Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Renesas R-Car Fine Display Processor
   4 *
   5 * Video format converter and frame deinterlacer device.
   6 *
   7 * Author: Kieran Bingham, <kieran@bingham.xyz>
   8 * Copyright (c) 2016 Renesas Electronics Corporation.
   9 *
  10 * This code is developed and inspired from the vim2m, rcar_jpu,
  11 * m2m-deinterlace, and vsp1 drivers.
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/delay.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/fs.h>
  18#include <linux/interrupt.h>
  19#include <linux/module.h>
  20#include <linux/of.h>
  21#include <linux/of_device.h>
  22#include <linux/platform_device.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/sched.h>
  25#include <linux/slab.h>
  26#include <linux/timer.h>
  27#include <media/rcar-fcp.h>
  28#include <media/v4l2-ctrls.h>
  29#include <media/v4l2-device.h>
  30#include <media/v4l2-event.h>
  31#include <media/v4l2-ioctl.h>
  32#include <media/v4l2-mem2mem.h>
  33#include <media/videobuf2-dma-contig.h>
  34
  35static unsigned int debug;
  36module_param(debug, uint, 0644);
  37MODULE_PARM_DESC(debug, "activate debug info");
  38
  39/* Minimum and maximum frame width/height */
  40#define FDP1_MIN_W		80U
  41#define FDP1_MIN_H		80U
  42
  43#define FDP1_MAX_W		3840U
  44#define FDP1_MAX_H		2160U
  45
  46#define FDP1_MAX_PLANES		3U
  47#define FDP1_MAX_STRIDE		8190U
  48
  49/* Flags that indicate a format can be used for capture/output */
  50#define FDP1_CAPTURE		BIT(0)
  51#define FDP1_OUTPUT		BIT(1)
  52
  53#define DRIVER_NAME		"rcar_fdp1"
  54
  55/* Number of Job's to have available on the processing queue */
  56#define FDP1_NUMBER_JOBS 8
  57
  58#define dprintk(fdp1, fmt, arg...) \
  59	v4l2_dbg(1, debug, &fdp1->v4l2_dev, "%s: " fmt, __func__, ## arg)
  60
  61/*
  62 * FDP1 registers and bits
  63 */
  64
  65/* FDP1 start register - Imm */
  66#define FD1_CTL_CMD			0x0000
  67#define FD1_CTL_CMD_STRCMD		BIT(0)
  68
  69/* Sync generator register - Imm */
  70#define FD1_CTL_SGCMD			0x0004
  71#define FD1_CTL_SGCMD_SGEN		BIT(0)
  72
  73/* Register set end register - Imm */
  74#define FD1_CTL_REGEND			0x0008
  75#define FD1_CTL_REGEND_REGEND		BIT(0)
  76
  77/* Channel activation register - Vupdt */
  78#define FD1_CTL_CHACT			0x000c
  79#define FD1_CTL_CHACT_SMW		BIT(9)
  80#define FD1_CTL_CHACT_WR		BIT(8)
  81#define FD1_CTL_CHACT_SMR		BIT(3)
  82#define FD1_CTL_CHACT_RD2		BIT(2)
  83#define FD1_CTL_CHACT_RD1		BIT(1)
  84#define FD1_CTL_CHACT_RD0		BIT(0)
  85
  86/* Operation Mode Register - Vupdt */
  87#define FD1_CTL_OPMODE			0x0010
  88#define FD1_CTL_OPMODE_PRG		BIT(4)
  89#define FD1_CTL_OPMODE_VIMD_INTERRUPT	(0 << 0)
  90#define FD1_CTL_OPMODE_VIMD_BESTEFFORT	(1 << 0)
  91#define FD1_CTL_OPMODE_VIMD_NOINTERRUPT	(2 << 0)
  92
  93#define FD1_CTL_VPERIOD			0x0014
  94#define FD1_CTL_CLKCTRL			0x0018
  95#define FD1_CTL_CLKCTRL_CSTP_N		BIT(0)
  96
  97/* Software reset register */
  98#define FD1_CTL_SRESET			0x001c
  99#define FD1_CTL_SRESET_SRST		BIT(0)
 100
 101/* Control status register (V-update-status) */
 102#define FD1_CTL_STATUS			0x0024
 103#define FD1_CTL_STATUS_VINT_CNT_MASK	GENMASK(31, 16)
 104#define FD1_CTL_STATUS_VINT_CNT_SHIFT	16
 105#define FD1_CTL_STATUS_SGREGSET		BIT(10)
 106#define FD1_CTL_STATUS_SGVERR		BIT(9)
 107#define FD1_CTL_STATUS_SGFREND		BIT(8)
 108#define FD1_CTL_STATUS_BSY		BIT(0)
 109
 110#define FD1_CTL_VCYCLE_STAT		0x0028
 111
 112/* Interrupt enable register */
 113#define FD1_CTL_IRQENB			0x0038
 114/* Interrupt status register */
 115#define FD1_CTL_IRQSTA			0x003c
 116/* Interrupt control register */
 117#define FD1_CTL_IRQFSET			0x0040
 118
 119/* Common IRQ Bit settings */
 120#define FD1_CTL_IRQ_VERE		BIT(16)
 121#define FD1_CTL_IRQ_VINTE		BIT(4)
 122#define FD1_CTL_IRQ_FREE		BIT(0)
 123#define FD1_CTL_IRQ_MASK		(FD1_CTL_IRQ_VERE | \
 124					 FD1_CTL_IRQ_VINTE | \
 125					 FD1_CTL_IRQ_FREE)
 126
 127/* RPF */
 128#define FD1_RPF_SIZE			0x0060
 129#define FD1_RPF_SIZE_MASK		GENMASK(12, 0)
 130#define FD1_RPF_SIZE_H_SHIFT		16
 131#define FD1_RPF_SIZE_V_SHIFT		0
 132
 133#define FD1_RPF_FORMAT			0x0064
 134#define FD1_RPF_FORMAT_CIPM		BIT(16)
 135#define FD1_RPF_FORMAT_RSPYCS		BIT(13)
 136#define FD1_RPF_FORMAT_RSPUVS		BIT(12)
 137#define FD1_RPF_FORMAT_CF		BIT(8)
 138
 139#define FD1_RPF_PSTRIDE			0x0068
 140#define FD1_RPF_PSTRIDE_Y_SHIFT		16
 141#define FD1_RPF_PSTRIDE_C_SHIFT		0
 142
 143/* RPF0 Source Component Y Address register */
 144#define FD1_RPF0_ADDR_Y			0x006c
 145
 146/* RPF1 Current Picture Registers */
 147#define FD1_RPF1_ADDR_Y			0x0078
 148#define FD1_RPF1_ADDR_C0		0x007c
 149#define FD1_RPF1_ADDR_C1		0x0080
 150
 151/* RPF2 next picture register */
 152#define FD1_RPF2_ADDR_Y			0x0084
 153
 154#define FD1_RPF_SMSK_ADDR		0x0090
 155#define FD1_RPF_SWAP			0x0094
 156
 157/* WPF */
 158#define FD1_WPF_FORMAT			0x00c0
 159#define FD1_WPF_FORMAT_PDV_SHIFT	24
 160#define FD1_WPF_FORMAT_FCNL		BIT(20)
 161#define FD1_WPF_FORMAT_WSPYCS		BIT(15)
 162#define FD1_WPF_FORMAT_WSPUVS		BIT(14)
 163#define FD1_WPF_FORMAT_WRTM_601_16	(0 << 9)
 164#define FD1_WPF_FORMAT_WRTM_601_0	(1 << 9)
 165#define FD1_WPF_FORMAT_WRTM_709_16	(2 << 9)
 166#define FD1_WPF_FORMAT_CSC		BIT(8)
 167
 168#define FD1_WPF_RNDCTL			0x00c4
 169#define FD1_WPF_RNDCTL_CBRM		BIT(28)
 170#define FD1_WPF_RNDCTL_CLMD_NOCLIP	(0 << 12)
 171#define FD1_WPF_RNDCTL_CLMD_CLIP_16_235	(1 << 12)
 172#define FD1_WPF_RNDCTL_CLMD_CLIP_1_254	(2 << 12)
 173
 174#define FD1_WPF_PSTRIDE			0x00c8
 175#define FD1_WPF_PSTRIDE_Y_SHIFT		16
 176#define FD1_WPF_PSTRIDE_C_SHIFT		0
 177
 178/* WPF Destination picture */
 179#define FD1_WPF_ADDR_Y			0x00cc
 180#define FD1_WPF_ADDR_C0			0x00d0
 181#define FD1_WPF_ADDR_C1			0x00d4
 182#define FD1_WPF_SWAP			0x00d8
 183#define FD1_WPF_SWAP_OSWAP_SHIFT	0
 184#define FD1_WPF_SWAP_SSWAP_SHIFT	4
 185
 186/* WPF/RPF Common */
 187#define FD1_RWPF_SWAP_BYTE		BIT(0)
 188#define FD1_RWPF_SWAP_WORD		BIT(1)
 189#define FD1_RWPF_SWAP_LWRD		BIT(2)
 190#define FD1_RWPF_SWAP_LLWD		BIT(3)
 191
 192/* IPC */
 193#define FD1_IPC_MODE			0x0100
 194#define FD1_IPC_MODE_DLI		BIT(8)
 195#define FD1_IPC_MODE_DIM_ADAPT2D3D	(0 << 0)
 196#define FD1_IPC_MODE_DIM_FIXED2D	(1 << 0)
 197#define FD1_IPC_MODE_DIM_FIXED3D	(2 << 0)
 198#define FD1_IPC_MODE_DIM_PREVFIELD	(3 << 0)
 199#define FD1_IPC_MODE_DIM_NEXTFIELD	(4 << 0)
 200
 201#define FD1_IPC_SMSK_THRESH		0x0104
 202#define FD1_IPC_SMSK_THRESH_CONST	0x00010002
 203
 204#define FD1_IPC_COMB_DET		0x0108
 205#define FD1_IPC_COMB_DET_CONST		0x00200040
 206
 207#define FD1_IPC_MOTDEC			0x010c
 208#define FD1_IPC_MOTDEC_CONST		0x00008020
 209
 210/* DLI registers */
 211#define FD1_IPC_DLI_BLEND		0x0120
 212#define FD1_IPC_DLI_BLEND_CONST		0x0080ff02
 213
 214#define FD1_IPC_DLI_HGAIN		0x0124
 215#define FD1_IPC_DLI_HGAIN_CONST		0x001000ff
 216
 217#define FD1_IPC_DLI_SPRS		0x0128
 218#define FD1_IPC_DLI_SPRS_CONST		0x009004ff
 219
 220#define FD1_IPC_DLI_ANGLE		0x012c
 221#define FD1_IPC_DLI_ANGLE_CONST		0x0004080c
 222
 223#define FD1_IPC_DLI_ISOPIX0		0x0130
 224#define FD1_IPC_DLI_ISOPIX0_CONST	0xff10ff10
 225
 226#define FD1_IPC_DLI_ISOPIX1		0x0134
 227#define FD1_IPC_DLI_ISOPIX1_CONST	0x0000ff10
 228
 229/* Sensor registers */
 230#define FD1_IPC_SENSOR_TH0		0x0140
 231#define FD1_IPC_SENSOR_TH0_CONST	0x20208080
 232
 233#define FD1_IPC_SENSOR_TH1		0x0144
 234#define FD1_IPC_SENSOR_TH1_CONST	0
 235
 236#define FD1_IPC_SENSOR_CTL0		0x0170
 237#define FD1_IPC_SENSOR_CTL0_CONST	0x00002201
 238
 239#define FD1_IPC_SENSOR_CTL1		0x0174
 240#define FD1_IPC_SENSOR_CTL1_CONST	0
 241
 242#define FD1_IPC_SENSOR_CTL2		0x0178
 243#define FD1_IPC_SENSOR_CTL2_X_SHIFT	16
 244#define FD1_IPC_SENSOR_CTL2_Y_SHIFT	0
 245
 246#define FD1_IPC_SENSOR_CTL3		0x017c
 247#define FD1_IPC_SENSOR_CTL3_0_SHIFT	16
 248#define FD1_IPC_SENSOR_CTL3_1_SHIFT	0
 249
 250/* Line memory pixel number register */
 251#define FD1_IPC_LMEM			0x01e0
 252#define FD1_IPC_LMEM_LINEAR		1024
 253#define FD1_IPC_LMEM_TILE		960
 254
 255/* Internal Data (HW Version) */
 256#define FD1_IP_INTDATA			0x0800
 257#define FD1_IP_H3_ES1			0x02010101
 258#define FD1_IP_M3W			0x02010202
 259#define FD1_IP_H3			0x02010203
 260#define FD1_IP_M3N			0x02010204
 261#define FD1_IP_E3			0x02010205
 262
 263/* LUTs */
 264#define FD1_LUT_DIF_ADJ			0x1000
 265#define FD1_LUT_SAD_ADJ			0x1400
 266#define FD1_LUT_BLD_GAIN		0x1800
 267#define FD1_LUT_DIF_GAIN		0x1c00
 268#define FD1_LUT_MDET			0x2000
 269
 270/**
 271 * struct fdp1_fmt - The FDP1 internal format data
 272 * @fourcc: the fourcc code, to match the V4L2 API
 273 * @bpp: bits per pixel per plane
 274 * @num_planes: number of planes
 275 * @hsub: horizontal subsampling factor
 276 * @vsub: vertical subsampling factor
 277 * @fmt: 7-bit format code for the fdp1 hardware
 278 * @swap_yc: the Y and C components are swapped (Y comes before C)
 279 * @swap_uv: the U and V components are swapped (V comes before U)
 280 * @swap: swap register control
 281 * @types: types of queue this format is applicable to
 282 */
 283struct fdp1_fmt {
 284	u32	fourcc;
 285	u8	bpp[3];
 286	u8	num_planes;
 287	u8	hsub;
 288	u8	vsub;
 289	u8	fmt;
 290	bool	swap_yc;
 291	bool	swap_uv;
 292	u8	swap;
 293	u8	types;
 294};
 295
 296static const struct fdp1_fmt fdp1_formats[] = {
 297	/* RGB formats are only supported by the Write Pixel Formatter */
 298
 299	{ V4L2_PIX_FMT_RGB332, { 8, 0, 0 }, 1, 1, 1, 0x00, false, false,
 300	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 301	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
 302	  FDP1_CAPTURE },
 303	{ V4L2_PIX_FMT_XRGB444, { 16, 0, 0 }, 1, 1, 1, 0x01, false, false,
 304	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 305	  FD1_RWPF_SWAP_WORD,
 306	  FDP1_CAPTURE },
 307	{ V4L2_PIX_FMT_XRGB555, { 16, 0, 0 }, 1, 1, 1, 0x04, false, false,
 308	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 309	  FD1_RWPF_SWAP_WORD,
 310	  FDP1_CAPTURE },
 311	{ V4L2_PIX_FMT_RGB565, { 16, 0, 0 }, 1, 1, 1, 0x06, false, false,
 312	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 313	  FD1_RWPF_SWAP_WORD,
 314	  FDP1_CAPTURE },
 315	{ V4L2_PIX_FMT_ABGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
 316	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
 317	  FDP1_CAPTURE },
 318	{ V4L2_PIX_FMT_XBGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
 319	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
 320	  FDP1_CAPTURE },
 321	{ V4L2_PIX_FMT_ARGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
 322	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 323	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
 324	  FDP1_CAPTURE },
 325	{ V4L2_PIX_FMT_XRGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
 326	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 327	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
 328	  FDP1_CAPTURE },
 329	{ V4L2_PIX_FMT_RGB24, { 24, 0, 0 }, 1, 1, 1, 0x15, false, false,
