Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11/*
12 * This file implements most of the debugging stuff which is compiled in only
13 * when it is enabled. But some debugging check functions are implemented in
14 * corresponding subsystem, just because they are closely related and utilize
15 * various local functions of those subsystems.
16 */
17
18#include <linux/module.h>
19#include <linux/debugfs.h>
20#include <linux/math64.h>
21#include <linux/uaccess.h>
22#include <linux/random.h>
23#include <linux/ctype.h>
24#include "ubifs.h"
25
26static DEFINE_SPINLOCK(dbg_lock);
27
28static const char *get_key_fmt(int fmt)
29{
30 switch (fmt) {
31 case UBIFS_SIMPLE_KEY_FMT:
32 return "simple";
33 default:
34 return "unknown/invalid format";
35 }
36}
37
38static const char *get_key_hash(int hash)
39{
40 switch (hash) {
41 case UBIFS_KEY_HASH_R5:
42 return "R5";
43 case UBIFS_KEY_HASH_TEST:
44 return "test";
45 default:
46 return "unknown/invalid name hash";
47 }
48}
49
50static const char *get_key_type(int type)
51{
52 switch (type) {
53 case UBIFS_INO_KEY:
54 return "inode";
55 case UBIFS_DENT_KEY:
56 return "direntry";
57 case UBIFS_XENT_KEY:
58 return "xentry";
59 case UBIFS_DATA_KEY:
60 return "data";
61 case UBIFS_TRUN_KEY:
62 return "truncate";
63 default:
64 return "unknown/invalid key";
65 }
66}
67
68static const char *get_dent_type(int type)
69{
70 switch (type) {
71 case UBIFS_ITYPE_REG:
72 return "file";
73 case UBIFS_ITYPE_DIR:
74 return "dir";
75 case UBIFS_ITYPE_LNK:
76 return "symlink";
77 case UBIFS_ITYPE_BLK:
78 return "blkdev";
79 case UBIFS_ITYPE_CHR:
80 return "char dev";
81 case UBIFS_ITYPE_FIFO:
82 return "fifo";
83 case UBIFS_ITYPE_SOCK:
84 return "socket";
85 default:
86 return "unknown/invalid type";
87 }
88}
89
90const char *dbg_snprintf_key(const struct ubifs_info *c,
91 const union ubifs_key *key, char *buffer, int len)
92{
93 char *p = buffer;
94 int type = key_type(c, key);
95
96 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
97 switch (type) {
98 case UBIFS_INO_KEY:
99 len -= snprintf(p, len, "(%lu, %s)",
100 (unsigned long)key_inum(c, key),
101 get_key_type(type));
102 break;
103 case UBIFS_DENT_KEY:
104 case UBIFS_XENT_KEY:
105 len -= snprintf(p, len, "(%lu, %s, %#08x)",
106 (unsigned long)key_inum(c, key),
107 get_key_type(type), key_hash(c, key));
108 break;
109 case UBIFS_DATA_KEY:
110 len -= snprintf(p, len, "(%lu, %s, %u)",
111 (unsigned long)key_inum(c, key),
112 get_key_type(type), key_block(c, key));
113 break;
114 case UBIFS_TRUN_KEY:
115 len -= snprintf(p, len, "(%lu, %s)",
116 (unsigned long)key_inum(c, key),
117 get_key_type(type));
118 break;
119 default:
120 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
121 key->u32[0], key->u32[1]);
122 }
123 } else
124 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
125 ubifs_assert(c, len > 0);
126 return p;
127}
128
129const char *dbg_ntype(int type)
130{
131 switch (type) {
132 case UBIFS_PAD_NODE:
133 return "padding node";
134 case UBIFS_SB_NODE:
135 return "superblock node";
136 case UBIFS_MST_NODE:
137 return "master node";
138 case UBIFS_REF_NODE:
139 return "reference node";
140 case UBIFS_INO_NODE:
141 return "inode node";
142 case UBIFS_DENT_NODE:
143 return "direntry node";
144 case UBIFS_XENT_NODE:
145 return "xentry node";
146 case UBIFS_DATA_NODE:
147 return "data node";
148 case UBIFS_TRUN_NODE:
149 return "truncate node";
150 case UBIFS_IDX_NODE:
151 return "indexing node";
152 case UBIFS_CS_NODE:
153 return "commit start node";
154 case UBIFS_ORPH_NODE:
155 return "orphan node";
156 case UBIFS_AUTH_NODE:
157 return "auth node";
158 default:
159 return "unknown node";
160 }
161}
162
163static const char *dbg_gtype(int type)
164{
165 switch (type) {
166 case UBIFS_NO_NODE_GROUP:
167 return "no node group";
168 case UBIFS_IN_NODE_GROUP:
169 return "in node group";
170 case UBIFS_LAST_OF_NODE_GROUP:
171 return "last of node group";
172 default:
173 return "unknown";
174 }
175}
176
177const char *dbg_cstate(int cmt_state)
178{
179 switch (cmt_state) {
180 case COMMIT_RESTING:
181 return "commit resting";
182 case COMMIT_BACKGROUND:
183 return "background commit requested";
184 case COMMIT_REQUIRED:
185 return "commit required";
186 case COMMIT_RUNNING_BACKGROUND:
187 return "BACKGROUND commit running";
188 case COMMIT_RUNNING_REQUIRED:
189 return "commit running and required";
190 case COMMIT_BROKEN:
191 return "broken commit";
192 default:
193 return "unknown commit state";
194 }
195}
196
197const char *dbg_jhead(int jhead)
198{
199 switch (jhead) {
200 case GCHD:
201 return "0 (GC)";
202 case BASEHD:
203 return "1 (base)";
204 case DATAHD:
205 return "2 (data)";
206 default:
207 return "unknown journal head";
208 }
209}
210
211static void dump_ch(const struct ubifs_ch *ch)
212{
213 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic));
214 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc));
215 pr_err("\tnode_type %d (%s)\n", ch->node_type,
216 dbg_ntype(ch->node_type));
217 pr_err("\tgroup_type %d (%s)\n", ch->group_type,
218 dbg_gtype(ch->group_type));
219 pr_err("\tsqnum %llu\n",
220 (unsigned long long)le64_to_cpu(ch->sqnum));
221 pr_err("\tlen %u\n", le32_to_cpu(ch->len));
222}
223
224void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
225{
226 const struct ubifs_inode *ui = ubifs_inode(inode);
227 struct fscrypt_name nm = {0};
228 union ubifs_key key;
229 struct ubifs_dent_node *dent, *pdent = NULL;
230 int count = 2;
231
232 pr_err("Dump in-memory inode:");
233 pr_err("\tinode %lu\n", inode->i_ino);
234 pr_err("\tsize %llu\n",
235 (unsigned long long)i_size_read(inode));
236 pr_err("\tnlink %u\n", inode->i_nlink);
237 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode));
238 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode));
239 pr_err("\tatime %u.%u\n",
240 (unsigned int)inode->i_atime.tv_sec,
241 (unsigned int)inode->i_atime.tv_nsec);
242 pr_err("\tmtime %u.%u\n",
243 (unsigned int)inode->i_mtime.tv_sec,
244 (unsigned int)inode->i_mtime.tv_nsec);
245 pr_err("\tctime %u.%u\n",
246 (unsigned int)inode->i_ctime.tv_sec,
247 (unsigned int)inode->i_ctime.tv_nsec);
248 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum);
249 pr_err("\txattr_size %u\n", ui->xattr_size);
250 pr_err("\txattr_cnt %u\n", ui->xattr_cnt);
251 pr_err("\txattr_names %u\n", ui->xattr_names);
252 pr_err("\tdirty %u\n", ui->dirty);
253 pr_err("\txattr %u\n", ui->xattr);
254 pr_err("\tbulk_read %u\n", ui->bulk_read);
255 pr_err("\tsynced_i_size %llu\n",
256 (unsigned long long)ui->synced_i_size);
257 pr_err("\tui_size %llu\n",
258 (unsigned long long)ui->ui_size);
259 pr_err("\tflags %d\n", ui->flags);
260 pr_err("\tcompr_type %d\n", ui->compr_type);
261 pr_err("\tlast_page_read %lu\n", ui->last_page_read);
262 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row);
263 pr_err("\tdata_len %d\n", ui->data_len);
264
265 if (!S_ISDIR(inode->i_mode))
266 return;
267
268 pr_err("List of directory entries:\n");
269 ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
270
271 lowest_dent_key(c, &key, inode->i_ino);
272 while (1) {
273 dent = ubifs_tnc_next_ent(c, &key, &nm);
274 if (IS_ERR(dent)) {
275 if (PTR_ERR(dent) != -ENOENT)
276 pr_err("error %ld\n", PTR_ERR(dent));
277 break;
278 }
279
280 pr_err("\t%d: inode %llu, type %s, len %d\n",
281 count++, (unsigned long long) le64_to_cpu(dent->inum),
282 get_dent_type(dent->type),
283 le16_to_cpu(dent->nlen));
284
285 fname_name(&nm) = dent->name;
286 fname_len(&nm) = le16_to_cpu(dent->nlen);
287 kfree(pdent);
288 pdent = dent;
289 key_read(c, &dent->key, &key);
290 }
291 kfree(pdent);
292}
293
294void ubifs_dump_node(const struct ubifs_info *c, const void *node)
295{
296 int i, n;
297 union ubifs_key key;
298 const struct ubifs_ch *ch = node;
299 char key_buf[DBG_KEY_BUF_LEN];
300
301 /* If the magic is incorrect, just hexdump the first bytes */
302 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
303 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
304 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
305 (void *)node, UBIFS_CH_SZ, 1);
306 return;
307 }
308
309 spin_lock(&dbg_lock);
310 dump_ch(node);
311
312 switch (ch->node_type) {
313 case UBIFS_PAD_NODE:
314 {
315 const struct ubifs_pad_node *pad = node;
316
317 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len));
318 break;
319 }
320 case UBIFS_SB_NODE:
321 {
322 const struct ubifs_sb_node *sup = node;
323 unsigned int sup_flags = le32_to_cpu(sup->flags);
324
325 pr_err("\tkey_hash %d (%s)\n",
326 (int)sup->key_hash, get_key_hash(sup->key_hash));
327 pr_err("\tkey_fmt %d (%s)\n",
328 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
329 pr_err("\tflags %#x\n", sup_flags);
330 pr_err("\tbig_lpt %u\n",
331 !!(sup_flags & UBIFS_FLG_BIGLPT));
332 pr_err("\tspace_fixup %u\n",
333 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
334 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size));
335 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size));
336 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt));
337 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt));
338 pr_err("\tmax_bud_bytes %llu\n",
339 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
340 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs));
341 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs));
342 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs));
343 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt));
344 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout));
345 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt));
346 pr_err("\tdefault_compr %u\n",
347 (int)le16_to_cpu(sup->default_compr));
348 pr_err("\trp_size %llu\n",
349 (unsigned long long)le64_to_cpu(sup->rp_size));
350 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid));
351 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid));
352 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version));
353 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran));
354 pr_err("\tUUID %pUB\n", sup->uuid);
355 break;
356 }
357 case UBIFS_MST_NODE:
358 {
359 const struct ubifs_mst_node *mst = node;
360
361 pr_err("\thighest_inum %llu\n",
362 (unsigned long long)le64_to_cpu(mst->highest_inum));
363 pr_err("\tcommit number %llu\n",
364 (unsigned long long)le64_to_cpu(mst->cmt_no));
365 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags));
366 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum));
367 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum));
368 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs));
369 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len));
370 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum));
371 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum));
372 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs));
373 pr_err("\tindex_size %llu\n",
374 (unsigned long long)le64_to_cpu(mst->index_size));
375 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum));
376 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs));
377 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum));
378 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs));
379 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum));
380 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs));
381 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum));
382 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs));
383 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum));
384 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt));
385 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs));
386 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs));
387 pr_err("\ttotal_free %llu\n",
388 (unsigned long long)le64_to_cpu(mst->total_free));
389 pr_err("\ttotal_dirty %llu\n",
390 (unsigned long long)le64_to_cpu(mst->total_dirty));
391 pr_err("\ttotal_used %llu\n",
392 (unsigned long long)le64_to_cpu(mst->total_used));
393 pr_err("\ttotal_dead %llu\n",
394 (unsigned long long)le64_to_cpu(mst->total_dead));
395 pr_err("\ttotal_dark %llu\n",
396 (unsigned long long)le64_to_cpu(mst->total_dark));
397 break;
398 }
399 case UBIFS_REF_NODE:
400 {
401 const struct ubifs_ref_node *ref = node;
402
403 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum));
404 pr_err("\toffs %u\n", le32_to_cpu(ref->offs));
405 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead));
406 break;
407 }
408 case UBIFS_INO_NODE:
409 {
410 const struct ubifs_ino_node *ino = node;
411
412 key_read(c, &ino->key, &key);
413 pr_err("\tkey %s\n",
414 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
415 pr_err("\tcreat_sqnum %llu\n",
416 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
417 pr_err("\tsize %llu\n",
418 (unsigned long long)le64_to_cpu(ino->size));
419 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink));
420 pr_err("\tatime %lld.%u\n",
421 (long long)le64_to_cpu(ino->atime_sec),
422 le32_to_cpu(ino->atime_nsec));
423 pr_err("\tmtime %lld.%u\n",
424 (long long)le64_to_cpu(ino->mtime_sec),
425 le32_to_cpu(ino->mtime_nsec));
426 pr_err("\tctime %lld.%u\n",
427 (long long)le64_to_cpu(ino->ctime_sec),
428 le32_to_cpu(ino->ctime_nsec));
429 pr_err("\tuid %u\n", le32_to_cpu(ino->uid));
430 pr_err("\tgid %u\n", le32_to_cpu(ino->gid));
431 pr_err("\tmode %u\n", le32_to_cpu(ino->mode));
432 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags));
433 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt));
434 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size));
435 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names));
436 pr_err("\tcompr_type %#x\n",
437 (int)le16_to_cpu(ino->compr_type));
438 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len));
439 break;
440 }
441 case UBIFS_DENT_NODE:
442 case UBIFS_XENT_NODE:
443 {
444 const struct ubifs_dent_node *dent = node;
445 int nlen = le16_to_cpu(dent->nlen);
446
447 key_read(c, &dent->key, &key);
448 pr_err("\tkey %s\n",
449 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
450 pr_err("\tinum %llu\n",
451 (unsigned long long)le64_to_cpu(dent->inum));
452 pr_err("\ttype %d\n", (int)dent->type);
453 pr_err("\tnlen %d\n", nlen);
454 pr_err("\tname ");
455
456 if (nlen > UBIFS_MAX_NLEN)
457 pr_err("(bad name length, not printing, bad or corrupted node)");
458 else {
459 for (i = 0; i < nlen && dent->name[i]; i++)
460 pr_cont("%c", isprint(dent->name[i]) ?
461 dent->name[i] : '?');
462 }
463 pr_cont("\n");
464
465 break;
466 }
467 case UBIFS_DATA_NODE:
468 {
469 const struct ubifs_data_node *dn = node;
470 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
471
472 key_read(c, &dn->key, &key);
473 pr_err("\tkey %s\n",
474 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
475 pr_err("\tsize %u\n", le32_to_cpu(dn->size));
476 pr_err("\tcompr_typ %d\n",
477 (int)le16_to_cpu(dn->compr_type));
478 pr_err("\tdata size %d\n", dlen);
479 pr_err("\tdata:\n");
480 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
481 (void *)&dn->data, dlen, 0);
482 break;
483 }
484 case UBIFS_TRUN_NODE:
485 {
486 const struct ubifs_trun_node *trun = node;
487
488 pr_err("\tinum %u\n", le32_to_cpu(trun->inum));
489 pr_err("\told_size %llu\n",
490 (unsigned long long)le64_to_cpu(trun->old_size));
491 pr_err("\tnew_size %llu\n",
492 (unsigned long long)le64_to_cpu(trun->new_size));
493 break;
494 }
495 case UBIFS_IDX_NODE:
496 {
497 const struct ubifs_idx_node *idx = node;
498
499 n = le16_to_cpu(idx->child_cnt);
500 pr_err("\tchild_cnt %d\n", n);
501 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level));
502 pr_err("\tBranches:\n");
503
504 for (i = 0; i < n && i < c->fanout - 1; i++) {
505 const struct ubifs_branch *br;
506
507 br = ubifs_idx_branch(c, idx, i);
508 key_read(c, &br->key, &key);
509 pr_err("\t%d: LEB %d:%d len %d key %s\n",
510 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
511 le32_to_cpu(br->len),
512 dbg_snprintf_key(c, &key, key_buf,
513 DBG_KEY_BUF_LEN));
514 }
515 break;
516 }
517 case UBIFS_CS_NODE:
518 break;
519 case UBIFS_ORPH_NODE:
520 {
521 const struct ubifs_orph_node *orph = node;
522
523 pr_err("\tcommit number %llu\n",
524 (unsigned long long)
525 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
526 pr_err("\tlast node flag %llu\n",
527 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
528 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
529 pr_err("\t%d orphan inode numbers:\n", n);
530 for (i = 0; i < n; i++)
531 pr_err("\t ino %llu\n",
532 (unsigned long long)le64_to_cpu(orph->inos[i]));
533 break;
534 }
535 case UBIFS_AUTH_NODE:
536 {
537 break;
538 }
539 default:
540 pr_err("node type %d was not recognized\n",
541 (int)ch->node_type);
542 }
543 spin_unlock(&dbg_lock);
544}
545
546void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
547{
548 spin_lock(&dbg_lock);
549 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
550 req->new_ino, req->dirtied_ino);
551 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
552 req->new_ino_d, req->dirtied_ino_d);
553 pr_err("\tnew_page %d, dirtied_page %d\n",
554 req->new_page, req->dirtied_page);
555 pr_err("\tnew_dent %d, mod_dent %d\n",
556 req->new_dent, req->mod_dent);
557 pr_err("\tidx_growth %d\n", req->idx_growth);
558 pr_err("\tdata_growth %d dd_growth %d\n",
559 req->data_growth, req->dd_growth);
560 spin_unlock(&dbg_lock);
561}
562
563void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
564{
565 spin_lock(&dbg_lock);
566 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
567 current->pid, lst->empty_lebs, lst->idx_lebs);
568 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
569 lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
570 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
571 lst->total_used, lst->total_dark, lst->total_dead);
572 spin_unlock(&dbg_lock);
573}
574
575void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
576{
577 int i;
578 struct rb_node *rb;
579 struct ubifs_bud *bud;
580 struct ubifs_gced_idx_leb *idx_gc;
581 long long available, outstanding, free;
582
583 spin_lock(&c->space_lock);
584 spin_lock(&dbg_lock);
585 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
586 current->pid, bi->data_growth + bi->dd_growth,
587 bi->data_growth + bi->dd_growth + bi->idx_growth);
588 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
589 bi->data_growth, bi->dd_growth, bi->idx_growth);
590 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
591 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
592 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
593 bi->page_budget, bi->inode_budget, bi->dent_budget);
594 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
595 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
596 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
597
598 if (bi != &c->bi)
599 /*
600 * If we are dumping saved budgeting data, do not print
601 * additional information which is about the current state, not
602 * the old one which corresponded to the saved budgeting data.
603 */
604 goto out_unlock;
605
606 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
607 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
608 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
609 atomic_long_read(&c->dirty_pg_cnt),
610 atomic_long_read(&c->dirty_zn_cnt),
611 atomic_long_read(&c->clean_zn_cnt));
612 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
613
614 /* If we are in R/O mode, journal heads do not exist */
615 if (c->jheads)
616 for (i = 0; i < c->jhead_cnt; i++)
617 pr_err("\tjhead %s\t LEB %d\n",
618 dbg_jhead(c->jheads[i].wbuf.jhead),
619 c->jheads[i].wbuf.lnum);
620 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
621 bud = rb_entry(rb, struct ubifs_bud, rb);
622 pr_err("\tbud LEB %d\n", bud->lnum);
623 }
624 list_for_each_entry(bud, &c->old_buds, list)
625 pr_err("\told bud LEB %d\n", bud->lnum);
626 list_for_each_entry(idx_gc, &c->idx_gc, list)
627 pr_err("\tGC'ed idx LEB %d unmap %d\n",
628 idx_gc->lnum, idx_gc->unmap);
629 pr_err("\tcommit state %d\n", c->cmt_state);
630
631 /* Print budgeting predictions */
632 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
633 outstanding = c->bi.data_growth + c->bi.dd_growth;
634 free = ubifs_get_free_space_nolock(c);
635 pr_err("Budgeting predictions:\n");
636 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
637 available, outstanding, free);
638out_unlock:
639 spin_unlock(&dbg_lock);
640 spin_unlock(&c->space_lock);
641}
642
643void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
644{
645 int i, spc, dark = 0, dead = 0;
646 struct rb_node *rb;
647 struct ubifs_bud *bud;
648
649 spc = lp->free + lp->dirty;
650 if (spc < c->dead_wm)
651 dead = spc;
652 else
653 dark = ubifs_calc_dark(c, spc);
654
655 if (lp->flags & LPROPS_INDEX)
656 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
657 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
658 lp->flags);
659 else
660 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
661 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
662 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
663
664 if (lp->flags & LPROPS_TAKEN) {
665 if (lp->flags & LPROPS_INDEX)
666 pr_cont("index, taken");
667 else
668 pr_cont("taken");
669 } else {
670 const char *s;
671
672 if (lp->flags & LPROPS_INDEX) {
673 switch (lp->flags & LPROPS_CAT_MASK) {
674 case LPROPS_DIRTY_IDX:
675 s = "dirty index";
676 break;
677 case LPROPS_FRDI_IDX:
678 s = "freeable index";
679 break;
680 default:
681 s = "index";
682 }
683 } else {
684 switch (lp->flags & LPROPS_CAT_MASK) {
685 case LPROPS_UNCAT:
686 s = "not categorized";
687 break;
688 case LPROPS_DIRTY:
689 s = "dirty";
690 break;
691 case LPROPS_FREE:
692 s = "free";
693 break;
694 case LPROPS_EMPTY:
695 s = "empty";
696 break;
697 case LPROPS_FREEABLE:
698 s = "freeable";
699 break;
700 default:
701 s = NULL;
702 break;
703 }
704 }
705 pr_cont("%s", s);
706 }
707
708 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
709 bud = rb_entry(rb, struct ubifs_bud, rb);
710 if (bud->lnum == lp->lnum) {
711 int head = 0;
712 for (i = 0; i < c->jhead_cnt; i++) {
713 /*
714 * Note, if we are in R/O mode or in the middle
715 * of mounting/re-mounting, the write-buffers do
716 * not exist.
