Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include "cgroup-internal.h"
   3
   4#include <linux/ctype.h>
   5#include <linux/kmod.h>
   6#include <linux/sort.h>
   7#include <linux/delay.h>
   8#include <linux/mm.h>
   9#include <linux/sched/signal.h>
  10#include <linux/sched/task.h>
  11#include <linux/magic.h>
  12#include <linux/slab.h>
  13#include <linux/vmalloc.h>
  14#include <linux/delayacct.h>
  15#include <linux/pid_namespace.h>
  16#include <linux/cgroupstats.h>
  17#include <linux/fs_parser.h>
  18
  19#include <trace/events/cgroup.h>
  20
  21#define cg_invalf(fc, fmt, ...) invalf(fc, fmt, ## __VA_ARGS__)
  22
  23/*
  24 * pidlists linger the following amount before being destroyed.  The goal
  25 * is avoiding frequent destruction in the middle of consecutive read calls
  26 * Expiring in the middle is a performance problem not a correctness one.
  27 * 1 sec should be enough.
  28 */
  29#define CGROUP_PIDLIST_DESTROY_DELAY	HZ
  30
  31/* Controllers blocked by the commandline in v1 */
  32static u16 cgroup_no_v1_mask;
  33
  34/* disable named v1 mounts */
  35static bool cgroup_no_v1_named;
  36
  37/*
  38 * pidlist destructions need to be flushed on cgroup destruction.  Use a
  39 * separate workqueue as flush domain.
  40 */
  41static struct workqueue_struct *cgroup_pidlist_destroy_wq;
  42
  43/*
  44 * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
  45 * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
  46 */
  47static DEFINE_SPINLOCK(release_agent_path_lock);
  48
  49bool cgroup1_ssid_disabled(int ssid)
  50{
  51	return cgroup_no_v1_mask & (1 << ssid);
  52}
  53
  54/**
  55 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
  56 * @from: attach to all cgroups of a given task
  57 * @tsk: the task to be attached
 
 
  58 */
  59int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
  60{
  61	struct cgroup_root *root;
  62	int retval = 0;
  63
  64	mutex_lock(&cgroup_mutex);
  65	percpu_down_write(&cgroup_threadgroup_rwsem);
  66	for_each_root(root) {
  67		struct cgroup *from_cgrp;
  68
  69		if (root == &cgrp_dfl_root)
  70			continue;
  71
  72		spin_lock_irq(&css_set_lock);
  73		from_cgrp = task_cgroup_from_root(from, root);
  74		spin_unlock_irq(&css_set_lock);
  75
  76		retval = cgroup_attach_task(from_cgrp, tsk, false);
  77		if (retval)
  78			break;
  79	}
  80	percpu_up_write(&cgroup_threadgroup_rwsem);
  81	mutex_unlock(&cgroup_mutex);
  82
  83	return retval;
  84}
  85EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
  86
  87/**
  88 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
  89 * @to: cgroup to which the tasks will be moved
  90 * @from: cgroup in which the tasks currently reside
  91 *
  92 * Locking rules between cgroup_post_fork() and the migration path
  93 * guarantee that, if a task is forking while being migrated, the new child
  94 * is guaranteed to be either visible in the source cgroup after the
  95 * parent's migration is complete or put into the target cgroup.  No task
  96 * can slip out of migration through forking.
 
 
  97 */
  98int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
  99{
 100	DEFINE_CGROUP_MGCTX(mgctx);
 101	struct cgrp_cset_link *link;
 102	struct css_task_iter it;
 103	struct task_struct *task;
 104	int ret;
 105
 106	if (cgroup_on_dfl(to))
 107		return -EINVAL;
 108
 109	ret = cgroup_migrate_vet_dst(to);
 110	if (ret)
 111		return ret;
 112
 113	mutex_lock(&cgroup_mutex);
 114
 115	percpu_down_write(&cgroup_threadgroup_rwsem);
 116
 117	/* all tasks in @from are being moved, all csets are source */
 118	spin_lock_irq(&css_set_lock);
 119	list_for_each_entry(link, &from->cset_links, cset_link)
 120		cgroup_migrate_add_src(link->cset, to, &mgctx);
 121	spin_unlock_irq(&css_set_lock);
 122
 123	ret = cgroup_migrate_prepare_dst(&mgctx);
 124	if (ret)
 125		goto out_err;
 126
 127	/*
 128	 * Migrate tasks one-by-one until @from is empty.  This fails iff
 129	 * ->can_attach() fails.
 130	 */
 131	do {
 132		css_task_iter_start(&from->self, 0, &it);
 133
 134		do {
 135			task = css_task_iter_next(&it);
 136		} while (task && (task->flags & PF_EXITING));
 137
 138		if (task)
 139			get_task_struct(task);
 140		css_task_iter_end(&it);
 141
 142		if (task) {
 143			ret = cgroup_migrate(task, false, &mgctx);
 144			if (!ret)
 145				TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
 146			put_task_struct(task);
 147		}
 148	} while (task && !ret);
 149out_err:
 150	cgroup_migrate_finish(&mgctx);
 151	percpu_up_write(&cgroup_threadgroup_rwsem);
 152	mutex_unlock(&cgroup_mutex);
 153	return ret;
 154}
 155
 156/*
 157 * Stuff for reading the 'tasks'/'procs' files.
 158 *
 159 * Reading this file can return large amounts of data if a cgroup has
 160 * *lots* of attached tasks. So it may need several calls to read(),
 161 * but we cannot guarantee that the information we produce is correct
 162 * unless we produce it entirely atomically.
 163 *
 164 */
 165
 166/* which pidlist file are we talking about? */
 167enum cgroup_filetype {
 168	CGROUP_FILE_PROCS,
 169	CGROUP_FILE_TASKS,
 170};
 171
 172/*
 173 * A pidlist is a list of pids that virtually represents the contents of one
 174 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 175 * a pair (one each for procs, tasks) for each pid namespace that's relevant
 176 * to the cgroup.
 177 */
 178struct cgroup_pidlist {
 179	/*
 180	 * used to find which pidlist is wanted. doesn't change as long as
 181	 * this particular list stays in the list.
 182	*/
 183	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
 184	/* array of xids */
 185	pid_t *list;
 186	/* how many elements the above list has */
 187	int length;
 188	/* each of these stored in a list by its cgroup */
 189	struct list_head links;
 190	/* pointer to the cgroup we belong to, for list removal purposes */
 191	struct cgroup *owner;
 192	/* for delayed destruction */
 193	struct delayed_work destroy_dwork;
 194};
 195
 196/*
 197 * Used to destroy all pidlists lingering waiting for destroy timer.  None
 198 * should be left afterwards.
 199 */
 200void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
 201{
 202	struct cgroup_pidlist *l, *tmp_l;
 203
 204	mutex_lock(&cgrp->pidlist_mutex);
 205	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
 206		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
 207	mutex_unlock(&cgrp->pidlist_mutex);
 208
 209	flush_workqueue(cgroup_pidlist_destroy_wq);
 210	BUG_ON(!list_empty(&cgrp->pidlists));
 211}
 212
 213static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
 214{
 215	struct delayed_work *dwork = to_delayed_work(work);
 216	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
 217						destroy_dwork);
 218	struct cgroup_pidlist *tofree = NULL;
 219
 220	mutex_lock(&l->owner->pidlist_mutex);
 221
 222	/*
 223	 * Destroy iff we didn't get queued again.  The state won't change
 224	 * as destroy_dwork can only be queued while locked.
 225	 */
 226	if (!delayed_work_pending(dwork)) {
 227		list_del(&l->links);
 228		kvfree(l->list);
 229		put_pid_ns(l->key.ns);
 230		tofree = l;
 231	}
 232
 233	mutex_unlock(&l->owner->pidlist_mutex);
 234	kfree(tofree);
 235}
 236
 237/*
 238 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 239 * Returns the number of unique elements.
 240 */
 241static int pidlist_uniq(pid_t *list, int length)
 242{
 243	int src, dest = 1;
 244
 245	/*
 246	 * we presume the 0th element is unique, so i starts at 1. trivial
 247	 * edge cases first; no work needs to be done for either
 248	 */
 249	if (length == 0 || length == 1)
 250		return length;
 251	/* src and dest walk down the list; dest counts unique elements */
 252	for (src = 1; src < length; src++) {
 253		/* find next unique element */
 254		while (list[src] == list[src-1]) {
 255			src++;
 256			if (src == length)
 257				goto after;
 258		}
 259		/* dest always points to where the next unique element goes */
 260		list[dest] = list[src];
 261		dest++;
 262	}
 263after:
 264	return dest;
 265}
 266
 267/*
 268 * The two pid files - task and cgroup.procs - guaranteed that the result
 269 * is sorted, which forced this whole pidlist fiasco.  As pid order is
 270 * different per namespace, each namespace needs differently sorted list,
 271 * making it impossible to use, for example, single rbtree of member tasks
 272 * sorted by task pointer.  As pidlists can be fairly large, allocating one
 273 * per open file is dangerous, so cgroup had to implement shared pool of
 274 * pidlists keyed by cgroup and namespace.
 275 */
 276static int cmppid(const void *a, const void *b)
 277{
 278	return *(pid_t *)a - *(pid_t *)b;
 279}
 280
 281static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
 282						  enum cgroup_filetype type)
 283{
 284	struct cgroup_pidlist *l;
 285	/* don't need task_nsproxy() if we're looking at ourself */
 286	struct pid_namespace *ns = task_active_pid_ns(current);
 287
 288	lockdep_assert_held(&cgrp->pidlist_mutex);
 289
 290	list_for_each_entry(l, &cgrp->pidlists, links)
 291		if (l->key.type == type && l->key.ns == ns)
 292			return l;
 293	return NULL;
 294}
 295
 296/*
 297 * find the appropriate pidlist for our purpose (given procs vs tasks)
 298 * returns with the lock on that pidlist already held, and takes care
 299 * of the use count, or returns NULL with no locks held if we're out of
 300 * memory.
 301 */
 302static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
 303						enum cgroup_filetype type)
 304{
 305	struct cgroup_pidlist *l;
 306
 307	lockdep_assert_held(&cgrp->pidlist_mutex);
 308
 309	l = cgroup_pidlist_find(cgrp, type);
 310	if (l)
 311		return l;
 312
 313	/* entry not found; create a new one */
 314	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
 315	if (!l)
 316		return l;
 317
 318	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
 319	l->key.type = type;
 320	/* don't need task_nsproxy() if we're looking at ourself */
 321	l->key.ns = get_pid_ns(task_active_pid_ns(current));
 322	l->owner = cgrp;
 323	list_add(&l->links, &cgrp->pidlists);
 324	return l;
 325}
 326
 327/*
 328 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 329 */
 330static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
 331			      struct cgroup_pidlist **lp)
 332{
 333	pid_t *array;
 334	int length;
 335	int pid, n = 0; /* used for populating the array */
 336	struct css_task_iter it;
 337	struct task_struct *tsk;
 338	struct cgroup_pidlist *l;
 339
 340	lockdep_assert_held(&cgrp->pidlist_mutex);
 341
 342	/*
 343	 * If cgroup gets more users after we read count, we won't have
 344	 * enough space - tough.  This race is indistinguishable to the
 345	 * caller from the case that the additional cgroup users didn't
 346	 * show up until sometime later on.
 347	 */
 348	length = cgroup_task_count(cgrp);
 349	array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
 350	if (!array)
 351		return -ENOMEM;
 352	/* now, populate the array */
 353	css_task_iter_start(&cgrp->self, 0, &it);
 354	while ((tsk = css_task_iter_next(&it))) {
 355		if (unlikely(n == length))
 356			break;
 357		/* get tgid or pid for procs or tasks file respectively */
 358		if (type == CGROUP_FILE_PROCS)
 359			pid = task_tgid_vnr(tsk);
 360		else
 361			pid = task_pid_vnr(tsk);
 362		if (pid > 0) /* make sure to only use valid results */
 363			array[n++] = pid;
 364	}
 365	css_task_iter_end(&it);
 366	length = n;
 367	/* now sort & (if procs) strip out duplicates */
 368	sort(array, length, sizeof(pid_t), cmppid, NULL);
 369	if (type == CGROUP_FILE_PROCS)
 370		length = pidlist_uniq(array, length);
 371
 372	l = cgroup_pidlist_find_create(cgrp, type);
 373	if (!l) {
 374		kvfree(array);
 375		return -ENOMEM;
 376	}
 377
 378	/* store array, freeing old if necessary */
 379	kvfree(l->list);
 380	l->list = array;
 381	l->length = length;
 382	*lp = l;
 383	return 0;
 384}
 385
 386/*
 387 * seq_file methods for the tasks/procs files. The seq_file position is the
 388 * next pid to display; the seq_file iterator is a pointer to the pid
 389 * in the cgroup->l->list array.
 390 */
 391
 392static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
 393{
 394	/*
 395	 * Initially we receive a position value that corresponds to
 396	 * one more than the last pid shown (or 0 on the first call or
 397	 * after a seek to the start). Use a binary-search to find the
 398	 * next pid to display, if any
 399	 */
 400	struct kernfs_open_file *of = s->private;
 