 330	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 331	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
 332	  FDP1_CAPTURE },
 333	{ V4L2_PIX_FMT_BGR24, { 24, 0, 0 }, 1, 1, 1, 0x18, false, false,
 334	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 335	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
 336	  FDP1_CAPTURE },
 337	{ V4L2_PIX_FMT_ARGB444, { 16, 0, 0 }, 1, 1, 1, 0x19, false, false,
 338	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 339	  FD1_RWPF_SWAP_WORD,
 340	  FDP1_CAPTURE },
 341	{ V4L2_PIX_FMT_ARGB555, { 16, 0, 0 }, 1, 1, 1, 0x1b, false, false,
 342	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 343	  FD1_RWPF_SWAP_WORD,
 344	  FDP1_CAPTURE },
 345
 346	/* YUV Formats are supported by Read and Write Pixel Formatters */
 347
 348	{ V4L2_PIX_FMT_NV16M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, false,
 349	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 350	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
 351	  FDP1_CAPTURE | FDP1_OUTPUT },
 352	{ V4L2_PIX_FMT_NV61M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, true,
 353	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 354	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
 355	  FDP1_CAPTURE | FDP1_OUTPUT },
 356	{ V4L2_PIX_FMT_NV12M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, false,
 357	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 358	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
 359	  FDP1_CAPTURE | FDP1_OUTPUT },
 360	{ V4L2_PIX_FMT_NV21M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, true,
 361	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 362	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
 363	  FDP1_CAPTURE | FDP1_OUTPUT },
 364	{ V4L2_PIX_FMT_UYVY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, false,
 365	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 366	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
 367	  FDP1_CAPTURE | FDP1_OUTPUT },
 368	{ V4L2_PIX_FMT_VYUY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, true,
 369	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 370	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
 371	  FDP1_CAPTURE | FDP1_OUTPUT },
 372	{ V4L2_PIX_FMT_YUYV, { 16, 0, 0 }, 1, 2, 1, 0x47, true, false,
 373	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 374	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
 375	  FDP1_CAPTURE | FDP1_OUTPUT },
 376	{ V4L2_PIX_FMT_YVYU, { 16, 0, 0 }, 1, 2, 1, 0x47, true, true,
 377	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 378	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
 379	  FDP1_CAPTURE | FDP1_OUTPUT },
 380	{ V4L2_PIX_FMT_YUV444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, false,
 381	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 382	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
 383	  FDP1_CAPTURE | FDP1_OUTPUT },
 384	{ V4L2_PIX_FMT_YVU444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, true,
 385	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 386	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
 387	  FDP1_CAPTURE | FDP1_OUTPUT },
 388	{ V4L2_PIX_FMT_YUV422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, false,
 389	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 390	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
 391	  FDP1_CAPTURE | FDP1_OUTPUT },
 392	{ V4L2_PIX_FMT_YVU422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, true,
 393	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 394	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
 395	  FDP1_CAPTURE | FDP1_OUTPUT },
 396	{ V4L2_PIX_FMT_YUV420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, false,
 397	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 398	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
 399	  FDP1_CAPTURE | FDP1_OUTPUT },
 400	{ V4L2_PIX_FMT_YVU420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, true,
 401	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
 402	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
 403	  FDP1_CAPTURE | FDP1_OUTPUT },
 404};
 405
 406static int fdp1_fmt_is_rgb(const struct fdp1_fmt *fmt)
 407{
 408	return fmt->fmt <= 0x1b; /* Last RGB code */
 409}
 410
 411/*
 412 * FDP1 Lookup tables range from 0...255 only
 413 *
 414 * Each table must be less than 256 entries, and all tables
 415 * are padded out to 256 entries by duplicating the last value.
 416 */
 417static const u8 fdp1_diff_adj[] = {
 418	0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
 419	0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
 420	0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
 421};
 422
 423static const u8 fdp1_sad_adj[] = {
 424	0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
 425	0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
 426	0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
 427};
 428
 429static const u8 fdp1_bld_gain[] = {
 430	0x80,
 431};
 432
 433static const u8 fdp1_dif_gain[] = {
 434	0x80,
 435};
 436
 437static const u8 fdp1_mdet[] = {
 438	0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 439	0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 440	0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 441	0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
 442	0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
 443	0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
 444	0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
 445	0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
 446	0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
 447	0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
 448	0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
 449	0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
 450	0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
 451	0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
 452	0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
 453	0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
 454	0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
 455	0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
 456	0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
 457	0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
 458	0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
 459	0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
 460	0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
 461	0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
 462	0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
 463	0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
 464	0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
 465	0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
 466	0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
 467	0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
 468	0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
 469	0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
 470};
 471
 472/* Per-queue, driver-specific private data */
 473struct fdp1_q_data {
 474	const struct fdp1_fmt		*fmt;
 475	struct v4l2_pix_format_mplane	format;
 476
 477	unsigned int			vsize;
 478	unsigned int			stride_y;
 479	unsigned int			stride_c;
 480};
 481
 482static const struct fdp1_fmt *fdp1_find_format(u32 pixelformat)
 483{
 484	const struct fdp1_fmt *fmt;
 485	unsigned int i;
 486
 487	for (i = 0; i < ARRAY_SIZE(fdp1_formats); i++) {
 488		fmt = &fdp1_formats[i];
 489		if (fmt->fourcc == pixelformat)
 490			return fmt;
 491	}
 492
 493	return NULL;
 494}
 495
 496enum fdp1_deint_mode {
 497	FDP1_PROGRESSIVE = 0, /* Must be zero when !deinterlacing */
 498	FDP1_ADAPT2D3D,
 499	FDP1_FIXED2D,
 500	FDP1_FIXED3D,
 501	FDP1_PREVFIELD,
 502	FDP1_NEXTFIELD,
 503};
 504
 505#define FDP1_DEINT_MODE_USES_NEXT(mode) \
 506	(mode == FDP1_ADAPT2D3D || \
 507	 mode == FDP1_FIXED3D   || \
 508	 mode == FDP1_NEXTFIELD)
 509
 510#define FDP1_DEINT_MODE_USES_PREV(mode) \
 511	(mode == FDP1_ADAPT2D3D || \
 512	 mode == FDP1_FIXED3D   || \
 513	 mode == FDP1_PREVFIELD)
 514
 515/*
 516 * FDP1 operates on potentially 3 fields, which are tracked
 517 * from the VB buffers using this context structure.
 518 * Will always be a field or a full frame, never two fields.
 519 */
 520struct fdp1_field_buffer {
 521	struct vb2_v4l2_buffer		*vb;
 522	dma_addr_t			addrs[3];
 523
 524	/* Should be NONE:TOP:BOTTOM only */
 525	enum v4l2_field			field;
 526
 527	/* Flag to indicate this is the last field in the vb */
 528	bool				last_field;
 529
 530	/* Buffer queue lists */
 531	struct list_head		list;
 532};
 533
 534struct fdp1_buffer {
 535	struct v4l2_m2m_buffer		m2m_buf;
 536	struct fdp1_field_buffer	fields[2];
 537	unsigned int			num_fields;
 538};
 539
 540static inline struct fdp1_buffer *to_fdp1_buffer(struct vb2_v4l2_buffer *vb)
 541{
 542	return container_of(vb, struct fdp1_buffer, m2m_buf.vb);
 543}
 544
 545struct fdp1_job {
 546	struct fdp1_field_buffer	*previous;
 547	struct fdp1_field_buffer	*active;
 548	struct fdp1_field_buffer	*next;
 549	struct fdp1_field_buffer	*dst;
 550
 551	/* A job can only be on one list at a time */
 552	struct list_head		list;
 553};
 554
 555struct fdp1_dev {
 556	struct v4l2_device		v4l2_dev;
 557	struct video_device		vfd;
 558
 559	struct mutex			dev_mutex;
 560	spinlock_t			irqlock;
 561	spinlock_t			device_process_lock;
 562
 563	void __iomem			*regs;
 564	unsigned int			irq;
 565	struct device			*dev;
 566
 567	/* Job Queues */
 568	struct fdp1_job			jobs[FDP1_NUMBER_JOBS];
 569	struct list_head		free_job_list;
 570	struct list_head		queued_job_list;
 571	struct list_head		hw_job_list;
 572
 573	unsigned int			clk_rate;
 574
 575	struct rcar_fcp_device		*fcp;
 576	struct v4l2_m2m_dev		*m2m_dev;
 577};
 578
 579struct fdp1_ctx {
 580	struct v4l2_fh			fh;
 581	struct fdp1_dev			*fdp1;
 582
 583	struct v4l2_ctrl_handler	hdl;
 584	unsigned int			sequence;
 585
 586	/* Processed buffers in this transaction */
 587	u8				num_processed;
 588
 589	/* Transaction length (i.e. how many buffers per transaction) */
 590	u32				translen;
 591
 592	/* Abort requested by m2m */
 593	int				aborting;
 594
 595	/* Deinterlace processing mode */
 596	enum fdp1_deint_mode		deint_mode;
 597
 598	/*
 599	 * Adaptive 2D/3D mode uses a shared mask
 600	 * This is allocated at streamon, if the ADAPT2D3D mode
 601	 * is requested
 602	 */
 603	unsigned int			smsk_size;
 604	dma_addr_t			smsk_addr[2];
 605	void				*smsk_cpu;
 606
 607	/* Capture pipeline, can specify an alpha value
 608	 * for supported formats. 0-255 only
 609	 */
 610	unsigned char			alpha;
 611
 612	/* Source and destination queue data */
 613	struct fdp1_q_data		out_q; /* HW Source */
 614	struct fdp1_q_data		cap_q; /* HW Destination */
 615
 616	/*
 617	 * Field Queues
 618	 * Interlaced fields are used on 3 occasions, and tracked in this list.
