Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2012-2016 Mentor Graphics Inc.
   4 *
   5 * Queued image conversion support, with tiling and rotation.
   6 */
   7
   8#include <linux/interrupt.h>
   9#include <linux/dma-mapping.h>
 
 
  10#include <video/imx-ipu-image-convert.h>
 
  11#include "ipu-prv.h"
  12
  13/*
  14 * The IC Resizer has a restriction that the output frame from the
  15 * resizer must be 1024 or less in both width (pixels) and height
  16 * (lines).
  17 *
  18 * The image converter attempts to split up a conversion when
  19 * the desired output (converted) frame resolution exceeds the
  20 * IC resizer limit of 1024 in either dimension.
  21 *
  22 * If either dimension of the output frame exceeds the limit, the
  23 * dimension is split into 1, 2, or 4 equal stripes, for a maximum
  24 * of 4*4 or 16 tiles. A conversion is then carried out for each
  25 * tile (but taking care to pass the full frame stride length to
  26 * the DMA channel's parameter memory!). IDMA double-buffering is used
  27 * to convert each tile back-to-back when possible (see note below
  28 * when double_buffering boolean is set).
  29 *
  30 * Note that the input frame must be split up into the same number
  31 * of tiles as the output frame:
  32 *
  33 *                       +---------+-----+
  34 *   +-----+---+         |  A      | B   |
  35 *   | A   | B |         |         |     |
  36 *   +-----+---+   -->   +---------+-----+
  37 *   | C   | D |         |  C      | D   |
  38 *   +-----+---+         |         |     |
  39 *                       +---------+-----+
  40 *
  41 * Clockwise 90° rotations are handled by first rescaling into a
  42 * reusable temporary tile buffer and then rotating with the 8x8
  43 * block rotator, writing to the correct destination:
  44 *
  45 *                                         +-----+-----+
  46 *                                         |     |     |
  47 *   +-----+---+         +---------+       | C   | A   |
  48 *   | A   | B |         | A,B, |  |       |     |     |
  49 *   +-----+---+   -->   | C,D  |  |  -->  |     |     |
  50 *   | C   | D |         +---------+       +-----+-----+
  51 *   +-----+---+                           | D   | B   |
  52 *                                         |     |     |
  53 *                                         +-----+-----+
  54 *
  55 * If the 8x8 block rotator is used, horizontal or vertical flipping
  56 * is done during the rotation step, otherwise flipping is done
  57 * during the scaling step.
  58 * With rotation or flipping, tile order changes between input and
  59 * output image. Tiles are numbered row major from top left to bottom
  60 * right for both input and output image.
  61 */
  62
  63#define MAX_STRIPES_W    4
  64#define MAX_STRIPES_H    4
  65#define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
  66
  67#define MIN_W     16
  68#define MIN_H     8
  69#define MAX_W     4096
  70#define MAX_H     4096
  71
  72enum ipu_image_convert_type {
  73	IMAGE_CONVERT_IN = 0,
  74	IMAGE_CONVERT_OUT,
  75};
  76
  77struct ipu_image_convert_dma_buf {
  78	void          *virt;
  79	dma_addr_t    phys;
  80	unsigned long len;
  81};
  82
  83struct ipu_image_convert_dma_chan {
  84	int in;
  85	int out;
  86	int rot_in;
  87	int rot_out;
  88	int vdi_in_p;
  89	int vdi_in;
  90	int vdi_in_n;
  91};
  92
  93/* dimensions of one tile */
  94struct ipu_image_tile {
  95	u32 width;
  96	u32 height;
  97	u32 left;
  98	u32 top;
  99	/* size and strides are in bytes */
 100	u32 size;
 101	u32 stride;
 102	u32 rot_stride;
 103	/* start Y or packed offset of this tile */
 104	u32 offset;
 105	/* offset from start to tile in U plane, for planar formats */
 106	u32 u_off;
 107	/* offset from start to tile in V plane, for planar formats */
 108	u32 v_off;
 109};
 110
 111struct ipu_image_convert_image {
 112	struct ipu_image base;
 113	enum ipu_image_convert_type type;
 114
 115	const struct ipu_image_pixfmt *fmt;
 116	unsigned int stride;
 117
 118	/* # of rows (horizontal stripes) if dest height is > 1024 */
 119	unsigned int num_rows;
 120	/* # of columns (vertical stripes) if dest width is > 1024 */
 121	unsigned int num_cols;
 122
 123	struct ipu_image_tile tile[MAX_TILES];
 124};
 125
 126struct ipu_image_pixfmt {
 127	u32	fourcc;        /* V4L2 fourcc */
 128	int     bpp;           /* total bpp */
 129	int     uv_width_dec;  /* decimation in width for U/V planes */
 130	int     uv_height_dec; /* decimation in height for U/V planes */
 131	bool    planar;        /* planar format */
 132	bool    uv_swapped;    /* U and V planes are swapped */
 133	bool    uv_packed;     /* partial planar (U and V in same plane) */
 134};
 135
 136struct ipu_image_convert_ctx;
 137struct ipu_image_convert_chan;
 138struct ipu_image_convert_priv;
 139
 
 
 
 
 
 
 
 
 
 
 
 140struct ipu_image_convert_ctx {
 141	struct ipu_image_convert_chan *chan;
 142
 143	ipu_image_convert_cb_t complete;
 144	void *complete_context;
 145
 146	/* Source/destination image data and rotation mode */
 147	struct ipu_image_convert_image in;
 148	struct ipu_image_convert_image out;
 149	struct ipu_ic_csc csc;
 150	enum ipu_rotate_mode rot_mode;
 151	u32 downsize_coeff_h;
 152	u32 downsize_coeff_v;
 153	u32 image_resize_coeff_h;
 154	u32 image_resize_coeff_v;
 155	u32 resize_coeffs_h[MAX_STRIPES_W];
 156	u32 resize_coeffs_v[MAX_STRIPES_H];
 157
 158	/* intermediate buffer for rotation */
 159	struct ipu_image_convert_dma_buf rot_intermediate[2];
 160
 161	/* current buffer number for double buffering */
 162	int cur_buf_num;
 163
 164	bool aborting;
 165	struct completion aborted;
 166
 167	/* can we use double-buffering for this conversion operation? */
 168	bool double_buffering;
 169	/* num_rows * num_cols */
 170	unsigned int num_tiles;
 171	/* next tile to process */
 172	unsigned int next_tile;
 173	/* where to place converted tile in dest image */
 174	unsigned int out_tile_map[MAX_TILES];
 175
 
 
 
 176	struct list_head list;
 177};
 178
 179struct ipu_image_convert_chan {
 180	struct ipu_image_convert_priv *priv;
 181
 182	enum ipu_ic_task ic_task;
 183	const struct ipu_image_convert_dma_chan *dma_ch;
 184
 185	struct ipu_ic *ic;
 186	struct ipuv3_channel *in_chan;
 187	struct ipuv3_channel *out_chan;
 188	struct ipuv3_channel *rotation_in_chan;
 189	struct ipuv3_channel *rotation_out_chan;
 190
 191	/* the IPU end-of-frame irqs */
 
