Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Shared application/kernel submission and completion ring pairs, for
   4 * supporting fast/efficient IO.
   5 *
   6 * A note on the read/write ordering memory barriers that are matched between
   7 * the application and kernel side.
   8 *
   9 * After the application reads the CQ ring tail, it must use an
  10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
  11 * before writing the tail (using smp_load_acquire to read the tail will
  12 * do). It also needs a smp_mb() before updating CQ head (ordering the
  13 * entry load(s) with the head store), pairing with an implicit barrier
  14 * through a control-dependency in io_get_cqe (smp_store_release to
  15 * store head will do). Failure to do so could lead to reading invalid
  16 * CQ entries.
  17 *
  18 * Likewise, the application must use an appropriate smp_wmb() before
  19 * writing the SQ tail (ordering SQ entry stores with the tail store),
  20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
  21 * to store the tail will do). And it needs a barrier ordering the SQ
  22 * head load before writing new SQ entries (smp_load_acquire to read
  23 * head will do).
  24 *
  25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
  26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
  27 * updating the SQ tail; a full memory barrier smp_mb() is needed
  28 * between.
  29 *
  30 * Also see the examples in the liburing library:
  31 *
  32 *	git://git.kernel.dk/liburing
  33 *
  34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
  35 * from data shared between the kernel and application. This is done both
  36 * for ordering purposes, but also to ensure that once a value is loaded from
  37 * data that the application could potentially modify, it remains stable.
  38 *
  39 * Copyright (C) 2018-2019 Jens Axboe
  40 * Copyright (c) 2018-2019 Christoph Hellwig
  41 */
  42#include <linux/kernel.h>
  43#include <linux/init.h>
  44#include <linux/errno.h>
  45#include <linux/syscalls.h>
  46#include <net/compat.h>
  47#include <linux/refcount.h>
  48#include <linux/uio.h>
  49#include <linux/bits.h>
  50
  51#include <linux/sched/signal.h>
  52#include <linux/fs.h>
  53#include <linux/file.h>
  54#include <linux/fdtable.h>
  55#include <linux/mm.h>
  56#include <linux/mman.h>
  57#include <linux/percpu.h>
  58#include <linux/slab.h>
  59#include <linux/bvec.h>
  60#include <linux/net.h>
  61#include <net/sock.h>
  62#include <net/af_unix.h>
  63#include <linux/anon_inodes.h>
  64#include <linux/sched/mm.h>
  65#include <linux/uaccess.h>
  66#include <linux/nospec.h>
  67#include <linux/highmem.h>
  68#include <linux/fsnotify.h>
  69#include <linux/fadvise.h>
  70#include <linux/task_work.h>
  71#include <linux/io_uring.h>
  72#include <linux/io_uring/cmd.h>
  73#include <linux/audit.h>
  74#include <linux/security.h>
  75#include <asm/shmparam.h>
  76
  77#define CREATE_TRACE_POINTS
  78#include <trace/events/io_uring.h>
  79
  80#include <uapi/linux/io_uring.h>
  81
  82#include "io-wq.h"
  83
  84#include "io_uring.h"
  85#include "opdef.h"
  86#include "refs.h"
  87#include "tctx.h"
  88#include "register.h"
  89#include "sqpoll.h"
  90#include "fdinfo.h"
  91#include "kbuf.h"
  92#include "rsrc.h"
  93#include "cancel.h"
  94#include "net.h"
  95#include "notif.h"
  96#include "waitid.h"
  97#include "futex.h"
  98
  99#include "timeout.h"
 100#include "poll.h"
 101#include "rw.h"
 102#include "alloc_cache.h"
 103
 104#define IORING_MAX_ENTRIES	32768
 105#define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
 106
 107#define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
 108			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
 109
 110#define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
 111			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
 112
 113#define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
 114				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
 115				REQ_F_ASYNC_DATA)
 116
 117#define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
 118				 IO_REQ_CLEAN_FLAGS)
 119
 120#define IO_TCTX_REFS_CACHE_NR	(1U << 10)
 121
 122#define IO_COMPL_BATCH			32
 123#define IO_REQ_ALLOC_BATCH		8
 124
 125enum {
 126	IO_CHECK_CQ_OVERFLOW_BIT,
 127	IO_CHECK_CQ_DROPPED_BIT,
 128};
 129
 130struct io_defer_entry {
 131	struct list_head	list;
 132	struct io_kiocb		*req;
 133	u32			seq;
 134};
 135
 136/* requests with any of those set should undergo io_disarm_next() */
 137#define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
 138#define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
 139
 140/*
 141 * No waiters. It's larger than any valid value of the tw counter
 142 * so that tests against ->cq_wait_nr would fail and skip wake_up().
 143 */
 144#define IO_CQ_WAKE_INIT		(-1U)
 145/* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
 146#define IO_CQ_WAKE_FORCE	(IO_CQ_WAKE_INIT >> 1)
 147
 148static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
 149					 struct task_struct *task,
 150					 bool cancel_all);
 151
 152static void io_queue_sqe(struct io_kiocb *req);
 153
 154struct kmem_cache *req_cachep;
 155
 156static int __read_mostly sysctl_io_uring_disabled;
 157static int __read_mostly sysctl_io_uring_group = -1;
 158
 159#ifdef CONFIG_SYSCTL
 160static struct ctl_table kernel_io_uring_disabled_table[] = {
 161	{
 162		.procname	= "io_uring_disabled",
 163		.data		= &sysctl_io_uring_disabled,
 164		.maxlen		= sizeof(sysctl_io_uring_disabled),
 165		.mode		= 0644,
 166		.proc_handler	= proc_dointvec_minmax,
 167		.extra1		= SYSCTL_ZERO,
 168		.extra2		= SYSCTL_TWO,
 169	},
 170	{
 171		.procname	= "io_uring_group",
 172		.data		= &sysctl_io_uring_group,
 173		.maxlen		= sizeof(gid_t),
 174		.mode		= 0644,
 175		.proc_handler	= proc_dointvec,
 176	},
 177	{},
 178};
 179#endif
 180
 181static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
 182{
 183	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
 184	    ctx->submit_state.cqes_count)
 185		__io_submit_flush_completions(ctx);
 186}
 187
 188static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
 189{
 190	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
 191}
 192
 193static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
 194{
 195	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
 196}
 197
 198static bool io_match_linked(struct io_kiocb *head)
 199{
 200	struct io_kiocb *req;
 201
 202	io_for_each_link(req, head) {
 203		if (req->flags & REQ_F_INFLIGHT)
 204			return true;
 205	}
 206	return false;
 207}
 208
 209/*
 210 * As io_match_task() but protected against racing with linked timeouts.
 211 * User must not hold timeout_lock.
 212 */
 213bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
 214			bool cancel_all)
 215{
 216	bool matched;
 217
 218	if (task && head->task != task)
 219		return false;
 220	if (cancel_all)
 221		return true;
 222
 223	if (head->flags & REQ_F_LINK_TIMEOUT) {
 224		struct io_ring_ctx *ctx = head->ctx;
 225
 226		/* protect against races with linked timeouts */
 227		spin_lock_irq(&ctx->timeout_lock);
 228		matched = io_match_linked(head);
 229		spin_unlock_irq(&ctx->timeout_lock);
 230	} else {
 231		matched = io_match_linked(head);
 232	}
 233	return matched;
 234}
 235
 236static inline void req_fail_link_node(struct io_kiocb *req, int res)
 237{
 238	req_set_fail(req);
 239	io_req_set_res(req, res, 0);
 240}
 241
 242static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
 243{
 244	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
 245}
 246
 247static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
 248{
 249	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
 250
 251	complete(&ctx->ref_comp);
 252}
 253
 254static __cold void io_fallback_req_func(struct work_struct *work)
 255{
 256	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
 257						fallback_work.work);
 258	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
 259	struct io_kiocb *req, *tmp;
 260	struct io_tw_state ts = { .locked = true, };
 261
 262	percpu_ref_get(&ctx->refs);
 263	mutex_lock(&ctx->uring_lock);
 264	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
 265		req->io_task_work.func(req, &ts);
 266	if (WARN_ON_ONCE(!ts.locked))
 267		return;
 268	io_submit_flush_completions(ctx);
 269	mutex_unlock(&ctx->uring_lock);
 270	percpu_ref_put(&ctx->refs);
 271}
 272
 273static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
 274{
 275	unsigned hash_buckets = 1U << bits;
 276	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
 277
 278	table->hbs = kmalloc(hash_size, GFP_KERNEL);
 279	if (!table->hbs)
 280		return -ENOMEM;
 281
 282	table->hash_bits = bits;
 283	init_hash_table(table, hash_buckets);
 284	return 0;
 285}
 286
 287static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
 288{
 289	struct io_ring_ctx *ctx;
 290	int hash_bits;
 291
 292	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
 293	if (!ctx)
 294		return NULL;
 295
 296	xa_init(&ctx->io_bl_xa);
 297
 298	/*
 299	 * Use 5 bits less than the max cq entries, that should give us around
 300	 * 32 entries per hash list if totally full and uniformly spread, but
 301	 * don't keep too many buckets to not overconsume memory.
 302	 */
 303	hash_bits = ilog2(p->cq_entries) - 5;
 304	hash_bits = clamp(hash_bits, 1, 8);
 305	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
 306		goto err;
 307	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
 308		goto err;
 309	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
 310			    0, GFP_KERNEL))
 311		goto err;
 312
 313	ctx->flags = p->flags;
 314	atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
 315	init_waitqueue_head(&ctx->sqo_sq_wait);
 316	INIT_LIST_HEAD(&ctx->sqd_list);
 317	INIT_LIST_HEAD(&ctx->cq_overflow_list);
 318	INIT_LIST_HEAD(&ctx->io_buffers_cache);
 319	INIT_HLIST_HEAD(&ctx->io_buf_list);
 320	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
 321			    sizeof(struct io_rsrc_node));
 322	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
 323			    sizeof(struct async_poll));
 324	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
 325			    sizeof(struct io_async_msghdr));
 326	io_futex_cache_init(ctx);
 327	init_completion(&ctx->ref_comp);
 328	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
 329	mutex_init(&ctx->uring_lock);
 330	init_waitqueue_head(&ctx->cq_wait);
 331	init_waitqueue_head(&ctx->poll_wq);
 332	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
 333	spin_lock_init(&ctx->completion_lock);
 334	spin_lock_init(&ctx->timeout_lock);
 335	INIT_WQ_LIST(&ctx->iopoll_list);
 336	INIT_LIST_HEAD(&ctx->io_buffers_comp);
 337	INIT_LIST_HEAD(&ctx->defer_list);
 338	INIT_LIST_HEAD(&ctx->timeout_list);
 339	INIT_LIST_HEAD(&ctx->ltimeout_list);
 340	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
 341	init_llist_head(&ctx->work_llist);
 342	INIT_LIST_HEAD(&ctx->tctx_list);
 343	ctx->submit_state.free_list.next = NULL;
 344	INIT_WQ_LIST(&ctx->locked_free_list);
 345	INIT_HLIST_HEAD(&ctx->waitid_list);
 346#ifdef CONFIG_FUTEX
 347	INIT_HLIST_HEAD(&ctx->futex_list);
 348#endif
 349	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
 350	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
 351	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
 352	return ctx;
 353err:
 354	kfree(ctx->cancel_table.hbs);
 355	kfree(ctx->cancel_table_locked.hbs);
 356	kfree(ctx->io_bl);
 357	xa_destroy(&ctx->io_bl_xa);
 358	kfree(ctx);
 359	return NULL;
 360}
 361
 362static void io_account_cq_overflow(struct io_ring_ctx *ctx)
 363{
 364	struct io_rings *r = ctx->rings;
 365
 366	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
 367	ctx->cq_extra--;
 368}
 369
 370static bool req_need_defer(struct io_kiocb *req, u32 seq)
 371{
 372	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
 373		struct io_ring_ctx *ctx = req->ctx;
 374
 375		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
 376	}
 377
 378	return false;
 379}
 380
 381static void io_clean_op(struct io_kiocb *req)
 382{
 383	if (req->flags & REQ_F_BUFFER_SELECTED) {
 384		spin_lock(&req->ctx->completion_lock);
 385		io_put_kbuf_comp(req);
 386		spin_unlock(&req->ctx->completion_lock);
 387	}
 388
 389	if (req->flags & REQ_F_NEED_CLEANUP) {
 390		const struct io_cold_def *def = &io_cold_defs[req->opcode];
 391
 392		if (def->cleanup)
 393			def->cleanup(req);
 394	}
 395	if ((req->flags & REQ_F_POLLED) && req->apoll) {
 396		kfree(req->apoll->double_poll);
 397		kfree(req->apoll);
 398		req->apoll = NULL;
 399	}
 400	if (req->flags & REQ_F_INFLIGHT) {
 401		struct io_uring_task *tctx = req->task->io_uring;
 402
 403		atomic_dec(&tctx->inflight_tracked);
 404	}
 405	if (req->flags & REQ_F_CREDS)
 406		put_cred(req->creds);
 407	if (req->flags & REQ_F_ASYNC_DATA) {
 408		kfree(req->async_data);
 409		req->async_data = NULL;
 410	}
 411	req->flags &= ~IO_REQ_CLEAN_FLAGS;
 412}
 413
 414static inline void io_req_track_inflight(struct io_kiocb *req)
 415{
 416	if (!(req->flags & REQ_F_INFLIGHT)) {
 417		req->flags |= REQ_F_INFLIGHT;
 418		atomic_inc(&req->task->io_uring->inflight_tracked);
 419	}
 420}
 421
 422static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
 423{
 424	if (WARN_ON_ONCE(!req->link))
 425		return NULL;
 426
 427	req->flags &= ~REQ_F_ARM_LTIMEOUT;
 428	req->flags |= REQ_F_LINK_TIMEOUT;
 429
 430	/* linked timeouts should have two refs once prep'ed */
 431	io_req_set_refcount(req);
 432	__io_req_set_refcount(req->link, 2);
 433	return req->link;
 434}
 435
 436static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
 437{
 438	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
 439		return NULL;
 440	return __io_prep_linked_timeout(req);
 441}
 442
 443static noinline void __io_arm_ltimeout(struct io_kiocb *req)
 444{
 445	io_queue_linked_timeout(__io_prep_linked_timeout(req));
 446}
 447
 448static inline void io_arm_ltimeout(struct io_kiocb *req)
 449{
 450	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
 451		__io_arm_ltimeout(req);
 452}
 453
 454static void io_prep_async_work(struct io_kiocb *req)
 455{
 456	const struct io_issue_def *def = &io_issue_defs[req->opcode];
 457	struct io_ring_ctx *ctx = req->ctx;
 458
 459	if (!(req->flags & REQ_F_CREDS)) {
 460		req->flags |= REQ_F_CREDS;
 461		req->creds = get_current_cred();
 462	}
 463
 464	req->work.list.next = NULL;
 465	req->work.flags = 0;
 466	req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
 467	if (req->flags & REQ_F_FORCE_ASYNC)
 468		req->work.flags |= IO_WQ_WORK_CONCURRENT;
 469
 470	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
 471		req->flags |= io_file_get_flags(req->file);
 472
 473	if (req->file && (req->flags & REQ_F_ISREG)) {
 474		bool should_hash = def->hash_reg_file;
 475
 476		/* don't serialize this request if the fs doesn't need it */
 477		if (should_hash && (req->file->f_flags & O_DIRECT) &&
 478		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
 479			should_hash = false;
 480		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
 481			io_wq_hash_work(&req->work, file_inode(req->file));
 482	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
 483		if (def->unbound_nonreg_file)
 484			req->work.flags |= IO_WQ_WORK_UNBOUND;
 485	}
 486}
 487
 488static void io_prep_async_link(struct io_kiocb *req)
 489{
 490	struct io_kiocb *cur;
 491
 492	if (req->flags & REQ_F_LINK_TIMEOUT) {
 493		struct io_ring_ctx *ctx = req->ctx;
 494
 495		spin_lock_irq(&ctx->timeout_lock);
 496		io_for_each_link(cur, req)
 497			io_prep_async_work(cur);
 498		spin_unlock_irq(&ctx->timeout_lock);
 499	} else {
 500		io_for_each_link(cur, req)
 501			io_prep_async_work(cur);
 502	}
 503}
 504
 505void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
 506{
 507	struct io_kiocb *link = io_prep_linked_timeout(req);
 508	struct io_uring_task *tctx = req->task->io_uring;
 509
 510	BUG_ON(!tctx);
 511	BUG_ON(!tctx->io_wq);
 512
 513	/* init ->work of the whole link before punting */
 514	io_prep_async_link(req);
 515
 516	/*
 517	 * Not expected to happen, but if we do have a bug where this _can_
 518	 * happen, catch it here and ensure the request is marked as
 519	 * canceled. That will make io-wq go through the usual work cancel
 520	 * procedure rather than attempt to run this request (or create a new
 521	 * worker for it).