 619	 *
 620	 * V4L2 Buffers are tracked inside the fdp1_buffer
 621	 * and released when the last 'field' completes
 622	 */
 623	struct list_head		fields_queue;
 624	unsigned int			buffers_queued;
 625
 626	/*
 627	 * For de-interlacing we need to track our previous buffer
 628	 * while preparing our job lists.
 629	 */
 630	struct fdp1_field_buffer	*previous;
 631};
 632
 633static inline struct fdp1_ctx *fh_to_ctx(struct v4l2_fh *fh)
 634{
 635	return container_of(fh, struct fdp1_ctx, fh);
 636}
 637
 638static struct fdp1_q_data *get_q_data(struct fdp1_ctx *ctx,
 639					 enum v4l2_buf_type type)
 640{
 641	if (V4L2_TYPE_IS_OUTPUT(type))
 642		return &ctx->out_q;
 643	else
 644		return &ctx->cap_q;
 645}
 646
 647/*
 648 * list_remove_job: Take the first item off the specified job list
 649 *
 650 * Returns: pointer to a job, or NULL if the list is empty.
 651 */
 652static struct fdp1_job *list_remove_job(struct fdp1_dev *fdp1,
 653					 struct list_head *list)
 654{
 655	struct fdp1_job *job;
 656	unsigned long flags;
 657
 658	spin_lock_irqsave(&fdp1->irqlock, flags);
 659	job = list_first_entry_or_null(list, struct fdp1_job, list);
 660	if (job)
 661		list_del(&job->list);
 662	spin_unlock_irqrestore(&fdp1->irqlock, flags);
 663
 664	return job;
 665}
 666
 667/*
 668 * list_add_job: Add a job to the specified job list
 669 *
 670 * Returns: void - always succeeds
 671 */
 672static void list_add_job(struct fdp1_dev *fdp1,
 673			 struct list_head *list,
 674			 struct fdp1_job *job)
 675{
 676	unsigned long flags;
 677
 678	spin_lock_irqsave(&fdp1->irqlock, flags);
 679	list_add_tail(&job->list, list);
 680	spin_unlock_irqrestore(&fdp1->irqlock, flags);
 681}
 682
 683static struct fdp1_job *fdp1_job_alloc(struct fdp1_dev *fdp1)
 684{
 685	return list_remove_job(fdp1, &fdp1->free_job_list);
 686}
 687
 688static void fdp1_job_free(struct fdp1_dev *fdp1, struct fdp1_job *job)
 689{
 690	/* Ensure that all residue from previous jobs is gone */
 691	memset(job, 0, sizeof(struct fdp1_job));
 692
 693	list_add_job(fdp1, &fdp1->free_job_list, job);
 694}
 695
 696static void queue_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
 697{
 698	list_add_job(fdp1, &fdp1->queued_job_list, job);
 699}
 700
 701static struct fdp1_job *get_queued_job(struct fdp1_dev *fdp1)
 702{
 703	return list_remove_job(fdp1, &fdp1->queued_job_list);
 704}
 705
 706static void queue_hw_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
 707{
 708	list_add_job(fdp1, &fdp1->hw_job_list, job);
 709}
 710
 711static struct fdp1_job *get_hw_queued_job(struct fdp1_dev *fdp1)
 712{
 713	return list_remove_job(fdp1, &fdp1->hw_job_list);
 714}
 715
 716/*
 717 * Buffer lists handling
 718 */
 719static void fdp1_field_complete(struct fdp1_ctx *ctx,
 720				struct fdp1_field_buffer *fbuf)
 721{
 722	/* job->previous may be on the first field */
 723	if (!fbuf)
 724		return;
 725
 726	if (fbuf->last_field)
 727		v4l2_m2m_buf_done(fbuf->vb, VB2_BUF_STATE_DONE);
 728}
 729
 730static void fdp1_queue_field(struct fdp1_ctx *ctx,
 731			     struct fdp1_field_buffer *fbuf)
 732{
 733	unsigned long flags;
 734
 735	spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
 736	list_add_tail(&fbuf->list, &ctx->fields_queue);
 737	spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
 738
 739	ctx->buffers_queued++;
 740}
 741
 742static struct fdp1_field_buffer *fdp1_dequeue_field(struct fdp1_ctx *ctx)
 743{
 744	struct fdp1_field_buffer *fbuf;
 745	unsigned long flags;
 746
 747	ctx->buffers_queued--;
 748
 749	spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
 750	fbuf = list_first_entry_or_null(&ctx->fields_queue,
 751					struct fdp1_field_buffer, list);
 752	if (fbuf)
 753		list_del(&fbuf->list);
 754	spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
 755
 756	return fbuf;
 757}
 758
 759/*
 760 * Return the next field in the queue - or NULL,
 761 * without removing the item from the list
 762 */
 763static struct fdp1_field_buffer *fdp1_peek_queued_field(struct fdp1_ctx *ctx)
 764{
 765	struct fdp1_field_buffer *fbuf;
 766	unsigned long flags;
 767
 768	spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
 769	fbuf = list_first_entry_or_null(&ctx->fields_queue,
 770					struct fdp1_field_buffer, list);
 771	spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
 772
 773	return fbuf;
 774}
 775
 776static u32 fdp1_read(struct fdp1_dev *fdp1, unsigned int reg)
 777{
 778	u32 value = ioread32(fdp1->regs + reg);
 779
 780	if (debug >= 2)
 781		dprintk(fdp1, "Read 0x%08x from 0x%04x\n", value, reg);
 782
 783	return value;
 784}
 785
 786static void fdp1_write(struct fdp1_dev *fdp1, u32 val, unsigned int reg)
 787{
 788	if (debug >= 2)
 789		dprintk(fdp1, "Write 0x%08x to 0x%04x\n", val, reg);
 790
 791	iowrite32(val, fdp1->regs + reg);
 792}
 793
 794/* IPC registers are to be programmed with constant values */
 795static void fdp1_set_ipc_dli(struct fdp1_ctx *ctx)
 796{
 797	struct fdp1_dev *fdp1 = ctx->fdp1;
 798
 799	fdp1_write(fdp1, FD1_IPC_SMSK_THRESH_CONST,	FD1_IPC_SMSK_THRESH);
 800	fdp1_write(fdp1, FD1_IPC_COMB_DET_CONST,	FD1_IPC_COMB_DET);
 801	fdp1_write(fdp1, FD1_IPC_MOTDEC_CONST,	FD1_IPC_MOTDEC);
 802
 803	fdp1_write(fdp1, FD1_IPC_DLI_BLEND_CONST,	FD1_IPC_DLI_BLEND);
 804	fdp1_write(fdp1, FD1_IPC_DLI_HGAIN_CONST,	FD1_IPC_DLI_HGAIN);
 805	fdp1_write(fdp1, FD1_IPC_DLI_SPRS_CONST,	FD1_IPC_DLI_SPRS);
 806	fdp1_write(fdp1, FD1_IPC_DLI_ANGLE_CONST,	FD1_IPC_DLI_ANGLE);
 807	fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX0_CONST,	FD1_IPC_DLI_ISOPIX0);
 808	fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX1_CONST,	FD1_IPC_DLI_ISOPIX1);
 809}
 810
 811
 812static void fdp1_set_ipc_sensor(struct fdp1_ctx *ctx)
 813{
 814	struct fdp1_dev *fdp1 = ctx->fdp1;
 815	struct fdp1_q_data *src_q_data = &ctx->out_q;
 816	unsigned int x0, x1;
 817	unsigned int hsize = src_q_data->format.width;
 818	unsigned int vsize = src_q_data->format.height;
 819
 820	x0 = hsize / 3;
 821	x1 = 2 * hsize / 3;
 822
 823	fdp1_write(fdp1, FD1_IPC_SENSOR_TH0_CONST, FD1_IPC_SENSOR_TH0);
 824	fdp1_write(fdp1, FD1_IPC_SENSOR_TH1_CONST, FD1_IPC_SENSOR_TH1);
 825	fdp1_write(fdp1, FD1_IPC_SENSOR_CTL0_CONST, FD1_IPC_SENSOR_CTL0);
 826	fdp1_write(fdp1, FD1_IPC_SENSOR_CTL1_CONST, FD1_IPC_SENSOR_CTL1);
 827
 828	fdp1_write(fdp1, ((hsize - 1) << FD1_IPC_SENSOR_CTL2_X_SHIFT) |
 829			 ((vsize - 1) << FD1_IPC_SENSOR_CTL2_Y_SHIFT),
 830			 FD1_IPC_SENSOR_CTL2);
 831
 832	fdp1_write(fdp1, (x0 << FD1_IPC_SENSOR_CTL3_0_SHIFT) |
 833			 (x1 << FD1_IPC_SENSOR_CTL3_1_SHIFT),
 834			 FD1_IPC_SENSOR_CTL3);
 835}
 836
 837/*
 838 * fdp1_write_lut: Write a padded LUT to the hw
 839 *
 840 * FDP1 uses constant data for de-interlacing processing,
 841 * with large tables. These hardware tables are all 256 bytes
 842 * long, however they often contain repeated data at the end.
 843 *
 844 * The last byte of the table is written to all remaining entries.