 401	struct cgroup *cgrp = seq_css(s)->cgroup;
 402	struct cgroup_pidlist *l;
 403	enum cgroup_filetype type = seq_cft(s)->private;
 404	int index = 0, pid = *pos;
 405	int *iter, ret;
 406
 407	mutex_lock(&cgrp->pidlist_mutex);
 408
 409	/*
 410	 * !NULL @of->priv indicates that this isn't the first start()
 411	 * after open.  If the matching pidlist is around, we can use that.
 412	 * Look for it.  Note that @of->priv can't be used directly.  It
 413	 * could already have been destroyed.
 414	 */
 415	if (of->priv)
 416		of->priv = cgroup_pidlist_find(cgrp, type);
 417
 418	/*
 419	 * Either this is the first start() after open or the matching
 420	 * pidlist has been destroyed inbetween.  Create a new one.
 421	 */
 422	if (!of->priv) {
 423		ret = pidlist_array_load(cgrp, type,
 424					 (struct cgroup_pidlist **)&of->priv);
 425		if (ret)
 426			return ERR_PTR(ret);
 427	}
 428	l = of->priv;
 429
 430	if (pid) {
 431		int end = l->length;
 432
 433		while (index < end) {
 434			int mid = (index + end) / 2;
 435			if (l->list[mid] == pid) {
 436				index = mid;
 437				break;
 438			} else if (l->list[mid] <= pid)
 439				index = mid + 1;
 440			else
 441				end = mid;
 442		}
 443	}
 444	/* If we're off the end of the array, we're done */
 445	if (index >= l->length)
 446		return NULL;
 447	/* Update the abstract position to be the actual pid that we found */
 448	iter = l->list + index;
 449	*pos = *iter;
 450	return iter;
 451}
 452
 453static void cgroup_pidlist_stop(struct seq_file *s, void *v)
 454{
 455	struct kernfs_open_file *of = s->private;
 456	struct cgroup_pidlist *l = of->priv;
 
 457
 458	if (l)
 459		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
 460				 CGROUP_PIDLIST_DESTROY_DELAY);
 461	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
 462}
 463
 464static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
 465{
 466	struct kernfs_open_file *of = s->private;
 467	struct cgroup_pidlist *l = of->priv;
 
 468	pid_t *p = v;
 469	pid_t *end = l->list + l->length;
 470	/*
 471	 * Advance to the next pid in the array. If this goes off the
 472	 * end, we're done
 473	 */
 474	p++;
 475	if (p >= end) {
 
 476		return NULL;
 477	} else {
 478		*pos = *p;
 479		return p;
 480	}
 481}
 482
 483static int cgroup_pidlist_show(struct seq_file *s, void *v)
 484{
 485	seq_printf(s, "%d\n", *(int *)v);
 486
 487	return 0;
 488}
 489
 490static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
 491				     char *buf, size_t nbytes, loff_t off,
 492				     bool threadgroup)
 493{
 494	struct cgroup *cgrp;
 495	struct task_struct *task;
 496	const struct cred *cred, *tcred;
 497	ssize_t ret;
 
 498
 499	cgrp = cgroup_kn_lock_live(of->kn, false);
 500	if (!cgrp)
 501		return -ENODEV;
 502
 503	task = cgroup_procs_write_start(buf, threadgroup);
 504	ret = PTR_ERR_OR_ZERO(task);
 505	if (ret)
 506		goto out_unlock;
 507
 508	/*
 509	 * Even if we're attaching all tasks in the thread group, we only
 510	 * need to check permissions on one of them.
 
 511	 */
 512	cred = current_cred();
 513	tcred = get_task_cred(task);
 514	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
 515	    !uid_eq(cred->euid, tcred->uid) &&
 516	    !uid_eq(cred->euid, tcred->suid))
 517		ret = -EACCES;
 518	put_cred(tcred);
 519	if (ret)
 520		goto out_finish;
 521
 522	ret = cgroup_attach_task(cgrp, task, threadgroup);
 523
 524out_finish:
 525	cgroup_procs_write_finish(task);
 526out_unlock:
 527	cgroup_kn_unlock(of->kn);
 528
 529	return ret ?: nbytes;
 530}
 531
 532static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
 533				   char *buf, size_t nbytes, loff_t off)
 534{
 535	return __cgroup1_procs_write(of, buf, nbytes, off, true);
 536}
 537
 538static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
 539				   char *buf, size_t nbytes, loff_t off)
 540{
 541	return __cgroup1_procs_write(of, buf, nbytes, off, false);
 542}
 543
 544static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
 545					  char *buf, size_t nbytes, loff_t off)
 546{
 547	struct cgroup *cgrp;
 
 548
 549	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
 550
 
 
 
 
 
 
 
 
 
 551	cgrp = cgroup_kn_lock_live(of->kn, false);
 552	if (!cgrp)
 553		return -ENODEV;
 554	spin_lock(&release_agent_path_lock);
 555	strlcpy(cgrp->root->release_agent_path, strstrip(buf),
 556		sizeof(cgrp->root->release_agent_path));
 557	spin_unlock(&release_agent_path_lock);
 558	cgroup_kn_unlock(of->kn);
 559	return nbytes;
 560}
 561
 562static int cgroup_release_agent_show(struct seq_file *seq, void *v)
 563{
 564	struct cgroup *cgrp = seq_css(seq)->cgroup;
 565
 566	spin_lock(&release_agent_path_lock);
 567	seq_puts(seq, cgrp->root->release_agent_path);
 568	spin_unlock(&release_agent_path_lock);
 569	seq_putc(seq, '\n');
 570	return 0;
 571}
 572
 573static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
 574{
 575	seq_puts(seq, "0\n");
 576	return 0;
 577}
 578
 579static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
 580					 struct cftype *cft)
 581{
 582	return notify_on_release(css->cgroup);
 583}
 584
 585static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
 586					  struct cftype *cft, u64 val)
 587{
 588	if (val)
 589		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
 590	else
 591		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
 592	return 0;
 593}
 594
 595static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
 596				      struct cftype *cft)
 597{
 598	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 599}
 600
 601static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
 602				       struct cftype *cft, u64 val)
 603{
 604	if (val)
 605		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 606	else
 607		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 608	return 0;
 609}
 610
 611/* cgroup core interface files for the legacy hierarchies */
 612struct cftype cgroup1_base_files[] = {
 613	{
 614		.name = "cgroup.procs",
 615		.seq_start = cgroup_pidlist_start,
 616		.seq_next = cgroup_pidlist_next,
 617		.seq_stop = cgroup_pidlist_stop,
 618		.seq_show = cgroup_pidlist_show,
 619		.private = CGROUP_FILE_PROCS,
 620		.write = cgroup1_procs_write,
 621	},
 622	{
 623		.name = "cgroup.clone_children",
 624		.read_u64 = cgroup_clone_children_read,
 625		.write_u64 = cgroup_clone_children_write,
 626	},
 627	{
 628		.name = "cgroup.sane_behavior",
 629		.flags = CFTYPE_ONLY_ON_ROOT,
 630		.seq_show = cgroup_sane_behavior_show,
 631	},
 632	{
 633		.name = "tasks",
 634		.seq_start = cgroup_pidlist_start,
 635		.seq_next = cgroup_pidlist_next,
 636		.seq_stop = cgroup_pidlist_stop,
 637		.seq_show = cgroup_pidlist_show,
 638		.private = CGROUP_FILE_TASKS,
 639		.write = cgroup1_tasks_write,
 640	},
 641	{
 642		.name = "notify_on_release",
 643		.read_u64 = cgroup_read_notify_on_release,
 644		.write_u64 = cgroup_write_notify_on_release,
 645	},
 646	{
 647		.name = "release_agent",
 648		.flags = CFTYPE_ONLY_ON_ROOT,
 649		.seq_show = cgroup_release_agent_show,
 650		.write = cgroup_release_agent_write,
 651		.max_write_len = PATH_MAX - 1,
 652	},
 653	{ }	/* terminate */
 654};
 655
 656/* Display information about each subsystem and each hierarchy */
 657int proc_cgroupstats_show(struct seq_file *m, void *v)
 658{
 659	struct cgroup_subsys *ss;
 660	int i;
 661
 662	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
 663	/*
 664	 * ideally we don't want subsystems moving around while we do this.
 665	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
 666	 * subsys/hierarchy state.
 667	 */
 668	mutex_lock(&cgroup_mutex);
 669
 670	for_each_subsys(ss, i)
 671		seq_printf(m, "%s\t%d\t%d\t%d\n",
 672			   ss->legacy_name, ss->root->hierarchy_id,
 673			   atomic_read(&ss->root->nr_cgrps),
 674			   cgroup_ssid_enabled(i));
 675
 676	mutex_unlock(&cgroup_mutex);
 677	return 0;
 678}
 679
 680/**
 681 * cgroupstats_build - build and fill cgroupstats
 682 * @stats: cgroupstats to fill information into
 683 * @dentry: A dentry entry belonging to the cgroup for which stats have
 684 * been requested.
 685 *
 686 * Build and fill cgroupstats so that taskstats can export it to user
 687 * space.
 