 
 192	int out_eof_irq;
 193	int rot_out_eof_irq;
 194
 195	spinlock_t irqlock;
 196
 197	/* list of convert contexts */
 198	struct list_head ctx_list;
 199	/* queue of conversion runs */
 200	struct list_head pending_q;
 201	/* queue of completed runs */
 202	struct list_head done_q;
 203
 204	/* the current conversion run */
 205	struct ipu_image_convert_run *current_run;
 206};
 207
 208struct ipu_image_convert_priv {
 209	struct ipu_image_convert_chan chan[IC_NUM_TASKS];
 210	struct ipu_soc *ipu;
 211};
 212
 213static const struct ipu_image_convert_dma_chan
 214image_convert_dma_chan[IC_NUM_TASKS] = {
 215	[IC_TASK_VIEWFINDER] = {
 216		.in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
 217		.out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
 218		.rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
 219		.rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
 220		.vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
 221		.vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
 222		.vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
 223	},
 224	[IC_TASK_POST_PROCESSOR] = {
 225		.in = IPUV3_CHANNEL_MEM_IC_PP,
 226		.out = IPUV3_CHANNEL_IC_PP_MEM,
 227		.rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
 228		.rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
 229	},
 230};
 231
 232static const struct ipu_image_pixfmt image_convert_formats[] = {
 233	{
 234		.fourcc	= V4L2_PIX_FMT_RGB565,
 235		.bpp    = 16,
 236	}, {
 237		.fourcc	= V4L2_PIX_FMT_RGB24,
 238		.bpp    = 24,
 239	}, {
 240		.fourcc	= V4L2_PIX_FMT_BGR24,
 241		.bpp    = 24,
 242	}, {
 243		.fourcc	= V4L2_PIX_FMT_RGB32,
 244		.bpp    = 32,
 245	}, {
 246		.fourcc	= V4L2_PIX_FMT_BGR32,
 247		.bpp    = 32,
 248	}, {
 249		.fourcc	= V4L2_PIX_FMT_XRGB32,
 250		.bpp    = 32,
 251	}, {
 252		.fourcc	= V4L2_PIX_FMT_XBGR32,
 253		.bpp    = 32,
 254	}, {
 255		.fourcc	= V4L2_PIX_FMT_BGRX32,
 256		.bpp    = 32,
 257	}, {
 258		.fourcc	= V4L2_PIX_FMT_RGBX32,
 259		.bpp    = 32,
 260	}, {
 261		.fourcc	= V4L2_PIX_FMT_YUYV,
 262		.bpp    = 16,
 263		.uv_width_dec = 2,
 264		.uv_height_dec = 1,
 265	}, {
 266		.fourcc	= V4L2_PIX_FMT_UYVY,
 267		.bpp    = 16,
 268		.uv_width_dec = 2,
 269		.uv_height_dec = 1,
 270	}, {
 271		.fourcc	= V4L2_PIX_FMT_YUV420,
 272		.bpp    = 12,
 273		.planar = true,
 274		.uv_width_dec = 2,
 275		.uv_height_dec = 2,
 276	}, {
 277		.fourcc	= V4L2_PIX_FMT_YVU420,
 278		.bpp    = 12,
 279		.planar = true,
 280		.uv_width_dec = 2,
 281		.uv_height_dec = 2,
 282		.uv_swapped = true,
 283	}, {
 284		.fourcc = V4L2_PIX_FMT_NV12,
 285		.bpp    = 12,
 286		.planar = true,
 287		.uv_width_dec = 2,
 288		.uv_height_dec = 2,
 289		.uv_packed = true,
 290	}, {
 291		.fourcc = V4L2_PIX_FMT_YUV422P,
 292		.bpp    = 16,
 293		.planar = true,
 294		.uv_width_dec = 2,
 295		.uv_height_dec = 1,
 296	}, {
 297		.fourcc = V4L2_PIX_FMT_NV16,
 298		.bpp    = 16,
 299		.planar = true,
 300		.uv_width_dec = 2,
 301		.uv_height_dec = 1,
 302		.uv_packed = true,
 303	},
 304};
 305
 306static const struct ipu_image_pixfmt *get_format(u32 fourcc)
 307{
 308	const struct ipu_image_pixfmt *ret = NULL;
 309	unsigned int i;
 310
 311	for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
 312		if (image_convert_formats[i].fourcc == fourcc) {
 313			ret = &image_convert_formats[i];
 314			break;
 315		}
 316	}
 317
 318	return ret;
 319}
 320
 321static void dump_format(struct ipu_image_convert_ctx *ctx,
 322			struct ipu_image_convert_image *ic_image)
 323{
 324	struct ipu_image_convert_chan *chan = ctx->chan;
 325	struct ipu_image_convert_priv *priv = chan->priv;
 326
 327	dev_dbg(priv->ipu->dev,
 328		"task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
 329		chan->ic_task, ctx,
 330		ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
 331		ic_image->base.pix.width, ic_image->base.pix.height,
 332		ic_image->num_cols, ic_image->num_rows,
 333		ic_image->fmt->fourcc & 0xff,
 334		(ic_image->fmt->fourcc >> 8) & 0xff,
 335		(ic_image->fmt->fourcc >> 16) & 0xff,
 336		(ic_image->fmt->fourcc >> 24) & 0xff);
 337}
 338
 339int ipu_image_convert_enum_format(int index, u32 *fourcc)
 340{
 341	const struct ipu_image_pixfmt *fmt;
 342
 343	if (index >= (int)ARRAY_SIZE(image_convert_formats))
 344		return -EINVAL;
 345
 346	/* Format found */
 347	fmt = &image_convert_formats[index];
 348	*fourcc = fmt->fourcc;
 349	return 0;
 350}
 351EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
 352
 353static void free_dma_buf(struct ipu_image_convert_priv *priv,
 354			 struct ipu_image_convert_dma_buf *buf)
 355{
 356	if (buf->virt)
 357		dma_free_coherent(priv->ipu->dev,
 358				  buf->len, buf->virt, buf->phys);
 359	buf->virt = NULL;
 360	buf->phys = 0;
 361}
 362
 363static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
 364			 struct ipu_image_convert_dma_buf *buf,
 365			 int size)
 366{
 367	buf->len = PAGE_ALIGN(size);
 368	buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
 369				       GFP_DMA | GFP_KERNEL);
 370	if (!buf->virt) {
 371		dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
 372		return -ENOMEM;
 373	}
 374
 375	return 0;
 376}
 377
 378static inline int num_stripes(int dim)
 379{
 380	return (dim - 1) / 1024 + 1;
 381}
 382
 383/*
 384 * Calculate downsizing coefficients, which are the same for all tiles,
 385 * and initial bilinear resizing coefficients, which are used to find the
 386 * best seam positions.
 387 * Also determine the number of tiles necessary to guarantee that no tile
 388 * is larger than 1024 pixels in either dimension at the output and between
 389 * IC downsizing and main processing sections.
 390 */
 391static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
 392					  struct ipu_image *in,
 393					  struct ipu_image *out)
 394{
 395	u32 downsized_width = in->rect.width;
 396	u32 downsized_height = in->rect.height;
 397	u32 downsize_coeff_v = 0;
 398	u32 downsize_coeff_h = 0;
 399	u32 resized_width = out->rect.width;
 400	u32 resized_height = out->rect.height;
 401	u32 resize_coeff_h;
 402	u32 resize_coeff_v;
 403	u32 cols;
 404	u32 rows;
 405
 406	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
 407		resized_width = out->rect.height;
 408		resized_height = out->rect.width;
 409	}
 410
 411	/* Do not let invalid input lead to an endless loop below */
 412	if (WARN_ON(resized_width == 0 || resized_height == 0))
 413		return -EINVAL;
 414
 415	while (downsized_width >= resized_width * 2) {
 416		downsized_width >>= 1;
 417		downsize_coeff_h++;
 418	}
 419
 420	while (downsized_height >= resized_height * 2) {
 421		downsized_height >>= 1;
 422		downsize_coeff_v++;
 423	}
 424
 425	/*
 426	 * Calculate the bilinear resizing coefficients that could be used if
 427	 * we were converting with a single tile. The bottom right output pixel
 428	 * should sample as close as possible to the bottom right input pixel
 429	 * out of the decimator, but not overshoot it:
 430	 */
 431	resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
 432	resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
 433
 434	/*
 435	 * Both the output of the IC downsizing section before being passed to
 436	 * the IC main processing section and the final output of the IC main
 437	 * processing section must be <= 1024 pixels in both dimensions.
 438	 */
 439	cols = num_stripes(max_t(u32, downsized_width, resized_width));
 440	rows = num_stripes(max_t(u32, downsized_height, resized_height));
 441
 442	dev_dbg(ctx->chan->priv->ipu->dev,
 443		"%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
 444		__func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
 445		resize_coeff_v, cols, rows);
 446
 447	if (downsize_coeff_h > 2 || downsize_coeff_v  > 2 ||
 448	    resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
 449		return -EINVAL;
 450
 451	ctx->downsize_coeff_h = downsize_coeff_h;
 452	ctx->downsize_coeff_v = downsize_coeff_v;
 453	ctx->image_resize_coeff_h = resize_coeff_h;
 454	ctx->image_resize_coeff_v = resize_coeff_v;
 455	ctx->in.num_cols = cols;
 456	ctx->in.num_rows = rows;
 457
 458	return 0;
 459}
 460
 461#define round_closest(x, y) round_down((x) + (y)/2, (y))
 462
 463/*
 464 * Find the best aligned seam position for the given column / row index.
 465 * Rotation and image offsets are out of scope.
 466 *
 467 * @index: column / row index, used to calculate valid interval
 468 * @in_edge: input right / bottom edge
 469 * @out_edge: output right / bottom edge
 470 * @in_align: input alignment, either horizontal 8-byte line start address
 471 *            alignment, or pixel alignment due to image format
 472 * @out_align: output alignment, either horizontal 8-byte line start address
 473 *             alignment, or pixel alignment due to image format or rotator
 474 *             block size
 475 * @in_burst: horizontal input burst size in case of horizontal flip
 476 * @out_burst: horizontal output burst size or rotator block size
 477 * @downsize_coeff: downsizing section coefficient
 478 * @resize_coeff: main processing section resizing coefficient
 479 * @_in_seam: aligned input seam position return value
 480 * @_out_seam: aligned output seam position return value
 481 */
 482static void find_best_seam(struct ipu_image_convert_ctx *ctx,
 483			   unsigned int index,
 484			   unsigned int in_edge,
 485			   unsigned int out_edge,
 486			   unsigned int in_align,
 487			   unsigned int out_align,
 488			   unsigned int in_burst,
 489			   unsigned int out_burst,
 490			   unsigned int downsize_coeff,
 491			   unsigned int resize_coeff,
 492			   u32 *_in_seam,
 493			   u32 *_out_seam)
 494{
 495	struct device *dev = ctx->chan->priv->ipu->dev;
 496	unsigned int out_pos;
 497	/* Input / output seam position candidates */
 498	unsigned int out_seam = 0;
 499	unsigned int in_seam = 0;
 500	unsigned int min_diff = UINT_MAX;
 501	unsigned int out_start;
 502	unsigned int out_end;
 503	unsigned int in_start;
 504	unsigned int in_end;
 505
 506	/* Start within 1024 pixels of the right / bottom edge */
 507	out_start = max_t(int, index * out_align, out_edge - 1024);
 508	/* End before having to add more columns to the left / rows above */
 509	out_end = min_t(unsigned int, out_edge, index * 1024 + 1);
 510
 511	/*
 512	 * Limit input seam position to make sure that the downsized input tile
 513	 * to the right or bottom does not exceed 1024 pixels.
 514	 */
 515	in_start = max_t(int, index * in_align,
 516			 in_edge - (1024 << downsize_coeff));
 517	in_end = min_t(unsigned int, in_edge,
 518		       index * (1024 << downsize_coeff) + 1);
 519
 520	/*
 521	 * Output tiles must start at a multiple of 8 bytes horizontally and
 522	 * possibly at an even line horizontally depending on the pixel format.
 523	 * Only consider output aligned positions for the seam.
 524	 */
 525	out_start = round_up(out_start, out_align);
 526	for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
 527		unsigned int in_pos;
 528		unsigned int in_pos_aligned;
 529		unsigned int in_pos_rounded;
 530		unsigned int abs_diff;
 531
 532		/*
 533		 * Tiles in the right row / bottom column may not be allowed to
 534		 * overshoot horizontally / vertically. out_burst may be the
 535		 * actual DMA burst size, or the rotator block size.
 536		 */
 537		if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
 538			continue;
 539
 540		/*
 541		 * Input sample position, corresponding to out_pos, 19.13 fixed
 542		 * point.
 543		 */
 544		in_pos = (out_pos * resize_coeff) << downsize_coeff;
 545		/*
 546		 * The closest input sample position that we could actually
 547		 * start the input tile at, 19.13 fixed point.
 548		 */
 549		in_pos_aligned = round_closest(in_pos, 8192U * in_align);
 550		/* Convert 19.13 fixed point to integer */
 551		in_pos_rounded = in_pos_aligned / 8192U;
 552
 553		if (in_pos_rounded < in_start)
 554			continue;
 555		if (in_pos_rounded >= in_end)
 556			break;
 557
 558		if ((in_burst > 1) &&
 559		    (in_edge - in_pos_rounded) % in_burst)
 560			continue;
 561
 562		if (in_pos < in_pos_aligned)
 563			abs_diff = in_pos_aligned - in_pos;
 564		else
 565			abs_diff = in_pos - in_pos_aligned;
 566
 567		if (abs_diff < min_diff) {
 568			in_seam = in_pos_rounded;
 569			out_seam = out_pos;
 570			min_diff = abs_diff;
 571		}
 572	}
 573
 574	*_out_seam = out_seam;
 575	*_in_seam = in_seam;
 576
 577	dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n",
 578		__func__, out_seam, out_align, out_start, out_end,
 579		in_seam, in_align, in_start, in_end, min_diff / 8192,
 580		DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
 581}
 582
 583/*
 584 * Tile left edges are required to be aligned to multiples of 8 bytes
 585 * by the IDMAC.
 586 */
 587static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
 588{
 589	if (fmt->planar)
 590		return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
 591	else
 592		return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
 593}
 594
 595/*
 596 * Tile top edge alignment is only limited by chroma subsampling.
 597 */
 598static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
 599{
 600	return fmt->uv_height_dec > 1 ? 2 : 1;