717 */
718 if (c->jheads &&
719 lp->lnum == c->jheads[i].wbuf.lnum) {
720 pr_cont(", jhead %s", dbg_jhead(i));
721 head = 1;
722 }
723 }
724 if (!head)
725 pr_cont(", bud of jhead %s",
726 dbg_jhead(bud->jhead));
727 }
728 }
729 if (lp->lnum == c->gc_lnum)
730 pr_cont(", GC LEB");
731 pr_cont(")\n");
732}
733
734void ubifs_dump_lprops(struct ubifs_info *c)
735{
736 int lnum, err;
737 struct ubifs_lprops lp;
738 struct ubifs_lp_stats lst;
739
740 pr_err("(pid %d) start dumping LEB properties\n", current->pid);
741 ubifs_get_lp_stats(c, &lst);
742 ubifs_dump_lstats(&lst);
743
744 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
745 err = ubifs_read_one_lp(c, lnum, &lp);
746 if (err) {
747 ubifs_err(c, "cannot read lprops for LEB %d", lnum);
748 continue;
749 }
750
751 ubifs_dump_lprop(c, &lp);
752 }
753 pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
754}
755
756void ubifs_dump_lpt_info(struct ubifs_info *c)
757{
758 int i;
759
760 spin_lock(&dbg_lock);
761 pr_err("(pid %d) dumping LPT information\n", current->pid);
762 pr_err("\tlpt_sz: %lld\n", c->lpt_sz);
763 pr_err("\tpnode_sz: %d\n", c->pnode_sz);
764 pr_err("\tnnode_sz: %d\n", c->nnode_sz);
765 pr_err("\tltab_sz: %d\n", c->ltab_sz);
766 pr_err("\tlsave_sz: %d\n", c->lsave_sz);
767 pr_err("\tbig_lpt: %d\n", c->big_lpt);
768 pr_err("\tlpt_hght: %d\n", c->lpt_hght);
769 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt);
770 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt);
771 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
772 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
773 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt);
774 pr_err("\tspace_bits: %d\n", c->space_bits);
775 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
776 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
777 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
778 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits);
779 pr_err("\tlnum_bits: %d\n", c->lnum_bits);
780 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
781 pr_err("\tLPT head is at %d:%d\n",
782 c->nhead_lnum, c->nhead_offs);
783 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
784 if (c->big_lpt)
785 pr_err("\tLPT lsave is at %d:%d\n",
786 c->lsave_lnum, c->lsave_offs);
787 for (i = 0; i < c->lpt_lebs; i++)
788 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
789 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
790 c->ltab[i].tgc, c->ltab[i].cmt);
791 spin_unlock(&dbg_lock);
792}
793
794void ubifs_dump_sleb(const struct ubifs_info *c,
795 const struct ubifs_scan_leb *sleb, int offs)
796{
797 struct ubifs_scan_node *snod;
798
799 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
800 current->pid, sleb->lnum, offs);
801
802 list_for_each_entry(snod, &sleb->nodes, list) {
803 cond_resched();
804 pr_err("Dumping node at LEB %d:%d len %d\n",
805 sleb->lnum, snod->offs, snod->len);
806 ubifs_dump_node(c, snod->node);
807 }
808}
809
810void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
811{
812 struct ubifs_scan_leb *sleb;
813 struct ubifs_scan_node *snod;
814 void *buf;
815
816 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
817
818 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
819 if (!buf) {
820 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
821 return;
822 }
823
824 sleb = ubifs_scan(c, lnum, 0, buf, 0);
825 if (IS_ERR(sleb)) {
826 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
827 goto out;
828 }
829
830 pr_err("LEB %d has %d nodes ending at %d\n", lnum,
831 sleb->nodes_cnt, sleb->endpt);
832
833 list_for_each_entry(snod, &sleb->nodes, list) {
834 cond_resched();
835 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
836 snod->offs, snod->len);
837 ubifs_dump_node(c, snod->node);
838 }
839
840 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
841 ubifs_scan_destroy(sleb);
842
843out:
844 vfree(buf);
845 return;
846}
847
848void ubifs_dump_znode(const struct ubifs_info *c,
849 const struct ubifs_znode *znode)
850{
851 int n;
852 const struct ubifs_zbranch *zbr;
853 char key_buf[DBG_KEY_BUF_LEN];
854
855 spin_lock(&dbg_lock);
856 if (znode->parent)
857 zbr = &znode->parent->zbranch[znode->iip];
858 else
859 zbr = &c->zroot;
860
861 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
862 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
863 znode->level, znode->child_cnt, znode->flags);
864
865 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
866 spin_unlock(&dbg_lock);
867 return;
868 }
869
870 pr_err("zbranches:\n");
871 for (n = 0; n < znode->child_cnt; n++) {
872 zbr = &znode->zbranch[n];
873 if (znode->level > 0)
874 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
875 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
876 dbg_snprintf_key(c, &zbr->key, key_buf,
877 DBG_KEY_BUF_LEN));
878 else
879 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
880 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
881 dbg_snprintf_key(c, &zbr->key, key_buf,
882 DBG_KEY_BUF_LEN));
883 }
884 spin_unlock(&dbg_lock);
885}
886
887void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
888{
889 int i;
890
891 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
892 current->pid, cat, heap->cnt);
893 for (i = 0; i < heap->cnt; i++) {
894 struct ubifs_lprops *lprops = heap->arr[i];
895
896 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
897 i, lprops->lnum, lprops->hpos, lprops->free,
898 lprops->dirty, lprops->flags);
899 }
900 pr_err("(pid %d) finish dumping heap\n", current->pid);
901}
902
903void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
904 struct ubifs_nnode *parent, int iip)
905{
906 int i;
907
908 pr_err("(pid %d) dumping pnode:\n", current->pid);
909 pr_err("\taddress %zx parent %zx cnext %zx\n",
910 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
911 pr_err("\tflags %lu iip %d level %d num %d\n",
912 pnode->flags, iip, pnode->level, pnode->num);
913 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
914 struct ubifs_lprops *lp = &pnode->lprops[i];
915
916 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
917 i, lp->free, lp->dirty, lp->flags, lp->lnum);
918 }
919}
920
921void ubifs_dump_tnc(struct ubifs_info *c)
922{
923 struct ubifs_znode *znode;
924 int level;
925
926 pr_err("\n");
927 pr_err("(pid %d) start dumping TNC tree\n", current->pid);
928 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
929 level = znode->level;
930 pr_err("== Level %d ==\n", level);
931 while (znode) {
932 if (level != znode->level) {
933 level = znode->level;
934 pr_err("== Level %d ==\n", level);
935 }
936 ubifs_dump_znode(c, znode);
937 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
938 }
939 pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
940}
941
942static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
943 void *priv)
944{
945 ubifs_dump_znode(c, znode);
946 return 0;
947}
948
949/**
950 * ubifs_dump_index - dump the on-flash index.
951 * @c: UBIFS file-system description object
952 *
953 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
954 * which dumps only in-memory znodes and does not read znodes which from flash.
955 */
956void ubifs_dump_index(struct ubifs_info *c)
957{
958 dbg_walk_index(c, NULL, dump_znode, NULL);
959}
960
961/**
962 * dbg_save_space_info - save information about flash space.
963 * @c: UBIFS file-system description object
964 *
965 * This function saves information about UBIFS free space, dirty space, etc, in
966 * order to check it later.
967 */
968void dbg_save_space_info(struct ubifs_info *c)
969{
970 struct ubifs_debug_info *d = c->dbg;
971 int freeable_cnt;
972
973 spin_lock(&c->space_lock);
974 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
975 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
976 d->saved_idx_gc_cnt = c->idx_gc_cnt;
977
978 /*
979 * We use a dirty hack here and zero out @c->freeable_cnt, because it
980 * affects the free space calculations, and UBIFS might not know about
981 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
982 * only when we read their lprops, and we do this only lazily, upon the
983 * need. So at any given point of time @c->freeable_cnt might be not
984 * exactly accurate.
985 *
986 * Just one example about the issue we hit when we did not zero
987 * @c->freeable_cnt.
988 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
989 * amount of free space in @d->saved_free
990 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
991 * information from flash, where we cache LEBs from various
992 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
993 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
994 * -> 'ubifs_get_pnode()' -> 'update_cats()'
995 * -> 'ubifs_add_to_cat()').
996 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
997 * becomes %1.
998 * 4. We calculate the amount of free space when the re-mount is
999 * finished in 'dbg_check_space_info()' and it does not match
1000 * @d->saved_free.
1001 */
1002 freeable_cnt = c->freeable_cnt;
1003 c->freeable_cnt = 0;
1004 d->saved_free = ubifs_get_free_space_nolock(c);
1005 c->freeable_cnt = freeable_cnt;
1006 spin_unlock(&c->space_lock);
1007}
1008
1009/**
1010 * dbg_check_space_info - check flash space information.
1011 * @c: UBIFS file-system description object
1012 *
1013 * This function compares current flash space information with the information
1014 * which was saved when the 'dbg_save_space_info()' function was called.
1015 * Returns zero if the information has not changed, and %-EINVAL it it has
1016 * changed.
1017 */
1018int dbg_check_space_info(struct ubifs_info *c)
1019{
1020 struct ubifs_debug_info *d = c->dbg;
1021 struct ubifs_lp_stats lst;
1022 long long free;
1023 int freeable_cnt;
1024
1025 spin_lock(&c->space_lock);
1026 freeable_cnt = c->freeable_cnt;
1027 c->freeable_cnt = 0;
1028 free = ubifs_get_free_space_nolock(c);
1029 c->freeable_cnt = freeable_cnt;
1030 spin_unlock(&c->space_lock);
1031
1032 if (free != d->saved_free) {
1033 ubifs_err(c, "free space changed from %lld to %lld",
1034 d->saved_free, free);
1035 goto out;
1036 }
1037
1038 return 0;
1039
1040out:
1041 ubifs_msg(c, "saved lprops statistics dump");
1042 ubifs_dump_lstats(&d->saved_lst);
1043 ubifs_msg(c, "saved budgeting info dump");
1044 ubifs_dump_budg(c, &d->saved_bi);
1045 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1046 ubifs_msg(c, "current lprops statistics dump");
1047 ubifs_get_lp_stats(c, &lst);
1048 ubifs_dump_lstats(&lst);
1049 ubifs_msg(c, "current budgeting info dump");
1050 ubifs_dump_budg(c, &c->bi);
1051 dump_stack();
1052 return -EINVAL;
1053}
1054
1055/**
1056 * dbg_check_synced_i_size - check synchronized inode size.
1057 * @c: UBIFS file-system description object
1058 * @inode: inode to check
1059 *
1060 * If inode is clean, synchronized inode size has to be equivalent to current
1061 * inode size. This function has to be called only for locked inodes (@i_mutex
1062 * has to be locked). Returns %0 if synchronized inode size if correct, and
1063 * %-EINVAL if not.
1064 */
1065int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1066{
1067 int err = 0;
1068 struct ubifs_inode *ui = ubifs_inode(inode);
1069
1070 if (!dbg_is_chk_gen(c))
1071 return 0;
1072 if (!S_ISREG(inode->i_mode))
1073 return 0;
1074
1075 mutex_lock(&ui->ui_mutex);
1076 spin_lock(&ui->ui_lock);
1077 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1078 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1079 ui->ui_size, ui->synced_i_size);
1080 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1081 inode->i_mode, i_size_read(inode));
1082 dump_stack();
1083 err = -EINVAL;
1084 }
1085 spin_unlock(&ui->ui_lock);
1086 mutex_unlock(&ui->ui_mutex);
1087 return err;
1088}
1089
1090/*
1091 * dbg_check_dir - check directory inode size and link count.
1092 * @c: UBIFS file-system description object
1093 * @dir: the directory to calculate size for
1094 * @size: the result is returned here
1095 *
1096 * This function makes sure that directory size and link count are correct.
1097 * Returns zero in case of success and a negative error code in case of
1098 * failure.
1099 *
1100 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1101 * calling this function.
1102 */
1103int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1104{
1105 unsigned int nlink = 2;
1106 union ubifs_key key;
1107 struct ubifs_dent_node *dent, *pdent = NULL;
1108 struct fscrypt_name nm = {0};
1109 loff_t size = UBIFS_INO_NODE_SZ;
1110
1111 if (!dbg_is_chk_gen(c))
1112 return 0;
1113
1114 if (!S_ISDIR(dir->i_mode))
1115 return 0;
1116
1117 lowest_dent_key(c, &key, dir->i_ino);
1118 while (1) {
1119 int err;
1120
1121 dent = ubifs_tnc_next_ent(c, &key, &nm);
1122 if (IS_ERR(dent)) {
1123 err = PTR_ERR(dent);
1124 if (err == -ENOENT)
1125 break;
1126 return err;
1127 }
1128
1129 fname_name(&nm) = dent->name;
1130 fname_len(&nm) = le16_to_cpu(dent->nlen);
1131 size += CALC_DENT_SIZE(fname_len(&nm));
1132 if (dent->type == UBIFS_ITYPE_DIR)
1133 nlink += 1;
1134 kfree(pdent);
1135 pdent = dent;
1136 key_read(c, &dent->key, &key);
1137 }
1138 kfree(pdent);
1139
1140 if (i_size_read(dir) != size) {
1141 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1142 dir->i_ino, (unsigned long long)i_size_read(dir),
1143 (unsigned long long)size);
1144 ubifs_dump_inode(c, dir);
1145 dump_stack();
1146 return -EINVAL;
1147 }
1148 if (dir->i_nlink != nlink) {
1149 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1150 dir->i_ino, dir->i_nlink, nlink);
1151 ubifs_dump_inode(c, dir);
1152 dump_stack();
1153 return -EINVAL;
1154 }
1155
1156 return 0;
1157}
1158
1159/**
1160 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1161 * @c: UBIFS file-system description object
1162 * @zbr1: first zbranch
1163 * @zbr2: following zbranch
1164 *
1165 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1166 * names of the direntries/xentries which are referred by the keys. This
1167 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1168 * sure the name of direntry/xentry referred by @zbr1 is less than
1169 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1170 * and a negative error code in case of failure.
1171 */
1172static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1173 struct ubifs_zbranch *zbr2)
1174{
1175 int err, nlen1, nlen2, cmp;
1176 struct ubifs_dent_node *dent1, *dent2;
1177 union ubifs_key key;
1178 char key_buf[DBG_KEY_BUF_LEN];
1179
1180 ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1181 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1182 if (!dent1)
1183 return -ENOMEM;
1184 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1185 if (!dent2) {
1186 err = -ENOMEM;
1187 goto out_free;
1188 }
1189
1190 err = ubifs_tnc_read_node(c, zbr1, dent1);
1191 if (err)
1192 goto out_free;
1193 err = ubifs_validate_entry(c, dent1);
1194 if (err)
1195 goto out_free;
1196
1197 err = ubifs_tnc_read_node(c, zbr2, dent2);
1198 if (err)
1199 goto out_free;
1200 err = ubifs_validate_entry(c, dent2);
1201 if (err)
1202 goto out_free;
1203
1204 /* Make sure node keys are the same as in zbranch */
1205 err = 1;
1206 key_read(c, &dent1->key, &key);
1207 if (keys_cmp(c, &zbr1->key, &key)) {
1208 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1209 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1210 DBG_KEY_BUF_LEN));
1211 ubifs_err(c, "but it should have key %s according to tnc",
1212 dbg_snprintf_key(c, &zbr1->key, key_buf,
1213 DBG_KEY_BUF_LEN));
1214 ubifs_dump_node(c, dent1);
1215 goto out_free;
1216 }
1217
1218 key_read(c, &dent2->key, &key);
1219 if (keys_cmp(c, &zbr2->key, &key)) {
1220 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1221 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1222 DBG_KEY_BUF_LEN));
1223 ubifs_err(c, "but it should have key %s according to tnc",
1224 dbg_snprintf_key(c, &zbr2->key, key_buf,
1225 DBG_KEY_BUF_LEN));
1226 ubifs_dump_node(c, dent2);
1227 goto out_free;
1228 }
1229
1230 nlen1 = le16_to_cpu(dent1->nlen);
1231 nlen2 = le16_to_cpu(dent2->nlen);
1232
1233 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1234 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1235 err = 0;
1236 goto out_free;
1237 }
1238 if (cmp == 0 && nlen1 == nlen2)
1239 ubifs_err(c, "2 xent/dent nodes with the same name");
1240 else
1241 ubifs_err(c, "bad order of colliding key %s",
1242 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1243
1244 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1245 ubifs_dump_node(c, dent1);
1246 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1247 ubifs_dump_node(c, dent2);
1248
1249out_free:
1250 kfree(dent2);
1251 kfree(dent1);
1252 return err;
1253}
1254
1255/**
1256 * dbg_check_znode - check if znode is all right.
1257 * @c: UBIFS file-system description object
1258 * @zbr: zbranch which points to this znode
1259 *
1260 * This function makes sure that znode referred to by @zbr is all right.
1261 * Returns zero if it is, and %-EINVAL if it is not.
1262 */
1263static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1264{
1265 struct ubifs_znode *znode = zbr->znode;
1266 struct ubifs_znode *zp = znode->parent;
1267 int n, err, cmp;
1268
1269 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1270 err = 1;
1271 goto out;
1272 }
1273 if (znode->level < 0) {
1274 err = 2;
1275 goto out;
1276 }
1277 if (znode->iip < 0 || znode->iip >= c->fanout) {
1278 err = 3;
1279 goto out;
1280 }
1281
1282 if (zbr->len == 0)
1283 /* Only dirty zbranch may have no on-flash nodes */
1284 if (!ubifs_zn_dirty(znode)) {
1285 err = 4;
1286 goto out;
1287 }
1288
1289 if (ubifs_zn_dirty(znode)) {
1290 /*
1291 * If znode is dirty, its parent has to be dirty as well. The
1292 * order of the operation is important, so we have to have
1293 * memory barriers.
1294 */
1295 smp_mb();
1296 if (zp && !ubifs_zn_dirty(zp)) {
1297 /*
1298 * The dirty flag is atomic and is cleared outside the
1299 * TNC mutex, so znode's dirty flag may now have
1300 * been cleared. The child is always cleared before the
1301 * parent, so we just need to check again.
1302 */
1303 smp_mb();
1304 if (ubifs_zn_dirty(znode)) {
1305 err = 5;
1306 goto out;
1307 }
1308 }
1309 }
1310
1311 if (zp) {
1312 const union ubifs_key *min, *max;
1313
1314 if (znode->level != zp->level - 1) {
1315 err = 6;
1316 goto out;
1317 }
1318
1319 /* Make sure the 'parent' pointer in our znode is correct */
1320 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1321 if (!err) {
1322 /* This zbranch does not exist in the parent */
1323 err = 7;
1324 goto out;
1325 }
1326
1327 if (znode->iip >= zp->child_cnt) {
1328 err = 8;
1329 goto out;
1330 }
1331
1332 if (znode->iip != n) {
1333 /* This may happen only in case of collisions */
1334 if (keys_cmp(c, &zp->zbranch[n].key,
1335 &zp->zbranch[znode->iip].key)) {
1336 err = 9;
1337 goto out;
1338 }
1339 n = znode->iip;
1340 }
1341
1342 /*
1343 * Make sure that the first key in our znode is greater than or
1344 * equal to the key in the pointing zbranch.
1345 */
1346 min = &zbr->key;
1347 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1348 if (cmp == 1) {
1349 err = 10;
1350 goto out;
1351 }
1352
1353 if (n + 1 < zp->child_cnt) {
1354 max = &zp->zbranch[n + 1].key;
1355
1356 /*
1357 * Make sure the last key in our znode is less or
1358 * equivalent than the key in the zbranch which goes
1359 * after our pointing zbranch.
1360 */
1361 cmp = keys_cmp(c, max,
1362 &znode->zbranch[znode->child_cnt - 1].key);
1363 if (cmp == -1) {
1364 err = 11;
1365 goto out;
1366 }
1367 }
1368 } else {
1369 /* This may only be root znode */
1370 if (zbr != &c->zroot) {
1371 err = 12;
1372 goto out;
1373 }
1374 }
1375
1376 /*
1377 * Make sure that next key is greater or equivalent then the previous
1378 * one.
1379 */
1380 for (n = 1; n < znode->child_cnt; n++) {
1381 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1382 &znode->zbranch[n].key);
1383 if (cmp > 0) {
1384 err = 13;
1385 goto out;
1386 }
1387 if (cmp == 0) {
1388 /* This can only be keys with colliding hash */
1389 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1390 err = 14;
1391 goto out;
1392 }
1393
1394 if (znode->level != 0 || c->replaying)
1395 continue;
1396
1397 /*
1398 * Colliding keys should follow binary order of
1399 * corresponding xentry/dentry names.
1400 */
1401 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1402 &znode->zbranch[n]);
1403 if (err < 0)
1404 return err;
1405 if (err) {
1406 err = 15;
1407 goto out;
1408 }
1409 }
1410 }
1411
1412 for (n = 0; n < znode->child_cnt; n++) {
1413 if (!znode->zbranch[n].znode &&
1414 (znode->zbranch[n].lnum == 0 ||
1415 znode->zbranch[n].len == 0)) {
1416 err = 16;
1417 goto out;
1418 }
1419
1420 if (znode->zbranch[n].lnum != 0 &&
1421 znode->zbranch[n].len == 0) {
1422 err = 17;
1423 goto out;
1424 }
1425
1426 if (znode->zbranch[n].lnum == 0 &&
1427 znode->zbranch[n].len != 0) {
1428 err = 18;
1429 goto out;
1430 }
1431
1432 if (znode->zbranch[n].lnum == 0 &&
1433 znode->zbranch[n].offs != 0) {
1434 err = 19;
1435 goto out;
1436 }
1437
1438 if (znode->level != 0 && znode->zbranch[n].znode)
1439 if (znode->zbranch[n].znode->parent != znode) {
1440 err = 20;
1441 goto out;
1442 }
1443 }
1444
1445 return 0;
1446
1447out:
1448 ubifs_err(c, "failed, error %d", err);
1449 ubifs_msg(c, "dump of the znode");
1450 ubifs_dump_znode(c, znode);
1451 if (zp) {
1452 ubifs_msg(c, "dump of the parent znode");
1453 ubifs_dump_znode(c, zp);
1454 }
1455 dump_stack();
1456 return -EINVAL;
1457}
1458
1459/**
1460 * dbg_check_tnc - check TNC tree.
1461 * @c: UBIFS file-system description object
1462 * @extra: do extra checks that are possible at start commit
1463 *
1464 * This function traverses whole TNC tree and checks every znode. Returns zero
1465 * if everything is all right and %-EINVAL if something is wrong with TNC.
1466 */
1467int dbg_check_tnc(struct ubifs_info *c, int extra)
1468{
1469 struct ubifs_znode *znode;
1470 long clean_cnt = 0, dirty_cnt = 0;
1471 int err, last;
1472
1473 if (!dbg_is_chk_index(c))
1474 return 0;
1475
1476 ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1477 if (!c->zroot.znode)
1478 return 0;
1479
1480 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1481 while (1) {
1482 struct ubifs_znode *prev;
1483 struct ubifs_zbranch *zbr;
1484
1485 if (!znode->parent)
1486 zbr = &c->zroot;
1487 else
1488 zbr = &znode->parent->zbranch[znode->iip];
1489
1490 err = dbg_check_znode(c, zbr);
1491 if (err)
1492 return err;
1493
1494 if (extra) {
1495 if (ubifs_zn_dirty(znode))
1496 dirty_cnt += 1;
1497 else
1498 clean_cnt += 1;
1499 }
1500
1501 prev = znode;
1502 znode = ubifs_tnc_postorder_next(c, znode);
1503 if (!znode)
1504 break;
1505
1506 /*
1507 * If the last key of this znode is equivalent to the first key
1508 * of the next znode (collision), then check order of the keys.