 
 688 */
 689int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
 690{
 691	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
 692	struct cgroup *cgrp;
 693	struct css_task_iter it;
 694	struct task_struct *tsk;
 695
 696	/* it should be kernfs_node belonging to cgroupfs and is a directory */
 697	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
 698	    kernfs_type(kn) != KERNFS_DIR)
 699		return -EINVAL;
 700
 701	mutex_lock(&cgroup_mutex);
 702
 703	/*
 704	 * We aren't being called from kernfs and there's no guarantee on
 705	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
 706	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
 707	 */
 708	rcu_read_lock();
 709	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
 710	if (!cgrp || cgroup_is_dead(cgrp)) {
 711		rcu_read_unlock();
 712		mutex_unlock(&cgroup_mutex);
 713		return -ENOENT;
 714	}
 715	rcu_read_unlock();
 716
 717	css_task_iter_start(&cgrp->self, 0, &it);
 718	while ((tsk = css_task_iter_next(&it))) {
 719		switch (tsk->state) {
 720		case TASK_RUNNING:
 721			stats->nr_running++;
 722			break;
 723		case TASK_INTERRUPTIBLE:
 724			stats->nr_sleeping++;
 725			break;
 726		case TASK_UNINTERRUPTIBLE:
 727			stats->nr_uninterruptible++;
 728			break;
 729		case TASK_STOPPED:
 730			stats->nr_stopped++;
 731			break;
 732		default:
 733			if (delayacct_is_task_waiting_on_io(tsk))
 734				stats->nr_io_wait++;
 735			break;
 736		}
 737	}
 738	css_task_iter_end(&it);
 739
 740	mutex_unlock(&cgroup_mutex);
 741	return 0;
 742}
 743
 744void cgroup1_check_for_release(struct cgroup *cgrp)
 745{
 746	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
 747	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
 748		schedule_work(&cgrp->release_agent_work);
 749}
 750
 751/*
 752 * Notify userspace when a cgroup is released, by running the
 753 * configured release agent with the name of the cgroup (path
 754 * relative to the root of cgroup file system) as the argument.
 755 *
 756 * Most likely, this user command will try to rmdir this cgroup.
 757 *
 758 * This races with the possibility that some other task will be
 759 * attached to this cgroup before it is removed, or that some other
 760 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 761 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 762 * unused, and this cgroup will be reprieved from its death sentence,
 763 * to continue to serve a useful existence.  Next time it's released,
 764 * we will get notified again, if it still has 'notify_on_release' set.
 765 *
 766 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 767 * means only wait until the task is successfully execve()'d.  The
 768 * separate release agent task is forked by call_usermodehelper(),
 769 * then control in this thread returns here, without waiting for the
 770 * release agent task.  We don't bother to wait because the caller of
 771 * this routine has no use for the exit status of the release agent
 772 * task, so no sense holding our caller up for that.
 773 */
 774void cgroup1_release_agent(struct work_struct *work)
 775{
 776	struct cgroup *cgrp =
 777		container_of(work, struct cgroup, release_agent_work);
 778	char *pathbuf = NULL, *agentbuf = NULL;
 779	char *argv[3], *envp[3];
 780	int ret;
 781
 782	mutex_lock(&cgroup_mutex);
 
 
 783
 
 784	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
 785	agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
 786	if (!pathbuf || !agentbuf)
 787		goto out;
 788
 789	spin_lock_irq(&css_set_lock);
 790	ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
 791	spin_unlock_irq(&css_set_lock);
 792	if (ret < 0 || ret >= PATH_MAX)
 793		goto out;
 
 
 
 
 794
 795	argv[0] = agentbuf;
 796	argv[1] = pathbuf;
 797	argv[2] = NULL;
 798
 799	/* minimal command environment */
 800	envp[0] = "HOME=/";
 801	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
 802	envp[2] = NULL;
 803
 804	mutex_unlock(&cgroup_mutex);
 805	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
 806	goto out_free;
 807out:
 808	mutex_unlock(&cgroup_mutex);
 809out_free:
 810	kfree(agentbuf);
 811	kfree(pathbuf);
 812}
 813
 814/*
 815 * cgroup_rename - Only allow simple rename of directories in place.
 816 */
 817static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
 818			  const char *new_name_str)
 819{
 820	struct cgroup *cgrp = kn->priv;
 821	int ret;
 822
 
 
 
 
 823	if (kernfs_type(kn) != KERNFS_DIR)
 824		return -ENOTDIR;
 825	if (kn->parent != new_parent)
 826		return -EIO;
 827
 828	/*
 829	 * We're gonna grab cgroup_mutex which nests outside kernfs
 830	 * active_ref.  kernfs_rename() doesn't require active_ref
 831	 * protection.  Break them before grabbing cgroup_mutex.
 832	 */
 833	kernfs_break_active_protection(new_parent);
 834	kernfs_break_active_protection(kn);
 835
 836	mutex_lock(&cgroup_mutex);
 837
 838	ret = kernfs_rename(kn, new_parent, new_name_str);
 839	if (!ret)
 840		TRACE_CGROUP_PATH(rename, cgrp);
 841
 842	mutex_unlock(&cgroup_mutex);
 843
 844	kernfs_unbreak_active_protection(kn);
 845	kernfs_unbreak_active_protection(new_parent);
 846	return ret;
 847}
 848
 849static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
 850{
 851	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
 852	struct cgroup_subsys *ss;
 853	int ssid;
 854
 855	for_each_subsys(ss, ssid)
 856		if (root->subsys_mask & (1 << ssid))
 857			seq_show_option(seq, ss->legacy_name, NULL);
 858	if (root->flags & CGRP_ROOT_NOPREFIX)
 859		seq_puts(seq, ",noprefix");
 860	if (root->flags & CGRP_ROOT_XATTR)
 861		seq_puts(seq, ",xattr");
 862	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
 863		seq_puts(seq, ",cpuset_v2_mode");
 
 
 864
 865	spin_lock(&release_agent_path_lock);
 866	if (strlen(root->release_agent_path))
 867		seq_show_option(seq, "release_agent",
 868				root->release_agent_path);
 869	spin_unlock(&release_agent_path_lock);
 870
 871	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
 872		seq_puts(seq, ",clone_children");
 873	if (strlen(root->name))
 874		seq_show_option(seq, "name", root->name);
 875	return 0;
 876}
 877
 878enum cgroup1_param {
 879	Opt_all,
 880	Opt_clone_children,
 881	Opt_cpuset_v2_mode,
 882	Opt_name,
 883	Opt_none,
 884	Opt_noprefix,
 885	Opt_release_agent,
 886	Opt_xattr,
 
 
 887};
 888
 889static const struct fs_parameter_spec cgroup1_param_specs[] = {
 890	fsparam_flag  ("all",		Opt_all),
 891	fsparam_flag  ("clone_children", Opt_clone_children),
 892	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
 893	fsparam_string("name",		Opt_name),
 894	fsparam_flag  ("none",		Opt_none),
 895	fsparam_flag  ("noprefix",	Opt_noprefix),
 896	fsparam_string("release_agent",	Opt_release_agent),
 897	fsparam_flag  ("xattr",		Opt_xattr),
 
 
 898	{}
 899};
 900
 901const struct fs_parameter_description cgroup1_fs_parameters = {
 902	.name		= "cgroup1",
 903	.specs		= cgroup1_param_specs,
 904};
 905
 906int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
 907{
 908	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 909	struct cgroup_subsys *ss;
 910	struct fs_parse_result result;
 911	int opt, i;
 912
 913	opt = fs_parse(fc, &cgroup1_fs_parameters, param, &result);
 914	if (opt == -ENOPARAM) {
 915		if (strcmp(param->key, "source") == 0) {
 916			fc->source = param->string;
 917			param->string = NULL;
 918			return 0;
 919		}
 920		for_each_subsys(ss, i) {
 921			if (strcmp(param->key, ss->legacy_name))
 922				continue;
 
 
 
 923			ctx->subsys_mask |= (1 << i);
 924			return 0;
 925		}
 926		return cg_invalf(fc, "cgroup1: Unknown subsys name '%s'", param->key);
 927	}
 928	if (opt < 0)
 929		return opt;
 930
 931	switch (opt) {
 932	case Opt_none:
 933		/* Explicitly have no subsystems */
 934		ctx->none = true;
 935		break;
 936	case Opt_all:
 937		ctx->all_ss = true;
 938		break;
 939	case Opt_noprefix:
 940		ctx->flags |= CGRP_ROOT_NOPREFIX;
 941		break;
 942	case Opt_clone_children:
 943		ctx->cpuset_clone_children = true;
 944		break;
 945	case Opt_cpuset_v2_mode:
 946		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
 947		break;
 948	case Opt_xattr:
 949		ctx->flags |= CGRP_ROOT_XATTR;
 950		break;
 
 
 
 
 
 
 951	case Opt_release_agent:
 952		/* Specifying two release agents is forbidden */
 953		if (ctx->release_agent)
 954			return cg_invalf(fc, "cgroup1: release_agent respecified");
 
 
 
 
 