 601}
 602
 603static inline u32 tile_width_align(enum ipu_image_convert_type type,
 604				   const struct ipu_image_pixfmt *fmt,
 605				   enum ipu_rotate_mode rot_mode)
 606{
 607	if (type == IMAGE_CONVERT_IN) {
 608		/*
 609		 * The IC burst reads 8 pixels at a time. Reading beyond the
 610		 * end of the line is usually acceptable. Those pixels are
 611		 * ignored, unless the IC has to write the scaled line in
 612		 * reverse.
 613		 */
 614		return (!ipu_rot_mode_is_irt(rot_mode) &&
 615			(rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
 616	}
 617
 618	/*
 619	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
 620	 * formats to guarantee 8-byte aligned line start addresses in the
 621	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
 622	 * for all other formats.
 623	 */
 624	return (ipu_rot_mode_is_irt(rot_mode) &&
 625		fmt->planar && !fmt->uv_packed) ?
 626		8 * fmt->uv_width_dec : 8;
 627}
 628
 629static inline u32 tile_height_align(enum ipu_image_convert_type type,
 630				    const struct ipu_image_pixfmt *fmt,
 631				    enum ipu_rotate_mode rot_mode)
 632{
 633	if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
 634		return 2;
 635
 636	/*
 637	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
 638	 * formats to guarantee 8-byte aligned line start addresses in the
 639	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
 640	 * for all other formats.
 641	 */
 642	return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
 643}
 644
 645/*
 646 * Fill in left position and width and for all tiles in an input column, and
 647 * for all corresponding output tiles. If the 90° rotator is used, the output
 648 * tiles are in a row, and output tile top position and height are set.
 649 */
 650static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
 651			     unsigned int col,
 652			     struct ipu_image_convert_image *in,
 653			     unsigned int in_left, unsigned int in_width,
 654			     struct ipu_image_convert_image *out,
 655			     unsigned int out_left, unsigned int out_width)
 656{
 657	unsigned int row, tile_idx;
 658	struct ipu_image_tile *in_tile, *out_tile;
 659
 660	for (row = 0; row < in->num_rows; row++) {
 661		tile_idx = in->num_cols * row + col;
 662		in_tile = &in->tile[tile_idx];
 663		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
 664
 665		in_tile->left = in_left;
 666		in_tile->width = in_width;
 667
 668		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
 669			out_tile->top = out_left;
 670			out_tile->height = out_width;
 671		} else {
 672			out_tile->left = out_left;
 673			out_tile->width = out_width;
 674		}
 675	}
 676}
 677
 678/*
 679 * Fill in top position and height and for all tiles in an input row, and
 680 * for all corresponding output tiles. If the 90° rotator is used, the output
 681 * tiles are in a column, and output tile left position and width are set.
 682 */
 683static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
 684			  struct ipu_image_convert_image *in,
 685			  unsigned int in_top, unsigned int in_height,
 686			  struct ipu_image_convert_image *out,
 687			  unsigned int out_top, unsigned int out_height)
 688{
 689	unsigned int col, tile_idx;
 690	struct ipu_image_tile *in_tile, *out_tile;
 691
 692	for (col = 0; col < in->num_cols; col++) {
 693		tile_idx = in->num_cols * row + col;
 694		in_tile = &in->tile[tile_idx];
 695		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
 696
 697		in_tile->top = in_top;
 698		in_tile->height = in_height;
 699
 700		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
 701			out_tile->left = out_top;
 702			out_tile->width = out_height;
 703		} else {
 704			out_tile->top = out_top;
 705			out_tile->height = out_height;
 706		}
 707	}
 708}
 709
 710/*
 711 * Find the best horizontal and vertical seam positions to split into tiles.
 712 * Minimize the fractional part of the input sampling position for the
 713 * top / left pixels of each tile.
 714 */
 715static void find_seams(struct ipu_image_convert_ctx *ctx,
 716		       struct ipu_image_convert_image *in,
 717		       struct ipu_image_convert_image *out)
 718{
 719	struct device *dev = ctx->chan->priv->ipu->dev;
 720	unsigned int resized_width = out->base.rect.width;
 721	unsigned int resized_height = out->base.rect.height;
 722	unsigned int col;
 723	unsigned int row;
 724	unsigned int in_left_align = tile_left_align(in->fmt);
 725	unsigned int in_top_align = tile_top_align(in->fmt);
 726	unsigned int out_left_align = tile_left_align(out->fmt);
 727	unsigned int out_top_align = tile_top_align(out->fmt);
 728	unsigned int out_width_align = tile_width_align(out->type, out->fmt,
 729							ctx->rot_mode);
 730	unsigned int out_height_align = tile_height_align(out->type, out->fmt,
 731							  ctx->rot_mode);
 732	unsigned int in_right = in->base.rect.width;
 733	unsigned int in_bottom = in->base.rect.height;
 734	unsigned int out_right = out->base.rect.width;
 735	unsigned int out_bottom = out->base.rect.height;
 736	unsigned int flipped_out_left;
 737	unsigned int flipped_out_top;
 738
 739	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
 740		/* Switch width/height and align top left to IRT block size */
 741		resized_width = out->base.rect.height;
 742		resized_height = out->base.rect.width;
 743		out_left_align = out_height_align;
 744		out_top_align = out_width_align;
 745		out_width_align = out_left_align;
 746		out_height_align = out_top_align;
 747		out_right = out->base.rect.height;
 748		out_bottom = out->base.rect.width;
 749	}
 750
 751	for (col = in->num_cols - 1; col > 0; col--) {
 752		bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
 753					  !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
 754		bool allow_out_overshoot = (col < in->num_cols - 1) &&
 755					   !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
 756		unsigned int in_left;
 757		unsigned int out_left;
 758
 759		/*
 760		 * Align input width to burst length if the scaling step flips
 761		 * horizontally.
 762		 */
 763
 764		find_best_seam(ctx, col,
 765			       in_right, out_right,
 766			       in_left_align, out_left_align,
 767			       allow_in_overshoot ? 1 : 8 /* burst length */,
 768			       allow_out_overshoot ? 1 : out_width_align,
 769			       ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
 770			       &in_left, &out_left);
 771
 772		if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
 773			flipped_out_left = resized_width - out_right;
 774		else
 775			flipped_out_left = out_left;
 776
 777		fill_tile_column(ctx, col, in, in_left, in_right - in_left,
 778				 out, flipped_out_left, out_right - out_left);
 779
 780		dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
 781			in_left, in_right - in_left,
 782			flipped_out_left, out_right - out_left);
 783
 784		in_right = in_left;
 785		out_right = out_left;
 786	}
 787
 788	flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
 789			   resized_width - out_right : 0;
 790
 791	fill_tile_column(ctx, 0, in, 0, in_right,
 792			 out, flipped_out_left, out_right);
 793
 794	dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
 795		in_right, flipped_out_left, out_right);
 796
 797	for (row = in->num_rows - 1; row > 0; row--) {
 798		bool allow_overshoot = row < in->num_rows - 1;
 799		unsigned int in_top;
 800		unsigned int out_top;
 801
 802		find_best_seam(ctx, row,
 803			       in_bottom, out_bottom,
 804			       in_top_align, out_top_align,
 805			       1, allow_overshoot ? 1 : out_height_align,
 806			       ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
 807			       &in_top, &out_top);
 808
 809		if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
 810		    ipu_rot_mode_is_irt(ctx->rot_mode))
 811			flipped_out_top = resized_height - out_bottom;
 812		else
 813			flipped_out_top = out_top;
 814
 815		fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
 816			      out, flipped_out_top, out_bottom - out_top);
 817
 818		dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
 819			in_top, in_bottom - in_top,
 820			flipped_out_top, out_bottom - out_top);
 821
 822		in_bottom = in_top;
 823		out_bottom = out_top;
 824	}
 825
 826	if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
 827	    ipu_rot_mode_is_irt(ctx->rot_mode))
 828		flipped_out_top = resized_height - out_bottom;
 829	else
 830		flipped_out_top = 0;
 831
 832	fill_tile_row(ctx, 0, in, 0, in_bottom,
 833		      out, flipped_out_top, out_bottom);
 834
 835	dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
 836		in_bottom, flipped_out_top, out_bottom);
 837}
 838
 839static int calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
 840				struct ipu_image_convert_image *image)
 841{
 842	struct ipu_image_convert_chan *chan = ctx->chan;
 843	struct ipu_image_convert_priv *priv = chan->priv;
 844	unsigned int max_width = 1024;
 845	unsigned int max_height = 1024;
 846	unsigned int i;
 847
 848	if (image->type == IMAGE_CONVERT_IN) {
 849		/* Up to 4096x4096 input tile size */
 850		max_width <<= ctx->downsize_coeff_h;
 851		max_height <<= ctx->downsize_coeff_v;
 852	}
 853
 854	for (i = 0; i < ctx->num_tiles; i++) {
 855		struct ipu_image_tile *tile;
 856		const unsigned int row = i / image->num_cols;
 857		const unsigned int col = i % image->num_cols;
 858
 859		if (image->type == IMAGE_CONVERT_OUT)
 860			tile = &image->tile[ctx->out_tile_map[i]];
 861		else
 862			tile = &image->tile[i];
 863
 864		tile->size = ((tile->height * image->fmt->bpp) >> 3) *
 865			tile->width;
 866
 867		if (image->fmt->planar) {
 868			tile->stride = tile->width;
 869			tile->rot_stride = tile->height;
 870		} else {
 871			tile->stride =
 872				(image->fmt->bpp * tile->width) >> 3;
 873			tile->rot_stride =
 874				(image->fmt->bpp * tile->height) >> 3;
 875		}
 876
 877		dev_dbg(priv->ipu->dev,
 878			"task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
 879			chan->ic_task, ctx,
 880			image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
 881			row, col,
 882			tile->width, tile->height, tile->left, tile->top);
 883
 884		if (!tile->width || tile->width > max_width ||
 885		    !tile->height || tile->height > max_height) {
 886			dev_err(priv->ipu->dev, "invalid %s tile size: %ux%u\n",
 887				image->type == IMAGE_CONVERT_IN ? "input" :
 888				"output", tile->width, tile->height);
 889			return -EINVAL;
 890		}
 891	}
 892
 893	return 0;
 894}
 895
 896/*
 897 * Use the rotation transformation to find the tile coordinates
 898 * (row, col) of a tile in the destination frame that corresponds
 899 * to the given tile coordinates of a source frame. The destination
 900 * coordinate is then converted to a tile index.
 901 */
 902static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
 903				int src_row, int src_col)
 904{
 905	struct ipu_image_convert_chan *chan = ctx->chan;
 906	struct ipu_image_convert_priv *priv = chan->priv;
 907	struct ipu_image_convert_image *s_image = &ctx->in;
 908	struct ipu_image_convert_image *d_image = &ctx->out;
 909	int dst_row, dst_col;
 910
 911	/* with no rotation it's a 1:1 mapping */
 912	if (ctx->rot_mode == IPU_ROTATE_NONE)
 913		return src_row * s_image->num_cols + src_col;
 914
 915	/*
 916	 * before doing the transform, first we have to translate
 917	 * source row,col for an origin in the center of s_image
 918	 */
 919	src_row = src_row * 2 - (s_image->num_rows - 1);
 920	src_col = src_col * 2 - (s_image->num_cols - 1);
 921
 922	/* do the rotation transform */
 923	if (ctx->rot_mode & IPU_ROT_BIT_90) {
 924		dst_col = -src_row;
 925		dst_row = src_col;
 926	} else {
 927		dst_col = src_col;
 928		dst_row = src_row;
 929	}
 930
 931	/* apply flip */
 932	if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
 933		dst_col = -dst_col;
 934	if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
 935		dst_row = -dst_row;
 936
 937	dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
 938		chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
 939
 940	/*
 941	 * finally translate dest row,col using an origin in upper
 942	 * left of d_image
 943	 */
 944	dst_row += d_image->num_rows - 1;
 945	dst_col += d_image->num_cols - 1;
 946	dst_row /= 2;
 947	dst_col /= 2;
 948
 949	return dst_row * d_image->num_cols + dst_col;
 950}
 951
 952/*
 953 * Fill the out_tile_map[] with transformed destination tile indeces.
 954 */
 955static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
 956{
 957	struct ipu_image_convert_image *s_image = &ctx->in;
 958	unsigned int row, col, tile = 0;
 959
 960	for (row = 0; row < s_image->num_rows; row++) {
 961		for (col = 0; col < s_image->num_cols; col++) {
 962			ctx->out_tile_map[tile] =
 963				transform_tile_index(ctx, row, col);
 964			tile++;
 965		}
 966	}
 967}
 968
 969static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
 970				    struct ipu_image_convert_image *image)
 971{
 972	struct ipu_image_convert_chan *chan = ctx->chan;
 973	struct ipu_image_convert_priv *priv = chan->priv;
 974	const struct ipu_image_pixfmt *fmt = image->fmt;
 975	unsigned int row, col, tile = 0;
 976	u32 H, top, y_stride, uv_stride;
 977	u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp;