 845 */
 846static void fdp1_write_lut(struct fdp1_dev *fdp1, const u8 *lut,
 847			   unsigned int len, unsigned int base)
 848{
 849	unsigned int i;
 850	u8 pad;
 851
 852	/* Tables larger than the hw are clipped */
 853	len = min(len, 256u);
 854
 855	for (i = 0; i < len; i++)
 856		fdp1_write(fdp1, lut[i], base + (i*4));
 857
 858	/* Tables are padded with the last entry */
 859	pad = lut[i-1];
 860
 861	for (; i < 256; i++)
 862		fdp1_write(fdp1, pad, base + (i*4));
 863}
 864
 865static void fdp1_set_lut(struct fdp1_dev *fdp1)
 866{
 867	fdp1_write_lut(fdp1, fdp1_diff_adj, ARRAY_SIZE(fdp1_diff_adj),
 868			FD1_LUT_DIF_ADJ);
 869	fdp1_write_lut(fdp1, fdp1_sad_adj,  ARRAY_SIZE(fdp1_sad_adj),
 870			FD1_LUT_SAD_ADJ);
 871	fdp1_write_lut(fdp1, fdp1_bld_gain, ARRAY_SIZE(fdp1_bld_gain),
 872			FD1_LUT_BLD_GAIN);
 873	fdp1_write_lut(fdp1, fdp1_dif_gain, ARRAY_SIZE(fdp1_dif_gain),
 874			FD1_LUT_DIF_GAIN);
 875	fdp1_write_lut(fdp1, fdp1_mdet, ARRAY_SIZE(fdp1_mdet),
 876			FD1_LUT_MDET);
 877}
 878
 879static void fdp1_configure_rpf(struct fdp1_ctx *ctx,
 880			       struct fdp1_job *job)
 881{
 882	struct fdp1_dev *fdp1 = ctx->fdp1;
 883	u32 picture_size;
 884	u32 pstride;
 885	u32 format;
 886	u32 smsk_addr;
 887
 888	struct fdp1_q_data *q_data = &ctx->out_q;
 889
 890	/* Picture size is common to Source and Destination frames */
 891	picture_size = (q_data->format.width << FD1_RPF_SIZE_H_SHIFT)
 892		     | (q_data->vsize << FD1_RPF_SIZE_V_SHIFT);
 893
 894	/* Strides */
 895	pstride = q_data->stride_y << FD1_RPF_PSTRIDE_Y_SHIFT;
 896	if (q_data->format.num_planes > 1)
 897		pstride |= q_data->stride_c << FD1_RPF_PSTRIDE_C_SHIFT;
 898
 899	/* Format control */
 900	format = q_data->fmt->fmt;
 901	if (q_data->fmt->swap_yc)
 902		format |= FD1_RPF_FORMAT_RSPYCS;
 903
 904	if (q_data->fmt->swap_uv)
 905		format |= FD1_RPF_FORMAT_RSPUVS;
 906
 907	if (job->active->field == V4L2_FIELD_BOTTOM) {
 908		format |= FD1_RPF_FORMAT_CF; /* Set for Bottom field */
 909		smsk_addr = ctx->smsk_addr[0];
 910	} else {
 911		smsk_addr = ctx->smsk_addr[1];
 912	}
 913
 914	/* Deint mode is non-zero when deinterlacing */
 915	if (ctx->deint_mode)
 916		format |= FD1_RPF_FORMAT_CIPM;
 917
 918	fdp1_write(fdp1, format, FD1_RPF_FORMAT);
 919	fdp1_write(fdp1, q_data->fmt->swap, FD1_RPF_SWAP);
 920	fdp1_write(fdp1, picture_size, FD1_RPF_SIZE);
 921	fdp1_write(fdp1, pstride, FD1_RPF_PSTRIDE);
 922	fdp1_write(fdp1, smsk_addr, FD1_RPF_SMSK_ADDR);
 923
 924	/* Previous Field Channel (CH0) */
 925	if (job->previous)
 926		fdp1_write(fdp1, job->previous->addrs[0], FD1_RPF0_ADDR_Y);
 927
 928	/* Current Field Channel (CH1) */
 929	fdp1_write(fdp1, job->active->addrs[0], FD1_RPF1_ADDR_Y);
 930	fdp1_write(fdp1, job->active->addrs[1], FD1_RPF1_ADDR_C0);
 931	fdp1_write(fdp1, job->active->addrs[2], FD1_RPF1_ADDR_C1);
 932
 933	/* Next Field  Channel (CH2) */
 934	if (job->next)
 935		fdp1_write(fdp1, job->next->addrs[0], FD1_RPF2_ADDR_Y);
 936}
 937
 938static void fdp1_configure_wpf(struct fdp1_ctx *ctx,
 939			       struct fdp1_job *job)
 940{
 941	struct fdp1_dev *fdp1 = ctx->fdp1;
 942	struct fdp1_q_data *src_q_data = &ctx->out_q;
 943	struct fdp1_q_data *q_data = &ctx->cap_q;
 944	u32 pstride;
 945	u32 format;
 946	u32 swap;
 947	u32 rndctl;
 948
 949	pstride = q_data->format.plane_fmt[0].bytesperline
 950		<< FD1_WPF_PSTRIDE_Y_SHIFT;
 951
 952	if (q_data->format.num_planes > 1)
 953		pstride |= q_data->format.plane_fmt[1].bytesperline
 954			<< FD1_WPF_PSTRIDE_C_SHIFT;
 955
 956	format = q_data->fmt->fmt; /* Output Format Code */
 957
 958	if (q_data->fmt->swap_yc)
 959		format |= FD1_WPF_FORMAT_WSPYCS;
 960
 961	if (q_data->fmt->swap_uv)
 962		format |= FD1_WPF_FORMAT_WSPUVS;
 963
 964	if (fdp1_fmt_is_rgb(q_data->fmt)) {
 965		/* Enable Colour Space conversion */
 966		format |= FD1_WPF_FORMAT_CSC;
 967
 968		/* Set WRTM */
 969		if (src_q_data->format.ycbcr_enc == V4L2_YCBCR_ENC_709)
 970			format |= FD1_WPF_FORMAT_WRTM_709_16;
 971		else if (src_q_data->format.quantization ==
 972				V4L2_QUANTIZATION_FULL_RANGE)
 973			format |= FD1_WPF_FORMAT_WRTM_601_0;
 974		else
 975			format |= FD1_WPF_FORMAT_WRTM_601_16;
 976	}
 977
 978	/* Set an alpha value into the Pad Value */
 979	format |= ctx->alpha << FD1_WPF_FORMAT_PDV_SHIFT;
 980
 981	/* Determine picture rounding and clipping */
 982	rndctl = FD1_WPF_RNDCTL_CBRM; /* Rounding Off */
 983	rndctl |= FD1_WPF_RNDCTL_CLMD_NOCLIP;
 984
 985	/* WPF Swap needs both ISWAP and OSWAP setting */
 986	swap = q_data->fmt->swap << FD1_WPF_SWAP_OSWAP_SHIFT;
 987	swap |= src_q_data->fmt->swap << FD1_WPF_SWAP_SSWAP_SHIFT;
 988
 989	fdp1_write(fdp1, format, FD1_WPF_FORMAT);
 990	fdp1_write(fdp1, rndctl, FD1_WPF_RNDCTL);
 991	fdp1_write(fdp1, swap, FD1_WPF_SWAP);
 992	fdp1_write(fdp1, pstride, FD1_WPF_PSTRIDE);
 993
 994	fdp1_write(fdp1, job->dst->addrs[0], FD1_WPF_ADDR_Y);
 995	fdp1_write(fdp1, job->dst->addrs[1], FD1_WPF_ADDR_C0);
 996	fdp1_write(fdp1, job->dst->addrs[2], FD1_WPF_ADDR_C1);
 997}
 998
 999static void fdp1_configure_deint_mode(struct fdp1_ctx *ctx,
1000				      struct fdp1_job *job)
1001{
1002	struct fdp1_dev *fdp1 = ctx->fdp1;
1003	u32 opmode = FD1_CTL_OPMODE_VIMD_NOINTERRUPT;
1004	u32 ipcmode = FD1_IPC_MODE_DLI; /* Always set */
1005	u32 channels = FD1_CTL_CHACT_WR | FD1_CTL_CHACT_RD1; /* Always on */
1006
1007	/* De-interlacing Mode */
1008	switch (ctx->deint_mode) {
1009	default:
1010	case FDP1_PROGRESSIVE:
1011		dprintk(fdp1, "Progressive Mode\n");
1012		opmode |= FD1_CTL_OPMODE_PRG;
1013		ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
1014		break;
1015	case FDP1_ADAPT2D3D:
1016		dprintk(fdp1, "Adapt2D3D Mode\n");
1017		if (ctx->sequence == 0 || ctx->aborting)
1018			ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
1019		else
1020			ipcmode |= FD1_IPC_MODE_DIM_ADAPT2D3D;
1021
1022		if (ctx->sequence > 1) {
1023			channels |= FD1_CTL_CHACT_SMW;
1024			channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
1025		}
1026
1027		if (ctx->sequence > 2)
1028			channels |= FD1_CTL_CHACT_SMR;
1029
1030		break;
1031	case FDP1_FIXED3D:
1032		dprintk(fdp1, "Fixed 3D Mode\n");
1033		ipcmode |= FD1_IPC_MODE_DIM_FIXED3D;
1034		/* Except for first and last frame, enable all channels */
1035		if (!(ctx->sequence == 0 || ctx->aborting))
1036			channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
1037		break;
1038	case FDP1_FIXED2D:
1039		dprintk(fdp1, "Fixed 2D Mode\n");
1040		ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
1041		/* No extra channels enabled */
1042		break;
1043	case FDP1_PREVFIELD:
1044		dprintk(fdp1, "Previous Field Mode\n");
1045		ipcmode |= FD1_IPC_MODE_DIM_PREVFIELD;
1046		channels |= FD1_CTL_CHACT_RD0; /* Previous */
1047		break;
1048	case FDP1_NEXTFIELD:
1049		dprintk(fdp1, "Next Field Mode\n");
1050		ipcmode |= FD1_IPC_MODE_DIM_NEXTFIELD;
1051		channels |= FD1_CTL_CHACT_RD2; /* Next */
1052		break;
1053	}
1054
1055	fdp1_write(fdp1, channels,	FD1_CTL_CHACT);
1056	fdp1_write(fdp1, opmode,	FD1_CTL_OPMODE);
1057	fdp1_write(fdp1, ipcmode,	FD1_IPC_MODE);
1058}
1059
1060/*
1061 * fdp1_device_process() - Run the hardware
1062 *
1063 * Configure and start the hardware to generate a single frame
1064 * of output given our input parameters.
1065 */
1066static int fdp1_device_process(struct fdp1_ctx *ctx)
1067
1068{
1069	struct fdp1_dev *fdp1 = ctx->fdp1;
1070	struct fdp1_job *job;
1071	unsigned long flags;
1072
1073	spin_lock_irqsave(&fdp1->device_process_lock, flags);
1074
1075	/* Get a job to process */
1076	job = get_queued_job(fdp1);
1077	if (!job) {
1078		/*
1079		 * VINT can call us to see if we can queue another job.
1080		 * If we have no work to do, we simply return.
1081		 */
1082		spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
1083		return 0;
1084	}
1085
1086	/* First Frame only? ... */
1087	fdp1_write(fdp1, FD1_CTL_CLKCTRL_CSTP_N, FD1_CTL_CLKCTRL);
1088
1089	/* Set the mode, and configuration */
1090	fdp1_configure_deint_mode(ctx, job);
1091
1092	/* DLI Static Configuration */
1093	fdp1_set_ipc_dli(ctx);
1094
1095	/* Sensor Configuration */
1096	fdp1_set_ipc_sensor(ctx);
1097
1098	/* Setup the source picture */
1099	fdp1_configure_rpf(ctx, job);
1100
1101	/* Setup the destination picture */
1102	fdp1_configure_wpf(ctx, job);
1103
1104	/* Line Memory Pixel Number Register for linear access */
1105	fdp1_write(fdp1, FD1_IPC_LMEM_LINEAR, FD1_IPC_LMEM);
1106
1107	/* Enable Interrupts */
1108	fdp1_write(fdp1, FD1_CTL_IRQ_MASK, FD1_CTL_IRQENB);
1109
1110	/* Finally, the Immediate Registers */
1111
1112	/* This job is now in the HW queue */
1113	queue_hw_job(fdp1, job);
1114
1115	/* Start the command */
1116	fdp1_write(fdp1, FD1_CTL_CMD_STRCMD, FD1_CTL_CMD);
1117
1118	/* Registers will update to HW at next VINT */
1119	fdp1_write(fdp1, FD1_CTL_REGEND_REGEND, FD1_CTL_REGEND);
1120
1121	/* Enable VINT Generator */
1122	fdp1_write(fdp1, FD1_CTL_SGCMD_SGEN, FD1_CTL_SGCMD);
1123
1124	spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
1125
1126	return 0;
1127}
1128
1129/*
1130 * mem2mem callbacks
1131 */
1132
1133/*
1134 * job_ready() - check whether an instance is ready to be scheduled to run
1135 */
1136static int fdp1_m2m_job_ready(void *priv)
1137{
1138	struct fdp1_ctx *ctx = priv;
1139	struct fdp1_q_data *src_q_data = &ctx->out_q;
1140	int srcbufs = 1;
1141	int dstbufs = 1;
1142
1143	dprintk(ctx->fdp1, "+ Src: %d : Dst: %d\n",
1144		v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx),
1145		v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx));
1146
1147	/* One output buffer is required for each field */
1148	if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
1149		dstbufs = 2;
1150
1151	if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) < srcbufs
1152	    || v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) < dstbufs) {
1153		dprintk(ctx->fdp1, "Not enough buffers available\n");
1154		return 0;
1155	}
1156
1157	return 1;
1158}
1159
1160static void fdp1_m2m_job_abort(void *priv)
1161{
1162	struct fdp1_ctx *ctx = priv;
1163
1164	dprintk(ctx->fdp1, "+\n");
1165
1166	/* Will cancel the transaction in the next interrupt handler */
1167	ctx->aborting = 1;
1168
1169	/* Immediate abort sequence */
1170	fdp1_write(ctx->fdp1, 0, FD1_CTL_SGCMD);
1171	fdp1_write(ctx->fdp1, FD1_CTL_SRESET_SRST, FD1_CTL_SRESET);
1172}
1173
1174/*
1175 * fdp1_prepare_job: Prepare and queue a new job for a single action of work
1176 *
1177 * Prepare the next field, (or frame in progressive) and an output
1178 * buffer for the hardware to perform a single operation.