 
 955		ctx->release_agent = param->string;
 956		param->string = NULL;
 957		break;
 958	case Opt_name:
 959		/* blocked by boot param? */
 960		if (cgroup_no_v1_named)
 961			return -ENOENT;
 962		/* Can't specify an empty name */
 963		if (!param->size)
 964			return cg_invalf(fc, "cgroup1: Empty name");
 965		if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
 966			return cg_invalf(fc, "cgroup1: Name too long");
 967		/* Must match [\w.-]+ */
 968		for (i = 0; i < param->size; i++) {
 969			char c = param->string[i];
 970			if (isalnum(c))
 971				continue;
 972			if ((c == '.') || (c == '-') || (c == '_'))
 973				continue;
 974			return cg_invalf(fc, "cgroup1: Invalid name");
 975		}
 976		/* Specifying two names is forbidden */
 977		if (ctx->name)
 978			return cg_invalf(fc, "cgroup1: name respecified");
 979		ctx->name = param->string;
 980		param->string = NULL;
 981		break;
 982	}
 983	return 0;
 984}
 985
 986static int check_cgroupfs_options(struct fs_context *fc)
 987{
 988	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 989	u16 mask = U16_MAX;
 990	u16 enabled = 0;
 991	struct cgroup_subsys *ss;
 992	int i;
 993
 994#ifdef CONFIG_CPUSETS
 995	mask = ~((u16)1 << cpuset_cgrp_id);
 996#endif
 997	for_each_subsys(ss, i)
 998		if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
 999			enabled |= 1 << i;
1000
1001	ctx->subsys_mask &= enabled;
1002
1003	/*
1004	 * In absense of 'none', 'name=' or subsystem name options,
1005	 * let's default to 'all'.
1006	 */
1007	if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1008		ctx->all_ss = true;
1009
1010	if (ctx->all_ss) {
1011		/* Mutually exclusive option 'all' + subsystem name */
1012		if (ctx->subsys_mask)
1013			return cg_invalf(fc, "cgroup1: subsys name conflicts with all");
1014		/* 'all' => select all the subsystems */
1015		ctx->subsys_mask = enabled;
1016	}
1017
1018	/*
1019	 * We either have to specify by name or by subsystems. (So all
1020	 * empty hierarchies must have a name).
1021	 */
1022	if (!ctx->subsys_mask && !ctx->name)
1023		return cg_invalf(fc, "cgroup1: Need name or subsystem set");
1024
1025	/*
1026	 * Option noprefix was introduced just for backward compatibility
1027	 * with the old cpuset, so we allow noprefix only if mounting just
1028	 * the cpuset subsystem.
1029	 */
1030	if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1031		return cg_invalf(fc, "cgroup1: noprefix used incorrectly");
1032
1033	/* Can't specify "none" and some subsystems */
1034	if (ctx->subsys_mask && ctx->none)
1035		return cg_invalf(fc, "cgroup1: none used incorrectly");
1036
1037	return 0;
1038}
1039
1040int cgroup1_reconfigure(struct fs_context *fc)
1041{
1042	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1043	struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1044	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1045	int ret = 0;
1046	u16 added_mask, removed_mask;
1047
1048	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1049
1050	/* See what subsystems are wanted */
1051	ret = check_cgroupfs_options(fc);
1052	if (ret)
1053		goto out_unlock;
1054
1055	if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1056		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1057			task_tgid_nr(current), current->comm);
1058
1059	added_mask = ctx->subsys_mask & ~root->subsys_mask;
1060	removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1061
1062	/* Don't allow flags or name to change at remount */
1063	if ((ctx->flags ^ root->flags) ||
1064	    (ctx->name && strcmp(ctx->name, root->name))) {
1065		cg_invalf(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1066		       ctx->flags, ctx->name ?: "", root->flags, root->name);
1067		ret = -EINVAL;
1068		goto out_unlock;
1069	}
1070
1071	/* remounting is not allowed for populated hierarchies */
1072	if (!list_empty(&root->cgrp.self.children)) {
1073		ret = -EBUSY;
1074		goto out_unlock;
1075	}
1076
1077	ret = rebind_subsystems(root, added_mask);
1078	if (ret)
1079		goto out_unlock;
1080
1081	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1082
1083	if (ctx->release_agent) {
1084		spin_lock(&release_agent_path_lock);
1085		strcpy(root->release_agent_path, ctx->release_agent);
1086		spin_unlock(&release_agent_path_lock);
1087	}
1088
1089	trace_cgroup_remount(root);
1090
1091 out_unlock:
1092	mutex_unlock(&cgroup_mutex);
1093	return ret;
1094}
1095
1096struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1097	.rename			= cgroup1_rename,
1098	.show_options		= cgroup1_show_options,
1099	.mkdir			= cgroup_mkdir,
1100	.rmdir			= cgroup_rmdir,
1101	.show_path		= cgroup_show_path,
1102};
1103
1104/*
1105 * The guts of cgroup1 mount - find or create cgroup_root to use.
1106 * Called with cgroup_mutex held; returns 0 on success, -E... on
1107 * error and positive - in case when the candidate is busy dying.
1108 * On success it stashes a reference to cgroup_root into given
1109 * cgroup_fs_context; that reference is *NOT* counting towards the
1110 * cgroup_root refcount.
1111 */
1112static int cgroup1_root_to_use(struct fs_context *fc)
1113{
1114	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1115	struct cgroup_root *root;
1116	struct cgroup_subsys *ss;
1117	int i, ret;
1118
1119	/* First find the desired set of subsystems */
1120	ret = check_cgroupfs_options(fc);
1121	if (ret)
1122		return ret;
1123
1124	/*
1125	 * Destruction of cgroup root is asynchronous, so subsystems may
1126	 * still be dying after the previous unmount.  Let's drain the
1127	 * dying subsystems.  We just need to ensure that the ones
1128	 * unmounted previously finish dying and don't care about new ones
1129	 * starting.  Testing ref liveliness is good enough.
1130	 */
1131	for_each_subsys(ss, i) {
1132		if (!(ctx->subsys_mask & (1 << i)) ||
1133		    ss->root == &cgrp_dfl_root)
1134			continue;
1135
1136		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1137			return 1;	/* restart */
1138		cgroup_put(&ss->root->cgrp);
1139	}
1140
1141	for_each_root(root) {
1142		bool name_match = false;
1143
1144		if (root == &cgrp_dfl_root)
1145			continue;
1146
1147		/*
1148		 * If we asked for a name then it must match.  Also, if
1149		 * name matches but sybsys_mask doesn't, we should fail.
1150		 * Remember whether name matched.
1151		 */
1152		if (ctx->name) {
1153			if (strcmp(ctx->name, root->name))
1154				continue;
1155			name_match = true;
1156		}
1157
1158		/*
1159		 * If we asked for subsystems (or explicitly for no
1160		 * subsystems) then they must match.
1161		 */
1162		if ((ctx->subsys_mask || ctx->none) &&
1163		    (ctx->subsys_mask != root->subsys_mask)) {
1164			if (!name_match)
1165				continue;
1166			return -EBUSY;
1167		}
1168
1169		if (root->flags ^ ctx->flags)
1170			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1171
1172		ctx->root = root;
1173		return 0;
1174	}
1175
1176	/*
1177	 * No such thing, create a new one.  name= matching without subsys
1178	 * specification is allowed for already existing hierarchies but we
1179	 * can't create new one without subsys specification.
1180	 */
1181	if (!ctx->subsys_mask && !ctx->none)
1182		return cg_invalf(fc, "cgroup1: No subsys list or none specified");
1183
1184	/* Hierarchies may only be created in the initial cgroup namespace. */
1185	if (ctx->ns != &init_cgroup_ns)
1186		return -EPERM;
1187
1188	root = kzalloc(sizeof(*root), GFP_KERNEL);
1189	if (!root)
1190		return -ENOMEM;
1191
1192	ctx->root = root;
1193	init_cgroup_root(ctx);
1194
1195	ret = cgroup_setup_root(root, ctx->subsys_mask);
1196	if (ret)
 
 
1197		cgroup_free_root(root);
 
1198	return ret;
1199}
1200
1201int cgroup1_get_tree(struct fs_context *fc)
1202{
1203	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1204	int ret;
1205
1206	/* Check if the caller has permission to mount. */
1207	if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1208		return -EPERM;
1209
1210	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1211
1212	ret = cgroup1_root_to_use(fc);
1213	if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1214		ret = 1;	/* restart */
1215
1216	mutex_unlock(&cgroup_mutex);
1217
1218	if (!ret)
1219		ret = cgroup_do_get_tree(fc);
1220
1221	if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1222		struct super_block *sb = fc->root->d_sb;
1223		dput(fc->root);
1224		deactivate_locked_super(sb);
1225		ret = 1;
1226	}
1227
1228	if (unlikely(ret > 0)) {
1229		msleep(10);
1230		return restart_syscall();
1231	}
1232	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1233}
1234
1235static int __init cgroup1_wq_init(void)
1236{
1237	/*
1238	 * Used to destroy pidlists and separate to serve as flush domain.
1239	 * Cap @max_active to 1 too.
1240	 */
1241	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1242						    0, 1);
1243	BUG_ON(!cgroup_pidlist_destroy_wq);
1244	return 0;
1245}
1246core_initcall(cgroup1_wq_init);
1247
1248static int __init cgroup_no_v1(char *str)
1249{
1250	struct cgroup_subsys *ss;
1251	char *token;
1252	int i;
1253
1254	while ((token = strsep(&str, ",")) != NULL) {
1255		if (!*token)
1256			continue;
1257
1258		if (!strcmp(token, "all")) {
1259			cgroup_no_v1_mask = U16_MAX;
1260			continue;
1261		}
1262
1263		if (!strcmp(token, "named")) {
1264			cgroup_no_v1_named = true;
1265			continue;
1266		}
1267
1268		for_each_subsys(ss, i) {
1269			if (strcmp(token, ss->name) &&
1270			    strcmp(token, ss->legacy_name))
1271				continue;
1272
1273			cgroup_no_v1_mask |= 1 << i;
1274		}
1275	}
1276	return 1;
1277}
1278__setup("cgroup_no_v1=", cgroup_no_v1);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include "cgroup-internal.h"
   3
   4#include <linux/ctype.h>
   5#include <linux/kmod.h>
   6#include <linux/sort.h>
   7#include <linux/delay.h>
   8#include <linux/mm.h>
   9#include <linux/sched/signal.h>
  10#include <linux/sched/task.h>
  11#include <linux/magic.h>
  12#include <linux/slab.h>
  13#include <linux/vmalloc.h>
  14#include <linux/delayacct.h>
  15#include <linux/pid_namespace.h>
  16#include <linux/cgroupstats.h>
  17#include <linux/fs_parser.h>
  18
  19#include <trace/events/cgroup.h>
  20
 