 978	u32 y_row_off, y_col_off, y_off;
 979	u32 y_size, uv_size;
 980
 981	/* setup some convenience vars */
 982	H = image->base.pix.height;
 983
 984	y_stride = image->stride;
 985	uv_stride = y_stride / fmt->uv_width_dec;
 986	if (fmt->uv_packed)
 987		uv_stride *= 2;
 988
 989	y_size = H * y_stride;
 990	uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
 991
 992	for (row = 0; row < image->num_rows; row++) {
 993		top = image->tile[tile].top;
 994		y_row_off = top * y_stride;
 995		uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
 996
 997		for (col = 0; col < image->num_cols; col++) {
 998			y_col_off = image->tile[tile].left;
 999			uv_col_off = y_col_off / fmt->uv_width_dec;
1000			if (fmt->uv_packed)
1001				uv_col_off *= 2;
1002
1003			y_off = y_row_off + y_col_off;
1004			uv_off = uv_row_off + uv_col_off;
1005
1006			u_off = y_size - y_off + uv_off;
1007			v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
1008			if (fmt->uv_swapped) {
1009				tmp = u_off;
1010				u_off = v_off;
1011				v_off = tmp;
1012			}
1013
1014			image->tile[tile].offset = y_off;
1015			image->tile[tile].u_off = u_off;
1016			image->tile[tile++].v_off = v_off;
1017
1018			if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
1019				dev_err(priv->ipu->dev,
1020					"task %u: ctx %p: %s@[%d,%d]: "
1021					"y_off %08x, u_off %08x, v_off %08x\n",
1022					chan->ic_task, ctx,
1023					image->type == IMAGE_CONVERT_IN ?
1024					"Input" : "Output", row, col,
1025					y_off, u_off, v_off);
1026				return -EINVAL;
1027			}
1028		}
1029	}
1030
1031	return 0;
1032}
1033
1034static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
1035				    struct ipu_image_convert_image *image)
1036{
1037	struct ipu_image_convert_chan *chan = ctx->chan;
1038	struct ipu_image_convert_priv *priv = chan->priv;
1039	const struct ipu_image_pixfmt *fmt = image->fmt;
1040	unsigned int row, col, tile = 0;
1041	u32 bpp, stride, offset;
1042	u32 row_off, col_off;
1043
1044	/* setup some convenience vars */
1045	stride = image->stride;
1046	bpp = fmt->bpp;
1047
1048	for (row = 0; row < image->num_rows; row++) {
1049		row_off = image->tile[tile].top * stride;
1050
1051		for (col = 0; col < image->num_cols; col++) {
1052			col_off = (image->tile[tile].left * bpp) >> 3;
1053
1054			offset = row_off + col_off;
1055
1056			image->tile[tile].offset = offset;
1057			image->tile[tile].u_off = 0;
1058			image->tile[tile++].v_off = 0;
1059
1060			if (offset & 0x7) {
1061				dev_err(priv->ipu->dev,
1062					"task %u: ctx %p: %s@[%d,%d]: "
1063					"phys %08x\n",
1064					chan->ic_task, ctx,
1065					image->type == IMAGE_CONVERT_IN ?
1066					"Input" : "Output", row, col,
1067					row_off + col_off);
1068				return -EINVAL;
1069			}
1070		}
1071	}
1072
1073	return 0;
1074}
1075
1076static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1077			      struct ipu_image_convert_image *image)
1078{
1079	if (image->fmt->planar)
1080		return calc_tile_offsets_planar(ctx, image);
1081
1082	return calc_tile_offsets_packed(ctx, image);
1083}
1084
1085/*
1086 * Calculate the resizing ratio for the IC main processing section given input
1087 * size, fixed downsizing coefficient, and output size.
1088 * Either round to closest for the next tile's first pixel to minimize seams
1089 * and distortion (for all but right column / bottom row), or round down to
1090 * avoid sampling beyond the edges of the input image for this tile's last
1091 * pixel.
1092 * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1093 */
1094static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1095			     u32 output_size, bool allow_overshoot)
1096{
1097	u32 downsized = input_size >> downsize_coeff;
1098
1099	if (allow_overshoot)
1100		return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1101	else
1102		return 8192 * (downsized - 1) / (output_size - 1);
1103}
1104
1105/*
1106 * Slightly modify resize coefficients per tile to hide the bilinear
1107 * interpolator reset at tile borders, shifting the right / bottom edge
1108 * by up to a half input pixel. This removes noticeable seams between
1109 * tiles at higher upscaling factors.
1110 */
1111static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1112{
1113	struct ipu_image_convert_chan *chan = ctx->chan;
1114	struct ipu_image_convert_priv *priv = chan->priv;
1115	struct ipu_image_tile *in_tile, *out_tile;
1116	unsigned int col, row, tile_idx;
1117	unsigned int last_output;
1118
1119	for (col = 0; col < ctx->in.num_cols; col++) {
1120		bool closest = (col < ctx->in.num_cols - 1) &&
1121			       !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1122		u32 resized_width;
1123		u32 resize_coeff_h;
1124		u32 in_width;
1125
1126		tile_idx = col;
1127		in_tile = &ctx->in.tile[tile_idx];
1128		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1129
1130		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1131			resized_width = out_tile->height;
1132		else
1133			resized_width = out_tile->width;
1134
1135		resize_coeff_h = calc_resize_coeff(in_tile->width,
1136						   ctx->downsize_coeff_h,
1137						   resized_width, closest);
1138
1139		dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1140			__func__, col, resize_coeff_h);
1141
1142		/*
1143		 * With the horizontal scaling factor known, round up resized
1144		 * width (output width or height) to burst size.
1145		 */
1146		resized_width = round_up(resized_width, 8);
1147
1148		/*
1149		 * Calculate input width from the last accessed input pixel
1150		 * given resized width and scaling coefficients. Round up to
1151		 * burst size.
1152		 */
1153		last_output = resized_width - 1;
1154		if (closest && ((last_output * resize_coeff_h) % 8192))
1155			last_output++;
1156		in_width = round_up(
1157			(DIV_ROUND_UP(last_output * resize_coeff_h, 8192) + 1)
1158			<< ctx->downsize_coeff_h, 8);
1159
1160		for (row = 0; row < ctx->in.num_rows; row++) {
1161			tile_idx = row * ctx->in.num_cols + col;
1162			in_tile = &ctx->in.tile[tile_idx];
1163			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1164
1165			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1166				out_tile->height = resized_width;
1167			else
1168				out_tile->width = resized_width;
1169
1170			in_tile->width = in_width;
1171		}
1172
1173		ctx->resize_coeffs_h[col] = resize_coeff_h;
1174	}
1175
1176	for (row = 0; row < ctx->in.num_rows; row++) {
1177		bool closest = (row < ctx->in.num_rows - 1) &&
1178			       !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1179		u32 resized_height;
1180		u32 resize_coeff_v;
1181		u32 in_height;
1182
1183		tile_idx = row * ctx->in.num_cols;
1184		in_tile = &ctx->in.tile[tile_idx];
1185		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1186
1187		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1188			resized_height = out_tile->width;
1189		else
1190			resized_height = out_tile->height;
1191
1192		resize_coeff_v = calc_resize_coeff(in_tile->height,
1193						   ctx->downsize_coeff_v,
1194						   resized_height, closest);
1195
1196		dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1197			__func__, row, resize_coeff_v);
1198
1199		/*
1200		 * With the vertical scaling factor known, round up resized
1201		 * height (output width or height) to IDMAC limitations.
1202		 */
1203		resized_height = round_up(resized_height, 2);
1204
1205		/*
1206		 * Calculate input width from the last accessed input pixel
1207		 * given resized height and scaling coefficients. Align to
1208		 * IDMAC restrictions.
1209		 */
1210		last_output = resized_height - 1;
1211		if (closest && ((last_output * resize_coeff_v) % 8192))
1212			last_output++;
1213		in_height = round_up(
1214			(DIV_ROUND_UP(last_output * resize_coeff_v, 8192) + 1)
1215			<< ctx->downsize_coeff_v, 2);
1216
1217		for (col = 0; col < ctx->in.num_cols; col++) {
1218			tile_idx = row * ctx->in.num_cols + col;
1219			in_tile = &ctx->in.tile[tile_idx];
1220			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1221
1222			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1223				out_tile->width = resized_height;
1224			else
1225				out_tile->height = resized_height;
1226
1227			in_tile->height = in_height;
1228		}
1229
1230		ctx->resize_coeffs_v[row] = resize_coeff_v;
1231	}
1232}
1233
1234/*
1235 * return the number of runs in given queue (pending_q or done_q)
1236 * for this context. hold irqlock when calling.
1237 */
1238static int get_run_count(struct ipu_image_convert_ctx *ctx,
1239			 struct list_head *q)
1240{
1241	struct ipu_image_convert_run *run;
1242	int count = 0;
1243
1244	lockdep_assert_held(&ctx->chan->irqlock);
1245
1246	list_for_each_entry(run, q, list) {
1247		if (run->ctx == ctx)
1248			count++;
1249	}
1250
1251	return count;
1252}
1253
1254static void convert_stop(struct ipu_image_convert_run *run)
1255{
1256	struct ipu_image_convert_ctx *ctx = run->ctx;
1257	struct ipu_image_convert_chan *chan = ctx->chan;
1258	struct ipu_image_convert_priv *priv = chan->priv;
1259
1260	dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1261		__func__, chan->ic_task, ctx, run);
1262
1263	/* disable IC tasks and the channels */
1264	ipu_ic_task_disable(chan->ic);
1265	ipu_idmac_disable_channel(chan->in_chan);
1266	ipu_idmac_disable_channel(chan->out_chan);
1267
1268	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1269		ipu_idmac_disable_channel(chan->rotation_in_chan);
1270		ipu_idmac_disable_channel(chan->rotation_out_chan);
1271		ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1272	}
1273
1274	ipu_ic_disable(chan->ic);
1275}
1276
1277static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1278			       struct ipuv3_channel *channel,
1279			       struct ipu_image_convert_image *image,
1280			       enum ipu_rotate_mode rot_mode,
1281			       bool rot_swap_width_height,
1282			       unsigned int tile)
1283{
1284	struct ipu_image_convert_chan *chan = ctx->chan;
1285	unsigned int burst_size;
1286	u32 width, height, stride;
1287	dma_addr_t addr0, addr1 = 0;
1288	struct ipu_image tile_image;
1289	unsigned int tile_idx[2];
1290
1291	if (image->type == IMAGE_CONVERT_OUT) {
1292		tile_idx[0] = ctx->out_tile_map[tile];
1293		tile_idx[1] = ctx->out_tile_map[1];
1294	} else {
1295		tile_idx[0] = tile;
1296		tile_idx[1] = 1;
1297	}
1298
1299	if (rot_swap_width_height) {
1300		width = image->tile[tile_idx[0]].height;
1301		height = image->tile[tile_idx[0]].width;
1302		stride = image->tile[tile_idx[0]].rot_stride;
1303		addr0 = ctx->rot_intermediate[0].phys;
1304		if (ctx->double_buffering)
1305			addr1 = ctx->rot_intermediate[1].phys;
1306	} else {
1307		width = image->tile[tile_idx[0]].width;
1308		height = image->tile[tile_idx[0]].height;
1309		stride = image->stride;
1310		addr0 = image->base.phys0 +
1311			image->tile[tile_idx[0]].offset;
1312		if (ctx->double_buffering)
1313			addr1 = image->base.phys0 +
1314				image->tile[tile_idx[1]].offset;
1315	}
1316
1317	ipu_cpmem_zero(channel);
1318
1319	memset(&tile_image, 0, sizeof(tile_image));
1320	tile_image.pix.width = tile_image.rect.width = width;
1321	tile_image.pix.height = tile_image.rect.height = height;
1322	tile_image.pix.bytesperline = stride;
1323	tile_image.pix.pixelformat =  image->fmt->fourcc;
1324	tile_image.phys0 = addr0;
1325	tile_image.phys1 = addr1;
1326	if (image->fmt->planar && !rot_swap_width_height) {
1327		tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1328		tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1329	}
1330
1331	ipu_cpmem_set_image(channel, &tile_image);
1332
1333	if (rot_mode)
1334		ipu_cpmem_set_rotation(channel, rot_mode);
1335
1336	/*
1337	 * Skip writing U and V components to odd rows in the output
1338	 * channels for planar 4:2:0.
1339	 */
1340	if ((channel == chan->out_chan ||
1341	     channel == chan->rotation_out_chan) &&
1342	    image->fmt->planar && image->fmt->uv_height_dec == 2)
1343		ipu_cpmem_skip_odd_chroma_rows(channel);
1344
1345	if (channel == chan->rotation_in_chan ||
1346	    channel == chan->rotation_out_chan) {
1347		burst_size = 8;
1348		ipu_cpmem_set_block_mode(channel);
1349	} else
1350		burst_size = (width % 16) ? 8 : 16;
1351
1352	ipu_cpmem_set_burstsize(channel, burst_size);
1353
1354	ipu_ic_task_idma_init(chan->ic, channel, width, height,
1355			      burst_size, rot_mode);
1356
1357	/*
1358	 * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1359	 * only do this when there is no PRG present.
1360	 */
1361	if (!channel->ipu->prg_priv)
1362		ipu_cpmem_set_axi_id(channel, 1);
1363
1364	ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1365}
1366
1367static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1368{
1369	struct ipu_image_convert_ctx *ctx = run->ctx;
1370	struct ipu_image_convert_chan *chan = ctx->chan;
1371	struct ipu_image_convert_priv *priv = chan->priv;
1372	struct ipu_image_convert_image *s_image = &ctx->in;
1373	struct ipu_image_convert_image *d_image = &ctx->out;
1374	unsigned int dst_tile = ctx->out_tile_map[tile];
1375	unsigned int dest_width, dest_height;
1376	unsigned int col, row;
1377	u32 rsc;
1378	int ret;
1379
1380	dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1381		__func__, chan->ic_task, ctx, run, tile, dst_tile);
1382
 