 522	 */
 523	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
 524		req->work.flags |= IO_WQ_WORK_CANCEL;
 525
 526	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
 527	io_wq_enqueue(tctx->io_wq, &req->work);
 528	if (link)
 529		io_queue_linked_timeout(link);
 530}
 531
 532static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
 533{
 534	while (!list_empty(&ctx->defer_list)) {
 535		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
 536						struct io_defer_entry, list);
 537
 538		if (req_need_defer(de->req, de->seq))
 539			break;
 540		list_del_init(&de->list);
 541		io_req_task_queue(de->req);
 542		kfree(de);
 543	}
 544}
 545
 546void io_eventfd_ops(struct rcu_head *rcu)
 547{
 548	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
 549	int ops = atomic_xchg(&ev_fd->ops, 0);
 550
 551	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
 552		eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE);
 553
 554	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
 555	 * ordering in a race but if references are 0 we know we have to free
 556	 * it regardless.
 557	 */
 558	if (atomic_dec_and_test(&ev_fd->refs)) {
 559		eventfd_ctx_put(ev_fd->cq_ev_fd);
 560		kfree(ev_fd);
 561	}
 562}
 563
 564static void io_eventfd_signal(struct io_ring_ctx *ctx)
 565{
 566	struct io_ev_fd *ev_fd = NULL;
 567
 568	rcu_read_lock();
 569	/*
 570	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
 571	 * and eventfd_signal
 572	 */
 573	ev_fd = rcu_dereference(ctx->io_ev_fd);
 574
 575	/*
 576	 * Check again if ev_fd exists incase an io_eventfd_unregister call
 577	 * completed between the NULL check of ctx->io_ev_fd at the start of
 578	 * the function and rcu_read_lock.
 579	 */
 580	if (unlikely(!ev_fd))
 581		goto out;
 582	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
 583		goto out;
 584	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
 585		goto out;
 586
 587	if (likely(eventfd_signal_allowed())) {
 588		eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE);
 589	} else {
 590		atomic_inc(&ev_fd->refs);
 591		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
 592			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
 593		else
 594			atomic_dec(&ev_fd->refs);
 595	}
 596
 597out:
 598	rcu_read_unlock();
 599}
 600
 601static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
 602{
 603	bool skip;
 604
 605	spin_lock(&ctx->completion_lock);
 606
 607	/*
 608	 * Eventfd should only get triggered when at least one event has been
 609	 * posted. Some applications rely on the eventfd notification count
 610	 * only changing IFF a new CQE has been added to the CQ ring. There's
 611	 * no depedency on 1:1 relationship between how many times this
 612	 * function is called (and hence the eventfd count) and number of CQEs
 613	 * posted to the CQ ring.
 614	 */
 615	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
 616	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
 617	spin_unlock(&ctx->completion_lock);
 618	if (skip)
 619		return;
 620
 621	io_eventfd_signal(ctx);
 622}
 623
 624void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
 625{
 626	if (ctx->poll_activated)
 627		io_poll_wq_wake(ctx);
 628	if (ctx->off_timeout_used)
 629		io_flush_timeouts(ctx);
 630	if (ctx->drain_active) {
 631		spin_lock(&ctx->completion_lock);
 632		io_queue_deferred(ctx);
 633		spin_unlock(&ctx->completion_lock);
 634	}
 635	if (ctx->has_evfd)
 636		io_eventfd_flush_signal(ctx);
 637}
 638
 639static inline void __io_cq_lock(struct io_ring_ctx *ctx)
 640{
 641	if (!ctx->lockless_cq)
 642		spin_lock(&ctx->completion_lock);
 643}
 644
 645static inline void io_cq_lock(struct io_ring_ctx *ctx)
 646	__acquires(ctx->completion_lock)
 647{
 648	spin_lock(&ctx->completion_lock);
 649}
 650
 651static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
 652{
 653	io_commit_cqring(ctx);
 654	if (!ctx->task_complete) {
 655		if (!ctx->lockless_cq)
 656			spin_unlock(&ctx->completion_lock);
 657		/* IOPOLL rings only need to wake up if it's also SQPOLL */
 658		if (!ctx->syscall_iopoll)
 659			io_cqring_wake(ctx);
 660	}
 661	io_commit_cqring_flush(ctx);
 662}
 663
 664static void io_cq_unlock_post(struct io_ring_ctx *ctx)
 665	__releases(ctx->completion_lock)
 666{
 667	io_commit_cqring(ctx);
 668	spin_unlock(&ctx->completion_lock);
 669	io_cqring_wake(ctx);
 670	io_commit_cqring_flush(ctx);
 671}
 672
 673/* Returns true if there are no backlogged entries after the flush */
 674static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
 675{
 676	struct io_overflow_cqe *ocqe;
 677	LIST_HEAD(list);
 678
 679	spin_lock(&ctx->completion_lock);
 680	list_splice_init(&ctx->cq_overflow_list, &list);
 681	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
 682	spin_unlock(&ctx->completion_lock);
 683
 684	while (!list_empty(&list)) {
 685		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
 686		list_del(&ocqe->list);
 687		kfree(ocqe);
 688	}
 689}
 690
 691static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
 692{
 693	size_t cqe_size = sizeof(struct io_uring_cqe);
 694
 695	if (__io_cqring_events(ctx) == ctx->cq_entries)
 696		return;
 697
 698	if (ctx->flags & IORING_SETUP_CQE32)
 699		cqe_size <<= 1;
 700
 701	io_cq_lock(ctx);
 702	while (!list_empty(&ctx->cq_overflow_list)) {
 703		struct io_uring_cqe *cqe;
 704		struct io_overflow_cqe *ocqe;
 705
 706		if (!io_get_cqe_overflow(ctx, &cqe, true))
 707			break;
 708		ocqe = list_first_entry(&ctx->cq_overflow_list,
 709					struct io_overflow_cqe, list);
 710		memcpy(cqe, &ocqe->cqe, cqe_size);
 711		list_del(&ocqe->list);
 712		kfree(ocqe);
 713	}
 714
 715	if (list_empty(&ctx->cq_overflow_list)) {
 716		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
 717		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
 718	}
 719	io_cq_unlock_post(ctx);
 720}
 721
 722static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
 723{
 724	/* iopoll syncs against uring_lock, not completion_lock */
 725	if (ctx->flags & IORING_SETUP_IOPOLL)
 726		mutex_lock(&ctx->uring_lock);
 727	__io_cqring_overflow_flush(ctx);
 728	if (ctx->flags & IORING_SETUP_IOPOLL)
 729		mutex_unlock(&ctx->uring_lock);
 730}
 731
 732static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
 733{
 734	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
 735		io_cqring_do_overflow_flush(ctx);
 736}
 737
 738/* can be called by any task */
 739static void io_put_task_remote(struct task_struct *task)
 740{
 741	struct io_uring_task *tctx = task->io_uring;
 742
 743	percpu_counter_sub(&tctx->inflight, 1);
 744	if (unlikely(atomic_read(&tctx->in_cancel)))
 745		wake_up(&tctx->wait);
 746	put_task_struct(task);
 747}
 748
 749/* used by a task to put its own references */
 750static void io_put_task_local(struct task_struct *task)
 751{
 752	task->io_uring->cached_refs++;
 753}
 754
 755/* must to be called somewhat shortly after putting a request */
 756static inline void io_put_task(struct task_struct *task)
 757{
 758	if (likely(task == current))
 759		io_put_task_local(task);
 760	else
 761		io_put_task_remote(task);
 762}
 763
 764void io_task_refs_refill(struct io_uring_task *tctx)
 765{
 766	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
 767
 768	percpu_counter_add(&tctx->inflight, refill);
 769	refcount_add(refill, &current->usage);
 770	tctx->cached_refs += refill;
 771}
 772
 773static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
 774{
 775	struct io_uring_task *tctx = task->io_uring;
 776	unsigned int refs = tctx->cached_refs;
 777
 778	if (refs) {
 779		tctx->cached_refs = 0;
 780		percpu_counter_sub(&tctx->inflight, refs);
 781		put_task_struct_many(task, refs);
 782	}
 783}
 784
 785static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
 786				     s32 res, u32 cflags, u64 extra1, u64 extra2)
 787{
 788	struct io_overflow_cqe *ocqe;
 789	size_t ocq_size = sizeof(struct io_overflow_cqe);
 790	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
 791
 792	lockdep_assert_held(&ctx->completion_lock);
 793
 794	if (is_cqe32)
 795		ocq_size += sizeof(struct io_uring_cqe);
 796
 797	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
 798	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
 799	if (!ocqe) {
 800		/*
 801		 * If we're in ring overflow flush mode, or in task cancel mode,
 802		 * or cannot allocate an overflow entry, then we need to drop it
 803		 * on the floor.
 804		 */
 805		io_account_cq_overflow(ctx);
 806		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
 807		return false;
 808	}
 809	if (list_empty(&ctx->cq_overflow_list)) {
 810		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
 811		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
 812
 813	}
 814	ocqe->cqe.user_data = user_data;
 815	ocqe->cqe.res = res;
 816	ocqe->cqe.flags = cflags;
 817	if (is_cqe32) {
 818		ocqe->cqe.big_cqe[0] = extra1;
 819		ocqe->cqe.big_cqe[1] = extra2;
 820	}
 821	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
 822	return true;
 823}
 824
 825void io_req_cqe_overflow(struct io_kiocb *req)
 826{
 827	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
 828				req->cqe.res, req->cqe.flags,
 829				req->big_cqe.extra1, req->big_cqe.extra2);
 830	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
 831}
 832
 833/*
 834 * writes to the cq entry need to come after reading head; the
 835 * control dependency is enough as we're using WRITE_ONCE to
 836 * fill the cq entry
 837 */
 838bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
 839{
 840	struct io_rings *rings = ctx->rings;
 841	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
 842	unsigned int free, queued, len;
 843
 844	/*
 845	 * Posting into the CQ when there are pending overflowed CQEs may break
 846	 * ordering guarantees, which will affect links, F_MORE users and more.
 847	 * Force overflow the completion.
 848	 */
 849	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
 850		return false;
 851
 852	/* userspace may cheat modifying the tail, be safe and do min */
 853	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
 854	free = ctx->cq_entries - queued;
 855	/* we need a contiguous range, limit based on the current array offset */
 856	len = min(free, ctx->cq_entries - off);
 857	if (!len)
 858		return false;
 859
 860	if (ctx->flags & IORING_SETUP_CQE32) {
 861		off <<= 1;
 862		len <<= 1;
 863	}
 864
 865	ctx->cqe_cached = &rings->cqes[off];
 866	ctx->cqe_sentinel = ctx->cqe_cached + len;
 867	return true;
 868}
 869
 870static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
 871			      u32 cflags)
 872{
 873	struct io_uring_cqe *cqe;
 874
 875	ctx->cq_extra++;
 876
 877	/*
 878	 * If we can't get a cq entry, userspace overflowed the
 879	 * submission (by quite a lot). Increment the overflow count in
 880	 * the ring.
 881	 */
 882	if (likely(io_get_cqe(ctx, &cqe))) {
 883		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
 884
 885		WRITE_ONCE(cqe->user_data, user_data);
 886		WRITE_ONCE(cqe->res, res);
 887		WRITE_ONCE(cqe->flags, cflags);
 888
 889		if (ctx->flags & IORING_SETUP_CQE32) {
 890			WRITE_ONCE(cqe->big_cqe[0], 0);
 891			WRITE_ONCE(cqe->big_cqe[1], 0);
 892		}
 893		return true;
 894	}
 895	return false;
 896}
 897
 898static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
 899	__must_hold(&ctx->uring_lock)
 900{
 901	struct io_submit_state *state = &ctx->submit_state;
 902	unsigned int i;
 903
 904	lockdep_assert_held(&ctx->uring_lock);
 905	for (i = 0; i < state->cqes_count; i++) {
 906		struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
 907
 908		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
 909			if (ctx->lockless_cq) {
 910				spin_lock(&ctx->completion_lock);
 911				io_cqring_event_overflow(ctx, cqe->user_data,
 912							cqe->res, cqe->flags, 0, 0);
 913				spin_unlock(&ctx->completion_lock);
 914			} else {
 915				io_cqring_event_overflow(ctx, cqe->user_data,
 916							cqe->res, cqe->flags, 0, 0);
 917			}
 918		}
 919	}
 920	state->cqes_count = 0;
 921}
 922
 923static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
 924			      bool allow_overflow)
 925{
 926	bool filled;
 927
 928	io_cq_lock(ctx);
 929	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
 930	if (!filled && allow_overflow)
 931		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
 932
 933	io_cq_unlock_post(ctx);
 934	return filled;
 935}
 936
 937bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
 938{
 939	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
 940}
 941
 942/*
 943 * A helper for multishot requests posting additional CQEs.
 944 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
 945 */
 946bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
 947{
 948	struct io_ring_ctx *ctx = req->ctx;
 949	u64 user_data = req->cqe.user_data;
 950	struct io_uring_cqe *cqe;
 951
 952	if (!defer)
 953		return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
 954
 955	lockdep_assert_held(&ctx->uring_lock);
 956
 957	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
 958		__io_cq_lock(ctx);
 959		__io_flush_post_cqes(ctx);
 960		/* no need to flush - flush is deferred */
 961		__io_cq_unlock_post(ctx);
 962	}
 963
 964	/* For defered completions this is not as strict as it is otherwise,
 965	 * however it's main job is to prevent unbounded posted completions,
 966	 * and in that it works just as well.
 967	 */
 968	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
 969		return false;
 970
 971	cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
 972	cqe->user_data = user_data;
 973	cqe->res = res;
 974	cqe->flags = cflags;
 975	return true;
 976}
 977
 978static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
 979{
 980	struct io_ring_ctx *ctx = req->ctx;
 981	struct io_rsrc_node *rsrc_node = NULL;
 982
 983	io_cq_lock(ctx);
 984	if (!(req->flags & REQ_F_CQE_SKIP)) {
 985		if (!io_fill_cqe_req(ctx, req))
 986			io_req_cqe_overflow(req);
 987	}
 988
 989	/*
 990	 * If we're the last reference to this request, add to our locked
 991	 * free_list cache.