1179 */
1180static struct fdp1_job *fdp1_prepare_job(struct fdp1_ctx *ctx)
1181{
1182	struct vb2_v4l2_buffer *vbuf;
1183	struct fdp1_buffer *fbuf;
1184	struct fdp1_dev *fdp1 = ctx->fdp1;
1185	struct fdp1_job *job;
1186	unsigned int buffers_required = 1;
1187
1188	dprintk(fdp1, "+\n");
1189
1190	if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode))
1191		buffers_required = 2;
1192
1193	if (ctx->buffers_queued < buffers_required)
1194		return NULL;
1195
1196	job = fdp1_job_alloc(fdp1);
1197	if (!job) {
1198		dprintk(fdp1, "No free jobs currently available\n");
1199		return NULL;
1200	}
1201
1202	job->active = fdp1_dequeue_field(ctx);
1203	if (!job->active) {
1204		/* Buffer check should prevent this ever happening */
1205		dprintk(fdp1, "No input buffers currently available\n");
1206
1207		fdp1_job_free(fdp1, job);
1208		return NULL;
1209	}
1210
1211	dprintk(fdp1, "+ Buffer en-route...\n");
1212
1213	/* Source buffers have been prepared on our buffer_queue
1214	 * Prepare our Output buffer
1215	 */
1216	vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1217	fbuf = to_fdp1_buffer(vbuf);
1218	job->dst = &fbuf->fields[0];
1219
1220	job->active->vb->sequence = ctx->sequence;
1221	job->dst->vb->sequence = ctx->sequence;
1222	ctx->sequence++;
1223
1224	if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) {
1225		job->previous = ctx->previous;
1226
1227		/* Active buffer becomes the next job's previous buffer */
1228		ctx->previous = job->active;
1229	}
1230
1231	if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode)) {
1232		/* Must be called after 'active' is dequeued */
1233		job->next = fdp1_peek_queued_field(ctx);
1234	}
1235
1236	/* Transfer timestamps and flags from src->dst */
1237
1238	job->dst->vb->vb2_buf.timestamp = job->active->vb->vb2_buf.timestamp;
1239
1240	job->dst->vb->flags = job->active->vb->flags &
1241				V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
1242
1243	/* Ideally, the frame-end function will just 'check' to see
1244	 * if there are more jobs instead
1245	 */
1246	ctx->translen++;
1247
1248	/* Finally, Put this job on the processing queue */
1249	queue_job(fdp1, job);
1250
1251	dprintk(fdp1, "Job Queued translen = %d\n", ctx->translen);
1252
1253	return job;
1254}
1255
1256/* fdp1_m2m_device_run() - prepares and starts the device for an M2M task
1257 *
1258 * A single input buffer is taken and serialised into our fdp1_buffer
1259 * queue. The queue is then processed to create as many jobs as possible
1260 * from our available input.
1261 */
1262static void fdp1_m2m_device_run(void *priv)
1263{
1264	struct fdp1_ctx *ctx = priv;
1265	struct fdp1_dev *fdp1 = ctx->fdp1;
1266	struct vb2_v4l2_buffer *src_vb;
1267	struct fdp1_buffer *buf;
1268	unsigned int i;
1269
1270	dprintk(fdp1, "+\n");
1271
1272	ctx->translen = 0;
1273
1274	/* Get our incoming buffer of either one or two fields, or one frame */
1275	src_vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1276	buf = to_fdp1_buffer(src_vb);
1277
1278	for (i = 0; i < buf->num_fields; i++) {
1279		struct fdp1_field_buffer *fbuf = &buf->fields[i];
1280
1281		fdp1_queue_field(ctx, fbuf);
1282		dprintk(fdp1, "Queued Buffer [%d] last_field:%d\n",
1283			i, fbuf->last_field);
1284	}
1285
1286	/* Queue as many jobs as our data provides for */
1287	while (fdp1_prepare_job(ctx))
1288		;
1289
1290	if (ctx->translen == 0) {
1291		dprintk(fdp1, "No jobs were processed. M2M action complete\n");
1292		v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
1293		return;
1294	}
1295
1296	/* Kick the job processing action */
1297	fdp1_device_process(ctx);
1298}
1299
1300/*
1301 * device_frame_end:
1302 *
1303 * Handles the M2M level after a buffer completion event.
1304 */
1305static void device_frame_end(struct fdp1_dev *fdp1,
1306			     enum vb2_buffer_state state)
1307{
1308	struct fdp1_ctx *ctx;
1309	unsigned long flags;
1310	struct fdp1_job *job = get_hw_queued_job(fdp1);
1311
1312	dprintk(fdp1, "+\n");
1313
1314	ctx = v4l2_m2m_get_curr_priv(fdp1->m2m_dev);
1315
1316	if (ctx == NULL) {
1317		v4l2_err(&fdp1->v4l2_dev,
1318			"Instance released before the end of transaction\n");
1319		return;
1320	}
1321
1322	ctx->num_processed++;
1323
1324	/*
1325	 * fdp1_field_complete will call buf_done only when the last vb2_buffer
1326	 * reference is complete
1327	 */
1328	if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
1329		fdp1_field_complete(ctx, job->previous);
1330	else
1331		fdp1_field_complete(ctx, job->active);
1332
1333	spin_lock_irqsave(&fdp1->irqlock, flags);
1334	v4l2_m2m_buf_done(job->dst->vb, state);
1335	job->dst = NULL;
1336	spin_unlock_irqrestore(&fdp1->irqlock, flags);
1337
1338	/* Move this job back to the free job list */
1339	fdp1_job_free(fdp1, job);
1340
1341	dprintk(fdp1, "curr_ctx->num_processed %d curr_ctx->translen %d\n",
1342		ctx->num_processed, ctx->translen);
1343
1344	if (ctx->num_processed == ctx->translen ||
1345			ctx->aborting) {
1346		dprintk(ctx->fdp1, "Finishing transaction\n");
1347		ctx->num_processed = 0;
1348		v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
1349	} else {
1350		/*
1351		 * For pipelined performance support, this would
1352		 * be called from a VINT handler
1353		 */
1354		fdp1_device_process(ctx);
1355	}
1356}
1357
1358/*
1359 * video ioctls
1360 */
1361static int fdp1_vidioc_querycap(struct file *file, void *priv,
1362			   struct v4l2_capability *cap)
1363{
1364	strscpy(cap->driver, DRIVER_NAME, sizeof(cap->driver));
1365	strscpy(cap->card, DRIVER_NAME, sizeof(cap->card));
1366	snprintf(cap->bus_info, sizeof(cap->bus_info),
1367		 "platform:%s", DRIVER_NAME);
1368	return 0;
1369}
1370
1371static int fdp1_enum_fmt(struct v4l2_fmtdesc *f, u32 type)
1372{
1373	unsigned int i, num;
1374
1375	num = 0;
1376
1377	for (i = 0; i < ARRAY_SIZE(fdp1_formats); ++i) {
1378		if (fdp1_formats[i].types & type) {
1379			if (num == f->index)
1380				break;
1381			++num;
1382		}
1383	}
1384
1385	/* Format not found */
1386	if (i >= ARRAY_SIZE(fdp1_formats))
1387		return -EINVAL;
1388
1389	/* Format found */
1390	f->pixelformat = fdp1_formats[i].fourcc;
1391
1392	return 0;
1393}
1394
1395static int fdp1_enum_fmt_vid_cap(struct file *file, void *priv,
1396				 struct v4l2_fmtdesc *f)
1397{
1398	return fdp1_enum_fmt(f, FDP1_CAPTURE);
1399}
1400
1401static int fdp1_enum_fmt_vid_out(struct file *file, void *priv,
1402				   struct v4l2_fmtdesc *f)
1403{
1404	return fdp1_enum_fmt(f, FDP1_OUTPUT);
1405}
1406
1407static int fdp1_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
1408{
1409	struct fdp1_q_data *q_data;
1410	struct fdp1_ctx *ctx = fh_to_ctx(priv);
1411
1412	if (!v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type))
1413		return -EINVAL;
1414
1415	q_data = get_q_data(ctx, f->type);
1416	f->fmt.pix_mp = q_data->format;
1417
1418	return 0;
1419}
1420
1421static void fdp1_compute_stride(struct v4l2_pix_format_mplane *pix,
1422				const struct fdp1_fmt *fmt)
1423{
1424	unsigned int i;
1425
1426	/* Compute and clamp the stride and image size. */
1427	for (i = 0; i < min_t(unsigned int, fmt->num_planes, 2U); ++i) {
1428		unsigned int hsub = i > 0 ? fmt->hsub : 1;
1429		unsigned int vsub = i > 0 ? fmt->vsub : 1;
1430		 /* From VSP : TODO: Confirm alignment limits for FDP1 */
1431		unsigned int align = 128;
1432		unsigned int bpl;
1433
1434		bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
1435			      pix->width / hsub * fmt->bpp[i] / 8,
1436			      round_down(FDP1_MAX_STRIDE, align));
1437
1438		pix->plane_fmt[i].bytesperline = round_up(bpl, align);
1439		pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
1440					    * pix->height / vsub;
1441
1442		memset(pix->plane_fmt[i].reserved, 0,
1443		       sizeof(pix->plane_fmt[i].reserved));
1444	}
1445
1446	if (fmt->num_planes == 3) {
1447		/* The two chroma planes must have the same stride. */
1448		pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
1449		pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
1450
1451		memset(pix->plane_fmt[2].reserved, 0,
1452		       sizeof(pix->plane_fmt[2].reserved));
1453	}
1454}
1455
1456static void fdp1_try_fmt_output(struct fdp1_ctx *ctx,
1457				const struct fdp1_fmt **fmtinfo,
1458				struct v4l2_pix_format_mplane *pix)
1459{
1460	const struct fdp1_fmt *fmt;
1461	unsigned int width;
1462	unsigned int height;
1463
1464	/* Validate the pixel format to ensure the output queue supports it. */
1465	fmt = fdp1_find_format(pix->pixelformat);
1466	if (!fmt || !(fmt->types & FDP1_OUTPUT))
1467		fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
1468
1469	if (fmtinfo)
1470		*fmtinfo = fmt;
1471
1472	pix->pixelformat = fmt->fourcc;
1473	pix->num_planes = fmt->num_planes;
1474
1475	/*
1476	 * Progressive video and all interlaced field orders are acceptable.
1477	 * Default to V4L2_FIELD_INTERLACED.
1478	 */
1479	if (pix->field != V4L2_FIELD_NONE &&
1480	    pix->field != V4L2_FIELD_ALTERNATE &&
1481	    !V4L2_FIELD_HAS_BOTH(pix->field))
1482		pix->field = V4L2_FIELD_INTERLACED;
1483
1484	/*
1485	 * The deinterlacer doesn't care about the colorspace, accept all values
1486	 * and default to V4L2_COLORSPACE_SMPTE170M. The YUV to RGB conversion
1487	 * at the output of the deinterlacer supports a subset of encodings and
1488	 * quantization methods and will only be available when the colorspace
1489	 * allows it.
1490	 */
1491	if (pix->colorspace == V4L2_COLORSPACE_DEFAULT)
1492		pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
1493
1494	/*
1495	 * Align the width and height for YUV 4:2:2 and 4:2:0 formats and clamp
1496	 * them to the supported frame size range. The height boundary are
1497	 * related to the full frame, divide them by two when the format passes
1498	 * fields in separate buffers.