1509 */
1510 last = prev->child_cnt - 1;
1511 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1512 !keys_cmp(c, &prev->zbranch[last].key,
1513 &znode->zbranch[0].key)) {
1514 err = dbg_check_key_order(c, &prev->zbranch[last],
1515 &znode->zbranch[0]);
1516 if (err < 0)
1517 return err;
1518 if (err) {
1519 ubifs_msg(c, "first znode");
1520 ubifs_dump_znode(c, prev);
1521 ubifs_msg(c, "second znode");
1522 ubifs_dump_znode(c, znode);
1523 return -EINVAL;
1524 }
1525 }
1526 }
1527
1528 if (extra) {
1529 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1530 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1531 atomic_long_read(&c->clean_zn_cnt),
1532 clean_cnt);
1533 return -EINVAL;
1534 }
1535 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1536 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1537 atomic_long_read(&c->dirty_zn_cnt),
1538 dirty_cnt);
1539 return -EINVAL;
1540 }
1541 }
1542
1543 return 0;
1544}
1545
1546/**
1547 * dbg_walk_index - walk the on-flash index.
1548 * @c: UBIFS file-system description object
1549 * @leaf_cb: called for each leaf node
1550 * @znode_cb: called for each indexing node
1551 * @priv: private data which is passed to callbacks
1552 *
1553 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1554 * node and @znode_cb for each indexing node. Returns zero in case of success
1555 * and a negative error code in case of failure.
1556 *
1557 * It would be better if this function removed every znode it pulled to into
1558 * the TNC, so that the behavior more closely matched the non-debugging
1559 * behavior.
1560 */
1561int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1562 dbg_znode_callback znode_cb, void *priv)
1563{
1564 int err;
1565 struct ubifs_zbranch *zbr;
1566 struct ubifs_znode *znode, *child;
1567
1568 mutex_lock(&c->tnc_mutex);
1569 /* If the root indexing node is not in TNC - pull it */
1570 if (!c->zroot.znode) {
1571 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1572 if (IS_ERR(c->zroot.znode)) {
1573 err = PTR_ERR(c->zroot.znode);
1574 c->zroot.znode = NULL;
1575 goto out_unlock;
1576 }
1577 }
1578
1579 /*
1580 * We are going to traverse the indexing tree in the postorder manner.
1581 * Go down and find the leftmost indexing node where we are going to
1582 * start from.
1583 */
1584 znode = c->zroot.znode;
1585 while (znode->level > 0) {
1586 zbr = &znode->zbranch[0];
1587 child = zbr->znode;
1588 if (!child) {
1589 child = ubifs_load_znode(c, zbr, znode, 0);
1590 if (IS_ERR(child)) {
1591 err = PTR_ERR(child);
1592 goto out_unlock;
1593 }
1594 }
1595
1596 znode = child;
1597 }
1598
1599 /* Iterate over all indexing nodes */
1600 while (1) {
1601 int idx;
1602
1603 cond_resched();
1604
1605 if (znode_cb) {
1606 err = znode_cb(c, znode, priv);
1607 if (err) {
1608 ubifs_err(c, "znode checking function returned error %d",
1609 err);
1610 ubifs_dump_znode(c, znode);
1611 goto out_dump;
1612 }
1613 }
1614 if (leaf_cb && znode->level == 0) {
1615 for (idx = 0; idx < znode->child_cnt; idx++) {
1616 zbr = &znode->zbranch[idx];
1617 err = leaf_cb(c, zbr, priv);
1618 if (err) {
1619 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1620 err, zbr->lnum, zbr->offs);
1621 goto out_dump;
1622 }
1623 }
1624 }
1625
1626 if (!znode->parent)
1627 break;
1628
1629 idx = znode->iip + 1;
1630 znode = znode->parent;
1631 if (idx < znode->child_cnt) {
1632 /* Switch to the next index in the parent */
1633 zbr = &znode->zbranch[idx];
1634 child = zbr->znode;
1635 if (!child) {
1636 child = ubifs_load_znode(c, zbr, znode, idx);
1637 if (IS_ERR(child)) {
1638 err = PTR_ERR(child);
1639 goto out_unlock;
1640 }
1641 zbr->znode = child;
1642 }
1643 znode = child;
1644 } else
1645 /*
1646 * This is the last child, switch to the parent and
1647 * continue.
1648 */
1649 continue;
1650
1651 /* Go to the lowest leftmost znode in the new sub-tree */
1652 while (znode->level > 0) {
1653 zbr = &znode->zbranch[0];
1654 child = zbr->znode;
1655 if (!child) {
1656 child = ubifs_load_znode(c, zbr, znode, 0);
1657 if (IS_ERR(child)) {
1658 err = PTR_ERR(child);
1659 goto out_unlock;
1660 }
1661 zbr->znode = child;
1662 }
1663 znode = child;
1664 }
1665 }
1666
1667 mutex_unlock(&c->tnc_mutex);
1668 return 0;
1669
1670out_dump:
1671 if (znode->parent)
1672 zbr = &znode->parent->zbranch[znode->iip];
1673 else
1674 zbr = &c->zroot;
1675 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1676 ubifs_dump_znode(c, znode);
1677out_unlock:
1678 mutex_unlock(&c->tnc_mutex);
1679 return err;
1680}
1681
1682/**
1683 * add_size - add znode size to partially calculated index size.
1684 * @c: UBIFS file-system description object
1685 * @znode: znode to add size for
1686 * @priv: partially calculated index size
1687 *
1688 * This is a helper function for 'dbg_check_idx_size()' which is called for
1689 * every indexing node and adds its size to the 'long long' variable pointed to
1690 * by @priv.
1691 */
1692static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1693{
1694 long long *idx_size = priv;
1695 int add;
1696
1697 add = ubifs_idx_node_sz(c, znode->child_cnt);
1698 add = ALIGN(add, 8);
1699 *idx_size += add;
1700 return 0;
1701}
1702
1703/**
1704 * dbg_check_idx_size - check index size.
1705 * @c: UBIFS file-system description object
1706 * @idx_size: size to check
1707 *
1708 * This function walks the UBIFS index, calculates its size and checks that the
1709 * size is equivalent to @idx_size. Returns zero in case of success and a
1710 * negative error code in case of failure.
1711 */
1712int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1713{
1714 int err;
1715 long long calc = 0;
1716
1717 if (!dbg_is_chk_index(c))
1718 return 0;
1719
1720 err = dbg_walk_index(c, NULL, add_size, &calc);
1721 if (err) {
1722 ubifs_err(c, "error %d while walking the index", err);
1723 return err;
1724 }
1725
1726 if (calc != idx_size) {
1727 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1728 calc, idx_size);
1729 dump_stack();
1730 return -EINVAL;
1731 }
1732
1733 return 0;
1734}
1735
1736/**
1737 * struct fsck_inode - information about an inode used when checking the file-system.
1738 * @rb: link in the RB-tree of inodes
1739 * @inum: inode number
1740 * @mode: inode type, permissions, etc
1741 * @nlink: inode link count
1742 * @xattr_cnt: count of extended attributes
1743 * @references: how many directory/xattr entries refer this inode (calculated
1744 * while walking the index)
1745 * @calc_cnt: for directory inode count of child directories
1746 * @size: inode size (read from on-flash inode)
1747 * @xattr_sz: summary size of all extended attributes (read from on-flash
1748 * inode)
1749 * @calc_sz: for directories calculated directory size
1750 * @calc_xcnt: count of extended attributes
1751 * @calc_xsz: calculated summary size of all extended attributes
1752 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1753 * inode (read from on-flash inode)
1754 * @calc_xnms: calculated sum of lengths of all extended attribute names
1755 */
1756struct fsck_inode {
1757 struct rb_node rb;
1758 ino_t inum;
1759 umode_t mode;
1760 unsigned int nlink;
1761 unsigned int xattr_cnt;
1762 int references;
1763 int calc_cnt;
1764 long long size;
1765 unsigned int xattr_sz;
1766 long long calc_sz;
1767 long long calc_xcnt;
1768 long long calc_xsz;
1769 unsigned int xattr_nms;
1770 long long calc_xnms;
1771};
1772
1773/**
1774 * struct fsck_data - private FS checking information.
1775 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1776 */
1777struct fsck_data {
1778 struct rb_root inodes;
1779};
1780
1781/**
1782 * add_inode - add inode information to RB-tree of inodes.
1783 * @c: UBIFS file-system description object
1784 * @fsckd: FS checking information
1785 * @ino: raw UBIFS inode to add
1786 *
1787 * This is a helper function for 'check_leaf()' which adds information about
1788 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1789 * case of success and a negative error code in case of failure.
1790 */
1791static struct fsck_inode *add_inode(struct ubifs_info *c,
1792 struct fsck_data *fsckd,
1793 struct ubifs_ino_node *ino)
1794{
1795 struct rb_node **p, *parent = NULL;
1796 struct fsck_inode *fscki;
1797 ino_t inum = key_inum_flash(c, &ino->key);
1798 struct inode *inode;
1799 struct ubifs_inode *ui;
1800
1801 p = &fsckd->inodes.rb_node;
1802 while (*p) {
1803 parent = *p;
1804 fscki = rb_entry(parent, struct fsck_inode, rb);
1805 if (inum < fscki->inum)
1806 p = &(*p)->rb_left;
1807 else if (inum > fscki->inum)
1808 p = &(*p)->rb_right;
1809 else
1810 return fscki;
1811 }
1812
1813 if (inum > c->highest_inum) {
1814 ubifs_err(c, "too high inode number, max. is %lu",
1815 (unsigned long)c->highest_inum);
1816 return ERR_PTR(-EINVAL);
1817 }
1818
1819 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1820 if (!fscki)
1821 return ERR_PTR(-ENOMEM);
1822
1823 inode = ilookup(c->vfs_sb, inum);
1824
1825 fscki->inum = inum;
1826 /*
1827 * If the inode is present in the VFS inode cache, use it instead of
1828 * the on-flash inode which might be out-of-date. E.g., the size might
1829 * be out-of-date. If we do not do this, the following may happen, for
1830 * example:
1831 * 1. A power cut happens
1832 * 2. We mount the file-system R/O, the replay process fixes up the
1833 * inode size in the VFS cache, but on on-flash.
1834 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1835 * size.
1836 */
1837 if (!inode) {
1838 fscki->nlink = le32_to_cpu(ino->nlink);
1839 fscki->size = le64_to_cpu(ino->size);
1840 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1841 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1842 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1843 fscki->mode = le32_to_cpu(ino->mode);
1844 } else {
1845 ui = ubifs_inode(inode);
1846 fscki->nlink = inode->i_nlink;
1847 fscki->size = inode->i_size;
1848 fscki->xattr_cnt = ui->xattr_cnt;
1849 fscki->xattr_sz = ui->xattr_size;
1850 fscki->xattr_nms = ui->xattr_names;
1851 fscki->mode = inode->i_mode;
1852 iput(inode);
1853 }
1854
1855 if (S_ISDIR(fscki->mode)) {
1856 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1857 fscki->calc_cnt = 2;
1858 }
1859
1860 rb_link_node(&fscki->rb, parent, p);
1861 rb_insert_color(&fscki->rb, &fsckd->inodes);
1862
1863 return fscki;
1864}
1865
1866/**
1867 * search_inode - search inode in the RB-tree of inodes.
1868 * @fsckd: FS checking information
1869 * @inum: inode number to search
1870 *
1871 * This is a helper function for 'check_leaf()' which searches inode @inum in
1872 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1873 * the inode was not found.
1874 */
1875static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1876{
1877 struct rb_node *p;
1878 struct fsck_inode *fscki;
1879
1880 p = fsckd->inodes.rb_node;
1881 while (p) {
1882 fscki = rb_entry(p, struct fsck_inode, rb);
1883 if (inum < fscki->inum)
1884 p = p->rb_left;
1885 else if (inum > fscki->inum)
1886 p = p->rb_right;
1887 else
1888 return fscki;
1889 }
1890 return NULL;
1891}
1892
1893/**
1894 * read_add_inode - read inode node and add it to RB-tree of inodes.
1895 * @c: UBIFS file-system description object
1896 * @fsckd: FS checking information
1897 * @inum: inode number to read
1898 *
1899 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1900 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1901 * information pointer in case of success and a negative error code in case of
1902 * failure.
1903 */
1904static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1905 struct fsck_data *fsckd, ino_t inum)
1906{
1907 int n, err;
1908 union ubifs_key key;
1909 struct ubifs_znode *znode;
1910 struct ubifs_zbranch *zbr;
1911 struct ubifs_ino_node *ino;
1912 struct fsck_inode *fscki;
1913
1914 fscki = search_inode(fsckd, inum);
1915 if (fscki)
1916 return fscki;
1917
1918 ino_key_init(c, &key, inum);
1919 err = ubifs_lookup_level0(c, &key, &znode, &n);
1920 if (!err) {
1921 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1922 return ERR_PTR(-ENOENT);
1923 } else if (err < 0) {
1924 ubifs_err(c, "error %d while looking up inode %lu",
1925 err, (unsigned long)inum);
1926 return ERR_PTR(err);
1927 }
1928
1929 zbr = &znode->zbranch[n];
1930 if (zbr->len < UBIFS_INO_NODE_SZ) {
1931 ubifs_err(c, "bad node %lu node length %d",
1932 (unsigned long)inum, zbr->len);
1933 return ERR_PTR(-EINVAL);
1934 }
1935
1936 ino = kmalloc(zbr->len, GFP_NOFS);
1937 if (!ino)
1938 return ERR_PTR(-ENOMEM);
1939
1940 err = ubifs_tnc_read_node(c, zbr, ino);
1941 if (err) {
1942 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1943 zbr->lnum, zbr->offs, err);
1944 kfree(ino);
1945 return ERR_PTR(err);
1946 }
1947
1948 fscki = add_inode(c, fsckd, ino);
1949 kfree(ino);
1950 if (IS_ERR(fscki)) {
1951 ubifs_err(c, "error %ld while adding inode %lu node",
1952 PTR_ERR(fscki), (unsigned long)inum);
1953 return fscki;
1954 }
1955
1956 return fscki;
1957}
1958
1959/**
1960 * check_leaf - check leaf node.
1961 * @c: UBIFS file-system description object
1962 * @zbr: zbranch of the leaf node to check
1963 * @priv: FS checking information
1964 *
1965 * This is a helper function for 'dbg_check_filesystem()' which is called for
1966 * every single leaf node while walking the indexing tree. It checks that the
1967 * leaf node referred from the indexing tree exists, has correct CRC, and does
1968 * some other basic validation. This function is also responsible for building
1969 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1970 * calculates reference count, size, etc for each inode in order to later
1971 * compare them to the information stored inside the inodes and detect possible
1972 * inconsistencies. Returns zero in case of success and a negative error code
1973 * in case of failure.
1974 */
1975static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1976 void *priv)
1977{
1978 ino_t inum;
1979 void *node;
1980 struct ubifs_ch *ch;
1981 int err, type = key_type(c, &zbr->key);
1982 struct fsck_inode *fscki;
1983
1984 if (zbr->len < UBIFS_CH_SZ) {
1985 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1986 zbr->len, zbr->lnum, zbr->offs);
1987 return -EINVAL;
1988 }
1989
1990 node = kmalloc(zbr->len, GFP_NOFS);
1991 if (!node)
1992 return -ENOMEM;
1993
1994 err = ubifs_tnc_read_node(c, zbr, node);
1995 if (err) {
1996 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
1997 zbr->lnum, zbr->offs, err);
1998 goto out_free;
1999 }
2000
2001 /* If this is an inode node, add it to RB-tree of inodes */
2002 if (type == UBIFS_INO_KEY) {
2003 fscki = add_inode(c, priv, node);
2004 if (IS_ERR(fscki)) {
2005 err = PTR_ERR(fscki);
2006 ubifs_err(c, "error %d while adding inode node", err);
2007 goto out_dump;
2008 }
2009 goto out;
2010 }
2011
2012 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2013 type != UBIFS_DATA_KEY) {
2014 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2015 type, zbr->lnum, zbr->offs);
2016 err = -EINVAL;
2017 goto out_free;
2018 }
2019
2020 ch = node;
2021 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2022 ubifs_err(c, "too high sequence number, max. is %llu",
2023 c->max_sqnum);
2024 err = -EINVAL;
2025 goto out_dump;
2026 }
2027
2028 if (type == UBIFS_DATA_KEY) {
2029 long long blk_offs;
2030 struct ubifs_data_node *dn = node;
2031
2032 ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2033
2034 /*
2035 * Search the inode node this data node belongs to and insert
2036 * it to the RB-tree of inodes.
2037 */
2038 inum = key_inum_flash(c, &dn->key);
2039 fscki = read_add_inode(c, priv, inum);
2040 if (IS_ERR(fscki)) {
2041 err = PTR_ERR(fscki);
2042 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2043 err, (unsigned long)inum);
2044 goto out_dump;
2045 }
2046
2047 /* Make sure the data node is within inode size */
2048 blk_offs = key_block_flash(c, &dn->key);
2049 blk_offs <<= UBIFS_BLOCK_SHIFT;
2050 blk_offs += le32_to_cpu(dn->size);
2051 if (blk_offs > fscki->size) {
2052 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2053 zbr->lnum, zbr->offs, fscki->size);
2054 err = -EINVAL;
2055 goto out_dump;
2056 }
2057 } else {
2058 int nlen;
2059 struct ubifs_dent_node *dent = node;
2060 struct fsck_inode *fscki1;
2061
2062 ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2063
2064 err = ubifs_validate_entry(c, dent);
2065 if (err)
2066 goto out_dump;
2067
2068 /*
2069 * Search the inode node this entry refers to and the parent
2070 * inode node and insert them to the RB-tree of inodes.
2071 */
2072 inum = le64_to_cpu(dent->inum);
2073 fscki = read_add_inode(c, priv, inum);
2074 if (IS_ERR(fscki)) {
2075 err = PTR_ERR(fscki);
2076 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2077 err, (unsigned long)inum);
2078 goto out_dump;
2079 }
2080
2081 /* Count how many direntries or xentries refers this inode */
2082 fscki->references += 1;
2083
2084 inum = key_inum_flash(c, &dent->key);
2085 fscki1 = read_add_inode(c, priv, inum);
2086 if (IS_ERR(fscki1)) {
2087 err = PTR_ERR(fscki1);
2088 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2089 err, (unsigned long)inum);
2090 goto out_dump;
2091 }
2092
2093 nlen = le16_to_cpu(dent->nlen);
2094 if (type == UBIFS_XENT_KEY) {
2095 fscki1->calc_xcnt += 1;
2096 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2097 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2098 fscki1->calc_xnms += nlen;
2099 } else {
2100 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2101 if (dent->type == UBIFS_ITYPE_DIR)
2102 fscki1->calc_cnt += 1;
2103 }
2104 }
2105
2106out:
2107 kfree(node);
2108 return 0;
2109
2110out_dump:
2111 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2112 ubifs_dump_node(c, node);
2113out_free:
2114 kfree(node);
2115 return err;
2116}
2117
2118/**
2119 * free_inodes - free RB-tree of inodes.
2120 * @fsckd: FS checking information
2121 */
2122static void free_inodes(struct fsck_data *fsckd)
2123{
2124 struct fsck_inode *fscki, *n;
2125
2126 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2127 kfree(fscki);
2128}
2129
2130/**
2131 * check_inodes - checks all inodes.
2132 * @c: UBIFS file-system description object
2133 * @fsckd: FS checking information
2134 *
2135 * This is a helper function for 'dbg_check_filesystem()' which walks the
2136 * RB-tree of inodes after the index scan has been finished, and checks that
2137 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2138 * %-EINVAL if not, and a negative error code in case of failure.
2139 */
2140static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2141{
2142 int n, err;
2143 union ubifs_key key;
2144 struct ubifs_znode *znode;
2145 struct ubifs_zbranch *zbr;
2146 struct ubifs_ino_node *ino;
2147 struct fsck_inode *fscki;
2148 struct rb_node *this = rb_first(&fsckd->inodes);
2149
2150 while (this) {
2151 fscki = rb_entry(this, struct fsck_inode, rb);
2152 this = rb_next(this);
2153
2154 if (S_ISDIR(fscki->mode)) {
2155 /*
2156 * Directories have to have exactly one reference (they
2157 * cannot have hardlinks), although root inode is an
2158 * exception.
2159 */
2160 if (fscki->inum != UBIFS_ROOT_INO &&
2161 fscki->references != 1) {
2162 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2163 (unsigned long)fscki->inum,
2164 fscki->references);
2165 goto out_dump;
2166 }
2167 if (fscki->inum == UBIFS_ROOT_INO &&
2168 fscki->references != 0) {
2169 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2170 (unsigned long)fscki->inum,
2171 fscki->references);
2172 goto out_dump;
2173 }
2174 if (fscki->calc_sz != fscki->size) {
2175 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2176 (unsigned long)fscki->inum,
2177 fscki->size, fscki->calc_sz);
2178 goto out_dump;
2179 }
2180 if (fscki->calc_cnt != fscki->nlink) {
2181 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2182 (unsigned long)fscki->inum,
2183 fscki->nlink, fscki->calc_cnt);
2184 goto out_dump;
2185 }
2186 } else {
2187 if (fscki->references != fscki->nlink) {
2188 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2189 (unsigned long)fscki->inum,
2190 fscki->nlink, fscki->references);
2191 goto out_dump;
2192 }
2193 }
2194 if (fscki->xattr_sz != fscki->calc_xsz) {
2195 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2196 (unsigned long)fscki->inum, fscki->xattr_sz,
2197 fscki->calc_xsz);
2198 goto out_dump;
2199 }
2200 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2201 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2202 (unsigned long)fscki->inum,
2203 fscki->xattr_cnt, fscki->calc_xcnt);
2204 goto out_dump;
2205 }
2206 if (fscki->xattr_nms != fscki->calc_xnms) {
2207 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2208 (unsigned long)fscki->inum, fscki->xattr_nms,
2209 fscki->calc_xnms);
2210 goto out_dump;
2211 }
2212 }
2213
2214 return 0;
2215
2216out_dump:
2217 /* Read the bad inode and dump it */
2218 ino_key_init(c, &key, fscki->inum);
2219 err = ubifs_lookup_level0(c, &key, &znode, &n);
2220 if (!err) {
2221 ubifs_err(c, "inode %lu not found in index",
2222 (unsigned long)fscki->inum);
2223 return -ENOENT;
2224 } else if (err < 0) {
2225 ubifs_err(c, "error %d while looking up inode %lu",
2226 err, (unsigned long)fscki->inum);
2227 return err;
2228 }
2229
2230 zbr = &znode->zbranch[n];
2231 ino = kmalloc(zbr->len, GFP_NOFS);
2232 if (!ino)
2233 return -ENOMEM;
2234
2235 err = ubifs_tnc_read_node(c, zbr, ino);
2236 if (err) {
2237 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2238 zbr->lnum, zbr->offs, err);
2239 kfree(ino);
2240 return err;
2241 }
2242
2243 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2244 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2245 ubifs_dump_node(c, ino);
2246 kfree(ino);
2247 return -EINVAL;
2248}
2249
2250/**
2251 * dbg_check_filesystem - check the file-system.
2252 * @c: UBIFS file-system description object
2253 *
2254 * This function checks the file system, namely:
2255 * o makes sure that all leaf nodes exist and their CRCs are correct;
2256 * o makes sure inode nlink, size, xattr size/count are correct (for all
2257 * inodes).