 992	 */
 993	if (req_ref_put_and_test(req)) {
 994		if (req->flags & IO_REQ_LINK_FLAGS) {
 995			if (req->flags & IO_DISARM_MASK)
 996				io_disarm_next(req);
 997			if (req->link) {
 998				io_req_task_queue(req->link);
 999				req->link = NULL;
1000			}
1001		}
1002		io_put_kbuf_comp(req);
1003		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1004			io_clean_op(req);
1005		io_put_file(req);
1006
1007		rsrc_node = req->rsrc_node;
1008		/*
1009		 * Selected buffer deallocation in io_clean_op() assumes that
1010		 * we don't hold ->completion_lock. Clean them here to avoid
1011		 * deadlocks.
1012		 */
1013		io_put_task_remote(req->task);
1014		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1015		ctx->locked_free_nr++;
1016	}
1017	io_cq_unlock_post(ctx);
1018
1019	if (rsrc_node) {
1020		io_ring_submit_lock(ctx, issue_flags);
1021		io_put_rsrc_node(ctx, rsrc_node);
1022		io_ring_submit_unlock(ctx, issue_flags);
1023	}
1024}
1025
1026void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1027{
1028	if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1029		req->io_task_work.func = io_req_task_complete;
1030		io_req_task_work_add(req);
1031	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1032		   !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1033		__io_req_complete_post(req, issue_flags);
1034	} else {
1035		struct io_ring_ctx *ctx = req->ctx;
1036
1037		mutex_lock(&ctx->uring_lock);
1038		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1039		mutex_unlock(&ctx->uring_lock);
1040	}
1041}
1042
1043void io_req_defer_failed(struct io_kiocb *req, s32 res)
1044	__must_hold(&ctx->uring_lock)
1045{
1046	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1047
1048	lockdep_assert_held(&req->ctx->uring_lock);
1049
1050	req_set_fail(req);
1051	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1052	if (def->fail)
1053		def->fail(req);
1054	io_req_complete_defer(req);
1055}
1056
1057/*
1058 * Don't initialise the fields below on every allocation, but do that in
1059 * advance and keep them valid across allocations.
1060 */
1061static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1062{
1063	req->ctx = ctx;
1064	req->link = NULL;
1065	req->async_data = NULL;
1066	/* not necessary, but safer to zero */
1067	memset(&req->cqe, 0, sizeof(req->cqe));
1068	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1069}
1070
1071static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1072					struct io_submit_state *state)
1073{
1074	spin_lock(&ctx->completion_lock);
1075	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1076	ctx->locked_free_nr = 0;
1077	spin_unlock(&ctx->completion_lock);
1078}
1079
1080/*
1081 * A request might get retired back into the request caches even before opcode
1082 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1083 * Because of that, io_alloc_req() should be called only under ->uring_lock
1084 * and with extra caution to not get a request that is still worked on.
1085 */
1086__cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1087	__must_hold(&ctx->uring_lock)
1088{
1089	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1090	void *reqs[IO_REQ_ALLOC_BATCH];
1091	int ret, i;
1092
1093	/*
1094	 * If we have more than a batch's worth of requests in our IRQ side
1095	 * locked cache, grab the lock and move them over to our submission
1096	 * side cache.
1097	 */
1098	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1099		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1100		if (!io_req_cache_empty(ctx))
1101			return true;
1102	}
1103
1104	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1105
1106	/*
1107	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1108	 * retry single alloc to be on the safe side.
1109	 */
1110	if (unlikely(ret <= 0)) {
1111		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1112		if (!reqs[0])
1113			return false;
1114		ret = 1;
1115	}
1116
1117	percpu_ref_get_many(&ctx->refs, ret);
1118	for (i = 0; i < ret; i++) {
1119		struct io_kiocb *req = reqs[i];
1120
1121		io_preinit_req(req, ctx);
1122		io_req_add_to_cache(req, ctx);
1123	}
1124	return true;
1125}
1126
1127__cold void io_free_req(struct io_kiocb *req)
1128{
1129	/* refs were already put, restore them for io_req_task_complete() */
1130	req->flags &= ~REQ_F_REFCOUNT;
1131	/* we only want to free it, don't post CQEs */
1132	req->flags |= REQ_F_CQE_SKIP;
1133	req->io_task_work.func = io_req_task_complete;
1134	io_req_task_work_add(req);
1135}
1136
1137static void __io_req_find_next_prep(struct io_kiocb *req)
1138{
1139	struct io_ring_ctx *ctx = req->ctx;
1140
1141	spin_lock(&ctx->completion_lock);
1142	io_disarm_next(req);
1143	spin_unlock(&ctx->completion_lock);
1144}
1145
1146static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1147{
1148	struct io_kiocb *nxt;
1149
1150	/*
1151	 * If LINK is set, we have dependent requests in this chain. If we
1152	 * didn't fail this request, queue the first one up, moving any other
1153	 * dependencies to the next request. In case of failure, fail the rest
1154	 * of the chain.
1155	 */
1156	if (unlikely(req->flags & IO_DISARM_MASK))
1157		__io_req_find_next_prep(req);
1158	nxt = req->link;
1159	req->link = NULL;
1160	return nxt;
1161}
1162
1163static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1164{
1165	if (!ctx)
1166		return;
1167	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1168		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1169	if (ts->locked) {
1170		io_submit_flush_completions(ctx);
1171		mutex_unlock(&ctx->uring_lock);
1172		ts->locked = false;
1173	}
1174	percpu_ref_put(&ctx->refs);
1175}
1176
1177static unsigned int handle_tw_list(struct llist_node *node,
1178				   struct io_ring_ctx **ctx,
1179				   struct io_tw_state *ts,
1180				   struct llist_node *last)
1181{
1182	unsigned int count = 0;
1183
1184	while (node && node != last) {
1185		struct llist_node *next = node->next;
1186		struct io_kiocb *req = container_of(node, struct io_kiocb,
1187						    io_task_work.node);
1188
1189		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1190
1191		if (req->ctx != *ctx) {
1192			ctx_flush_and_put(*ctx, ts);
1193			*ctx = req->ctx;
1194			/* if not contended, grab and improve batching */
1195			ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1196			percpu_ref_get(&(*ctx)->refs);
1197		}
1198		INDIRECT_CALL_2(req->io_task_work.func,
1199				io_poll_task_func, io_req_rw_complete,
1200				req, ts);
1201		node = next;
1202		count++;
1203		if (unlikely(need_resched())) {
1204			ctx_flush_and_put(*ctx, ts);
1205			*ctx = NULL;
1206			cond_resched();
1207		}
1208	}
1209
1210	return count;
1211}
1212
1213/**
1214 * io_llist_xchg - swap all entries in a lock-less list
1215 * @head:	the head of lock-less list to delete all entries
1216 * @new:	new entry as the head of the list
1217 *
1218 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1219 * The order of entries returned is from the newest to the oldest added one.
1220 */
1221static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1222					       struct llist_node *new)
1223{
1224	return xchg(&head->first, new);
1225}
1226
1227/**
1228 * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1229 * @head:	the head of lock-less list to delete all entries
1230 * @old:	expected old value of the first entry of the list
1231 * @new:	new entry as the head of the list
1232 *
1233 * perform a cmpxchg on the first entry of the list.
1234 */
1235
1236static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1237						  struct llist_node *old,
1238						  struct llist_node *new)
1239{
1240	return cmpxchg(&head->first, old, new);
1241}
1242
1243static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1244{
1245	struct llist_node *node = llist_del_all(&tctx->task_list);
1246	struct io_ring_ctx *last_ctx = NULL;
1247	struct io_kiocb *req;
1248
1249	while (node) {
1250		req = container_of(node, struct io_kiocb, io_task_work.node);
1251		node = node->next;
1252		if (sync && last_ctx != req->ctx) {
1253			if (last_ctx) {
1254				flush_delayed_work(&last_ctx->fallback_work);
1255				percpu_ref_put(&last_ctx->refs);
1256			}
1257			last_ctx = req->ctx;
1258			percpu_ref_get(&last_ctx->refs);
1259		}
1260		if (llist_add(&req->io_task_work.node,
1261			      &req->ctx->fallback_llist))
1262			schedule_delayed_work(&req->ctx->fallback_work, 1);
1263	}
1264
1265	if (last_ctx) {
1266		flush_delayed_work(&last_ctx->fallback_work);
1267		percpu_ref_put(&last_ctx->refs);
1268	}
1269}
1270
1271void tctx_task_work(struct callback_head *cb)
1272{
1273	struct io_tw_state ts = {};
1274	struct io_ring_ctx *ctx = NULL;
1275	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1276						  task_work);
1277	struct llist_node fake = {};
1278	struct llist_node *node;
1279	unsigned int loops = 0;
1280	unsigned int count = 0;
1281
1282	if (unlikely(current->flags & PF_EXITING)) {
1283		io_fallback_tw(tctx, true);
1284		return;
1285	}
1286
1287	do {
1288		loops++;
1289		node = io_llist_xchg(&tctx->task_list, &fake);
1290		count += handle_tw_list(node, &ctx, &ts, &fake);
1291
1292		/* skip expensive cmpxchg if there are items in the list */
1293		if (READ_ONCE(tctx->task_list.first) != &fake)
1294			continue;
1295		if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1296			io_submit_flush_completions(ctx);
1297			if (READ_ONCE(tctx->task_list.first) != &fake)
1298				continue;
1299		}
1300		node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1301	} while (node != &fake);
1302
1303	ctx_flush_and_put(ctx, &ts);
1304
1305	/* relaxed read is enough as only the task itself sets ->in_cancel */
1306	if (unlikely(atomic_read(&tctx->in_cancel)))
1307		io_uring_drop_tctx_refs(current);
1308
1309	trace_io_uring_task_work_run(tctx, count, loops);
1310}
1311
1312static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1313{
1314	struct io_ring_ctx *ctx = req->ctx;
1315	unsigned nr_wait, nr_tw, nr_tw_prev;
1316	struct llist_node *head;
1317
1318	/* See comment above IO_CQ_WAKE_INIT */
1319	BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1320
1321	/*
1322	 * We don't know how many reuqests is there in the link and whether
1323	 * they can even be queued lazily, fall back to non-lazy.
1324	 */
1325	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1326		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1327
1328	head = READ_ONCE(ctx->work_llist.first);
1329	do {
1330		nr_tw_prev = 0;
1331		if (head) {
1332			struct io_kiocb *first_req = container_of(head,
1333							struct io_kiocb,
1334							io_task_work.node);
1335			/*
1336			 * Might be executed at any moment, rely on
1337			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1338			 */
1339			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1340		}
1341
1342		/*
1343		 * Theoretically, it can overflow, but that's fine as one of
1344		 * previous adds should've tried to wake the task.
1345		 */
1346		nr_tw = nr_tw_prev + 1;
1347		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1348			nr_tw = IO_CQ_WAKE_FORCE;
1349
1350		req->nr_tw = nr_tw;
1351		req->io_task_work.node.next = head;
1352	} while (!try_cmpxchg(&ctx->work_llist.first, &head,
1353			      &req->io_task_work.node));
1354
1355	/*
1356	 * cmpxchg implies a full barrier, which pairs with the barrier
1357	 * in set_current_state() on the io_cqring_wait() side. It's used
1358	 * to ensure that either we see updated ->cq_wait_nr, or waiters
1359	 * going to sleep will observe the work added to the list, which
1360	 * is similar to the wait/wawke task state sync.
1361	 */
1362
1363	if (!head) {
1364		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1365			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1366		if (ctx->has_evfd)
1367			io_eventfd_signal(ctx);
1368	}
1369
1370	nr_wait = atomic_read(&ctx->cq_wait_nr);
1371	/* not enough or no one is waiting */
1372	if (nr_tw < nr_wait)
1373		return;
1374	/* the previous add has already woken it up */
1375	if (nr_tw_prev >= nr_wait)
1376		return;
1377	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1378}
1379
1380static void io_req_normal_work_add(struct io_kiocb *req)
1381{
1382	struct io_uring_task *tctx = req->task->io_uring;
1383	struct io_ring_ctx *ctx = req->ctx;
1384
1385	/* task_work already pending, we're done */
1386	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1387		return;
1388
1389	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1390		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1391
1392	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1393		return;
1394
1395	io_fallback_tw(tctx, false);
1396}
1397
1398void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1399{
1400	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1401		rcu_read_lock();
1402		io_req_local_work_add(req, flags);
1403		rcu_read_unlock();
1404	} else {
1405		io_req_normal_work_add(req);
1406	}
1407}
1408
1409static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1410{
1411	struct llist_node *node;
1412
1413	node = llist_del_all(&ctx->work_llist);
1414	while (node) {
1415		struct io_kiocb *req = container_of(node, struct io_kiocb,
1416						    io_task_work.node);
1417
1418		node = node->next;
1419		io_req_normal_work_add(req);
1420	}
1421}
1422
1423static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1424{
1425	struct llist_node *node;
1426	unsigned int loops = 0;
1427	int ret = 0;
1428
1429	if (WARN_ON_ONCE(ctx->submitter_task != current))
1430		return -EEXIST;
1431	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1432		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1433again:
1434	/*
1435	 * llists are in reverse order, flip it back the right way before
1436	 * running the pending items.