1499	 */
1500	width = round_down(pix->width, fmt->hsub);
1501	pix->width = clamp(width, FDP1_MIN_W, FDP1_MAX_W);
1502
1503	height = round_down(pix->height, fmt->vsub);
1504	if (pix->field == V4L2_FIELD_ALTERNATE)
1505		pix->height = clamp(height, FDP1_MIN_H / 2, FDP1_MAX_H / 2);
1506	else
1507		pix->height = clamp(height, FDP1_MIN_H, FDP1_MAX_H);
1508
1509	fdp1_compute_stride(pix, fmt);
1510}
1511
1512static void fdp1_try_fmt_capture(struct fdp1_ctx *ctx,
1513				 const struct fdp1_fmt **fmtinfo,
1514				 struct v4l2_pix_format_mplane *pix)
1515{
1516	struct fdp1_q_data *src_data = &ctx->out_q;
1517	enum v4l2_colorspace colorspace;
1518	enum v4l2_ycbcr_encoding ycbcr_enc;
1519	enum v4l2_quantization quantization;
1520	const struct fdp1_fmt *fmt;
1521	bool allow_rgb;
1522
1523	/*
1524	 * Validate the pixel format. We can only accept RGB output formats if
1525	 * the input encoding and quantization are compatible with the format
1526	 * conversions supported by the hardware. The supported combinations are
1527	 *
1528	 * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_LIM_RANGE
1529	 * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_FULL_RANGE
1530	 * V4L2_YCBCR_ENC_709 + V4L2_QUANTIZATION_LIM_RANGE
1531	 */
1532	colorspace = src_data->format.colorspace;
1533
1534	ycbcr_enc = src_data->format.ycbcr_enc;
1535	if (ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT)
1536		ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(colorspace);
1537
1538	quantization = src_data->format.quantization;
1539	if (quantization == V4L2_QUANTIZATION_DEFAULT)
1540		quantization = V4L2_MAP_QUANTIZATION_DEFAULT(false, colorspace,
1541							     ycbcr_enc);
1542
1543	allow_rgb = ycbcr_enc == V4L2_YCBCR_ENC_601 ||
1544		    (ycbcr_enc == V4L2_YCBCR_ENC_709 &&
1545		     quantization == V4L2_QUANTIZATION_LIM_RANGE);
1546
1547	fmt = fdp1_find_format(pix->pixelformat);
1548	if (!fmt || (!allow_rgb && fdp1_fmt_is_rgb(fmt)))
1549		fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
1550
1551	if (fmtinfo)
1552		*fmtinfo = fmt;
1553
1554	pix->pixelformat = fmt->fourcc;
1555	pix->num_planes = fmt->num_planes;
1556	pix->field = V4L2_FIELD_NONE;
1557
1558	/*
1559	 * The colorspace on the capture queue is copied from the output queue
1560	 * as the hardware can't change the colorspace. It can convert YCbCr to
1561	 * RGB though, in which case the encoding and quantization are set to
1562	 * default values as anything else wouldn't make sense.
1563	 */
1564	pix->colorspace = src_data->format.colorspace;
1565	pix->xfer_func = src_data->format.xfer_func;
1566
1567	if (fdp1_fmt_is_rgb(fmt)) {
1568		pix->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
1569		pix->quantization = V4L2_QUANTIZATION_DEFAULT;
1570	} else {
1571		pix->ycbcr_enc = src_data->format.ycbcr_enc;
1572		pix->quantization = src_data->format.quantization;
1573	}
1574
1575	/*
1576	 * The frame width is identical to the output queue, and the height is
1577	 * either doubled or identical depending on whether the output queue
1578	 * field order contains one or two fields per frame.
1579	 */
1580	pix->width = src_data->format.width;
1581	if (src_data->format.field == V4L2_FIELD_ALTERNATE)
1582		pix->height = 2 * src_data->format.height;
1583	else
1584		pix->height = src_data->format.height;
1585
1586	fdp1_compute_stride(pix, fmt);
1587}
1588
1589static int fdp1_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
1590{
1591	struct fdp1_ctx *ctx = fh_to_ctx(priv);
1592
1593	if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
1594		fdp1_try_fmt_output(ctx, NULL, &f->fmt.pix_mp);
1595	else
1596		fdp1_try_fmt_capture(ctx, NULL, &f->fmt.pix_mp);
1597
1598	dprintk(ctx->fdp1, "Try %s format: %4.4s (0x%08x) %ux%u field %u\n",
1599		V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
1600		(char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
1601		f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
1602
1603	return 0;
1604}
1605
1606static void fdp1_set_format(struct fdp1_ctx *ctx,
1607			    struct v4l2_pix_format_mplane *pix,
1608			    enum v4l2_buf_type type)
1609{
1610	struct fdp1_q_data *q_data = get_q_data(ctx, type);
1611	const struct fdp1_fmt *fmtinfo;
1612
1613	if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
1614		fdp1_try_fmt_output(ctx, &fmtinfo, pix);
1615	else
1616		fdp1_try_fmt_capture(ctx, &fmtinfo, pix);
1617
1618	q_data->fmt = fmtinfo;
1619	q_data->format = *pix;
1620
1621	q_data->vsize = pix->height;
1622	if (pix->field != V4L2_FIELD_NONE)
1623		q_data->vsize /= 2;
1624
1625	q_data->stride_y = pix->plane_fmt[0].bytesperline;
1626	q_data->stride_c = pix->plane_fmt[1].bytesperline;
1627
1628	/* Adjust strides for interleaved buffers */
1629	if (pix->field == V4L2_FIELD_INTERLACED ||
1630	    pix->field == V4L2_FIELD_INTERLACED_TB ||
1631	    pix->field == V4L2_FIELD_INTERLACED_BT) {
1632		q_data->stride_y *= 2;
1633		q_data->stride_c *= 2;
1634	}
1635
1636	/* Propagate the format from the output node to the capture node. */
1637	if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
1638		struct fdp1_q_data *dst_data = &ctx->cap_q;
1639
1640		/*
1641		 * Copy the format, clear the per-plane bytes per line and image
1642		 * size, override the field and double the height if needed.
1643		 */
1644		dst_data->format = q_data->format;
1645		memset(dst_data->format.plane_fmt, 0,
1646		       sizeof(dst_data->format.plane_fmt));
1647
1648		dst_data->format.field = V4L2_FIELD_NONE;
1649		if (pix->field == V4L2_FIELD_ALTERNATE)
1650			dst_data->format.height *= 2;
1651
1652		fdp1_try_fmt_capture(ctx, &dst_data->fmt, &dst_data->format);
1653
1654		dst_data->vsize = dst_data->format.height;
1655		dst_data->stride_y = dst_data->format.plane_fmt[0].bytesperline;
1656		dst_data->stride_c = dst_data->format.plane_fmt[1].bytesperline;
1657	}
1658}
1659
1660static int fdp1_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
1661{
1662	struct fdp1_ctx *ctx = fh_to_ctx(priv);
1663	struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx;
1664	struct vb2_queue *vq = v4l2_m2m_get_vq(m2m_ctx, f->type);
1665
1666	if (vb2_is_busy(vq)) {
1667		v4l2_err(&ctx->fdp1->v4l2_dev, "%s queue busy\n", __func__);
1668		return -EBUSY;
1669	}
1670
1671	fdp1_set_format(ctx, &f->fmt.pix_mp, f->type);
1672
1673	dprintk(ctx->fdp1, "Set %s format: %4.4s (0x%08x) %ux%u field %u\n",
1674		V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
1675		(char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
1676		f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
1677
1678	return 0;
1679}
1680
1681static int fdp1_g_ctrl(struct v4l2_ctrl *ctrl)
1682{
1683	struct fdp1_ctx *ctx =
1684		container_of(ctrl->handler, struct fdp1_ctx, hdl);
1685	struct fdp1_q_data *src_q_data = &ctx->out_q;
1686
1687	switch (ctrl->id) {
1688	case V4L2_CID_MIN_BUFFERS_FOR_CAPTURE:
1689		if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
1690			ctrl->val = 2;
1691		else
1692			ctrl->val = 1;
1693		return 0;
1694	}
1695
1696	return 1;
1697}
1698
1699static int fdp1_s_ctrl(struct v4l2_ctrl *ctrl)
1700{
1701	struct fdp1_ctx *ctx =
1702		container_of(ctrl->handler, struct fdp1_ctx, hdl);
1703
1704	switch (ctrl->id) {
1705	case V4L2_CID_ALPHA_COMPONENT:
1706		ctx->alpha = ctrl->val;
1707		break;
1708
1709	case V4L2_CID_DEINTERLACING_MODE:
1710		ctx->deint_mode = ctrl->val;
1711		break;
1712	}
1713
1714	return 0;
1715}
1716
1717static const struct v4l2_ctrl_ops fdp1_ctrl_ops = {
1718	.s_ctrl = fdp1_s_ctrl,
1719	.g_volatile_ctrl = fdp1_g_ctrl,
1720};
1721
1722static const char * const fdp1_ctrl_deint_menu[] = {
1723	"Progressive",
1724	"Adaptive 2D/3D",
1725	"Fixed 2D",
1726	"Fixed 3D",
1727	"Previous field",
1728	"Next field",
1729	NULL
1730};
1731
1732static const struct v4l2_ioctl_ops fdp1_ioctl_ops = {
1733	.vidioc_querycap	= fdp1_vidioc_querycap,
1734
1735	.vidioc_enum_fmt_vid_cap	= fdp1_enum_fmt_vid_cap,
1736	.vidioc_enum_fmt_vid_out	= fdp1_enum_fmt_vid_out,
1737	.vidioc_g_fmt_vid_cap_mplane	= fdp1_g_fmt,
1738	.vidioc_g_fmt_vid_out_mplane	= fdp1_g_fmt,
1739	.vidioc_try_fmt_vid_cap_mplane	= fdp1_try_fmt,
1740	.vidioc_try_fmt_vid_out_mplane	= fdp1_try_fmt,
1741	.vidioc_s_fmt_vid_cap_mplane	= fdp1_s_fmt,
1742	.vidioc_s_fmt_vid_out_mplane	= fdp1_s_fmt,
1743
1744	.vidioc_reqbufs		= v4l2_m2m_ioctl_reqbufs,
1745	.vidioc_querybuf	= v4l2_m2m_ioctl_querybuf,
1746	.vidioc_qbuf		= v4l2_m2m_ioctl_qbuf,
1747	.vidioc_dqbuf		= v4l2_m2m_ioctl_dqbuf,
1748	.vidioc_prepare_buf	= v4l2_m2m_ioctl_prepare_buf,
1749	.vidioc_create_bufs	= v4l2_m2m_ioctl_create_bufs,
1750	.vidioc_expbuf		= v4l2_m2m_ioctl_expbuf,
1751
1752	.vidioc_streamon	= v4l2_m2m_ioctl_streamon,
1753	.vidioc_streamoff	= v4l2_m2m_ioctl_streamoff,
1754
1755	.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
1756	.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
1757};
1758
1759/*
1760 * Queue operations
1761 */
1762
1763static int fdp1_queue_setup(struct vb2_queue *vq,
1764				unsigned int *nbuffers, unsigned int *nplanes,
1765				unsigned int sizes[],
1766				struct device *alloc_ctxs[])
1767{
1768	struct fdp1_ctx *ctx = vb2_get_drv_priv(vq);
1769	struct fdp1_q_data *q_data;
1770	unsigned int i;
1771
1772	q_data = get_q_data(ctx, vq->type);
1773
1774	if (*nplanes) {
1775		if (*nplanes > FDP1_MAX_PLANES)
1776			return -EINVAL;
1777
1778		return 0;
1779	}
1780
1781	*nplanes = q_data->format.num_planes;
1782
1783	for (i = 0; i < *nplanes; i++)
1784		sizes[i] = q_data->format.plane_fmt[i].sizeimage;
1785
1786	return 0;
1787}
1788
1789static void fdp1_buf_prepare_field(struct fdp1_q_data *q_data,
1790				   struct vb2_v4l2_buffer *vbuf,
1791				   unsigned int field_num)
1792{
1793	struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
1794	struct fdp1_field_buffer *fbuf = &buf->fields[field_num];
1795	unsigned int num_fields;
1796	unsigned int i;
1797
1798	num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
1799
1800	fbuf->vb = vbuf;
1801	fbuf->last_field = (field_num + 1) == num_fields;
1802
1803	for (i = 0; i < vbuf->vb2_buf.num_planes; ++i)
1804		fbuf->addrs[i] = vb2_dma_contig_plane_dma_addr(&vbuf->vb2_buf, i);
1805
1806	switch (vbuf->field) {
1807	case V4L2_FIELD_INTERLACED:
1808		/*
1809		 * Interlaced means bottom-top for 60Hz TV standards (NTSC) and
1810		 * top-bottom for 50Hz. As TV standards are not applicable to
1811		 * the mem-to-mem API, use the height as a heuristic.
