660static inline void bfs_init_root(struct lock_list *lock,
1661				 struct held_lock *hlock)
1662{
1663	__bfs_init_root(lock, hlock_class(hlock));
1664	lock->only_xr = (hlock->read == 2);
1665}
1666
1667/*
1668 * Similar to bfs_init_root() but initialize the root for backwards BFS.
1669 *
1670 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1671 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1672 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1673 */
1674static inline void bfs_init_rootb(struct lock_list *lock,
1675				  struct held_lock *hlock)
1676{
1677	__bfs_init_root(lock, hlock_class(hlock));
1678	lock->only_xr = (hlock->read != 0);
1679}
1680
1681static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1682{
1683	if (!lock || !lock->parent)
1684		return NULL;
1685
1686	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1687				     &lock->entry, struct lock_list, entry);
1688}
1689
1690/*
1691 * Breadth-First Search to find a strong path in the dependency graph.
1692 *
1693 * @source_entry: the source of the path we are searching for.
1694 * @data: data used for the second parameter of @match function
1695 * @match: match function for the search
1696 * @target_entry: pointer to the target of a matched path
1697 * @offset: the offset to struct lock_class to determine whether it is
1698 *          locks_after or locks_before
1699 *
1700 * We may have multiple edges (considering different kinds of dependencies,
1701 * e.g. ER and SN) between two nodes in the dependency graph. But
1702 * only the strong dependency path in the graph is relevant to deadlocks. A
1703 * strong dependency path is a dependency path that doesn't have two adjacent
1704 * dependencies as -(*R)-> -(S*)->, please see:
1705 *
1706 *         Documentation/locking/lockdep-design.rst
1707 *
1708 * for more explanation of the definition of strong dependency paths
1709 *
1710 * In __bfs(), we only traverse in the strong dependency path:
1711 *
1712 *     In lock_list::only_xr, we record whether the previous dependency only
1713 *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1714 *     filter out any -(S*)-> in the current dependency and after that, the
1715 *     ->only_xr is set according to whether we only have -(*R)-> left.
1716 */
1717static enum bfs_result __bfs(struct lock_list *source_entry,
1718			     void *data,
1719			     bool (*match)(struct lock_list *entry, void *data),
1720			     bool (*skip)(struct lock_list *entry, void *data),
1721			     struct lock_list **target_entry,
1722			     int offset)
1723{
1724	struct circular_queue *cq = &lock_cq;
1725	struct lock_list *lock = NULL;
1726	struct lock_list *entry;
 
1727	struct list_head *head;
1728	unsigned int cq_depth;
1729	bool first;
1730
1731	lockdep_assert_locked();
 
 
 
 
 
 
 
 
1732
1733	__cq_init(cq);
1734	__cq_enqueue(cq, source_entry);
1735
1736	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1737		if (!lock->class)
1738			return BFS_EINVALIDNODE;
1739
1740		/*
1741		 * Step 1: check whether we already finish on this one.
1742		 *
1743		 * If we have visited all the dependencies from this @lock to
1744		 * others (iow, if we have visited all lock_list entries in
1745		 * @lock->class->locks_{after,before}) we skip, otherwise go
1746		 * and visit all the dependencies in the list and mark this
1747		 * list accessed.
1748		 */
1749		if (lock_accessed(lock))
1750			continue;
1751		else
1752			mark_lock_accessed(lock);
1753
1754		/*
1755		 * Step 2: check whether prev dependency and this form a strong
1756		 *         dependency path.
1757		 */
1758		if (lock->parent) { /* Parent exists, check prev dependency */
1759			u8 dep = lock->dep;
1760			bool prev_only_xr = lock->parent->only_xr;
1761
1762			/*
1763			 * Mask out all -(S*)-> if we only have *R in previous
1764			 * step, because -(*R)-> -(S*)-> don't make up a strong
1765			 * dependency.
1766			 */
1767			if (prev_only_xr)
1768				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1769
1770			/* If nothing left, we skip */
1771			if (!dep)
1772				continue;
1773
1774			/* If there are only -(*R)-> left, set that for the next step */
1775			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1776		}
1777
1778		/*
1779		 * Step 3: we haven't visited this and there is a strong
1780		 *         dependency path to this, so check with @match.
1781		 *         If @skip is provide and returns true, we skip this
1782		 *         lock (and any path this lock is in).
1783		 */
1784		if (skip && skip(lock, data))
1785			continue;
1786
1787		if (match(lock, data)) {
1788			*target_entry = lock;
1789			return BFS_RMATCH;
1790		}
1791
1792		/*
1793		 * Step 4: if not match, expand the path by adding the
1794		 *         forward or backwards dependencies in the search
1795		 *
1796		 */
1797		first = true;
1798		head = get_dep_list(lock, offset);
1799		list_for_each_entry_rcu(entry, head, entry) {
1800			visit_lock_entry(entry, lock);
 
 
 
 
 
 
 
1801
1802			/*
1803			 * Note we only enqueue the first of the list into the
1804			 * queue, because we can always find a sibling
1805			 * dependency from one (see __bfs_next()), as a result
1806			 * the space of queue is saved.
1807			 */
1808			if (!first)
1809				continue;
1810
1811			first = false;
1812
1813			if (__cq_enqueue(cq, entry))
1814				return BFS_EQUEUEFULL;
1815
1816			cq_depth = __cq_get_elem_count(cq);
1817			if (max_bfs_queue_depth < cq_depth)
1818				max_bfs_queue_depth = cq_depth;
1819		}
1820	}
1821
1822	return BFS_RNOMATCH;
1823}
1824
1825static inline enum bfs_result
1826__bfs_forwards(struct lock_list *src_entry,
1827	       void *data,
1828	       bool (*match)(struct lock_list *entry, void *data),
1829	       bool (*skip)(struct lock_list *entry, void *data),
1830	       struct lock_list **target_entry)
1831{
1832	return __bfs(src_entry, data, match, skip, target_entry,
1833		     offsetof(struct lock_class, locks_after));
1834
1835}
1836
1837static inline enum bfs_result
1838__bfs_backwards(struct lock_list *src_entry,
1839		void *data,
1840		bool (*match)(struct lock_list *entry, void *data),
1841	       bool (*skip)(struct lock_list *entry, void *data),
1842		struct lock_list **target_entry)
1843{
1844	return __bfs(src_entry, data, match, skip, target_entry,
1845		     offsetof(struct lock_class, locks_before));
1846
1847}
1848
1849static void print_lock_trace(const struct lock_trace *trace,
1850			     unsigned int spaces)
1851{
1852	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1853}
1854
1855/*
1856 * Print a dependency chain entry (this is only done when a deadlock
1857 * has been detected):
1858 */
1859static noinline void
1860print_circular_bug_entry(struct lock_list *target, int depth)
1861{
1862	if (debug_locks_silent)
1863		return;
1864	printk("\n-> #%u", depth);
1865	print_lock_name(NULL, target->class);
1866	printk(KERN_CONT ":\n");
1867	print_lock_trace(target->trace, 6);
1868}
1869
1870static void
1871print_circular_lock_scenario(struct held_lock *src,
1872			     struct held_lock *tgt,
1873			     struct lock_list *prt)
1874{
1875	struct lock_class *source = hlock_class(src);
1876	struct lock_class *target = hlock_class(tgt);
1877	struct lock_class *parent = prt->class;
1878	int src_read = src->read;
1879	int tgt_read = tgt->read;
1880
1881	/*
1882	 * A direct locking problem where unsafe_class lock is taken
1883	 * directly by safe_class lock, then all we need to show
1884	 * is the deadlock scenario, as it is obvious that the
1885	 * unsafe lock is taken under the safe lock.
1886	 *
1887	 * But if there is a chain instead, where the safe lock takes
1888	 * an intermediate lock (middle_class) where this lock is
1889	 * not the same as the safe lock, then the lock chain is
1890	 * used to describe the problem. Otherwise we would need
1891	 * to show a different CPU case for each link in the chain
1892	 * from the safe_class lock to the unsafe_class lock.
1893	 */
1894	if (parent != source) {
1895		printk("Chain exists of:\n  ");
1896		__print_lock_name(src, source);
1897		printk(KERN_CONT " --> ");
1898		__print_lock_name(NULL, parent);
1899		printk(KERN_CONT " --> ");
1900		__print_lock_name(tgt, target);
1901		printk(KERN_CONT "\n\n");
1902	}
1903
1904	printk(" Possible unsafe locking scenario:\n\n");
1905	printk("       CPU0                    CPU1\n");
1906	printk("       ----                    ----\n");
1907	if (tgt_read != 0)
1908		printk("  rlock(");
1909	else
1910		printk("  lock(");
1911	__print_lock_name(tgt, target);
1912	printk(KERN_CONT ");\n");
1913	printk("                               lock(");
1914	__print_lock_name(NULL, parent);
1915	printk(KERN_CONT ");\n");
1916	printk("                               lock(");
1917	__print_lock_name(tgt, target);
1918	printk(KERN_CONT ");\n");
1919	if (src_read != 0)
1920		printk("  rlock(");
1921	else if (src->sync)
1922		printk("  sync(");
1923	else
1924		printk("  lock(");
1925	__print_lock_name(src, source);
1926	printk(KERN_CONT ");\n");
1927	printk("\n *** DEADLOCK ***\n\n");
1928}
1929
1930/*
1931 * When a circular dependency is detected, print the
1932 * header first:
1933 */
1934static noinline void
1935print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1936			struct held_lock *check_src,
1937			struct held_lock *check_tgt)
1938{
1939	struct task_struct *curr = current;
1940
1941	if (debug_locks_silent)
1942		return;
1943
1944	pr_warn("\n");
1945	pr_warn("======================================================\n");
1946	pr_warn("WARNING: possible circular locking dependency detected\n");
1947	print_kernel_ident();
1948	pr_warn("------------------------------------------------------\n");
1949	pr_warn("%s/%d is trying to acquire lock:\n",
1950		curr->comm, task_pid_nr(curr));
1951	print_lock(check_src);
1952
1953	pr_warn("\nbut task is already holding lock:\n");
1954
1955	print_lock(check_tgt);
1956	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1957	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1958
1959	print_circular_bug_entry(entry, depth);
1960}
1961
1962/*
1963 * We are about to add A -> B into the dependency graph, and in __bfs() a
1964 * strong dependency path A -> .. -> B is found: hlock_class equals
1965 * entry->class.
1966 *
1967 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1968 * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1969 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1970 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1971 * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1972 * having dependency A -> B, we could already get a equivalent path ..-> A ->
1973 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1974 *
1975 * We need to make sure both the start and the end of A -> .. -> B is not
1976 * weaker than A -> B. For the start part, please see the comment in
1977 * check_redundant(). For the end part, we need:
1978 *
1979 * Either
1980 *
1981 *     a) A -> B is -(*R)-> (everything is not weaker than that)
1982 *
1983 * or
1984 *
1985 *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1986 *
1987 */
1988static inline bool hlock_equal(struct lock_list *entry, void *data)
1989{
1990	struct held_lock *hlock = (struct held_lock *)data;
1991
1992	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1993	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1994		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1995}
1996
1997/*
1998 * We are about to add B -> A into the dependency graph, and in __bfs() a
1999 * strong dependency path A -> .. -> B is found: hlock_class equals
2000 * entry->class.
2001 *
2002 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
2003 * dependency cycle, that means:
2004 *
2005 * Either
2006 *
2007 *     a) B -> A is -(E*)->
2008 *
2009 * or
2010 *
2011 *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2012 *
2013 * as then we don't have -(*R)-> -(S*)-> in the cycle.
2014 */
2015static inline bool hlock_conflict(struct lock_list *entry, void *data)
2016{
2017	struct held_lock *hlock = (struct held_lock *)data;
2018
2019	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2020	       (hlock->read == 0 || /* B -> A is -(E*)-> */
2021		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2022}
2023
2024static noinline void print_circular_bug(struct lock_list *this,
2025				struct lock_list *target,
2026				struct held_lock *check_src,
2027				struct held_lock *check_tgt)
2028{
2029	struct task_struct *curr = current;
2030	struct lock_list *parent;
2031	struct lock_list *first_parent;
2032	int depth;
2033
2034	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2035		return;
2036
2037	this->trace = save_trace();
2038	if (!this->trace)
2039		return;
2040
2041	depth = get_lock_depth(target);
2042
2043	print_circular_bug_header(target, depth, check_src, check_tgt);
2044
2045	parent = get_lock_parent(target);
2046	first_parent = parent;
2047
2048	while (parent) {
2049		print_circular_bug_entry(parent, --depth);
2050		parent = get_lock_parent(parent);
2051	}
2052
2053	printk("\nother info that might help us debug this:\n\n");
2054	print_circular_lock_scenario(check_src, check_tgt,
2055				     first_parent);
2056
2057	lockdep_print_held_locks(curr);
2058
2059	printk("\nstack backtrace:\n");
2060	dump_stack();
2061}
2062
2063static noinline void print_bfs_bug(int ret)
2064{
2065	if (!debug_locks_off_graph_unlock())
2066		return;
2067
2068	/*
2069	 * Breadth-first-search failed, graph got corrupted?
2070	 */
2071	WARN(1, "lockdep bfs error:%d\n", ret);
2072}
2073
2074static bool noop_count(struct lock_list *entry, void *data)
2075{
2076	(*(unsigned long *)data)++;
2077	return false;
2078}
2079
2080static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2081{
2082	unsigned long  count = 0;
2083	struct lock_list *target_entry;
2084
2085	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2086
2087	return count;
2088}
2089unsigned long lockdep_count_forward_deps(struct lock_class *class)
2090{
2091	unsigned long ret, flags;
2092	struct lock_list this;
2093
2094	__bfs_init_root(&this, class);
 
2095
2096	raw_local_irq_save(flags);
2097	lockdep_lock();
2098	ret = __lockdep_count_forward_deps(&this);
2099	lockdep_unlock();
2100	raw_local_irq_restore(flags);
2101
2102	return ret;
2103}
2104
2105static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2106{
2107	unsigned long  count = 0;
2108	struct lock_list *target_entry;
2109
2110	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2111
2112	return count;
2113}
2114
2115unsigned long lockdep_count_backward_deps(struct lock_class *class)
2116{
2117	unsigned long ret, flags;
2118	struct lock_list this;
2119
2120	__bfs_init_root(&this, class);
 
2121
2122	raw_local_irq_save(flags);
2123	lockdep_lock();
2124	ret = __lockdep_count_backward_deps(&this);
2125	lockdep_unlock();
2126	raw_local_irq_restore(flags);
2127
2128	return ret;
2129}
2130
2131/*
2132 * Check that the dependency graph starting at <src> can lead to
2133 * <target> or not.
2134 */
2135static noinline enum bfs_result
2136check_path(struct held_lock *target, struct lock_list *src_entry,
2137	   bool (*match)(struct lock_list *entry, void *data),
2138	   bool (*skip)(struct lock_list *entry, void *data),
2139	   struct lock_list **target_entry)
2140{
2141	enum bfs_result ret;
2142
2143	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
 
2144
2145	if (unlikely(bfs_error(ret)))
2146		print_bfs_bug(ret);
2147
2148	return ret;
2149}
2150
2151static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *);
2152
2153/*
2154 * Prove that the dependency graph starting at <src> can not
2155 * lead to <target>. If it can, there is a circle when adding
2156 * <target> -> <src> dependency.
2157 *
2158 * Print an error and return BFS_RMATCH if it does.
2159 */
2160static noinline enum bfs_result
2161check_noncircular(struct held_lock *src, struct held_lock *target,
2162		  struct lock_trace **const trace)
2163{
2164	enum bfs_result ret;
2165	struct lock_list *target_entry;
2166	struct lock_list src_entry;
2167
2168	bfs_init_root(&src_entry, src);
 
2169
2170	debug_atomic_inc(nr_cyclic_checks);
2171
2172	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2173
2174	if (unlikely(ret == BFS_RMATCH)) {
2175		if (!*trace) {
2176			/*
2177			 * If save_trace fails here, the printing might
2178			 * trigger a WARN but because of the !nr_entries it
2179			 * should not do bad things.
2180			 */
2181			*trace = save_trace();
2182		}
2183
2184		if (src->class_idx == target->class_idx)
2185			print_deadlock_bug(current, src, target);
2186		else
2187			print_circular_bug(&src_entry, target_entry, src, target);
2188	}
2189
2190	return ret;
2191}
2192
2193#ifdef CONFIG_TRACE_IRQFLAGS
2194
2195/*
2196 * Forwards and backwards subgraph searching, for the purposes of
2197 * proving that two subgraphs can be connected by a new dependency
2198 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2199 *
2200 * A irq safe->unsafe deadlock happens with the following conditions:
2201 *
2202 * 1) We have a strong dependency path A -> ... -> B
2203 *
2204 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2205 *    irq can create a new dependency B -> A (consider the case that a holder
2206 *    of B gets interrupted by an irq whose handler will try to acquire A).
2207 *
2208 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2209 *    strong circle:
2210 *
2211 *      For the usage bits of B:
2212 *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2213 *           ENABLED_IRQ usage suffices.
2214 *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2215 *           ENABLED_IRQ_*_READ usage suffices.
2216 *
2217 *      For the usage bits of A:
2218 *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2219 *           USED_IN_IRQ usage suffices.
2220 *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2221 *           USED_IN_IRQ_*_READ usage suffices.
2222 */
 
 
 
 
 
 
 
 
 
 
 
 
 
2223
2224/*
2225 * There is a strong dependency path in the dependency graph: A -> B, and now
2226 * we need to decide which usage bit of A should be accumulated to detect
2227 * safe->unsafe bugs.
2228 *
2229 * Note that usage_accumulate() is used in backwards search, so ->only_xr
2230 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2231 *
2232 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2233 * path, any usage of A should be considered. Otherwise, we should only
2234 * consider _READ usage.
2235 */
2236static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2237{
2238	if (!entry->only_xr)
2239		*(unsigned long *)mask |= entry->class->usage_mask;
2240	else /* Mask out _READ usage bits */
2241		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2242
2243	return false;
2244}
 
2245
2246/*
2247 * There is a strong dependency path in the dependency graph: A -> B, and now
2248 * we need to decide which usage bit of B conflicts with the usage bits of A,
2249 * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2250 *
2251 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2252 * path, any usage of B should be considered. Otherwise, we should only
2253 * consider _READ usage.
2254 */
2255static inline bool usage_match(struct lock_list *entry, void *mask)
2256{
2257	if (!entry->only_xr)
2258		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2259	else /* Mask out _READ usage bits */
2260		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2261}
2262
2263static inline bool usage_skip(struct lock_list *entry, void *mask)
2264{
2265	if (entry->class->lock_type == LD_LOCK_NORMAL)
2266		return false;
2267
2268	/*
2269	 * Skip local_lock() for irq inversion detection.
2270	 *
2271	 * For !RT, local_lock() is not a real lock, so it won't carry any
2272	 * dependency.
2273	 *
2274	 * For RT, an irq inversion happens when we have lock A and B, and on
2275	 * some CPU we can have:
2276	 *
2277	 *	lock(A);
2278	 *	<interrupted>
2279	 *	  lock(B);
2280	 *
2281	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2282	 *
2283	 * Now we prove local_lock() cannot exist in that dependency. First we
2284	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2285	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2286	 * wait context check will complain. And since B is not a sleep lock,
2287	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2288	 * local_lock() is 3, which is greater than 2, therefore there is no
2289	 * way the local_lock() exists in the dependency B -> ... -> A.
2290	 *
2291	 * As a result, we will skip local_lock(), when we search for irq
2292	 * inversion bugs.
2293	 */
2294	if (entry->class->lock_type == LD_LOCK_PERCPU &&
2295	    DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2296		return false;
2297
2298	/*
2299	 * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually
2300	 * a lock and only used to override the wait_type.
2301	 */
 
2302
2303	return true;
 
 
2304}
2305
2306/*
2307 * Find a node in the forwards-direction dependency sub-graph starting
2308 * at @root->class that matches @bit.
2309 *
2310 * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2311 * into *@target_entry.
 