2258 *
2259 * The function reads whole indexing tree and all nodes, so it is pretty
2260 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2261 * not, and a negative error code in case of failure.
2262 */
2263int dbg_check_filesystem(struct ubifs_info *c)
2264{
2265 int err;
2266 struct fsck_data fsckd;
2267
2268 if (!dbg_is_chk_fs(c))
2269 return 0;
2270
2271 fsckd.inodes = RB_ROOT;
2272 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2273 if (err)
2274 goto out_free;
2275
2276 err = check_inodes(c, &fsckd);
2277 if (err)
2278 goto out_free;
2279
2280 free_inodes(&fsckd);
2281 return 0;
2282
2283out_free:
2284 ubifs_err(c, "file-system check failed with error %d", err);
2285 dump_stack();
2286 free_inodes(&fsckd);
2287 return err;
2288}
2289
2290/**
2291 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2292 * @c: UBIFS file-system description object
2293 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2294 *
2295 * This function returns zero if the list of data nodes is sorted correctly,
2296 * and %-EINVAL if not.
2297 */
2298int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2299{
2300 struct list_head *cur;
2301 struct ubifs_scan_node *sa, *sb;
2302
2303 if (!dbg_is_chk_gen(c))
2304 return 0;
2305
2306 for (cur = head->next; cur->next != head; cur = cur->next) {
2307 ino_t inuma, inumb;
2308 uint32_t blka, blkb;
2309
2310 cond_resched();
2311 sa = container_of(cur, struct ubifs_scan_node, list);
2312 sb = container_of(cur->next, struct ubifs_scan_node, list);
2313
2314 if (sa->type != UBIFS_DATA_NODE) {
2315 ubifs_err(c, "bad node type %d", sa->type);
2316 ubifs_dump_node(c, sa->node);
2317 return -EINVAL;
2318 }
2319 if (sb->type != UBIFS_DATA_NODE) {
2320 ubifs_err(c, "bad node type %d", sb->type);
2321 ubifs_dump_node(c, sb->node);
2322 return -EINVAL;
2323 }
2324
2325 inuma = key_inum(c, &sa->key);
2326 inumb = key_inum(c, &sb->key);
2327
2328 if (inuma < inumb)
2329 continue;
2330 if (inuma > inumb) {
2331 ubifs_err(c, "larger inum %lu goes before inum %lu",
2332 (unsigned long)inuma, (unsigned long)inumb);
2333 goto error_dump;
2334 }
2335
2336 blka = key_block(c, &sa->key);
2337 blkb = key_block(c, &sb->key);
2338
2339 if (blka > blkb) {
2340 ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2341 goto error_dump;
2342 }
2343 if (blka == blkb) {
2344 ubifs_err(c, "two data nodes for the same block");
2345 goto error_dump;
2346 }
2347 }
2348
2349 return 0;
2350
2351error_dump:
2352 ubifs_dump_node(c, sa->node);
2353 ubifs_dump_node(c, sb->node);
2354 return -EINVAL;
2355}
2356
2357/**
2358 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2359 * @c: UBIFS file-system description object
2360 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2361 *
2362 * This function returns zero if the list of non-data nodes is sorted correctly,
2363 * and %-EINVAL if not.
2364 */
2365int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2366{
2367 struct list_head *cur;
2368 struct ubifs_scan_node *sa, *sb;
2369
2370 if (!dbg_is_chk_gen(c))
2371 return 0;
2372
2373 for (cur = head->next; cur->next != head; cur = cur->next) {
2374 ino_t inuma, inumb;
2375 uint32_t hasha, hashb;
2376
2377 cond_resched();
2378 sa = container_of(cur, struct ubifs_scan_node, list);
2379 sb = container_of(cur->next, struct ubifs_scan_node, list);
2380
2381 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2382 sa->type != UBIFS_XENT_NODE) {
2383 ubifs_err(c, "bad node type %d", sa->type);
2384 ubifs_dump_node(c, sa->node);
2385 return -EINVAL;
2386 }
2387 if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2388 sb->type != UBIFS_XENT_NODE) {
2389 ubifs_err(c, "bad node type %d", sb->type);
2390 ubifs_dump_node(c, sb->node);
2391 return -EINVAL;
2392 }
2393
2394 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2395 ubifs_err(c, "non-inode node goes before inode node");
2396 goto error_dump;
2397 }
2398
2399 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2400 continue;
2401
2402 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2403 /* Inode nodes are sorted in descending size order */
2404 if (sa->len < sb->len) {
2405 ubifs_err(c, "smaller inode node goes first");
2406 goto error_dump;
2407 }
2408 continue;
2409 }
2410
2411 /*
2412 * This is either a dentry or xentry, which should be sorted in
2413 * ascending (parent ino, hash) order.
2414 */
2415 inuma = key_inum(c, &sa->key);
2416 inumb = key_inum(c, &sb->key);
2417
2418 if (inuma < inumb)
2419 continue;
2420 if (inuma > inumb) {
2421 ubifs_err(c, "larger inum %lu goes before inum %lu",
2422 (unsigned long)inuma, (unsigned long)inumb);
2423 goto error_dump;
2424 }
2425
2426 hasha = key_block(c, &sa->key);
2427 hashb = key_block(c, &sb->key);
2428
2429 if (hasha > hashb) {
2430 ubifs_err(c, "larger hash %u goes before %u",
2431 hasha, hashb);
2432 goto error_dump;
2433 }
2434 }
2435
2436 return 0;
2437
2438error_dump:
2439 ubifs_msg(c, "dumping first node");
2440 ubifs_dump_node(c, sa->node);
2441 ubifs_msg(c, "dumping second node");
2442 ubifs_dump_node(c, sb->node);
2443 return -EINVAL;
2444 return 0;
2445}
2446
2447static inline int chance(unsigned int n, unsigned int out_of)
2448{
2449 return !!((prandom_u32() % out_of) + 1 <= n);
2450
2451}
2452
2453static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2454{
2455 struct ubifs_debug_info *d = c->dbg;
2456
2457 ubifs_assert(c, dbg_is_tst_rcvry(c));
2458
2459 if (!d->pc_cnt) {
2460 /* First call - decide delay to the power cut */
2461 if (chance(1, 2)) {
2462 unsigned long delay;
2463
2464 if (chance(1, 2)) {
2465 d->pc_delay = 1;
2466 /* Fail within 1 minute */
2467 delay = prandom_u32() % 60000;
2468 d->pc_timeout = jiffies;
2469 d->pc_timeout += msecs_to_jiffies(delay);
2470 ubifs_warn(c, "failing after %lums", delay);
2471 } else {
2472 d->pc_delay = 2;
2473 delay = prandom_u32() % 10000;
2474 /* Fail within 10000 operations */
2475 d->pc_cnt_max = delay;
2476 ubifs_warn(c, "failing after %lu calls", delay);
2477 }
2478 }
2479
2480 d->pc_cnt += 1;
2481 }
2482
2483 /* Determine if failure delay has expired */
2484 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2485 return 0;
2486 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2487 return 0;
2488
2489 if (lnum == UBIFS_SB_LNUM) {
2490 if (write && chance(1, 2))
2491 return 0;
2492 if (chance(19, 20))
2493 return 0;
2494 ubifs_warn(c, "failing in super block LEB %d", lnum);
2495 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2496 if (chance(19, 20))
2497 return 0;
2498 ubifs_warn(c, "failing in master LEB %d", lnum);
2499 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2500 if (write && chance(99, 100))
2501 return 0;
2502 if (chance(399, 400))
2503 return 0;
2504 ubifs_warn(c, "failing in log LEB %d", lnum);
2505 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2506 if (write && chance(7, 8))
2507 return 0;
2508 if (chance(19, 20))
2509 return 0;
2510 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2511 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2512 if (write && chance(1, 2))
2513 return 0;
2514 if (chance(9, 10))
2515 return 0;
2516 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2517 } else if (lnum == c->ihead_lnum) {
2518 if (chance(99, 100))
2519 return 0;
2520 ubifs_warn(c, "failing in index head LEB %d", lnum);
2521 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2522 if (chance(9, 10))
2523 return 0;
2524 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2525 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2526 !ubifs_search_bud(c, lnum)) {
2527 if (chance(19, 20))
2528 return 0;
2529 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2530 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2531 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2532 if (chance(999, 1000))
2533 return 0;
2534 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2535 } else {
2536 if (chance(9999, 10000))
2537 return 0;
2538 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2539 }
2540
2541 d->pc_happened = 1;
2542 ubifs_warn(c, "========== Power cut emulated ==========");
2543 dump_stack();
2544 return 1;
2545}
2546
2547static int corrupt_data(const struct ubifs_info *c, const void *buf,
2548 unsigned int len)
2549{
2550 unsigned int from, to, ffs = chance(1, 2);
2551 unsigned char *p = (void *)buf;
2552
2553 from = prandom_u32() % len;
2554 /* Corruption span max to end of write unit */
2555 to = min(len, ALIGN(from + 1, c->max_write_size));
2556
2557 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2558 ffs ? "0xFFs" : "random data");
2559
2560 if (ffs)
2561 memset(p + from, 0xFF, to - from);
2562 else
2563 prandom_bytes(p + from, to - from);
2564
2565 return to;
2566}
2567
2568int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2569 int offs, int len)
2570{
2571 int err, failing;
2572
2573 if (dbg_is_power_cut(c))
2574 return -EROFS;
2575
2576 failing = power_cut_emulated(c, lnum, 1);
2577 if (failing) {
2578 len = corrupt_data(c, buf, len);
2579 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2580 len, lnum, offs);
2581 }
2582 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2583 if (err)
2584 return err;
2585 if (failing)
2586 return -EROFS;
2587 return 0;
2588}
2589
2590int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2591 int len)
2592{
2593 int err;
2594
2595 if (dbg_is_power_cut(c))
2596 return -EROFS;
2597 if (power_cut_emulated(c, lnum, 1))
2598 return -EROFS;
2599 err = ubi_leb_change(c->ubi, lnum, buf, len);
2600 if (err)
2601 return err;
2602 if (power_cut_emulated(c, lnum, 1))
2603 return -EROFS;
2604 return 0;
2605}
2606
2607int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2608{
2609 int err;
2610
2611 if (dbg_is_power_cut(c))
2612 return -EROFS;
2613 if (power_cut_emulated(c, lnum, 0))
2614 return -EROFS;
2615 err = ubi_leb_unmap(c->ubi, lnum);
2616 if (err)
2617 return err;
2618 if (power_cut_emulated(c, lnum, 0))
2619 return -EROFS;
2620 return 0;
2621}
2622
2623int dbg_leb_map(struct ubifs_info *c, int lnum)
2624{
2625 int err;
2626
2627 if (dbg_is_power_cut(c))
2628 return -EROFS;
2629 if (power_cut_emulated(c, lnum, 0))
2630 return -EROFS;
2631 err = ubi_leb_map(c->ubi, lnum);
2632 if (err)
2633 return err;
2634 if (power_cut_emulated(c, lnum, 0))
2635 return -EROFS;
2636 return 0;
2637}
2638
2639/*
2640 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2641 * contain the stuff specific to particular file-system mounts.
2642 */
2643static struct dentry *dfs_rootdir;
2644
2645static int dfs_file_open(struct inode *inode, struct file *file)
2646{
2647 file->private_data = inode->i_private;
2648 return nonseekable_open(inode, file);
2649}
2650
2651/**
2652 * provide_user_output - provide output to the user reading a debugfs file.
2653 * @val: boolean value for the answer
2654 * @u: the buffer to store the answer at
2655 * @count: size of the buffer
2656 * @ppos: position in the @u output buffer
2657 *
2658 * This is a simple helper function which stores @val boolean value in the user
2659 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2660 * bytes written to @u in case of success and a negative error code in case of
2661 * failure.
2662 */
2663static int provide_user_output(int val, char __user *u, size_t count,
2664 loff_t *ppos)
2665{
2666 char buf[3];
2667
2668 if (val)
2669 buf[0] = '1';
2670 else
2671 buf[0] = '0';
2672 buf[1] = '\n';
2673 buf[2] = 0x00;
2674
2675 return simple_read_from_buffer(u, count, ppos, buf, 2);
2676}
2677
2678static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2679 loff_t *ppos)
2680{
2681 struct dentry *dent = file->f_path.dentry;
2682 struct ubifs_info *c = file->private_data;
2683 struct ubifs_debug_info *d = c->dbg;
2684 int val;
2685
2686 if (dent == d->dfs_chk_gen)
2687 val = d->chk_gen;
2688 else if (dent == d->dfs_chk_index)
2689 val = d->chk_index;
2690 else if (dent == d->dfs_chk_orph)
2691 val = d->chk_orph;
2692 else if (dent == d->dfs_chk_lprops)
2693 val = d->chk_lprops;
2694 else if (dent == d->dfs_chk_fs)
2695 val = d->chk_fs;
2696 else if (dent == d->dfs_tst_rcvry)
2697 val = d->tst_rcvry;
2698 else if (dent == d->dfs_ro_error)
2699 val = c->ro_error;
2700 else
2701 return -EINVAL;
2702
2703 return provide_user_output(val, u, count, ppos);
2704}
2705
2706/**
2707 * interpret_user_input - interpret user debugfs file input.
2708 * @u: user-provided buffer with the input
2709 * @count: buffer size
2710 *
2711 * This is a helper function which interpret user input to a boolean UBIFS
2712 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2713 * in case of failure.
2714 */
2715static int interpret_user_input(const char __user *u, size_t count)
2716{
2717 size_t buf_size;
2718 char buf[8];
2719
2720 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2721 if (copy_from_user(buf, u, buf_size))
2722 return -EFAULT;
2723
2724 if (buf[0] == '1')
2725 return 1;
2726 else if (buf[0] == '0')
2727 return 0;
2728
2729 return -EINVAL;
2730}
2731
2732static ssize_t dfs_file_write(struct file *file, const char __user *u,
2733 size_t count, loff_t *ppos)
2734{
2735 struct ubifs_info *c = file->private_data;
2736 struct ubifs_debug_info *d = c->dbg;
2737 struct dentry *dent = file->f_path.dentry;
2738 int val;
2739
2740 /*
2741 * TODO: this is racy - the file-system might have already been
2742 * unmounted and we'd oops in this case. The plan is to fix it with
2743 * help of 'iterate_supers_type()' which we should have in v3.0: when
2744 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2745 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2746 * superblocks and fine the one with the same UUID, and take the
2747 * locking right.
2748 *
2749 * The other way to go suggested by Al Viro is to create a separate
2750 * 'ubifs-debug' file-system instead.
2751 */
2752 if (file->f_path.dentry == d->dfs_dump_lprops) {
2753 ubifs_dump_lprops(c);
2754 return count;
2755 }
2756 if (file->f_path.dentry == d->dfs_dump_budg) {
2757 ubifs_dump_budg(c, &c->bi);
2758 return count;
2759 }
2760 if (file->f_path.dentry == d->dfs_dump_tnc) {
2761 mutex_lock(&c->tnc_mutex);
2762 ubifs_dump_tnc(c);
2763 mutex_unlock(&c->tnc_mutex);
2764 return count;
2765 }
2766
2767 val = interpret_user_input(u, count);
2768 if (val < 0)
2769 return val;
2770
2771 if (dent == d->dfs_chk_gen)
2772 d->chk_gen = val;
2773 else if (dent == d->dfs_chk_index)
2774 d->chk_index = val;
2775 else if (dent == d->dfs_chk_orph)
2776 d->chk_orph = val;
2777 else if (dent == d->dfs_chk_lprops)
2778 d->chk_lprops = val;
2779 else if (dent == d->dfs_chk_fs)
2780 d->chk_fs = val;
2781 else if (dent == d->dfs_tst_rcvry)
2782 d->tst_rcvry = val;
2783 else if (dent == d->dfs_ro_error)
2784 c->ro_error = !!val;
2785 else
2786 return -EINVAL;
2787
2788 return count;
2789}
2790
2791static const struct file_operations dfs_fops = {
2792 .open = dfs_file_open,
2793 .read = dfs_file_read,
2794 .write = dfs_file_write,
2795 .owner = THIS_MODULE,
2796 .llseek = no_llseek,
2797};
2798
2799/**
2800 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2801 * @c: UBIFS file-system description object
2802 *
2803 * This function creates all debugfs files for this instance of UBIFS.
2804 *
2805 * Note, the only reason we have not merged this function with the
2806 * 'ubifs_debugging_init()' function is because it is better to initialize
2807 * debugfs interfaces at the very end of the mount process, and remove them at
2808 * the very beginning of the mount process.
2809 */
2810void dbg_debugfs_init_fs(struct ubifs_info *c)
2811{
2812 int n;
2813 const char *fname;
2814 struct ubifs_debug_info *d = c->dbg;
2815
2816 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2817 c->vi.ubi_num, c->vi.vol_id);
2818 if (n == UBIFS_DFS_DIR_LEN) {
2819 /* The array size is too small */
2820 return;
2821 }
2822
2823 fname = d->dfs_dir_name;
2824 d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
2825
2826 fname = "dump_lprops";
2827 d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2828 &dfs_fops);
2829
2830 fname = "dump_budg";
2831 d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2832 &dfs_fops);
2833
2834 fname = "dump_tnc";
2835 d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2836 &dfs_fops);
2837
2838 fname = "chk_general";
2839 d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2840 d->dfs_dir, c, &dfs_fops);
2841
2842 fname = "chk_index";
2843 d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2844 d->dfs_dir, c, &dfs_fops);
2845
2846 fname = "chk_orphans";
2847 d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2848 d->dfs_dir, c, &dfs_fops);
2849
2850 fname = "chk_lprops";
2851 d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2852 d->dfs_dir, c, &dfs_fops);
2853
2854 fname = "chk_fs";
2855 d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2856 d->dfs_dir, c, &dfs_fops);
2857
2858 fname = "tst_recovery";
2859 d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2860 d->dfs_dir, c, &dfs_fops);
2861
2862 fname = "ro_error";
2863 d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2864 d->dfs_dir, c, &dfs_fops);
2865}
2866
2867/**
2868 * dbg_debugfs_exit_fs - remove all debugfs files.
2869 * @c: UBIFS file-system description object
2870 */
2871void dbg_debugfs_exit_fs(struct ubifs_info *c)
2872{
2873 debugfs_remove_recursive(c->dbg->dfs_dir);
2874}
2875
2876struct ubifs_global_debug_info ubifs_dbg;
2877
2878static struct dentry *dfs_chk_gen;
2879static struct dentry *dfs_chk_index;
2880static struct dentry *dfs_chk_orph;
2881static struct dentry *dfs_chk_lprops;
2882static struct dentry *dfs_chk_fs;
2883static struct dentry *dfs_tst_rcvry;
2884
2885static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2886 size_t count, loff_t *ppos)
2887{
2888 struct dentry *dent = file->f_path.dentry;
2889 int val;
2890
2891 if (dent == dfs_chk_gen)
2892 val = ubifs_dbg.chk_gen;
2893 else if (dent == dfs_chk_index)
2894 val = ubifs_dbg.chk_index;
2895 else if (dent == dfs_chk_orph)
2896 val = ubifs_dbg.chk_orph;
2897 else if (dent == dfs_chk_lprops)
2898 val = ubifs_dbg.chk_lprops;
2899 else if (dent == dfs_chk_fs)
2900 val = ubifs_dbg.chk_fs;
2901 else if (dent == dfs_tst_rcvry)
2902 val = ubifs_dbg.tst_rcvry;
2903 else
2904 return -EINVAL;
2905
2906 return provide_user_output(val, u, count, ppos);
2907}
2908
2909static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2910 size_t count, loff_t *ppos)
2911{
2912 struct dentry *dent = file->f_path.dentry;
2913 int val;
2914
2915 val = interpret_user_input(u, count);
2916 if (val < 0)
2917 return val;
2918
2919 if (dent == dfs_chk_gen)
2920 ubifs_dbg.chk_gen = val;
2921 else if (dent == dfs_chk_index)
2922 ubifs_dbg.chk_index = val;
2923 else if (dent == dfs_chk_orph)
2924 ubifs_dbg.chk_orph = val;
2925 else if (dent == dfs_chk_lprops)
2926 ubifs_dbg.chk_lprops = val;
2927 else if (dent == dfs_chk_fs)
2928 ubifs_dbg.chk_fs = val;
2929 else if (dent == dfs_tst_rcvry)
2930 ubifs_dbg.tst_rcvry = val;
2931 else
2932 return -EINVAL;
2933
2934 return count;
2935}
2936
2937static const struct file_operations dfs_global_fops = {
2938 .read = dfs_global_file_read,
2939 .write = dfs_global_file_write,
2940 .owner = THIS_MODULE,
2941 .llseek = no_llseek,
2942};
2943
2944/**
2945 * dbg_debugfs_init - initialize debugfs file-system.
2946 *
2947 * UBIFS uses debugfs file-system to expose various debugging knobs to
2948 * user-space. This function creates "ubifs" directory in the debugfs
2949 * file-system.
2950 */
2951void dbg_debugfs_init(void)
2952{
2953 const char *fname;
2954
2955 fname = "ubifs";
2956 dfs_rootdir = debugfs_create_dir(fname, NULL);
2957
2958 fname = "chk_general";
2959 dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2960 NULL, &dfs_global_fops);
2961
2962 fname = "chk_index";
2963 dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2964 dfs_rootdir, NULL, &dfs_global_fops);
2965
2966 fname = "chk_orphans";
2967 dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2968 dfs_rootdir, NULL, &dfs_global_fops);
2969
2970 fname = "chk_lprops";
2971 dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2972 dfs_rootdir, NULL, &dfs_global_fops);
2973
2974 fname = "chk_fs";
2975 dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2976 NULL, &dfs_global_fops);
2977
2978 fname = "tst_recovery";
2979 dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2980 dfs_rootdir, NULL, &dfs_global_fops);
2981}
2982
2983/**
2984 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2985 */
2986void dbg_debugfs_exit(void)
2987{
2988 debugfs_remove_recursive(dfs_rootdir);
2989}
2990
2991void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
2992 const char *file, int line)
2993{
2994 ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
2995
2996 switch (c->assert_action) {
2997 case ASSACT_PANIC:
2998 BUG();
2999 break;
3000
3001 case ASSACT_RO:
3002 ubifs_ro_mode(c, -EINVAL);
3003 break;
3004
3005 case ASSACT_REPORT:
3006 default:
3007 dump_stack();
3008 break;
3009
3010 }
3011}
3012
3013/**
3014 * ubifs_debugging_init - initialize UBIFS debugging.
3015 * @c: UBIFS file-system description object
3016 *
3017 * This function initializes debugging-related data for the file system.
3018 * Returns zero in case of success and a negative error code in case of
3019 * failure.
3020 */
3021int ubifs_debugging_init(struct ubifs_info *c)
3022{
3023 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3024 if (!c->dbg)
3025 return -ENOMEM;
3026
3027 return 0;
3028}
3029
3030/**
3031 * ubifs_debugging_exit - free debugging data.
3032 * @c: UBIFS file-system description object
3033 */
3034void ubifs_debugging_exit(struct ubifs_info *c)
3035{
3036 kfree(c->dbg);
3037}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11/*
12 * This file implements most of the debugging stuff which is compiled in only
13 * when it is enabled. But some debugging check functions are implemented in
14 * corresponding subsystem, just because they are closely related and utilize
15 * various local functions of those subsystems.