1812		 */
1813		fbuf->field = (q_data->format.height < 576) == field_num
1814			    ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
1815		break;
1816	case V4L2_FIELD_INTERLACED_TB:
1817	case V4L2_FIELD_SEQ_TB:
1818		fbuf->field = field_num ? V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP;
1819		break;
1820	case V4L2_FIELD_INTERLACED_BT:
1821	case V4L2_FIELD_SEQ_BT:
1822		fbuf->field = field_num ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
1823		break;
1824	default:
1825		fbuf->field = vbuf->field;
1826		break;
1827	}
1828
1829	/* Buffer is completed */
1830	if (!field_num)
1831		return;
1832
1833	/* Adjust buffer addresses for second field */
1834	switch (vbuf->field) {
1835	case V4L2_FIELD_INTERLACED:
1836	case V4L2_FIELD_INTERLACED_TB:
1837	case V4L2_FIELD_INTERLACED_BT:
1838		for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
1839			fbuf->addrs[i] +=
1840				(i == 0 ? q_data->stride_y : q_data->stride_c);
1841		break;
1842	case V4L2_FIELD_SEQ_TB:
1843	case V4L2_FIELD_SEQ_BT:
1844		for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
1845			fbuf->addrs[i] += q_data->vsize *
1846				(i == 0 ? q_data->stride_y : q_data->stride_c);
1847		break;
1848	}
1849}
1850
1851static int fdp1_buf_prepare(struct vb2_buffer *vb)
1852{
1853	struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1854	struct fdp1_q_data *q_data = get_q_data(ctx, vb->vb2_queue->type);
1855	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1856	struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
1857	unsigned int i;
1858
1859	if (V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)) {
1860		bool field_valid = true;
1861
1862		/* Validate the buffer field. */
1863		switch (q_data->format.field) {
1864		case V4L2_FIELD_NONE:
1865			if (vbuf->field != V4L2_FIELD_NONE)
1866				field_valid = false;
1867			break;
1868
1869		case V4L2_FIELD_ALTERNATE:
1870			if (vbuf->field != V4L2_FIELD_TOP &&
1871			    vbuf->field != V4L2_FIELD_BOTTOM)
1872				field_valid = false;
1873			break;
1874
1875		case V4L2_FIELD_INTERLACED:
1876		case V4L2_FIELD_SEQ_TB:
1877		case V4L2_FIELD_SEQ_BT:
1878		case V4L2_FIELD_INTERLACED_TB:
1879		case V4L2_FIELD_INTERLACED_BT:
1880			if (vbuf->field != q_data->format.field)
1881				field_valid = false;
1882			break;
1883		}
1884
1885		if (!field_valid) {
1886			dprintk(ctx->fdp1,
1887				"buffer field %u invalid for format field %u\n",
1888				vbuf->field, q_data->format.field);
1889			return -EINVAL;
1890		}
1891	} else {
1892		vbuf->field = V4L2_FIELD_NONE;
1893	}
1894
1895	/* Validate the planes sizes. */
1896	for (i = 0; i < q_data->format.num_planes; i++) {
1897		unsigned long size = q_data->format.plane_fmt[i].sizeimage;
1898
1899		if (vb2_plane_size(vb, i) < size) {
1900			dprintk(ctx->fdp1,
1901				"data will not fit into plane [%u/%u] (%lu < %lu)\n",
1902				i, q_data->format.num_planes,
1903				vb2_plane_size(vb, i), size);
1904			return -EINVAL;
1905		}
1906
1907		/* We have known size formats all around */
1908		vb2_set_plane_payload(vb, i, size);
1909	}
1910
1911	buf->num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
1912	for (i = 0; i < buf->num_fields; ++i)
1913		fdp1_buf_prepare_field(q_data, vbuf, i);
1914
1915	return 0;
1916}
1917
1918static void fdp1_buf_queue(struct vb2_buffer *vb)
1919{
1920	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1921	struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1922
1923	v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
1924}
1925
1926static int fdp1_start_streaming(struct vb2_queue *q, unsigned int count)
1927{
1928	struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
1929	struct fdp1_q_data *q_data = get_q_data(ctx, q->type);
1930
1931	if (V4L2_TYPE_IS_OUTPUT(q->type)) {
1932		/*
1933		 * Force our deint_mode when we are progressive,
1934		 * ignoring any setting on the device from the user,
1935		 * Otherwise, lock in the requested de-interlace mode.
1936		 */
1937		if (q_data->format.field == V4L2_FIELD_NONE)
1938			ctx->deint_mode = FDP1_PROGRESSIVE;
1939
1940		if (ctx->deint_mode == FDP1_ADAPT2D3D) {
1941			u32 stride;
1942			dma_addr_t smsk_base;
1943			const u32 bpp = 2; /* bytes per pixel */
1944
1945			stride = round_up(q_data->format.width, 8);
1946
1947			ctx->smsk_size = bpp * stride * q_data->vsize;
1948
1949			ctx->smsk_cpu = dma_alloc_coherent(ctx->fdp1->dev,
1950				ctx->smsk_size, &smsk_base, GFP_KERNEL);
1951
1952			if (ctx->smsk_cpu == NULL) {
1953				dprintk(ctx->fdp1, "Failed to alloc smsk\n");
1954				return -ENOMEM;
1955			}
1956
1957			ctx->smsk_addr[0] = smsk_base;
1958			ctx->smsk_addr[1] = smsk_base + (ctx->smsk_size/2);
1959		}
1960	}
1961
1962	return 0;
1963}
1964
1965static void fdp1_stop_streaming(struct vb2_queue *q)
1966{
1967	struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
1968	struct vb2_v4l2_buffer *vbuf;
1969	unsigned long flags;
1970
1971	while (1) {
1972		if (V4L2_TYPE_IS_OUTPUT(q->type))
1973			vbuf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1974		else
1975			vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1976		if (vbuf == NULL)
1977			break;
1978		spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
1979		v4l2_m2m_buf_done(vbuf, VB2_BUF_STATE_ERROR);
1980		spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
1981	}
1982
1983	/* Empty Output queues */
1984	if (V4L2_TYPE_IS_OUTPUT(q->type)) {
1985		/* Empty our internal queues */
1986		struct fdp1_field_buffer *fbuf;
1987
1988		/* Free any queued buffers */
1989		fbuf = fdp1_dequeue_field(ctx);
1990		while (fbuf != NULL) {
1991			fdp1_field_complete(ctx, fbuf);
1992			fbuf = fdp1_dequeue_field(ctx);
1993		}
1994
1995		/* Free smsk_data */
1996		if (ctx->smsk_cpu) {
1997			dma_free_coherent(ctx->fdp1->dev, ctx->smsk_size,
1998					  ctx->smsk_cpu, ctx->smsk_addr[0]);
1999			ctx->smsk_addr[0] = ctx->smsk_addr[1] = 0;
2000			ctx->smsk_cpu = NULL;
2001		}
2002
2003		WARN(!list_empty(&ctx->fields_queue),
2004		     "Buffer queue not empty");
2005	} else {
2006		/* Empty Capture queues (Jobs) */
2007		struct fdp1_job *job;
2008
2009		job = get_queued_job(ctx->fdp1);
2010		while (job) {
2011			if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
2012				fdp1_field_complete(ctx, job->previous);
2013			else
2014				fdp1_field_complete(ctx, job->active);
2015
2016			v4l2_m2m_buf_done(job->dst->vb, VB2_BUF_STATE_ERROR);
2017			job->dst = NULL;
2018
2019			job = get_queued_job(ctx->fdp1);
2020		}
2021
2022		/* Free any held buffer in the ctx */
2023		fdp1_field_complete(ctx, ctx->previous);
2024
2025		WARN(!list_empty(&ctx->fdp1->queued_job_list),
2026		     "Queued Job List not empty");
2027
2028		WARN(!list_empty(&ctx->fdp1->hw_job_list),
2029		     "HW Job list not empty");
2030	}
2031}
2032
2033static const struct vb2_ops fdp1_qops = {
2034	.queue_setup	 = fdp1_queue_setup,
2035	.buf_prepare	 = fdp1_buf_prepare,
2036	.buf_queue	 = fdp1_buf_queue,
2037	.start_streaming = fdp1_start_streaming,
2038	.stop_streaming  = fdp1_stop_streaming,
2039	.wait_prepare	 = vb2_ops_wait_prepare,
2040	.wait_finish	 = vb2_ops_wait_finish,
2041};
2042
2043static int queue_init(void *priv, struct vb2_queue *src_vq,
2044		      struct vb2_queue *dst_vq)
2045{
2046	struct fdp1_ctx *ctx = priv;
2047	int ret;
2048
2049	src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
2050	src_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
2051	src_vq->drv_priv = ctx;
2052	src_vq->buf_struct_size = sizeof(struct fdp1_buffer);
2053	src_vq->ops = &fdp1_qops;
2054	src_vq->mem_ops = &vb2_dma_contig_memops;
2055	src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2056	src_vq->lock = &ctx->fdp1->dev_mutex;
2057	src_vq->dev = ctx->fdp1->dev;
2058
2059	ret = vb2_queue_init(src_vq);
2060	if (ret)
2061		return ret;
2062
2063	dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
2064	dst_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
2065	dst_vq->drv_priv = ctx;
2066	dst_vq->buf_struct_size = sizeof(struct fdp1_buffer);
2067	dst_vq->ops = &fdp1_qops;
2068	dst_vq->mem_ops = &vb2_dma_contig_memops;
2069	dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2070	dst_vq->lock = &ctx->fdp1->dev_mutex;
2071	dst_vq->dev = ctx->fdp1->dev;
2072
2073	return vb2_queue_init(dst_vq);
2074}
2075
2076/*
2077 * File operations
2078 */
2079static int fdp1_open(struct file *file)
2080{
2081	struct fdp1_dev *fdp1 = video_drvdata(file);
2082	struct v4l2_pix_format_mplane format;
2083	struct fdp1_ctx *ctx = NULL;
2084	struct v4l2_ctrl *ctrl;
2085	int ret = 0;
2086
2087	if (mutex_lock_interruptible(&fdp1->dev_mutex))
2088		return -ERESTARTSYS;
2089
2090	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2091	if (!ctx) {
2092		ret = -ENOMEM;
2093		goto done;
2094	}
2095
2096	v4l2_fh_init(&ctx->fh, video_devdata(file));
2097	file->private_data = &ctx->fh;
2098	ctx->fdp1 = fdp1;
2099
2100	/* Initialise Queues */
2101	INIT_LIST_HEAD(&ctx->fields_queue);
2102
2103	ctx->translen = 1;
2104	ctx->sequence = 0;
2105
2106	/* Initialise controls */
2107
2108	v4l2_ctrl_handler_init(&ctx->hdl, 3);
2109	v4l2_ctrl_new_std_menu_items(&ctx->hdl, &fdp1_ctrl_ops,
2110				     V4L2_CID_DEINTERLACING_MODE,
2111				     FDP1_NEXTFIELD, BIT(0), FDP1_FIXED3D,
2112				     fdp1_ctrl_deint_menu);
2113
2114	ctrl = v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
2115				 V4L2_CID_MIN_BUFFERS_FOR_CAPTURE, 1, 2, 1, 1);
2116	if (ctrl)
2117		ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
2118
2119	v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
2120			  V4L2_CID_ALPHA_COMPONENT, 0, 255, 1, 255);
2121
2122	if (ctx->hdl.error) {