1437	 */
1438	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1439	while (node) {
1440		struct llist_node *next = node->next;
1441		struct io_kiocb *req = container_of(node, struct io_kiocb,
1442						    io_task_work.node);
1443		prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1444		INDIRECT_CALL_2(req->io_task_work.func,
1445				io_poll_task_func, io_req_rw_complete,
1446				req, ts);
1447		ret++;
1448		node = next;
1449	}
1450	loops++;
1451
1452	if (!llist_empty(&ctx->work_llist))
1453		goto again;
1454	if (ts->locked) {
1455		io_submit_flush_completions(ctx);
1456		if (!llist_empty(&ctx->work_llist))
1457			goto again;
1458	}
1459	trace_io_uring_local_work_run(ctx, ret, loops);
1460	return ret;
1461}
1462
1463static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1464{
1465	struct io_tw_state ts = { .locked = true, };
1466	int ret;
1467
1468	if (llist_empty(&ctx->work_llist))
1469		return 0;
1470
1471	ret = __io_run_local_work(ctx, &ts);
1472	/* shouldn't happen! */
1473	if (WARN_ON_ONCE(!ts.locked))
1474		mutex_lock(&ctx->uring_lock);
1475	return ret;
1476}
1477
1478static int io_run_local_work(struct io_ring_ctx *ctx)
1479{
1480	struct io_tw_state ts = {};
1481	int ret;
1482
1483	ts.locked = mutex_trylock(&ctx->uring_lock);
1484	ret = __io_run_local_work(ctx, &ts);
1485	if (ts.locked)
1486		mutex_unlock(&ctx->uring_lock);
1487
1488	return ret;
1489}
1490
1491static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1492{
1493	io_tw_lock(req->ctx, ts);
1494	io_req_defer_failed(req, req->cqe.res);
1495}
1496
1497void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1498{
1499	io_tw_lock(req->ctx, ts);
1500	/* req->task == current here, checking PF_EXITING is safe */
1501	if (unlikely(req->task->flags & PF_EXITING))
1502		io_req_defer_failed(req, -EFAULT);
1503	else if (req->flags & REQ_F_FORCE_ASYNC)
1504		io_queue_iowq(req, ts);
1505	else
1506		io_queue_sqe(req);
1507}
1508
1509void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1510{
1511	io_req_set_res(req, ret, 0);
1512	req->io_task_work.func = io_req_task_cancel;
1513	io_req_task_work_add(req);
1514}
1515
1516void io_req_task_queue(struct io_kiocb *req)
1517{
1518	req->io_task_work.func = io_req_task_submit;
1519	io_req_task_work_add(req);
1520}
1521
1522void io_queue_next(struct io_kiocb *req)
1523{
1524	struct io_kiocb *nxt = io_req_find_next(req);
1525
1526	if (nxt)
1527		io_req_task_queue(nxt);
1528}
1529
1530static void io_free_batch_list(struct io_ring_ctx *ctx,
1531			       struct io_wq_work_node *node)
1532	__must_hold(&ctx->uring_lock)
1533{
1534	do {
1535		struct io_kiocb *req = container_of(node, struct io_kiocb,
1536						    comp_list);
1537
1538		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1539			if (req->flags & REQ_F_REFCOUNT) {
1540				node = req->comp_list.next;
1541				if (!req_ref_put_and_test(req))
1542					continue;
1543			}
1544			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1545				struct async_poll *apoll = req->apoll;
1546
1547				if (apoll->double_poll)
1548					kfree(apoll->double_poll);
1549				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1550					kfree(apoll);
1551				req->flags &= ~REQ_F_POLLED;
1552			}
1553			if (req->flags & IO_REQ_LINK_FLAGS)
1554				io_queue_next(req);
1555			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1556				io_clean_op(req);
1557		}
1558		io_put_file(req);
1559
1560		io_req_put_rsrc_locked(req, ctx);
1561
1562		io_put_task(req->task);
1563		node = req->comp_list.next;
1564		io_req_add_to_cache(req, ctx);
1565	} while (node);
1566}
1567
1568void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1569	__must_hold(&ctx->uring_lock)
1570{
1571	struct io_submit_state *state = &ctx->submit_state;
1572	struct io_wq_work_node *node;
1573
1574	__io_cq_lock(ctx);
1575	/* must come first to preserve CQE ordering in failure cases */
1576	if (state->cqes_count)
1577		__io_flush_post_cqes(ctx);
1578	__wq_list_for_each(node, &state->compl_reqs) {
1579		struct io_kiocb *req = container_of(node, struct io_kiocb,
1580					    comp_list);
1581
1582		if (!(req->flags & REQ_F_CQE_SKIP) &&
1583		    unlikely(!io_fill_cqe_req(ctx, req))) {
1584			if (ctx->lockless_cq) {
1585				spin_lock(&ctx->completion_lock);
1586				io_req_cqe_overflow(req);
1587				spin_unlock(&ctx->completion_lock);
1588			} else {
1589				io_req_cqe_overflow(req);
1590			}
1591		}
1592	}
1593	__io_cq_unlock_post(ctx);
1594
1595	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1596		io_free_batch_list(ctx, state->compl_reqs.first);
1597		INIT_WQ_LIST(&state->compl_reqs);
1598	}
1599}
1600
1601static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1602{
1603	/* See comment at the top of this file */
1604	smp_rmb();
1605	return __io_cqring_events(ctx);
1606}
1607
1608/*
1609 * We can't just wait for polled events to come to us, we have to actively
1610 * find and complete them.
1611 */
1612static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1613{
1614	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1615		return;
1616
1617	mutex_lock(&ctx->uring_lock);
1618	while (!wq_list_empty(&ctx->iopoll_list)) {
1619		/* let it sleep and repeat later if can't complete a request */
1620		if (io_do_iopoll(ctx, true) == 0)
1621			break;
1622		/*
1623		 * Ensure we allow local-to-the-cpu processing to take place,
1624		 * in this case we need to ensure that we reap all events.
1625		 * Also let task_work, etc. to progress by releasing the mutex
1626		 */
1627		if (need_resched()) {
1628			mutex_unlock(&ctx->uring_lock);
1629			cond_resched();
1630			mutex_lock(&ctx->uring_lock);
1631		}
1632	}
1633	mutex_unlock(&ctx->uring_lock);
1634}
1635
1636static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1637{
1638	unsigned int nr_events = 0;
1639	unsigned long check_cq;
1640
1641	if (!io_allowed_run_tw(ctx))
1642		return -EEXIST;
1643
1644	check_cq = READ_ONCE(ctx->check_cq);
1645	if (unlikely(check_cq)) {
1646		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1647			__io_cqring_overflow_flush(ctx);
1648		/*
1649		 * Similarly do not spin if we have not informed the user of any
1650		 * dropped CQE.
1651		 */
1652		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1653			return -EBADR;
1654	}
1655	/*
1656	 * Don't enter poll loop if we already have events pending.
1657	 * If we do, we can potentially be spinning for commands that
1658	 * already triggered a CQE (eg in error).
1659	 */
1660	if (io_cqring_events(ctx))
1661		return 0;
1662
1663	do {
1664		int ret = 0;
1665
1666		/*
1667		 * If a submit got punted to a workqueue, we can have the
1668		 * application entering polling for a command before it gets
1669		 * issued. That app will hold the uring_lock for the duration
1670		 * of the poll right here, so we need to take a breather every
1671		 * now and then to ensure that the issue has a chance to add
1672		 * the poll to the issued list. Otherwise we can spin here
1673		 * forever, while the workqueue is stuck trying to acquire the
1674		 * very same mutex.
1675		 */
1676		if (wq_list_empty(&ctx->iopoll_list) ||
1677		    io_task_work_pending(ctx)) {
1678			u32 tail = ctx->cached_cq_tail;
1679
1680			(void) io_run_local_work_locked(ctx);
1681
1682			if (task_work_pending(current) ||
1683			    wq_list_empty(&ctx->iopoll_list)) {
1684				mutex_unlock(&ctx->uring_lock);
1685				io_run_task_work();
1686				mutex_lock(&ctx->uring_lock);
1687			}
1688			/* some requests don't go through iopoll_list */
1689			if (tail != ctx->cached_cq_tail ||
1690			    wq_list_empty(&ctx->iopoll_list))
1691				break;
1692		}
1693		ret = io_do_iopoll(ctx, !min);
1694		if (unlikely(ret < 0))
1695			return ret;
1696
1697		if (task_sigpending(current))
1698			return -EINTR;
1699		if (need_resched())
1700			break;
1701
1702		nr_events += ret;
1703	} while (nr_events < min);
1704
1705	return 0;
1706}
1707
1708void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1709{
1710	if (ts->locked)
1711		io_req_complete_defer(req);
1712	else
1713		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1714}
1715
1716/*
1717 * After the iocb has been issued, it's safe to be found on the poll list.
1718 * Adding the kiocb to the list AFTER submission ensures that we don't
1719 * find it from a io_do_iopoll() thread before the issuer is done
1720 * accessing the kiocb cookie.
1721 */
1722static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1723{
1724	struct io_ring_ctx *ctx = req->ctx;
1725	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1726
1727	/* workqueue context doesn't hold uring_lock, grab it now */
1728	if (unlikely(needs_lock))
1729		mutex_lock(&ctx->uring_lock);
1730
1731	/*
1732	 * Track whether we have multiple files in our lists. This will impact
1733	 * how we do polling eventually, not spinning if we're on potentially
1734	 * different devices.
1735	 */
1736	if (wq_list_empty(&ctx->iopoll_list)) {
1737		ctx->poll_multi_queue = false;
1738	} else if (!ctx->poll_multi_queue) {
1739		struct io_kiocb *list_req;
1740
1741		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1742					comp_list);
1743		if (list_req->file != req->file)
1744			ctx->poll_multi_queue = true;
1745	}
1746
1747	/*
1748	 * For fast devices, IO may have already completed. If it has, add
1749	 * it to the front so we find it first.
1750	 */
1751	if (READ_ONCE(req->iopoll_completed))
1752		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1753	else
1754		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1755
1756	if (unlikely(needs_lock)) {
1757		/*
1758		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1759		 * in sq thread task context or in io worker task context. If
1760		 * current task context is sq thread, we don't need to check
1761		 * whether should wake up sq thread.
1762		 */
1763		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1764		    wq_has_sleeper(&ctx->sq_data->wait))
1765			wake_up(&ctx->sq_data->wait);
1766
1767		mutex_unlock(&ctx->uring_lock);
1768	}
1769}
1770
1771unsigned int io_file_get_flags(struct file *file)
1772{
1773	unsigned int res = 0;
1774
1775	if (S_ISREG(file_inode(file)->i_mode))
1776		res |= REQ_F_ISREG;
1777	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1778		res |= REQ_F_SUPPORT_NOWAIT;
1779	return res;
1780}
1781
1782bool io_alloc_async_data(struct io_kiocb *req)
1783{
1784	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1785	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1786	if (req->async_data) {
1787		req->flags |= REQ_F_ASYNC_DATA;
1788		return false;
1789	}
1790	return true;
1791}
1792
1793int io_req_prep_async(struct io_kiocb *req)
1794{
1795	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1796	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1797
1798	/* assign early for deferred execution for non-fixed file */
1799	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1800		req->file = io_file_get_normal(req, req->cqe.fd);
1801	if (!cdef->prep_async)
1802		return 0;
1803	if (WARN_ON_ONCE(req_has_async_data(req)))
1804		return -EFAULT;
1805	if (!def->manual_alloc) {
1806		if (io_alloc_async_data(req))
1807			return -EAGAIN;
1808	}
1809	return cdef->prep_async(req);
1810}
1811
1812static u32 io_get_sequence(struct io_kiocb *req)
1813{
1814	u32 seq = req->ctx->cached_sq_head;
1815	struct io_kiocb *cur;
1816
1817	/* need original cached_sq_head, but it was increased for each req */
1818	io_for_each_link(cur, req)
1819		seq--;
1820	return seq;
1821}
1822
1823static __cold void io_drain_req(struct io_kiocb *req)
1824	__must_hold(&ctx->uring_lock)
1825{
1826	struct io_ring_ctx *ctx = req->ctx;
1827	struct io_defer_entry *de;
1828	int ret;
1829	u32 seq = io_get_sequence(req);
1830
1831	/* Still need defer if there is pending req in defer list. */
1832	spin_lock(&ctx->completion_lock);
1833	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1834		spin_unlock(&ctx->completion_lock);
1835queue:
1836		ctx->drain_active = false;
1837		io_req_task_queue(req);
1838		return;
1839	}
1840	spin_unlock(&ctx->completion_lock);
1841
1842	io_prep_async_link(req);
1843	de = kmalloc(sizeof(*de), GFP_KERNEL);
1844	if (!de) {
1845		ret = -ENOMEM;
1846		io_req_defer_failed(req, ret);
1847		return;
1848	}
1849
1850	spin_lock(&ctx->completion_lock);
1851	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1852		spin_unlock(&ctx->completion_lock);
1853		kfree(de);
1854		goto queue;
1855	}
1856
1857	trace_io_uring_defer(req);
1858	de->req = req;
1859	de->seq = seq;
1860	list_add_tail(&de->list, &ctx->defer_list);
1861	spin_unlock(&ctx->completion_lock);
1862}
1863
1864static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1865			   unsigned int issue_flags)
1866{
1867	if (req->file || !def->needs_file)
1868		return true;
1869
1870	if (req->flags & REQ_F_FIXED_FILE)
1871		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1872	else
1873		req->file = io_file_get_normal(req, req->cqe.fd);
1874
1875	return !!req->file;
1876}
1877
1878static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1879{
1880	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1881	const struct cred *creds = NULL;
1882	int ret;
1883
1884	if (unlikely(!io_assign_file(req, def, issue_flags)))
1885		return -EBADF;
1886
1887	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1888		creds = override_creds(req->creds);
1889
1890	if (!def->audit_skip)
1891		audit_uring_entry(req->opcode);
1892
1893	ret = def->issue(req, issue_flags);
1894
1895	if (!def->audit_skip)
1896		audit_uring_exit(!ret, ret);
1897
1898	if (creds)
1899		revert_creds(creds);
1900
1901	if (ret == IOU_OK) {
1902		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1903			io_req_complete_defer(req);
1904		else
1905			io_req_complete_post(req, issue_flags);
1906
1907		return 0;
1908	}
1909
1910	if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1911		ret = 0;
1912		io_arm_ltimeout(req);
1913
1914		/* If the op doesn't have a file, we're not polling for it */
1915		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1916			io_iopoll_req_issued(req, issue_flags);
1917	}
1918	return ret;
1919}
1920
1921int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1922{
1923	io_tw_lock(req->ctx, ts);
1924	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1925				 IO_URING_F_COMPLETE_DEFER);
1926}
1927
1928struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1929{
1930	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1931	struct io_kiocb *nxt = NULL;
1932
1933	if (req_ref_put_and_test(req)) {
1934		if (req->flags & IO_REQ_LINK_FLAGS)
1935			nxt = io_req_find_next(req);
1936		io_free_req(req);
1937	}
1938	return nxt ? &nxt->work : NULL;
1939}
1940
1941void io_wq_submit_work(struct io_wq_work *work)
1942{
1943	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1944	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1945	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1946	bool needs_poll = false;
1947	int ret = 0, err = -ECANCELED;
1948
1949	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1950	if (!(req->flags & REQ_F_REFCOUNT))
1951		__io_req_set_refcount(req, 2);
1952	else
1953		req_ref_get(req);
1954
1955	io_arm_ltimeout(req);
1956
1957	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1958	if (work->flags & IO_WQ_WORK_CANCEL) {
1959fail:
1960		io_req_task_queue_fail(req, err);
1961		return;
1962	}
1963	if (!io_assign_file(req, def, issue_flags)) {
1964		err = -EBADF;
1965		work->flags |= IO_WQ_WORK_CANCEL;
1966		goto fail;
1967	}
1968
1969	if (req->flags & REQ_F_FORCE_ASYNC) {
1970		bool opcode_poll = def->pollin || def->pollout;
1971
1972		if (opcode_poll && file_can_poll(req->file)) {
1973			needs_poll = true;
1974			issue_flags |= IO_URING_F_NONBLOCK;
1975		}
1976	}
1977
1978	do {
1979		ret = io_issue_sqe(req, issue_flags);
1980		if (ret != -EAGAIN)
1981			break;
1982
1983		/*
1984		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1985		 * poll. -EAGAIN is final for that case.
1986		 */
1987		if (req->flags & REQ_F_NOWAIT)
1988			break;
1989
1990		/*
1991		 * We can get EAGAIN for iopolled IO even though we're
1992		 * forcing a sync submission from here, since we can't
1993		 * wait for request slots on the block side.
1994		 */
1995		if (!needs_poll) {
1996			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1997				break;
1998			if (io_wq_worker_stopped())
1999				break;
2000			cond_resched();
2001			continue;
2002		}
2003
2004		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
2005			return;
2006		/* aborted or ready, in either case retry blocking */
2007		needs_poll = false;
2008		issue_flags &= ~IO_URING_F_NONBLOCK;
2009	} while (1);
2010
2011	/* avoid locking problems by failing it from a clean context */
2012	if (ret < 0)
2013		io_req_task_queue_fail(req, ret);
2014}
2015
2016inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
2017				      unsigned int issue_flags)
2018{
2019	struct io_ring_ctx *ctx = req->ctx;
2020	struct io_fixed_file *slot;
2021	struct file *file = NULL;
2022
2023	io_ring_submit_lock(ctx, issue_flags);
2024
2025	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2026		goto out;
2027	fd = array_index_nospec(fd, ctx->nr_user_files);
2028	slot = io_fixed_file_slot(&ctx->file_table, fd);
2029	if (!req->rsrc_node)
2030		__io_req_set_rsrc_node(req, ctx);
2031	req->flags |= io_slot_flags(slot);
2032	file = io_slot_file(slot);
2033out:
2034	io_ring_submit_unlock(ctx, issue_flags);
2035	return file;
2036}
2037
2038struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2039{
2040	struct file *file = fget(fd);
2041
2042	trace_io_uring_file_get(req, fd);
2043
2044	/* we don't allow fixed io_uring files */
2045	if (file && io_is_uring_fops(file))
2046		io_req_track_inflight(req);
2047	return file;
2048}
2049
2050static void io_queue_async(struct io_kiocb *req, int ret)
2051	__must_hold(&req->ctx->uring_lock)
2052{
2053	struct io_kiocb *linked_timeout;
2054
2055	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2056		io_req_defer_failed(req, ret);
2057		return;
2058	}
2059
2060	linked_timeout = io_prep_linked_timeout(req);
2061
2062	switch (io_arm_poll_handler(req, 0)) {
2063	case IO_APOLL_READY:
2064		io_kbuf_recycle(req, 0);
2065		io_req_task_queue(req);
2066		break;
2067	case IO_APOLL_ABORTED:
2068		io_kbuf_recycle(req, 0);
2069		io_queue_iowq(req, NULL);
2070		break;
2071	case IO_APOLL_OK:
2072		break;
2073	}
2074
2075	if (linked_timeout)
2076		io_queue_linked_timeout(linked_timeout);
2077}
2078
2079static inline void io_queue_sqe(struct io_kiocb *req)
2080	__must_hold(&req->ctx->uring_lock)
2081{
2082	int ret;
2083
2084	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2085
2086	/*
2087	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2088	 * doesn't support non-blocking read/write attempts
2089	 */
2090	if (unlikely(ret))
2091		io_queue_async(req, ret);
2092}
2093
2094static void io_queue_sqe_fallback(struct io_kiocb *req)
2095	__must_hold(&req->ctx->uring_lock)
2096{
2097	if (unlikely(req->flags & REQ_F_FAIL)) {
2098		/*
2099		 * We don't submit, fail them all, for that replace hardlinks
2100		 * with normal links. Extra REQ_F_LINK is tolerated.