 
 
2312 */
2313static enum bfs_result
2314find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2315			struct lock_list **target_entry)
2316{
2317	enum bfs_result result;
2318
2319	debug_atomic_inc(nr_find_usage_forwards_checks);
2320
2321	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2322
2323	return result;
2324}
2325
2326/*
2327 * Find a node in the backwards-direction dependency sub-graph starting
2328 * at @root->class that matches @bit.
 
 
 
 
 
 
2329 */
2330static enum bfs_result
2331find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2332			struct lock_list **target_entry)
2333{
2334	enum bfs_result result;
2335
2336	debug_atomic_inc(nr_find_usage_backwards_checks);
2337
2338	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2339
2340	return result;
2341}
2342
2343static void print_lock_class_header(struct lock_class *class, int depth)
2344{
2345	int bit;
2346
2347	printk("%*s->", depth, "");
2348	print_lock_name(NULL, class);
2349#ifdef CONFIG_DEBUG_LOCKDEP
2350	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2351#endif
2352	printk(KERN_CONT " {\n");
2353
2354	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2355		if (class->usage_mask & (1 << bit)) {
2356			int len = depth;
2357
2358			len += printk("%*s   %s", depth, "", usage_str[bit]);
2359			len += printk(KERN_CONT " at:\n");
2360			print_lock_trace(class->usage_traces[bit], len);
2361		}
2362	}
2363	printk("%*s }\n", depth, "");
2364
2365	printk("%*s ... key      at: [<%px>] %pS\n",
2366		depth, "", class->key, class->key);
2367}
2368
2369/*
2370 * Dependency path printing:
2371 *
2372 * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2373 * printing out each lock in the dependency path will help on understanding how
2374 * the deadlock could happen. Here are some details about dependency path
2375 * printing:
2376 *
2377 * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2378 * 	for a lock dependency A -> B, there are two lock_lists:
2379 *
2380 * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2381 * 		->links_to is A. In this case, we can say the lock_list is
2382 * 		"A -> B" (forwards case).
2383 *
2384 * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2385 * 		and ->links_to is B. In this case, we can say the lock_list is
2386 * 		"B <- A" (bacwards case).
2387 *
2388 * 	The ->trace of both a) and b) point to the call trace where B was
2389 * 	acquired with A held.
2390 *
2391 * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2392 * 	represent a certain lock dependency, it only provides an initial entry
2393 * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2394 * 	->class is A, as a result BFS will search all dependencies starting with
2395 * 	A, e.g. A -> B or A -> C.
2396 *
2397 * 	The notation of a forwards helper lock_list is like "-> A", which means
2398 * 	we should search the forwards dependencies starting with "A", e.g A -> B
2399 * 	or A -> C.
2400 *
2401 * 	The notation of a bacwards helper lock_list is like "<- B", which means
2402 * 	we should search the backwards dependencies ending with "B", e.g.
2403 * 	B <- A or B <- C.
2404 */
2405
2406/*
2407 * printk the shortest lock dependencies from @root to @leaf in reverse order.
2408 *
2409 * We have a lock dependency path as follow:
2410 *
2411 *    @root                                                                 @leaf
2412 *      |                                                                     |
2413 *      V                                                                     V
2414 *	          ->parent                                   ->parent
2415 * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2416 * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2417 *
2418 * , so it's natural that we start from @leaf and print every ->class and
2419 * ->trace until we reach the @root.
2420 */
2421static void __used
2422print_shortest_lock_dependencies(struct lock_list *leaf,
2423				 struct lock_list *root)
2424{
2425	struct lock_list *entry = leaf;
2426	int depth;
2427
2428	/*compute depth from generated tree by BFS*/
2429	depth = get_lock_depth(leaf);
2430
2431	do {
2432		print_lock_class_header(entry->class, depth);
2433		printk("%*s ... acquired at:\n", depth, "");
2434		print_lock_trace(entry->trace, 2);
2435		printk("\n");
2436
2437		if (depth == 0 && (entry != root)) {
2438			printk("lockdep:%s bad path found in chain graph\n", __func__);
2439			break;
2440		}
2441
2442		entry = get_lock_parent(entry);
2443		depth--;
2444	} while (entry && (depth >= 0));
2445}
2446
2447/*
2448 * printk the shortest lock dependencies from @leaf to @root.
2449 *
2450 * We have a lock dependency path (from a backwards search) as follow:
2451 *
2452 *    @leaf                                                                 @root
2453 *      |                                                                     |
2454 *      V                                                                     V
2455 *	          ->parent                                   ->parent
2456 * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2457 * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2458 *
2459 * , so when we iterate from @leaf to @root, we actually print the lock
2460 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2461 *
2462 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2463 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2464 * trace of L1 in the dependency path, which is alright, because most of the
2465 * time we can figure out where L1 is held from the call trace of L2.
2466 */
2467static void __used
2468print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2469					   struct lock_list *root)
2470{
2471	struct lock_list *entry = leaf;
2472	const struct lock_trace *trace = NULL;
2473	int depth;
2474
2475	/*compute depth from generated tree by BFS*/
2476	depth = get_lock_depth(leaf);
2477
2478	do {
2479		print_lock_class_header(entry->class, depth);
2480		if (trace) {
2481			printk("%*s ... acquired at:\n", depth, "");
2482			print_lock_trace(trace, 2);
2483			printk("\n");
2484		}
2485
2486		/*
2487		 * Record the pointer to the trace for the next lock_list
2488		 * entry, see the comments for the function.
2489		 */
2490		trace = entry->trace;
2491
2492		if (depth == 0 && (entry != root)) {
2493			printk("lockdep:%s bad path found in chain graph\n", __func__);
2494			break;
2495		}
2496
2497		entry = get_lock_parent(entry);
2498		depth--;
2499	} while (entry && (depth >= 0));
2500}
2501
2502static void
2503print_irq_lock_scenario(struct lock_list *safe_entry,
2504			struct lock_list *unsafe_entry,
2505			struct lock_class *prev_class,
2506			struct lock_class *next_class)
2507{
2508	struct lock_class *safe_class = safe_entry->class;
2509	struct lock_class *unsafe_class = unsafe_entry->class;
2510	struct lock_class *middle_class = prev_class;
2511
2512	if (middle_class == safe_class)
2513		middle_class = next_class;
2514
2515	/*
2516	 * A direct locking problem where unsafe_class lock is taken
2517	 * directly by safe_class lock, then all we need to show
2518	 * is the deadlock scenario, as it is obvious that the
2519	 * unsafe lock is taken under the safe lock.
2520	 *
2521	 * But if there is a chain instead, where the safe lock takes
2522	 * an intermediate lock (middle_class) where this lock is
2523	 * not the same as the safe lock, then the lock chain is
2524	 * used to describe the problem. Otherwise we would need
2525	 * to show a different CPU case for each link in the chain
2526	 * from the safe_class lock to the unsafe_class lock.
2527	 */
2528	if (middle_class != unsafe_class) {
2529		printk("Chain exists of:\n  ");
2530		__print_lock_name(NULL, safe_class);
2531		printk(KERN_CONT " --> ");
2532		__print_lock_name(NULL, middle_class);
2533		printk(KERN_CONT " --> ");
2534		__print_lock_name(NULL, unsafe_class);
2535		printk(KERN_CONT "\n\n");
2536	}
2537
2538	printk(" Possible interrupt unsafe locking scenario:\n\n");
2539	printk("       CPU0                    CPU1\n");
2540	printk("       ----                    ----\n");
2541	printk("  lock(");
2542	__print_lock_name(NULL, unsafe_class);
2543	printk(KERN_CONT ");\n");
2544	printk("                               local_irq_disable();\n");
2545	printk("                               lock(");
2546	__print_lock_name(NULL, safe_class);
2547	printk(KERN_CONT ");\n");
2548	printk("                               lock(");
2549	__print_lock_name(NULL, middle_class);
2550	printk(KERN_CONT ");\n");
2551	printk("  <Interrupt>\n");
2552	printk("    lock(");
2553	__print_lock_name(NULL, safe_class);
2554	printk(KERN_CONT ");\n");
2555	printk("\n *** DEADLOCK ***\n\n");
2556}
2557
2558static void
2559print_bad_irq_dependency(struct task_struct *curr,
2560			 struct lock_list *prev_root,
2561			 struct lock_list *next_root,
2562			 struct lock_list *backwards_entry,
2563			 struct lock_list *forwards_entry,
2564			 struct held_lock *prev,
2565			 struct held_lock *next,
2566			 enum lock_usage_bit bit1,
2567			 enum lock_usage_bit bit2,
2568			 const char *irqclass)
2569{
2570	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2571		return;
2572
2573	pr_warn("\n");
2574	pr_warn("=====================================================\n");
2575	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2576		irqclass, irqclass);
2577	print_kernel_ident();
2578	pr_warn("-----------------------------------------------------\n");
2579	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2580		curr->comm, task_pid_nr(curr),
2581		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2582		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2583		lockdep_hardirqs_enabled(),
2584		curr->softirqs_enabled);
2585	print_lock(next);
2586
2587	pr_warn("\nand this task is already holding:\n");
2588	print_lock(prev);
2589	pr_warn("which would create a new lock dependency:\n");
2590	print_lock_name(prev, hlock_class(prev));
2591	pr_cont(" ->");
2592	print_lock_name(next, hlock_class(next));
2593	pr_cont("\n");
2594
2595	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2596		irqclass);
2597	print_lock_name(NULL, backwards_entry->class);
2598	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2599
2600	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2601
2602	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2603	print_lock_name(NULL, forwards_entry->class);
2604	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2605	pr_warn("...");
2606
2607	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2608
2609	pr_warn("\nother info that might help us debug this:\n\n");
2610	print_irq_lock_scenario(backwards_entry, forwards_entry,
2611				hlock_class(prev), hlock_class(next));
2612
2613	lockdep_print_held_locks(curr);
2614
2615	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2616	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
 
 
 
2617
2618	pr_warn("\nthe dependencies between the lock to be acquired");
2619	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2620	next_root->trace = save_trace();
2621	if (!next_root->trace)
2622		return;
2623	print_shortest_lock_dependencies(forwards_entry, next_root);
2624
2625	pr_warn("\nstack backtrace:\n");
2626	dump_stack();
2627}
2628
2629static const char *state_names[] = {
2630#define LOCKDEP_STATE(__STATE) \
2631	__stringify(__STATE),
2632#include "lockdep_states.h"
2633#undef LOCKDEP_STATE
2634};
2635
2636static const char *state_rnames[] = {
2637#define LOCKDEP_STATE(__STATE) \
2638	__stringify(__STATE)"-READ",
2639#include "lockdep_states.h"
2640#undef LOCKDEP_STATE
2641};
2642
2643static inline const char *state_name(enum lock_usage_bit bit)
2644{
2645	if (bit & LOCK_USAGE_READ_MASK)
2646		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2647	else
2648		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2649}
2650
2651/*
2652 * The bit number is encoded like:
2653 *
2654 *  bit0: 0 exclusive, 1 read lock
2655 *  bit1: 0 used in irq, 1 irq enabled
2656 *  bit2-n: state
2657 */
2658static int exclusive_bit(int new_bit)
2659{
2660	int state = new_bit & LOCK_USAGE_STATE_MASK;
2661	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2662
2663	/*
2664	 * keep state, bit flip the direction and strip read.
2665	 */
2666	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2667}
2668
2669/*
2670 * Observe that when given a bitmask where each bitnr is encoded as above, a
2671 * right shift of the mask transforms the individual bitnrs as -1 and
2672 * conversely, a left shift transforms into +1 for the individual bitnrs.
2673 *
2674 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2675 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2676 * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2677 *
2678 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2679 *
2680 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2681 * all bits set) and recompose with bitnr1 flipped.
2682 */
2683static unsigned long invert_dir_mask(unsigned long mask)
2684{
2685	unsigned long excl = 0;
2686
2687	/* Invert dir */
2688	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2689	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2690
2691	return excl;
2692}
2693
2694/*
2695 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2696 * usage may cause deadlock too, for example:
2697 *
2698 * P1				P2
2699 * <irq disabled>
2700 * write_lock(l1);		<irq enabled>
2701 *				read_lock(l2);
2702 * write_lock(l2);
2703 * 				<in irq>
2704 * 				read_lock(l1);
2705 *
2706 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2707 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2708 * deadlock.
2709 *
2710 * In fact, all of the following cases may cause deadlocks:
2711 *
2712 * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2713 * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2714 * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2715 * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2716 *
2717 * As a result, to calculate the "exclusive mask", first we invert the
2718 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2719 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2720 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2721 */
2722static unsigned long exclusive_mask(unsigned long mask)
2723{
2724	unsigned long excl = invert_dir_mask(mask);
2725
 
2726	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2727	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2728
2729	return excl;
2730}
2731
2732/*
2733 * Retrieve the _possible_ original mask to which @mask is
2734 * exclusive. Ie: this is the opposite of exclusive_mask().
2735 * Note that 2 possible original bits can match an exclusive
2736 * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2737 * cleared. So both are returned for each exclusive bit.
2738 */
2739static unsigned long original_mask(unsigned long mask)
2740{
2741	unsigned long excl = invert_dir_mask(mask);
2742
2743	/* Include read in existing usages */
2744	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2745	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2746
2747	return excl;
2748}
2749
2750/*
2751 * Find the first pair of bit match between an original
2752 * usage mask and an exclusive usage mask.
2753 */
2754static int find_exclusive_match(unsigned long mask,
2755				unsigned long excl_mask,
2756				enum lock_usage_bit *bitp,
2757				enum lock_usage_bit *excl_bitp)
2758{
2759	int bit, excl, excl_read;
2760
2761	for_each_set_bit(bit, &mask, LOCK_USED) {
2762		/*
2763		 * exclusive_bit() strips the read bit, however,
2764		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2765		 * to search excl | LOCK_USAGE_READ_MASK as well.
2766		 */
2767		excl = exclusive_bit(bit);
2768		excl_read = excl | LOCK_USAGE_READ_MASK;
2769		if (excl_mask & lock_flag(excl)) {
2770			*bitp = bit;
2771			*excl_bitp = excl;
2772			return 0;
2773		} else if (excl_mask & lock_flag(excl_read)) {
2774			*bitp = bit;
2775			*excl_bitp = excl_read;
2776			return 0;
2777		}
2778	}
2779	return -1;
2780}
2781
2782/*
2783 * Prove that the new dependency does not connect a hardirq-safe(-read)
2784 * lock with a hardirq-unsafe lock - to achieve this we search
2785 * the backwards-subgraph starting at <prev>, and the
2786 * forwards-subgraph starting at <next>:
2787 */
2788static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2789			   struct held_lock *next)
2790{
2791	unsigned long usage_mask = 0, forward_mask, backward_mask;
2792	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2793	struct lock_list *target_entry1;
2794	struct lock_list *target_entry;
2795	struct lock_list this, that;
2796	enum bfs_result ret;
2797
2798	/*
2799	 * Step 1: gather all hard/soft IRQs usages backward in an
2800	 * accumulated usage mask.
2801	 */
2802	bfs_init_rootb(&this, prev);
 
2803
2804	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2805	if (bfs_error(ret)) {
2806		print_bfs_bug(ret);
2807		return 0;
2808	}
2809
2810	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2811	if (!usage_mask)
2812		return 1;
2813
2814	/*
2815	 * Step 2: find exclusive uses forward that match the previous
2816	 * backward accumulated mask.
2817	 */
2818	forward_mask = exclusive_mask(usage_mask);
2819
2820	bfs_init_root(&that, next);
 
2821
2822	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2823	if (bfs_error(ret)) {
2824		print_bfs_bug(ret);
2825		return 0;
2826	}
2827	if (ret == BFS_RNOMATCH)
2828		return 1;
2829
2830	/*
2831	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2832	 * list whose usage mask matches the exclusive usage mask from the
2833	 * lock found on the forward list.
2834	 *
2835	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2836	 * the follow case:
2837	 *
2838	 * When trying to add A -> B to the graph, we find that there is a
2839	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2840	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2841	 * invert bits of M's usage_mask, we will find another lock N that is
2842	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2843	 * cause a inversion deadlock.
2844	 */
2845	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2846
2847	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2848	if (bfs_error(ret)) {
2849		print_bfs_bug(ret);
2850		return 0;
2851	}
2852	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2853		return 1;
2854
2855	/*
2856	 * Step 4: narrow down to a pair of incompatible usage bits
2857	 * and report it.
2858	 */
2859	ret = find_exclusive_match(target_entry->class->usage_mask,
2860				   target_entry1->class->usage_mask,
2861				   &backward_bit, &forward_bit);
2862	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2863		return 1;
2864
2865	print_bad_irq_dependency(curr, &this, &that,
2866				 target_entry, target_entry1,
2867				 prev, next,
2868				 backward_bit, forward_bit,
2869				 state_name(backward_bit));
2870
2871	return 0;
2872}
2873
 
 
 
 
 
 
 
 
 
 
 