2123		ret = ctx->hdl.error;
2124		v4l2_ctrl_handler_free(&ctx->hdl);
2125		kfree(ctx);
2126		goto done;
2127	}
2128
2129	ctx->fh.ctrl_handler = &ctx->hdl;
2130	v4l2_ctrl_handler_setup(&ctx->hdl);
2131
2132	/* Configure default parameters. */
2133	memset(&format, 0, sizeof(format));
2134	fdp1_set_format(ctx, &format, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
2135
2136	ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(fdp1->m2m_dev, ctx, &queue_init);
2137
2138	if (IS_ERR(ctx->fh.m2m_ctx)) {
2139		ret = PTR_ERR(ctx->fh.m2m_ctx);
2140
2141		v4l2_ctrl_handler_free(&ctx->hdl);
2142		kfree(ctx);
2143		goto done;
2144	}
2145
2146	/* Perform any power management required */
2147	pm_runtime_get_sync(fdp1->dev);
2148
2149	v4l2_fh_add(&ctx->fh);
2150
2151	dprintk(fdp1, "Created instance: %p, m2m_ctx: %p\n",
2152		ctx, ctx->fh.m2m_ctx);
2153
2154done:
2155	mutex_unlock(&fdp1->dev_mutex);
2156	return ret;
2157}
2158
2159static int fdp1_release(struct file *file)
2160{
2161	struct fdp1_dev *fdp1 = video_drvdata(file);
2162	struct fdp1_ctx *ctx = fh_to_ctx(file->private_data);
2163
2164	dprintk(fdp1, "Releasing instance %p\n", ctx);
2165
2166	v4l2_fh_del(&ctx->fh);
2167	v4l2_fh_exit(&ctx->fh);
2168	v4l2_ctrl_handler_free(&ctx->hdl);
2169	mutex_lock(&fdp1->dev_mutex);
2170	v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
2171	mutex_unlock(&fdp1->dev_mutex);
2172	kfree(ctx);
2173
2174	pm_runtime_put(fdp1->dev);
2175
2176	return 0;
2177}
2178
2179static const struct v4l2_file_operations fdp1_fops = {
2180	.owner		= THIS_MODULE,
2181	.open		= fdp1_open,
2182	.release	= fdp1_release,
2183	.poll		= v4l2_m2m_fop_poll,
2184	.unlocked_ioctl	= video_ioctl2,
2185	.mmap		= v4l2_m2m_fop_mmap,
2186};
2187
2188static const struct video_device fdp1_videodev = {
2189	.name		= DRIVER_NAME,
2190	.vfl_dir	= VFL_DIR_M2M,
2191	.fops		= &fdp1_fops,
2192	.device_caps	= V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING,
2193	.ioctl_ops	= &fdp1_ioctl_ops,
2194	.minor		= -1,
2195	.release	= video_device_release_empty,
2196};
2197
2198static const struct v4l2_m2m_ops m2m_ops = {
2199	.device_run	= fdp1_m2m_device_run,
2200	.job_ready	= fdp1_m2m_job_ready,
2201	.job_abort	= fdp1_m2m_job_abort,
2202};
2203
2204static irqreturn_t fdp1_irq_handler(int irq, void *dev_id)
2205{
2206	struct fdp1_dev *fdp1 = dev_id;
2207	u32 int_status;
2208	u32 ctl_status;
2209	u32 vint_cnt;
2210	u32 cycles;
2211
2212	int_status = fdp1_read(fdp1, FD1_CTL_IRQSTA);
2213	cycles = fdp1_read(fdp1, FD1_CTL_VCYCLE_STAT);
2214	ctl_status = fdp1_read(fdp1, FD1_CTL_STATUS);
2215	vint_cnt = (ctl_status & FD1_CTL_STATUS_VINT_CNT_MASK) >>
2216			FD1_CTL_STATUS_VINT_CNT_SHIFT;
2217
2218	/* Clear interrupts */
2219	fdp1_write(fdp1, ~(int_status) & FD1_CTL_IRQ_MASK, FD1_CTL_IRQSTA);
2220
2221	if (debug >= 2) {
2222		dprintk(fdp1, "IRQ: 0x%x %s%s%s\n", int_status,
2223			int_status & FD1_CTL_IRQ_VERE ? "[Error]" : "[!E]",
2224			int_status & FD1_CTL_IRQ_VINTE ? "[VSync]" : "[!V]",
2225			int_status & FD1_CTL_IRQ_FREE ? "[FrameEnd]" : "[!F]");
2226
2227		dprintk(fdp1, "CycleStatus = %d (%dms)\n",
2228			cycles, cycles/(fdp1->clk_rate/1000));
2229
2230		dprintk(fdp1,
2231			"Control Status = 0x%08x : VINT_CNT = %d %s:%s:%s:%s\n",
2232			ctl_status, vint_cnt,
2233			ctl_status & FD1_CTL_STATUS_SGREGSET ? "RegSet" : "",
2234			ctl_status & FD1_CTL_STATUS_SGVERR ? "Vsync Error" : "",
2235			ctl_status & FD1_CTL_STATUS_SGFREND ? "FrameEnd" : "",
2236			ctl_status & FD1_CTL_STATUS_BSY ? "Busy" : "");
2237		dprintk(fdp1, "***********************************\n");
2238	}
2239
2240	/* Spurious interrupt */
2241	if (!(FD1_CTL_IRQ_MASK & int_status))
2242		return IRQ_NONE;
2243
2244	/* Work completed, release the frame */
2245	if (FD1_CTL_IRQ_VERE & int_status)
2246		device_frame_end(fdp1, VB2_BUF_STATE_ERROR);
2247	else if (FD1_CTL_IRQ_FREE & int_status)
2248		device_frame_end(fdp1, VB2_BUF_STATE_DONE);
2249
2250	return IRQ_HANDLED;
2251}
2252
2253static int fdp1_probe(struct platform_device *pdev)
2254{
2255	struct fdp1_dev *fdp1;
2256	struct video_device *vfd;
2257	struct device_node *fcp_node;
2258	struct resource *res;
2259	struct clk *clk;
2260	unsigned int i;
2261
2262	int ret;
2263	int hw_version;
2264
2265	fdp1 = devm_kzalloc(&pdev->dev, sizeof(*fdp1), GFP_KERNEL);
2266	if (!fdp1)
2267		return -ENOMEM;
2268
2269	INIT_LIST_HEAD(&fdp1->free_job_list);
2270	INIT_LIST_HEAD(&fdp1->queued_job_list);
2271	INIT_LIST_HEAD(&fdp1->hw_job_list);
2272
2273	/* Initialise the jobs on the free list */
2274	for (i = 0; i < ARRAY_SIZE(fdp1->jobs); i++)
2275		list_add(&fdp1->jobs[i].list, &fdp1->free_job_list);
2276
2277	mutex_init(&fdp1->dev_mutex);
2278
2279	spin_lock_init(&fdp1->irqlock);
2280	spin_lock_init(&fdp1->device_process_lock);
2281	fdp1->dev = &pdev->dev;
2282	platform_set_drvdata(pdev, fdp1);
2283
2284	/* Memory-mapped registers */
2285	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2286	fdp1->regs = devm_ioremap_resource(&pdev->dev, res);
2287	if (IS_ERR(fdp1->regs))
2288		return PTR_ERR(fdp1->regs);
2289
2290	/* Interrupt service routine registration */
2291	fdp1->irq = ret = platform_get_irq(pdev, 0);
2292	if (ret < 0) {
2293		dev_err(&pdev->dev, "cannot find IRQ\n");
2294		return ret;
2295	}
2296
2297	ret = devm_request_irq(&pdev->dev, fdp1->irq, fdp1_irq_handler, 0,
2298			       dev_name(&pdev->dev), fdp1);
2299	if (ret) {
2300		dev_err(&pdev->dev, "cannot claim IRQ %d\n", fdp1->irq);
2301		return ret;
2302	}
2303
2304	/* FCP */
2305	fcp_node = of_parse_phandle(pdev->dev.of_node, "renesas,fcp", 0);
2306	if (fcp_node) {
2307		fdp1->fcp = rcar_fcp_get(fcp_node);
2308		of_node_put(fcp_node);
2309		if (IS_ERR(fdp1->fcp)) {
2310			dev_dbg(&pdev->dev, "FCP not found (%ld)\n",
2311				PTR_ERR(fdp1->fcp));
2312			return PTR_ERR(fdp1->fcp);
2313		}
2314	}
2315
2316	/* Determine our clock rate */
2317	clk = clk_get(&pdev->dev, NULL);
2318	if (IS_ERR(clk))
2319		return PTR_ERR(clk);
2320
2321	fdp1->clk_rate = clk_get_rate(clk);
2322	clk_put(clk);
2323
2324	/* V4L2 device registration */
2325	ret = v4l2_device_register(&pdev->dev, &fdp1->v4l2_dev);
2326	if (ret) {
2327		v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
2328		return ret;
2329	}
2330
2331	/* M2M registration */
2332	fdp1->m2m_dev = v4l2_m2m_init(&m2m_ops);
2333	if (IS_ERR(fdp1->m2m_dev)) {
2334		v4l2_err(&fdp1->v4l2_dev, "Failed to init mem2mem device\n");
2335		ret = PTR_ERR(fdp1->m2m_dev);
2336		goto unreg_dev;
2337	}
2338
2339	/* Video registration */
2340	fdp1->vfd = fdp1_videodev;
2341	vfd = &fdp1->vfd;
2342	vfd->lock = &fdp1->dev_mutex;
2343	vfd->v4l2_dev = &fdp1->v4l2_dev;
2344	video_set_drvdata(vfd, fdp1);
2345	strscpy(vfd->name, fdp1_videodev.name, sizeof(vfd->name));
2346
2347	ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
2348	if (ret) {
2349		v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
2350		goto release_m2m;
2351	}
2352
2353	v4l2_info(&fdp1->v4l2_dev, "Device registered as /dev/video%d\n",
2354		  vfd->num);
2355
2356	/* Power up the cells to read HW */
2357	pm_runtime_enable(&pdev->dev);
2358	pm_runtime_get_sync(fdp1->dev);
2359
2360	hw_version = fdp1_read(fdp1, FD1_IP_INTDATA);
2361	switch (hw_version) {
2362	case FD1_IP_H3_ES1:
2363		dprintk(fdp1, "FDP1 Version R-Car H3 ES1\n");
2364		break;
2365	case FD1_IP_M3W:
2366		dprintk(fdp1, "FDP1 Version R-Car M3-W\n");
2367		break;
2368	case FD1_IP_H3:
2369		dprintk(fdp1, "FDP1 Version R-Car H3\n");
2370		break;
2371	case FD1_IP_M3N:
2372		dprintk(fdp1, "FDP1 Version R-Car M3N\n");
2373		break;
2374	case FD1_IP_E3:
2375		dprintk(fdp1, "FDP1 Version R-Car E3\n");
2376		break;
2377	default:
2378		dev_err(fdp1->dev, "FDP1 Unidentifiable (0x%08x)\n",
2379			hw_version);
2380	}
2381
2382	/* Allow the hw to sleep until an open call puts it to use */
2383	pm_runtime_put(fdp1->dev);
2384
2385	return 0;
2386
2387release_m2m:
2388	v4l2_m2m_release(fdp1->m2m_dev);
2389
2390unreg_dev:
2391	v4l2_device_unregister(&fdp1->v4l2_dev);
2392
2393	return ret;
2394}
2395
2396static int fdp1_remove(struct platform_device *pdev)
2397{
2398	struct fdp1_dev *fdp1 = platform_get_drvdata(pdev);
2399
2400	v4l2_m2m_release(fdp1->m2m_dev);
2401	video_unregister_device(&fdp1->vfd);
2402	v4l2_device_unregister(&fdp1->v4l2_dev);
2403	pm_runtime_disable(&pdev->dev);
2404
2405	return 0;
2406}
2407
2408static int __maybe_unused fdp1_pm_runtime_suspend(struct device *dev)
2409{
2410	struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
2411
2412	rcar_fcp_disable(fdp1->fcp);
2413
2414	return 0;
2415}
2416
2417static int __maybe_unused fdp1_pm_runtime_resume(struct device *dev)
2418{
2419	struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
2420
2421	/* Program in the static LUTs */
2422	fdp1_set_lut(fdp1);
2423
2424	return rcar_fcp_enable(fdp1->fcp);
2425}
2426
2427static const struct dev_pm_ops fdp1_pm_ops = {
2428	SET_RUNTIME_PM_OPS(fdp1_pm_runtime_suspend,
2429			   fdp1_pm_runtime_resume,
2430			   NULL)
2431};
2432
2433static const struct of_device_id fdp1_dt_ids[] = {
2434	{ .compatible = "renesas,fdp1" },
2435	{ },
2436};
2437MODULE_DEVICE_TABLE(of, fdp1_dt_ids);
2438
2439static struct platform_driver fdp1_pdrv = {
2440	.probe		= fdp1_probe,
2441	.remove		= fdp1_remove,
2442	.driver		= {
2443		.name	= DRIVER_NAME,
2444		.of_match_table = fdp1_dt_ids,
2445		.pm	= &fdp1_pm_ops,
2446	},
2447};
2448
2449module_platform_driver(fdp1_pdrv);
2450
2451MODULE_DESCRIPTION("Renesas R-Car Fine Display Processor Driver");
2452MODULE_AUTHOR("Kieran Bingham <kieran@bingham.xyz>");
2453MODULE_LICENSE("GPL");
2454MODULE_ALIAS("platform:" DRIVER_NAME);