 
 
1383	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1384		/* swap width/height for resizer */
1385		dest_width = d_image->tile[dst_tile].height;
1386		dest_height = d_image->tile[dst_tile].width;
1387	} else {
1388		dest_width = d_image->tile[dst_tile].width;
1389		dest_height = d_image->tile[dst_tile].height;
1390	}
1391
1392	row = tile / s_image->num_cols;
1393	col = tile % s_image->num_cols;
1394
1395	rsc =  (ctx->downsize_coeff_v << 30) |
1396	       (ctx->resize_coeffs_v[row] << 16) |
1397	       (ctx->downsize_coeff_h << 14) |
1398	       (ctx->resize_coeffs_h[col]);
1399
1400	dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1401		__func__, s_image->tile[tile].width,
1402		s_image->tile[tile].height, dest_width, dest_height, rsc);
1403
1404	/* setup the IC resizer and CSC */
1405	ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc,
1406				   s_image->tile[tile].width,
1407				   s_image->tile[tile].height,
1408				   dest_width,
1409				   dest_height,
1410				   rsc);
1411	if (ret) {
1412		dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1413		return ret;
1414	}
1415
1416	/* init the source MEM-->IC PP IDMAC channel */
1417	init_idmac_channel(ctx, chan->in_chan, s_image,
1418			   IPU_ROTATE_NONE, false, tile);
1419
1420	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1421		/* init the IC PP-->MEM IDMAC channel */
1422		init_idmac_channel(ctx, chan->out_chan, d_image,
1423				   IPU_ROTATE_NONE, true, tile);
1424
1425		/* init the MEM-->IC PP ROT IDMAC channel */
1426		init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1427				   ctx->rot_mode, true, tile);
1428
1429		/* init the destination IC PP ROT-->MEM IDMAC channel */
1430		init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1431				   IPU_ROTATE_NONE, false, tile);
1432
1433		/* now link IC PP-->MEM to MEM-->IC PP ROT */
1434		ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1435	} else {
1436		/* init the destination IC PP-->MEM IDMAC channel */
1437		init_idmac_channel(ctx, chan->out_chan, d_image,
1438				   ctx->rot_mode, false, tile);
1439	}
1440
1441	/* enable the IC */
1442	ipu_ic_enable(chan->ic);
1443
1444	/* set buffers ready */
1445	ipu_idmac_select_buffer(chan->in_chan, 0);
1446	ipu_idmac_select_buffer(chan->out_chan, 0);
1447	if (ipu_rot_mode_is_irt(ctx->rot_mode))
1448		ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1449	if (ctx->double_buffering) {
1450		ipu_idmac_select_buffer(chan->in_chan, 1);
1451		ipu_idmac_select_buffer(chan->out_chan, 1);
1452		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1453			ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1454	}
1455
1456	/* enable the channels! */
1457	ipu_idmac_enable_channel(chan->in_chan);
1458	ipu_idmac_enable_channel(chan->out_chan);
1459	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1460		ipu_idmac_enable_channel(chan->rotation_in_chan);
1461		ipu_idmac_enable_channel(chan->rotation_out_chan);
1462	}
1463
1464	ipu_ic_task_enable(chan->ic);
1465
1466	ipu_cpmem_dump(chan->in_chan);
1467	ipu_cpmem_dump(chan->out_chan);
1468	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1469		ipu_cpmem_dump(chan->rotation_in_chan);
1470		ipu_cpmem_dump(chan->rotation_out_chan);
1471	}
1472
1473	ipu_dump(priv->ipu);
1474
1475	return 0;
1476}
1477
1478/* hold irqlock when calling */
1479static int do_run(struct ipu_image_convert_run *run)
1480{
1481	struct ipu_image_convert_ctx *ctx = run->ctx;
1482	struct ipu_image_convert_chan *chan = ctx->chan;
1483
1484	lockdep_assert_held(&chan->irqlock);
1485
1486	ctx->in.base.phys0 = run->in_phys;
1487	ctx->out.base.phys0 = run->out_phys;
1488
1489	ctx->cur_buf_num = 0;
1490	ctx->next_tile = 1;
1491
1492	/* remove run from pending_q and set as current */
1493	list_del(&run->list);
1494	chan->current_run = run;
1495
1496	return convert_start(run, 0);
1497}
1498
1499/* hold irqlock when calling */
1500static void run_next(struct ipu_image_convert_chan *chan)
1501{
1502	struct ipu_image_convert_priv *priv = chan->priv;
1503	struct ipu_image_convert_run *run, *tmp;
1504	int ret;
1505
1506	lockdep_assert_held(&chan->irqlock);
1507
1508	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1509		/* skip contexts that are aborting */
1510		if (run->ctx->aborting) {
1511			dev_dbg(priv->ipu->dev,
1512				"%s: task %u: skipping aborting ctx %p run %p\n",
1513				__func__, chan->ic_task, run->ctx, run);
1514			continue;
1515		}
1516
1517		ret = do_run(run);
1518		if (!ret)
1519			break;
1520
1521		/*
1522		 * something went wrong with start, add the run
1523		 * to done q and continue to the next run in the
1524		 * pending q.
1525		 */
1526		run->status = ret;
1527		list_add_tail(&run->list, &chan->done_q);
1528		chan->current_run = NULL;
1529	}
1530}
1531
1532static void empty_done_q(struct ipu_image_convert_chan *chan)
1533{
1534	struct ipu_image_convert_priv *priv = chan->priv;
1535	struct ipu_image_convert_run *run;
1536	unsigned long flags;
1537
1538	spin_lock_irqsave(&chan->irqlock, flags);
1539
1540	while (!list_empty(&chan->done_q)) {
1541		run = list_entry(chan->done_q.next,
1542				 struct ipu_image_convert_run,
1543				 list);
1544
1545		list_del(&run->list);
1546
1547		dev_dbg(priv->ipu->dev,
1548			"%s: task %u: completing ctx %p run %p with %d\n",
1549			__func__, chan->ic_task, run->ctx, run, run->status);
1550
1551		/* call the completion callback and free the run */
1552		spin_unlock_irqrestore(&chan->irqlock, flags);
1553		run->ctx->complete(run, run->ctx->complete_context);
1554		spin_lock_irqsave(&chan->irqlock, flags);
1555	}
1556
1557	spin_unlock_irqrestore(&chan->irqlock, flags);
1558}
1559
1560/*
1561 * the bottom half thread clears out the done_q, calling the
1562 * completion handler for each.
1563 */
1564static irqreturn_t do_bh(int irq, void *dev_id)
1565{
1566	struct ipu_image_convert_chan *chan = dev_id;
1567	struct ipu_image_convert_priv *priv = chan->priv;
1568	struct ipu_image_convert_ctx *ctx;
1569	unsigned long flags;
1570
1571	dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1572		chan->ic_task);
1573
1574	empty_done_q(chan);
1575
1576	spin_lock_irqsave(&chan->irqlock, flags);
1577
1578	/*
1579	 * the done_q is cleared out, signal any contexts
1580	 * that are aborting that abort can complete.
1581	 */
1582	list_for_each_entry(ctx, &chan->ctx_list, list) {
1583		if (ctx->aborting) {
1584			dev_dbg(priv->ipu->dev,
1585				"%s: task %u: signaling abort for ctx %p\n",
1586				__func__, chan->ic_task, ctx);
1587			complete_all(&ctx->aborted);
1588		}
1589	}
1590
1591	spin_unlock_irqrestore(&chan->irqlock, flags);
1592
1593	dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1594		chan->ic_task);
1595
1596	return IRQ_HANDLED;
1597}
1598
1599static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1600{
1601	unsigned int cur_tile = ctx->next_tile - 1;
1602	unsigned int next_tile = ctx->next_tile;
1603
1604	if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1605	    ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1606	    ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1607	    ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1608	    ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1609	    ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1610	    ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1611	    ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1612		return true;
1613
1614	return false;
1615}
1616
1617/* hold irqlock when calling */
1618static irqreturn_t do_irq(struct ipu_image_convert_run *run)
1619{
1620	struct ipu_image_convert_ctx *ctx = run->ctx;
1621	struct ipu_image_convert_chan *chan = ctx->chan;
1622	struct ipu_image_tile *src_tile, *dst_tile;
1623	struct ipu_image_convert_image *s_image = &ctx->in;
1624	struct ipu_image_convert_image *d_image = &ctx->out;
1625	struct ipuv3_channel *outch;
1626	unsigned int dst_idx;
1627
1628	lockdep_assert_held(&chan->irqlock);
1629
1630	outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1631		chan->rotation_out_chan : chan->out_chan;
1632
1633	/*
1634	 * It is difficult to stop the channel DMA before the channels
1635	 * enter the paused state. Without double-buffering the channels
1636	 * are always in a paused state when the EOF irq occurs, so it
1637	 * is safe to stop the channels now. For double-buffering we
1638	 * just ignore the abort until the operation completes, when it
1639	 * is safe to shut down.
1640	 */
1641	if (ctx->aborting && !ctx->double_buffering) {
1642		convert_stop(run);
1643		run->status = -EIO;
1644		goto done;
1645	}
1646
1647	if (ctx->next_tile == ctx->num_tiles) {
1648		/*
1649		 * the conversion is complete
1650		 */
1651		convert_stop(run);
1652		run->status = 0;
1653		goto done;
1654	}
1655
1656	/*
1657	 * not done, place the next tile buffers.
1658	 */
1659	if (!ctx->double_buffering) {
1660		if (ic_settings_changed(ctx)) {
1661			convert_stop(run);
1662			convert_start(run, ctx->next_tile);
1663		} else {
1664			src_tile = &s_image->tile[ctx->next_tile];
1665			dst_idx = ctx->out_tile_map[ctx->next_tile];
1666			dst_tile = &d_image->tile[dst_idx];
1667
1668			ipu_cpmem_set_buffer(chan->in_chan, 0,
1669					     s_image->base.phys0 +
1670					     src_tile->offset);
1671			ipu_cpmem_set_buffer(outch, 0,
1672					     d_image->base.phys0 +
1673					     dst_tile->offset);
1674			if (s_image->fmt->planar)
1675				ipu_cpmem_set_uv_offset(chan->in_chan,
1676							src_tile->u_off,
1677							src_tile->v_off);
1678			if (d_image->fmt->planar)
1679				ipu_cpmem_set_uv_offset(outch,
1680							dst_tile->u_off,
1681							dst_tile->v_off);
1682
1683			ipu_idmac_select_buffer(chan->in_chan, 0);
1684			ipu_idmac_select_buffer(outch, 0);
1685		}
1686	} else if (ctx->next_tile < ctx->num_tiles - 1) {
1687
1688		src_tile = &s_image->tile[ctx->next_tile + 1];
1689		dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1690		dst_tile = &d_image->tile[dst_idx];
1691
1692		ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1693				     s_image->base.phys0 + src_tile->offset);
1694		ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1695				     d_image->base.phys0 + dst_tile->offset);
1696
1697		ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1698		ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1699
1700		ctx->cur_buf_num ^= 1;
1701	}
1702
 
1703	ctx->next_tile++;
1704	return IRQ_HANDLED;
1705done:
1706	list_add_tail(&run->list, &chan->done_q);
1707	chan->current_run = NULL;
1708	run_next(chan);
1709	return IRQ_WAKE_THREAD;
1710}
1711
1712static irqreturn_t norotate_irq(int irq, void *data)
1713{
1714	struct ipu_image_convert_chan *chan = data;
 
1715	struct ipu_image_convert_ctx *ctx;
1716	struct ipu_image_convert_run *run;
 
 
1717	unsigned long flags;
1718	irqreturn_t ret;
1719
1720	spin_lock_irqsave(&chan->irqlock, flags);
1721
1722	/* get current run and its context */
1723	run = chan->current_run;
1724	if (!run) {
1725		ret = IRQ_NONE;
1726		goto out;
1727	}
1728
1729	ctx = run->ctx;
1730
1731	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1732		/* this is a rotation operation, just ignore */
1733		spin_unlock_irqrestore(&chan->irqlock, flags);
1734		return IRQ_HANDLED;
1735	}
1736
1737	ret = do_irq(run);
1738out:
1739	spin_unlock_irqrestore(&chan->irqlock, flags);
1740	return ret;
1741}
1742
1743static irqreturn_t rotate_irq(int irq, void *data)
1744{
1745	struct ipu_image_convert_chan *chan = data;
1746	struct ipu_image_convert_priv *priv = chan->priv;
1747	struct ipu_image_convert_ctx *ctx;
1748	struct ipu_image_convert_run *run;
1749	unsigned long flags;
1750	irqreturn_t ret;
1751
1752	spin_lock_irqsave(&chan->irqlock, flags);
1753
1754	/* get current run and its context */
1755	run = chan->current_run;
1756	if (!run) {
1757		ret = IRQ_NONE;
1758		goto out;
1759	}
1760
1761	ctx = run->ctx;
1762
1763	if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1764		/* this was NOT a rotation operation, shouldn't happen */
1765		dev_err(priv->ipu->dev, "Unexpected rotation interrupt\n");
1766		spin_unlock_irqrestore(&chan->irqlock, flags);
1767		return IRQ_HANDLED;
1768	}
1769
1770	ret = do_irq(run);
 
1771out:
1772	spin_unlock_irqrestore(&chan->irqlock, flags);
1773	return ret;
1774}
1775
1776/*
1777 * try to force the completion of runs for this ctx. Called when
1778 * abort wait times out in ipu_image_convert_abort().
1779 */
1780static void force_abort(struct ipu_image_convert_ctx *ctx)
1781{
1782	struct ipu_image_convert_chan *chan = ctx->chan;
1783	struct ipu_image_convert_run *run;
1784	unsigned long flags;
1785
1786	spin_lock_irqsave(&chan->irqlock, flags);
1787
1788	run = chan->current_run;
1789	if (run && run->ctx == ctx) {
1790		convert_stop(run);
1791		run->status = -EIO;
1792		list_add_tail(&run->list, &chan->done_q);
1793		chan->current_run = NULL;
1794		run_next(chan);
1795	}
1796
1797	spin_unlock_irqrestore(&chan->irqlock, flags);
1798
1799	empty_done_q(chan);
1800}
1801
1802static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1803{
 