 
  21/*
  22 * pidlists linger the following amount before being destroyed.  The goal
  23 * is avoiding frequent destruction in the middle of consecutive read calls
  24 * Expiring in the middle is a performance problem not a correctness one.
  25 * 1 sec should be enough.
  26 */
  27#define CGROUP_PIDLIST_DESTROY_DELAY	HZ
  28
  29/* Controllers blocked by the commandline in v1 */
  30static u16 cgroup_no_v1_mask;
  31
  32/* disable named v1 mounts */
  33static bool cgroup_no_v1_named;
  34
  35/*
  36 * pidlist destructions need to be flushed on cgroup destruction.  Use a
  37 * separate workqueue as flush domain.
  38 */
  39static struct workqueue_struct *cgroup_pidlist_destroy_wq;
  40
  41/* protects cgroup_subsys->release_agent_path */
 
 
 
  42static DEFINE_SPINLOCK(release_agent_path_lock);
  43
  44bool cgroup1_ssid_disabled(int ssid)
  45{
  46	return cgroup_no_v1_mask & (1 << ssid);
  47}
  48
  49/**
  50 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
  51 * @from: attach to all cgroups of a given task
  52 * @tsk: the task to be attached
  53 *
  54 * Return: %0 on success or a negative errno code on failure
  55 */
  56int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
  57{
  58	struct cgroup_root *root;
  59	int retval = 0;
  60
  61	cgroup_lock();
  62	cgroup_attach_lock(true);
  63	for_each_root(root) {
  64		struct cgroup *from_cgrp;
  65
 
 
 
  66		spin_lock_irq(&css_set_lock);
  67		from_cgrp = task_cgroup_from_root(from, root);
  68		spin_unlock_irq(&css_set_lock);
  69
  70		retval = cgroup_attach_task(from_cgrp, tsk, false);
  71		if (retval)
  72			break;
  73	}
  74	cgroup_attach_unlock(true);
  75	cgroup_unlock();
  76
  77	return retval;
  78}
  79EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
  80
  81/**
  82 * cgroup_transfer_tasks - move tasks from one cgroup to another
  83 * @to: cgroup to which the tasks will be moved
  84 * @from: cgroup in which the tasks currently reside
  85 *
  86 * Locking rules between cgroup_post_fork() and the migration path
  87 * guarantee that, if a task is forking while being migrated, the new child
  88 * is guaranteed to be either visible in the source cgroup after the
  89 * parent's migration is complete or put into the target cgroup.  No task
  90 * can slip out of migration through forking.
  91 *
  92 * Return: %0 on success or a negative errno code on failure
  93 */
  94int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
  95{
  96	DEFINE_CGROUP_MGCTX(mgctx);
  97	struct cgrp_cset_link *link;
  98	struct css_task_iter it;
  99	struct task_struct *task;
 100	int ret;
 101
 102	if (cgroup_on_dfl(to))
 103		return -EINVAL;
 104
 105	ret = cgroup_migrate_vet_dst(to);
 106	if (ret)
 107		return ret;
 108
 109	cgroup_lock();
 110
 111	cgroup_attach_lock(true);
 112
 113	/* all tasks in @from are being moved, all csets are source */
 114	spin_lock_irq(&css_set_lock);
 115	list_for_each_entry(link, &from->cset_links, cset_link)
 116		cgroup_migrate_add_src(link->cset, to, &mgctx);
 117	spin_unlock_irq(&css_set_lock);
 118
 119	ret = cgroup_migrate_prepare_dst(&mgctx);
 120	if (ret)
 121		goto out_err;
 122
 123	/*
 124	 * Migrate tasks one-by-one until @from is empty.  This fails iff
 125	 * ->can_attach() fails.
 126	 */
 127	do {
 128		css_task_iter_start(&from->self, 0, &it);
 129
 130		do {
 131			task = css_task_iter_next(&it);
 132		} while (task && (task->flags & PF_EXITING));
 133
 134		if (task)
 135			get_task_struct(task);
 136		css_task_iter_end(&it);
 137
 138		if (task) {
 139			ret = cgroup_migrate(task, false, &mgctx);
 140			if (!ret)
 141				TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
 142			put_task_struct(task);
 143		}
 144	} while (task && !ret);
 145out_err:
 146	cgroup_migrate_finish(&mgctx);
 147	cgroup_attach_unlock(true);
 148	cgroup_unlock();
 149	return ret;
 150}
 151
 152/*
 153 * Stuff for reading the 'tasks'/'procs' files.
 154 *
 155 * Reading this file can return large amounts of data if a cgroup has
 156 * *lots* of attached tasks. So it may need several calls to read(),
 157 * but we cannot guarantee that the information we produce is correct
 158 * unless we produce it entirely atomically.
 159 *
 160 */
 161
 162/* which pidlist file are we talking about? */
 163enum cgroup_filetype {
 164	CGROUP_FILE_PROCS,
 165	CGROUP_FILE_TASKS,
 166};
 167
 168/*
 169 * A pidlist is a list of pids that virtually represents the contents of one
 170 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 171 * a pair (one each for procs, tasks) for each pid namespace that's relevant
 172 * to the cgroup.
 173 */
 174struct cgroup_pidlist {
 175	/*
 176	 * used to find which pidlist is wanted. doesn't change as long as
 177	 * this particular list stays in the list.
 178	*/
 179	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
 180	/* array of xids */
 181	pid_t *list;
 182	/* how many elements the above list has */
 183	int length;
 184	/* each of these stored in a list by its cgroup */
 185	struct list_head links;
 186	/* pointer to the cgroup we belong to, for list removal purposes */
 187	struct cgroup *owner;
 188	/* for delayed destruction */
 189	struct delayed_work destroy_dwork;
 190};
 191
 192/*
 193 * Used to destroy all pidlists lingering waiting for destroy timer.  None
 194 * should be left afterwards.
 195 */
 196void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
 197{
 198	struct cgroup_pidlist *l, *tmp_l;
 199
 200	mutex_lock(&cgrp->pidlist_mutex);
 201	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
 202		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
 203	mutex_unlock(&cgrp->pidlist_mutex);
 204
 205	flush_workqueue(cgroup_pidlist_destroy_wq);
 206	BUG_ON(!list_empty(&cgrp->pidlists));
 207}
 208
 209static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
 210{
 211	struct delayed_work *dwork = to_delayed_work(work);
 212	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
 213						destroy_dwork);
 214	struct cgroup_pidlist *tofree = NULL;
 215
 216	mutex_lock(&l->owner->pidlist_mutex);
 217
 218	/*
 219	 * Destroy iff we didn't get queued again.  The state won't change
 220	 * as destroy_dwork can only be queued while locked.
 221	 */
 222	if (!delayed_work_pending(dwork)) {
 223		list_del(&l->links);
 224		kvfree(l->list);
 225		put_pid_ns(l->key.ns);
 226		tofree = l;
 227	}
 228
 229	mutex_unlock(&l->owner->pidlist_mutex);
 230	kfree(tofree);
 231}
 232
 233/*
 234 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 235 * Returns the number of unique elements.
 236 */
 237static int pidlist_uniq(pid_t *list, int length)
 238{
 239	int src, dest = 1;
 240
 241	/*
 242	 * we presume the 0th element is unique, so i starts at 1. trivial
 243	 * edge cases first; no work needs to be done for either
 244	 */
 245	if (length == 0 || length == 1)
 246		return length;
 247	/* src and dest walk down the list; dest counts unique elements */
 248	for (src = 1; src < length; src++) {
 249		/* find next unique element */
 250		while (list[src] == list[src-1]) {
 251			src++;
 252			if (src == length)
 253				goto after;
 254		}
 255		/* dest always points to where the next unique element goes */
 256		list[dest] = list[src];
 257		dest++;
 258	}
 259after:
 260	return dest;
 261}
 262
 263/*
 264 * The two pid files - task and cgroup.procs - guaranteed that the result
 265 * is sorted, which forced this whole pidlist fiasco.  As pid order is
 266 * different per namespace, each namespace needs differently sorted list,
 267 * making it impossible to use, for example, single rbtree of member tasks
 268 * sorted by task pointer.  As pidlists can be fairly large, allocating one
 269 * per open file is dangerous, so cgroup had to implement shared pool of
 270 * pidlists keyed by cgroup and namespace.
 271 */
 272static int cmppid(const void *a, const void *b)
 273{
 274	return *(pid_t *)a - *(pid_t *)b;
 275}
 276
 277static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
 278						  enum cgroup_filetype type)
 279{
 280	struct cgroup_pidlist *l;
 281	/* don't need task_nsproxy() if we're looking at ourself */
 282	struct pid_namespace *ns = task_active_pid_ns(current);
 283
 284	lockdep_assert_held(&cgrp->pidlist_mutex);
 285
 286	list_for_each_entry(l, &cgrp->pidlists, links)
 287		if (l->key.type == type && l->key.ns == ns)
 288			return l;
 289	return NULL;
 290}
 291
 292/*
 293 * find the appropriate pidlist for our purpose (given procs vs tasks)
 294 * returns with the lock on that pidlist already held, and takes care
 295 * of the use count, or returns NULL with no locks held if we're out of
 296 * memory.
 297 */
 298static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
 299						enum cgroup_filetype type)
 300{
 301	struct cgroup_pidlist *l;
 302
 303	lockdep_assert_held(&cgrp->pidlist_mutex);
 304
 305	l = cgroup_pidlist_find(cgrp, type);
 306	if (l)
 307		return l;
 308
 309	/* entry not found; create a new one */
 310	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
 311	if (!l)
 312		return l;
 313
 314	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
 315	l->key.type = type;
 316	/* don't need task_nsproxy() if we're looking at ourself */
 317	l->key.ns = get_pid_ns(task_active_pid_ns(current));
 318	l->owner = cgrp;
 319	list_add(&l->links, &cgrp->pidlists);
 320	return l;
 321}
 322
 323/*
 324 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 325 */
 326static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
 327			      struct cgroup_pidlist **lp)
 328{
 329	pid_t *array;
 330	int length;
 331	int pid, n = 0; /* used for populating the array */
 332	struct css_task_iter it;
 333	struct task_struct *tsk;
 334	struct cgroup_pidlist *l;
 335
 336	lockdep_assert_held(&cgrp->pidlist_mutex);
 337
 338	/*
 339	 * If cgroup gets more users after we read count, we won't have
 340	 * enough space - tough.  This race is indistinguishable to the
 341	 * caller from the case that the additional cgroup users didn't
 342	 * show up until sometime later on.
 343	 */
 344	length = cgroup_task_count(cgrp);
 345	array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
 346	if (!array)
 347		return -ENOMEM;
 348	/* now, populate the array */
 349	css_task_iter_start(&cgrp->self, 0, &it);
 350	while ((tsk = css_task_iter_next(&it))) {
 351		if (unlikely(n == length))
 352			break;
 353		/* get tgid or pid for procs or tasks file respectively */
 354		if (type == CGROUP_FILE_PROCS)
 355			pid = task_tgid_vnr(tsk);
 356		else
 357			pid = task_pid_vnr(tsk);
 358		if (pid > 0) /* make sure to only use valid results */
 359			array[n++] = pid;
 360	}
 361	css_task_iter_end(&it);
 362	length = n;
 363	/* now sort & strip out duplicates (tgids or recycled thread PIDs) */
 364	sort(array, length, sizeof(pid_t), cmppid, NULL);
 365	length = pidlist_uniq(array, length);
 