 
2874#else
2875
2876static inline int check_irq_usage(struct task_struct *curr,
2877				  struct held_lock *prev, struct held_lock *next)
2878{
2879	return 1;
2880}
2881
2882static inline bool usage_skip(struct lock_list *entry, void *mask)
2883{
2884	return false;
2885}
2886
2887#endif /* CONFIG_TRACE_IRQFLAGS */
2888
2889#ifdef CONFIG_LOCKDEP_SMALL
2890/*
2891 * Check that the dependency graph starting at <src> can lead to
2892 * <target> or not. If it can, <src> -> <target> dependency is already
2893 * in the graph.
2894 *
2895 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2896 * any error appears in the bfs search.
2897 */
2898static noinline enum bfs_result
2899check_redundant(struct held_lock *src, struct held_lock *target)
2900{
2901	enum bfs_result ret;
2902	struct lock_list *target_entry;
2903	struct lock_list src_entry;
2904
2905	bfs_init_root(&src_entry, src);
2906	/*
2907	 * Special setup for check_redundant().
2908	 *
2909	 * To report redundant, we need to find a strong dependency path that
2910	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2911	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2912	 * we achieve this by setting the initial node's ->only_xr to true in
2913	 * that case. And if <prev> is S, we set initial ->only_xr to false
2914	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2915	 */
2916	src_entry.only_xr = src->read == 0;
2917
2918	debug_atomic_inc(nr_redundant_checks);
2919
2920	/*
2921	 * Note: we skip local_lock() for redundant check, because as the
2922	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2923	 * the same.
2924	 */
2925	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2926
2927	if (ret == BFS_RMATCH)
2928		debug_atomic_inc(nr_redundant);
2929
2930	return ret;
2931}
2932
2933#else
2934
2935static inline enum bfs_result
2936check_redundant(struct held_lock *src, struct held_lock *target)
2937{
2938	return BFS_RNOMATCH;
2939}
2940
2941#endif
2942
2943static void inc_chains(int irq_context)
2944{
2945	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2946		nr_hardirq_chains++;
2947	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2948		nr_softirq_chains++;
2949	else
2950		nr_process_chains++;
2951}
2952
2953static void dec_chains(int irq_context)
2954{
2955	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2956		nr_hardirq_chains--;
2957	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2958		nr_softirq_chains--;
2959	else
2960		nr_process_chains--;
2961}
2962
2963static void
2964print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2965{
2966	struct lock_class *next = hlock_class(nxt);
2967	struct lock_class *prev = hlock_class(prv);
2968
2969	printk(" Possible unsafe locking scenario:\n\n");
2970	printk("       CPU0\n");
2971	printk("       ----\n");
2972	printk("  lock(");
2973	__print_lock_name(prv, prev);
2974	printk(KERN_CONT ");\n");
2975	printk("  lock(");
2976	__print_lock_name(nxt, next);
2977	printk(KERN_CONT ");\n");
2978	printk("\n *** DEADLOCK ***\n\n");
2979	printk(" May be due to missing lock nesting notation\n\n");
2980}
2981
2982static void
2983print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2984		   struct held_lock *next)
2985{
2986	struct lock_class *class = hlock_class(prev);
2987
2988	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2989		return;
2990
2991	pr_warn("\n");
2992	pr_warn("============================================\n");
2993	pr_warn("WARNING: possible recursive locking detected\n");
2994	print_kernel_ident();
2995	pr_warn("--------------------------------------------\n");
2996	pr_warn("%s/%d is trying to acquire lock:\n",
2997		curr->comm, task_pid_nr(curr));
2998	print_lock(next);
2999	pr_warn("\nbut task is already holding lock:\n");
3000	print_lock(prev);
3001
3002	if (class->cmp_fn) {
3003		pr_warn("and the lock comparison function returns %i:\n",
3004			class->cmp_fn(prev->instance, next->instance));
3005	}
3006
3007	pr_warn("\nother info that might help us debug this:\n");
3008	print_deadlock_scenario(next, prev);
3009	lockdep_print_held_locks(curr);
3010
3011	pr_warn("\nstack backtrace:\n");
3012	dump_stack();
3013}
3014
3015/*
3016 * Check whether we are holding such a class already.
3017 *
3018 * (Note that this has to be done separately, because the graph cannot
3019 * detect such classes of deadlocks.)
3020 *
3021 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3022 * lock class is held but nest_lock is also held, i.e. we rely on the
3023 * nest_lock to avoid the deadlock.
3024 */
3025static int
3026check_deadlock(struct task_struct *curr, struct held_lock *next)
3027{
3028	struct lock_class *class;
3029	struct held_lock *prev;
3030	struct held_lock *nest = NULL;
3031	int i;
3032
3033	for (i = 0; i < curr->lockdep_depth; i++) {
3034		prev = curr->held_locks + i;
3035
3036		if (prev->instance == next->nest_lock)
3037			nest = prev;
3038
3039		if (hlock_class(prev) != hlock_class(next))
3040			continue;
3041
3042		/*
3043		 * Allow read-after-read recursion of the same
3044		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
3045		 */
3046		if ((next->read == 2) && prev->read)
3047			continue;
3048
3049		class = hlock_class(prev);
3050
3051		if (class->cmp_fn &&
3052		    class->cmp_fn(prev->instance, next->instance) < 0)
3053			continue;
3054
3055		/*
3056		 * We're holding the nest_lock, which serializes this lock's
3057		 * nesting behaviour.
3058		 */
3059		if (nest)
3060			return 2;
3061
3062		print_deadlock_bug(curr, prev, next);
3063		return 0;
3064	}
3065	return 1;
3066}
3067
3068/*
3069 * There was a chain-cache miss, and we are about to add a new dependency
3070 * to a previous lock. We validate the following rules:
3071 *
3072 *  - would the adding of the <prev> -> <next> dependency create a
3073 *    circular dependency in the graph? [== circular deadlock]
3074 *
3075 *  - does the new prev->next dependency connect any hardirq-safe lock
3076 *    (in the full backwards-subgraph starting at <prev>) with any
3077 *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3078 *    <next>)? [== illegal lock inversion with hardirq contexts]
3079 *
3080 *  - does the new prev->next dependency connect any softirq-safe lock
3081 *    (in the full backwards-subgraph starting at <prev>) with any
3082 *    softirq-unsafe lock (in the full forwards-subgraph starting at
3083 *    <next>)? [== illegal lock inversion with softirq contexts]
3084 *
3085 * any of these scenarios could lead to a deadlock.
3086 *
3087 * Then if all the validations pass, we add the forwards and backwards
3088 * dependency.
3089 */
3090static int
3091check_prev_add(struct task_struct *curr, struct held_lock *prev,
3092	       struct held_lock *next, u16 distance,
3093	       struct lock_trace **const trace)
3094{
3095	struct lock_list *entry;
3096	enum bfs_result ret;
3097
3098	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3099		/*
3100		 * The warning statements below may trigger a use-after-free
3101		 * of the class name. It is better to trigger a use-after free
3102		 * and to have the class name most of the time instead of not
3103		 * having the class name available.
3104		 */
3105		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3106			  "Detected use-after-free of lock class %px/%s\n",
3107			  hlock_class(prev),
3108			  hlock_class(prev)->name);
3109		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3110			  "Detected use-after-free of lock class %px/%s\n",
3111			  hlock_class(next),
3112			  hlock_class(next)->name);
3113		return 2;
3114	}
3115
3116	if (prev->class_idx == next->class_idx) {
3117		struct lock_class *class = hlock_class(prev);
3118
3119		if (class->cmp_fn &&
3120		    class->cmp_fn(prev->instance, next->instance) < 0)
3121			return 2;
3122	}
3123
3124	/*
3125	 * Prove that the new <prev> -> <next> dependency would not
3126	 * create a circular dependency in the graph. (We do this by
3127	 * a breadth-first search into the graph starting at <next>,
3128	 * and check whether we can reach <prev>.)
3129	 *
3130	 * The search is limited by the size of the circular queue (i.e.,
3131	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3132	 * in the graph whose neighbours are to be checked.
3133	 */
3134	ret = check_noncircular(next, prev, trace);
3135	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3136		return 0;
3137
3138	if (!check_irq_usage(curr, prev, next))
3139		return 0;
3140
3141	/*
 
 
 
 
 
 
 
 
 
 
3142	 * Is the <prev> -> <next> dependency already present?
3143	 *
3144	 * (this may occur even though this is a new chain: consider
3145	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3146	 *  chains - the second one will be new, but L1 already has
3147	 *  L2 added to its dependency list, due to the first chain.)
3148	 */
3149	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3150		if (entry->class == hlock_class(next)) {
3151			if (distance == 1)
3152				entry->distance = 1;
3153			entry->dep |= calc_dep(prev, next);
3154
3155			/*
3156			 * Also, update the reverse dependency in @next's
3157			 * ->locks_before list.
3158			 *
3159			 *  Here we reuse @entry as the cursor, which is fine
3160			 *  because we won't go to the next iteration of the
3161			 *  outer loop:
3162			 *
3163			 *  For normal cases, we return in the inner loop.
3164			 *
3165			 *  If we fail to return, we have inconsistency, i.e.
3166			 *  <prev>::locks_after contains <next> while
3167			 *  <next>::locks_before doesn't contain <prev>. In
3168			 *  that case, we return after the inner and indicate
3169			 *  something is wrong.
3170			 */
3171			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3172				if (entry->class == hlock_class(prev)) {
3173					if (distance == 1)
3174						entry->distance = 1;
3175					entry->dep |= calc_depb(prev, next);
3176					return 1;
3177				}
3178			}
3179
3180			/* <prev> is not found in <next>::locks_before */
3181			return 0;
3182		}
3183	}
3184
 
3185	/*
3186	 * Is the <prev> -> <next> link redundant?
3187	 */
3188	ret = check_redundant(prev, next);
3189	if (bfs_error(ret))
3190		return 0;
3191	else if (ret == BFS_RMATCH)
3192		return 2;
3193
3194	if (!*trace) {
3195		*trace = save_trace();
3196		if (!*trace)
3197			return 0;
3198	}
3199
3200	/*
3201	 * Ok, all validations passed, add the new lock
3202	 * to the previous lock's dependency list:
3203	 */
3204	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3205			       &hlock_class(prev)->locks_after, distance,
3206			       calc_dep(prev, next), *trace);
3207
3208	if (!ret)
3209		return 0;
3210
3211	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3212			       &hlock_class(next)->locks_before, distance,
3213			       calc_depb(prev, next), *trace);
3214	if (!ret)
3215		return 0;
3216
3217	return 2;
3218}
3219
3220/*
3221 * Add the dependency to all directly-previous locks that are 'relevant'.
3222 * The ones that are relevant are (in increasing distance from curr):
3223 * all consecutive trylock entries and the final non-trylock entry - or
3224 * the end of this context's lock-chain - whichever comes first.
3225 */
3226static int
3227check_prevs_add(struct task_struct *curr, struct held_lock *next)
3228{
3229	struct lock_trace *trace = NULL;
3230	int depth = curr->lockdep_depth;
3231	struct held_lock *hlock;
3232
3233	/*
3234	 * Debugging checks.
3235	 *
3236	 * Depth must not be zero for a non-head lock:
3237	 */
3238	if (!depth)
3239		goto out_bug;
3240	/*
3241	 * At least two relevant locks must exist for this
3242	 * to be a head:
3243	 */
3244	if (curr->held_locks[depth].irq_context !=
3245			curr->held_locks[depth-1].irq_context)
3246		goto out_bug;
3247
3248	for (;;) {
3249		u16 distance = curr->lockdep_depth - depth + 1;
3250		hlock = curr->held_locks + depth - 1;
3251
3252		if (hlock->check) {
3253			int ret = check_prev_add(curr, hlock, next, distance, &trace);
 
 
 
 
 
3254			if (!ret)
3255				return 0;
3256
3257			/*
3258			 * Stop after the first non-trylock entry,
3259			 * as non-trylock entries have added their
3260			 * own direct dependencies already, so this
3261			 * lock is connected to them indirectly:
3262			 */
3263			if (!hlock->trylock)
3264				break;
3265		}
3266
3267		depth--;
3268		/*
3269		 * End of lock-stack?
3270		 */
3271		if (!depth)
3272			break;
3273		/*
3274		 * Stop the search if we cross into another context:
3275		 */
3276		if (curr->held_locks[depth].irq_context !=
3277				curr->held_locks[depth-1].irq_context)
3278			break;
3279	}
3280	return 1;
3281out_bug:
3282	if (!debug_locks_off_graph_unlock())
3283		return 0;
3284
3285	/*
3286	 * Clearly we all shouldn't be here, but since we made it we
3287	 * can reliable say we messed up our state. See the above two
3288	 * gotos for reasons why we could possibly end up here.
3289	 */
3290	WARN_ON(1);
3291
3292	return 0;
3293}
3294
3295struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3296static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
 
3297static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3298unsigned long nr_zapped_lock_chains;
3299unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3300unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3301unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3302
3303/*
3304 * The first 2 chain_hlocks entries in the chain block in the bucket
3305 * list contains the following meta data:
3306 *
3307 *   entry[0]:
3308 *     Bit    15 - always set to 1 (it is not a class index)
3309 *     Bits 0-14 - upper 15 bits of the next block index
3310 *   entry[1]    - lower 16 bits of next block index
3311 *
3312 * A next block index of all 1 bits means it is the end of the list.
3313 *
3314 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3315 * the chain block size:
3316 *
3317 *   entry[2] - upper 16 bits of the chain block size
3318 *   entry[3] - lower 16 bits of the chain block size
3319 */
3320#define MAX_CHAIN_BUCKETS	16
3321#define CHAIN_BLK_FLAG		(1U << 15)
3322#define CHAIN_BLK_LIST_END	0xFFFFU
3323
3324static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3325
3326static inline int size_to_bucket(int size)
3327{
3328	if (size > MAX_CHAIN_BUCKETS)
3329		return 0;
3330
3331	return size - 1;
3332}
3333
3334/*
3335 * Iterate all the chain blocks in a bucket.
3336 */
3337#define for_each_chain_block(bucket, prev, curr)		\
3338	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3339	     (curr) >= 0;					\
3340	     (prev) = (curr), (curr) = chain_block_next(curr))
3341
3342/*
3343 * next block or -1
3344 */
3345static inline int chain_block_next(int offset)
3346{
3347	int next = chain_hlocks[offset];
3348
3349	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3350
3351	if (next == CHAIN_BLK_LIST_END)
3352		return -1;
3353
3354	next &= ~CHAIN_BLK_FLAG;
3355	next <<= 16;
3356	next |= chain_hlocks[offset + 1];
3357
3358	return next;
3359}
3360
3361/*
3362 * bucket-0 only
3363 */
3364static inline int chain_block_size(int offset)
3365{
3366	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3367}
3368
3369static inline void init_chain_block(int offset, int next, int bucket, int size)
3370{
3371	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3372	chain_hlocks[offset + 1] = (u16)next;
3373
3374	if (size && !bucket) {
3375		chain_hlocks[offset + 2] = size >> 16;
3376		chain_hlocks[offset + 3] = (u16)size;
3377	}
3378}
3379
3380static inline void add_chain_block(int offset, int size)
3381{
3382	int bucket = size_to_bucket(size);
3383	int next = chain_block_buckets[bucket];
3384	int prev, curr;
3385
3386	if (unlikely(size < 2)) {
3387		/*
3388		 * We can't store single entries on the freelist. Leak them.
3389		 *
3390		 * One possible way out would be to uniquely mark them, other
3391		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3392		 * the block before it is re-added.
3393		 */
3394		if (size)
3395			nr_lost_chain_hlocks++;
3396		return;
3397	}
3398
3399	nr_free_chain_hlocks += size;
3400	if (!bucket) {
3401		nr_large_chain_blocks++;
3402
3403		/*
3404		 * Variable sized, sort large to small.
3405		 */
3406		for_each_chain_block(0, prev, curr) {
3407			if (size >= chain_block_size(curr))
3408				break;
3409		}
3410		init_chain_block(offset, curr, 0, size);
3411		if (prev < 0)
3412			chain_block_buckets[0] = offset;
3413		else
3414			init_chain_block(prev, offset, 0, 0);
3415		return;
3416	}
3417	/*
3418	 * Fixed size, add to head.
3419	 */
3420	init_chain_block(offset, next, bucket, size);
3421	chain_block_buckets[bucket] = offset;
3422}
3423
3424/*
3425 * Only the first block in the list can be deleted.
3426 *
3427 * For the variable size bucket[0], the first block (the largest one) is
3428 * returned, broken up and put back into the pool. So if a chain block of
3429 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3430 * queued up after the primordial chain block and never be used until the
3431 * hlock entries in the primordial chain block is almost used up. That
3432 * causes fragmentation and reduce allocation efficiency. That can be
3433 * monitored by looking at the "large chain blocks" number in lockdep_stats.
3434 */
3435static inline void del_chain_block(int bucket, int size, int next)
3436{
3437	nr_free_chain_hlocks -= size;
3438	chain_block_buckets[bucket] = next;
3439
3440	if (!bucket)
3441		nr_large_chain_blocks--;
3442}
3443
3444static void init_chain_block_buckets(void)
3445{
3446	int i;
3447
3448	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3449		chain_block_buckets[i] = -1;
3450
3451	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3452}
3453
3454/*
3455 * Return offset of a chain block of the right size or -1 if not found.
3456 *
3457 * Fairly simple worst-fit allocator with the addition of a number of size
3458 * specific free lists.
3459 */
3460static int alloc_chain_hlocks(int req)
3461{
3462	int bucket, curr, size;
3463
3464	/*
3465	 * We rely on the MSB to act as an escape bit to denote freelist
3466	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3467	 */
3468	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3469
3470	init_data_structures_once();
3471
3472	if (nr_free_chain_hlocks < req)
3473		return -1;
3474
3475	/*
3476	 * We require a minimum of 2 (u16) entries to encode a freelist
3477	 * 'pointer'.
3478	 */
3479	req = max(req, 2);
3480	bucket = size_to_bucket(req);
3481	curr = chain_block_buckets[bucket];
3482
3483	if (bucket) {
3484		if (curr >= 0) {
3485			del_chain_block(bucket, req, chain_block_next(curr));
3486			return curr;
3487		}
3488		/* Try bucket 0 */
3489		curr = chain_block_buckets[0];
3490	}
3491
3492	/*
3493	 * The variable sized freelist is sorted by size; the first entry is
3494	 * the largest. Use it if it fits.
3495	 */
3496	if (curr >= 0) {
3497		size = chain_block_size(curr);
3498		if (likely(size >= req)) {
3499			del_chain_block(0, size, chain_block_next(curr));
3500			if (size > req)
3501				add_chain_block(curr + req, size - req);
3502			return curr;
3503		}
3504	}
3505
3506	/*
3507	 * Last resort, split a block in a larger sized bucket.
3508	 */
3509	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3510		bucket = size_to_bucket(size);
3511		curr = chain_block_buckets[bucket];
3512		if (curr < 0)
3513			continue;
3514
3515		del_chain_block(bucket, size, chain_block_next(curr));
3516		add_chain_block(curr + req, size - req);
3517		return curr;
3518	}
3519
3520	return -1;
3521}
3522
3523static inline void free_chain_hlocks(int base, int size)
3524{
3525	add_chain_block(base, max(size, 2));
3526}
3527
3528struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3529{
3530	u16 chain_hlock = chain_hlocks[chain->base + i];
3531	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3532
3533	return lock_classes + class_idx;
3534}
3535
3536/*
3537 * Returns the index of the first held_lock of the current chain
3538 */
3539static inline int get_first_held_lock(struct task_struct *curr,
3540					struct held_lock *hlock)
3541{
3542	int i;
3543	struct held_lock *hlock_curr;
3544
3545	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3546		hlock_curr = curr->held_locks + i;
3547		if (hlock_curr->irq_context != hlock->irq_context)
3548			break;
3549
3550	}
3551
3552	return ++i;
3553}
3554
3555#ifdef CONFIG_DEBUG_LOCKDEP
3556/*
3557 * Returns the next chain_key iteration
3558 */
3559static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3560{
3561	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3562
3563	printk(" hlock_id:%d -> chain_key:%016Lx",
3564		(unsigned int)hlock_id,
3565		(unsigned long long)new_chain_key);
3566	return new_chain_key;
3567}
3568
3569static void
3570print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3571{
3572	struct held_lock *hlock;
3573	u64 chain_key = INITIAL_CHAIN_KEY;
3574	int depth = curr->lockdep_depth;
3575	int i = get_first_held_lock(curr, hlock_next);
3576
3577	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3578		hlock_next->irq_context);
3579	for (; i < depth; i++) {
3580		hlock = curr->held_locks + i;
3581		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3582
3583		print_lock(hlock);
3584	}
3585
3586	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3587	print_lock(hlock_next);
3588}
3589
3590static void print_chain_keys_chain(struct lock_chain *chain)
3591{
3592	int i;
3593	u64 chain_key = INITIAL_CHAIN_KEY;
3594	u16 hlock_id;
3595
3596	printk("depth: %u\n", chain->depth);
3597	for (i = 0; i < chain->depth; i++) {
3598		hlock_id = chain_hlocks[chain->base + i];
3599		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3600
3601		print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id));
3602		printk("\n");
3603	}
3604}
3605
3606static void print_collision(struct task_struct *curr,
3607			struct held_lock *hlock_next,
3608			struct lock_chain *chain)
3609{
3610	pr_warn("\n");
3611	pr_warn("============================\n");
3612	pr_warn("WARNING: chain_key collision\n");
3613	print_kernel_ident();
3614	pr_warn("----------------------------\n");
3615	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3616	pr_warn("Hash chain already cached but the contents don't match!\n");
3617
3618	pr_warn("Held locks:");
3619	print_chain_keys_held_locks(curr, hlock_next);
3620
3621	pr_warn("Locks in cached chain:");
3622	print_chain_keys_chain(chain);
3623
3624	pr_warn("\nstack backtrace:\n");
3625	dump_stack();
3626}
3627#endif
3628
3629/*
3630 * Checks whether the chain and the current held locks are consistent
3631 * in depth and also in content. If they are not it most likely means
3632 * that there was a collision during the calculation of the chain_key.
3633 * Returns: 0 not passed, 1 passed
3634 */
3635static int check_no_collision(struct task_struct *curr,
3636			struct held_lock *hlock,
3637			struct lock_chain *chain)
3638{
3639#ifdef CONFIG_DEBUG_LOCKDEP
3640	int i, j, id;
3641
3642	i = get_first_held_lock(curr, hlock);
3643
3644	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3645		print_collision(curr, hlock, chain);
3646		return 0;
3647	}
3648
3649	for (j = 0; j < chain->depth - 1; j++, i++) {
3650		id = hlock_id(&curr->held_locks[i]);
3651
3652		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3653			print_collision(curr, hlock, chain);
3654			return 0;
3655		}
3656	}
3657#endif
3658	return 1;
3659}
3660
3661/*
3662 * Given an index that is >= -1, return the index of the next lock chain.
3663 * Return -2 if there is no next lock chain.
3664 */
3665long lockdep_next_lockchain(long i)
3666{
3667	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3668	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3669}
3670
3671unsigned long lock_chain_count(void)
3672{
3673	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3674}
3675
3676/* Must be called with the graph lock held. */
3677static struct lock_chain *alloc_lock_chain(void)
3678{
3679	int idx = find_first_zero_bit(lock_chains_in_use,
3680				      ARRAY_SIZE(lock_chains));
3681
3682	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3683		return NULL;
3684	__set_bit(idx, lock_chains_in_use);
3685	return lock_chains + idx;
3686}
3687
3688/*
3689 * Adds a dependency chain into chain hashtable. And must be called with
3690 * graph_lock held.
3691 *
3692 * Return 0 if fail, and graph_lock is released.
3693 * Return 1 if succeed, with graph_lock held.
3694 */
3695static inline int add_chain_cache(struct task_struct *curr,
3696				  struct held_lock *hlock,
3697				  u64 chain_key)
3698{
 