 
 
 
1804	if (chan->out_eof_irq >= 0)
1805		free_irq(chan->out_eof_irq, chan);
1806	if (chan->rot_out_eof_irq >= 0)
1807		free_irq(chan->rot_out_eof_irq, chan);
1808
1809	if (!IS_ERR_OR_NULL(chan->in_chan))
1810		ipu_idmac_put(chan->in_chan);
1811	if (!IS_ERR_OR_NULL(chan->out_chan))
1812		ipu_idmac_put(chan->out_chan);
1813	if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1814		ipu_idmac_put(chan->rotation_in_chan);
1815	if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1816		ipu_idmac_put(chan->rotation_out_chan);
1817	if (!IS_ERR_OR_NULL(chan->ic))
1818		ipu_ic_put(chan->ic);
1819
1820	chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1821		chan->rotation_out_chan = NULL;
1822	chan->out_eof_irq = chan->rot_out_eof_irq = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823}
1824
1825static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1826{
1827	const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1828	struct ipu_image_convert_priv *priv = chan->priv;
1829	int ret;
1830
1831	/* get IC */
1832	chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1833	if (IS_ERR(chan->ic)) {
1834		dev_err(priv->ipu->dev, "could not acquire IC\n");
1835		ret = PTR_ERR(chan->ic);
1836		goto err;
1837	}
1838
1839	/* get IDMAC channels */
1840	chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1841	chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1842	if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1843		dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1844		ret = -EBUSY;
1845		goto err;
1846	}
1847
1848	chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1849	chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1850	if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1851		dev_err(priv->ipu->dev,
1852			"could not acquire idmac rotation channels\n");
1853		ret = -EBUSY;
1854		goto err;
1855	}
1856
1857	/* acquire the EOF interrupts */
1858	chan->out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1859						  chan->out_chan,
1860						  IPU_IRQ_EOF);
 
 
 
1861
1862	ret = request_threaded_irq(chan->out_eof_irq, norotate_irq, do_bh,
1863				   0, "ipu-ic", chan);
1864	if (ret < 0) {
1865		dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1866			 chan->out_eof_irq);
1867		chan->out_eof_irq = -1;
1868		goto err;
1869	}
 
1870
1871	chan->rot_out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1872						     chan->rotation_out_chan,
1873						     IPU_IRQ_EOF);
 
 
 
1874
1875	ret = request_threaded_irq(chan->rot_out_eof_irq, rotate_irq, do_bh,
1876				   0, "ipu-ic", chan);
1877	if (ret < 0) {
1878		dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1879			chan->rot_out_eof_irq);
1880		chan->rot_out_eof_irq = -1;
1881		goto err;
1882	}
 
1883
1884	return 0;
1885err:
1886	release_ipu_resources(chan);
1887	return ret;
1888}
1889
1890static int fill_image(struct ipu_image_convert_ctx *ctx,
1891		      struct ipu_image_convert_image *ic_image,
1892		      struct ipu_image *image,
1893		      enum ipu_image_convert_type type)
1894{
1895	struct ipu_image_convert_priv *priv = ctx->chan->priv;
1896
1897	ic_image->base = *image;
1898	ic_image->type = type;
1899
1900	ic_image->fmt = get_format(image->pix.pixelformat);
1901	if (!ic_image->fmt) {
1902		dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1903			type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1904		return -EINVAL;
1905	}
1906
1907	if (ic_image->fmt->planar)
1908		ic_image->stride = ic_image->base.pix.width;
1909	else
1910		ic_image->stride  = ic_image->base.pix.bytesperline;
1911
1912	return 0;
1913}
1914
1915/* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1916static unsigned int clamp_align(unsigned int x, unsigned int min,
1917				unsigned int max, unsigned int align)
1918{
1919	/* Bits that must be zero to be aligned */
1920	unsigned int mask = ~((1 << align) - 1);
1921
1922	/* Clamp to aligned min and max */
1923	x = clamp(x, (min + ~mask) & mask, max & mask);
1924
1925	/* Round to nearest aligned value */
1926	if (align)
1927		x = (x + (1 << (align - 1))) & mask;
1928
1929	return x;
1930}
1931
1932/* Adjusts input/output images to IPU restrictions */
1933void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1934			      enum ipu_rotate_mode rot_mode)
1935{
1936	const struct ipu_image_pixfmt *infmt, *outfmt;
1937	u32 w_align_out, h_align_out;
1938	u32 w_align_in, h_align_in;
1939
1940	infmt = get_format(in->pix.pixelformat);
1941	outfmt = get_format(out->pix.pixelformat);
1942
1943	/* set some default pixel formats if needed */
1944	if (!infmt) {
1945		in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1946		infmt = get_format(V4L2_PIX_FMT_RGB24);
1947	}
1948	if (!outfmt) {
1949		out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1950		outfmt = get_format(V4L2_PIX_FMT_RGB24);
1951	}
1952
1953	/* image converter does not handle fields */
1954	in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1955
1956	/* resizer cannot downsize more than 4:1 */
1957	if (ipu_rot_mode_is_irt(rot_mode)) {
1958		out->pix.height = max_t(__u32, out->pix.height,
1959					in->pix.width / 4);
1960		out->pix.width = max_t(__u32, out->pix.width,
1961				       in->pix.height / 4);
1962	} else {
1963		out->pix.width = max_t(__u32, out->pix.width,
1964				       in->pix.width / 4);
1965		out->pix.height = max_t(__u32, out->pix.height,
1966					in->pix.height / 4);
1967	}
1968
1969	/* align input width/height */
1970	w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt,
1971					    rot_mode));
1972	h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt,
1973					     rot_mode));
1974	in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W,
1975				    w_align_in);
1976	in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H,
1977				     h_align_in);
1978
1979	/* align output width/height */
1980	w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt,
1981					     rot_mode));
1982	h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt,
1983					      rot_mode));
1984	out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W,
1985				     w_align_out);
1986	out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H,
1987				      h_align_out);
1988
1989	/* set input/output strides and image sizes */
1990	in->pix.bytesperline = infmt->planar ?
1991		clamp_align(in->pix.width, 2 << w_align_in, MAX_W,
1992			    w_align_in) :
1993		clamp_align((in->pix.width * infmt->bpp) >> 3,
1994			    ((2 << w_align_in) * infmt->bpp) >> 3,
1995			    (MAX_W * infmt->bpp) >> 3,
1996			    w_align_in);
1997	in->pix.sizeimage = infmt->planar ?
1998		(in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
1999		in->pix.height * in->pix.bytesperline;
2000	out->pix.bytesperline = outfmt->planar ? out->pix.width :
2001		(out->pix.width * outfmt->bpp) >> 3;
2002	out->pix.sizeimage = outfmt->planar ?
2003		(out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
2004		out->pix.height * out->pix.bytesperline;
2005}
2006EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
2007
2008/*
2009 * this is used by ipu_image_convert_prepare() to verify set input and
2010 * output images are valid before starting the conversion. Clients can
2011 * also call it before calling ipu_image_convert_prepare().
2012 */
2013int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
2014			     enum ipu_rotate_mode rot_mode)
2015{
2016	struct ipu_image testin, testout;
2017
2018	testin = *in;
2019	testout = *out;
2020
2021	ipu_image_convert_adjust(&testin, &testout, rot_mode);
2022
2023	if (testin.pix.width != in->pix.width ||
2024	    testin.pix.height != in->pix.height ||
2025	    testout.pix.width != out->pix.width ||
2026	    testout.pix.height != out->pix.height)
2027		return -EINVAL;
2028
2029	return 0;
2030}
2031EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
2032
2033/*
2034 * Call ipu_image_convert_prepare() to prepare for the conversion of
2035 * given images and rotation mode. Returns a new conversion context.
2036 */
2037struct ipu_image_convert_ctx *
2038ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2039			  struct ipu_image *in, struct ipu_image *out,
2040			  enum ipu_rotate_mode rot_mode,
2041			  ipu_image_convert_cb_t complete,
2042			  void *complete_context)
2043{
2044	struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
2045	struct ipu_image_convert_image *s_image, *d_image;
2046	struct ipu_image_convert_chan *chan;
2047	struct ipu_image_convert_ctx *ctx;
2048	unsigned long flags;
2049	unsigned int i;
2050	bool get_res;
2051	int ret;
2052
2053	if (!in || !out || !complete ||
2054	    (ic_task != IC_TASK_VIEWFINDER &&
2055	     ic_task != IC_TASK_POST_PROCESSOR))
2056		return ERR_PTR(-EINVAL);
2057
2058	/* verify the in/out images before continuing */
2059	ret = ipu_image_convert_verify(in, out, rot_mode);
2060	if (ret) {
2061		dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
2062			__func__);
2063		return ERR_PTR(ret);
2064	}
2065
2066	chan = &priv->chan[ic_task];
2067
2068	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2069	if (!ctx)
2070		return ERR_PTR(-ENOMEM);
2071
2072	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
2073		chan->ic_task, ctx);
2074
2075	ctx->chan = chan;
2076	init_completion(&ctx->aborted);
2077
2078	ctx->rot_mode = rot_mode;
2079
2080	/* Sets ctx->in.num_rows/cols as well */
2081	ret = calc_image_resize_coefficients(ctx, in, out);
2082	if (ret)
2083		goto out_free;
2084
2085	s_image = &ctx->in;
2086	d_image = &ctx->out;
2087
2088	/* set tiling and rotation */
2089	if (ipu_rot_mode_is_irt(rot_mode)) {
2090		d_image->num_rows = s_image->num_cols;
2091		d_image->num_cols = s_image->num_rows;
2092	} else {
2093		d_image->num_rows = s_image->num_rows;
2094		d_image->num_cols = s_image->num_cols;
2095	}
2096
2097	ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2098
2099	ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2100	if (ret)
2101		goto out_free;
2102	ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2103	if (ret)
2104		goto out_free;
2105
2106	calc_out_tile_map(ctx);
2107
2108	find_seams(ctx, s_image, d_image);
2109
2110	ret = calc_tile_dimensions(ctx, s_image);
2111	if (ret)
2112		goto out_free;
2113
2114	ret = calc_tile_offsets(ctx, s_image);
2115	if (ret)
2116		goto out_free;
2117
2118	calc_tile_dimensions(ctx, d_image);
2119	ret = calc_tile_offsets(ctx, d_image);
2120	if (ret)
2121		goto out_free;
2122
2123	calc_tile_resize_coefficients(ctx);
2124
2125	ret = ipu_ic_calc_csc(&ctx->csc,
2126			s_image->base.pix.ycbcr_enc,
2127			s_image->base.pix.quantization,
2128			ipu_pixelformat_to_colorspace(s_image->fmt->fourcc),
2129			d_image->base.pix.ycbcr_enc,
2130			d_image->base.pix.quantization,
2131			ipu_pixelformat_to_colorspace(d_image->fmt->fourcc));
2132	if (ret)
2133		goto out_free;
2134
2135	dump_format(ctx, s_image);
2136	dump_format(ctx, d_image);
2137
2138	ctx->complete = complete;
2139	ctx->complete_context = complete_context;
2140
2141	/*
2142	 * Can we use double-buffering for this operation? If there is
2143	 * only one tile (the whole image can be converted in a single
2144	 * operation) there's no point in using double-buffering. Also,
2145	 * the IPU's IDMAC channels allow only a single U and V plane
2146	 * offset shared between both buffers, but these offsets change
2147	 * for every tile, and therefore would have to be updated for
2148	 * each buffer which is not possible. So double-buffering is
2149	 * impossible when either the source or destination images are
2150	 * a planar format (YUV420, YUV422P, etc.). Further, differently
2151	 * sized tiles or different resizing coefficients per tile
2152	 * prevent double-buffering as well.
2153	 */
2154	ctx->double_buffering = (ctx->num_tiles > 1 &&
2155				 !s_image->fmt->planar &&
2156				 !d_image->fmt->planar);
2157	for (i = 1; i < ctx->num_tiles; i++) {
2158		if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
2159		    ctx->in.tile[i].height != ctx->in.tile[0].height ||
2160		    ctx->out.tile[i].width != ctx->out.tile[0].width ||
2161		    ctx->out.tile[i].height != ctx->out.tile[0].height) {
2162			ctx->double_buffering = false;
2163			break;
2164		}
2165	}
2166	for (i = 1; i < ctx->in.num_cols; i++) {
2167		if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
2168			ctx->double_buffering = false;
2169			break;
2170		}
2171	}
2172	for (i = 1; i < ctx->in.num_rows; i++) {
2173		if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
2174			ctx->double_buffering = false;
2175			break;
2176		}
2177	}
2178
2179	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2180		unsigned long intermediate_size = d_image->tile[0].size;
2181
2182		for (i = 1; i < ctx->num_tiles; i++) {
2183			if (d_image->tile[i].size > intermediate_size)
2184				intermediate_size = d_image->tile[i].size;
2185		}
2186
2187		ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2188				    intermediate_size);
2189		if (ret)
2190			goto out_free;
2191		if (ctx->double_buffering) {
2192			ret = alloc_dma_buf(priv,
2193					    &ctx->rot_intermediate[1],
2194					    intermediate_size);
2195			if (ret)
2196				goto out_free_dmabuf0;
2197		}
2198	}
2199
2200	spin_lock_irqsave(&chan->irqlock, flags);
2201
2202	get_res = list_empty(&chan->ctx_list);
2203
2204	list_add_tail(&ctx->list, &chan->ctx_list);
2205
2206	spin_unlock_irqrestore(&chan->irqlock, flags);
2207
2208	if (get_res) {
2209		ret = get_ipu_resources(chan);
2210		if (ret)
2211			goto out_free_dmabuf1;
2212	}
2213
2214	return ctx;
2215
2216out_free_dmabuf1:
2217	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2218	spin_lock_irqsave(&chan->irqlock, flags);
2219	list_del(&ctx->list);
2220	spin_unlock_irqrestore(&chan->irqlock, flags);
2221out_free_dmabuf0:
2222	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2223out_free:
2224	kfree(ctx);
2225	return ERR_PTR(ret);
2226}
2227EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2228
2229/*
2230 * Carry out a single image conversion run. Only the physaddr's of the input
2231 * and output image buffers are needed. The conversion context must have
2232 * been created previously with ipu_image_convert_prepare().
2233 */
2234int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2235{
2236	struct ipu_image_convert_chan *chan;
2237	struct ipu_image_convert_priv *priv;
2238	struct ipu_image_convert_ctx *ctx;
2239	unsigned long flags;
2240	int ret = 0;
2241
2242	if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2243		return -EINVAL;
2244
2245	ctx = run->ctx;
2246	chan = ctx->chan;
2247	priv = chan->priv;
2248
2249	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2250		chan->ic_task, ctx, run);
2251
2252	INIT_LIST_HEAD(&run->list);
2253
2254	spin_lock_irqsave(&chan->irqlock, flags);
2255
2256	if (ctx->aborting) {
2257		ret = -EIO;
2258		goto unlock;
2259	}
2260
2261	list_add_tail(&run->list, &chan->pending_q);
2262
2263	if (!chan->current_run) {
2264		ret = do_run(run);
2265		if (ret)
2266			chan->current_run = NULL;
2267	}
2268unlock:
2269	spin_unlock_irqrestore(&chan->irqlock, flags);
2270	return ret;
2271}
2272EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2273
2274/* Abort any active or pending conversions for this context */
2275static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2276{
2277	struct ipu_image_convert_chan *chan = ctx->chan;
2278	struct ipu_image_convert_priv *priv = chan->priv;
2279	struct ipu_image_convert_run *run, *active_run, *tmp;
2280	unsigned long flags;
2281	int run_count, ret;
2282
2283	spin_lock_irqsave(&chan->irqlock, flags);
2284
2285	/* move all remaining pending runs in this context to done_q */
2286	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2287		if (run->ctx != ctx)
2288			continue;
2289		run->status = -EIO;
2290		list_move_tail(&run->list, &chan->done_q);
2291	}
2292
2293	run_count = get_run_count(ctx, &chan->done_q);
2294	active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2295		chan->current_run : NULL;
2296
2297	if (active_run)
2298		reinit_completion(&ctx->aborted);
2299
2300	ctx->aborting = true;
2301
2302	spin_unlock_irqrestore(&chan->irqlock, flags);
2303
2304	if (!run_count && !active_run) {
2305		dev_dbg(priv->ipu->dev,
2306			"%s: task %u: no abort needed for ctx %p\n",
2307			__func__, chan->ic_task, ctx);
2308		return;
2309	}
2310
2311	if (!active_run) {
2312		empty_done_q(chan);
2313		return;
2314	}
2315
2316	dev_dbg(priv->ipu->dev,
2317		"%s: task %u: wait for completion: %d runs\n",
2318		__func__, chan->ic_task, run_count);
2319
2320	ret = wait_for_completion_timeout(&ctx->aborted,
2321					  msecs_to_jiffies(10000));
2322	if (ret == 0) {
2323		dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2324		force_abort(ctx);
2325	}
2326}
2327
2328void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2329{
2330	__ipu_image_convert_abort(ctx);
2331	ctx->aborting = false;
2332}
2333EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2334
2335/* Unprepare image conversion context */
2336void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2337{
2338	struct ipu_image_convert_chan *chan = ctx->chan;
2339	struct ipu_image_convert_priv *priv = chan->priv;
2340	unsigned long flags;
2341	bool put_res;
2342
2343	/* make sure no runs are hanging around */
2344	__ipu_image_convert_abort(ctx);
2345
2346	dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2347		chan->ic_task, ctx);
2348
2349	spin_lock_irqsave(&chan->irqlock, flags);
2350
2351	list_del(&ctx->list);
2352
2353	put_res = list_empty(&chan->ctx_list);
2354
2355	spin_unlock_irqrestore(&chan->irqlock, flags);
2356
2357	if (put_res)
2358		release_ipu_resources(chan);
2359
2360	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2361	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2362
2363	kfree(ctx);
2364}
2365EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2366
2367/*
2368 * "Canned" asynchronous single image conversion. Allocates and returns
2369 * a new conversion run.  On successful return the caller must free the
2370 * run and call ipu_image_convert_unprepare() after conversion completes.
2371 */
2372struct ipu_image_convert_run *
2373ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2374		  struct ipu_image *in, struct ipu_image *out,
2375		  enum ipu_rotate_mode rot_mode,
2376		  ipu_image_convert_cb_t complete,
2377		  void *complete_context)
2378{
2379	struct ipu_image_convert_ctx *ctx;
2380	struct ipu_image_convert_run *run;
2381	int ret;
2382
2383	ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2384					complete, complete_context);
2385	if (IS_ERR(ctx))
2386		return ERR_CAST(ctx);
2387
2388	run = kzalloc(sizeof(*run), GFP_KERNEL);
2389	if (!run) {
2390		ipu_image_convert_unprepare(ctx);
2391		return ERR_PTR(-ENOMEM);
2392	}
2393
2394	run->ctx = ctx;
2395	run->in_phys = in->phys0;
2396	run->out_phys = out->phys0;
2397
2398	ret = ipu_image_convert_queue(run);
2399	if (ret) {
2400		ipu_image_convert_unprepare(ctx);
2401		kfree(run);
2402		return ERR_PTR(ret);
2403	}
2404
2405	return run;
2406}
2407EXPORT_SYMBOL_GPL(ipu_image_convert);
2408
2409/* "Canned" synchronous single image conversion */
2410static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2411					void *data)
2412{
2413	struct completion *comp = data;
2414
2415	complete(comp);
2416}
2417
2418int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2419			   struct ipu_image *in, struct ipu_image *out,
2420			   enum ipu_rotate_mode rot_mode)
2421{
2422	struct ipu_image_convert_run *run;
2423	struct completion comp;
2424	int ret;
2425
2426	init_completion(&comp);
2427
2428	run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2429				image_convert_sync_complete, &comp);
2430	if (IS_ERR(run))
2431		return PTR_ERR(run);
2432
2433	ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2434	ret = (ret == 0) ? -ETIMEDOUT : 0;
2435
2436	ipu_image_convert_unprepare(run->ctx);
2437	kfree(run);
2438
2439	return ret;
2440}
2441EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2442
2443int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2444{
2445	struct ipu_image_convert_priv *priv;
2446	int i;
2447
2448	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2449	if (!priv)
2450		return -ENOMEM;
2451
2452	ipu->image_convert_priv = priv;
2453	priv->ipu = ipu;
2454
2455	for (i = 0; i < IC_NUM_TASKS; i++) {
2456		struct ipu_image_convert_chan *chan = &priv->chan[i];
2457
2458		chan->ic_task = i;
2459		chan->priv = priv;
2460		chan->dma_ch = &image_convert_dma_chan[i];
 