 366
 367	l = cgroup_pidlist_find_create(cgrp, type);
 368	if (!l) {
 369		kvfree(array);
 370		return -ENOMEM;
 371	}
 372
 373	/* store array, freeing old if necessary */
 374	kvfree(l->list);
 375	l->list = array;
 376	l->length = length;
 377	*lp = l;
 378	return 0;
 379}
 380
 381/*
 382 * seq_file methods for the tasks/procs files. The seq_file position is the
 383 * next pid to display; the seq_file iterator is a pointer to the pid
 384 * in the cgroup->l->list array.
 385 */
 386
 387static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
 388{
 389	/*
 390	 * Initially we receive a position value that corresponds to
 391	 * one more than the last pid shown (or 0 on the first call or
 392	 * after a seek to the start). Use a binary-search to find the
 393	 * next pid to display, if any
 394	 */
 395	struct kernfs_open_file *of = s->private;
 396	struct cgroup_file_ctx *ctx = of->priv;
 397	struct cgroup *cgrp = seq_css(s)->cgroup;
 398	struct cgroup_pidlist *l;
 399	enum cgroup_filetype type = seq_cft(s)->private;
 400	int index = 0, pid = *pos;
 401	int *iter, ret;
 402
 403	mutex_lock(&cgrp->pidlist_mutex);
 404
 405	/*
 406	 * !NULL @ctx->procs1.pidlist indicates that this isn't the first
 407	 * start() after open. If the matching pidlist is around, we can use
 408	 * that. Look for it. Note that @ctx->procs1.pidlist can't be used
 409	 * directly. It could already have been destroyed.
 410	 */
 411	if (ctx->procs1.pidlist)
 412		ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
 413
 414	/*
 415	 * Either this is the first start() after open or the matching
 416	 * pidlist has been destroyed inbetween.  Create a new one.
 417	 */
 418	if (!ctx->procs1.pidlist) {
 419		ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
 
 420		if (ret)
 421			return ERR_PTR(ret);
 422	}
 423	l = ctx->procs1.pidlist;
 424
 425	if (pid) {
 426		int end = l->length;
 427
 428		while (index < end) {
 429			int mid = (index + end) / 2;
 430			if (l->list[mid] == pid) {
 431				index = mid;
 432				break;
 433			} else if (l->list[mid] < pid)
 434				index = mid + 1;
 435			else
 436				end = mid;
 437		}
 438	}
 439	/* If we're off the end of the array, we're done */
 440	if (index >= l->length)
 441		return NULL;
 442	/* Update the abstract position to be the actual pid that we found */
 443	iter = l->list + index;
 444	*pos = *iter;
 445	return iter;
 446}
 447
 448static void cgroup_pidlist_stop(struct seq_file *s, void *v)
 449{
 450	struct kernfs_open_file *of = s->private;
 451	struct cgroup_file_ctx *ctx = of->priv;
 452	struct cgroup_pidlist *l = ctx->procs1.pidlist;
 453
 454	if (l)
 455		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
 456				 CGROUP_PIDLIST_DESTROY_DELAY);
 457	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
 458}
 459
 460static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
 461{
 462	struct kernfs_open_file *of = s->private;
 463	struct cgroup_file_ctx *ctx = of->priv;
 464	struct cgroup_pidlist *l = ctx->procs1.pidlist;
 465	pid_t *p = v;
 466	pid_t *end = l->list + l->length;
 467	/*
 468	 * Advance to the next pid in the array. If this goes off the
 469	 * end, we're done
 470	 */
 471	p++;
 472	if (p >= end) {
 473		(*pos)++;
 474		return NULL;
 475	} else {
 476		*pos = *p;
 477		return p;
 478	}
 479}
 480
 481static int cgroup_pidlist_show(struct seq_file *s, void *v)
 482{
 483	seq_printf(s, "%d\n", *(int *)v);
 484
 485	return 0;
 486}
 487
 488static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
 489				     char *buf, size_t nbytes, loff_t off,
 490				     bool threadgroup)
 491{
 492	struct cgroup *cgrp;
 493	struct task_struct *task;
 494	const struct cred *cred, *tcred;
 495	ssize_t ret;
 496	bool locked;
 497
 498	cgrp = cgroup_kn_lock_live(of->kn, false);
 499	if (!cgrp)
 500		return -ENODEV;
 501
 502	task = cgroup_procs_write_start(buf, threadgroup, &locked);
 503	ret = PTR_ERR_OR_ZERO(task);
 504	if (ret)
 505		goto out_unlock;
 506
 507	/*
 508	 * Even if we're attaching all tasks in the thread group, we only need
 509	 * to check permissions on one of them. Check permissions using the
 510	 * credentials from file open to protect against inherited fd attacks.
 511	 */
 512	cred = of->file->f_cred;
 513	tcred = get_task_cred(task);
 514	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
 515	    !uid_eq(cred->euid, tcred->uid) &&
 516	    !uid_eq(cred->euid, tcred->suid))
 517		ret = -EACCES;
 518	put_cred(tcred);
 519	if (ret)
 520		goto out_finish;
 521
 522	ret = cgroup_attach_task(cgrp, task, threadgroup);
 523
 524out_finish:
 525	cgroup_procs_write_finish(task, locked);
 526out_unlock:
 527	cgroup_kn_unlock(of->kn);
 528
 529	return ret ?: nbytes;
 530}
 531
 532static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
 533				   char *buf, size_t nbytes, loff_t off)
 534{
 535	return __cgroup1_procs_write(of, buf, nbytes, off, true);
 536}
 537
 538static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
 539				   char *buf, size_t nbytes, loff_t off)
 540{
 541	return __cgroup1_procs_write(of, buf, nbytes, off, false);
 542}
 543
 544static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
 545					  char *buf, size_t nbytes, loff_t off)
 546{
 547	struct cgroup *cgrp;
 548	struct cgroup_file_ctx *ctx;
 549
 550	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
 551
 552	/*
 553	 * Release agent gets called with all capabilities,
 554	 * require capabilities to set release agent.
 555	 */
 556	ctx = of->priv;
 557	if ((ctx->ns->user_ns != &init_user_ns) ||
 558	    !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN))
 559		return -EPERM;
 560
 561	cgrp = cgroup_kn_lock_live(of->kn, false);
 562	if (!cgrp)
 563		return -ENODEV;
 564	spin_lock(&release_agent_path_lock);
 565	strscpy(cgrp->root->release_agent_path, strstrip(buf),
 566		sizeof(cgrp->root->release_agent_path));
 567	spin_unlock(&release_agent_path_lock);
 568	cgroup_kn_unlock(of->kn);
 569	return nbytes;
 570}
 571
 572static int cgroup_release_agent_show(struct seq_file *seq, void *v)
 573{
 574	struct cgroup *cgrp = seq_css(seq)->cgroup;
 575
 576	spin_lock(&release_agent_path_lock);
 577	seq_puts(seq, cgrp->root->release_agent_path);
 578	spin_unlock(&release_agent_path_lock);
 579	seq_putc(seq, '\n');
 580	return 0;
 581}
 582
 583static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
 584{
 585	seq_puts(seq, "0\n");
 586	return 0;
 587}
 588
 589static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
 590					 struct cftype *cft)
 591{
 592	return notify_on_release(css->cgroup);
 593}
 594
 595static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
 596					  struct cftype *cft, u64 val)
 597{
 598	if (val)
 599		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
 600	else
 601		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
 602	return 0;
 603}
 604
 605static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
 606				      struct cftype *cft)
 607{
 608	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 609}
 610
 611static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
 612				       struct cftype *cft, u64 val)
 613{
 614	if (val)
 615		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 616	else
 617		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 618	return 0;
 619}
 620
 621/* cgroup core interface files for the legacy hierarchies */
 622struct cftype cgroup1_base_files[] = {
 623	{
 624		.name = "cgroup.procs",
 625		.seq_start = cgroup_pidlist_start,
 626		.seq_next = cgroup_pidlist_next,
 627		.seq_stop = cgroup_pidlist_stop,
 628		.seq_show = cgroup_pidlist_show,
 629		.private = CGROUP_FILE_PROCS,
 630		.write = cgroup1_procs_write,
 631	},
 632	{
 633		.name = "cgroup.clone_children",
 634		.read_u64 = cgroup_clone_children_read,
 635		.write_u64 = cgroup_clone_children_write,
 636	},
 637	{
 638		.name = "cgroup.sane_behavior",
 639		.flags = CFTYPE_ONLY_ON_ROOT,
 640		.seq_show = cgroup_sane_behavior_show,
 641	},
 642	{
 643		.name = "tasks",
 644		.seq_start = cgroup_pidlist_start,
 645		.seq_next = cgroup_pidlist_next,
 646		.seq_stop = cgroup_pidlist_stop,
 647		.seq_show = cgroup_pidlist_show,
 648		.private = CGROUP_FILE_TASKS,
 649		.write = cgroup1_tasks_write,
 650	},
 651	{
 652		.name = "notify_on_release",
 653		.read_u64 = cgroup_read_notify_on_release,
 654		.write_u64 = cgroup_write_notify_on_release,
 655	},
 656	{
 657		.name = "release_agent",
 658		.flags = CFTYPE_ONLY_ON_ROOT,
 659		.seq_show = cgroup_release_agent_show,
 660		.write = cgroup_release_agent_write,
 661		.max_write_len = PATH_MAX - 1,
 662	},
 663	{ }	/* terminate */
 664};
 665
 666/* Display information about each subsystem and each hierarchy */
 667int proc_cgroupstats_show(struct seq_file *m, void *v)
 668{
 669	struct cgroup_subsys *ss;
 670	int i;
 671
 672	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
 673	/*
 674	 * Grab the subsystems state racily. No need to add avenue to
 675	 * cgroup_mutex contention.
 