2101		 */
2102		req->flags &= ~REQ_F_HARDLINK;
2103		req->flags |= REQ_F_LINK;
2104		io_req_defer_failed(req, req->cqe.res);
2105	} else {
2106		int ret = io_req_prep_async(req);
2107
2108		if (unlikely(ret)) {
2109			io_req_defer_failed(req, ret);
2110			return;
2111		}
2112
2113		if (unlikely(req->ctx->drain_active))
2114			io_drain_req(req);
2115		else
2116			io_queue_iowq(req, NULL);
2117	}
2118}
2119
2120/*
2121 * Check SQE restrictions (opcode and flags).
2122 *
2123 * Returns 'true' if SQE is allowed, 'false' otherwise.
2124 */
2125static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2126					struct io_kiocb *req,
2127					unsigned int sqe_flags)
2128{
2129	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2130		return false;
2131
2132	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2133	    ctx->restrictions.sqe_flags_required)
2134		return false;
2135
2136	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2137			  ctx->restrictions.sqe_flags_required))
2138		return false;
2139
2140	return true;
2141}
2142
2143static void io_init_req_drain(struct io_kiocb *req)
2144{
2145	struct io_ring_ctx *ctx = req->ctx;
2146	struct io_kiocb *head = ctx->submit_state.link.head;
2147
2148	ctx->drain_active = true;
2149	if (head) {
2150		/*
2151		 * If we need to drain a request in the middle of a link, drain
2152		 * the head request and the next request/link after the current
2153		 * link. Considering sequential execution of links,
2154		 * REQ_F_IO_DRAIN will be maintained for every request of our
2155		 * link.
2156		 */
2157		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2158		ctx->drain_next = true;
2159	}
2160}
2161
2162static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2163		       const struct io_uring_sqe *sqe)
2164	__must_hold(&ctx->uring_lock)
2165{
2166	const struct io_issue_def *def;
2167	unsigned int sqe_flags;
2168	int personality;
2169	u8 opcode;
2170
2171	/* req is partially pre-initialised, see io_preinit_req() */
2172	req->opcode = opcode = READ_ONCE(sqe->opcode);
2173	/* same numerical values with corresponding REQ_F_*, safe to copy */
2174	req->flags = sqe_flags = READ_ONCE(sqe->flags);
2175	req->cqe.user_data = READ_ONCE(sqe->user_data);
2176	req->file = NULL;
2177	req->rsrc_node = NULL;
2178	req->task = current;
2179
2180	if (unlikely(opcode >= IORING_OP_LAST)) {
2181		req->opcode = 0;
2182		return -EINVAL;
2183	}
2184	def = &io_issue_defs[opcode];
2185	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2186		/* enforce forwards compatibility on users */
2187		if (sqe_flags & ~SQE_VALID_FLAGS)
2188			return -EINVAL;
2189		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2190			if (!def->buffer_select)
2191				return -EOPNOTSUPP;
2192			req->buf_index = READ_ONCE(sqe->buf_group);
2193		}
2194		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2195			ctx->drain_disabled = true;
2196		if (sqe_flags & IOSQE_IO_DRAIN) {
2197			if (ctx->drain_disabled)
2198				return -EOPNOTSUPP;
2199			io_init_req_drain(req);
2200		}
2201	}
2202	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2203		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2204			return -EACCES;
2205		/* knock it to the slow queue path, will be drained there */
2206		if (ctx->drain_active)
2207			req->flags |= REQ_F_FORCE_ASYNC;
2208		/* if there is no link, we're at "next" request and need to drain */
2209		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2210			ctx->drain_next = false;
2211			ctx->drain_active = true;
2212			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2213		}
2214	}
2215
2216	if (!def->ioprio && sqe->ioprio)
2217		return -EINVAL;
2218	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2219		return -EINVAL;
2220
2221	if (def->needs_file) {
2222		struct io_submit_state *state = &ctx->submit_state;
2223
2224		req->cqe.fd = READ_ONCE(sqe->fd);
2225
2226		/*
2227		 * Plug now if we have more than 2 IO left after this, and the
2228		 * target is potentially a read/write to block based storage.
2229		 */
2230		if (state->need_plug && def->plug) {
2231			state->plug_started = true;
2232			state->need_plug = false;
2233			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2234		}
2235	}
2236
2237	personality = READ_ONCE(sqe->personality);
2238	if (personality) {
2239		int ret;
2240
2241		req->creds = xa_load(&ctx->personalities, personality);
2242		if (!req->creds)
2243			return -EINVAL;
2244		get_cred(req->creds);
2245		ret = security_uring_override_creds(req->creds);
2246		if (ret) {
2247			put_cred(req->creds);
2248			return ret;
2249		}
2250		req->flags |= REQ_F_CREDS;
2251	}
2252
2253	return def->prep(req, sqe);
2254}
2255
2256static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2257				      struct io_kiocb *req, int ret)
2258{
2259	struct io_ring_ctx *ctx = req->ctx;
2260	struct io_submit_link *link = &ctx->submit_state.link;
2261	struct io_kiocb *head = link->head;
2262
2263	trace_io_uring_req_failed(sqe, req, ret);
2264
2265	/*
2266	 * Avoid breaking links in the middle as it renders links with SQPOLL
2267	 * unusable. Instead of failing eagerly, continue assembling the link if
2268	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2269	 * should find the flag and handle the rest.
2270	 */
2271	req_fail_link_node(req, ret);
2272	if (head && !(head->flags & REQ_F_FAIL))
2273		req_fail_link_node(head, -ECANCELED);
2274
2275	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2276		if (head) {
2277			link->last->link = req;
2278			link->head = NULL;
2279			req = head;
2280		}
2281		io_queue_sqe_fallback(req);
2282		return ret;
2283	}
2284
2285	if (head)
2286		link->last->link = req;
2287	else
2288		link->head = req;
2289	link->last = req;
2290	return 0;
2291}
2292
2293static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2294			 const struct io_uring_sqe *sqe)
2295	__must_hold(&ctx->uring_lock)
2296{
2297	struct io_submit_link *link = &ctx->submit_state.link;
2298	int ret;
2299
2300	ret = io_init_req(ctx, req, sqe);
2301	if (unlikely(ret))
2302		return io_submit_fail_init(sqe, req, ret);
2303
2304	trace_io_uring_submit_req(req);
2305
2306	/*
2307	 * If we already have a head request, queue this one for async
2308	 * submittal once the head completes. If we don't have a head but
2309	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2310	 * submitted sync once the chain is complete. If none of those
2311	 * conditions are true (normal request), then just queue it.
2312	 */
2313	if (unlikely(link->head)) {
2314		ret = io_req_prep_async(req);
2315		if (unlikely(ret))
2316			return io_submit_fail_init(sqe, req, ret);
2317
2318		trace_io_uring_link(req, link->head);
2319		link->last->link = req;
2320		link->last = req;
2321
2322		if (req->flags & IO_REQ_LINK_FLAGS)
2323			return 0;
2324		/* last request of the link, flush it */
2325		req = link->head;
2326		link->head = NULL;
2327		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2328			goto fallback;
2329
2330	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2331					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2332		if (req->flags & IO_REQ_LINK_FLAGS) {
2333			link->head = req;
2334			link->last = req;
2335		} else {
2336fallback:
2337			io_queue_sqe_fallback(req);
2338		}
2339		return 0;
2340	}
2341
2342	io_queue_sqe(req);
2343	return 0;
2344}
2345
2346/*
2347 * Batched submission is done, ensure local IO is flushed out.
2348 */
2349static void io_submit_state_end(struct io_ring_ctx *ctx)
2350{
2351	struct io_submit_state *state = &ctx->submit_state;
2352
2353	if (unlikely(state->link.head))
2354		io_queue_sqe_fallback(state->link.head);
2355	/* flush only after queuing links as they can generate completions */
2356	io_submit_flush_completions(ctx);
2357	if (state->plug_started)
2358		blk_finish_plug(&state->plug);
2359}
2360
2361/*
2362 * Start submission side cache.
2363 */
2364static void io_submit_state_start(struct io_submit_state *state,
2365				  unsigned int max_ios)
2366{
2367	state->plug_started = false;
2368	state->need_plug = max_ios > 2;
2369	state->submit_nr = max_ios;
2370	/* set only head, no need to init link_last in advance */
2371	state->link.head = NULL;
2372}
2373
2374static void io_commit_sqring(struct io_ring_ctx *ctx)
2375{
2376	struct io_rings *rings = ctx->rings;
2377
2378	/*
2379	 * Ensure any loads from the SQEs are done at this point,
2380	 * since once we write the new head, the application could
2381	 * write new data to them.
2382	 */
2383	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2384}
2385
2386/*
2387 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2388 * that is mapped by userspace. This means that care needs to be taken to
2389 * ensure that reads are stable, as we cannot rely on userspace always
2390 * being a good citizen. If members of the sqe are validated and then later
2391 * used, it's important that those reads are done through READ_ONCE() to
2392 * prevent a re-load down the line.
2393 */
2394static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2395{
2396	unsigned mask = ctx->sq_entries - 1;
2397	unsigned head = ctx->cached_sq_head++ & mask;
2398
2399	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2400		head = READ_ONCE(ctx->sq_array[head]);
2401		if (unlikely(head >= ctx->sq_entries)) {
2402			/* drop invalid entries */
2403			spin_lock(&ctx->completion_lock);
2404			ctx->cq_extra--;
2405			spin_unlock(&ctx->completion_lock);
2406			WRITE_ONCE(ctx->rings->sq_dropped,
2407				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2408			return false;
2409		}
2410	}
2411
2412	/*
2413	 * The cached sq head (or cq tail) serves two purposes:
2414	 *
2415	 * 1) allows us to batch the cost of updating the user visible
2416	 *    head updates.
2417	 * 2) allows the kernel side to track the head on its own, even
2418	 *    though the application is the one updating it.
2419	 */
2420
2421	/* double index for 128-byte SQEs, twice as long */
2422	if (ctx->flags & IORING_SETUP_SQE128)
2423		head <<= 1;
2424	*sqe = &ctx->sq_sqes[head];
2425	return true;
2426}
2427
2428int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2429	__must_hold(&ctx->uring_lock)
2430{
2431	unsigned int entries = io_sqring_entries(ctx);
2432	unsigned int left;
2433	int ret;
2434
2435	if (unlikely(!entries))
2436		return 0;
2437	/* make sure SQ entry isn't read before tail */
2438	ret = left = min(nr, entries);
2439	io_get_task_refs(left);
2440	io_submit_state_start(&ctx->submit_state, left);
2441
2442	do {
2443		const struct io_uring_sqe *sqe;
2444		struct io_kiocb *req;
2445
2446		if (unlikely(!io_alloc_req(ctx, &req)))
2447			break;
2448		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2449			io_req_add_to_cache(req, ctx);
2450			break;
2451		}
2452
2453		/*
2454		 * Continue submitting even for sqe failure if the
2455		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2456		 */
2457		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2458		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2459			left--;
2460			break;
2461		}
2462	} while (--left);
2463
2464	if (unlikely(left)) {
2465		ret -= left;
2466		/* try again if it submitted nothing and can't allocate a req */
2467		if (!ret && io_req_cache_empty(ctx))
2468			ret = -EAGAIN;
2469		current->io_uring->cached_refs += left;
2470	}
2471
2472	io_submit_state_end(ctx);
2473	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2474	io_commit_sqring(ctx);
2475	return ret;
2476}
2477
2478struct io_wait_queue {
2479	struct wait_queue_entry wq;
2480	struct io_ring_ctx *ctx;
2481	unsigned cq_tail;
2482	unsigned nr_timeouts;
2483	ktime_t timeout;
2484};
2485
2486static inline bool io_has_work(struct io_ring_ctx *ctx)
2487{
2488	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2489	       !llist_empty(&ctx->work_llist);
2490}
2491
2492static inline bool io_should_wake(struct io_wait_queue *iowq)
2493{
2494	struct io_ring_ctx *ctx = iowq->ctx;
2495	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2496
2497	/*
2498	 * Wake up if we have enough events, or if a timeout occurred since we
2499	 * started waiting. For timeouts, we always want to return to userspace,
2500	 * regardless of event count.
2501	 */
2502	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2503}
2504
2505static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2506			    int wake_flags, void *key)
2507{
2508	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2509
2510	/*
2511	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2512	 * the task, and the next invocation will do it.
2513	 */
2514	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2515		return autoremove_wake_function(curr, mode, wake_flags, key);
2516	return -1;
2517}
2518
2519int io_run_task_work_sig(struct io_ring_ctx *ctx)
2520{
2521	if (!llist_empty(&ctx->work_llist)) {
2522		__set_current_state(TASK_RUNNING);
2523		if (io_run_local_work(ctx) > 0)
2524			return 0;
2525	}
2526	if (io_run_task_work() > 0)
2527		return 0;
2528	if (task_sigpending(current))
2529		return -EINTR;
2530	return 0;
2531}
2532
2533static bool current_pending_io(void)
2534{
2535	struct io_uring_task *tctx = current->io_uring;
2536
2537	if (!tctx)
2538		return false;
2539	return percpu_counter_read_positive(&tctx->inflight);
2540}
2541
2542/* when returns >0, the caller should retry */
2543static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2544					  struct io_wait_queue *iowq)
2545{
2546	int io_wait, ret;
2547
2548	if (unlikely(READ_ONCE(ctx->check_cq)))
2549		return 1;
2550	if (unlikely(!llist_empty(&ctx->work_llist)))
2551		return 1;
2552	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2553		return 1;
2554	if (unlikely(task_sigpending(current)))
2555		return -EINTR;
2556	if (unlikely(io_should_wake(iowq)))
2557		return 0;
2558
2559	/*
2560	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2561	 * can take into account that the task is waiting for IO - turns out
2562	 * to be important for low QD IO.
2563	 */
2564	io_wait = current->in_iowait;
2565	if (current_pending_io())
2566		current->in_iowait = 1;
2567	ret = 0;
2568	if (iowq->timeout == KTIME_MAX)
2569		schedule();
2570	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2571		ret = -ETIME;
2572	current->in_iowait = io_wait;
2573	return ret;
2574}
2575
2576/*
2577 * Wait until events become available, if we don't already have some. The
2578 * application must reap them itself, as they reside on the shared cq ring.