 
2461		chan->out_eof_irq = -1;
2462		chan->rot_out_eof_irq = -1;
2463
2464		spin_lock_init(&chan->irqlock);
2465		INIT_LIST_HEAD(&chan->ctx_list);
2466		INIT_LIST_HEAD(&chan->pending_q);
2467		INIT_LIST_HEAD(&chan->done_q);
2468	}
2469
2470	return 0;
2471}
2472
2473void ipu_image_convert_exit(struct ipu_soc *ipu)
2474{
2475}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2012-2016 Mentor Graphics Inc.
   4 *
   5 * Queued image conversion support, with tiling and rotation.
   6 */
   7
   8#include <linux/interrupt.h>
   9#include <linux/dma-mapping.h>
  10#include <linux/math.h>
  11
  12#include <video/imx-ipu-image-convert.h>
  13
  14#include "ipu-prv.h"
  15
  16/*
  17 * The IC Resizer has a restriction that the output frame from the
  18 * resizer must be 1024 or less in both width (pixels) and height
  19 * (lines).
  20 *
  21 * The image converter attempts to split up a conversion when
  22 * the desired output (converted) frame resolution exceeds the
  23 * IC resizer limit of 1024 in either dimension.
  24 *
  25 * If either dimension of the output frame exceeds the limit, the
  26 * dimension is split into 1, 2, or 4 equal stripes, for a maximum
  27 * of 4*4 or 16 tiles. A conversion is then carried out for each
  28 * tile (but taking care to pass the full frame stride length to
  29 * the DMA channel's parameter memory!). IDMA double-buffering is used
  30 * to convert each tile back-to-back when possible (see note below
  31 * when double_buffering boolean is set).
  32 *
  33 * Note that the input frame must be split up into the same number
  34 * of tiles as the output frame:
  35 *
  36 *                       +---------+-----+
  37 *   +-----+---+         |  A      | B   |
  38 *   | A   | B |         |         |     |
  39 *   +-----+---+   -->   +---------+-----+
  40 *   | C   | D |         |  C      | D   |
  41 *   +-----+---+         |         |     |
  42 *                       +---------+-----+
  43 *
  44 * Clockwise 90° rotations are handled by first rescaling into a
  45 * reusable temporary tile buffer and then rotating with the 8x8
  46 * block rotator, writing to the correct destination:
  47 *
  48 *                                         +-----+-----+
  49 *                                         |     |     |
  50 *   +-----+---+         +---------+       | C   | A   |
  51 *   | A   | B |         | A,B, |  |       |     |     |
  52 *   +-----+---+   -->   | C,D  |  |  -->  |     |     |
  53 *   | C   | D |         +---------+       +-----+-----+
  54 *   +-----+---+                           | D   | B   |
  55 *                                         |     |     |
  56 *                                         +-----+-----+
  57 *
  58 * If the 8x8 block rotator is used, horizontal or vertical flipping
  59 * is done during the rotation step, otherwise flipping is done
  60 * during the scaling step.
  61 * With rotation or flipping, tile order changes between input and
  62 * output image. Tiles are numbered row major from top left to bottom
  63 * right for both input and output image.
  64 */
  65
  66#define MAX_STRIPES_W    4
  67#define MAX_STRIPES_H    4
  68#define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
  69
  70#define MIN_W     16
  71#define MIN_H     8
  72#define MAX_W     4096
  73#define MAX_H     4096
  74
  75enum ipu_image_convert_type {
  76	IMAGE_CONVERT_IN = 0,
  77	IMAGE_CONVERT_OUT,
  78};
  79
  80struct ipu_image_convert_dma_buf {
  81	void          *virt;
  82	dma_addr_t    phys;
  83	unsigned long len;
  84};
  85
  86struct ipu_image_convert_dma_chan {
  87	int in;
  88	int out;
  89	int rot_in;
  90	int rot_out;
  91	int vdi_in_p;
  92	int vdi_in;
  93	int vdi_in_n;
  94};
  95
  96/* dimensions of one tile */
  97struct ipu_image_tile {
  98	u32 width;
  99	u32 height;
 100	u32 left;
 101	u32 top;
 102	/* size and strides are in bytes */
 103	u32 size;
 104	u32 stride;
 105	u32 rot_stride;
 106	/* start Y or packed offset of this tile */
 107	u32 offset;
 108	/* offset from start to tile in U plane, for planar formats */
 109	u32 u_off;
 110	/* offset from start to tile in V plane, for planar formats */
 111	u32 v_off;
 112};
 113
 114struct ipu_image_convert_image {
 115	struct ipu_image base;
 116	enum ipu_image_convert_type type;
 117
 118	const struct ipu_image_pixfmt *fmt;
 119	unsigned int stride;
 120
 121	/* # of rows (horizontal stripes) if dest height is > 1024 */
 122	unsigned int num_rows;
 123	/* # of columns (vertical stripes) if dest width is > 1024 */
 124	unsigned int num_cols;
 125
 126	struct ipu_image_tile tile[MAX_TILES];
 127};
 128
 129struct ipu_image_pixfmt {
 130	u32	fourcc;        /* V4L2 fourcc */
 131	int     bpp;           /* total bpp */
 132	int     uv_width_dec;  /* decimation in width for U/V planes */
 133	int     uv_height_dec; /* decimation in height for U/V planes */
 134	bool    planar;        /* planar format */
 135	bool    uv_swapped;    /* U and V planes are swapped */
 136	bool    uv_packed;     /* partial planar (U and V in same plane) */
 137};
 138
 139struct ipu_image_convert_ctx;
 140struct ipu_image_convert_chan;
 141struct ipu_image_convert_priv;
 142
 143enum eof_irq_mask {
 144	EOF_IRQ_IN      = BIT(0),
 145	EOF_IRQ_ROT_IN  = BIT(1),
 146	EOF_IRQ_OUT     = BIT(2),
 147	EOF_IRQ_ROT_OUT = BIT(3),
 148};
 149
 150#define EOF_IRQ_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT)
 151#define EOF_IRQ_ROT_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT |	\
 152			      EOF_IRQ_ROT_IN | EOF_IRQ_ROT_OUT)
 153
 154struct ipu_image_convert_ctx {
 155	struct ipu_image_convert_chan *chan;
 156
 157	ipu_image_convert_cb_t complete;
 158	void *complete_context;
 159
 160	/* Source/destination image data and rotation mode */
 161	struct ipu_image_convert_image in;
 162	struct ipu_image_convert_image out;
 163	struct ipu_ic_csc csc;
 164	enum ipu_rotate_mode rot_mode;
 165	u32 downsize_coeff_h;
 166	u32 downsize_coeff_v;
 167	u32 image_resize_coeff_h;
 168	u32 image_resize_coeff_v;
 169	u32 resize_coeffs_h[MAX_STRIPES_W];
 170	u32 resize_coeffs_v[MAX_STRIPES_H];
 171
 172	/* intermediate buffer for rotation */
 173	struct ipu_image_convert_dma_buf rot_intermediate[2];
 174
 175	/* current buffer number for double buffering */
 176	int cur_buf_num;
 177
 178	bool aborting;
 179	struct completion aborted;
 180
 181	/* can we use double-buffering for this conversion operation? */
 182	bool double_buffering;
 183	/* num_rows * num_cols */
 184	unsigned int num_tiles;
 185	/* next tile to process */
 186	unsigned int next_tile;
 187	/* where to place converted tile in dest image */
 188	unsigned int out_tile_map[MAX_TILES];
 189
 190	/* mask of completed EOF irqs at every tile conversion */
 191	enum eof_irq_mask eof_mask;
 192
 193	struct list_head list;
 194};
 195
 196struct ipu_image_convert_chan {
 197	struct ipu_image_convert_priv *priv;
 198
 199	enum ipu_ic_task ic_task;
 200	const struct ipu_image_convert_dma_chan *dma_ch;
 201
 202	struct ipu_ic *ic;
 203	struct ipuv3_channel *in_chan;
 204	struct ipuv3_channel *out_chan;
 205	struct ipuv3_channel *rotation_in_chan;
 206	struct ipuv3_channel *rotation_out_chan;
 207
 208	/* the IPU end-of-frame irqs */
 209	int in_eof_irq;
 210	int rot_in_eof_irq;
 211	int out_eof_irq;
 212	int rot_out_eof_irq;
 213
 214	spinlock_t irqlock;
 215
 216	/* list of convert contexts */
 217	struct list_head ctx_list;
 218	/* queue of conversion runs */
 219	struct list_head pending_q;
 220	/* queue of completed runs */
 221	struct list_head done_q;
 222
 223	/* the current conversion run */
 224	struct ipu_image_convert_run *current_run;
 225};
 226
 227struct ipu_image_convert_priv {
 228	struct ipu_image_convert_chan chan[IC_NUM_TASKS];
 229	struct ipu_soc *ipu;
 230};
 231
 232static const struct ipu_image_convert_dma_chan
 233image_convert_dma_chan[IC_NUM_TASKS] = {
 234	[IC_TASK_VIEWFINDER] = {
 235		.in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
 236		.out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
 237		.rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
 238		.rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
 239		.vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
 240		.vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
 241		.vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
 242	},
 243	[IC_TASK_POST_PROCESSOR] = {
 244		.in = IPUV3_CHANNEL_MEM_IC_PP,
 245		.out = IPUV3_CHANNEL_IC_PP_MEM,
 246		.rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
 247		.rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
 248	},
 249};
 250
 251static const struct ipu_image_pixfmt image_convert_formats[] = {
 252	{
 253		.fourcc	= V4L2_PIX_FMT_RGB565,
 254		.bpp    = 16,
 255	}, {
 256		.fourcc	= V4L2_PIX_FMT_RGB24,
 257		.bpp    = 24,
 258	}, {
 259		.fourcc	= V4L2_PIX_FMT_BGR24,
 260		.bpp    = 24,
 261	}, {
 262		.fourcc	= V4L2_PIX_FMT_RGB32,
 263		.bpp    = 32,
 264	}, {
 265		.fourcc	= V4L2_PIX_FMT_BGR32,
 266		.bpp    = 32,
 267	}, {
 268		.fourcc	= V4L2_PIX_FMT_XRGB32,
 269		.bpp    = 32,
 270	}, {
 271		.fourcc	= V4L2_PIX_FMT_XBGR32,
 272		.bpp    = 32,
 273	}, {
 274		.fourcc	= V4L2_PIX_FMT_BGRX32,
 275		.bpp    = 32,
 276	}, {
 277		.fourcc	= V4L2_PIX_FMT_RGBX32,
 278		.bpp    = 32,
 279	}, {
 280		.fourcc	= V4L2_PIX_FMT_YUYV,
 281		.bpp    = 16,
 282		.uv_width_dec = 2,
 283		.uv_height_dec = 1,
 284	}, {
 285		.fourcc	= V4L2_PIX_FMT_UYVY,
 286		.bpp    = 16,
 287		.uv_width_dec = 2,
 288		.uv_height_dec = 1,
 289	}, {
 290		.fourcc	= V4L2_PIX_FMT_YUV420,
 291		.bpp    = 12,
 292		.planar = true,
 293		.uv_width_dec = 2,
 294		.uv_height_dec = 2,
 295	}, {
 296		.fourcc	= V4L2_PIX_FMT_YVU420,
 297		.bpp    = 12,
 298		.planar = true,
 299		.uv_width_dec = 2,
 300		.uv_height_dec = 2,
 301		.uv_swapped = true,
 302	}, {
 303		.fourcc = V4L2_PIX_FMT_NV12,
 304		.bpp    = 12,
 305		.planar = true,
 306		.uv_width_dec = 2,
 307		.uv_height_dec = 2,
 308		.uv_packed = true,
 309	}, {
 310		.fourcc = V4L2_PIX_FMT_YUV422P,
 311		.bpp    = 16,
 312		.planar = true,
 313		.uv_width_dec = 2,
 314		.uv_height_dec = 1,
 315	}, {
 316		.fourcc = V4L2_PIX_FMT_NV16,
 317		.bpp    = 16,
 318		.planar = true,
 319		.uv_width_dec = 2,
 320		.uv_height_dec = 1,
 321		.uv_packed = true,
 322	},
 323};
 324
 325static const struct ipu_image_pixfmt *get_format(u32 fourcc)
 326{
 327	const struct ipu_image_pixfmt *ret = NULL;
 328	unsigned int i;
 329
 330	for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
 331		if (image_convert_formats[i].fourcc == fourcc) {
 332			ret = &image_convert_formats[i];
 333			break;
 334		}
 335	}
 336
 337	return ret;
 338}
 339
 340static void dump_format(struct ipu_image_convert_ctx *ctx,
 341			struct ipu_image_convert_image *ic_image)
 342{
 343	struct ipu_image_convert_chan *chan = ctx->chan;
 344	struct ipu_image_convert_priv *priv = chan->priv;
 345
 346	dev_dbg(priv->ipu->dev,
 347		"task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
 348		chan->ic_task, ctx,
 349		ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
 350		ic_image->base.pix.width, ic_image->base.pix.height,
 351		ic_image->num_cols, ic_image->num_rows,
 352		ic_image->fmt->fourcc & 0xff,
 353		(ic_image->fmt->fourcc >> 8) & 0xff,
 354		(ic_image->fmt->fourcc >> 16) & 0xff,
 355		(ic_image->fmt->fourcc >> 24) & 0xff);
 356}
 357
 358int ipu_image_convert_enum_format(int index, u32 *fourcc)
 359{
 360	const struct ipu_image_pixfmt *fmt;
 361
 362	if (index >= (int)ARRAY_SIZE(image_convert_formats))
 363		return -EINVAL;
 364
 365	/* Format found */
 366	fmt = &image_convert_formats[index];
 367	*fourcc = fmt->fourcc;
 368	return 0;
 369}
 370EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
 371
 372static void free_dma_buf(struct ipu_image_convert_priv *priv,
 373			 struct ipu_image_convert_dma_buf *buf)
 374{
 375	if (buf->virt)
 376		dma_free_coherent(priv->ipu->dev,
 377				  buf->len, buf->virt, buf->phys);
 378	buf->virt = NULL;
 379	buf->phys = 0;
 380}
 381
 382static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
 383			 struct ipu_image_convert_dma_buf *buf,
 384			 int size)
 385{
 386	buf->len = PAGE_ALIGN(size);
 387	buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
 388				       GFP_DMA | GFP_KERNEL);
 389	if (!buf->virt) {
 390		dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
 391		return -ENOMEM;
 392	}
 393
 394	return 0;
 395}
 396
 397static inline int num_stripes(int dim)
 398{
 399	return (dim - 1) / 1024 + 1;
 400}
 401
 402/*
 403 * Calculate downsizing coefficients, which are the same for all tiles,
 404 * and initial bilinear resizing coefficients, which are used to find the
 405 * best seam positions.
 406 * Also determine the number of tiles necessary to guarantee that no tile
 407 * is larger than 1024 pixels in either dimension at the output and between
 408 * IC downsizing and main processing sections.
 409 */
 410static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
 411					  struct ipu_image *in,
 412					  struct ipu_image *out)
 413{
 414	u32 downsized_width = in->rect.width;
 415	u32 downsized_height = in->rect.height;
 416	u32 downsize_coeff_v = 0;
 417	u32 downsize_coeff_h = 0;
 418	u32 resized_width = out->rect.width;
 419	u32 resized_height = out->rect.height;
 420	u32 resize_coeff_h;
 421	u32 resize_coeff_v;
 422	u32 cols;
 423	u32 rows;
 424
 425	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
 426		resized_width = out->rect.height;
 427		resized_height = out->rect.width;
 428	}
 429
 430	/* Do not let invalid input lead to an endless loop below */
 431	if (WARN_ON(resized_width == 0 || resized_height == 0))
 432		return -EINVAL;
 433
 434	while (downsized_width >= resized_width * 2) {
 435		downsized_width >>= 1;
 436		downsize_coeff_h++;
 437	}
 438
 439	while (downsized_height >= resized_height * 2) {
 440		downsized_height >>= 1;
 441		downsize_coeff_v++;
 442	}
 443
 444	/*
 445	 * Calculate the bilinear resizing coefficients that could be used if
 446	 * we were converting with a single tile. The bottom right output pixel
 447	 * should sample as close as possible to the bottom right input pixel
 448	 * out of the decimator, but not overshoot it:
 449	 */
 450	resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
 451	resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
 452
 453	/*
 454	 * Both the output of the IC downsizing section before being passed to
 455	 * the IC main processing section and the final output of the IC main
 456	 * processing section must be <= 1024 pixels in both dimensions.
 457	 */
 458	cols = num_stripes(max_t(u32, downsized_width, resized_width));
 459	rows = num_stripes(max_t(u32, downsized_height, resized_height));
 460
 461	dev_dbg(ctx->chan->priv->ipu->dev,
 462		"%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
 463		__func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
 464		resize_coeff_v, cols, rows);
 465
 466	if (downsize_coeff_h > 2 || downsize_coeff_v  > 2 ||
 467	    resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
 468		return -EINVAL;
 469
 470	ctx->downsize_coeff_h = downsize_coeff_h;
 471	ctx->downsize_coeff_v = downsize_coeff_v;
 472	ctx->image_resize_coeff_h = resize_coeff_h;
 473	ctx->image_resize_coeff_v = resize_coeff_v;
 474	ctx->in.num_cols = cols;
 475	ctx->in.num_rows = rows;
 476
 477	return 0;
 478}
 479
 480#define round_closest(x, y) round_down((x) + (y)/2, (y))
 481
 482/*
 483 * Find the best aligned seam position for the given column / row index.
 484 * Rotation and image offsets are out of scope.
 485 *
 486 * @index: column / row index, used to calculate valid interval
 487 * @in_edge: input right / bottom edge
 488 * @out_edge: output right / bottom edge
 489 * @in_align: input alignment, either horizontal 8-byte line start address
 490 *            alignment, or pixel alignment due to image format
 491 * @out_align: output alignment, either horizontal 8-byte line start address
 492 *             alignment, or pixel alignment due to image format or rotator
 493 *             block size
 494 * @in_burst: horizontal input burst size in case of horizontal flip
 495 * @out_burst: horizontal output burst size or rotator block size
 496 * @downsize_coeff: downsizing section coefficient
 497 * @resize_coeff: main processing section resizing coefficient
 498 * @_in_seam: aligned input seam position return value
 499 * @_out_seam: aligned output seam position return value
 500 */
 501static void find_best_seam(struct ipu_image_convert_ctx *ctx,
 502			   unsigned int index,
 503			   unsigned int in_edge,
 504			   unsigned int out_edge,
 505			   unsigned int in_align,
 506			   unsigned int out_align,
 507			   unsigned int in_burst,
 508			   unsigned int out_burst,
 509			   unsigned int downsize_coeff,
 510			   unsigned int resize_coeff,
 511			   u32 *_in_seam,
 512			   u32 *_out_seam)
 513{
 514	struct device *dev = ctx->chan->priv->ipu->dev;
 515	unsigned int out_pos;
 516	/* Input / output seam position candidates */
 517	unsigned int out_seam = 0;
 518	unsigned int in_seam = 0;
 519	unsigned int min_diff = UINT_MAX;
 520	unsigned int out_start;
 521	unsigned int out_end;
 522	unsigned int in_start;
 523	unsigned int in_end;
 524
 525	/* Start within 1024 pixels of the right / bottom edge */
 526	out_start = max_t(int, index * out_align, out_edge - 1024);
 527	/* End before having to add more columns to the left / rows above */
 528	out_end = min_t(unsigned int, out_edge, index * 1024 + 1);
 529
 530	/*
 531	 * Limit input seam position to make sure that the downsized input tile
 532	 * to the right or bottom does not exceed 1024 pixels.
 533	 */
 534	in_start = max_t(int, index * in_align,
 535			 in_edge - (1024 << downsize_coeff));
 536	in_end = min_t(unsigned int, in_edge,
 537		       index * (1024 << downsize_coeff) + 1);
 538
 539	/*
 540	 * Output tiles must start at a multiple of 8 bytes horizontally and
 541	 * possibly at an even line horizontally depending on the pixel format.
 542	 * Only consider output aligned positions for the seam.
 543	 */
 544	out_start = round_up(out_start, out_align);
 545	for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
 546		unsigned int in_pos;
 547		unsigned int in_pos_aligned;
 548		unsigned int in_pos_rounded;
 549		unsigned int diff;
 550
 551		/*
 552		 * Tiles in the right row / bottom column may not be allowed to
 553		 * overshoot horizontally / vertically. out_burst may be the
 554		 * actual DMA burst size, or the rotator block size.
 555		 */
 556		if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
 557			continue;
 558
 559		/*
 560		 * Input sample position, corresponding to out_pos, 19.13 fixed
 561		 * point.
 562		 */
 563		in_pos = (out_pos * resize_coeff) << downsize_coeff;
 564		/*
 565		 * The closest input sample position that we could actually
 566		 * start the input tile at, 19.13 fixed point.
 567		 */
 568		in_pos_aligned = round_closest(in_pos, 8192U * in_align);
 569		/* Convert 19.13 fixed point to integer */
 570		in_pos_rounded = in_pos_aligned / 8192U;
 571
 572		if (in_pos_rounded < in_start)
 573			continue;
 574		if (in_pos_rounded >= in_end)
 575			break;
 576
 577		if ((in_burst > 1) &&
 578		    (in_edge - in_pos_rounded) % in_burst)
 579			continue;
 580
 581		diff = abs_diff(in_pos, in_pos_aligned);
 582		if (diff < min_diff) {
 