3699	struct hlist_head *hash_head = chainhashentry(chain_key);
3700	struct lock_chain *chain;
3701	int i, j;
3702
3703	/*
3704	 * The caller must hold the graph lock, ensure we've got IRQs
3705	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3706	 * lockdep won't complain about its own locking errors.
3707	 */
3708	if (lockdep_assert_locked())
3709		return 0;
3710
3711	chain = alloc_lock_chain();
3712	if (!chain) {
3713		if (!debug_locks_off_graph_unlock())
3714			return 0;
3715
3716		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3717		dump_stack();
3718		return 0;
3719	}
3720	chain->chain_key = chain_key;
3721	chain->irq_context = hlock->irq_context;
3722	i = get_first_held_lock(curr, hlock);
3723	chain->depth = curr->lockdep_depth + 1 - i;
3724
3725	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3726	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3727	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3728
3729	j = alloc_chain_hlocks(chain->depth);
3730	if (j < 0) {
 
 
 
 
 
 
 
3731		if (!debug_locks_off_graph_unlock())
3732			return 0;
3733
3734		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3735		dump_stack();
3736		return 0;
3737	}
3738
3739	chain->base = j;
3740	for (j = 0; j < chain->depth - 1; j++, i++) {
3741		int lock_id = hlock_id(curr->held_locks + i);
3742
3743		chain_hlocks[chain->base + j] = lock_id;
3744	}
3745	chain_hlocks[chain->base + j] = hlock_id(hlock);
3746	hlist_add_head_rcu(&chain->entry, hash_head);
3747	debug_atomic_inc(chain_lookup_misses);
3748	inc_chains(chain->irq_context);
3749
3750	return 1;
3751}
3752
3753/*
3754 * Look up a dependency chain. Must be called with either the graph lock or
3755 * the RCU read lock held.
3756 */
3757static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3758{
3759	struct hlist_head *hash_head = chainhashentry(chain_key);
3760	struct lock_chain *chain;
3761
3762	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3763		if (READ_ONCE(chain->chain_key) == chain_key) {
3764			debug_atomic_inc(chain_lookup_hits);
3765			return chain;
3766		}
3767	}
3768	return NULL;
3769}
3770
3771/*
3772 * If the key is not present yet in dependency chain cache then
3773 * add it and return 1 - in this case the new dependency chain is
3774 * validated. If the key is already hashed, return 0.
3775 * (On return with 1 graph_lock is held.)
3776 */
3777static inline int lookup_chain_cache_add(struct task_struct *curr,
3778					 struct held_lock *hlock,
3779					 u64 chain_key)
3780{
3781	struct lock_class *class = hlock_class(hlock);
3782	struct lock_chain *chain = lookup_chain_cache(chain_key);
3783
3784	if (chain) {
3785cache_hit:
3786		if (!check_no_collision(curr, hlock, chain))
3787			return 0;
3788
3789		if (very_verbose(class)) {
3790			printk("\nhash chain already cached, key: "
3791					"%016Lx tail class: [%px] %s\n",
3792					(unsigned long long)chain_key,
3793					class->key, class->name);
3794		}
3795
3796		return 0;
3797	}
3798
3799	if (very_verbose(class)) {
3800		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3801			(unsigned long long)chain_key, class->key, class->name);
3802	}
3803
3804	if (!graph_lock())
3805		return 0;
3806
3807	/*
3808	 * We have to walk the chain again locked - to avoid duplicates:
3809	 */
3810	chain = lookup_chain_cache(chain_key);
3811	if (chain) {
3812		graph_unlock();
3813		goto cache_hit;
3814	}
3815
3816	if (!add_chain_cache(curr, hlock, chain_key))
3817		return 0;
3818
3819	return 1;
3820}
3821
3822static int validate_chain(struct task_struct *curr,
3823			  struct held_lock *hlock,
3824			  int chain_head, u64 chain_key)
3825{
3826	/*
3827	 * Trylock needs to maintain the stack of held locks, but it
3828	 * does not add new dependencies, because trylock can be done
3829	 * in any order.
3830	 *
3831	 * We look up the chain_key and do the O(N^2) check and update of
3832	 * the dependencies only if this is a new dependency chain.
3833	 * (If lookup_chain_cache_add() return with 1 it acquires
3834	 * graph_lock for us)
3835	 */
3836	if (!hlock->trylock && hlock->check &&
3837	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3838		/*
3839		 * Check whether last held lock:
3840		 *
3841		 * - is irq-safe, if this lock is irq-unsafe
3842		 * - is softirq-safe, if this lock is hardirq-unsafe
3843		 *
3844		 * And check whether the new lock's dependency graph
3845		 * could lead back to the previous lock:
3846		 *
3847		 * - within the current held-lock stack
3848		 * - across our accumulated lock dependency records
3849		 *
3850		 * any of these scenarios could lead to a deadlock.
3851		 */
3852		/*
3853		 * The simple case: does the current hold the same lock
3854		 * already?
3855		 */
3856		int ret = check_deadlock(curr, hlock);
3857
3858		if (!ret)
3859			return 0;
3860		/*
 
 
 
 
 
 
 
3861		 * Add dependency only if this lock is not the head
3862		 * of the chain, and if the new lock introduces no more
3863		 * lock dependency (because we already hold a lock with the
3864		 * same lock class) nor deadlock (because the nest_lock
3865		 * serializes nesting locks), see the comments for
3866		 * check_deadlock().
3867		 */
3868		if (!chain_head && ret != 2) {
3869			if (!check_prevs_add(curr, hlock))
3870				return 0;
3871		}
3872
3873		graph_unlock();
3874	} else {
3875		/* after lookup_chain_cache_add(): */
3876		if (unlikely(!debug_locks))
3877			return 0;
3878	}
3879
3880	return 1;
3881}
3882#else
3883static inline int validate_chain(struct task_struct *curr,
3884				 struct held_lock *hlock,
3885				 int chain_head, u64 chain_key)
3886{
3887	return 1;
3888}
3889
3890static void init_chain_block_buckets(void)	{ }
3891#endif /* CONFIG_PROVE_LOCKING */
3892
3893/*
3894 * We are building curr_chain_key incrementally, so double-check
3895 * it from scratch, to make sure that it's done correctly:
3896 */
3897static void check_chain_key(struct task_struct *curr)
3898{
3899#ifdef CONFIG_DEBUG_LOCKDEP
3900	struct held_lock *hlock, *prev_hlock = NULL;
3901	unsigned int i;
3902	u64 chain_key = INITIAL_CHAIN_KEY;
3903
3904	for (i = 0; i < curr->lockdep_depth; i++) {
3905		hlock = curr->held_locks + i;
3906		if (chain_key != hlock->prev_chain_key) {
3907			debug_locks_off();
3908			/*
3909			 * We got mighty confused, our chain keys don't match
3910			 * with what we expect, someone trample on our task state?
3911			 */
3912			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3913				curr->lockdep_depth, i,
3914				(unsigned long long)chain_key,
3915				(unsigned long long)hlock->prev_chain_key);
3916			return;
3917		}
3918
3919		/*
3920		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3921		 * it registered lock class index?
3922		 */
3923		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3924			return;
3925
3926		if (prev_hlock && (prev_hlock->irq_context !=
3927							hlock->irq_context))
3928			chain_key = INITIAL_CHAIN_KEY;
3929		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3930		prev_hlock = hlock;
3931	}
3932	if (chain_key != curr->curr_chain_key) {
3933		debug_locks_off();
3934		/*
3935		 * More smoking hash instead of calculating it, damn see these
3936		 * numbers float.. I bet that a pink elephant stepped on my memory.
3937		 */
3938		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3939			curr->lockdep_depth, i,
3940			(unsigned long long)chain_key,
3941			(unsigned long long)curr->curr_chain_key);
3942	}
3943#endif
3944}
3945
3946#ifdef CONFIG_PROVE_LOCKING
3947static int mark_lock(struct task_struct *curr, struct held_lock *this,
3948		     enum lock_usage_bit new_bit);
3949
3950static void print_usage_bug_scenario(struct held_lock *lock)
3951{
3952	struct lock_class *class = hlock_class(lock);
3953
3954	printk(" Possible unsafe locking scenario:\n\n");
3955	printk("       CPU0\n");
3956	printk("       ----\n");
3957	printk("  lock(");
3958	__print_lock_name(lock, class);
3959	printk(KERN_CONT ");\n");
3960	printk("  <Interrupt>\n");
3961	printk("    lock(");
3962	__print_lock_name(lock, class);
3963	printk(KERN_CONT ");\n");
3964	printk("\n *** DEADLOCK ***\n\n");
3965}
3966
3967static void
3968print_usage_bug(struct task_struct *curr, struct held_lock *this,
3969		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3970{
3971	if (!debug_locks_off() || debug_locks_silent)
3972		return;
3973
3974	pr_warn("\n");
3975	pr_warn("================================\n");
3976	pr_warn("WARNING: inconsistent lock state\n");
3977	print_kernel_ident();
3978	pr_warn("--------------------------------\n");
3979
3980	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3981		usage_str[prev_bit], usage_str[new_bit]);
3982
3983	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3984		curr->comm, task_pid_nr(curr),
3985		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3986		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3987		lockdep_hardirqs_enabled(),
3988		lockdep_softirqs_enabled(curr));
3989	print_lock(this);
3990
3991	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3992	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3993
3994	print_irqtrace_events(curr);
3995	pr_warn("\nother info that might help us debug this:\n");
3996	print_usage_bug_scenario(this);
3997
3998	lockdep_print_held_locks(curr);
3999
4000	pr_warn("\nstack backtrace:\n");
4001	dump_stack();
4002}
4003
4004/*
4005 * Print out an error if an invalid bit is set:
4006 */
4007static inline int
4008valid_state(struct task_struct *curr, struct held_lock *this,
4009	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
4010{
4011	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
4012		graph_unlock();
4013		print_usage_bug(curr, this, bad_bit, new_bit);
4014		return 0;
4015	}
4016	return 1;
4017}
4018
4019
4020/*
4021 * print irq inversion bug:
4022 */
4023static void
4024print_irq_inversion_bug(struct task_struct *curr,
4025			struct lock_list *root, struct lock_list *other,
4026			struct held_lock *this, int forwards,
4027			const char *irqclass)
4028{
4029	struct lock_list *entry = other;
4030	struct lock_list *middle = NULL;
4031	int depth;
4032
4033	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
4034		return;
4035
4036	pr_warn("\n");
4037	pr_warn("========================================================\n");
4038	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4039	print_kernel_ident();
4040	pr_warn("--------------------------------------------------------\n");
4041	pr_warn("%s/%d just changed the state of lock:\n",
4042		curr->comm, task_pid_nr(curr));
4043	print_lock(this);
4044	if (forwards)
4045		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4046	else
4047		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4048	print_lock_name(NULL, other->class);
4049	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4050
4051	pr_warn("\nother info that might help us debug this:\n");
4052
4053	/* Find a middle lock (if one exists) */
4054	depth = get_lock_depth(other);
4055	do {
4056		if (depth == 0 && (entry != root)) {
4057			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4058			break;
4059		}
4060		middle = entry;
4061		entry = get_lock_parent(entry);
4062		depth--;
4063	} while (entry && entry != root && (depth >= 0));
4064	if (forwards)
4065		print_irq_lock_scenario(root, other,
4066			middle ? middle->class : root->class, other->class);
4067	else
4068		print_irq_lock_scenario(other, root,
4069			middle ? middle->class : other->class, root->class);
4070
4071	lockdep_print_held_locks(curr);
4072
4073	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4074	root->trace = save_trace();
4075	if (!root->trace)
4076		return;
4077	print_shortest_lock_dependencies(other, root);
4078
4079	pr_warn("\nstack backtrace:\n");
4080	dump_stack();
4081}
4082
4083/*
4084 * Prove that in the forwards-direction subgraph starting at <this>
4085 * there is no lock matching <mask>:
4086 */
4087static int
4088check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4089		     enum lock_usage_bit bit)
4090{
4091	enum bfs_result ret;
4092	struct lock_list root;
4093	struct lock_list *target_entry;
4094	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4095	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4096
4097	bfs_init_root(&root, this);
4098	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4099	if (bfs_error(ret)) {
4100		print_bfs_bug(ret);
4101		return 0;
4102	}
4103	if (ret == BFS_RNOMATCH)
4104		return 1;
4105
4106	/* Check whether write or read usage is the match */
4107	if (target_entry->class->usage_mask & lock_flag(bit)) {
4108		print_irq_inversion_bug(curr, &root, target_entry,
4109					this, 1, state_name(bit));
4110	} else {
4111		print_irq_inversion_bug(curr, &root, target_entry,
4112					this, 1, state_name(read_bit));
4113	}
4114
 
 
4115	return 0;
4116}
4117
4118/*
4119 * Prove that in the backwards-direction subgraph starting at <this>
4120 * there is no lock matching <mask>:
4121 */
4122static int
4123check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4124		      enum lock_usage_bit bit)
4125{
4126	enum bfs_result ret;
4127	struct lock_list root;
4128	struct lock_list *target_entry;
4129	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4130	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4131
4132	bfs_init_rootb(&root, this);
4133	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4134	if (bfs_error(ret)) {
4135		print_bfs_bug(ret);
4136		return 0;
4137	}
4138	if (ret == BFS_RNOMATCH)
4139		return 1;
4140
4141	/* Check whether write or read usage is the match */
4142	if (target_entry->class->usage_mask & lock_flag(bit)) {
4143		print_irq_inversion_bug(curr, &root, target_entry,
4144					this, 0, state_name(bit));
4145	} else {
4146		print_irq_inversion_bug(curr, &root, target_entry,
4147					this, 0, state_name(read_bit));
4148	}
4149
 
 
4150	return 0;
4151}
4152
4153void print_irqtrace_events(struct task_struct *curr)
4154{
4155	const struct irqtrace_events *trace = &curr->irqtrace;
4156
4157	printk("irq event stamp: %u\n", trace->irq_events);
4158	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4159		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4160		(void *)trace->hardirq_enable_ip);
4161	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4162		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4163		(void *)trace->hardirq_disable_ip);
4164	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4165		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4166		(void *)trace->softirq_enable_ip);
4167	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4168		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4169		(void *)trace->softirq_disable_ip);
4170}
4171
4172static int HARDIRQ_verbose(struct lock_class *class)
4173{
4174#if HARDIRQ_VERBOSE
4175	return class_filter(class);
4176#endif
4177	return 0;
4178}
4179
4180static int SOFTIRQ_verbose(struct lock_class *class)
4181{
4182#if SOFTIRQ_VERBOSE
4183	return class_filter(class);
4184#endif
4185	return 0;
4186}
4187
 