 676	 */
 
 677
 678	for_each_subsys(ss, i)
 679		seq_printf(m, "%s\t%d\t%d\t%d\n",
 680			   ss->legacy_name, ss->root->hierarchy_id,
 681			   atomic_read(&ss->root->nr_cgrps),
 682			   cgroup_ssid_enabled(i));
 683
 
 684	return 0;
 685}
 686
 687/**
 688 * cgroupstats_build - build and fill cgroupstats
 689 * @stats: cgroupstats to fill information into
 690 * @dentry: A dentry entry belonging to the cgroup for which stats have
 691 * been requested.
 692 *
 693 * Build and fill cgroupstats so that taskstats can export it to user
 694 * space.
 695 *
 696 * Return: %0 on success or a negative errno code on failure
 697 */
 698int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
 699{
 700	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
 701	struct cgroup *cgrp;
 702	struct css_task_iter it;
 703	struct task_struct *tsk;
 704
 705	/* it should be kernfs_node belonging to cgroupfs and is a directory */
 706	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
 707	    kernfs_type(kn) != KERNFS_DIR)
 708		return -EINVAL;
 709
 
 
 710	/*
 711	 * We aren't being called from kernfs and there's no guarantee on
 712	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
 713	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
 714	 */
 715	rcu_read_lock();
 716	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
 717	if (!cgrp || !cgroup_tryget(cgrp)) {
 718		rcu_read_unlock();
 
 719		return -ENOENT;
 720	}
 721	rcu_read_unlock();
 722
 723	css_task_iter_start(&cgrp->self, 0, &it);
 724	while ((tsk = css_task_iter_next(&it))) {
 725		switch (READ_ONCE(tsk->__state)) {
 726		case TASK_RUNNING:
 727			stats->nr_running++;
 728			break;
 729		case TASK_INTERRUPTIBLE:
 730			stats->nr_sleeping++;
 731			break;
 732		case TASK_UNINTERRUPTIBLE:
 733			stats->nr_uninterruptible++;
 734			break;
 735		case TASK_STOPPED:
 736			stats->nr_stopped++;
 737			break;
 738		default:
 739			if (tsk->in_iowait)
 740				stats->nr_io_wait++;
 741			break;
 742		}
 743	}
 744	css_task_iter_end(&it);
 745
 746	cgroup_put(cgrp);
 747	return 0;
 748}
 749
 750void cgroup1_check_for_release(struct cgroup *cgrp)
 751{
 752	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
 753	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
 754		schedule_work(&cgrp->release_agent_work);
 755}
 756
 757/*
 758 * Notify userspace when a cgroup is released, by running the
 759 * configured release agent with the name of the cgroup (path
 760 * relative to the root of cgroup file system) as the argument.
 761 *
 762 * Most likely, this user command will try to rmdir this cgroup.
 763 *
 764 * This races with the possibility that some other task will be
 765 * attached to this cgroup before it is removed, or that some other
 766 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 767 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 768 * unused, and this cgroup will be reprieved from its death sentence,
 769 * to continue to serve a useful existence.  Next time it's released,
 770 * we will get notified again, if it still has 'notify_on_release' set.
 771 *
 772 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 773 * means only wait until the task is successfully execve()'d.  The
 774 * separate release agent task is forked by call_usermodehelper(),
 775 * then control in this thread returns here, without waiting for the
 776 * release agent task.  We don't bother to wait because the caller of
 777 * this routine has no use for the exit status of the release agent
 778 * task, so no sense holding our caller up for that.
 779 */
 780void cgroup1_release_agent(struct work_struct *work)
 781{
 782	struct cgroup *cgrp =
 783		container_of(work, struct cgroup, release_agent_work);
 784	char *pathbuf, *agentbuf;
 785	char *argv[3], *envp[3];
 786	int ret;
 787
 788	/* snoop agent path and exit early if empty */
 789	if (!cgrp->root->release_agent_path[0])
 790		return;
 791
 792	/* prepare argument buffers */
 793	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
 794	agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
 795	if (!pathbuf || !agentbuf)
 796		goto out_free;
 797
 798	spin_lock(&release_agent_path_lock);
 799	strscpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
 800	spin_unlock(&release_agent_path_lock);
 801	if (!agentbuf[0])
 802		goto out_free;
 803
 804	ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
 805	if (ret < 0)
 806		goto out_free;
 807
 808	argv[0] = agentbuf;
 809	argv[1] = pathbuf;
 810	argv[2] = NULL;
 811
 812	/* minimal command environment */
 813	envp[0] = "HOME=/";
 814	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
 815	envp[2] = NULL;
 816
 
 817	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
 
 
 
 818out_free:
 819	kfree(agentbuf);
 820	kfree(pathbuf);
 821}
 822
 823/*
 824 * cgroup_rename - Only allow simple rename of directories in place.
 825 */
 826static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
 827			  const char *new_name_str)
 828{
 829	struct cgroup *cgrp = kn->priv;
 830	int ret;
 831
 832	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
 833	if (strchr(new_name_str, '\n'))
 834		return -EINVAL;
 835
 836	if (kernfs_type(kn) != KERNFS_DIR)
 837		return -ENOTDIR;
 838	if (kn->parent != new_parent)
 839		return -EIO;
 840
 841	/*
 842	 * We're gonna grab cgroup_mutex which nests outside kernfs
 843	 * active_ref.  kernfs_rename() doesn't require active_ref
 844	 * protection.  Break them before grabbing cgroup_mutex.
 845	 */
 846	kernfs_break_active_protection(new_parent);
 847	kernfs_break_active_protection(kn);
 848
 849	cgroup_lock();
 850
 851	ret = kernfs_rename(kn, new_parent, new_name_str);
 852	if (!ret)
 853		TRACE_CGROUP_PATH(rename, cgrp);
 854
 855	cgroup_unlock();
 856
 857	kernfs_unbreak_active_protection(kn);
 858	kernfs_unbreak_active_protection(new_parent);
 859	return ret;
 860}
 861
 862static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
 863{
 864	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
 865	struct cgroup_subsys *ss;
 866	int ssid;
 867
 868	for_each_subsys(ss, ssid)
 869		if (root->subsys_mask & (1 << ssid))
 870			seq_show_option(seq, ss->legacy_name, NULL);
 871	if (root->flags & CGRP_ROOT_NOPREFIX)
 872		seq_puts(seq, ",noprefix");
 873	if (root->flags & CGRP_ROOT_XATTR)
 874		seq_puts(seq, ",xattr");
 875	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
 876		seq_puts(seq, ",cpuset_v2_mode");
 877	if (root->flags & CGRP_ROOT_FAVOR_DYNMODS)
 878		seq_puts(seq, ",favordynmods");
 879
 880	spin_lock(&release_agent_path_lock);
 881	if (strlen(root->release_agent_path))
 882		seq_show_option(seq, "release_agent",
 883				root->release_agent_path);
 884	spin_unlock(&release_agent_path_lock);
 885
 886	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
 887		seq_puts(seq, ",clone_children");
 888	if (strlen(root->name))
 889		seq_show_option(seq, "name", root->name);
 890	return 0;
 891}
 892
 893enum cgroup1_param {
 894	Opt_all,
 895	Opt_clone_children,
 896	Opt_cpuset_v2_mode,
 897	Opt_name,
 898	Opt_none,
 899	Opt_noprefix,
 900	Opt_release_agent,
 901	Opt_xattr,
 902	Opt_favordynmods,
 903	Opt_nofavordynmods,
 904};
 905
 906const struct fs_parameter_spec cgroup1_fs_parameters[] = {
 907	fsparam_flag  ("all",		Opt_all),
 908	fsparam_flag  ("clone_children", Opt_clone_children),
 909	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
 910	fsparam_string("name",		Opt_name),
 911	fsparam_flag  ("none",		Opt_none),
 912	fsparam_flag  ("noprefix",	Opt_noprefix),
 913	fsparam_string("release_agent",	Opt_release_agent),
 914	fsparam_flag  ("xattr",		Opt_xattr),
 915	fsparam_flag  ("favordynmods",	Opt_favordynmods),
 916	fsparam_flag  ("nofavordynmods", Opt_nofavordynmods),
 917	{}
 918};
 919
 
 
 
 
 