2579 */
2580static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2581			  const sigset_t __user *sig, size_t sigsz,
2582			  struct __kernel_timespec __user *uts)
2583{
2584	struct io_wait_queue iowq;
2585	struct io_rings *rings = ctx->rings;
2586	int ret;
2587
2588	if (!io_allowed_run_tw(ctx))
2589		return -EEXIST;
2590	if (!llist_empty(&ctx->work_llist))
2591		io_run_local_work(ctx);
2592	io_run_task_work();
2593	io_cqring_overflow_flush(ctx);
2594	/* if user messes with these they will just get an early return */
2595	if (__io_cqring_events_user(ctx) >= min_events)
2596		return 0;
2597
2598	if (sig) {
2599#ifdef CONFIG_COMPAT
2600		if (in_compat_syscall())
2601			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2602						      sigsz);
2603		else
2604#endif
2605			ret = set_user_sigmask(sig, sigsz);
2606
2607		if (ret)
2608			return ret;
2609	}
2610
2611	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2612	iowq.wq.private = current;
2613	INIT_LIST_HEAD(&iowq.wq.entry);
2614	iowq.ctx = ctx;
2615	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2616	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2617	iowq.timeout = KTIME_MAX;
2618
2619	if (uts) {
2620		struct timespec64 ts;
2621
2622		if (get_timespec64(&ts, uts))
2623			return -EFAULT;
2624		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2625	}
2626
2627	trace_io_uring_cqring_wait(ctx, min_events);
2628	do {
2629		unsigned long check_cq;
2630
2631		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2632			int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2633
2634			atomic_set(&ctx->cq_wait_nr, nr_wait);
2635			set_current_state(TASK_INTERRUPTIBLE);
2636		} else {
2637			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2638							TASK_INTERRUPTIBLE);
2639		}
2640
2641		ret = io_cqring_wait_schedule(ctx, &iowq);
2642		__set_current_state(TASK_RUNNING);
2643		atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2644
2645		/*
2646		 * Run task_work after scheduling and before io_should_wake().
2647		 * If we got woken because of task_work being processed, run it
2648		 * now rather than let the caller do another wait loop.
2649		 */
2650		io_run_task_work();
2651		if (!llist_empty(&ctx->work_llist))
2652			io_run_local_work(ctx);
2653
2654		/*
2655		 * Non-local task_work will be run on exit to userspace, but
2656		 * if we're using DEFER_TASKRUN, then we could have waited
2657		 * with a timeout for a number of requests. If the timeout
2658		 * hits, we could have some requests ready to process. Ensure
2659		 * this break is _after_ we have run task_work, to avoid
2660		 * deferring running potentially pending requests until the
2661		 * next time we wait for events.
2662		 */
2663		if (ret < 0)
2664			break;
2665
2666		check_cq = READ_ONCE(ctx->check_cq);
2667		if (unlikely(check_cq)) {
2668			/* let the caller flush overflows, retry */
2669			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2670				io_cqring_do_overflow_flush(ctx);
2671			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2672				ret = -EBADR;
2673				break;
2674			}
2675		}
2676
2677		if (io_should_wake(&iowq)) {
2678			ret = 0;
2679			break;
2680		}
2681		cond_resched();
2682	} while (1);
2683
2684	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2685		finish_wait(&ctx->cq_wait, &iowq.wq);
2686	restore_saved_sigmask_unless(ret == -EINTR);
2687
2688	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2689}
2690
2691void io_mem_free(void *ptr)
2692{
2693	if (!ptr)
2694		return;
2695
2696	folio_put(virt_to_folio(ptr));
2697}
2698
2699static void io_pages_free(struct page ***pages, int npages)
2700{
2701	struct page **page_array;
2702	int i;
2703
2704	if (!pages)
2705		return;
2706
2707	page_array = *pages;
2708	if (!page_array)
2709		return;
2710
2711	for (i = 0; i < npages; i++)
2712		unpin_user_page(page_array[i]);
2713	kvfree(page_array);
2714	*pages = NULL;
2715}
2716
2717static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2718			    unsigned long uaddr, size_t size)
2719{
2720	struct page **page_array;
2721	unsigned int nr_pages;
2722	void *page_addr;
2723	int ret, i;
2724
2725	*npages = 0;
2726
2727	if (uaddr & (PAGE_SIZE - 1) || !size)
2728		return ERR_PTR(-EINVAL);
2729
2730	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2731	if (nr_pages > USHRT_MAX)
2732		return ERR_PTR(-EINVAL);
2733	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2734	if (!page_array)
2735		return ERR_PTR(-ENOMEM);
2736
2737	ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2738					page_array);
2739	if (ret != nr_pages) {
2740err:
2741		io_pages_free(&page_array, ret > 0 ? ret : 0);
2742		return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2743	}
2744
2745	page_addr = page_address(page_array[0]);
2746	for (i = 0; i < nr_pages; i++) {
2747		ret = -EINVAL;
2748
2749		/*
2750		 * Can't support mapping user allocated ring memory on 32-bit
2751		 * archs where it could potentially reside in highmem. Just
2752		 * fail those with -EINVAL, just like we did on kernels that
2753		 * didn't support this feature.
2754		 */
2755		if (PageHighMem(page_array[i]))
2756			goto err;
2757
2758		/*
2759		 * No support for discontig pages for now, should either be a
2760		 * single normal page, or a huge page. Later on we can add
2761		 * support for remapping discontig pages, for now we will
2762		 * just fail them with EINVAL.
2763		 */
2764		if (page_address(page_array[i]) != page_addr)
2765			goto err;
2766		page_addr += PAGE_SIZE;
2767	}
2768
2769	*pages = page_array;
2770	*npages = nr_pages;
2771	return page_to_virt(page_array[0]);
2772}
2773
2774static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2775			  size_t size)
2776{
2777	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2778				size);
2779}
2780
2781static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2782			 size_t size)
2783{
2784	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2785				size);
2786}
2787
2788static void io_rings_free(struct io_ring_ctx *ctx)
2789{
2790	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2791		io_mem_free(ctx->rings);
2792		io_mem_free(ctx->sq_sqes);
2793		ctx->rings = NULL;
2794		ctx->sq_sqes = NULL;
2795	} else {
2796		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2797		ctx->n_ring_pages = 0;
2798		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2799		ctx->n_sqe_pages = 0;
2800	}
2801}
2802
2803void *io_mem_alloc(size_t size)
2804{
2805	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2806	void *ret;
2807
2808	ret = (void *) __get_free_pages(gfp, get_order(size));
2809	if (ret)
2810		return ret;
2811	return ERR_PTR(-ENOMEM);
2812}
2813
2814static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2815				unsigned int cq_entries, size_t *sq_offset)
2816{
2817	struct io_rings *rings;
2818	size_t off, sq_array_size;
2819
2820	off = struct_size(rings, cqes, cq_entries);
2821	if (off == SIZE_MAX)
2822		return SIZE_MAX;
2823	if (ctx->flags & IORING_SETUP_CQE32) {
2824		if (check_shl_overflow(off, 1, &off))
2825			return SIZE_MAX;
2826	}
2827
2828#ifdef CONFIG_SMP
2829	off = ALIGN(off, SMP_CACHE_BYTES);
2830	if (off == 0)
2831		return SIZE_MAX;
2832#endif
2833
2834	if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2835		if (sq_offset)
2836			*sq_offset = SIZE_MAX;
2837		return off;
2838	}
2839
2840	if (sq_offset)
2841		*sq_offset = off;
2842
2843	sq_array_size = array_size(sizeof(u32), sq_entries);
2844	if (sq_array_size == SIZE_MAX)
2845		return SIZE_MAX;
2846
2847	if (check_add_overflow(off, sq_array_size, &off))
2848		return SIZE_MAX;
2849
2850	return off;
2851}
2852
2853static void io_req_caches_free(struct io_ring_ctx *ctx)
2854{
2855	struct io_kiocb *req;
2856	int nr = 0;
2857
2858	mutex_lock(&ctx->uring_lock);
2859	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2860
2861	while (!io_req_cache_empty(ctx)) {
2862		req = io_extract_req(ctx);
2863		kmem_cache_free(req_cachep, req);
2864		nr++;
2865	}
2866	if (nr)
2867		percpu_ref_put_many(&ctx->refs, nr);
2868	mutex_unlock(&ctx->uring_lock);
2869}
2870
2871static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2872{
2873	kfree(container_of(entry, struct io_rsrc_node, cache));
2874}
2875
2876static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2877{
2878	io_sq_thread_finish(ctx);
2879	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2880	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2881		return;
2882
2883	mutex_lock(&ctx->uring_lock);
2884	if (ctx->buf_data)
2885		__io_sqe_buffers_unregister(ctx);
2886	if (ctx->file_data)
2887		__io_sqe_files_unregister(ctx);
2888	io_cqring_overflow_kill(ctx);
2889	io_eventfd_unregister(ctx);
2890	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2891	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2892	io_futex_cache_free(ctx);
2893	io_destroy_buffers(ctx);
2894	mutex_unlock(&ctx->uring_lock);
2895	if (ctx->sq_creds)
2896		put_cred(ctx->sq_creds);
2897	if (ctx->submitter_task)
2898		put_task_struct(ctx->submitter_task);
2899
2900	/* there are no registered resources left, nobody uses it */
2901	if (ctx->rsrc_node)
2902		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2903
2904	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2905	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2906
2907	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2908	if (ctx->mm_account) {
2909		mmdrop(ctx->mm_account);
2910		ctx->mm_account = NULL;
2911	}
2912	io_rings_free(ctx);
2913	io_kbuf_mmap_list_free(ctx);
2914
2915	percpu_ref_exit(&ctx->refs);
2916	free_uid(ctx->user);
2917	io_req_caches_free(ctx);
2918	if (ctx->hash_map)
2919		io_wq_put_hash(ctx->hash_map);
2920	kfree(ctx->cancel_table.hbs);
2921	kfree(ctx->cancel_table_locked.hbs);
2922	kfree(ctx->io_bl);
2923	xa_destroy(&ctx->io_bl_xa);
2924	kfree(ctx);
2925}
2926
2927static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2928{
2929	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2930					       poll_wq_task_work);
2931
2932	mutex_lock(&ctx->uring_lock);
2933	ctx->poll_activated = true;
2934	mutex_unlock(&ctx->uring_lock);
2935
2936	/*
2937	 * Wake ups for some events between start of polling and activation
2938	 * might've been lost due to loose synchronisation.
2939	 */
2940	wake_up_all(&ctx->poll_wq);
2941	percpu_ref_put(&ctx->refs);
2942}
2943
2944__cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2945{
2946	spin_lock(&ctx->completion_lock);
2947	/* already activated or in progress */
2948	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2949		goto out;
2950	if (WARN_ON_ONCE(!ctx->task_complete))
2951		goto out;
2952	if (!ctx->submitter_task)
2953		goto out;
2954	/*
2955	 * with ->submitter_task only the submitter task completes requests, we
2956	 * only need to sync with it, which is done by injecting a tw
2957	 */
2958	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2959	percpu_ref_get(&ctx->refs);
2960	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2961		percpu_ref_put(&ctx->refs);
2962out:
2963	spin_unlock(&ctx->completion_lock);
2964}
2965
2966static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2967{
2968	struct io_ring_ctx *ctx = file->private_data;
2969	__poll_t mask = 0;
2970
2971	if (unlikely(!ctx->poll_activated))
2972		io_activate_pollwq(ctx);
2973
2974	poll_wait(file, &ctx->poll_wq, wait);
2975	/*
2976	 * synchronizes with barrier from wq_has_sleeper call in
2977	 * io_commit_cqring
2978	 */
2979	smp_rmb();
2980	if (!io_sqring_full(ctx))
2981		mask |= EPOLLOUT | EPOLLWRNORM;
2982
2983	/*
2984	 * Don't flush cqring overflow list here, just do a simple check.
2985	 * Otherwise there could possible be ABBA deadlock:
2986	 *      CPU0                    CPU1
2987	 *      ----                    ----
2988	 * lock(&ctx->uring_lock);
2989	 *                              lock(&ep->mtx);
2990	 *                              lock(&ctx->uring_lock);
2991	 * lock(&ep->mtx);
2992	 *
2993	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2994	 * pushes them to do the flush.
2995	 */
2996
2997	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2998		mask |= EPOLLIN | EPOLLRDNORM;
2999
3000	return mask;
3001}
3002
3003struct io_tctx_exit {
3004	struct callback_head		task_work;
3005	struct completion		completion;
3006	struct io_ring_ctx		*ctx;
3007};
3008
3009static __cold void io_tctx_exit_cb(struct callback_head *cb)
3010{
3011	struct io_uring_task *tctx = current->io_uring;
3012	struct io_tctx_exit *work;
3013
3014	work = container_of(cb, struct io_tctx_exit, task_work);
3015	/*
3016	 * When @in_cancel, we're in cancellation and it's racy to remove the
3017	 * node. It'll be removed by the end of cancellation, just ignore it.
3018	 * tctx can be NULL if the queueing of this task_work raced with
3019	 * work cancelation off the exec path.
3020	 */
3021	if (tctx && !atomic_read(&tctx->in_cancel))
3022		io_uring_del_tctx_node((unsigned long)work->ctx);
3023	complete(&work->completion);
3024}
3025
3026static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3027{
3028	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3029
3030	return req->ctx == data;
3031}
3032
3033static __cold void io_ring_exit_work(struct work_struct *work)
3034{
3035	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3036	unsigned long timeout = jiffies + HZ * 60 * 5;
3037	unsigned long interval = HZ / 20;
3038	struct io_tctx_exit exit;
3039	struct io_tctx_node *node;
3040	int ret;
3041
3042	/*
3043	 * If we're doing polled IO and end up having requests being
3044	 * submitted async (out-of-line), then completions can come in while
3045	 * we're waiting for refs to drop. We need to reap these manually,
3046	 * as nobody else will be looking for them.
3047	 */
3048	do {
3049		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3050			mutex_lock(&ctx->uring_lock);
3051			io_cqring_overflow_kill(ctx);
3052			mutex_unlock(&ctx->uring_lock);
3053		}
3054
3055		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3056			io_move_task_work_from_local(ctx);
3057
3058		while (io_uring_try_cancel_requests(ctx, NULL, true))
3059			cond_resched();
3060
3061		if (ctx->sq_data) {
3062			struct io_sq_data *sqd = ctx->sq_data;
3063			struct task_struct *tsk;
3064
3065			io_sq_thread_park(sqd);
3066			tsk = sqd->thread;
3067			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3068				io_wq_cancel_cb(tsk->io_uring->io_wq,
3069						io_cancel_ctx_cb, ctx, true);
3070			io_sq_thread_unpark(sqd);
3071		}
3072
3073		io_req_caches_free(ctx);
3074
3075		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3076			/* there is little hope left, don't run it too often */
3077			interval = HZ * 60;
3078		}
3079		/*
3080		 * This is really an uninterruptible wait, as it has to be
3081		 * complete. But it's also run from a kworker, which doesn't
3082		 * take signals, so it's fine to make it interruptible. This
3083		 * avoids scenarios where we knowingly can wait much longer
3084		 * on completions, for example if someone does a SIGSTOP on
3085		 * a task that needs to finish task_work to make this loop
3086		 * complete. That's a synthetic situation that should not
3087		 * cause a stuck task backtrace, and hence a potential panic
3088		 * on stuck tasks if that is enabled.