 
4188static int (*state_verbose_f[])(struct lock_class *class) = {
4189#define LOCKDEP_STATE(__STATE) \
4190	__STATE##_verbose,
4191#include "lockdep_states.h"
4192#undef LOCKDEP_STATE
4193};
4194
4195static inline int state_verbose(enum lock_usage_bit bit,
4196				struct lock_class *class)
4197{
4198	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4199}
4200
4201typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4202			     enum lock_usage_bit bit, const char *name);
4203
4204static int
4205mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4206		enum lock_usage_bit new_bit)
4207{
4208	int excl_bit = exclusive_bit(new_bit);
4209	int read = new_bit & LOCK_USAGE_READ_MASK;
4210	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4211
4212	/*
 
 
 
 
 
 
 
 
 
 
4213	 * Validate that this particular lock does not have conflicting
4214	 * usage states.
4215	 */
4216	if (!valid_state(curr, this, new_bit, excl_bit))
4217		return 0;
4218
4219	/*
4220	 * Check for read in write conflicts
 
4221	 */
4222	if (!read && !valid_state(curr, this, new_bit,
4223				  excl_bit + LOCK_USAGE_READ_MASK))
4224		return 0;
4225
4226
4227	/*
4228	 * Validate that the lock dependencies don't have conflicting usage
4229	 * states.
4230	 */
4231	if (dir) {
4232		/*
4233		 * mark ENABLED has to look backwards -- to ensure no dependee
4234		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4235		 */
4236		if (!check_usage_backwards(curr, this, excl_bit))
4237			return 0;
4238	} else {
4239		/*
4240		 * mark USED_IN has to look forwards -- to ensure no dependency
4241		 * has ENABLED state, which would allow recursion deadlocks.
4242		 */
4243		if (!check_usage_forwards(curr, this, excl_bit))
4244			return 0;
4245	}
4246
4247	if (state_verbose(new_bit, hlock_class(this)))
4248		return 2;
4249
4250	return 1;
4251}
4252
4253/*
4254 * Mark all held locks with a usage bit:
4255 */
4256static int
4257mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4258{
4259	struct held_lock *hlock;
4260	int i;
4261
4262	for (i = 0; i < curr->lockdep_depth; i++) {
4263		enum lock_usage_bit hlock_bit = base_bit;
4264		hlock = curr->held_locks + i;
4265
4266		if (hlock->read)
4267			hlock_bit += LOCK_USAGE_READ_MASK;
4268
4269		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4270
4271		if (!hlock->check)
4272			continue;
4273
4274		if (!mark_lock(curr, hlock, hlock_bit))
4275			return 0;
4276	}
4277
4278	return 1;
4279}
4280
4281/*
4282 * Hardirqs will be enabled:
4283 */
4284static void __trace_hardirqs_on_caller(void)
4285{
4286	struct task_struct *curr = current;
4287
 
 
 
4288	/*
4289	 * We are going to turn hardirqs on, so set the
4290	 * usage bit for all held locks:
4291	 */
4292	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4293		return;
4294	/*
4295	 * If we have softirqs enabled, then set the usage
4296	 * bit for all held locks. (disabled hardirqs prevented
4297	 * this bit from being set before)
4298	 */
4299	if (curr->softirqs_enabled)
4300		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
 
 
 
 
 
4301}
4302
4303/**
4304 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4305 *
4306 * Invoked before a possible transition to RCU idle from exit to user or
4307 * guest mode. This ensures that all RCU operations are done before RCU
4308 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4309 * invoked to set the final state.
4310 */
4311void lockdep_hardirqs_on_prepare(void)
4312{
4313	if (unlikely(!debug_locks))
4314		return;
4315
4316	/*
4317	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4318	 */
4319	if (unlikely(in_nmi()))
4320		return;
4321
4322	if (unlikely(this_cpu_read(lockdep_recursion)))
4323		return;
4324
4325	if (unlikely(lockdep_hardirqs_enabled())) {
4326		/*
4327		 * Neither irq nor preemption are disabled here
4328		 * so this is racy by nature but losing one hit
4329		 * in a stat is not a big deal.
4330		 */
4331		__debug_atomic_inc(redundant_hardirqs_on);
4332		return;
4333	}
4334
4335	/*
4336	 * We're enabling irqs and according to our state above irqs weren't
4337	 * already enabled, yet we find the hardware thinks they are in fact
4338	 * enabled.. someone messed up their IRQ state tracing.
4339	 */
4340	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4341		return;
4342
4343	/*
4344	 * See the fine text that goes along with this variable definition.
4345	 */
4346	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4347		return;
4348
4349	/*
4350	 * Can't allow enabling interrupts while in an interrupt handler,
4351	 * that's general bad form and such. Recursion, limited stack etc..
4352	 */
4353	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4354		return;
4355
4356	current->hardirq_chain_key = current->curr_chain_key;
4357
4358	lockdep_recursion_inc();
4359	__trace_hardirqs_on_caller();
4360	lockdep_recursion_finish();
4361}
4362EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4363
4364void noinstr lockdep_hardirqs_on(unsigned long ip)
4365{
4366	struct irqtrace_events *trace = &current->irqtrace;
4367
4368	if (unlikely(!debug_locks))
4369		return;
4370
4371	/*
4372	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4373	 * tracking state and hardware state are out of sync.
4374	 *
4375	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4376	 * and not rely on hardware state like normal interrupts.
4377	 */
4378	if (unlikely(in_nmi())) {
4379		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4380			return;
4381
4382		/*
4383		 * Skip:
4384		 *  - recursion check, because NMI can hit lockdep;
4385		 *  - hardware state check, because above;
4386		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4387		 */
4388		goto skip_checks;
4389	}
4390
4391	if (unlikely(this_cpu_read(lockdep_recursion)))
4392		return;
4393
4394	if (lockdep_hardirqs_enabled()) {
4395		/*
4396		 * Neither irq nor preemption are disabled here
4397		 * so this is racy by nature but losing one hit
4398		 * in a stat is not a big deal.
4399		 */
4400		__debug_atomic_inc(redundant_hardirqs_on);
4401		return;
4402	}
4403
4404	/*
4405	 * We're enabling irqs and according to our state above irqs weren't
4406	 * already enabled, yet we find the hardware thinks they are in fact
4407	 * enabled.. someone messed up their IRQ state tracing.
4408	 */
4409	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4410		return;
4411
4412	/*
4413	 * Ensure the lock stack remained unchanged between
4414	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4415	 */
4416	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4417			    current->curr_chain_key);
4418
4419skip_checks:
4420	/* we'll do an OFF -> ON transition: */
4421	__this_cpu_write(hardirqs_enabled, 1);
4422	trace->hardirq_enable_ip = ip;
4423	trace->hardirq_enable_event = ++trace->irq_events;
4424	debug_atomic_inc(hardirqs_on_events);
4425}
4426EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4427
4428/*
4429 * Hardirqs were disabled:
4430 */
4431void noinstr lockdep_hardirqs_off(unsigned long ip)
4432{
4433	if (unlikely(!debug_locks))
4434		return;
4435
4436	/*
4437	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4438	 * they will restore the software state. This ensures the software
4439	 * state is consistent inside NMIs as well.
4440	 */
4441	if (in_nmi()) {
4442		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4443			return;
4444	} else if (__this_cpu_read(lockdep_recursion))
4445		return;
4446
4447	/*
4448	 * So we're supposed to get called after you mask local IRQs, but for
4449	 * some reason the hardware doesn't quite think you did a proper job.
4450	 */
4451	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4452		return;
4453
4454	if (lockdep_hardirqs_enabled()) {
4455		struct irqtrace_events *trace = &current->irqtrace;
4456
4457		/*
4458		 * We have done an ON -> OFF transition:
4459		 */
4460		__this_cpu_write(hardirqs_enabled, 0);
4461		trace->hardirq_disable_ip = ip;
4462		trace->hardirq_disable_event = ++trace->irq_events;
4463		debug_atomic_inc(hardirqs_off_events);
4464	} else {
4465		debug_atomic_inc(redundant_hardirqs_off);
4466	}
4467}
4468EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4469
4470/*
4471 * Softirqs will be enabled:
4472 */
4473void lockdep_softirqs_on(unsigned long ip)
4474{
4475	struct irqtrace_events *trace = &current->irqtrace;
4476
4477	if (unlikely(!lockdep_enabled()))
4478		return;
4479
4480	/*
4481	 * We fancy IRQs being disabled here, see softirq.c, avoids
4482	 * funny state and nesting things.
4483	 */
4484	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4485		return;
4486
4487	if (current->softirqs_enabled) {
4488		debug_atomic_inc(redundant_softirqs_on);
4489		return;
4490	}
4491
4492	lockdep_recursion_inc();
4493	/*
4494	 * We'll do an OFF -> ON transition:
4495	 */
4496	current->softirqs_enabled = 1;
4497	trace->softirq_enable_ip = ip;
4498	trace->softirq_enable_event = ++trace->irq_events;
4499	debug_atomic_inc(softirqs_on_events);
4500	/*
4501	 * We are going to turn softirqs on, so set the
4502	 * usage bit for all held locks, if hardirqs are
4503	 * enabled too:
4504	 */
4505	if (lockdep_hardirqs_enabled())
4506		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4507	lockdep_recursion_finish();
4508}
4509
4510/*
4511 * Softirqs were disabled:
4512 */
4513void lockdep_softirqs_off(unsigned long ip)
4514{
4515	if (unlikely(!lockdep_enabled()))
 
 
4516		return;
4517
4518	/*
4519	 * We fancy IRQs being disabled here, see softirq.c
4520	 */
4521	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4522		return;
4523
4524	if (current->softirqs_enabled) {
4525		struct irqtrace_events *trace = &current->irqtrace;
4526
4527		/*
4528		 * We have done an ON -> OFF transition:
4529		 */
4530		current->softirqs_enabled = 0;
4531		trace->softirq_disable_ip = ip;
4532		trace->softirq_disable_event = ++trace->irq_events;
4533		debug_atomic_inc(softirqs_off_events);
4534		/*
4535		 * Whoops, we wanted softirqs off, so why aren't they?
4536		 */
4537		DEBUG_LOCKS_WARN_ON(!softirq_count());
4538	} else
4539		debug_atomic_inc(redundant_softirqs_off);
4540}
4541
4542static int
4543mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4544{
4545	if (!check)
4546		goto lock_used;
4547
4548	/*
4549	 * If non-trylock use in a hardirq or softirq context, then
4550	 * mark the lock as used in these contexts:
4551	 */
4552	if (!hlock->trylock) {
4553		if (hlock->read) {
4554			if (lockdep_hardirq_context())
4555				if (!mark_lock(curr, hlock,
4556						LOCK_USED_IN_HARDIRQ_READ))
4557					return 0;
4558			if (curr->softirq_context)
4559				if (!mark_lock(curr, hlock,
4560						LOCK_USED_IN_SOFTIRQ_READ))
4561					return 0;
4562		} else {
4563			if (lockdep_hardirq_context())
4564				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4565					return 0;
4566			if (curr->softirq_context)
4567				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4568					return 0;
4569		}
4570	}
4571
4572	/*
4573	 * For lock_sync(), don't mark the ENABLED usage, since lock_sync()
4574	 * creates no critical section and no extra dependency can be introduced
4575	 * by interrupts
4576	 */
4577	if (!hlock->hardirqs_off && !hlock->sync) {
4578		if (hlock->read) {
4579			if (!mark_lock(curr, hlock,
4580					LOCK_ENABLED_HARDIRQ_READ))
4581				return 0;
4582			if (curr->softirqs_enabled)
4583				if (!mark_lock(curr, hlock,
4584						LOCK_ENABLED_SOFTIRQ_READ))
4585					return 0;
4586		} else {
4587			if (!mark_lock(curr, hlock,
4588					LOCK_ENABLED_HARDIRQ))
4589				return 0;
4590			if (curr->softirqs_enabled)
4591				if (!mark_lock(curr, hlock,
4592						LOCK_ENABLED_SOFTIRQ))
4593					return 0;
4594		}
4595	}
4596
4597lock_used:
4598	/* mark it as used: */
4599	if (!mark_lock(curr, hlock, LOCK_USED))
4600		return 0;
4601
4602	return 1;
4603}
4604
4605static inline unsigned int task_irq_context(struct task_struct *task)
4606{
4607	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4608	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4609}
4610
4611static int separate_irq_context(struct task_struct *curr,
4612		struct held_lock *hlock)
4613{
4614	unsigned int depth = curr->lockdep_depth;
4615
4616	/*
4617	 * Keep track of points where we cross into an interrupt context:
4618	 */
4619	if (depth) {
4620		struct held_lock *prev_hlock;
4621
4622		prev_hlock = curr->held_locks + depth-1;
4623		/*
4624		 * If we cross into another context, reset the
4625		 * hash key (this also prevents the checking and the
4626		 * adding of the dependency to 'prev'):
4627		 */
4628		if (prev_hlock->irq_context != hlock->irq_context)
4629			return 1;
4630	}
4631	return 0;
4632}
4633
4634/*
4635 * Mark a lock with a usage bit, and validate the state transition:
4636 */
4637static int mark_lock(struct task_struct *curr, struct held_lock *this,
4638			     enum lock_usage_bit new_bit)
4639{
4640	unsigned int new_mask, ret = 1;
4641
4642	if (new_bit >= LOCK_USAGE_STATES) {
4643		DEBUG_LOCKS_WARN_ON(1);
4644		return 0;
4645	}
4646
4647	if (new_bit == LOCK_USED && this->read)
4648		new_bit = LOCK_USED_READ;
4649
4650	new_mask = 1 << new_bit;
4651
4652	/*
4653	 * If already set then do not dirty the cacheline,
4654	 * nor do any checks:
4655	 */
4656	if (likely(hlock_class(this)->usage_mask & new_mask))
4657		return 1;
4658
4659	if (!graph_lock())
4660		return 0;
4661	/*
4662	 * Make sure we didn't race:
4663	 */
4664	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4665		goto unlock;
4666
4667	if (!hlock_class(this)->usage_mask)
4668		debug_atomic_dec(nr_unused_locks);
4669
4670	hlock_class(this)->usage_mask |= new_mask;
4671
4672	if (new_bit < LOCK_TRACE_STATES) {
4673		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4674			return 0;
4675	}
4676
4677	if (new_bit < LOCK_USED) {
 
 
 
 
4678		ret = mark_lock_irq(curr, this, new_bit);
4679		if (!ret)
4680			return 0;
4681	}
4682
4683unlock:
4684	graph_unlock();
4685
4686	/*
4687	 * We must printk outside of the graph_lock:
4688	 */
4689	if (ret == 2) {
4690		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4691		print_lock(this);
4692		print_irqtrace_events(curr);
4693		dump_stack();
4694	}
4695
4696	return ret;
4697}
4698
4699static inline short task_wait_context(struct task_struct *curr)
4700{
4701	/*
4702	 * Set appropriate wait type for the context; for IRQs we have to take
4703	 * into account force_irqthread as that is implied by PREEMPT_RT.
4704	 */
4705	if (lockdep_hardirq_context()) {
4706		/*
4707		 * Check if force_irqthreads will run us threaded.
4708		 */
4709		if (curr->hardirq_threaded || curr->irq_config)
4710			return LD_WAIT_CONFIG;
4711
4712		return LD_WAIT_SPIN;
4713	} else if (curr->softirq_context) {
4714		/*
4715		 * Softirqs are always threaded.
4716		 */
4717		return LD_WAIT_CONFIG;
4718	}
4719
4720	return LD_WAIT_MAX;
4721}
4722
4723static int
4724print_lock_invalid_wait_context(struct task_struct *curr,
4725				struct held_lock *hlock)
4726{
4727	short curr_inner;
4728
4729	if (!debug_locks_off())
4730		return 0;
4731	if (debug_locks_silent)
4732		return 0;
4733
4734	pr_warn("\n");
4735	pr_warn("=============================\n");
4736	pr_warn("[ BUG: Invalid wait context ]\n");
4737	print_kernel_ident();
4738	pr_warn("-----------------------------\n");
4739
4740	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4741	print_lock(hlock);
4742
4743	pr_warn("other info that might help us debug this:\n");
4744
4745	curr_inner = task_wait_context(curr);
4746	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4747
4748	lockdep_print_held_locks(curr);
4749
4750	pr_warn("stack backtrace:\n");
4751	dump_stack();
4752
4753	return 0;
4754}
4755
4756/*
4757 * Verify the wait_type context.
4758 *
4759 * This check validates we take locks in the right wait-type order; that is it
4760 * ensures that we do not take mutexes inside spinlocks and do not attempt to
4761 * acquire spinlocks inside raw_spinlocks and the sort.
4762 *
4763 * The entire thing is slightly more complex because of RCU, RCU is a lock that
4764 * can be taken from (pretty much) any context but also has constraints.
4765 * However when taken in a stricter environment the RCU lock does not loosen
4766 * the constraints.
4767 *
4768 * Therefore we must look for the strictest environment in the lock stack and
4769 * compare that to the lock we're trying to acquire.
4770 */
4771static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4772{
4773	u8 next_inner = hlock_class(next)->wait_type_inner;
4774	u8 next_outer = hlock_class(next)->wait_type_outer;
4775	u8 curr_inner;
4776	int depth;
4777
4778	if (!next_inner || next->trylock)
4779		return 0;
4780
4781	if (!next_outer)
4782		next_outer = next_inner;
4783
4784	/*
4785	 * Find start of current irq_context..
4786	 */
4787	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4788		struct held_lock *prev = curr->held_locks + depth;
4789		if (prev->irq_context != next->irq_context)
4790			break;
4791	}
4792	depth++;
4793
4794	curr_inner = task_wait_context(curr);
4795
4796	for (; depth < curr->lockdep_depth; depth++) {
4797		struct held_lock *prev = curr->held_locks + depth;
4798		struct lock_class *class = hlock_class(prev);
4799		u8 prev_inner = class->wait_type_inner;
4800
4801		if (prev_inner) {
4802			/*
4803			 * We can have a bigger inner than a previous one
4804			 * when outer is smaller than inner, as with RCU.
4805			 *
4806			 * Also due to trylocks.
4807			 */
4808			curr_inner = min(curr_inner, prev_inner);
4809
4810			/*
4811			 * Allow override for annotations -- this is typically
4812			 * only valid/needed for code that only exists when
4813			 * CONFIG_PREEMPT_RT=n.
4814			 */
4815			if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE))
4816				curr_inner = prev_inner;
4817		}
4818	}
4819
4820	if (next_outer > curr_inner)
4821		return print_lock_invalid_wait_context(curr, next);
4822
4823	return 0;
4824}
4825
4826#else /* CONFIG_PROVE_LOCKING */
4827
4828static inline int
4829mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4830{
4831	return 1;
4832}
4833
4834static inline unsigned int task_irq_context(struct task_struct *task)
4835{
4836	return 0;
4837}
4838
4839static inline int separate_irq_context(struct task_struct *curr,
4840		struct held_lock *hlock)
4841{
4842	return 0;
4843}
4844
4845static inline int check_wait_context(struct task_struct *curr,
4846				     struct held_lock *next)
4847{
4848	return 0;
4849}
4850
4851#endif /* CONFIG_PROVE_LOCKING */
4852
4853/*
4854 * Initialize a lock instance's lock-class mapping info:
4855 */
4856void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4857			    struct lock_class_key *key, int subclass,
4858			    u8 inner, u8 outer, u8 lock_type)
4859{
4860	int i;
4861
4862	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4863		lock->class_cache[i] = NULL;
4864
4865#ifdef CONFIG_LOCK_STAT
4866	lock->cpu = raw_smp_processor_id();
4867#endif
4868
4869	/*
4870	 * Can't be having no nameless bastards around this place!
4871	 */
4872	if (DEBUG_LOCKS_WARN_ON(!name)) {
4873		lock->name = "NULL";
4874		return;
4875	}
4876
4877	lock->name = name;
4878
4879	lock->wait_type_outer = outer;
4880	lock->wait_type_inner = inner;
4881	lock->lock_type = lock_type;
4882
4883	/*
4884	 * No key, no joy, we need to hash something.
4885	 */
4886	if (DEBUG_LOCKS_WARN_ON(!key))
4887		return;
4888	/*
4889	 * Sanity check, the lock-class key must either have been allocated
4890	 * statically or must have been registered as a dynamic key.
4891	 */
4892	if (!static_obj(key) && !is_dynamic_key(key)) {
4893		if (debug_locks)
4894			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4895		DEBUG_LOCKS_WARN_ON(1);
4896		return;
4897	}
4898	lock->key = key;
4899
4900	if (unlikely(!debug_locks))
4901		return;
4902
4903	if (subclass) {
4904		unsigned long flags;
4905
4906		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4907			return;
4908
4909		raw_local_irq_save(flags);
4910		lockdep_recursion_inc();
4911		register_lock_class(lock, subclass, 1);
4912		lockdep_recursion_finish();
4913		raw_local_irq_restore(flags);
4914	}
4915}
4916EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4917
4918struct lock_class_key __lockdep_no_validate__;
4919EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4920
4921#ifdef CONFIG_PROVE_LOCKING
4922void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn,
4923			     lock_print_fn print_fn)
4924{
4925	struct lock_class *class = lock->class_cache[0];
4926	unsigned long flags;
4927
4928	raw_local_irq_save(flags);
4929	lockdep_recursion_inc();
4930
4931	if (!class)
4932		class = register_lock_class(lock, 0, 0);
4933
4934	if (class) {
4935		WARN_ON(class->cmp_fn	&& class->cmp_fn != cmp_fn);
4936		WARN_ON(class->print_fn && class->print_fn != print_fn);
4937
4938		class->cmp_fn	= cmp_fn;
4939		class->print_fn = print_fn;
4940	}
4941
4942	lockdep_recursion_finish();
4943	raw_local_irq_restore(flags);
4944}
4945EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn);
4946#endif
4947
4948static void
4949print_lock_nested_lock_not_held(struct task_struct *curr,
4950				struct held_lock *hlock)
 