16 */
17
18#include <linux/module.h>
19#include <linux/debugfs.h>
20#include <linux/math64.h>
21#include <linux/uaccess.h>
22#include <linux/random.h>
23#include <linux/ctype.h>
24#include "ubifs.h"
25
26static DEFINE_SPINLOCK(dbg_lock);
27
28static const char *get_key_fmt(int fmt)
29{
30 switch (fmt) {
31 case UBIFS_SIMPLE_KEY_FMT:
32 return "simple";
33 default:
34 return "unknown/invalid format";
35 }
36}
37
38static const char *get_key_hash(int hash)
39{
40 switch (hash) {
41 case UBIFS_KEY_HASH_R5:
42 return "R5";
43 case UBIFS_KEY_HASH_TEST:
44 return "test";
45 default:
46 return "unknown/invalid name hash";
47 }
48}
49
50static const char *get_key_type(int type)
51{
52 switch (type) {
53 case UBIFS_INO_KEY:
54 return "inode";
55 case UBIFS_DENT_KEY:
56 return "direntry";
57 case UBIFS_XENT_KEY:
58 return "xentry";
59 case UBIFS_DATA_KEY:
60 return "data";
61 case UBIFS_TRUN_KEY:
62 return "truncate";
63 default:
64 return "unknown/invalid key";
65 }
66}
67
68static const char *get_dent_type(int type)
69{
70 switch (type) {
71 case UBIFS_ITYPE_REG:
72 return "file";
73 case UBIFS_ITYPE_DIR:
74 return "dir";
75 case UBIFS_ITYPE_LNK:
76 return "symlink";
77 case UBIFS_ITYPE_BLK:
78 return "blkdev";
79 case UBIFS_ITYPE_CHR:
80 return "char dev";
81 case UBIFS_ITYPE_FIFO:
82 return "fifo";
83 case UBIFS_ITYPE_SOCK:
84 return "socket";
85 default:
86 return "unknown/invalid type";
87 }
88}
89
90const char *dbg_snprintf_key(const struct ubifs_info *c,
91 const union ubifs_key *key, char *buffer, int len)
92{
93 char *p = buffer;
94 int type = key_type(c, key);
95
96 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
97 switch (type) {
98 case UBIFS_INO_KEY:
99 len -= snprintf(p, len, "(%lu, %s)",
100 (unsigned long)key_inum(c, key),
101 get_key_type(type));
102 break;
103 case UBIFS_DENT_KEY:
104 case UBIFS_XENT_KEY:
105 len -= snprintf(p, len, "(%lu, %s, %#08x)",
106 (unsigned long)key_inum(c, key),
107 get_key_type(type), key_hash(c, key));
108 break;
109 case UBIFS_DATA_KEY:
110 len -= snprintf(p, len, "(%lu, %s, %u)",
111 (unsigned long)key_inum(c, key),
112 get_key_type(type), key_block(c, key));
113 break;
114 case UBIFS_TRUN_KEY:
115 len -= snprintf(p, len, "(%lu, %s)",
116 (unsigned long)key_inum(c, key),
117 get_key_type(type));
118 break;
119 default:
120 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
121 key->u32[0], key->u32[1]);
122 }
123 } else
124 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
125 ubifs_assert(c, len > 0);
126 return p;
127}
128
129const char *dbg_ntype(int type)
130{
131 switch (type) {
132 case UBIFS_PAD_NODE:
133 return "padding node";
134 case UBIFS_SB_NODE:
135 return "superblock node";
136 case UBIFS_MST_NODE:
137 return "master node";
138 case UBIFS_REF_NODE:
139 return "reference node";
140 case UBIFS_INO_NODE:
141 return "inode node";
142 case UBIFS_DENT_NODE:
143 return "direntry node";
144 case UBIFS_XENT_NODE:
145 return "xentry node";
146 case UBIFS_DATA_NODE:
147 return "data node";
148 case UBIFS_TRUN_NODE:
149 return "truncate node";
150 case UBIFS_IDX_NODE:
151 return "indexing node";
152 case UBIFS_CS_NODE:
153 return "commit start node";
154 case UBIFS_ORPH_NODE:
155 return "orphan node";
156 case UBIFS_AUTH_NODE:
157 return "auth node";
158 default:
159 return "unknown node";
160 }
161}
162
163static const char *dbg_gtype(int type)
164{
165 switch (type) {
166 case UBIFS_NO_NODE_GROUP:
167 return "no node group";
168 case UBIFS_IN_NODE_GROUP:
169 return "in node group";
170 case UBIFS_LAST_OF_NODE_GROUP:
171 return "last of node group";
172 default:
173 return "unknown";
174 }
175}
176
177const char *dbg_cstate(int cmt_state)
178{
179 switch (cmt_state) {
180 case COMMIT_RESTING:
181 return "commit resting";
182 case COMMIT_BACKGROUND:
183 return "background commit requested";
184 case COMMIT_REQUIRED:
185 return "commit required";
186 case COMMIT_RUNNING_BACKGROUND:
187 return "BACKGROUND commit running";
188 case COMMIT_RUNNING_REQUIRED:
189 return "commit running and required";
190 case COMMIT_BROKEN:
191 return "broken commit";
192 default:
193 return "unknown commit state";
194 }
195}
196
197const char *dbg_jhead(int jhead)
198{
199 switch (jhead) {
200 case GCHD:
201 return "0 (GC)";
202 case BASEHD:
203 return "1 (base)";
204 case DATAHD:
205 return "2 (data)";
206 default:
207 return "unknown journal head";
208 }
209}
210
211static void dump_ch(const struct ubifs_ch *ch)
212{
213 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic));
214 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc));
215 pr_err("\tnode_type %d (%s)\n", ch->node_type,
216 dbg_ntype(ch->node_type));
217 pr_err("\tgroup_type %d (%s)\n", ch->group_type,
218 dbg_gtype(ch->group_type));
219 pr_err("\tsqnum %llu\n",
220 (unsigned long long)le64_to_cpu(ch->sqnum));
221 pr_err("\tlen %u\n", le32_to_cpu(ch->len));
222}
223
224void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
225{
226 const struct ubifs_inode *ui = ubifs_inode(inode);
227 struct fscrypt_name nm = {0};
228 union ubifs_key key;
229 struct ubifs_dent_node *dent, *pdent = NULL;
230 int count = 2;
231
232 pr_err("Dump in-memory inode:");
233 pr_err("\tinode %lu\n", inode->i_ino);
234 pr_err("\tsize %llu\n",
235 (unsigned long long)i_size_read(inode));
236 pr_err("\tnlink %u\n", inode->i_nlink);
237 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode));
238 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode));
239 pr_err("\tatime %u.%u\n",
240 (unsigned int) inode_get_atime_sec(inode),
241 (unsigned int) inode_get_atime_nsec(inode));
242 pr_err("\tmtime %u.%u\n",
243 (unsigned int) inode_get_mtime_sec(inode),
244 (unsigned int) inode_get_mtime_nsec(inode));
245 pr_err("\tctime %u.%u\n",
246 (unsigned int) inode_get_ctime_sec(inode),
247 (unsigned int) inode_get_ctime_nsec(inode));
248 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum);
249 pr_err("\txattr_size %u\n", ui->xattr_size);
250 pr_err("\txattr_cnt %u\n", ui->xattr_cnt);
251 pr_err("\txattr_names %u\n", ui->xattr_names);
252 pr_err("\tdirty %u\n", ui->dirty);
253 pr_err("\txattr %u\n", ui->xattr);
254 pr_err("\tbulk_read %u\n", ui->bulk_read);
255 pr_err("\tsynced_i_size %llu\n",
256 (unsigned long long)ui->synced_i_size);
257 pr_err("\tui_size %llu\n",
258 (unsigned long long)ui->ui_size);
259 pr_err("\tflags %d\n", ui->flags);
260 pr_err("\tcompr_type %d\n", ui->compr_type);
261 pr_err("\tlast_page_read %lu\n", ui->last_page_read);
262 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row);
263 pr_err("\tdata_len %d\n", ui->data_len);
264
265 if (!S_ISDIR(inode->i_mode))
266 return;
267
268 pr_err("List of directory entries:\n");
269 ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
270
271 lowest_dent_key(c, &key, inode->i_ino);
272 while (1) {
273 dent = ubifs_tnc_next_ent(c, &key, &nm);
274 if (IS_ERR(dent)) {
275 if (PTR_ERR(dent) != -ENOENT)
276 pr_err("error %ld\n", PTR_ERR(dent));
277 break;
278 }
279
280 pr_err("\t%d: inode %llu, type %s, len %d\n",
281 count++, (unsigned long long) le64_to_cpu(dent->inum),
282 get_dent_type(dent->type),
283 le16_to_cpu(dent->nlen));
284
285 fname_name(&nm) = dent->name;
286 fname_len(&nm) = le16_to_cpu(dent->nlen);
287 kfree(pdent);
288 pdent = dent;
289 key_read(c, &dent->key, &key);
290 }
291 kfree(pdent);
292}
293
294void ubifs_dump_node(const struct ubifs_info *c, const void *node, int node_len)
295{
296 int i, n, type, safe_len, max_node_len, min_node_len;
297 union ubifs_key key;
298 const struct ubifs_ch *ch = node;
299 char key_buf[DBG_KEY_BUF_LEN];
300
301 /* If the magic is incorrect, just hexdump the first bytes */
302 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
303 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
304 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
305 (void *)node, UBIFS_CH_SZ, 1);
306 return;
307 }
308
309 /* Skip dumping unknown type node */
310 type = ch->node_type;
311 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
312 pr_err("node type %d was not recognized\n", type);
313 return;
314 }
315
316 spin_lock(&dbg_lock);
317 dump_ch(node);
318
319 if (c->ranges[type].max_len == 0) {
320 max_node_len = min_node_len = c->ranges[type].len;
321 } else {
322 max_node_len = c->ranges[type].max_len;
323 min_node_len = c->ranges[type].min_len;
324 }
325 safe_len = le32_to_cpu(ch->len);
326 safe_len = safe_len > 0 ? safe_len : 0;
327 safe_len = min3(safe_len, max_node_len, node_len);
328 if (safe_len < min_node_len) {
329 pr_err("node len(%d) is too short for %s, left %d bytes:\n",
330 safe_len, dbg_ntype(type),
331 safe_len > UBIFS_CH_SZ ?
332 safe_len - (int)UBIFS_CH_SZ : 0);
333 if (safe_len > UBIFS_CH_SZ)
334 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
335 (void *)node + UBIFS_CH_SZ,
336 safe_len - UBIFS_CH_SZ, 0);
337 goto out_unlock;
338 }
339 if (safe_len != le32_to_cpu(ch->len))
340 pr_err("\ttruncated node length %d\n", safe_len);
341
342 switch (type) {
343 case UBIFS_PAD_NODE:
344 {
345 const struct ubifs_pad_node *pad = node;
346
347 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len));
348 break;
349 }
350 case UBIFS_SB_NODE:
351 {
352 const struct ubifs_sb_node *sup = node;
353 unsigned int sup_flags = le32_to_cpu(sup->flags);
354
355 pr_err("\tkey_hash %d (%s)\n",
356 (int)sup->key_hash, get_key_hash(sup->key_hash));
357 pr_err("\tkey_fmt %d (%s)\n",
358 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
359 pr_err("\tflags %#x\n", sup_flags);
360 pr_err("\tbig_lpt %u\n",
361 !!(sup_flags & UBIFS_FLG_BIGLPT));
362 pr_err("\tspace_fixup %u\n",
363 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
364 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size));
365 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size));
366 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt));
367 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt));
368 pr_err("\tmax_bud_bytes %llu\n",
369 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
370 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs));
371 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs));
372 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs));
373 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt));
374 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout));
375 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt));
376 pr_err("\tdefault_compr %u\n",
377 (int)le16_to_cpu(sup->default_compr));
378 pr_err("\trp_size %llu\n",
379 (unsigned long long)le64_to_cpu(sup->rp_size));
380 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid));
381 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid));
382 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version));
383 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran));
384 pr_err("\tUUID %pUB\n", sup->uuid);
385 break;
386 }
387 case UBIFS_MST_NODE:
388 {
389 const struct ubifs_mst_node *mst = node;
390
391 pr_err("\thighest_inum %llu\n",
392 (unsigned long long)le64_to_cpu(mst->highest_inum));
393 pr_err("\tcommit number %llu\n",
394 (unsigned long long)le64_to_cpu(mst->cmt_no));
395 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags));
396 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum));
397 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum));
398 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs));
399 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len));
400 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum));
401 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum));
402 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs));
403 pr_err("\tindex_size %llu\n",
404 (unsigned long long)le64_to_cpu(mst->index_size));
405 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum));
406 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs));
407 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum));
408 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs));
409 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum));
410 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs));
411 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum));
412 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs));
413 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum));
414 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt));
415 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs));
416 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs));
417 pr_err("\ttotal_free %llu\n",
418 (unsigned long long)le64_to_cpu(mst->total_free));
419 pr_err("\ttotal_dirty %llu\n",
420 (unsigned long long)le64_to_cpu(mst->total_dirty));
421 pr_err("\ttotal_used %llu\n",
422 (unsigned long long)le64_to_cpu(mst->total_used));
423 pr_err("\ttotal_dead %llu\n",
424 (unsigned long long)le64_to_cpu(mst->total_dead));
425 pr_err("\ttotal_dark %llu\n",
426 (unsigned long long)le64_to_cpu(mst->total_dark));
427 break;
428 }
429 case UBIFS_REF_NODE:
430 {
431 const struct ubifs_ref_node *ref = node;
432
433 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum));
434 pr_err("\toffs %u\n", le32_to_cpu(ref->offs));
435 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead));
436 break;
437 }
438 case UBIFS_INO_NODE:
439 {
440 const struct ubifs_ino_node *ino = node;
441
442 key_read(c, &ino->key, &key);
443 pr_err("\tkey %s\n",
444 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
445 pr_err("\tcreat_sqnum %llu\n",
446 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
447 pr_err("\tsize %llu\n",
448 (unsigned long long)le64_to_cpu(ino->size));
449 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink));
450 pr_err("\tatime %lld.%u\n",
451 (long long)le64_to_cpu(ino->atime_sec),
452 le32_to_cpu(ino->atime_nsec));
453 pr_err("\tmtime %lld.%u\n",
454 (long long)le64_to_cpu(ino->mtime_sec),
455 le32_to_cpu(ino->mtime_nsec));
456 pr_err("\tctime %lld.%u\n",
457 (long long)le64_to_cpu(ino->ctime_sec),
458 le32_to_cpu(ino->ctime_nsec));
459 pr_err("\tuid %u\n", le32_to_cpu(ino->uid));
460 pr_err("\tgid %u\n", le32_to_cpu(ino->gid));
461 pr_err("\tmode %u\n", le32_to_cpu(ino->mode));
462 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags));
463 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt));
464 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size));
465 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names));
466 pr_err("\tcompr_type %#x\n",
467 (int)le16_to_cpu(ino->compr_type));
468 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len));
469 break;
470 }
471 case UBIFS_DENT_NODE:
472 case UBIFS_XENT_NODE:
473 {
474 const struct ubifs_dent_node *dent = node;
475 int nlen = le16_to_cpu(dent->nlen);
476
477 key_read(c, &dent->key, &key);
478 pr_err("\tkey %s\n",
479 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
480 pr_err("\tinum %llu\n",
481 (unsigned long long)le64_to_cpu(dent->inum));
482 pr_err("\ttype %d\n", (int)dent->type);
483 pr_err("\tnlen %d\n", nlen);
484 pr_err("\tname ");
485
486 if (nlen > UBIFS_MAX_NLEN ||
487 nlen > safe_len - UBIFS_DENT_NODE_SZ)
488 pr_err("(bad name length, not printing, bad or corrupted node)");
489 else {
490 for (i = 0; i < nlen && dent->name[i]; i++)
491 pr_cont("%c", isprint(dent->name[i]) ?
492 dent->name[i] : '?');
493 }
494 pr_cont("\n");
495
496 break;
497 }
498 case UBIFS_DATA_NODE:
499 {
500 const struct ubifs_data_node *dn = node;
501
502 key_read(c, &dn->key, &key);
503 pr_err("\tkey %s\n",
504 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
505 pr_err("\tsize %u\n", le32_to_cpu(dn->size));
506 pr_err("\tcompr_typ %d\n",
507 (int)le16_to_cpu(dn->compr_type));
508 pr_err("\tdata size %u\n",
509 le32_to_cpu(ch->len) - (unsigned int)UBIFS_DATA_NODE_SZ);
510 pr_err("\tdata (length = %d):\n",
511 safe_len - (int)UBIFS_DATA_NODE_SZ);
512 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
513 (void *)&dn->data,
514 safe_len - (int)UBIFS_DATA_NODE_SZ, 0);
515 break;
516 }
517 case UBIFS_TRUN_NODE:
518 {
519 const struct ubifs_trun_node *trun = node;
520
521 pr_err("\tinum %u\n", le32_to_cpu(trun->inum));
522 pr_err("\told_size %llu\n",
523 (unsigned long long)le64_to_cpu(trun->old_size));
524 pr_err("\tnew_size %llu\n",
525 (unsigned long long)le64_to_cpu(trun->new_size));
526 break;
527 }
528 case UBIFS_IDX_NODE:
529 {
530 const struct ubifs_idx_node *idx = node;
531 int max_child_cnt = (safe_len - UBIFS_IDX_NODE_SZ) /
532 (ubifs_idx_node_sz(c, 1) -
533 UBIFS_IDX_NODE_SZ);
534
535 n = min_t(int, le16_to_cpu(idx->child_cnt), max_child_cnt);
536 pr_err("\tchild_cnt %d\n", (int)le16_to_cpu(idx->child_cnt));
537 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level));
538 pr_err("\tBranches:\n");
539
540 for (i = 0; i < n && i < c->fanout; i++) {
541 const struct ubifs_branch *br;
542
543 br = ubifs_idx_branch(c, idx, i);
544 key_read(c, &br->key, &key);
545 pr_err("\t%d: LEB %d:%d len %d key %s\n",
546 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
547 le32_to_cpu(br->len),
548 dbg_snprintf_key(c, &key, key_buf,
549 DBG_KEY_BUF_LEN));
550 }
551 break;
552 }
553 case UBIFS_CS_NODE:
554 break;
555 case UBIFS_ORPH_NODE:
556 {
557 const struct ubifs_orph_node *orph = node;
558
559 pr_err("\tcommit number %llu\n",
560 (unsigned long long)
561 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
562 pr_err("\tlast node flag %llu\n",
563 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
564 n = (safe_len - UBIFS_ORPH_NODE_SZ) >> 3;
565 pr_err("\t%d orphan inode numbers:\n", n);
566 for (i = 0; i < n; i++)
567 pr_err("\t ino %llu\n",
568 (unsigned long long)le64_to_cpu(orph->inos[i]));
569 break;
570 }
571 case UBIFS_AUTH_NODE:
572 {
573 break;
574 }
575 default:
576 pr_err("node type %d was not recognized\n", type);
577 }
578
579out_unlock:
580 spin_unlock(&dbg_lock);
581}
582
583void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
584{
585 spin_lock(&dbg_lock);
586 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
587 req->new_ino, req->dirtied_ino);
588 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
589 req->new_ino_d, req->dirtied_ino_d);
590 pr_err("\tnew_page %d, dirtied_page %d\n",
591 req->new_page, req->dirtied_page);
592 pr_err("\tnew_dent %d, mod_dent %d\n",
593 req->new_dent, req->mod_dent);
594 pr_err("\tidx_growth %d\n", req->idx_growth);
595 pr_err("\tdata_growth %d dd_growth %d\n",
596 req->data_growth, req->dd_growth);
597 spin_unlock(&dbg_lock);
598}
599
600void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
601{
602 spin_lock(&dbg_lock);
603 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
604 current->pid, lst->empty_lebs, lst->idx_lebs);
605 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
606 lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
607 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
608 lst->total_used, lst->total_dark, lst->total_dead);
609 spin_unlock(&dbg_lock);
610}
611
612void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
613{
614 int i;
615 struct rb_node *rb;
616 struct ubifs_bud *bud;
617 struct ubifs_gced_idx_leb *idx_gc;
618 long long available, outstanding, free;
619
620 spin_lock(&c->space_lock);
621 spin_lock(&dbg_lock);
622 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
623 current->pid, bi->data_growth + bi->dd_growth,
624 bi->data_growth + bi->dd_growth + bi->idx_growth);
625 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
626 bi->data_growth, bi->dd_growth, bi->idx_growth);
627 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
628 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
629 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
630 bi->page_budget, bi->inode_budget, bi->dent_budget);
631 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
632 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
633 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
634
635 if (bi != &c->bi)
636 /*
637 * If we are dumping saved budgeting data, do not print
638 * additional information which is about the current state, not
639 * the old one which corresponded to the saved budgeting data.
640 */
641 goto out_unlock;
642
643 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
644 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
645 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
646 atomic_long_read(&c->dirty_pg_cnt),
647 atomic_long_read(&c->dirty_zn_cnt),
648 atomic_long_read(&c->clean_zn_cnt));
649 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
650
651 /* If we are in R/O mode, journal heads do not exist */
652 if (c->jheads)
653 for (i = 0; i < c->jhead_cnt; i++)
654 pr_err("\tjhead %s\t LEB %d\n",
655 dbg_jhead(c->jheads[i].wbuf.jhead),
656 c->jheads[i].wbuf.lnum);
657 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
658 bud = rb_entry(rb, struct ubifs_bud, rb);
659 pr_err("\tbud LEB %d\n", bud->lnum);
660 }
661 list_for_each_entry(bud, &c->old_buds, list)
662 pr_err("\told bud LEB %d\n", bud->lnum);
663 list_for_each_entry(idx_gc, &c->idx_gc, list)
664 pr_err("\tGC'ed idx LEB %d unmap %d\n",
665 idx_gc->lnum, idx_gc->unmap);
666 pr_err("\tcommit state %d\n", c->cmt_state);
667
668 /* Print budgeting predictions */
669 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
670 outstanding = c->bi.data_growth + c->bi.dd_growth;
671 free = ubifs_get_free_space_nolock(c);
672 pr_err("Budgeting predictions:\n");
673 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
674 available, outstanding, free);
675out_unlock:
676 spin_unlock(&dbg_lock);
677 spin_unlock(&c->space_lock);
678}
679
680void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
681{
682 int i, spc, dark = 0, dead = 0;
683 struct rb_node *rb;
684 struct ubifs_bud *bud;
685
686 spc = lp->free + lp->dirty;
687 if (spc < c->dead_wm)
688 dead = spc;
689 else
690 dark = ubifs_calc_dark(c, spc);
691
692 if (lp->flags & LPROPS_INDEX)
693 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
694 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
695 lp->flags);
696 else
697 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
698 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
699 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
700
701 if (lp->flags & LPROPS_TAKEN) {
702 if (lp->flags & LPROPS_INDEX)
703 pr_cont("index, taken");
704 else
705 pr_cont("taken");
706 } else {
707 const char *s;
708
709 if (lp->flags & LPROPS_INDEX) {
710 switch (lp->flags & LPROPS_CAT_MASK) {
711 case LPROPS_DIRTY_IDX:
712 s = "dirty index";
713 break;
714 case LPROPS_FRDI_IDX:
715 s = "freeable index";
716 break;
717 default:
718 s = "index";
719 }
720 } else {
721 switch (lp->flags & LPROPS_CAT_MASK) {
722 case LPROPS_UNCAT:
723 s = "not categorized";
724 break;
725 case LPROPS_DIRTY:
726 s = "dirty";
727 break;
728 case LPROPS_FREE:
729 s = "free";
730 break;
731 case LPROPS_EMPTY:
732 s = "empty";
733 break;
734 case LPROPS_FREEABLE:
735 s = "freeable";
736 break;
737 default:
738 s = NULL;
739 break;
740 }
741 }
742 pr_cont("%s", s);
743 }
744
745 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
746 bud = rb_entry(rb, struct ubifs_bud, rb);
747 if (bud->lnum == lp->lnum) {
748 int head = 0;
749 for (i = 0; i < c->jhead_cnt; i++) {
750 /*
751 * Note, if we are in R/O mode or in the middle
752 * of mounting/re-mounting, the write-buffers do
753 * not exist.