3089		 */
3090	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3091
3092	init_completion(&exit.completion);
3093	init_task_work(&exit.task_work, io_tctx_exit_cb);
3094	exit.ctx = ctx;
3095
3096	mutex_lock(&ctx->uring_lock);
3097	while (!list_empty(&ctx->tctx_list)) {
3098		WARN_ON_ONCE(time_after(jiffies, timeout));
3099
3100		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3101					ctx_node);
3102		/* don't spin on a single task if cancellation failed */
3103		list_rotate_left(&ctx->tctx_list);
3104		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3105		if (WARN_ON_ONCE(ret))
3106			continue;
3107
3108		mutex_unlock(&ctx->uring_lock);
3109		/*
3110		 * See comment above for
3111		 * wait_for_completion_interruptible_timeout() on why this
3112		 * wait is marked as interruptible.
3113		 */
3114		wait_for_completion_interruptible(&exit.completion);
3115		mutex_lock(&ctx->uring_lock);
3116	}
3117	mutex_unlock(&ctx->uring_lock);
3118	spin_lock(&ctx->completion_lock);
3119	spin_unlock(&ctx->completion_lock);
3120
3121	/* pairs with RCU read section in io_req_local_work_add() */
3122	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3123		synchronize_rcu();
3124
3125	io_ring_ctx_free(ctx);
3126}
3127
3128static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3129{
3130	unsigned long index;
3131	struct creds *creds;
3132
3133	mutex_lock(&ctx->uring_lock);
3134	percpu_ref_kill(&ctx->refs);
3135	xa_for_each(&ctx->personalities, index, creds)
3136		io_unregister_personality(ctx, index);
3137	if (ctx->rings)
3138		io_poll_remove_all(ctx, NULL, true);
3139	mutex_unlock(&ctx->uring_lock);
3140
3141	/*
3142	 * If we failed setting up the ctx, we might not have any rings
3143	 * and therefore did not submit any requests
3144	 */
3145	if (ctx->rings)
3146		io_kill_timeouts(ctx, NULL, true);
3147
3148	flush_delayed_work(&ctx->fallback_work);
3149
3150	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3151	/*
3152	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3153	 * if we're exiting a ton of rings at the same time. It just adds
3154	 * noise and overhead, there's no discernable change in runtime
3155	 * over using system_wq.
3156	 */
3157	queue_work(system_unbound_wq, &ctx->exit_work);
3158}
3159
3160static int io_uring_release(struct inode *inode, struct file *file)
3161{
3162	struct io_ring_ctx *ctx = file->private_data;
3163
3164	file->private_data = NULL;
3165	io_ring_ctx_wait_and_kill(ctx);
3166	return 0;
3167}
3168
3169struct io_task_cancel {
3170	struct task_struct *task;
3171	bool all;
3172};
3173
3174static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3175{
3176	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3177	struct io_task_cancel *cancel = data;
3178
3179	return io_match_task_safe(req, cancel->task, cancel->all);
3180}
3181
3182static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3183					 struct task_struct *task,
3184					 bool cancel_all)
3185{
3186	struct io_defer_entry *de;
3187	LIST_HEAD(list);
3188
3189	spin_lock(&ctx->completion_lock);
3190	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3191		if (io_match_task_safe(de->req, task, cancel_all)) {
3192			list_cut_position(&list, &ctx->defer_list, &de->list);
3193			break;
3194		}
3195	}
3196	spin_unlock(&ctx->completion_lock);
3197	if (list_empty(&list))
3198		return false;
3199
3200	while (!list_empty(&list)) {
3201		de = list_first_entry(&list, struct io_defer_entry, list);
3202		list_del_init(&de->list);
3203		io_req_task_queue_fail(de->req, -ECANCELED);
3204		kfree(de);
3205	}
3206	return true;
3207}
3208
3209static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3210{
3211	struct io_tctx_node *node;
3212	enum io_wq_cancel cret;
3213	bool ret = false;
3214
3215	mutex_lock(&ctx->uring_lock);
3216	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3217		struct io_uring_task *tctx = node->task->io_uring;
3218
3219		/*
3220		 * io_wq will stay alive while we hold uring_lock, because it's
3221		 * killed after ctx nodes, which requires to take the lock.
3222		 */
3223		if (!tctx || !tctx->io_wq)
3224			continue;
3225		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3226		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3227	}
3228	mutex_unlock(&ctx->uring_lock);
3229
3230	return ret;
3231}
3232
3233static bool io_uring_try_cancel_uring_cmd(struct io_ring_ctx *ctx,
3234		struct task_struct *task, bool cancel_all)
3235{
3236	struct hlist_node *tmp;
3237	struct io_kiocb *req;
3238	bool ret = false;
3239
3240	lockdep_assert_held(&ctx->uring_lock);
3241
3242	hlist_for_each_entry_safe(req, tmp, &ctx->cancelable_uring_cmd,
3243			hash_node) {
3244		struct io_uring_cmd *cmd = io_kiocb_to_cmd(req,
3245				struct io_uring_cmd);
3246		struct file *file = req->file;
3247
3248		if (!cancel_all && req->task != task)
3249			continue;
3250
3251		if (cmd->flags & IORING_URING_CMD_CANCELABLE) {
3252			/* ->sqe isn't available if no async data */
3253			if (!req_has_async_data(req))
3254				cmd->sqe = NULL;
3255			file->f_op->uring_cmd(cmd, IO_URING_F_CANCEL);
3256			ret = true;
3257		}
3258	}
3259	io_submit_flush_completions(ctx);
3260
3261	return ret;
3262}
3263
3264static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3265						struct task_struct *task,
3266						bool cancel_all)
3267{
3268	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3269	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3270	enum io_wq_cancel cret;
3271	bool ret = false;
3272
3273	/* set it so io_req_local_work_add() would wake us up */
3274	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3275		atomic_set(&ctx->cq_wait_nr, 1);
3276		smp_mb();
3277	}
3278
3279	/* failed during ring init, it couldn't have issued any requests */
3280	if (!ctx->rings)
3281		return false;
3282
3283	if (!task) {
3284		ret |= io_uring_try_cancel_iowq(ctx);
3285	} else if (tctx && tctx->io_wq) {
3286		/*
3287		 * Cancels requests of all rings, not only @ctx, but
3288		 * it's fine as the task is in exit/exec.
3289		 */
3290		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3291				       &cancel, true);
3292		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3293	}
3294
3295	/* SQPOLL thread does its own polling */
3296	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3297	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3298		while (!wq_list_empty(&ctx->iopoll_list)) {
3299			io_iopoll_try_reap_events(ctx);
3300			ret = true;
3301			cond_resched();
3302		}
3303	}
3304
3305	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3306	    io_allowed_defer_tw_run(ctx))
3307		ret |= io_run_local_work(ctx) > 0;
3308	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3309	mutex_lock(&ctx->uring_lock);
3310	ret |= io_poll_remove_all(ctx, task, cancel_all);
3311	ret |= io_waitid_remove_all(ctx, task, cancel_all);
3312	ret |= io_futex_remove_all(ctx, task, cancel_all);
3313	ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all);
3314	mutex_unlock(&ctx->uring_lock);
3315	ret |= io_kill_timeouts(ctx, task, cancel_all);
3316	if (task)
3317		ret |= io_run_task_work() > 0;
3318	return ret;
3319}
3320
3321static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3322{
3323	if (tracked)
3324		return atomic_read(&tctx->inflight_tracked);
3325	return percpu_counter_sum(&tctx->inflight);
3326}
3327
3328/*
3329 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3330 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3331 */
3332__cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3333{
3334	struct io_uring_task *tctx = current->io_uring;
3335	struct io_ring_ctx *ctx;
3336	struct io_tctx_node *node;
3337	unsigned long index;
3338	s64 inflight;
3339	DEFINE_WAIT(wait);
3340
3341	WARN_ON_ONCE(sqd && sqd->thread != current);
3342
3343	if (!current->io_uring)
3344		return;
3345	if (tctx->io_wq)
3346		io_wq_exit_start(tctx->io_wq);
3347
3348	atomic_inc(&tctx->in_cancel);
3349	do {
3350		bool loop = false;
3351
3352		io_uring_drop_tctx_refs(current);
3353		/* read completions before cancelations */
3354		inflight = tctx_inflight(tctx, !cancel_all);
3355		if (!inflight)
3356			break;
3357
3358		if (!sqd) {
3359			xa_for_each(&tctx->xa, index, node) {
3360				/* sqpoll task will cancel all its requests */
3361				if (node->ctx->sq_data)
3362					continue;
3363				loop |= io_uring_try_cancel_requests(node->ctx,
3364							current, cancel_all);
3365			}
3366		} else {
3367			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3368				loop |= io_uring_try_cancel_requests(ctx,
3369								     current,
3370								     cancel_all);
3371		}
3372
3373		if (loop) {
3374			cond_resched();
3375			continue;
3376		}
3377
3378		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3379		io_run_task_work();
3380		io_uring_drop_tctx_refs(current);
3381		xa_for_each(&tctx->xa, index, node) {
3382			if (!llist_empty(&node->ctx->work_llist)) {
3383				WARN_ON_ONCE(node->ctx->submitter_task &&
3384					     node->ctx->submitter_task != current);
3385				goto end_wait;
3386			}
3387		}
3388		/*
3389		 * If we've seen completions, retry without waiting. This
3390		 * avoids a race where a completion comes in before we did
3391		 * prepare_to_wait().
3392		 */
3393		if (inflight == tctx_inflight(tctx, !cancel_all))
3394			schedule();
3395end_wait:
3396		finish_wait(&tctx->wait, &wait);
3397	} while (1);
3398
3399	io_uring_clean_tctx(tctx);
3400	if (cancel_all) {
3401		/*
3402		 * We shouldn't run task_works after cancel, so just leave
3403		 * ->in_cancel set for normal exit.
3404		 */
3405		atomic_dec(&tctx->in_cancel);
3406		/* for exec all current's requests should be gone, kill tctx */
3407		__io_uring_free(current);
3408	}
3409}
3410
3411void __io_uring_cancel(bool cancel_all)
3412{
3413	io_uring_cancel_generic(cancel_all, NULL);
3414}
3415
3416static void *io_uring_validate_mmap_request(struct file *file,
3417					    loff_t pgoff, size_t sz)
3418{
3419	struct io_ring_ctx *ctx = file->private_data;
3420	loff_t offset = pgoff << PAGE_SHIFT;
3421	struct page *page;
3422	void *ptr;
3423
3424	switch (offset & IORING_OFF_MMAP_MASK) {
3425	case IORING_OFF_SQ_RING:
3426	case IORING_OFF_CQ_RING:
3427		/* Don't allow mmap if the ring was setup without it */
3428		if (ctx->flags & IORING_SETUP_NO_MMAP)
3429			return ERR_PTR(-EINVAL);
3430		ptr = ctx->rings;
3431		break;
3432	case IORING_OFF_SQES:
3433		/* Don't allow mmap if the ring was setup without it */
3434		if (ctx->flags & IORING_SETUP_NO_MMAP)
3435			return ERR_PTR(-EINVAL);
3436		ptr = ctx->sq_sqes;
3437		break;
3438	case IORING_OFF_PBUF_RING: {
3439		unsigned int bgid;
3440
3441		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3442		rcu_read_lock();
3443		ptr = io_pbuf_get_address(ctx, bgid);
3444		rcu_read_unlock();
3445		if (!ptr)
3446			return ERR_PTR(-EINVAL);
3447		break;
3448		}
3449	default:
3450		return ERR_PTR(-EINVAL);
3451	}
3452
3453	page = virt_to_head_page(ptr);
3454	if (sz > page_size(page))
3455		return ERR_PTR(-EINVAL);
3456
3457	return ptr;
3458}
3459
3460#ifdef CONFIG_MMU
3461
3462static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3463{
3464	size_t sz = vma->vm_end - vma->vm_start;
3465	unsigned long pfn;
3466	void *ptr;
3467
3468	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3469	if (IS_ERR(ptr))
3470		return PTR_ERR(ptr);
3471
3472	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3473	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3474}
3475
3476static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3477			unsigned long addr, unsigned long len,
3478			unsigned long pgoff, unsigned long flags)
3479{
3480	void *ptr;
3481
3482	/*
3483	 * Do not allow to map to user-provided address to avoid breaking the
3484	 * aliasing rules. Userspace is not able to guess the offset address of
3485	 * kernel kmalloc()ed memory area.
3486	 */
3487	if (addr)
3488		return -EINVAL;
3489
3490	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3491	if (IS_ERR(ptr))
3492		return -ENOMEM;
3493
3494	/*
3495	 * Some architectures have strong cache aliasing requirements.
3496	 * For such architectures we need a coherent mapping which aliases
3497	 * kernel memory *and* userspace memory. To achieve that:
3498	 * - use a NULL file pointer to reference physical memory, and
3499	 * - use the kernel virtual address of the shared io_uring context
3500	 *   (instead of the userspace-provided address, which has to be 0UL
3501	 *   anyway).
3502	 * - use the same pgoff which the get_unmapped_area() uses to
3503	 *   calculate the page colouring.
3504	 * For architectures without such aliasing requirements, the
3505	 * architecture will return any suitable mapping because addr is 0.
3506	 */
3507	filp = NULL;
3508	flags |= MAP_SHARED;
3509	pgoff = 0;	/* has been translated to ptr above */
3510#ifdef SHM_COLOUR
3511	addr = (uintptr_t) ptr;
3512	pgoff = addr >> PAGE_SHIFT;
3513#else
3514	addr = 0UL;
3515#endif
3516	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3517}
3518
3519#else /* !CONFIG_MMU */
3520
3521static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3522{
3523	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3524}
3525
3526static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3527{
3528	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3529}
3530
3531static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3532	unsigned long addr, unsigned long len,
3533	unsigned long pgoff, unsigned long flags)
3534{
3535	void *ptr;
3536
3537	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3538	if (IS_ERR(ptr))
3539		return PTR_ERR(ptr);
3540
3541	return (unsigned long) ptr;
3542}
3543
3544#endif /* !CONFIG_MMU */
3545
3546static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3547{
3548	if (flags & IORING_ENTER_EXT_ARG) {
3549		struct io_uring_getevents_arg arg;
3550
3551		if (argsz != sizeof(arg))
3552			return -EINVAL;
3553		if (copy_from_user(&arg, argp, sizeof(arg)))
3554			return -EFAULT;
3555	}
3556	return 0;
3557}
3558
3559static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3560			  struct __kernel_timespec __user **ts,
3561			  const sigset_t __user **sig)
3562{
3563	struct io_uring_getevents_arg arg;
3564
3565	/*
3566	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3567	 * is just a pointer to the sigset_t.
3568	 */
3569	if (!(flags & IORING_ENTER_EXT_ARG)) {
3570		*sig = (const sigset_t __user *) argp;
3571		*ts = NULL;
3572		return 0;
3573	}
3574
3575	/*
3576	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3577	 * timespec and sigset_t pointers if good.
3578	 */
3579	if (*argsz != sizeof(arg))
3580		return -EINVAL;
3581	if (copy_from_user(&arg, argp, sizeof(arg)))
3582		return -EFAULT;
3583	if (arg.pad)
3584		return -EINVAL;
3585	*sig = u64_to_user_ptr(arg.sigmask);
3586	*argsz = arg.sigmask_sz;
3587	*ts = u64_to_user_ptr(arg.ts);
3588	return 0;
3589}
3590
3591SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3592		u32, min_complete, u32, flags, const void __user *, argp,
3593		size_t, argsz)
3594{
3595	struct io_ring_ctx *ctx;
3596	struct file *file;
3597	long ret;
3598
3599	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3600			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3601			       IORING_ENTER_REGISTERED_RING)))
3602		return -EINVAL;
3603
3604	/*
3605	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3606	 * need only dereference our task private array to find it.