4951{
4952	if (!debug_locks_off())
4953		return;
4954	if (debug_locks_silent)
4955		return;
4956
4957	pr_warn("\n");
4958	pr_warn("==================================\n");
4959	pr_warn("WARNING: Nested lock was not taken\n");
4960	print_kernel_ident();
4961	pr_warn("----------------------------------\n");
4962
4963	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4964	print_lock(hlock);
4965
4966	pr_warn("\nbut this task is not holding:\n");
4967	pr_warn("%s\n", hlock->nest_lock->name);
4968
4969	pr_warn("\nstack backtrace:\n");
4970	dump_stack();
4971
4972	pr_warn("\nother info that might help us debug this:\n");
4973	lockdep_print_held_locks(curr);
4974
4975	pr_warn("\nstack backtrace:\n");
4976	dump_stack();
4977}
4978
4979static int __lock_is_held(const struct lockdep_map *lock, int read);
4980
4981/*
4982 * This gets called for every mutex_lock*()/spin_lock*() operation.
4983 * We maintain the dependency maps and validate the locking attempt:
4984 *
4985 * The callers must make sure that IRQs are disabled before calling it,
4986 * otherwise we could get an interrupt which would want to take locks,
4987 * which would end up in lockdep again.
4988 */
4989static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4990			  int trylock, int read, int check, int hardirqs_off,
4991			  struct lockdep_map *nest_lock, unsigned long ip,
4992			  int references, int pin_count, int sync)
4993{
4994	struct task_struct *curr = current;
4995	struct lock_class *class = NULL;
4996	struct held_lock *hlock;
4997	unsigned int depth;
4998	int chain_head = 0;
4999	int class_idx;
5000	u64 chain_key;
5001
5002	if (unlikely(!debug_locks))
5003		return 0;
5004
5005	if (!prove_locking || lock->key == &__lockdep_no_validate__)
5006		check = 0;
5007
5008	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
5009		class = lock->class_cache[subclass];
5010	/*
5011	 * Not cached?
5012	 */
5013	if (unlikely(!class)) {
5014		class = register_lock_class(lock, subclass, 0);
5015		if (!class)
5016			return 0;
5017	}
5018
5019	debug_class_ops_inc(class);
5020
5021	if (very_verbose(class)) {
5022		printk("\nacquire class [%px] %s", class->key, class->name);
5023		if (class->name_version > 1)
5024			printk(KERN_CONT "#%d", class->name_version);
5025		printk(KERN_CONT "\n");
5026		dump_stack();
5027	}
5028
5029	/*
5030	 * Add the lock to the list of currently held locks.
5031	 * (we dont increase the depth just yet, up until the
5032	 * dependency checks are done)
5033	 */
5034	depth = curr->lockdep_depth;
5035	/*
5036	 * Ran out of static storage for our per-task lock stack again have we?
5037	 */
5038	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
5039		return 0;
5040
5041	class_idx = class - lock_classes;
5042
5043	if (depth && !sync) {
5044		/* we're holding locks and the new held lock is not a sync */
5045		hlock = curr->held_locks + depth - 1;
5046		if (hlock->class_idx == class_idx && nest_lock) {
5047			if (!references)
5048				references++;
5049
5050			if (!hlock->references)
5051				hlock->references++;
5052
5053			hlock->references += references;
5054
5055			/* Overflow */
5056			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
5057				return 0;
5058
5059			return 2;
5060		}
5061	}
5062
5063	hlock = curr->held_locks + depth;
5064	/*
5065	 * Plain impossible, we just registered it and checked it weren't no
5066	 * NULL like.. I bet this mushroom I ate was good!
5067	 */
5068	if (DEBUG_LOCKS_WARN_ON(!class))
5069		return 0;
5070	hlock->class_idx = class_idx;
5071	hlock->acquire_ip = ip;
5072	hlock->instance = lock;
5073	hlock->nest_lock = nest_lock;
5074	hlock->irq_context = task_irq_context(curr);
5075	hlock->trylock = trylock;
5076	hlock->read = read;
5077	hlock->check = check;
5078	hlock->sync = !!sync;
5079	hlock->hardirqs_off = !!hardirqs_off;
5080	hlock->references = references;
5081#ifdef CONFIG_LOCK_STAT
5082	hlock->waittime_stamp = 0;
5083	hlock->holdtime_stamp = lockstat_clock();
5084#endif
5085	hlock->pin_count = pin_count;
5086
5087	if (check_wait_context(curr, hlock))
5088		return 0;
5089
5090	/* Initialize the lock usage bit */
5091	if (!mark_usage(curr, hlock, check))
5092		return 0;
5093
5094	/*
5095	 * Calculate the chain hash: it's the combined hash of all the
5096	 * lock keys along the dependency chain. We save the hash value
5097	 * at every step so that we can get the current hash easily
5098	 * after unlock. The chain hash is then used to cache dependency
5099	 * results.
5100	 *
5101	 * The 'key ID' is what is the most compact key value to drive
5102	 * the hash, not class->key.
5103	 */
5104	/*
5105	 * Whoops, we did it again.. class_idx is invalid.
5106	 */
5107	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5108		return 0;
5109
5110	chain_key = curr->curr_chain_key;
5111	if (!depth) {
5112		/*
5113		 * How can we have a chain hash when we ain't got no keys?!
5114		 */
5115		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5116			return 0;
5117		chain_head = 1;
5118	}
5119
5120	hlock->prev_chain_key = chain_key;
5121	if (separate_irq_context(curr, hlock)) {
5122		chain_key = INITIAL_CHAIN_KEY;
5123		chain_head = 1;
5124	}
5125	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5126
5127	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5128		print_lock_nested_lock_not_held(curr, hlock);
5129		return 0;
5130	}
5131
5132	if (!debug_locks_silent) {
5133		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5134		WARN_ON_ONCE(!hlock_class(hlock)->key);
5135	}
5136
5137	if (!validate_chain(curr, hlock, chain_head, chain_key))
5138		return 0;
5139
5140	/* For lock_sync(), we are done here since no actual critical section */
5141	if (hlock->sync)
5142		return 1;
5143
5144	curr->curr_chain_key = chain_key;
5145	curr->lockdep_depth++;
5146	check_chain_key(curr);
5147#ifdef CONFIG_DEBUG_LOCKDEP
5148	if (unlikely(!debug_locks))
5149		return 0;
5150#endif
5151	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5152		debug_locks_off();
5153		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5154		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5155		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5156
5157		lockdep_print_held_locks(current);
5158		debug_show_all_locks();
5159		dump_stack();
5160
5161		return 0;
5162	}
5163
5164	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5165		max_lockdep_depth = curr->lockdep_depth;
5166
5167	return 1;
5168}
5169
5170static void print_unlock_imbalance_bug(struct task_struct *curr,
5171				       struct lockdep_map *lock,
5172				       unsigned long ip)
5173{
5174	if (!debug_locks_off())
5175		return;
5176	if (debug_locks_silent)
5177		return;
5178
5179	pr_warn("\n");
5180	pr_warn("=====================================\n");
5181	pr_warn("WARNING: bad unlock balance detected!\n");
5182	print_kernel_ident();
5183	pr_warn("-------------------------------------\n");
5184	pr_warn("%s/%d is trying to release lock (",
5185		curr->comm, task_pid_nr(curr));
5186	print_lockdep_cache(lock);
5187	pr_cont(") at:\n");
5188	print_ip_sym(KERN_WARNING, ip);
5189	pr_warn("but there are no more locks to release!\n");
5190	pr_warn("\nother info that might help us debug this:\n");
5191	lockdep_print_held_locks(curr);
5192
5193	pr_warn("\nstack backtrace:\n");
5194	dump_stack();
5195}
5196
5197static noinstr int match_held_lock(const struct held_lock *hlock,
5198				   const struct lockdep_map *lock)
5199{
5200	if (hlock->instance == lock)
5201		return 1;
5202
5203	if (hlock->references) {
5204		const struct lock_class *class = lock->class_cache[0];
5205
5206		if (!class)
5207			class = look_up_lock_class(lock, 0);
5208
5209		/*
5210		 * If look_up_lock_class() failed to find a class, we're trying
5211		 * to test if we hold a lock that has never yet been acquired.
5212		 * Clearly if the lock hasn't been acquired _ever_, we're not
5213		 * holding it either, so report failure.
5214		 */
5215		if (!class)
5216			return 0;
5217
5218		/*
5219		 * References, but not a lock we're actually ref-counting?
5220		 * State got messed up, follow the sites that change ->references
5221		 * and try to make sense of it.
5222		 */
5223		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5224			return 0;
5225
5226		if (hlock->class_idx == class - lock_classes)
5227			return 1;
5228	}
5229
5230	return 0;
5231}
5232
5233/* @depth must not be zero */
5234static struct held_lock *find_held_lock(struct task_struct *curr,
5235					struct lockdep_map *lock,
5236					unsigned int depth, int *idx)
5237{
5238	struct held_lock *ret, *hlock, *prev_hlock;
5239	int i;
5240
5241	i = depth - 1;
5242	hlock = curr->held_locks + i;
5243	ret = hlock;
5244	if (match_held_lock(hlock, lock))
5245		goto out;
5246
5247	ret = NULL;
5248	for (i--, prev_hlock = hlock--;
5249	     i >= 0;
5250	     i--, prev_hlock = hlock--) {
5251		/*
5252		 * We must not cross into another context:
5253		 */
5254		if (prev_hlock->irq_context != hlock->irq_context) {
5255			ret = NULL;
5256			break;
5257		}
5258		if (match_held_lock(hlock, lock)) {
5259			ret = hlock;
5260			break;
5261		}
5262	}
5263
5264out:
5265	*idx = i;
5266	return ret;
5267}
5268
5269static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5270				int idx, unsigned int *merged)
5271{
5272	struct held_lock *hlock;
5273	int first_idx = idx;
5274
5275	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5276		return 0;
5277
5278	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5279		switch (__lock_acquire(hlock->instance,
5280				    hlock_class(hlock)->subclass,
5281				    hlock->trylock,
5282				    hlock->read, hlock->check,
5283				    hlock->hardirqs_off,
5284				    hlock->nest_lock, hlock->acquire_ip,
5285				    hlock->references, hlock->pin_count, 0)) {
5286		case 0:
5287			return 1;
5288		case 1:
5289			break;
5290		case 2:
5291			*merged += (idx == first_idx);
5292			break;
5293		default:
5294			WARN_ON(1);
5295			return 0;
5296		}
5297	}
5298	return 0;
5299}
5300
5301static int
5302__lock_set_class(struct lockdep_map *lock, const char *name,
5303		 struct lock_class_key *key, unsigned int subclass,
5304		 unsigned long ip)
5305{
5306	struct task_struct *curr = current;
5307	unsigned int depth, merged = 0;
5308	struct held_lock *hlock;
5309	struct lock_class *class;
5310	int i;
5311
5312	if (unlikely(!debug_locks))
5313		return 0;
5314
5315	depth = curr->lockdep_depth;
5316	/*
5317	 * This function is about (re)setting the class of a held lock,
5318	 * yet we're not actually holding any locks. Naughty user!
5319	 */
5320	if (DEBUG_LOCKS_WARN_ON(!depth))
5321		return 0;
5322
5323	hlock = find_held_lock(curr, lock, depth, &i);
5324	if (!hlock) {
5325		print_unlock_imbalance_bug(curr, lock, ip);
5326		return 0;
5327	}
5328
5329	lockdep_init_map_type(lock, name, key, 0,
5330			      lock->wait_type_inner,
5331			      lock->wait_type_outer,
5332			      lock->lock_type);
5333	class = register_lock_class(lock, subclass, 0);
5334	hlock->class_idx = class - lock_classes;
5335
5336	curr->lockdep_depth = i;
5337	curr->curr_chain_key = hlock->prev_chain_key;
5338
5339	if (reacquire_held_locks(curr, depth, i, &merged))
5340		return 0;
5341
5342	/*
5343	 * I took it apart and put it back together again, except now I have
5344	 * these 'spare' parts.. where shall I put them.
5345	 */
5346	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5347		return 0;
5348	return 1;
5349}
5350
5351static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5352{
5353	struct task_struct *curr = current;
5354	unsigned int depth, merged = 0;
5355	struct held_lock *hlock;
5356	int i;
5357
5358	if (unlikely(!debug_locks))
5359		return 0;
5360
5361	depth = curr->lockdep_depth;
5362	/*
5363	 * This function is about (re)setting the class of a held lock,
5364	 * yet we're not actually holding any locks. Naughty user!
5365	 */
5366	if (DEBUG_LOCKS_WARN_ON(!depth))
5367		return 0;
5368
5369	hlock = find_held_lock(curr, lock, depth, &i);
5370	if (!hlock) {
5371		print_unlock_imbalance_bug(curr, lock, ip);
5372		return 0;
5373	}
5374
5375	curr->lockdep_depth = i;
5376	curr->curr_chain_key = hlock->prev_chain_key;
5377
5378	WARN(hlock->read, "downgrading a read lock");
5379	hlock->read = 1;
5380	hlock->acquire_ip = ip;
5381
5382	if (reacquire_held_locks(curr, depth, i, &merged))
5383		return 0;
5384
5385	/* Merging can't happen with unchanged classes.. */
5386	if (DEBUG_LOCKS_WARN_ON(merged))
5387		return 0;
5388
5389	/*
5390	 * I took it apart and put it back together again, except now I have
5391	 * these 'spare' parts.. where shall I put them.
5392	 */
5393	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5394		return 0;
5395
5396	return 1;
5397}
5398
5399/*
5400 * Remove the lock from the list of currently held locks - this gets
5401 * called on mutex_unlock()/spin_unlock*() (or on a failed
5402 * mutex_lock_interruptible()).
 