754 */
755 if (c->jheads &&
756 lp->lnum == c->jheads[i].wbuf.lnum) {
757 pr_cont(", jhead %s", dbg_jhead(i));
758 head = 1;
759 }
760 }
761 if (!head)
762 pr_cont(", bud of jhead %s",
763 dbg_jhead(bud->jhead));
764 }
765 }
766 if (lp->lnum == c->gc_lnum)
767 pr_cont(", GC LEB");
768 pr_cont(")\n");
769}
770
771void ubifs_dump_lprops(struct ubifs_info *c)
772{
773 int lnum, err;
774 struct ubifs_lprops lp;
775 struct ubifs_lp_stats lst;
776
777 pr_err("(pid %d) start dumping LEB properties\n", current->pid);
778 ubifs_get_lp_stats(c, &lst);
779 ubifs_dump_lstats(&lst);
780
781 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
782 err = ubifs_read_one_lp(c, lnum, &lp);
783 if (err) {
784 ubifs_err(c, "cannot read lprops for LEB %d", lnum);
785 continue;
786 }
787
788 ubifs_dump_lprop(c, &lp);
789 }
790 pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
791}
792
793void ubifs_dump_lpt_info(struct ubifs_info *c)
794{
795 int i;
796
797 spin_lock(&dbg_lock);
798 pr_err("(pid %d) dumping LPT information\n", current->pid);
799 pr_err("\tlpt_sz: %lld\n", c->lpt_sz);
800 pr_err("\tpnode_sz: %d\n", c->pnode_sz);
801 pr_err("\tnnode_sz: %d\n", c->nnode_sz);
802 pr_err("\tltab_sz: %d\n", c->ltab_sz);
803 pr_err("\tlsave_sz: %d\n", c->lsave_sz);
804 pr_err("\tbig_lpt: %u\n", c->big_lpt);
805 pr_err("\tlpt_hght: %d\n", c->lpt_hght);
806 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt);
807 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt);
808 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
809 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
810 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt);
811 pr_err("\tspace_bits: %d\n", c->space_bits);
812 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
813 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
814 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
815 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits);
816 pr_err("\tlnum_bits: %d\n", c->lnum_bits);
817 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
818 pr_err("\tLPT head is at %d:%d\n",
819 c->nhead_lnum, c->nhead_offs);
820 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
821 if (c->big_lpt)
822 pr_err("\tLPT lsave is at %d:%d\n",
823 c->lsave_lnum, c->lsave_offs);
824 for (i = 0; i < c->lpt_lebs; i++)
825 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
826 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
827 c->ltab[i].tgc, c->ltab[i].cmt);
828 spin_unlock(&dbg_lock);
829}
830
831void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
832{
833 struct ubifs_scan_leb *sleb;
834 struct ubifs_scan_node *snod;
835 void *buf;
836
837 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
838
839 buf = __vmalloc(c->leb_size, GFP_NOFS);
840 if (!buf) {
841 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
842 return;
843 }
844
845 sleb = ubifs_scan(c, lnum, 0, buf, 0);
846 if (IS_ERR(sleb)) {
847 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
848 goto out;
849 }
850
851 pr_err("LEB %d has %d nodes ending at %d\n", lnum,
852 sleb->nodes_cnt, sleb->endpt);
853
854 list_for_each_entry(snod, &sleb->nodes, list) {
855 cond_resched();
856 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
857 snod->offs, snod->len);
858 ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
859 }
860
861 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
862 ubifs_scan_destroy(sleb);
863
864out:
865 vfree(buf);
866 return;
867}
868
869void ubifs_dump_znode(const struct ubifs_info *c,
870 const struct ubifs_znode *znode)
871{
872 int n;
873 const struct ubifs_zbranch *zbr;
874 char key_buf[DBG_KEY_BUF_LEN];
875
876 spin_lock(&dbg_lock);
877 if (znode->parent)
878 zbr = &znode->parent->zbranch[znode->iip];
879 else
880 zbr = &c->zroot;
881
882 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
883 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
884 znode->level, znode->child_cnt, znode->flags);
885
886 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
887 spin_unlock(&dbg_lock);
888 return;
889 }
890
891 pr_err("zbranches:\n");
892 for (n = 0; n < znode->child_cnt; n++) {
893 zbr = &znode->zbranch[n];
894 if (znode->level > 0)
895 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
896 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
897 dbg_snprintf_key(c, &zbr->key, key_buf,
898 DBG_KEY_BUF_LEN));
899 else
900 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
901 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
902 dbg_snprintf_key(c, &zbr->key, key_buf,
903 DBG_KEY_BUF_LEN));
904 }
905 spin_unlock(&dbg_lock);
906}
907
908void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
909{
910 int i;
911
912 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
913 current->pid, cat, heap->cnt);
914 for (i = 0; i < heap->cnt; i++) {
915 struct ubifs_lprops *lprops = heap->arr[i];
916
917 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
918 i, lprops->lnum, lprops->hpos, lprops->free,
919 lprops->dirty, lprops->flags);
920 }
921 pr_err("(pid %d) finish dumping heap\n", current->pid);
922}
923
924void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
925 struct ubifs_nnode *parent, int iip)
926{
927 int i;
928
929 pr_err("(pid %d) dumping pnode:\n", current->pid);
930 pr_err("\taddress %zx parent %zx cnext %zx\n",
931 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
932 pr_err("\tflags %lu iip %d level %d num %d\n",
933 pnode->flags, iip, pnode->level, pnode->num);
934 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
935 struct ubifs_lprops *lp = &pnode->lprops[i];
936
937 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
938 i, lp->free, lp->dirty, lp->flags, lp->lnum);
939 }
940}
941
942void ubifs_dump_tnc(struct ubifs_info *c)
943{
944 struct ubifs_znode *znode;
945 int level;
946
947 pr_err("\n");
948 pr_err("(pid %d) start dumping TNC tree\n", current->pid);
949 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
950 level = znode->level;
951 pr_err("== Level %d ==\n", level);
952 while (znode) {
953 if (level != znode->level) {
954 level = znode->level;
955 pr_err("== Level %d ==\n", level);
956 }
957 ubifs_dump_znode(c, znode);
958 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
959 }
960 pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
961}
962
963static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
964 void *priv)
965{
966 ubifs_dump_znode(c, znode);
967 return 0;
968}
969
970/**
971 * ubifs_dump_index - dump the on-flash index.
972 * @c: UBIFS file-system description object
973 *
974 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
975 * which dumps only in-memory znodes and does not read znodes which from flash.
976 */
977void ubifs_dump_index(struct ubifs_info *c)
978{
979 dbg_walk_index(c, NULL, dump_znode, NULL);
980}
981
982/**
983 * dbg_save_space_info - save information about flash space.
984 * @c: UBIFS file-system description object
985 *
986 * This function saves information about UBIFS free space, dirty space, etc, in
987 * order to check it later.
988 */
989void dbg_save_space_info(struct ubifs_info *c)
990{
991 struct ubifs_debug_info *d = c->dbg;
992 int freeable_cnt;
993
994 spin_lock(&c->space_lock);
995 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
996 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
997 d->saved_idx_gc_cnt = c->idx_gc_cnt;
998
999 /*
1000 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1001 * affects the free space calculations, and UBIFS might not know about
1002 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1003 * only when we read their lprops, and we do this only lazily, upon the
1004 * need. So at any given point of time @c->freeable_cnt might be not
1005 * exactly accurate.
1006 *
1007 * Just one example about the issue we hit when we did not zero
1008 * @c->freeable_cnt.
1009 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1010 * amount of free space in @d->saved_free
1011 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1012 * information from flash, where we cache LEBs from various
1013 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1014 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1015 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1016 * -> 'ubifs_add_to_cat()').
1017 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1018 * becomes %1.
1019 * 4. We calculate the amount of free space when the re-mount is
1020 * finished in 'dbg_check_space_info()' and it does not match
1021 * @d->saved_free.
1022 */
1023 freeable_cnt = c->freeable_cnt;
1024 c->freeable_cnt = 0;
1025 d->saved_free = ubifs_get_free_space_nolock(c);
1026 c->freeable_cnt = freeable_cnt;
1027 spin_unlock(&c->space_lock);
1028}
1029
1030/**
1031 * dbg_check_space_info - check flash space information.
1032 * @c: UBIFS file-system description object
1033 *
1034 * This function compares current flash space information with the information
1035 * which was saved when the 'dbg_save_space_info()' function was called.
1036 * Returns zero if the information has not changed, and %-EINVAL if it has
1037 * changed.
1038 */
1039int dbg_check_space_info(struct ubifs_info *c)
1040{
1041 struct ubifs_debug_info *d = c->dbg;
1042 struct ubifs_lp_stats lst;
1043 long long free;
1044 int freeable_cnt;
1045
1046 spin_lock(&c->space_lock);
1047 freeable_cnt = c->freeable_cnt;
1048 c->freeable_cnt = 0;
1049 free = ubifs_get_free_space_nolock(c);
1050 c->freeable_cnt = freeable_cnt;
1051 spin_unlock(&c->space_lock);
1052
1053 if (free != d->saved_free) {
1054 ubifs_err(c, "free space changed from %lld to %lld",
1055 d->saved_free, free);
1056 goto out;
1057 }
1058
1059 return 0;
1060
1061out:
1062 ubifs_msg(c, "saved lprops statistics dump");
1063 ubifs_dump_lstats(&d->saved_lst);
1064 ubifs_msg(c, "saved budgeting info dump");
1065 ubifs_dump_budg(c, &d->saved_bi);
1066 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1067 ubifs_msg(c, "current lprops statistics dump");
1068 ubifs_get_lp_stats(c, &lst);
1069 ubifs_dump_lstats(&lst);
1070 ubifs_msg(c, "current budgeting info dump");
1071 ubifs_dump_budg(c, &c->bi);
1072 dump_stack();
1073 return -EINVAL;
1074}
1075
1076/**
1077 * dbg_check_synced_i_size - check synchronized inode size.
1078 * @c: UBIFS file-system description object
1079 * @inode: inode to check
1080 *
1081 * If inode is clean, synchronized inode size has to be equivalent to current
1082 * inode size. This function has to be called only for locked inodes (@i_mutex
1083 * has to be locked). Returns %0 if synchronized inode size if correct, and
1084 * %-EINVAL if not.
1085 */
1086int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1087{
1088 int err = 0;
1089 struct ubifs_inode *ui = ubifs_inode(inode);
1090
1091 if (!dbg_is_chk_gen(c))
1092 return 0;
1093 if (!S_ISREG(inode->i_mode))
1094 return 0;
1095
1096 mutex_lock(&ui->ui_mutex);
1097 spin_lock(&ui->ui_lock);
1098 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1099 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1100 ui->ui_size, ui->synced_i_size);
1101 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1102 inode->i_mode, i_size_read(inode));
1103 dump_stack();
1104 err = -EINVAL;
1105 }
1106 spin_unlock(&ui->ui_lock);
1107 mutex_unlock(&ui->ui_mutex);
1108 return err;
1109}
1110
1111/*
1112 * dbg_check_dir - check directory inode size and link count.
1113 * @c: UBIFS file-system description object
1114 * @dir: the directory to calculate size for
1115 * @size: the result is returned here
1116 *
1117 * This function makes sure that directory size and link count are correct.
1118 * Returns zero in case of success and a negative error code in case of
1119 * failure.
1120 *
1121 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1122 * calling this function.
1123 */
1124int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1125{
1126 unsigned int nlink = 2;
1127 union ubifs_key key;
1128 struct ubifs_dent_node *dent, *pdent = NULL;
1129 struct fscrypt_name nm = {0};
1130 loff_t size = UBIFS_INO_NODE_SZ;
1131
1132 if (!dbg_is_chk_gen(c))
1133 return 0;
1134
1135 if (!S_ISDIR(dir->i_mode))
1136 return 0;
1137
1138 lowest_dent_key(c, &key, dir->i_ino);
1139 while (1) {
1140 int err;
1141
1142 dent = ubifs_tnc_next_ent(c, &key, &nm);
1143 if (IS_ERR(dent)) {
1144 err = PTR_ERR(dent);
1145 if (err == -ENOENT)
1146 break;
1147 kfree(pdent);
1148 return err;
1149 }
1150
1151 fname_name(&nm) = dent->name;
1152 fname_len(&nm) = le16_to_cpu(dent->nlen);
1153 size += CALC_DENT_SIZE(fname_len(&nm));
1154 if (dent->type == UBIFS_ITYPE_DIR)
1155 nlink += 1;
1156 kfree(pdent);
1157 pdent = dent;
1158 key_read(c, &dent->key, &key);
1159 }
1160 kfree(pdent);
1161
1162 if (i_size_read(dir) != size) {
1163 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1164 dir->i_ino, (unsigned long long)i_size_read(dir),
1165 (unsigned long long)size);
1166 ubifs_dump_inode(c, dir);
1167 dump_stack();
1168 return -EINVAL;
1169 }
1170 if (dir->i_nlink != nlink) {
1171 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1172 dir->i_ino, dir->i_nlink, nlink);
1173 ubifs_dump_inode(c, dir);
1174 dump_stack();
1175 return -EINVAL;
1176 }
1177
1178 return 0;
1179}
1180
1181/**
1182 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1183 * @c: UBIFS file-system description object
1184 * @zbr1: first zbranch
1185 * @zbr2: following zbranch
1186 *
1187 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1188 * names of the direntries/xentries which are referred by the keys. This
1189 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1190 * sure the name of direntry/xentry referred by @zbr1 is less than
1191 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1192 * and a negative error code in case of failure.
1193 */
1194static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1195 struct ubifs_zbranch *zbr2)
1196{
1197 int err, nlen1, nlen2, cmp;
1198 struct ubifs_dent_node *dent1, *dent2;
1199 union ubifs_key key;
1200 char key_buf[DBG_KEY_BUF_LEN];
1201
1202 ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1203 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1204 if (!dent1)
1205 return -ENOMEM;
1206 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1207 if (!dent2) {
1208 err = -ENOMEM;
1209 goto out_free;
1210 }
1211
1212 err = ubifs_tnc_read_node(c, zbr1, dent1);
1213 if (err)
1214 goto out_free;
1215 err = ubifs_validate_entry(c, dent1);
1216 if (err)
1217 goto out_free;
1218
1219 err = ubifs_tnc_read_node(c, zbr2, dent2);
1220 if (err)
1221 goto out_free;
1222 err = ubifs_validate_entry(c, dent2);
1223 if (err)
1224 goto out_free;
1225
1226 /* Make sure node keys are the same as in zbranch */
1227 err = 1;
1228 key_read(c, &dent1->key, &key);
1229 if (keys_cmp(c, &zbr1->key, &key)) {
1230 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1231 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1232 DBG_KEY_BUF_LEN));
1233 ubifs_err(c, "but it should have key %s according to tnc",
1234 dbg_snprintf_key(c, &zbr1->key, key_buf,
1235 DBG_KEY_BUF_LEN));
1236 ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1237 goto out_free;
1238 }
1239
1240 key_read(c, &dent2->key, &key);
1241 if (keys_cmp(c, &zbr2->key, &key)) {
1242 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1243 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1244 DBG_KEY_BUF_LEN));
1245 ubifs_err(c, "but it should have key %s according to tnc",
1246 dbg_snprintf_key(c, &zbr2->key, key_buf,
1247 DBG_KEY_BUF_LEN));
1248 ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1249 goto out_free;
1250 }
1251
1252 nlen1 = le16_to_cpu(dent1->nlen);
1253 nlen2 = le16_to_cpu(dent2->nlen);
1254
1255 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1256 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1257 err = 0;
1258 goto out_free;
1259 }
1260 if (cmp == 0 && nlen1 == nlen2)
1261 ubifs_err(c, "2 xent/dent nodes with the same name");
1262 else
1263 ubifs_err(c, "bad order of colliding key %s",
1264 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1265
1266 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1267 ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1268 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1269 ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1270
1271out_free:
1272 kfree(dent2);
1273 kfree(dent1);
1274 return err;
1275}
1276
1277/**
1278 * dbg_check_znode - check if znode is all right.
1279 * @c: UBIFS file-system description object
1280 * @zbr: zbranch which points to this znode
1281 *
1282 * This function makes sure that znode referred to by @zbr is all right.
1283 * Returns zero if it is, and %-EINVAL if it is not.
1284 */
1285static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1286{
1287 struct ubifs_znode *znode = zbr->znode;
1288 struct ubifs_znode *zp = znode->parent;
1289 int n, err, cmp;
1290
1291 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1292 err = 1;
1293 goto out;
1294 }
1295 if (znode->level < 0) {
1296 err = 2;
1297 goto out;
1298 }
1299 if (znode->iip < 0 || znode->iip >= c->fanout) {
1300 err = 3;
1301 goto out;
1302 }
1303
1304 if (zbr->len == 0)
1305 /* Only dirty zbranch may have no on-flash nodes */
1306 if (!ubifs_zn_dirty(znode)) {
1307 err = 4;
1308 goto out;
1309 }
1310
1311 if (ubifs_zn_dirty(znode)) {
1312 /*
1313 * If znode is dirty, its parent has to be dirty as well. The
1314 * order of the operation is important, so we have to have
1315 * memory barriers.
1316 */
1317 smp_mb();
1318 if (zp && !ubifs_zn_dirty(zp)) {
1319 /*
1320 * The dirty flag is atomic and is cleared outside the
1321 * TNC mutex, so znode's dirty flag may now have
1322 * been cleared. The child is always cleared before the
1323 * parent, so we just need to check again.
1324 */
1325 smp_mb();
1326 if (ubifs_zn_dirty(znode)) {
1327 err = 5;
1328 goto out;
1329 }
1330 }
1331 }
1332
1333 if (zp) {
1334 const union ubifs_key *min, *max;
1335
1336 if (znode->level != zp->level - 1) {
1337 err = 6;
1338 goto out;
1339 }
1340
1341 /* Make sure the 'parent' pointer in our znode is correct */
1342 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1343 if (!err) {
1344 /* This zbranch does not exist in the parent */
1345 err = 7;
1346 goto out;
1347 }
1348
1349 if (znode->iip >= zp->child_cnt) {
1350 err = 8;
1351 goto out;
1352 }
1353
1354 if (znode->iip != n) {
1355 /* This may happen only in case of collisions */
1356 if (keys_cmp(c, &zp->zbranch[n].key,
1357 &zp->zbranch[znode->iip].key)) {
1358 err = 9;
1359 goto out;
1360 }
1361 n = znode->iip;
1362 }
1363
1364 /*
1365 * Make sure that the first key in our znode is greater than or
1366 * equal to the key in the pointing zbranch.
1367 */
1368 min = &zbr->key;
1369 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1370 if (cmp == 1) {
1371 err = 10;
1372 goto out;
1373 }
1374
1375 if (n + 1 < zp->child_cnt) {
1376 max = &zp->zbranch[n + 1].key;
1377
1378 /*
1379 * Make sure the last key in our znode is less or
1380 * equivalent than the key in the zbranch which goes
1381 * after our pointing zbranch.
1382 */
1383 cmp = keys_cmp(c, max,
1384 &znode->zbranch[znode->child_cnt - 1].key);
1385 if (cmp == -1) {
1386 err = 11;
1387 goto out;
1388 }
1389 }
1390 } else {
1391 /* This may only be root znode */
1392 if (zbr != &c->zroot) {
1393 err = 12;
1394 goto out;
1395 }
1396 }
1397
1398 /*
1399 * Make sure that next key is greater or equivalent then the previous
1400 * one.
1401 */
1402 for (n = 1; n < znode->child_cnt; n++) {
1403 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1404 &znode->zbranch[n].key);
1405 if (cmp > 0) {
1406 err = 13;
1407 goto out;
1408 }
1409 if (cmp == 0) {
1410 /* This can only be keys with colliding hash */
1411 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1412 err = 14;
1413 goto out;
1414 }
1415
1416 if (znode->level != 0 || c->replaying)
1417 continue;
1418
1419 /*
1420 * Colliding keys should follow binary order of
1421 * corresponding xentry/dentry names.
1422 */
1423 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1424 &znode->zbranch[n]);
1425 if (err < 0)
1426 return err;
1427 if (err) {
1428 err = 15;
1429 goto out;
1430 }
1431 }
1432 }
1433
1434 for (n = 0; n < znode->child_cnt; n++) {
1435 if (!znode->zbranch[n].znode &&
1436 (znode->zbranch[n].lnum == 0 ||
1437 znode->zbranch[n].len == 0)) {
1438 err = 16;
1439 goto out;
1440 }
1441
1442 if (znode->zbranch[n].lnum != 0 &&
1443 znode->zbranch[n].len == 0) {
1444 err = 17;
1445 goto out;
1446 }
1447
1448 if (znode->zbranch[n].lnum == 0 &&
1449 znode->zbranch[n].len != 0) {
1450 err = 18;
1451 goto out;
1452 }
1453
1454 if (znode->zbranch[n].lnum == 0 &&
1455 znode->zbranch[n].offs != 0) {
1456 err = 19;
1457 goto out;
1458 }
1459
1460 if (znode->level != 0 && znode->zbranch[n].znode)
1461 if (znode->zbranch[n].znode->parent != znode) {
1462 err = 20;
1463 goto out;
1464 }
1465 }
1466
1467 return 0;
1468
1469out:
1470 ubifs_err(c, "failed, error %d", err);
1471 ubifs_msg(c, "dump of the znode");
1472 ubifs_dump_znode(c, znode);
1473 if (zp) {
1474 ubifs_msg(c, "dump of the parent znode");
1475 ubifs_dump_znode(c, zp);
1476 }
1477 dump_stack();
1478 return -EINVAL;
1479}
1480
1481/**
1482 * dbg_check_tnc - check TNC tree.
1483 * @c: UBIFS file-system description object
1484 * @extra: do extra checks that are possible at start commit
1485 *
1486 * This function traverses whole TNC tree and checks every znode. Returns zero
1487 * if everything is all right and %-EINVAL if something is wrong with TNC.