 920int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
 921{
 922	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
 923	struct cgroup_subsys *ss;
 924	struct fs_parse_result result;
 925	int opt, i;
 926
 927	opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
 928	if (opt == -ENOPARAM) {
 929		int ret;
 930
 931		ret = vfs_parse_fs_param_source(fc, param);
 932		if (ret != -ENOPARAM)
 933			return ret;
 934		for_each_subsys(ss, i) {
 935			if (strcmp(param->key, ss->legacy_name))
 936				continue;
 937			if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
 938				return invalfc(fc, "Disabled controller '%s'",
 939					       param->key);
 940			ctx->subsys_mask |= (1 << i);
 941			return 0;
 942		}
 943		return invalfc(fc, "Unknown subsys name '%s'", param->key);
 944	}
 945	if (opt < 0)
 946		return opt;
 947
 948	switch (opt) {
 949	case Opt_none:
 950		/* Explicitly have no subsystems */
 951		ctx->none = true;
 952		break;
 953	case Opt_all:
 954		ctx->all_ss = true;
 955		break;
 956	case Opt_noprefix:
 957		ctx->flags |= CGRP_ROOT_NOPREFIX;
 958		break;
 959	case Opt_clone_children:
 960		ctx->cpuset_clone_children = true;
 961		break;
 962	case Opt_cpuset_v2_mode:
 963		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
 964		break;
 965	case Opt_xattr:
 966		ctx->flags |= CGRP_ROOT_XATTR;
 967		break;
 968	case Opt_favordynmods:
 969		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
 970		break;
 971	case Opt_nofavordynmods:
 972		ctx->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
 973		break;
 974	case Opt_release_agent:
 975		/* Specifying two release agents is forbidden */
 976		if (ctx->release_agent)
 977			return invalfc(fc, "release_agent respecified");
 978		/*
 979		 * Release agent gets called with all capabilities,
 980		 * require capabilities to set release agent.
 981		 */
 982		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN))
 983			return invalfc(fc, "Setting release_agent not allowed");
 984		ctx->release_agent = param->string;
 985		param->string = NULL;
 986		break;
 987	case Opt_name:
 988		/* blocked by boot param? */
 989		if (cgroup_no_v1_named)
 990			return -ENOENT;
 991		/* Can't specify an empty name */
 992		if (!param->size)
 993			return invalfc(fc, "Empty name");
 994		if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
 995			return invalfc(fc, "Name too long");
 996		/* Must match [\w.-]+ */
 997		for (i = 0; i < param->size; i++) {
 998			char c = param->string[i];
 999			if (isalnum(c))
1000				continue;
1001			if ((c == '.') || (c == '-') || (c == '_'))
1002				continue;
1003			return invalfc(fc, "Invalid name");
1004		}
1005		/* Specifying two names is forbidden */
1006		if (ctx->name)
1007			return invalfc(fc, "name respecified");
1008		ctx->name = param->string;
1009		param->string = NULL;
1010		break;
1011	}
1012	return 0;
1013}
1014
1015static int check_cgroupfs_options(struct fs_context *fc)
1016{
1017	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1018	u16 mask = U16_MAX;
1019	u16 enabled = 0;
1020	struct cgroup_subsys *ss;
1021	int i;
1022
1023#ifdef CONFIG_CPUSETS
1024	mask = ~((u16)1 << cpuset_cgrp_id);
1025#endif
1026	for_each_subsys(ss, i)
1027		if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1028			enabled |= 1 << i;
1029
1030	ctx->subsys_mask &= enabled;
1031
1032	/*
1033	 * In absence of 'none', 'name=' and subsystem name options,
1034	 * let's default to 'all'.
1035	 */
1036	if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1037		ctx->all_ss = true;
1038
1039	if (ctx->all_ss) {
1040		/* Mutually exclusive option 'all' + subsystem name */
1041		if (ctx->subsys_mask)
1042			return invalfc(fc, "subsys name conflicts with all");
1043		/* 'all' => select all the subsystems */
1044		ctx->subsys_mask = enabled;
1045	}
1046
1047	/*
1048	 * We either have to specify by name or by subsystems. (So all
1049	 * empty hierarchies must have a name).
1050	 */
1051	if (!ctx->subsys_mask && !ctx->name)
1052		return invalfc(fc, "Need name or subsystem set");
1053
1054	/*
1055	 * Option noprefix was introduced just for backward compatibility
1056	 * with the old cpuset, so we allow noprefix only if mounting just
1057	 * the cpuset subsystem.
1058	 */
1059	if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1060		return invalfc(fc, "noprefix used incorrectly");
1061
1062	/* Can't specify "none" and some subsystems */
1063	if (ctx->subsys_mask && ctx->none)
1064		return invalfc(fc, "none used incorrectly");
1065
1066	return 0;
1067}
1068
1069int cgroup1_reconfigure(struct fs_context *fc)
1070{
1071	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1072	struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1073	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1074	int ret = 0;
1075	u16 added_mask, removed_mask;
1076
1077	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1078
1079	/* See what subsystems are wanted */
1080	ret = check_cgroupfs_options(fc);
1081	if (ret)
1082		goto out_unlock;
1083
1084	if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1085		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1086			task_tgid_nr(current), current->comm);
1087
1088	added_mask = ctx->subsys_mask & ~root->subsys_mask;
1089	removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1090
1091	/* Don't allow flags or name to change at remount */
1092	if ((ctx->flags ^ root->flags) ||
1093	    (ctx->name && strcmp(ctx->name, root->name))) {
1094		errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1095		       ctx->flags, ctx->name ?: "", root->flags, root->name);
1096		ret = -EINVAL;
1097		goto out_unlock;
1098	}
1099
1100	/* remounting is not allowed for populated hierarchies */
1101	if (!list_empty(&root->cgrp.self.children)) {
1102		ret = -EBUSY;
1103		goto out_unlock;
1104	}
1105
1106	ret = rebind_subsystems(root, added_mask);
1107	if (ret)
1108		goto out_unlock;
1109
1110	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1111
1112	if (ctx->release_agent) {
1113		spin_lock(&release_agent_path_lock);
1114		strcpy(root->release_agent_path, ctx->release_agent);
1115		spin_unlock(&release_agent_path_lock);
1116	}
1117
1118	trace_cgroup_remount(root);
1119
1120 out_unlock:
1121	cgroup_unlock();
1122	return ret;
1123}
1124
1125struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1126	.rename			= cgroup1_rename,
1127	.show_options		= cgroup1_show_options,
1128	.mkdir			= cgroup_mkdir,
1129	.rmdir			= cgroup_rmdir,
1130	.show_path		= cgroup_show_path,
1131};
1132
1133/*
1134 * The guts of cgroup1 mount - find or create cgroup_root to use.
1135 * Called with cgroup_mutex held; returns 0 on success, -E... on
1136 * error and positive - in case when the candidate is busy dying.
1137 * On success it stashes a reference to cgroup_root into given
1138 * cgroup_fs_context; that reference is *NOT* counting towards the
1139 * cgroup_root refcount.
1140 */
1141static int cgroup1_root_to_use(struct fs_context *fc)
1142{
1143	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1144	struct cgroup_root *root;
1145	struct cgroup_subsys *ss;
1146	int i, ret;
1147
1148	/* First find the desired set of subsystems */
1149	ret = check_cgroupfs_options(fc);
1150	if (ret)
1151		return ret;
1152
1153	/*
1154	 * Destruction of cgroup root is asynchronous, so subsystems may
1155	 * still be dying after the previous unmount.  Let's drain the
1156	 * dying subsystems.  We just need to ensure that the ones
1157	 * unmounted previously finish dying and don't care about new ones
1158	 * starting.  Testing ref liveliness is good enough.
1159	 */
1160	for_each_subsys(ss, i) {
1161		if (!(ctx->subsys_mask & (1 << i)) ||
1162		    ss->root == &cgrp_dfl_root)
1163			continue;
1164
1165		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1166			return 1;	/* restart */
1167		cgroup_put(&ss->root->cgrp);
1168	}
1169
1170	for_each_root(root) {
1171		bool name_match = false;
1172
1173		if (root == &cgrp_dfl_root)
1174			continue;
1175
1176		/*
1177		 * If we asked for a name then it must match.  Also, if
1178		 * name matches but sybsys_mask doesn't, we should fail.
1179		 * Remember whether name matched.
1180		 */
1181		if (ctx->name) {
1182			if (strcmp(ctx->name, root->name))
1183				continue;
1184			name_match = true;
1185		}
1186
1187		/*
1188		 * If we asked for subsystems (or explicitly for no
1189		 * subsystems) then they must match.
1190		 */
1191		if ((ctx->subsys_mask || ctx->none) &&
1192		    (ctx->subsys_mask != root->subsys_mask)) {
1193			if (!name_match)
1194				continue;
1195			return -EBUSY;
1196		}
1197
1198		if (root->flags ^ ctx->flags)
1199			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1200
1201		ctx->root = root;
1202		return 0;
1203	}
1204
1205	/*
1206	 * No such thing, create a new one.  name= matching without subsys
1207	 * specification is allowed for already existing hierarchies but we
1208	 * can't create new one without subsys specification.
1209	 */
1210	if (!ctx->subsys_mask && !ctx->none)
1211		return invalfc(fc, "No subsys list or none specified");
1212
1213	/* Hierarchies may only be created in the initial cgroup namespace. */
1214	if (ctx->ns != &init_cgroup_ns)
1215		return -EPERM;
1216
1217	root = kzalloc(sizeof(*root), GFP_KERNEL);
1218	if (!root)
1219		return -ENOMEM;
1220
1221	ctx->root = root;
1222	init_cgroup_root(ctx);
1223
1224	ret = cgroup_setup_root(root, ctx->subsys_mask);
1225	if (!ret)
1226		cgroup_favor_dynmods(root, ctx->flags & CGRP_ROOT_FAVOR_DYNMODS);
1227	else
1228		cgroup_free_root(root);
1229
1230	return ret;
1231}
1232
1233int cgroup1_get_tree(struct fs_context *fc)
1234{
1235	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1236	int ret;
1237
1238	/* Check if the caller has permission to mount. */
1239	if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1240		return -EPERM;
1241
1242	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1243
1244	ret = cgroup1_root_to_use(fc);
1245	if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1246		ret = 1;	/* restart */
1247
1248	cgroup_unlock();
1249
1250	if (!ret)
1251		ret = cgroup_do_get_tree(fc);
1252
1253	if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1254		fc_drop_locked(fc);
 
 
1255		ret = 1;
1256	}
1257
1258	if (unlikely(ret > 0)) {
1259		msleep(10);
1260		return restart_syscall();
1261	}
1262	return ret;
1263}
1264
1265/**
1266 * task_get_cgroup1 - Acquires the associated cgroup of a task within a
1267 * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
1268 * hierarchy ID.
1269 * @tsk: The target task
1270 * @hierarchy_id: The ID of a cgroup1 hierarchy
1271 *
1272 * On success, the cgroup is returned. On failure, ERR_PTR is returned.
1273 * We limit it to cgroup1 only.
1274 */
1275struct cgroup *task_get_cgroup1(struct task_struct *tsk, int hierarchy_id)
1276{
1277	struct cgroup *cgrp = ERR_PTR(-ENOENT);
1278	struct cgroup_root *root;
1279	unsigned long flags;
1280
1281	rcu_read_lock();
1282	for_each_root(root) {
1283		/* cgroup1 only*/
1284		if (root == &cgrp_dfl_root)
1285			continue;
1286		if (root->hierarchy_id != hierarchy_id)
1287			continue;
1288		spin_lock_irqsave(&css_set_lock, flags);
1289		cgrp = task_cgroup_from_root(tsk, root);
1290		if (!cgrp || !cgroup_tryget(cgrp))
1291			cgrp = ERR_PTR(-ENOENT);
1292		spin_unlock_irqrestore(&css_set_lock, flags);
1293		break;
1294	}
1295	rcu_read_unlock();
1296	return cgrp;
1297}
1298
1299static int __init cgroup1_wq_init(void)
1300{
1301	/*
1302	 * Used to destroy pidlists and separate to serve as flush domain.
1303	 * Cap @max_active to 1 too.
1304	 */
1305	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1306						    0, 1);
1307	BUG_ON(!cgroup_pidlist_destroy_wq);
1308	return 0;
1309}
1310core_initcall(cgroup1_wq_init);
1311
1312static int __init cgroup_no_v1(char *str)
1313{
1314	struct cgroup_subsys *ss;
1315	char *token;
1316	int i;
1317
1318	while ((token = strsep(&str, ",")) != NULL) {
1319		if (!*token)
1320			continue;
1321
1322		if (!strcmp(token, "all")) {
1323			cgroup_no_v1_mask = U16_MAX;
1324			continue;
1325		}
1326
1327		if (!strcmp(token, "named")) {
1328			cgroup_no_v1_named = true;
1329			continue;
1330		}
1331
1332		for_each_subsys(ss, i) {
1333			if (strcmp(token, ss->name) &&
1334			    strcmp(token, ss->legacy_name))
1335				continue;
1336
1337			cgroup_no_v1_mask |= 1 << i;
1338		}
1339	}
1340	return 1;
1341}
1342__setup("cgroup_no_v1=", cgroup_no_v1);