 
5403 */
5404static int
5405__lock_release(struct lockdep_map *lock, unsigned long ip)
5406{
5407	struct task_struct *curr = current;
5408	unsigned int depth, merged = 1;
5409	struct held_lock *hlock;
5410	int i;
5411
5412	if (unlikely(!debug_locks))
5413		return 0;
5414
5415	depth = curr->lockdep_depth;
5416	/*
5417	 * So we're all set to release this lock.. wait what lock? We don't
5418	 * own any locks, you've been drinking again?
5419	 */
5420	if (depth <= 0) {
5421		print_unlock_imbalance_bug(curr, lock, ip);
5422		return 0;
5423	}
5424
5425	/*
5426	 * Check whether the lock exists in the current stack
5427	 * of held locks:
5428	 */
5429	hlock = find_held_lock(curr, lock, depth, &i);
5430	if (!hlock) {
5431		print_unlock_imbalance_bug(curr, lock, ip);
5432		return 0;
5433	}
5434
5435	if (hlock->instance == lock)
5436		lock_release_holdtime(hlock);
5437
5438	WARN(hlock->pin_count, "releasing a pinned lock\n");
5439
5440	if (hlock->references) {
5441		hlock->references--;
5442		if (hlock->references) {
5443			/*
5444			 * We had, and after removing one, still have
5445			 * references, the current lock stack is still
5446			 * valid. We're done!
5447			 */
5448			return 1;
5449		}
5450	}
5451
5452	/*
5453	 * We have the right lock to unlock, 'hlock' points to it.
5454	 * Now we remove it from the stack, and add back the other
5455	 * entries (if any), recalculating the hash along the way:
5456	 */
5457
5458	curr->lockdep_depth = i;
5459	curr->curr_chain_key = hlock->prev_chain_key;
5460
5461	/*
5462	 * The most likely case is when the unlock is on the innermost
5463	 * lock. In this case, we are done!
5464	 */
5465	if (i == depth-1)
5466		return 1;
5467
5468	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5469		return 0;
5470
5471	/*
5472	 * We had N bottles of beer on the wall, we drank one, but now
5473	 * there's not N-1 bottles of beer left on the wall...
5474	 * Pouring two of the bottles together is acceptable.
5475	 */
5476	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5477
5478	/*
5479	 * Since reacquire_held_locks() would have called check_chain_key()
5480	 * indirectly via __lock_acquire(), we don't need to do it again
5481	 * on return.
5482	 */
5483	return 0;
5484}
5485
5486static __always_inline
5487int __lock_is_held(const struct lockdep_map *lock, int read)
5488{
5489	struct task_struct *curr = current;
5490	int i;
5491
5492	for (i = 0; i < curr->lockdep_depth; i++) {
5493		struct held_lock *hlock = curr->held_locks + i;
5494
5495		if (match_held_lock(hlock, lock)) {
5496			if (read == -1 || !!hlock->read == read)
5497				return LOCK_STATE_HELD;
5498
5499			return LOCK_STATE_NOT_HELD;
5500		}
5501	}
5502
5503	return LOCK_STATE_NOT_HELD;
5504}
5505
5506static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5507{
5508	struct pin_cookie cookie = NIL_COOKIE;
5509	struct task_struct *curr = current;
5510	int i;
5511
5512	if (unlikely(!debug_locks))
5513		return cookie;
5514
5515	for (i = 0; i < curr->lockdep_depth; i++) {
5516		struct held_lock *hlock = curr->held_locks + i;
5517
5518		if (match_held_lock(hlock, lock)) {
5519			/*
5520			 * Grab 16bits of randomness; this is sufficient to not
5521			 * be guessable and still allows some pin nesting in
5522			 * our u32 pin_count.
5523			 */
5524			cookie.val = 1 + (sched_clock() & 0xffff);
5525			hlock->pin_count += cookie.val;
5526			return cookie;
5527		}
5528	}
5529
5530	WARN(1, "pinning an unheld lock\n");
5531	return cookie;
5532}
5533
5534static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5535{
5536	struct task_struct *curr = current;
5537	int i;
5538
5539	if (unlikely(!debug_locks))
5540		return;
5541
5542	for (i = 0; i < curr->lockdep_depth; i++) {
5543		struct held_lock *hlock = curr->held_locks + i;
5544
5545		if (match_held_lock(hlock, lock)) {
5546			hlock->pin_count += cookie.val;
5547			return;
5548		}
5549	}
5550
5551	WARN(1, "pinning an unheld lock\n");
5552}
5553
5554static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5555{
5556	struct task_struct *curr = current;
5557	int i;
5558
5559	if (unlikely(!debug_locks))
5560		return;
5561
5562	for (i = 0; i < curr->lockdep_depth; i++) {
5563		struct held_lock *hlock = curr->held_locks + i;
5564
5565		if (match_held_lock(hlock, lock)) {
5566			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5567				return;
5568
5569			hlock->pin_count -= cookie.val;
5570
5571			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5572				hlock->pin_count = 0;
5573
5574			return;
5575		}
5576	}
5577
5578	WARN(1, "unpinning an unheld lock\n");
5579}
5580
5581/*
5582 * Check whether we follow the irq-flags state precisely:
5583 */
5584static noinstr void check_flags(unsigned long flags)
5585{
5586#if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5587	if (!debug_locks)
5588		return;
5589
5590	/* Get the warning out..  */
5591	instrumentation_begin();
5592
5593	if (irqs_disabled_flags(flags)) {
5594		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5595			printk("possible reason: unannotated irqs-off.\n");
5596		}
5597	} else {
5598		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5599			printk("possible reason: unannotated irqs-on.\n");
5600		}
5601	}
5602
5603#ifndef CONFIG_PREEMPT_RT
5604	/*
5605	 * We dont accurately track softirq state in e.g.
5606	 * hardirq contexts (such as on 4KSTACKS), so only
5607	 * check if not in hardirq contexts:
5608	 */
5609	if (!hardirq_count()) {
5610		if (softirq_count()) {
5611			/* like the above, but with softirqs */
5612			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5613		} else {
5614			/* lick the above, does it taste good? */
5615			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5616		}
5617	}
5618#endif
5619
5620	if (!debug_locks)
5621		print_irqtrace_events(current);
5622
5623	instrumentation_end();
5624#endif
5625}
5626
5627void lock_set_class(struct lockdep_map *lock, const char *name,
5628		    struct lock_class_key *key, unsigned int subclass,
5629		    unsigned long ip)
5630{
5631	unsigned long flags;
5632
5633	if (unlikely(!lockdep_enabled()))
5634		return;
5635
5636	raw_local_irq_save(flags);
5637	lockdep_recursion_inc();
5638	check_flags(flags);
5639	if (__lock_set_class(lock, name, key, subclass, ip))
5640		check_chain_key(current);
5641	lockdep_recursion_finish();
5642	raw_local_irq_restore(flags);
5643}
5644EXPORT_SYMBOL_GPL(lock_set_class);
5645
5646void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5647{
5648	unsigned long flags;
5649
5650	if (unlikely(!lockdep_enabled()))
5651		return;
5652
5653	raw_local_irq_save(flags);
5654	lockdep_recursion_inc();
5655	check_flags(flags);
5656	if (__lock_downgrade(lock, ip))
5657		check_chain_key(current);
5658	lockdep_recursion_finish();
5659	raw_local_irq_restore(flags);
5660}
5661EXPORT_SYMBOL_GPL(lock_downgrade);
5662
5663/* NMI context !!! */
5664static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5665{
5666#ifdef CONFIG_PROVE_LOCKING
5667	struct lock_class *class = look_up_lock_class(lock, subclass);
5668	unsigned long mask = LOCKF_USED;
5669
5670	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5671	if (!class)
5672		return;
5673
5674	/*
5675	 * READ locks only conflict with USED, such that if we only ever use
5676	 * READ locks, there is no deadlock possible -- RCU.
5677	 */
5678	if (!hlock->read)
5679		mask |= LOCKF_USED_READ;
5680
5681	if (!(class->usage_mask & mask))
5682		return;
5683
5684	hlock->class_idx = class - lock_classes;
5685
5686	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5687#endif
5688}
5689
5690static bool lockdep_nmi(void)
5691{
5692	if (raw_cpu_read(lockdep_recursion))
5693		return false;
5694
5695	if (!in_nmi())
5696		return false;
5697
5698	return true;
5699}
5700
5701/*
5702 * read_lock() is recursive if:
5703 * 1. We force lockdep think this way in selftests or
5704 * 2. The implementation is not queued read/write lock or
5705 * 3. The locker is at an in_interrupt() context.
5706 */
5707bool read_lock_is_recursive(void)
5708{
5709	return force_read_lock_recursive ||
5710	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5711	       in_interrupt();
5712}
5713EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5714
5715/*
5716 * We are not always called with irqs disabled - do that here,
5717 * and also avoid lockdep recursion:
5718 */
5719void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5720			  int trylock, int read, int check,
5721			  struct lockdep_map *nest_lock, unsigned long ip)
5722{
5723	unsigned long flags;
5724
5725	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5726
5727	if (!debug_locks)
5728		return;
5729
5730	if (unlikely(!lockdep_enabled())) {
5731		/* XXX allow trylock from NMI ?!? */
5732		if (lockdep_nmi() && !trylock) {
5733			struct held_lock hlock;
5734
5735			hlock.acquire_ip = ip;
5736			hlock.instance = lock;
5737			hlock.nest_lock = nest_lock;
5738			hlock.irq_context = 2; // XXX
5739			hlock.trylock = trylock;
5740			hlock.read = read;
5741			hlock.check = check;
5742			hlock.hardirqs_off = true;
5743			hlock.references = 0;
5744
5745			verify_lock_unused(lock, &hlock, subclass);
5746		}
5747		return;
5748	}
5749
5750	raw_local_irq_save(flags);
5751	check_flags(flags);
5752
5753	lockdep_recursion_inc();
 
5754	__lock_acquire(lock, subclass, trylock, read, check,
5755		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0);
5756	lockdep_recursion_finish();
5757	raw_local_irq_restore(flags);
5758}
5759EXPORT_SYMBOL_GPL(lock_acquire);
5760
5761void lock_release(struct lockdep_map *lock, unsigned long ip)
 
5762{
5763	unsigned long flags;
5764
5765	trace_lock_release(lock, ip);
5766
5767	if (unlikely(!lockdep_enabled()))
5768		return;
5769
5770	raw_local_irq_save(flags);
5771	check_flags(flags);
5772
5773	lockdep_recursion_inc();
5774	if (__lock_release(lock, ip))
5775		check_chain_key(current);
5776	lockdep_recursion_finish();
5777	raw_local_irq_restore(flags);
5778}
5779EXPORT_SYMBOL_GPL(lock_release);
5780
5781/*
5782 * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API.
5783 *
5784 * No actual critical section is created by the APIs annotated with this: these
5785 * APIs are used to wait for one or multiple critical sections (on other CPUs
5786 * or threads), and it means that calling these APIs inside these critical
5787 * sections is potential deadlock.
5788 */
5789void lock_sync(struct lockdep_map *lock, unsigned subclass, int read,
5790	       int check, struct lockdep_map *nest_lock, unsigned long ip)
5791{
5792	unsigned long flags;
 
5793
5794	if (unlikely(!lockdep_enabled()))
5795		return;
5796
5797	raw_local_irq_save(flags);
5798	check_flags(flags);
5799
5800	lockdep_recursion_inc();
5801	__lock_acquire(lock, subclass, 0, read, check,
5802		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1);
5803	check_chain_key(current);
5804	lockdep_recursion_finish();
5805	raw_local_irq_restore(flags);
5806}
5807EXPORT_SYMBOL_GPL(lock_sync);
5808
5809noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5810{
5811	unsigned long flags;
5812	int ret = LOCK_STATE_NOT_HELD;
5813
5814	/*
5815	 * Avoid false negative lockdep_assert_held() and
5816	 * lockdep_assert_not_held().
5817	 */
5818	if (unlikely(!lockdep_enabled()))
5819		return LOCK_STATE_UNKNOWN;
5820
5821	raw_local_irq_save(flags);
5822	check_flags(flags);
5823
5824	lockdep_recursion_inc();
5825	ret = __lock_is_held(lock, read);
5826	lockdep_recursion_finish();
5827	raw_local_irq_restore(flags);
5828
5829	return ret;
5830}
5831EXPORT_SYMBOL_GPL(lock_is_held_type);
5832NOKPROBE_SYMBOL(lock_is_held_type);
5833
5834struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5835{
5836	struct pin_cookie cookie = NIL_COOKIE;
5837	unsigned long flags;
5838
5839	if (unlikely(!lockdep_enabled()))
5840		return cookie;
5841
5842	raw_local_irq_save(flags);
5843	check_flags(flags);
5844
5845	lockdep_recursion_inc();
5846	cookie = __lock_pin_lock(lock);
5847	lockdep_recursion_finish();
5848	raw_local_irq_restore(flags);
5849
5850	return cookie;
5851}
5852EXPORT_SYMBOL_GPL(lock_pin_lock);
5853
5854void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5855{
5856	unsigned long flags;
5857
5858	if (unlikely(!lockdep_enabled()))
5859		return;
5860
5861	raw_local_irq_save(flags);
5862	check_flags(flags);
5863
5864	lockdep_recursion_inc();
5865	__lock_repin_lock(lock, cookie);
5866	lockdep_recursion_finish();
5867	raw_local_irq_restore(flags);
5868}
5869EXPORT_SYMBOL_GPL(lock_repin_lock);
5870
5871void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5872{
5873	unsigned long flags;
5874
5875	if (unlikely(!lockdep_enabled()))
5876		return;
5877
5878	raw_local_irq_save(flags);
5879	check_flags(flags);
5880
5881	lockdep_recursion_inc();
5882	__lock_unpin_lock(lock, cookie);
5883	lockdep_recursion_finish();
5884	raw_local_irq_restore(flags);
5885}
5886EXPORT_SYMBOL_GPL(lock_unpin_lock);
5887
5888#ifdef CONFIG_LOCK_STAT
5889static void print_lock_contention_bug(struct task_struct *curr,
5890				      struct lockdep_map *lock,
5891				      unsigned long ip)
5892{
5893	if (!debug_locks_off())
5894		return;
5895	if (debug_locks_silent)
5896		return;
5897
5898	pr_warn("\n");
5899	pr_warn("=================================\n");
5900	pr_warn("WARNING: bad contention detected!\n");
5901	print_kernel_ident();
5902	pr_warn("---------------------------------\n");
5903	pr_warn("%s/%d is trying to contend lock (",
5904		curr->comm, task_pid_nr(curr));
5905	print_lockdep_cache(lock);
5906	pr_cont(") at:\n");
5907	print_ip_sym(KERN_WARNING, ip);
5908	pr_warn("but there are no locks held!\n");
5909	pr_warn("\nother info that might help us debug this:\n");
5910	lockdep_print_held_locks(curr);
5911
5912	pr_warn("\nstack backtrace:\n");
5913	dump_stack();
5914}
5915
5916static void
5917__lock_contended(struct lockdep_map *lock, unsigned long ip)
5918{
5919	struct task_struct *curr = current;
5920	struct held_lock *hlock;
5921	struct lock_class_stats *stats;
5922	unsigned int depth;
5923	int i, contention_point, contending_point;
5924
5925	depth = curr->lockdep_depth;
5926	/*
5927	 * Whee, we contended on this lock, except it seems we're not
5928	 * actually trying to acquire anything much at all..
5929	 */
5930	if (DEBUG_LOCKS_WARN_ON(!depth))
5931		return;
5932
5933	hlock = find_held_lock(curr, lock, depth, &i);
5934	if (!hlock) {
5935		print_lock_contention_bug(curr, lock, ip);
5936		return;
5937	}
5938
5939	if (hlock->instance != lock)
5940		return;
5941
5942	hlock->waittime_stamp = lockstat_clock();
5943
5944	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5945	contending_point = lock_point(hlock_class(hlock)->contending_point,
5946				      lock->ip);
5947
5948	stats = get_lock_stats(hlock_class(hlock));
5949	if (contention_point < LOCKSTAT_POINTS)
5950		stats->contention_point[contention_point]++;
5951	if (contending_point < LOCKSTAT_POINTS)
5952		stats->contending_point[contending_point]++;
5953	if (lock->cpu != smp_processor_id())
5954		stats->bounces[bounce_contended + !!hlock->read]++;
5955}
5956
5957static void
5958__lock_acquired(struct lockdep_map *lock, unsigned long ip)
5959{
5960	struct task_struct *curr = current;
5961	struct held_lock *hlock;
5962	struct lock_class_stats *stats;
5963	unsigned int depth;
5964	u64 now, waittime = 0;
5965	int i, cpu;
5966
5967	depth = curr->lockdep_depth;
5968	/*
5969	 * Yay, we acquired ownership of this lock we didn't try to
5970	 * acquire, how the heck did that happen?
5971	 */
5972	if (DEBUG_LOCKS_WARN_ON(!depth))
5973		return;
5974
5975	hlock = find_held_lock(curr, lock, depth, &i);
5976	if (!hlock) {
5977		print_lock_contention_bug(curr, lock, _RET_IP_);
5978		return;
5979	}
5980
5981	if (hlock->instance != lock)
5982		return;
5983
5984	cpu = smp_processor_id();
5985	if (hlock->waittime_stamp) {
5986		now = lockstat_clock();
5987		waittime = now - hlock->waittime_stamp;
5988		hlock->holdtime_stamp = now;
5989	}
5990
 
 
5991	stats = get_lock_stats(hlock_class(hlock));
5992	if (waittime) {
5993		if (hlock->read)
5994			lock_time_inc(&stats->read_waittime, waittime);
5995		else
5996			lock_time_inc(&stats->write_waittime, waittime);
5997	}
5998	if (lock->cpu != cpu)
5999		stats->bounces[bounce_acquired + !!hlock->read]++;
6000
6001	lock->cpu = cpu;
6002	lock->ip = ip;
6003}
6004
6005void lock_contended(struct lockdep_map *lock, unsigned long ip)
6006{
6007	unsigned long flags;
6008
6009	trace_lock_contended(lock, ip);
 
6010
6011	if (unlikely(!lock_stat || !lockdep_enabled()))
6012		return;
6013
6014	raw_local_irq_save(flags);
6015	check_flags(flags);
6016	lockdep_recursion_inc();
 
6017	__lock_contended(lock, ip);
6018	lockdep_recursion_finish();
6019	raw_local_irq_restore(flags);
6020}
6021EXPORT_SYMBOL_GPL(lock_contended);
6022
6023void lock_acquired(struct lockdep_map *lock, unsigned long ip)
6024{
6025	unsigned long flags;
6026
6027	trace_lock_acquired(lock, ip);
 
6028
6029	if (unlikely(!lock_stat || !lockdep_enabled()))
6030		return;
6031
6032	raw_local_irq_save(flags);
6033	check_flags(flags);
6034	lockdep_recursion_inc();
6035	__lock_acquired(lock, ip);
6036	lockdep_recursion_finish();
6037	raw_local_irq_restore(flags);
6038}
6039EXPORT_SYMBOL_GPL(lock_acquired);
6040#endif
6041
6042/*
6043 * Used by the testsuite, sanitize the validator state
6044 * after a simulated failure:
6045 */
6046
6047void lockdep_reset(void)
6048{
6049	unsigned long flags;
6050	int i;
6051
6052	raw_local_irq_save(flags);
6053	lockdep_init_task(current);
6054	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
6055	nr_hardirq_chains = 0;
6056	nr_softirq_chains = 0;
6057	nr_process_chains = 0;
6058	debug_locks = 1;
6059	for (i = 0; i < CHAINHASH_SIZE; i++)
6060		INIT_HLIST_HEAD(chainhash_table + i);
6061	raw_local_irq_restore(flags);
6062}
6063
6064/* Remove a class from a lock chain. Must be called with the graph lock held. */
6065static void remove_class_from_lock_chain(struct pending_free *pf,
6066					 struct lock_chain *chain,
6067					 struct lock_class *class)
6068{
6069#ifdef CONFIG_PROVE_LOCKING
 
 
6070	int i;
6071
6072	for (i = chain->base; i < chain->base + chain->depth; i++) {
6073		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
6074			continue;
 
 
 
 
 
 
6075		/*
6076		 * Each lock class occurs at most once in a lock chain so once
6077		 * we found a match we can break out of this loop.
6078		 */
6079		goto free_lock_chain;
6080	}
6081	/* Since the chain has not been modified, return. */
6082	return;
6083
6084free_lock_chain:
6085	free_chain_hlocks(chain->base, chain->depth);
 
 
 