3607	 */
3608	if (flags & IORING_ENTER_REGISTERED_RING) {
3609		struct io_uring_task *tctx = current->io_uring;
3610
3611		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3612			return -EINVAL;
3613		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3614		file = tctx->registered_rings[fd];
3615		if (unlikely(!file))
3616			return -EBADF;
3617	} else {
3618		file = fget(fd);
3619		if (unlikely(!file))
3620			return -EBADF;
3621		ret = -EOPNOTSUPP;
3622		if (unlikely(!io_is_uring_fops(file)))
3623			goto out;
3624	}
3625
3626	ctx = file->private_data;
3627	ret = -EBADFD;
3628	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3629		goto out;
3630
3631	/*
3632	 * For SQ polling, the thread will do all submissions and completions.
3633	 * Just return the requested submit count, and wake the thread if
3634	 * we were asked to.
3635	 */
3636	ret = 0;
3637	if (ctx->flags & IORING_SETUP_SQPOLL) {
3638		io_cqring_overflow_flush(ctx);
3639
3640		if (unlikely(ctx->sq_data->thread == NULL)) {
3641			ret = -EOWNERDEAD;
3642			goto out;
3643		}
3644		if (flags & IORING_ENTER_SQ_WAKEUP)
3645			wake_up(&ctx->sq_data->wait);
3646		if (flags & IORING_ENTER_SQ_WAIT)
3647			io_sqpoll_wait_sq(ctx);
3648
3649		ret = to_submit;
3650	} else if (to_submit) {
3651		ret = io_uring_add_tctx_node(ctx);
3652		if (unlikely(ret))
3653			goto out;
3654
3655		mutex_lock(&ctx->uring_lock);
3656		ret = io_submit_sqes(ctx, to_submit);
3657		if (ret != to_submit) {
3658			mutex_unlock(&ctx->uring_lock);
3659			goto out;
3660		}
3661		if (flags & IORING_ENTER_GETEVENTS) {
3662			if (ctx->syscall_iopoll)
3663				goto iopoll_locked;
3664			/*
3665			 * Ignore errors, we'll soon call io_cqring_wait() and
3666			 * it should handle ownership problems if any.
3667			 */
3668			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3669				(void)io_run_local_work_locked(ctx);
3670		}
3671		mutex_unlock(&ctx->uring_lock);
3672	}
3673
3674	if (flags & IORING_ENTER_GETEVENTS) {
3675		int ret2;
3676
3677		if (ctx->syscall_iopoll) {
3678			/*
3679			 * We disallow the app entering submit/complete with
3680			 * polling, but we still need to lock the ring to
3681			 * prevent racing with polled issue that got punted to
3682			 * a workqueue.
3683			 */
3684			mutex_lock(&ctx->uring_lock);
3685iopoll_locked:
3686			ret2 = io_validate_ext_arg(flags, argp, argsz);
3687			if (likely(!ret2)) {
3688				min_complete = min(min_complete,
3689						   ctx->cq_entries);
3690				ret2 = io_iopoll_check(ctx, min_complete);
3691			}
3692			mutex_unlock(&ctx->uring_lock);
3693		} else {
3694			const sigset_t __user *sig;
3695			struct __kernel_timespec __user *ts;
3696
3697			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3698			if (likely(!ret2)) {
3699				min_complete = min(min_complete,
3700						   ctx->cq_entries);
3701				ret2 = io_cqring_wait(ctx, min_complete, sig,
3702						      argsz, ts);
3703			}
3704		}
3705
3706		if (!ret) {
3707			ret = ret2;
3708
3709			/*
3710			 * EBADR indicates that one or more CQE were dropped.
3711			 * Once the user has been informed we can clear the bit
3712			 * as they are obviously ok with those drops.
3713			 */
3714			if (unlikely(ret2 == -EBADR))
3715				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3716					  &ctx->check_cq);
3717		}
3718	}
3719out:
3720	if (!(flags & IORING_ENTER_REGISTERED_RING))
3721		fput(file);
3722	return ret;
3723}
3724
3725static const struct file_operations io_uring_fops = {
3726	.release	= io_uring_release,
3727	.mmap		= io_uring_mmap,
3728#ifndef CONFIG_MMU
3729	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3730	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3731#else
3732	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3733#endif
3734	.poll		= io_uring_poll,
3735#ifdef CONFIG_PROC_FS
3736	.show_fdinfo	= io_uring_show_fdinfo,
3737#endif
3738};
3739
3740bool io_is_uring_fops(struct file *file)
3741{
3742	return file->f_op == &io_uring_fops;
3743}
3744
3745static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3746					 struct io_uring_params *p)
3747{
3748	struct io_rings *rings;
3749	size_t size, sq_array_offset;
3750	void *ptr;
3751
3752	/* make sure these are sane, as we already accounted them */
3753	ctx->sq_entries = p->sq_entries;
3754	ctx->cq_entries = p->cq_entries;
3755
3756	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3757	if (size == SIZE_MAX)
3758		return -EOVERFLOW;
3759
3760	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3761		rings = io_mem_alloc(size);
3762	else
3763		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3764
3765	if (IS_ERR(rings))
3766		return PTR_ERR(rings);
3767
3768	ctx->rings = rings;
3769	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3770		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3771	rings->sq_ring_mask = p->sq_entries - 1;
3772	rings->cq_ring_mask = p->cq_entries - 1;
3773	rings->sq_ring_entries = p->sq_entries;
3774	rings->cq_ring_entries = p->cq_entries;
3775
3776	if (p->flags & IORING_SETUP_SQE128)
3777		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3778	else
3779		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3780	if (size == SIZE_MAX) {
3781		io_rings_free(ctx);
3782		return -EOVERFLOW;
3783	}
3784
3785	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3786		ptr = io_mem_alloc(size);
3787	else
3788		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3789
3790	if (IS_ERR(ptr)) {
3791		io_rings_free(ctx);
3792		return PTR_ERR(ptr);
3793	}
3794
3795	ctx->sq_sqes = ptr;
3796	return 0;
3797}
3798
3799static int io_uring_install_fd(struct file *file)
3800{
3801	int fd;
3802
3803	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3804	if (fd < 0)
3805		return fd;
3806	fd_install(fd, file);
3807	return fd;
3808}
3809
3810/*
3811 * Allocate an anonymous fd, this is what constitutes the application
3812 * visible backing of an io_uring instance. The application mmaps this
3813 * fd to gain access to the SQ/CQ ring details.
3814 */
3815static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3816{
3817	/* Create a new inode so that the LSM can block the creation.  */
3818	return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3819					 O_RDWR | O_CLOEXEC, NULL);
3820}
3821
3822static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3823				  struct io_uring_params __user *params)
3824{
3825	struct io_ring_ctx *ctx;
3826	struct io_uring_task *tctx;
3827	struct file *file;
3828	int ret;
3829
3830	if (!entries)
3831		return -EINVAL;
3832	if (entries > IORING_MAX_ENTRIES) {
3833		if (!(p->flags & IORING_SETUP_CLAMP))
3834			return -EINVAL;
3835		entries = IORING_MAX_ENTRIES;
3836	}
3837
3838	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3839	    && !(p->flags & IORING_SETUP_NO_MMAP))
3840		return -EINVAL;
3841
3842	/*
3843	 * Use twice as many entries for the CQ ring. It's possible for the
3844	 * application to drive a higher depth than the size of the SQ ring,
3845	 * since the sqes are only used at submission time. This allows for
3846	 * some flexibility in overcommitting a bit. If the application has
3847	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3848	 * of CQ ring entries manually.
3849	 */
3850	p->sq_entries = roundup_pow_of_two(entries);
3851	if (p->flags & IORING_SETUP_CQSIZE) {
3852		/*
3853		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3854		 * to a power-of-two, if it isn't already. We do NOT impose
3855		 * any cq vs sq ring sizing.
3856		 */
3857		if (!p->cq_entries)
3858			return -EINVAL;
3859		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3860			if (!(p->flags & IORING_SETUP_CLAMP))
3861				return -EINVAL;
3862			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3863		}
3864		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3865		if (p->cq_entries < p->sq_entries)
3866			return -EINVAL;
3867	} else {
3868		p->cq_entries = 2 * p->sq_entries;
3869	}
3870
3871	ctx = io_ring_ctx_alloc(p);
3872	if (!ctx)
3873		return -ENOMEM;
3874
3875	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3876	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3877	    !(ctx->flags & IORING_SETUP_SQPOLL))
3878		ctx->task_complete = true;
3879
3880	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3881		ctx->lockless_cq = true;
3882
3883	/*
3884	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3885	 * purposes, see io_activate_pollwq()
3886	 */
3887	if (!ctx->task_complete)
3888		ctx->poll_activated = true;
3889
3890	/*
3891	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3892	 * space applications don't need to do io completion events
3893	 * polling again, they can rely on io_sq_thread to do polling
3894	 * work, which can reduce cpu usage and uring_lock contention.
3895	 */
3896	if (ctx->flags & IORING_SETUP_IOPOLL &&
3897	    !(ctx->flags & IORING_SETUP_SQPOLL))
3898		ctx->syscall_iopoll = 1;
3899
3900	ctx->compat = in_compat_syscall();
3901	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3902		ctx->user = get_uid(current_user());
3903
3904	/*
3905	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3906	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3907	 */
3908	ret = -EINVAL;
3909	if (ctx->flags & IORING_SETUP_SQPOLL) {
3910		/* IPI related flags don't make sense with SQPOLL */
3911		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3912				  IORING_SETUP_TASKRUN_FLAG |
3913				  IORING_SETUP_DEFER_TASKRUN))
3914			goto err;
3915		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3916	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3917		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3918	} else {
3919		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3920		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3921			goto err;
3922		ctx->notify_method = TWA_SIGNAL;
3923	}
3924
3925	/*
3926	 * For DEFER_TASKRUN we require the completion task to be the same as the
3927	 * submission task. This implies that there is only one submitter, so enforce
3928	 * that.
3929	 */
3930	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3931	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3932		goto err;
3933	}
3934
3935	/*
3936	 * This is just grabbed for accounting purposes. When a process exits,
3937	 * the mm is exited and dropped before the files, hence we need to hang
3938	 * on to this mm purely for the purposes of being able to unaccount
3939	 * memory (locked/pinned vm). It's not used for anything else.
3940	 */
3941	mmgrab(current->mm);
3942	ctx->mm_account = current->mm;
3943
3944	ret = io_allocate_scq_urings(ctx, p);
3945	if (ret)
3946		goto err;
3947
3948	ret = io_sq_offload_create(ctx, p);
3949	if (ret)
3950		goto err;
3951
3952	ret = io_rsrc_init(ctx);
3953	if (ret)
3954		goto err;
3955
3956	p->sq_off.head = offsetof(struct io_rings, sq.head);
3957	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3958	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3959	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3960	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3961	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3962	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3963		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3964	p->sq_off.resv1 = 0;
3965	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3966		p->sq_off.user_addr = 0;
3967
3968	p->cq_off.head = offsetof(struct io_rings, cq.head);
3969	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3970	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3971	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3972	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3973	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3974	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3975	p->cq_off.resv1 = 0;
3976	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3977		p->cq_off.user_addr = 0;
3978
3979	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3980			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3981			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3982			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3983			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3984			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3985			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
3986
3987	if (copy_to_user(params, p, sizeof(*p))) {
3988		ret = -EFAULT;
3989		goto err;
3990	}
3991
3992	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3993	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3994		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3995
3996	file = io_uring_get_file(ctx);
3997	if (IS_ERR(file)) {
3998		ret = PTR_ERR(file);
3999		goto err;
4000	}
4001
4002	ret = __io_uring_add_tctx_node(ctx);
4003	if (ret)
4004		goto err_fput;
4005	tctx = current->io_uring;
4006
4007	/*
4008	 * Install ring fd as the very last thing, so we don't risk someone
4009	 * having closed it before we finish setup
4010	 */
4011	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4012		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4013	else
4014		ret = io_uring_install_fd(file);
4015	if (ret < 0)
4016		goto err_fput;
4017
4018	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4019	return ret;
4020err:
4021	io_ring_ctx_wait_and_kill(ctx);
4022	return ret;
4023err_fput:
4024	fput(file);
4025	return ret;
4026}
4027
4028/*
4029 * Sets up an aio uring context, and returns the fd. Applications asks for a
4030 * ring size, we return the actual sq/cq ring sizes (among other things) in the
4031 * params structure passed in.
4032 */
4033static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4034{
4035	struct io_uring_params p;
4036	int i;
4037
4038	if (copy_from_user(&p, params, sizeof(p)))
4039		return -EFAULT;
4040	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4041		if (p.resv[i])
4042			return -EINVAL;
4043	}
4044
4045	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4046			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4047			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4048			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4049			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4050			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4051			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4052			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4053			IORING_SETUP_NO_SQARRAY))
4054		return -EINVAL;
4055
4056	return io_uring_create(entries, &p, params);
4057}
4058
4059static inline bool io_uring_allowed(void)
4060{
4061	int disabled = READ_ONCE(sysctl_io_uring_disabled);
4062	kgid_t io_uring_group;
4063
4064	if (disabled == 2)
4065		return false;
4066
4067	if (disabled == 0 || capable(CAP_SYS_ADMIN))
4068		return true;
4069
4070	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4071	if (!gid_valid(io_uring_group))
4072		return false;
4073
4074	return in_group_p(io_uring_group);
4075}
4076
4077SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4078		struct io_uring_params __user *, params)
4079{
4080	if (!io_uring_allowed())
4081		return -EPERM;
4082
4083	return io_uring_setup(entries, params);
4084}
4085
4086static int __init io_uring_init(void)
4087{
4088#define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4089	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4090	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4091} while (0)
4092
4093#define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4094	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4095#define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4096	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4097	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4098	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4099	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4100	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4101	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4102	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4103	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4104	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4105	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4106	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4107	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4108	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4109	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4110	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4111	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4112	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4113	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4114	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4115	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4116	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4117	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4118	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4119	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4120	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4121	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4122	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4123	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4124	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4125	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4126	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4127	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4128	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4129	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4130	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4131	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4132	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4133	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4134	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4135	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4136	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4137	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4138	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4139	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4140
4141	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4142		     sizeof(struct io_uring_rsrc_update));
4143	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4144		     sizeof(struct io_uring_rsrc_update2));
4145
4146	/* ->buf_index is u16 */
4147	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4148	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4149		     offsetof(struct io_uring_buf_ring, tail));
4150
4151	/* should fit into one byte */
4152	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4153	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4154	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4155
4156	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4157
4158	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4159
4160	/* top 8bits are for internal use */
4161	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
4162
4163	io_uring_optable_init();
4164
4165	/*
4166	 * Allow user copy in the per-command field, which starts after the
4167	 * file in io_kiocb and until the opcode field. The openat2 handling
4168	 * requires copying in user memory into the io_kiocb object in that
4169	 * range, and HARDENED_USERCOPY will complain if we haven't
4170	 * correctly annotated this range.
4171	 */
4172	req_cachep = kmem_cache_create_usercopy("io_kiocb",
4173				sizeof(struct io_kiocb), 0,
4174				SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4175				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4176				offsetof(struct io_kiocb, cmd.data),
4177				sizeof_field(struct io_kiocb, cmd.data), NULL);
4178	io_buf_cachep = kmem_cache_create("io_buffer", sizeof(struct io_buffer), 0,
4179					  SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
4180					  NULL);
4181
4182#ifdef CONFIG_SYSCTL
4183	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4184#endif
4185
4186	return 0;
4187};
4188__initcall(io_uring_init);