1488 */
1489int dbg_check_tnc(struct ubifs_info *c, int extra)
1490{
1491 struct ubifs_znode *znode;
1492 long clean_cnt = 0, dirty_cnt = 0;
1493 int err, last;
1494
1495 if (!dbg_is_chk_index(c))
1496 return 0;
1497
1498 ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1499 if (!c->zroot.znode)
1500 return 0;
1501
1502 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1503 while (1) {
1504 struct ubifs_znode *prev;
1505 struct ubifs_zbranch *zbr;
1506
1507 if (!znode->parent)
1508 zbr = &c->zroot;
1509 else
1510 zbr = &znode->parent->zbranch[znode->iip];
1511
1512 err = dbg_check_znode(c, zbr);
1513 if (err)
1514 return err;
1515
1516 if (extra) {
1517 if (ubifs_zn_dirty(znode))
1518 dirty_cnt += 1;
1519 else
1520 clean_cnt += 1;
1521 }
1522
1523 prev = znode;
1524 znode = ubifs_tnc_postorder_next(c, znode);
1525 if (!znode)
1526 break;
1527
1528 /*
1529 * If the last key of this znode is equivalent to the first key
1530 * of the next znode (collision), then check order of the keys.
1531 */
1532 last = prev->child_cnt - 1;
1533 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1534 !keys_cmp(c, &prev->zbranch[last].key,
1535 &znode->zbranch[0].key)) {
1536 err = dbg_check_key_order(c, &prev->zbranch[last],
1537 &znode->zbranch[0]);
1538 if (err < 0)
1539 return err;
1540 if (err) {
1541 ubifs_msg(c, "first znode");
1542 ubifs_dump_znode(c, prev);
1543 ubifs_msg(c, "second znode");
1544 ubifs_dump_znode(c, znode);
1545 return -EINVAL;
1546 }
1547 }
1548 }
1549
1550 if (extra) {
1551 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1552 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1553 atomic_long_read(&c->clean_zn_cnt),
1554 clean_cnt);
1555 return -EINVAL;
1556 }
1557 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1558 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1559 atomic_long_read(&c->dirty_zn_cnt),
1560 dirty_cnt);
1561 return -EINVAL;
1562 }
1563 }
1564
1565 return 0;
1566}
1567
1568/**
1569 * dbg_walk_index - walk the on-flash index.
1570 * @c: UBIFS file-system description object
1571 * @leaf_cb: called for each leaf node
1572 * @znode_cb: called for each indexing node
1573 * @priv: private data which is passed to callbacks
1574 *
1575 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1576 * node and @znode_cb for each indexing node. Returns zero in case of success
1577 * and a negative error code in case of failure.
1578 *
1579 * It would be better if this function removed every znode it pulled to into
1580 * the TNC, so that the behavior more closely matched the non-debugging
1581 * behavior.
1582 */
1583int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1584 dbg_znode_callback znode_cb, void *priv)
1585{
1586 int err;
1587 struct ubifs_zbranch *zbr;
1588 struct ubifs_znode *znode, *child;
1589
1590 mutex_lock(&c->tnc_mutex);
1591 /* If the root indexing node is not in TNC - pull it */
1592 if (!c->zroot.znode) {
1593 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1594 if (IS_ERR(c->zroot.znode)) {
1595 err = PTR_ERR(c->zroot.znode);
1596 c->zroot.znode = NULL;
1597 goto out_unlock;
1598 }
1599 }
1600
1601 /*
1602 * We are going to traverse the indexing tree in the postorder manner.
1603 * Go down and find the leftmost indexing node where we are going to
1604 * start from.
1605 */
1606 znode = c->zroot.znode;
1607 while (znode->level > 0) {
1608 zbr = &znode->zbranch[0];
1609 child = zbr->znode;
1610 if (!child) {
1611 child = ubifs_load_znode(c, zbr, znode, 0);
1612 if (IS_ERR(child)) {
1613 err = PTR_ERR(child);
1614 goto out_unlock;
1615 }
1616 }
1617
1618 znode = child;
1619 }
1620
1621 /* Iterate over all indexing nodes */
1622 while (1) {
1623 int idx;
1624
1625 cond_resched();
1626
1627 if (znode_cb) {
1628 err = znode_cb(c, znode, priv);
1629 if (err) {
1630 ubifs_err(c, "znode checking function returned error %d",
1631 err);
1632 ubifs_dump_znode(c, znode);
1633 goto out_dump;
1634 }
1635 }
1636 if (leaf_cb && znode->level == 0) {
1637 for (idx = 0; idx < znode->child_cnt; idx++) {
1638 zbr = &znode->zbranch[idx];
1639 err = leaf_cb(c, zbr, priv);
1640 if (err) {
1641 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1642 err, zbr->lnum, zbr->offs);
1643 goto out_dump;
1644 }
1645 }
1646 }
1647
1648 if (!znode->parent)
1649 break;
1650
1651 idx = znode->iip + 1;
1652 znode = znode->parent;
1653 if (idx < znode->child_cnt) {
1654 /* Switch to the next index in the parent */
1655 zbr = &znode->zbranch[idx];
1656 child = zbr->znode;
1657 if (!child) {
1658 child = ubifs_load_znode(c, zbr, znode, idx);
1659 if (IS_ERR(child)) {
1660 err = PTR_ERR(child);
1661 goto out_unlock;
1662 }
1663 zbr->znode = child;
1664 }
1665 znode = child;
1666 } else
1667 /*
1668 * This is the last child, switch to the parent and
1669 * continue.
1670 */
1671 continue;
1672
1673 /* Go to the lowest leftmost znode in the new sub-tree */
1674 while (znode->level > 0) {
1675 zbr = &znode->zbranch[0];
1676 child = zbr->znode;
1677 if (!child) {
1678 child = ubifs_load_znode(c, zbr, znode, 0);
1679 if (IS_ERR(child)) {
1680 err = PTR_ERR(child);
1681 goto out_unlock;
1682 }
1683 zbr->znode = child;
1684 }
1685 znode = child;
1686 }
1687 }
1688
1689 mutex_unlock(&c->tnc_mutex);
1690 return 0;
1691
1692out_dump:
1693 if (znode->parent)
1694 zbr = &znode->parent->zbranch[znode->iip];
1695 else
1696 zbr = &c->zroot;
1697 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1698 ubifs_dump_znode(c, znode);
1699out_unlock:
1700 mutex_unlock(&c->tnc_mutex);
1701 return err;
1702}
1703
1704/**
1705 * add_size - add znode size to partially calculated index size.
1706 * @c: UBIFS file-system description object
1707 * @znode: znode to add size for
1708 * @priv: partially calculated index size
1709 *
1710 * This is a helper function for 'dbg_check_idx_size()' which is called for
1711 * every indexing node and adds its size to the 'long long' variable pointed to
1712 * by @priv.
1713 */
1714static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1715{
1716 long long *idx_size = priv;
1717 int add;
1718
1719 add = ubifs_idx_node_sz(c, znode->child_cnt);
1720 add = ALIGN(add, 8);
1721 *idx_size += add;
1722 return 0;
1723}
1724
1725/**
1726 * dbg_check_idx_size - check index size.
1727 * @c: UBIFS file-system description object
1728 * @idx_size: size to check
1729 *
1730 * This function walks the UBIFS index, calculates its size and checks that the
1731 * size is equivalent to @idx_size. Returns zero in case of success and a
1732 * negative error code in case of failure.
1733 */
1734int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1735{
1736 int err;
1737 long long calc = 0;
1738
1739 if (!dbg_is_chk_index(c))
1740 return 0;
1741
1742 err = dbg_walk_index(c, NULL, add_size, &calc);
1743 if (err) {
1744 ubifs_err(c, "error %d while walking the index", err);
1745 return err;
1746 }
1747
1748 if (calc != idx_size) {
1749 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1750 calc, idx_size);
1751 dump_stack();
1752 return -EINVAL;
1753 }
1754
1755 return 0;
1756}
1757
1758/**
1759 * struct fsck_inode - information about an inode used when checking the file-system.
1760 * @rb: link in the RB-tree of inodes
1761 * @inum: inode number
1762 * @mode: inode type, permissions, etc
1763 * @nlink: inode link count
1764 * @xattr_cnt: count of extended attributes
1765 * @references: how many directory/xattr entries refer this inode (calculated
1766 * while walking the index)
1767 * @calc_cnt: for directory inode count of child directories
1768 * @size: inode size (read from on-flash inode)
1769 * @xattr_sz: summary size of all extended attributes (read from on-flash
1770 * inode)
1771 * @calc_sz: for directories calculated directory size
1772 * @calc_xcnt: count of extended attributes
1773 * @calc_xsz: calculated summary size of all extended attributes
1774 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1775 * inode (read from on-flash inode)
1776 * @calc_xnms: calculated sum of lengths of all extended attribute names
1777 */
1778struct fsck_inode {
1779 struct rb_node rb;
1780 ino_t inum;
1781 umode_t mode;
1782 unsigned int nlink;
1783 unsigned int xattr_cnt;
1784 int references;
1785 int calc_cnt;
1786 long long size;
1787 unsigned int xattr_sz;
1788 long long calc_sz;
1789 long long calc_xcnt;
1790 long long calc_xsz;
1791 unsigned int xattr_nms;
1792 long long calc_xnms;
1793};
1794
1795/**
1796 * struct fsck_data - private FS checking information.
1797 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1798 */
1799struct fsck_data {
1800 struct rb_root inodes;
1801};
1802
1803/**
1804 * add_inode - add inode information to RB-tree of inodes.
1805 * @c: UBIFS file-system description object
1806 * @fsckd: FS checking information
1807 * @ino: raw UBIFS inode to add
1808 *
1809 * This is a helper function for 'check_leaf()' which adds information about
1810 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1811 * case of success and a negative error code in case of failure.
1812 */
1813static struct fsck_inode *add_inode(struct ubifs_info *c,
1814 struct fsck_data *fsckd,
1815 struct ubifs_ino_node *ino)
1816{
1817 struct rb_node **p, *parent = NULL;
1818 struct fsck_inode *fscki;
1819 ino_t inum = key_inum_flash(c, &ino->key);
1820 struct inode *inode;
1821 struct ubifs_inode *ui;
1822
1823 p = &fsckd->inodes.rb_node;
1824 while (*p) {
1825 parent = *p;
1826 fscki = rb_entry(parent, struct fsck_inode, rb);
1827 if (inum < fscki->inum)
1828 p = &(*p)->rb_left;
1829 else if (inum > fscki->inum)
1830 p = &(*p)->rb_right;
1831 else
1832 return fscki;
1833 }
1834
1835 if (inum > c->highest_inum) {
1836 ubifs_err(c, "too high inode number, max. is %lu",
1837 (unsigned long)c->highest_inum);
1838 return ERR_PTR(-EINVAL);
1839 }
1840
1841 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1842 if (!fscki)
1843 return ERR_PTR(-ENOMEM);
1844
1845 inode = ilookup(c->vfs_sb, inum);
1846
1847 fscki->inum = inum;
1848 /*
1849 * If the inode is present in the VFS inode cache, use it instead of
1850 * the on-flash inode which might be out-of-date. E.g., the size might
1851 * be out-of-date. If we do not do this, the following may happen, for
1852 * example:
1853 * 1. A power cut happens
1854 * 2. We mount the file-system R/O, the replay process fixes up the
1855 * inode size in the VFS cache, but on on-flash.
1856 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1857 * size.
1858 */
1859 if (!inode) {
1860 fscki->nlink = le32_to_cpu(ino->nlink);
1861 fscki->size = le64_to_cpu(ino->size);
1862 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1863 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1864 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1865 fscki->mode = le32_to_cpu(ino->mode);
1866 } else {
1867 ui = ubifs_inode(inode);
1868 fscki->nlink = inode->i_nlink;
1869 fscki->size = inode->i_size;
1870 fscki->xattr_cnt = ui->xattr_cnt;
1871 fscki->xattr_sz = ui->xattr_size;
1872 fscki->xattr_nms = ui->xattr_names;
1873 fscki->mode = inode->i_mode;
1874 iput(inode);
1875 }
1876
1877 if (S_ISDIR(fscki->mode)) {
1878 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1879 fscki->calc_cnt = 2;
1880 }
1881
1882 rb_link_node(&fscki->rb, parent, p);
1883 rb_insert_color(&fscki->rb, &fsckd->inodes);
1884
1885 return fscki;
1886}
1887
1888/**
1889 * search_inode - search inode in the RB-tree of inodes.
1890 * @fsckd: FS checking information
1891 * @inum: inode number to search
1892 *
1893 * This is a helper function for 'check_leaf()' which searches inode @inum in
1894 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1895 * the inode was not found.
1896 */
1897static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1898{
1899 struct rb_node *p;
1900 struct fsck_inode *fscki;
1901
1902 p = fsckd->inodes.rb_node;
1903 while (p) {
1904 fscki = rb_entry(p, struct fsck_inode, rb);
1905 if (inum < fscki->inum)
1906 p = p->rb_left;
1907 else if (inum > fscki->inum)
1908 p = p->rb_right;
1909 else
1910 return fscki;
1911 }
1912 return NULL;
1913}
1914
1915/**
1916 * read_add_inode - read inode node and add it to RB-tree of inodes.
1917 * @c: UBIFS file-system description object
1918 * @fsckd: FS checking information
1919 * @inum: inode number to read
1920 *
1921 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1922 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1923 * information pointer in case of success and a negative error code in case of
1924 * failure.
1925 */
1926static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1927 struct fsck_data *fsckd, ino_t inum)
1928{
1929 int n, err;
1930 union ubifs_key key;
1931 struct ubifs_znode *znode;
1932 struct ubifs_zbranch *zbr;
1933 struct ubifs_ino_node *ino;
1934 struct fsck_inode *fscki;
1935
1936 fscki = search_inode(fsckd, inum);
1937 if (fscki)
1938 return fscki;
1939
1940 ino_key_init(c, &key, inum);
1941 err = ubifs_lookup_level0(c, &key, &znode, &n);
1942 if (!err) {
1943 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1944 return ERR_PTR(-ENOENT);
1945 } else if (err < 0) {
1946 ubifs_err(c, "error %d while looking up inode %lu",
1947 err, (unsigned long)inum);
1948 return ERR_PTR(err);
1949 }
1950
1951 zbr = &znode->zbranch[n];
1952 if (zbr->len < UBIFS_INO_NODE_SZ) {
1953 ubifs_err(c, "bad node %lu node length %d",
1954 (unsigned long)inum, zbr->len);
1955 return ERR_PTR(-EINVAL);
1956 }
1957
1958 ino = kmalloc(zbr->len, GFP_NOFS);
1959 if (!ino)
1960 return ERR_PTR(-ENOMEM);
1961
1962 err = ubifs_tnc_read_node(c, zbr, ino);
1963 if (err) {
1964 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1965 zbr->lnum, zbr->offs, err);
1966 kfree(ino);
1967 return ERR_PTR(err);
1968 }
1969
1970 fscki = add_inode(c, fsckd, ino);
1971 kfree(ino);
1972 if (IS_ERR(fscki)) {
1973 ubifs_err(c, "error %ld while adding inode %lu node",
1974 PTR_ERR(fscki), (unsigned long)inum);
1975 return fscki;
1976 }
1977
1978 return fscki;
1979}
1980
1981/**
1982 * check_leaf - check leaf node.
1983 * @c: UBIFS file-system description object
1984 * @zbr: zbranch of the leaf node to check
1985 * @priv: FS checking information
1986 *
1987 * This is a helper function for 'dbg_check_filesystem()' which is called for
1988 * every single leaf node while walking the indexing tree. It checks that the
1989 * leaf node referred from the indexing tree exists, has correct CRC, and does
1990 * some other basic validation. This function is also responsible for building
1991 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1992 * calculates reference count, size, etc for each inode in order to later
1993 * compare them to the information stored inside the inodes and detect possible
1994 * inconsistencies. Returns zero in case of success and a negative error code
1995 * in case of failure.
1996 */
1997static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1998 void *priv)
1999{
2000 ino_t inum;
2001 void *node;
2002 struct ubifs_ch *ch;
2003 int err, type = key_type(c, &zbr->key);
2004 struct fsck_inode *fscki;
2005
2006 if (zbr->len < UBIFS_CH_SZ) {
2007 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2008 zbr->len, zbr->lnum, zbr->offs);
2009 return -EINVAL;
2010 }
2011
2012 node = kmalloc(zbr->len, GFP_NOFS);
2013 if (!node)
2014 return -ENOMEM;
2015
2016 err = ubifs_tnc_read_node(c, zbr, node);
2017 if (err) {
2018 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2019 zbr->lnum, zbr->offs, err);
2020 goto out_free;
2021 }
2022
2023 /* If this is an inode node, add it to RB-tree of inodes */
2024 if (type == UBIFS_INO_KEY) {
2025 fscki = add_inode(c, priv, node);
2026 if (IS_ERR(fscki)) {
2027 err = PTR_ERR(fscki);
2028 ubifs_err(c, "error %d while adding inode node", err);
2029 goto out_dump;
2030 }
2031 goto out;
2032 }
2033
2034 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2035 type != UBIFS_DATA_KEY) {
2036 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2037 type, zbr->lnum, zbr->offs);
2038 err = -EINVAL;
2039 goto out_free;
2040 }
2041
2042 ch = node;
2043 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2044 ubifs_err(c, "too high sequence number, max. is %llu",
2045 c->max_sqnum);
2046 err = -EINVAL;
2047 goto out_dump;
2048 }
2049
2050 if (type == UBIFS_DATA_KEY) {
2051 long long blk_offs;
2052 struct ubifs_data_node *dn = node;
2053
2054 ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2055
2056 /*
2057 * Search the inode node this data node belongs to and insert
2058 * it to the RB-tree of inodes.
2059 */
2060 inum = key_inum_flash(c, &dn->key);
2061 fscki = read_add_inode(c, priv, inum);
2062 if (IS_ERR(fscki)) {
2063 err = PTR_ERR(fscki);
2064 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2065 err, (unsigned long)inum);
2066 goto out_dump;
2067 }
2068
2069 /* Make sure the data node is within inode size */
2070 blk_offs = key_block_flash(c, &dn->key);
2071 blk_offs <<= UBIFS_BLOCK_SHIFT;
2072 blk_offs += le32_to_cpu(dn->size);
2073 if (blk_offs > fscki->size) {
2074 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2075 zbr->lnum, zbr->offs, fscki->size);
2076 err = -EINVAL;
2077 goto out_dump;
2078 }
2079 } else {
2080 int nlen;
2081 struct ubifs_dent_node *dent = node;
2082 struct fsck_inode *fscki1;
2083
2084 ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2085
2086 err = ubifs_validate_entry(c, dent);
2087 if (err)
2088 goto out_dump;
2089
2090 /*
2091 * Search the inode node this entry refers to and the parent
2092 * inode node and insert them to the RB-tree of inodes.
2093 */
2094 inum = le64_to_cpu(dent->inum);
2095 fscki = read_add_inode(c, priv, inum);
2096 if (IS_ERR(fscki)) {
2097 err = PTR_ERR(fscki);
2098 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2099 err, (unsigned long)inum);
2100 goto out_dump;
2101 }
2102
2103 /* Count how many direntries or xentries refers this inode */
2104 fscki->references += 1;
2105
2106 inum = key_inum_flash(c, &dent->key);
2107 fscki1 = read_add_inode(c, priv, inum);
2108 if (IS_ERR(fscki1)) {
2109 err = PTR_ERR(fscki1);
2110 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2111 err, (unsigned long)inum);
2112 goto out_dump;
2113 }
2114
2115 nlen = le16_to_cpu(dent->nlen);
2116 if (type == UBIFS_XENT_KEY) {
2117 fscki1->calc_xcnt += 1;
2118 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2119 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2120 fscki1->calc_xnms += nlen;
2121 } else {
2122 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2123 if (dent->type == UBIFS_ITYPE_DIR)
2124 fscki1->calc_cnt += 1;
2125 }
2126 }
2127
2128out:
2129 kfree(node);
2130 return 0;
2131
2132out_dump:
2133 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2134 ubifs_dump_node(c, node, zbr->len);
2135out_free:
2136 kfree(node);
2137 return err;
2138}
2139
2140/**
2141 * free_inodes - free RB-tree of inodes.
2142 * @fsckd: FS checking information
2143 */
2144static void free_inodes(struct fsck_data *fsckd)
2145{
2146 struct fsck_inode *fscki, *n;
2147
2148 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2149 kfree(fscki);
2150}
2151
2152/**
2153 * check_inodes - checks all inodes.
2154 * @c: UBIFS file-system description object
2155 * @fsckd: FS checking information
2156 *
2157 * This is a helper function for 'dbg_check_filesystem()' which walks the
2158 * RB-tree of inodes after the index scan has been finished, and checks that
2159 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2160 * %-EINVAL if not, and a negative error code in case of failure.
2161 */
2162static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2163{
2164 int n, err;
2165 union ubifs_key key;
2166 struct ubifs_znode *znode;
2167 struct ubifs_zbranch *zbr;
2168 struct ubifs_ino_node *ino;
2169 struct fsck_inode *fscki;
2170 struct rb_node *this = rb_first(&fsckd->inodes);
2171
2172 while (this) {
2173 fscki = rb_entry(this, struct fsck_inode, rb);
2174 this = rb_next(this);
2175
2176 if (S_ISDIR(fscki->mode)) {
2177 /*
2178 * Directories have to have exactly one reference (they
2179 * cannot have hardlinks), although root inode is an
2180 * exception.
2181 */
2182 if (fscki->inum != UBIFS_ROOT_INO &&
2183 fscki->references != 1) {
2184 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2185 (unsigned long)fscki->inum,
2186 fscki->references);
2187 goto out_dump;
2188 }
2189 if (fscki->inum == UBIFS_ROOT_INO &&
2190 fscki->references != 0) {
2191 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2192 (unsigned long)fscki->inum,
2193 fscki->references);
2194 goto out_dump;
2195 }
2196 if (fscki->calc_sz != fscki->size) {
2197 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2198 (unsigned long)fscki->inum,
2199 fscki->size, fscki->calc_sz);
2200 goto out_dump;
2201 }
2202 if (fscki->calc_cnt != fscki->nlink) {
2203 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2204 (unsigned long)fscki->inum,
2205 fscki->nlink, fscki->calc_cnt);
2206 goto out_dump;
2207 }
2208 } else {
2209 if (fscki->references != fscki->nlink) {
2210 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2211 (unsigned long)fscki->inum,
2212 fscki->nlink, fscki->references);
2213 goto out_dump;
2214 }
2215 }
2216 if (fscki->xattr_sz != fscki->calc_xsz) {
2217 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2218 (unsigned long)fscki->inum, fscki->xattr_sz,
2219 fscki->calc_xsz);
2220 goto out_dump;
2221 }
2222 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2223 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2224 (unsigned long)fscki->inum,
2225 fscki->xattr_cnt, fscki->calc_xcnt);
2226 goto out_dump;
2227 }
2228 if (fscki->xattr_nms != fscki->calc_xnms) {
2229 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2230 (unsigned long)fscki->inum, fscki->xattr_nms,
2231 fscki->calc_xnms);
2232 goto out_dump;
2233 }
2234 }
2235
2236 return 0;
2237
2238out_dump:
2239 /* Read the bad inode and dump it */
2240 ino_key_init(c, &key, fscki->inum);
2241 err = ubifs_lookup_level0(c, &key, &znode, &n);
2242 if (!err) {
2243 ubifs_err(c, "inode %lu not found in index",
2244 (unsigned long)fscki->inum);
2245 return -ENOENT;
2246 } else if (err < 0) {
2247 ubifs_err(c, "error %d while looking up inode %lu",
2248 err, (unsigned long)fscki->inum);
2249 return err;
2250 }
2251
2252 zbr = &znode->zbranch[n];
2253 ino = kmalloc(zbr->len, GFP_NOFS);
2254 if (!ino)
2255 return -ENOMEM;
2256
2257 err = ubifs_tnc_read_node(c, zbr, ino);
2258 if (err) {
2259 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2260 zbr->lnum, zbr->offs, err);
2261 kfree(ino);
2262 return err;
2263 }
2264
2265 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2266 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2267 ubifs_dump_node(c, ino, zbr->len);
2268 kfree(ino);
2269 return -EINVAL;
2270}
2271
2272/**
2273 * dbg_check_filesystem - check the file-system.