 
6086	/* Overwrite the chain key for concurrent RCU readers. */
6087	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
6088	dec_chains(chain->irq_context);
6089
6090	/*
6091	 * Note: calling hlist_del_rcu() from inside a
6092	 * hlist_for_each_entry_rcu() loop is safe.
6093	 */
6094	hlist_del_rcu(&chain->entry);
6095	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
6096	nr_zapped_lock_chains++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6097#endif
6098}
6099
6100/* Must be called with the graph lock held. */
6101static void remove_class_from_lock_chains(struct pending_free *pf,
6102					  struct lock_class *class)
6103{
6104	struct lock_chain *chain;
6105	struct hlist_head *head;
6106	int i;
6107
6108	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
6109		head = chainhash_table + i;
6110		hlist_for_each_entry_rcu(chain, head, entry) {
6111			remove_class_from_lock_chain(pf, chain, class);
6112		}
6113	}
6114}
6115
6116/*
6117 * Remove all references to a lock class. The caller must hold the graph lock.
6118 */
6119static void zap_class(struct pending_free *pf, struct lock_class *class)
6120{
6121	struct lock_list *entry;
6122	int i;
6123
6124	WARN_ON_ONCE(!class->key);
6125
6126	/*
6127	 * Remove all dependencies this lock is
6128	 * involved in:
6129	 */
6130	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6131		entry = list_entries + i;
6132		if (entry->class != class && entry->links_to != class)
6133			continue;
6134		__clear_bit(i, list_entries_in_use);
6135		nr_list_entries--;
6136		list_del_rcu(&entry->entry);
6137	}
6138	if (list_empty(&class->locks_after) &&
6139	    list_empty(&class->locks_before)) {
6140		list_move_tail(&class->lock_entry, &pf->zapped);
6141		hlist_del_rcu(&class->hash_entry);
6142		WRITE_ONCE(class->key, NULL);
6143		WRITE_ONCE(class->name, NULL);
6144		nr_lock_classes--;
6145		__clear_bit(class - lock_classes, lock_classes_in_use);
6146		if (class - lock_classes == max_lock_class_idx)
6147			max_lock_class_idx--;
6148	} else {
6149		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6150			  class->name);
6151	}
6152
6153	remove_class_from_lock_chains(pf, class);
6154	nr_zapped_classes++;
6155}
6156
6157static void reinit_class(struct lock_class *class)
6158{
 
 
 
6159	WARN_ON_ONCE(!class->lock_entry.next);
6160	WARN_ON_ONCE(!list_empty(&class->locks_after));
6161	WARN_ON_ONCE(!list_empty(&class->locks_before));
6162	memset_startat(class, 0, key);
6163	WARN_ON_ONCE(!class->lock_entry.next);
6164	WARN_ON_ONCE(!list_empty(&class->locks_after));
6165	WARN_ON_ONCE(!list_empty(&class->locks_before));
6166}
6167
6168static inline int within(const void *addr, void *start, unsigned long size)
6169{
6170	return addr >= start && addr < start + size;
6171}
6172
6173static bool inside_selftest(void)
6174{
6175	return current == lockdep_selftest_task_struct;
6176}
6177
6178/* The caller must hold the graph lock. */
6179static struct pending_free *get_pending_free(void)
6180{
6181	return delayed_free.pf + delayed_free.index;
6182}
6183
6184static void free_zapped_rcu(struct rcu_head *cb);
6185
6186/*
6187 * Schedule an RCU callback if no RCU callback is pending. Must be called with
6188 * the graph lock held.
6189 */
6190static void call_rcu_zapped(struct pending_free *pf)
6191{
6192	WARN_ON_ONCE(inside_selftest());
6193
6194	if (list_empty(&pf->zapped))
6195		return;
6196
6197	if (delayed_free.scheduled)
6198		return;
6199
6200	delayed_free.scheduled = true;
6201
6202	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6203	delayed_free.index ^= 1;
6204
6205	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6206}
6207
6208/* The caller must hold the graph lock. May be called from RCU context. */
6209static void __free_zapped_classes(struct pending_free *pf)
6210{
6211	struct lock_class *class;
6212
6213	check_data_structures();
6214
6215	list_for_each_entry(class, &pf->zapped, lock_entry)
6216		reinit_class(class);
6217
6218	list_splice_init(&pf->zapped, &free_lock_classes);
6219
6220#ifdef CONFIG_PROVE_LOCKING
6221	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6222		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6223	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6224#endif
6225}
6226
6227static void free_zapped_rcu(struct rcu_head *ch)
6228{
6229	struct pending_free *pf;
6230	unsigned long flags;
6231
6232	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6233		return;
6234
6235	raw_local_irq_save(flags);
6236	lockdep_lock();
 
6237
6238	/* closed head */
6239	pf = delayed_free.pf + (delayed_free.index ^ 1);
6240	__free_zapped_classes(pf);
6241	delayed_free.scheduled = false;
6242
6243	/*
6244	 * If there's anything on the open list, close and start a new callback.
6245	 */
6246	call_rcu_zapped(delayed_free.pf + delayed_free.index);
6247
6248	lockdep_unlock();
 
6249	raw_local_irq_restore(flags);
6250}
6251
6252/*
6253 * Remove all lock classes from the class hash table and from the
6254 * all_lock_classes list whose key or name is in the address range [start,
6255 * start + size). Move these lock classes to the zapped_classes list. Must
6256 * be called with the graph lock held.
6257 */
6258static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6259				     unsigned long size)
6260{
6261	struct lock_class *class;
6262	struct hlist_head *head;
6263	int i;
6264
6265	/* Unhash all classes that were created by a module. */
6266	for (i = 0; i < CLASSHASH_SIZE; i++) {
6267		head = classhash_table + i;
6268		hlist_for_each_entry_rcu(class, head, hash_entry) {
6269			if (!within(class->key, start, size) &&
6270			    !within(class->name, start, size))
6271				continue;
6272			zap_class(pf, class);
6273		}
6274	}
6275}
6276
6277/*
6278 * Used in module.c to remove lock classes from memory that is going to be
6279 * freed; and possibly re-used by other modules.
6280 *
6281 * We will have had one synchronize_rcu() before getting here, so we're
6282 * guaranteed nobody will look up these exact classes -- they're properly dead
6283 * but still allocated.
6284 */
6285static void lockdep_free_key_range_reg(void *start, unsigned long size)
6286{
6287	struct pending_free *pf;
6288	unsigned long flags;
6289
6290	init_data_structures_once();
6291
6292	raw_local_irq_save(flags);
6293	lockdep_lock();
 
6294	pf = get_pending_free();
6295	__lockdep_free_key_range(pf, start, size);
6296	call_rcu_zapped(pf);
6297	lockdep_unlock();
 
6298	raw_local_irq_restore(flags);
6299
6300	/*
6301	 * Wait for any possible iterators from look_up_lock_class() to pass
6302	 * before continuing to free the memory they refer to.
6303	 */
6304	synchronize_rcu();
6305}
6306
6307/*
6308 * Free all lockdep keys in the range [start, start+size). Does not sleep.
6309 * Ignores debug_locks. Must only be used by the lockdep selftests.
6310 */
6311static void lockdep_free_key_range_imm(void *start, unsigned long size)
6312{
6313	struct pending_free *pf = delayed_free.pf;
6314	unsigned long flags;
6315
6316	init_data_structures_once();
6317
6318	raw_local_irq_save(flags);
6319	lockdep_lock();
6320	__lockdep_free_key_range(pf, start, size);
6321	__free_zapped_classes(pf);
6322	lockdep_unlock();
6323	raw_local_irq_restore(flags);
6324}
6325
6326void lockdep_free_key_range(void *start, unsigned long size)
6327{
6328	init_data_structures_once();
6329
6330	if (inside_selftest())
6331		lockdep_free_key_range_imm(start, size);
6332	else
6333		lockdep_free_key_range_reg(start, size);
6334}
6335
6336/*
6337 * Check whether any element of the @lock->class_cache[] array refers to a
6338 * registered lock class. The caller must hold either the graph lock or the
6339 * RCU read lock.
6340 */
6341static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6342{
6343	struct lock_class *class;
6344	struct hlist_head *head;
6345	int i, j;
6346
6347	for (i = 0; i < CLASSHASH_SIZE; i++) {
6348		head = classhash_table + i;
6349		hlist_for_each_entry_rcu(class, head, hash_entry) {
6350			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6351				if (lock->class_cache[j] == class)
6352					return true;
6353		}
6354	}
6355	return false;
6356}
6357
6358/* The caller must hold the graph lock. Does not sleep. */
6359static void __lockdep_reset_lock(struct pending_free *pf,
6360				 struct lockdep_map *lock)
6361{
6362	struct lock_class *class;
6363	int j;
6364
6365	/*
6366	 * Remove all classes this lock might have:
6367	 */
6368	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6369		/*
6370		 * If the class exists we look it up and zap it:
6371		 */
6372		class = look_up_lock_class(lock, j);
6373		if (class)
6374			zap_class(pf, class);
6375	}
6376	/*
6377	 * Debug check: in the end all mapped classes should
6378	 * be gone.
6379	 */
6380	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6381		debug_locks_off();
6382}
6383
6384/*
6385 * Remove all information lockdep has about a lock if debug_locks == 1. Free
6386 * released data structures from RCU context.
6387 */
6388static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6389{
6390	struct pending_free *pf;
6391	unsigned long flags;
6392	int locked;
6393
6394	raw_local_irq_save(flags);
6395	locked = graph_lock();
6396	if (!locked)
6397		goto out_irq;
6398
6399	pf = get_pending_free();
6400	__lockdep_reset_lock(pf, lock);
6401	call_rcu_zapped(pf);
6402
6403	graph_unlock();
6404out_irq:
6405	raw_local_irq_restore(flags);
6406}
6407
6408/*
6409 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6410 * lockdep selftests.
6411 */
6412static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6413{
6414	struct pending_free *pf = delayed_free.pf;
6415	unsigned long flags;
6416
6417	raw_local_irq_save(flags);
6418	lockdep_lock();
6419	__lockdep_reset_lock(pf, lock);
6420	__free_zapped_classes(pf);
6421	lockdep_unlock();
6422	raw_local_irq_restore(flags);
6423}
6424
6425void lockdep_reset_lock(struct lockdep_map *lock)
6426{
6427	init_data_structures_once();
6428
6429	if (inside_selftest())
6430		lockdep_reset_lock_imm(lock);
6431	else
6432		lockdep_reset_lock_reg(lock);
6433}
6434
6435/*
6436 * Unregister a dynamically allocated key.
6437 *
6438 * Unlike lockdep_register_key(), a search is always done to find a matching
6439 * key irrespective of debug_locks to avoid potential invalid access to freed
6440 * memory in lock_class entry.
6441 */
6442void lockdep_unregister_key(struct lock_class_key *key)
6443{
6444	struct hlist_head *hash_head = keyhashentry(key);
6445	struct lock_class_key *k;
6446	struct pending_free *pf;
6447	unsigned long flags;
6448	bool found = false;
6449
6450	might_sleep();
6451
6452	if (WARN_ON_ONCE(static_obj(key)))
6453		return;
6454
6455	raw_local_irq_save(flags);
6456	lockdep_lock();
 
6457
 
6458	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6459		if (k == key) {
6460			hlist_del_rcu(&k->hash_entry);
6461			found = true;
6462			break;
6463		}
6464	}
6465	WARN_ON_ONCE(!found && debug_locks);
6466	if (found) {
6467		pf = get_pending_free();
6468		__lockdep_free_key_range(pf, key, 1);
6469		call_rcu_zapped(pf);
6470	}
6471	lockdep_unlock();
6472	raw_local_irq_restore(flags);
6473
6474	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6475	synchronize_rcu();
6476}
6477EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6478
6479void __init lockdep_init(void)
6480{
6481	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6482
6483	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6484	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6485	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6486	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6487	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6488	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6489	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6490
6491	printk(" memory used by lock dependency info: %zu kB\n",
6492	       (sizeof(lock_classes) +
6493		sizeof(lock_classes_in_use) +
6494		sizeof(classhash_table) +
6495		sizeof(list_entries) +
6496		sizeof(list_entries_in_use) +
6497		sizeof(chainhash_table) +
6498		sizeof(delayed_free)
6499#ifdef CONFIG_PROVE_LOCKING
6500		+ sizeof(lock_cq)
6501		+ sizeof(lock_chains)
6502		+ sizeof(lock_chains_in_use)
6503		+ sizeof(chain_hlocks)
6504#endif
6505		) / 1024
6506		);
6507
6508#if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6509	printk(" memory used for stack traces: %zu kB\n",
6510	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6511	       );
6512#endif
6513
6514	printk(" per task-struct memory footprint: %zu bytes\n",
6515	       sizeof(((struct task_struct *)NULL)->held_locks));
6516}
6517
6518static void
6519print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6520		     const void *mem_to, struct held_lock *hlock)
6521{
6522	if (!debug_locks_off())
6523		return;
6524	if (debug_locks_silent)
6525		return;
6526
6527	pr_warn("\n");
6528	pr_warn("=========================\n");
6529	pr_warn("WARNING: held lock freed!\n");
6530	print_kernel_ident();
6531	pr_warn("-------------------------\n");
6532	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6533		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6534	print_lock(hlock);
6535	lockdep_print_held_locks(curr);
6536
6537	pr_warn("\nstack backtrace:\n");
6538	dump_stack();
6539}
6540
6541static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6542				const void* lock_from, unsigned long lock_len)
6543{
6544	return lock_from + lock_len <= mem_from ||
6545		mem_from + mem_len <= lock_from;
6546}
6547
6548/*
6549 * Called when kernel memory is freed (or unmapped), or if a lock
6550 * is destroyed or reinitialized - this code checks whether there is
6551 * any held lock in the memory range of <from> to <to>:
6552 */
6553void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6554{
6555	struct task_struct *curr = current;
6556	struct held_lock *hlock;
6557	unsigned long flags;
6558	int i;
6559
6560	if (unlikely(!debug_locks))
6561		return;
6562
6563	raw_local_irq_save(flags);
6564	for (i = 0; i < curr->lockdep_depth; i++) {
6565		hlock = curr->held_locks + i;
6566
6567		if (not_in_range(mem_from, mem_len, hlock->instance,
6568					sizeof(*hlock->instance)))
6569			continue;
6570
6571		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6572		break;
6573	}
6574	raw_local_irq_restore(flags);
6575}
6576EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6577
6578static void print_held_locks_bug(void)
6579{
6580	if (!debug_locks_off())
6581		return;
6582	if (debug_locks_silent)
6583		return;
6584
6585	pr_warn("\n");
6586	pr_warn("====================================\n");
6587	pr_warn("WARNING: %s/%d still has locks held!\n",
6588	       current->comm, task_pid_nr(current));
6589	print_kernel_ident();
6590	pr_warn("------------------------------------\n");
6591	lockdep_print_held_locks(current);
6592	pr_warn("\nstack backtrace:\n");
6593	dump_stack();
6594}
6595
6596void debug_check_no_locks_held(void)
6597{
6598	if (unlikely(current->lockdep_depth > 0))
6599		print_held_locks_bug();
6600}
6601EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6602
6603#ifdef __KERNEL__
6604void debug_show_all_locks(void)
6605{
6606	struct task_struct *g, *p;
6607
6608	if (unlikely(!debug_locks)) {
6609		pr_warn("INFO: lockdep is turned off.\n");
6610		return;
6611	}
6612	pr_warn("\nShowing all locks held in the system:\n");
6613
6614	rcu_read_lock();
6615	for_each_process_thread(g, p) {
6616		if (!p->lockdep_depth)
6617			continue;
6618		lockdep_print_held_locks(p);
6619		touch_nmi_watchdog();
6620		touch_all_softlockup_watchdogs();
6621	}
6622	rcu_read_unlock();
6623
6624	pr_warn("\n");
6625	pr_warn("=============================================\n\n");
6626}
6627EXPORT_SYMBOL_GPL(debug_show_all_locks);
6628#endif
6629
6630/*
6631 * Careful: only use this function if you are sure that
6632 * the task cannot run in parallel!
6633 */
6634void debug_show_held_locks(struct task_struct *task)
6635{
6636	if (unlikely(!debug_locks)) {
6637		printk("INFO: lockdep is turned off.\n");
6638		return;
6639	}
6640	lockdep_print_held_locks(task);
6641}
6642EXPORT_SYMBOL_GPL(debug_show_held_locks);
6643
6644asmlinkage __visible void lockdep_sys_exit(void)
6645{
6646	struct task_struct *curr = current;
6647
6648	if (unlikely(curr->lockdep_depth)) {
6649		if (!debug_locks_off())
6650			return;
6651		pr_warn("\n");
6652		pr_warn("================================================\n");
6653		pr_warn("WARNING: lock held when returning to user space!\n");
6654		print_kernel_ident();
6655		pr_warn("------------------------------------------------\n");
6656		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6657				curr->comm, curr->pid);
6658		lockdep_print_held_locks(curr);
6659	}
6660
6661	/*
6662	 * The lock history for each syscall should be independent. So wipe the
6663	 * slate clean on return to userspace.
6664	 */
6665	lockdep_invariant_state(false);
6666}
6667
6668void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6669{
6670	struct task_struct *curr = current;
6671	int dl = READ_ONCE(debug_locks);
6672	bool rcu = warn_rcu_enter();
6673
6674	/* Note: the following can be executed concurrently, so be careful. */
6675	pr_warn("\n");
6676	pr_warn("=============================\n");
6677	pr_warn("WARNING: suspicious RCU usage\n");
6678	print_kernel_ident();
6679	pr_warn("-----------------------------\n");
6680	pr_warn("%s:%d %s!\n", file, line, s);
6681	pr_warn("\nother info that might help us debug this:\n\n");
6682	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6683	       !rcu_lockdep_current_cpu_online()
6684			? "RCU used illegally from offline CPU!\n"
6685			: "",
6686	       rcu_scheduler_active, dl,
6687	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
 
6688
6689	/*
6690	 * If a CPU is in the RCU-free window in idle (ie: in the section
6691	 * between ct_idle_enter() and ct_idle_exit(), then RCU
6692	 * considers that CPU to be in an "extended quiescent state",
6693	 * which means that RCU will be completely ignoring that CPU.
6694	 * Therefore, rcu_read_lock() and friends have absolutely no
6695	 * effect on a CPU running in that state. In other words, even if
6696	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6697	 * delete data structures out from under it.  RCU really has no
6698	 * choice here: we need to keep an RCU-free window in idle where
6699	 * the CPU may possibly enter into low power mode. This way we can
6700	 * notice an extended quiescent state to other CPUs that started a grace
6701	 * period. Otherwise we would delay any grace period as long as we run
6702	 * in the idle task.
6703	 *
6704	 * So complain bitterly if someone does call rcu_read_lock(),
6705	 * rcu_read_lock_bh() and so on from extended quiescent states.
6706	 */
6707	if (!rcu_is_watching())
6708		pr_warn("RCU used illegally from extended quiescent state!\n");
6709
6710	lockdep_print_held_locks(curr);
6711	pr_warn("\nstack backtrace:\n");
6712	dump_stack();
6713	warn_rcu_exit(rcu);
6714}
6715EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);