2274 * @c: UBIFS file-system description object
2275 *
2276 * This function checks the file system, namely:
2277 * o makes sure that all leaf nodes exist and their CRCs are correct;
2278 * o makes sure inode nlink, size, xattr size/count are correct (for all
2279 * inodes).
2280 *
2281 * The function reads whole indexing tree and all nodes, so it is pretty
2282 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2283 * not, and a negative error code in case of failure.
2284 */
2285int dbg_check_filesystem(struct ubifs_info *c)
2286{
2287 int err;
2288 struct fsck_data fsckd;
2289
2290 if (!dbg_is_chk_fs(c))
2291 return 0;
2292
2293 fsckd.inodes = RB_ROOT;
2294 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2295 if (err)
2296 goto out_free;
2297
2298 err = check_inodes(c, &fsckd);
2299 if (err)
2300 goto out_free;
2301
2302 free_inodes(&fsckd);
2303 return 0;
2304
2305out_free:
2306 ubifs_err(c, "file-system check failed with error %d", err);
2307 dump_stack();
2308 free_inodes(&fsckd);
2309 return err;
2310}
2311
2312/**
2313 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2314 * @c: UBIFS file-system description object
2315 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2316 *
2317 * This function returns zero if the list of data nodes is sorted correctly,
2318 * and %-EINVAL if not.
2319 */
2320int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2321{
2322 struct list_head *cur;
2323 struct ubifs_scan_node *sa, *sb;
2324
2325 if (!dbg_is_chk_gen(c))
2326 return 0;
2327
2328 for (cur = head->next; cur->next != head; cur = cur->next) {
2329 ino_t inuma, inumb;
2330 uint32_t blka, blkb;
2331
2332 cond_resched();
2333 sa = container_of(cur, struct ubifs_scan_node, list);
2334 sb = container_of(cur->next, struct ubifs_scan_node, list);
2335
2336 if (sa->type != UBIFS_DATA_NODE) {
2337 ubifs_err(c, "bad node type %d", sa->type);
2338 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2339 return -EINVAL;
2340 }
2341 if (sb->type != UBIFS_DATA_NODE) {
2342 ubifs_err(c, "bad node type %d", sb->type);
2343 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2344 return -EINVAL;
2345 }
2346
2347 inuma = key_inum(c, &sa->key);
2348 inumb = key_inum(c, &sb->key);
2349
2350 if (inuma < inumb)
2351 continue;
2352 if (inuma > inumb) {
2353 ubifs_err(c, "larger inum %lu goes before inum %lu",
2354 (unsigned long)inuma, (unsigned long)inumb);
2355 goto error_dump;
2356 }
2357
2358 blka = key_block(c, &sa->key);
2359 blkb = key_block(c, &sb->key);
2360
2361 if (blka > blkb) {
2362 ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2363 goto error_dump;
2364 }
2365 if (blka == blkb) {
2366 ubifs_err(c, "two data nodes for the same block");
2367 goto error_dump;
2368 }
2369 }
2370
2371 return 0;
2372
2373error_dump:
2374 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2375 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2376 return -EINVAL;
2377}
2378
2379/**
2380 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2381 * @c: UBIFS file-system description object
2382 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2383 *
2384 * This function returns zero if the list of non-data nodes is sorted correctly,
2385 * and %-EINVAL if not.
2386 */
2387int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2388{
2389 struct list_head *cur;
2390 struct ubifs_scan_node *sa, *sb;
2391
2392 if (!dbg_is_chk_gen(c))
2393 return 0;
2394
2395 for (cur = head->next; cur->next != head; cur = cur->next) {
2396 ino_t inuma, inumb;
2397 uint32_t hasha, hashb;
2398
2399 cond_resched();
2400 sa = container_of(cur, struct ubifs_scan_node, list);
2401 sb = container_of(cur->next, struct ubifs_scan_node, list);
2402
2403 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2404 sa->type != UBIFS_XENT_NODE) {
2405 ubifs_err(c, "bad node type %d", sa->type);
2406 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2407 return -EINVAL;
2408 }
2409 if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2410 sb->type != UBIFS_XENT_NODE) {
2411 ubifs_err(c, "bad node type %d", sb->type);
2412 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2413 return -EINVAL;
2414 }
2415
2416 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2417 ubifs_err(c, "non-inode node goes before inode node");
2418 goto error_dump;
2419 }
2420
2421 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2422 continue;
2423
2424 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2425 /* Inode nodes are sorted in descending size order */
2426 if (sa->len < sb->len) {
2427 ubifs_err(c, "smaller inode node goes first");
2428 goto error_dump;
2429 }
2430 continue;
2431 }
2432
2433 /*
2434 * This is either a dentry or xentry, which should be sorted in
2435 * ascending (parent ino, hash) order.
2436 */
2437 inuma = key_inum(c, &sa->key);
2438 inumb = key_inum(c, &sb->key);
2439
2440 if (inuma < inumb)
2441 continue;
2442 if (inuma > inumb) {
2443 ubifs_err(c, "larger inum %lu goes before inum %lu",
2444 (unsigned long)inuma, (unsigned long)inumb);
2445 goto error_dump;
2446 }
2447
2448 hasha = key_block(c, &sa->key);
2449 hashb = key_block(c, &sb->key);
2450
2451 if (hasha > hashb) {
2452 ubifs_err(c, "larger hash %u goes before %u",
2453 hasha, hashb);
2454 goto error_dump;
2455 }
2456 }
2457
2458 return 0;
2459
2460error_dump:
2461 ubifs_msg(c, "dumping first node");
2462 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2463 ubifs_msg(c, "dumping second node");
2464 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2465 return -EINVAL;
2466}
2467
2468static inline int chance(unsigned int n, unsigned int out_of)
2469{
2470 return !!(get_random_u32_below(out_of) + 1 <= n);
2471
2472}
2473
2474static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2475{
2476 struct ubifs_debug_info *d = c->dbg;
2477
2478 ubifs_assert(c, dbg_is_tst_rcvry(c));
2479
2480 if (!d->pc_cnt) {
2481 /* First call - decide delay to the power cut */
2482 if (chance(1, 2)) {
2483 unsigned long delay;
2484
2485 if (chance(1, 2)) {
2486 d->pc_delay = 1;
2487 /* Fail within 1 minute */
2488 delay = get_random_u32_below(60000);
2489 d->pc_timeout = jiffies;
2490 d->pc_timeout += msecs_to_jiffies(delay);
2491 ubifs_warn(c, "failing after %lums", delay);
2492 } else {
2493 d->pc_delay = 2;
2494 delay = get_random_u32_below(10000);
2495 /* Fail within 10000 operations */
2496 d->pc_cnt_max = delay;
2497 ubifs_warn(c, "failing after %lu calls", delay);
2498 }
2499 }
2500
2501 d->pc_cnt += 1;
2502 }
2503
2504 /* Determine if failure delay has expired */
2505 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2506 return 0;
2507 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2508 return 0;
2509
2510 if (lnum == UBIFS_SB_LNUM) {
2511 if (write && chance(1, 2))
2512 return 0;
2513 if (chance(19, 20))
2514 return 0;
2515 ubifs_warn(c, "failing in super block LEB %d", lnum);
2516 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2517 if (chance(19, 20))
2518 return 0;
2519 ubifs_warn(c, "failing in master LEB %d", lnum);
2520 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2521 if (write && chance(99, 100))
2522 return 0;
2523 if (chance(399, 400))
2524 return 0;
2525 ubifs_warn(c, "failing in log LEB %d", lnum);
2526 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2527 if (write && chance(7, 8))
2528 return 0;
2529 if (chance(19, 20))
2530 return 0;
2531 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2532 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2533 if (write && chance(1, 2))
2534 return 0;
2535 if (chance(9, 10))
2536 return 0;
2537 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2538 } else if (lnum == c->ihead_lnum) {
2539 if (chance(99, 100))
2540 return 0;
2541 ubifs_warn(c, "failing in index head LEB %d", lnum);
2542 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2543 if (chance(9, 10))
2544 return 0;
2545 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2546 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2547 !ubifs_search_bud(c, lnum)) {
2548 if (chance(19, 20))
2549 return 0;
2550 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2551 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2552 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2553 if (chance(999, 1000))
2554 return 0;
2555 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2556 } else {
2557 if (chance(9999, 10000))
2558 return 0;
2559 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2560 }
2561
2562 d->pc_happened = 1;
2563 ubifs_warn(c, "========== Power cut emulated ==========");
2564 dump_stack();
2565 return 1;
2566}
2567
2568static int corrupt_data(const struct ubifs_info *c, const void *buf,
2569 unsigned int len)
2570{
2571 unsigned int from, to, ffs = chance(1, 2);
2572 unsigned char *p = (void *)buf;
2573
2574 from = get_random_u32_below(len);
2575 /* Corruption span max to end of write unit */
2576 to = min(len, ALIGN(from + 1, c->max_write_size));
2577
2578 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2579 ffs ? "0xFFs" : "random data");
2580
2581 if (ffs)
2582 memset(p + from, 0xFF, to - from);
2583 else
2584 get_random_bytes(p + from, to - from);
2585
2586 return to;
2587}
2588
2589int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2590 int offs, int len)
2591{
2592 int err, failing;
2593
2594 if (dbg_is_power_cut(c))
2595 return -EROFS;
2596
2597 failing = power_cut_emulated(c, lnum, 1);
2598 if (failing) {
2599 len = corrupt_data(c, buf, len);
2600 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2601 len, lnum, offs);
2602 }
2603 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2604 if (err)
2605 return err;
2606 if (failing)
2607 return -EROFS;
2608 return 0;
2609}
2610
2611int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2612 int len)
2613{
2614 int err;
2615
2616 if (dbg_is_power_cut(c))
2617 return -EROFS;
2618 if (power_cut_emulated(c, lnum, 1))
2619 return -EROFS;
2620 err = ubi_leb_change(c->ubi, lnum, buf, len);
2621 if (err)
2622 return err;
2623 if (power_cut_emulated(c, lnum, 1))
2624 return -EROFS;
2625 return 0;
2626}
2627
2628int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2629{
2630 int err;
2631
2632 if (dbg_is_power_cut(c))
2633 return -EROFS;
2634 if (power_cut_emulated(c, lnum, 0))
2635 return -EROFS;
2636 err = ubi_leb_unmap(c->ubi, lnum);
2637 if (err)
2638 return err;
2639 if (power_cut_emulated(c, lnum, 0))
2640 return -EROFS;
2641 return 0;
2642}
2643
2644int dbg_leb_map(struct ubifs_info *c, int lnum)
2645{
2646 int err;
2647
2648 if (dbg_is_power_cut(c))
2649 return -EROFS;
2650 if (power_cut_emulated(c, lnum, 0))
2651 return -EROFS;
2652 err = ubi_leb_map(c->ubi, lnum);
2653 if (err)
2654 return err;
2655 if (power_cut_emulated(c, lnum, 0))
2656 return -EROFS;
2657 return 0;
2658}
2659
2660/*
2661 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2662 * contain the stuff specific to particular file-system mounts.
2663 */
2664static struct dentry *dfs_rootdir;
2665
2666static int dfs_file_open(struct inode *inode, struct file *file)
2667{
2668 file->private_data = inode->i_private;
2669 return nonseekable_open(inode, file);
2670}
2671
2672/**
2673 * provide_user_output - provide output to the user reading a debugfs file.
2674 * @val: boolean value for the answer
2675 * @u: the buffer to store the answer at
2676 * @count: size of the buffer
2677 * @ppos: position in the @u output buffer
2678 *
2679 * This is a simple helper function which stores @val boolean value in the user
2680 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2681 * bytes written to @u in case of success and a negative error code in case of
2682 * failure.
2683 */
2684static int provide_user_output(int val, char __user *u, size_t count,
2685 loff_t *ppos)
2686{
2687 char buf[3];
2688
2689 if (val)
2690 buf[0] = '1';
2691 else
2692 buf[0] = '0';
2693 buf[1] = '\n';
2694 buf[2] = 0x00;
2695
2696 return simple_read_from_buffer(u, count, ppos, buf, 2);
2697}
2698
2699static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2700 loff_t *ppos)
2701{
2702 struct dentry *dent = file->f_path.dentry;
2703 struct ubifs_info *c = file->private_data;
2704 struct ubifs_debug_info *d = c->dbg;
2705 int val;
2706
2707 if (dent == d->dfs_chk_gen)
2708 val = d->chk_gen;
2709 else if (dent == d->dfs_chk_index)
2710 val = d->chk_index;
2711 else if (dent == d->dfs_chk_orph)
2712 val = d->chk_orph;
2713 else if (dent == d->dfs_chk_lprops)
2714 val = d->chk_lprops;
2715 else if (dent == d->dfs_chk_fs)
2716 val = d->chk_fs;
2717 else if (dent == d->dfs_tst_rcvry)
2718 val = d->tst_rcvry;
2719 else if (dent == d->dfs_ro_error)
2720 val = c->ro_error;
2721 else
2722 return -EINVAL;
2723
2724 return provide_user_output(val, u, count, ppos);
2725}
2726
2727/**
2728 * interpret_user_input - interpret user debugfs file input.
2729 * @u: user-provided buffer with the input
2730 * @count: buffer size
2731 *
2732 * This is a helper function which interpret user input to a boolean UBIFS
2733 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2734 * in case of failure.
2735 */
2736static int interpret_user_input(const char __user *u, size_t count)
2737{
2738 size_t buf_size;
2739 char buf[8];
2740
2741 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2742 if (copy_from_user(buf, u, buf_size))
2743 return -EFAULT;
2744
2745 if (buf[0] == '1')
2746 return 1;
2747 else if (buf[0] == '0')
2748 return 0;
2749
2750 return -EINVAL;
2751}
2752
2753static ssize_t dfs_file_write(struct file *file, const char __user *u,
2754 size_t count, loff_t *ppos)
2755{
2756 struct ubifs_info *c = file->private_data;
2757 struct ubifs_debug_info *d = c->dbg;
2758 struct dentry *dent = file->f_path.dentry;
2759 int val;
2760
2761 if (file->f_path.dentry == d->dfs_dump_lprops) {
2762 ubifs_dump_lprops(c);
2763 return count;
2764 }
2765 if (file->f_path.dentry == d->dfs_dump_budg) {
2766 ubifs_dump_budg(c, &c->bi);
2767 return count;
2768 }
2769 if (file->f_path.dentry == d->dfs_dump_tnc) {
2770 mutex_lock(&c->tnc_mutex);
2771 ubifs_dump_tnc(c);
2772 mutex_unlock(&c->tnc_mutex);
2773 return count;
2774 }
2775
2776 val = interpret_user_input(u, count);
2777 if (val < 0)
2778 return val;
2779
2780 if (dent == d->dfs_chk_gen)
2781 d->chk_gen = val;
2782 else if (dent == d->dfs_chk_index)
2783 d->chk_index = val;
2784 else if (dent == d->dfs_chk_orph)
2785 d->chk_orph = val;
2786 else if (dent == d->dfs_chk_lprops)
2787 d->chk_lprops = val;
2788 else if (dent == d->dfs_chk_fs)
2789 d->chk_fs = val;
2790 else if (dent == d->dfs_tst_rcvry)
2791 d->tst_rcvry = val;
2792 else if (dent == d->dfs_ro_error)
2793 c->ro_error = !!val;
2794 else
2795 return -EINVAL;
2796
2797 return count;
2798}
2799
2800static const struct file_operations dfs_fops = {
2801 .open = dfs_file_open,
2802 .read = dfs_file_read,
2803 .write = dfs_file_write,
2804 .owner = THIS_MODULE,
2805 .llseek = no_llseek,
2806};
2807
2808/**
2809 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2810 * @c: UBIFS file-system description object
2811 *
2812 * This function creates all debugfs files for this instance of UBIFS.
2813 *
2814 * Note, the only reason we have not merged this function with the
2815 * 'ubifs_debugging_init()' function is because it is better to initialize
2816 * debugfs interfaces at the very end of the mount process, and remove them at
2817 * the very beginning of the mount process.
2818 */
2819void dbg_debugfs_init_fs(struct ubifs_info *c)
2820{
2821 int n;
2822 const char *fname;
2823 struct ubifs_debug_info *d = c->dbg;
2824
2825 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2826 c->vi.ubi_num, c->vi.vol_id);
2827 if (n > UBIFS_DFS_DIR_LEN) {
2828 /* The array size is too small */
2829 return;
2830 }
2831
2832 fname = d->dfs_dir_name;
2833 d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
2834
2835 fname = "dump_lprops";
2836 d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2837 &dfs_fops);
2838
2839 fname = "dump_budg";
2840 d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2841 &dfs_fops);
2842
2843 fname = "dump_tnc";
2844 d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2845 &dfs_fops);
2846
2847 fname = "chk_general";
2848 d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2849 d->dfs_dir, c, &dfs_fops);
2850
2851 fname = "chk_index";
2852 d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2853 d->dfs_dir, c, &dfs_fops);
2854
2855 fname = "chk_orphans";
2856 d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2857 d->dfs_dir, c, &dfs_fops);
2858
2859 fname = "chk_lprops";
2860 d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2861 d->dfs_dir, c, &dfs_fops);
2862
2863 fname = "chk_fs";
2864 d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2865 d->dfs_dir, c, &dfs_fops);
2866
2867 fname = "tst_recovery";
2868 d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2869 d->dfs_dir, c, &dfs_fops);
2870
2871 fname = "ro_error";
2872 d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2873 d->dfs_dir, c, &dfs_fops);
2874}
2875
2876/**
2877 * dbg_debugfs_exit_fs - remove all debugfs files.
2878 * @c: UBIFS file-system description object
2879 */
2880void dbg_debugfs_exit_fs(struct ubifs_info *c)
2881{
2882 debugfs_remove_recursive(c->dbg->dfs_dir);
2883}
2884
2885struct ubifs_global_debug_info ubifs_dbg;
2886
2887static struct dentry *dfs_chk_gen;
2888static struct dentry *dfs_chk_index;
2889static struct dentry *dfs_chk_orph;
2890static struct dentry *dfs_chk_lprops;
2891static struct dentry *dfs_chk_fs;
2892static struct dentry *dfs_tst_rcvry;
2893
2894static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2895 size_t count, loff_t *ppos)
2896{
2897 struct dentry *dent = file->f_path.dentry;
2898 int val;
2899
2900 if (dent == dfs_chk_gen)
2901 val = ubifs_dbg.chk_gen;
2902 else if (dent == dfs_chk_index)
2903 val = ubifs_dbg.chk_index;
2904 else if (dent == dfs_chk_orph)
2905 val = ubifs_dbg.chk_orph;
2906 else if (dent == dfs_chk_lprops)
2907 val = ubifs_dbg.chk_lprops;
2908 else if (dent == dfs_chk_fs)
2909 val = ubifs_dbg.chk_fs;
2910 else if (dent == dfs_tst_rcvry)
2911 val = ubifs_dbg.tst_rcvry;
2912 else
2913 return -EINVAL;
2914
2915 return provide_user_output(val, u, count, ppos);
2916}
2917
2918static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2919 size_t count, loff_t *ppos)
2920{
2921 struct dentry *dent = file->f_path.dentry;
2922 int val;
2923
2924 val = interpret_user_input(u, count);
2925 if (val < 0)
2926 return val;
2927
2928 if (dent == dfs_chk_gen)
2929 ubifs_dbg.chk_gen = val;
2930 else if (dent == dfs_chk_index)
2931 ubifs_dbg.chk_index = val;
2932 else if (dent == dfs_chk_orph)
2933 ubifs_dbg.chk_orph = val;
2934 else if (dent == dfs_chk_lprops)
2935 ubifs_dbg.chk_lprops = val;
2936 else if (dent == dfs_chk_fs)
2937 ubifs_dbg.chk_fs = val;
2938 else if (dent == dfs_tst_rcvry)
2939 ubifs_dbg.tst_rcvry = val;
2940 else
2941 return -EINVAL;
2942
2943 return count;
2944}
2945
2946static const struct file_operations dfs_global_fops = {
2947 .read = dfs_global_file_read,
2948 .write = dfs_global_file_write,
2949 .owner = THIS_MODULE,
2950 .llseek = no_llseek,
2951};
2952
2953/**
2954 * dbg_debugfs_init - initialize debugfs file-system.
2955 *
2956 * UBIFS uses debugfs file-system to expose various debugging knobs to
2957 * user-space. This function creates "ubifs" directory in the debugfs
2958 * file-system.
2959 */
2960void dbg_debugfs_init(void)
2961{
2962 const char *fname;
2963
2964 fname = "ubifs";
2965 dfs_rootdir = debugfs_create_dir(fname, NULL);
2966
2967 fname = "chk_general";
2968 dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2969 NULL, &dfs_global_fops);
2970
2971 fname = "chk_index";
2972 dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2973 dfs_rootdir, NULL, &dfs_global_fops);
2974
2975 fname = "chk_orphans";
2976 dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2977 dfs_rootdir, NULL, &dfs_global_fops);
2978
2979 fname = "chk_lprops";
2980 dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2981 dfs_rootdir, NULL, &dfs_global_fops);
2982
2983 fname = "chk_fs";
2984 dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2985 NULL, &dfs_global_fops);
2986
2987 fname = "tst_recovery";
2988 dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2989 dfs_rootdir, NULL, &dfs_global_fops);
2990}
2991
2992/**
2993 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2994 */
2995void dbg_debugfs_exit(void)
2996{
2997 debugfs_remove_recursive(dfs_rootdir);
2998}
2999
3000void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
3001 const char *file, int line)
3002{
3003 ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
3004
3005 switch (c->assert_action) {
3006 case ASSACT_PANIC:
3007 BUG();
3008 break;
3009
3010 case ASSACT_RO:
3011 ubifs_ro_mode(c, -EINVAL);
3012 break;
3013
3014 case ASSACT_REPORT:
3015 default:
3016 dump_stack();
3017 break;
3018
3019 }
3020}
3021
3022/**
3023 * ubifs_debugging_init - initialize UBIFS debugging.
3024 * @c: UBIFS file-system description object
3025 *
3026 * This function initializes debugging-related data for the file system.
3027 * Returns zero in case of success and a negative error code in case of
3028 * failure.
3029 */
3030int ubifs_debugging_init(struct ubifs_info *c)
3031{
3032 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3033 if (!c->dbg)
3034 return -ENOMEM;
3035
3036 return 0;
3037}
3038
3039/**
3040 * ubifs_debugging_exit - free debugging data.
3041 * @c: UBIFS file-system description object
3042 */
3043void ubifs_debugging_exit(struct ubifs_info *c)
3044{
3045 kfree(c->dbg);
3046}