 
 
 
 583			in_seam = in_pos_rounded;
 584			out_seam = out_pos;
 585			min_diff = diff;
 586		}
 587	}
 588
 589	*_out_seam = out_seam;
 590	*_in_seam = in_seam;
 591
 592	dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n",
 593		__func__, out_seam, out_align, out_start, out_end,
 594		in_seam, in_align, in_start, in_end, min_diff / 8192,
 595		DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
 596}
 597
 598/*
 599 * Tile left edges are required to be aligned to multiples of 8 bytes
 600 * by the IDMAC.
 601 */
 602static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
 603{
 604	if (fmt->planar)
 605		return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
 606	else
 607		return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
 608}
 609
 610/*
 611 * Tile top edge alignment is only limited by chroma subsampling.
 612 */
 613static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
 614{
 615	return fmt->uv_height_dec > 1 ? 2 : 1;
 616}
 617
 618static inline u32 tile_width_align(enum ipu_image_convert_type type,
 619				   const struct ipu_image_pixfmt *fmt,
 620				   enum ipu_rotate_mode rot_mode)
 621{
 622	if (type == IMAGE_CONVERT_IN) {
 623		/*
 624		 * The IC burst reads 8 pixels at a time. Reading beyond the
 625		 * end of the line is usually acceptable. Those pixels are
 626		 * ignored, unless the IC has to write the scaled line in
 627		 * reverse.
 628		 */
 629		return (!ipu_rot_mode_is_irt(rot_mode) &&
 630			(rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
 631	}
 632
 633	/*
 634	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
 635	 * formats to guarantee 8-byte aligned line start addresses in the
 636	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
 637	 * for all other formats.
 638	 */
 639	return (ipu_rot_mode_is_irt(rot_mode) &&
 640		fmt->planar && !fmt->uv_packed) ?
 641		8 * fmt->uv_width_dec : 8;
 642}
 643
 644static inline u32 tile_height_align(enum ipu_image_convert_type type,
 645				    const struct ipu_image_pixfmt *fmt,
 646				    enum ipu_rotate_mode rot_mode)
 647{
 648	if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
 649		return 2;
 650
 651	/*
 652	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
 653	 * formats to guarantee 8-byte aligned line start addresses in the
 654	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
 655	 * for all other formats.
 656	 */
 657	return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
 658}
 659
 660/*
 661 * Fill in left position and width and for all tiles in an input column, and
 662 * for all corresponding output tiles. If the 90° rotator is used, the output
 663 * tiles are in a row, and output tile top position and height are set.
 664 */
 665static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
 666			     unsigned int col,
 667			     struct ipu_image_convert_image *in,
 668			     unsigned int in_left, unsigned int in_width,
 669			     struct ipu_image_convert_image *out,
 670			     unsigned int out_left, unsigned int out_width)
 671{
 672	unsigned int row, tile_idx;
 673	struct ipu_image_tile *in_tile, *out_tile;
 674
 675	for (row = 0; row < in->num_rows; row++) {
 676		tile_idx = in->num_cols * row + col;
 677		in_tile = &in->tile[tile_idx];
 678		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
 679
 680		in_tile->left = in_left;
 681		in_tile->width = in_width;
 682
 683		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
 684			out_tile->top = out_left;
 685			out_tile->height = out_width;
 686		} else {
 687			out_tile->left = out_left;
 688			out_tile->width = out_width;
 689		}
 690	}
 691}
 692
 693/*
 694 * Fill in top position and height and for all tiles in an input row, and
 695 * for all corresponding output tiles. If the 90° rotator is used, the output
 696 * tiles are in a column, and output tile left position and width are set.
 697 */
 698static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
 699			  struct ipu_image_convert_image *in,
 700			  unsigned int in_top, unsigned int in_height,
 701			  struct ipu_image_convert_image *out,
 702			  unsigned int out_top, unsigned int out_height)
 703{
 704	unsigned int col, tile_idx;
 705	struct ipu_image_tile *in_tile, *out_tile;
 706
 707	for (col = 0; col < in->num_cols; col++) {
 708		tile_idx = in->num_cols * row + col;
 709		in_tile = &in->tile[tile_idx];
 710		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
 711
 712		in_tile->top = in_top;
 713		in_tile->height = in_height;
 714
 715		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
 716			out_tile->left = out_top;
 717			out_tile->width = out_height;
 718		} else {
 719			out_tile->top = out_top;
 720			out_tile->height = out_height;
 721		}
 722	}
 723}
 724
 725/*
 726 * Find the best horizontal and vertical seam positions to split into tiles.
 727 * Minimize the fractional part of the input sampling position for the
 728 * top / left pixels of each tile.
 729 */
 730static void find_seams(struct ipu_image_convert_ctx *ctx,
 731		       struct ipu_image_convert_image *in,
 732		       struct ipu_image_convert_image *out)
 733{
 734	struct device *dev = ctx->chan->priv->ipu->dev;
 735	unsigned int resized_width = out->base.rect.width;
 736	unsigned int resized_height = out->base.rect.height;
 737	unsigned int col;
 738	unsigned int row;
 739	unsigned int in_left_align = tile_left_align(in->fmt);
 740	unsigned int in_top_align = tile_top_align(in->fmt);
 741	unsigned int out_left_align = tile_left_align(out->fmt);
 742	unsigned int out_top_align = tile_top_align(out->fmt);
 743	unsigned int out_width_align = tile_width_align(out->type, out->fmt,
 744							ctx->rot_mode);
 745	unsigned int out_height_align = tile_height_align(out->type, out->fmt,
 746							  ctx->rot_mode);
 747	unsigned int in_right = in->base.rect.width;
 748	unsigned int in_bottom = in->base.rect.height;
 749	unsigned int out_right = out->base.rect.width;
 750	unsigned int out_bottom = out->base.rect.height;
 751	unsigned int flipped_out_left;
 752	unsigned int flipped_out_top;
 753
 754	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
 755		/* Switch width/height and align top left to IRT block size */
 756		resized_width = out->base.rect.height;
 757		resized_height = out->base.rect.width;
 758		out_left_align = out_height_align;
 759		out_top_align = out_width_align;
 760		out_width_align = out_left_align;
 761		out_height_align = out_top_align;
 762		out_right = out->base.rect.height;
 763		out_bottom = out->base.rect.width;
 764	}
 765
 766	for (col = in->num_cols - 1; col > 0; col--) {
 767		bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
 768					  !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
 769		bool allow_out_overshoot = (col < in->num_cols - 1) &&
 770					   !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
 771		unsigned int in_left;
 772		unsigned int out_left;
 773
 774		/*
 775		 * Align input width to burst length if the scaling step flips
 776		 * horizontally.
 777		 */
 778
 779		find_best_seam(ctx, col,
 780			       in_right, out_right,
 781			       in_left_align, out_left_align,
 782			       allow_in_overshoot ? 1 : 8 /* burst length */,
 783			       allow_out_overshoot ? 1 : out_width_align,
 784			       ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
 785			       &in_left, &out_left);
 786
 787		if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
 788			flipped_out_left = resized_width - out_right;
 789		else
 790			flipped_out_left = out_left;
 791
 792		fill_tile_column(ctx, col, in, in_left, in_right - in_left,
 793				 out, flipped_out_left, out_right - out_left);
 794
 795		dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
 796			in_left, in_right - in_left,
 797			flipped_out_left, out_right - out_left);
 798
 799		in_right = in_left;
 800		out_right = out_left;
 801	}
 802
 803	flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
 804			   resized_width - out_right : 0;
 805
 806	fill_tile_column(ctx, 0, in, 0, in_right,
 807			 out, flipped_out_left, out_right);
 808
 809	dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
 810		in_right, flipped_out_left, out_right);
 811
 812	for (row = in->num_rows - 1; row > 0; row--) {
 813		bool allow_overshoot = row < in->num_rows - 1;
 814		unsigned int in_top;
 815		unsigned int out_top;
 816
 817		find_best_seam(ctx, row,
 818			       in_bottom, out_bottom,
 819			       in_top_align, out_top_align,
 820			       1, allow_overshoot ? 1 : out_height_align,
 821			       ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
 822			       &in_top, &out_top);
 823
 824		if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
 825		    ipu_rot_mode_is_irt(ctx->rot_mode))
 826			flipped_out_top = resized_height - out_bottom;
 827		else
 828			flipped_out_top = out_top;
 829
 830		fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
 831			      out, flipped_out_top, out_bottom - out_top);
 832
 833		dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
 834			in_top, in_bottom - in_top,
 835			flipped_out_top, out_bottom - out_top);
 836
 837		in_bottom = in_top;
 838		out_bottom = out_top;
 839	}
 840
 841	if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
 842	    ipu_rot_mode_is_irt(ctx->rot_mode))
 843		flipped_out_top = resized_height - out_bottom;
 844	else
 845		flipped_out_top = 0;
 846
 847	fill_tile_row(ctx, 0, in, 0, in_bottom,
 848		      out, flipped_out_top, out_bottom);
 849
 850	dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
 851		in_bottom, flipped_out_top, out_bottom);
 852}
 853
 854static int calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
 855				struct ipu_image_convert_image *image)
 856{
 857	struct ipu_image_convert_chan *chan = ctx->chan;
 858	struct ipu_image_convert_priv *priv = chan->priv;
 859	unsigned int max_width = 1024;
 860	unsigned int max_height = 1024;
 861	unsigned int i;
 862
 863	if (image->type == IMAGE_CONVERT_IN) {
 864		/* Up to 4096x4096 input tile size */
 865		max_width <<= ctx->downsize_coeff_h;
 866		max_height <<= ctx->downsize_coeff_v;
 867	}
 868
 869	for (i = 0; i < ctx->num_tiles; i++) {
 870		struct ipu_image_tile *tile;
 871		const unsigned int row = i / image->num_cols;
 872		const unsigned int col = i % image->num_cols;
 873
 874		if (image->type == IMAGE_CONVERT_OUT)
 875			tile = &image->tile[ctx->out_tile_map[i]];
 876		else
 877			tile = &image->tile[i];
 878
 879		tile->size = ((tile->height * image->fmt->bpp) >> 3) *
 880			tile->width;
 881
 882		if (image->fmt->planar) {
 883			tile->stride = tile->width;
 884			tile->rot_stride = tile->height;
 885		} else {
 886			tile->stride =
 887				(image->fmt->bpp * tile->width) >> 3;
 888			tile->rot_stride =
 889				(image->fmt->bpp * tile->height) >> 3;
 890		}
 891
 892		dev_dbg(priv->ipu->dev,
 893			"task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
 894			chan->ic_task, ctx,
 895			image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
 896			row, col,
 897			tile->width, tile->height, tile->left, tile->top);
 898
 899		if (!tile->width || tile->width > max_width ||
 900		    !tile->height || tile->height > max_height) {
 901			dev_err(priv->ipu->dev, "invalid %s tile size: %ux%u\n",
 902				image->type == IMAGE_CONVERT_IN ? "input" :
 903				"output", tile->width, tile->height);
 904			return -EINVAL;
 905		}
 906	}
 907
 908	return 0;
 909}
 910
 911/*
 912 * Use the rotation transformation to find the tile coordinates
 913 * (row, col) of a tile in the destination frame that corresponds
 914 * to the given tile coordinates of a source frame. The destination
 915 * coordinate is then converted to a tile index.
 916 */
 917static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
 918				int src_row, int src_col)
 919{
 920	struct ipu_image_convert_chan *chan = ctx->chan;
 921	struct ipu_image_convert_priv *priv = chan->priv;
 922	struct ipu_image_convert_image *s_image = &ctx->in;
 923	struct ipu_image_convert_image *d_image = &ctx->out;
 924	int dst_row, dst_col;
 925
 926	/* with no rotation it's a 1:1 mapping */
 927	if (ctx->rot_mode == IPU_ROTATE_NONE)
 928		return src_row * s_image->num_cols + src_col;
 929
 930	/*
 931	 * before doing the transform, first we have to translate
 932	 * source row,col for an origin in the center of s_image
 933	 */
 934	src_row = src_row * 2 - (s_image->num_rows - 1);
 935	src_col = src_col * 2 - (s_image->num_cols - 1);
 936
 937	/* do the rotation transform */
 938	if (ctx->rot_mode & IPU_ROT_BIT_90) {
 939		dst_col = -src_row;
 940		dst_row = src_col;
 941	} else {
 942		dst_col = src_col;
 943		dst_row = src_row;
 944	}
 945
 946	/* apply flip */
 947	if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
 948		dst_col = -dst_col;
 949	if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
 950		dst_row = -dst_row;
 951
 952	dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
 953		chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
 954
 955	/*
 956	 * finally translate dest row,col using an origin in upper
 957	 * left of d_image
 958	 */
 959	dst_row += d_image->num_rows - 1;
 960	dst_col += d_image->num_cols - 1;
 961	dst_row /= 2;
 962	dst_col /= 2;
 963
 964	return dst_row * d_image->num_cols + dst_col;
 965}
 966
 967/*
 968 * Fill the out_tile_map[] with transformed destination tile indeces.
 969 */
 970static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
 971{
 972	struct ipu_image_convert_image *s_image = &ctx->in;
 973	unsigned int row, col, tile = 0;
 974
 975	for (row = 0; row < s_image->num_rows; row++) {
 976		for (col = 0; col < s_image->num_cols; col++) {
 977			ctx->out_tile_map[tile] =
 978				transform_tile_index(ctx, row, col);
 979			tile++;
 980		}
 981	}
 982}
 983
 984static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
 985				    struct ipu_image_convert_image *image)
 986{
 987	struct ipu_image_convert_chan *chan = ctx->chan;
 988	struct ipu_image_convert_priv *priv = chan->priv;
 989	const struct ipu_image_pixfmt *fmt = image->fmt;
 990	unsigned int row, col, tile = 0;
 991	u32 H, top, y_stride, uv_stride;
 992	u32 uv_row_off, uv_col_off, uv_off, u_off, v_off;
 993	u32 y_row_off, y_col_off, y_off;
 994	u32 y_size, uv_size;
 995
 996	/* setup some convenience vars */
 997	H = image->base.pix.height;
 998
 999	y_stride = image->stride;
1000	uv_stride = y_stride / fmt->uv_width_dec;
1001	if (fmt->uv_packed)
1002		uv_stride *= 2;
1003
1004	y_size = H * y_stride;
1005	uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
1006
1007	for (row = 0; row < image->num_rows; row++) {
1008		top = image->tile[tile].top;
1009		y_row_off = top * y_stride;
1010		uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
1011
1012		for (col = 0; col < image->num_cols; col++) {
1013			y_col_off = image->tile[tile].left;
1014			uv_col_off = y_col_off / fmt->uv_width_dec;
1015			if (fmt->uv_packed)
1016				uv_col_off *= 2;
1017
1018			y_off = y_row_off + y_col_off;
1019			uv_off = uv_row_off + uv_col_off;
1020
1021			u_off = y_size - y_off + uv_off;
1022			v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
1023			if (fmt->uv_swapped)
1024				swap(u_off, v_off);
 
 
 
1025
1026			image->tile[tile].offset = y_off;
1027			image->tile[tile].u_off = u_off;
1028			image->tile[tile++].v_off = v_off;
1029
1030			if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
1031				dev_err(priv->ipu->dev,
1032					"task %u: ctx %p: %s@[%d,%d]: "
1033					"y_off %08x, u_off %08x, v_off %08x\n",
1034					chan->ic_task, ctx,
1035					image->type == IMAGE_CONVERT_IN ?
1036					"Input" : "Output", row, col,
1037					y_off, u_off, v_off);
1038				return -EINVAL;
1039			}
1040		}
1041	}
1042
1043	return 0;
1044}
1045
1046static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
1047				    struct ipu_image_convert_image *image)
1048{
1049	struct ipu_image_convert_chan *chan = ctx->chan;
1050	struct ipu_image_convert_priv *priv = chan->priv;
1051	const struct ipu_image_pixfmt *fmt = image->fmt;
1052	unsigned int row, col, tile = 0;
1053	u32 bpp, stride, offset;
1054	u32 row_off, col_off;
1055
1056	/* setup some convenience vars */
1057	stride = image->stride;
1058	bpp = fmt->bpp;
1059
1060	for (row = 0; row < image->num_rows; row++) {
1061		row_off = image->tile[tile].top * stride;
1062
1063		for (col = 0; col < image->num_cols; col++) {
1064			col_off = (image->tile[tile].left * bpp) >> 3;
1065
1066			offset = row_off + col_off;
1067
1068			image->tile[tile].offset = offset;
1069			image->tile[tile].u_off = 0;
1070			image->tile[tile++].v_off = 0;
1071
1072			if (offset & 0x7) {
1073				dev_err(priv->ipu->dev,
1074					"task %u: ctx %p: %s@[%d,%d]: "
1075					"phys %08x\n",
1076					chan->ic_task, ctx,
1077					image->type == IMAGE_CONVERT_IN ?
1078					"Input" : "Output", row, col,
1079					row_off + col_off);
1080				return -EINVAL;
1081			}
1082		}
1083	}
1084
1085	return 0;
1086}
1087
1088static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1089			      struct ipu_image_convert_image *image)
1090{
1091	if (image->fmt->planar)
1092		return calc_tile_offsets_planar(ctx, image);
1093
1094	return calc_tile_offsets_packed(ctx, image);
1095}
1096
1097/*
1098 * Calculate the resizing ratio for the IC main processing section given input
1099 * size, fixed downsizing coefficient, and output size.
1100 * Either round to closest for the next tile's first pixel to minimize seams
1101 * and distortion (for all but right column / bottom row), or round down to
1102 * avoid sampling beyond the edges of the input image for this tile's last
1103 * pixel.
1104 * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1105 */
1106static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1107			     u32 output_size, bool allow_overshoot)
1108{
1109	u32 downsized = input_size >> downsize_coeff;
1110
1111	if (allow_overshoot)
1112		return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1113	else
1114		return 8192 * (downsized - 1) / (output_size - 1);
1115}
1116
1117/*
1118 * Slightly modify resize coefficients per tile to hide the bilinear
1119 * interpolator reset at tile borders, shifting the right / bottom edge
1120 * by up to a half input pixel. This removes noticeable seams between
1121 * tiles at higher upscaling factors.
1122 */
1123static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1124{
1125	struct ipu_image_convert_chan *chan = ctx->chan;
1126	struct ipu_image_convert_priv *priv = chan->priv;
1127	struct ipu_image_tile *in_tile, *out_tile;
1128	unsigned int col, row, tile_idx;
1129	unsigned int last_output;
1130
1131	for (col = 0; col < ctx->in.num_cols; col++) {
1132		bool closest = (col < ctx->in.num_cols - 1) &&
1133			       !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1134		u32 resized_width;
1135		u32 resize_coeff_h;
1136		u32 in_width;
1137
1138		tile_idx = col;
1139		in_tile = &ctx->in.tile[tile_idx];
1140		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1141
1142		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1143			resized_width = out_tile->height;
1144		else
1145			resized_width = out_tile->width;
1146
1147		resize_coeff_h = calc_resize_coeff(in_tile->width,
1148						   ctx->downsize_coeff_h,
1149						   resized_width, closest);
1150
1151		dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1152			__func__, col, resize_coeff_h);
1153
1154		/*
1155		 * With the horizontal scaling factor known, round up resized
1156		 * width (output width or height) to burst size.
1157		 */
1158		resized_width = round_up(resized_width, 8);
1159
1160		/*
1161		 * Calculate input width from the last accessed input pixel
1162		 * given resized width and scaling coefficients. Round up to
1163		 * burst size.
1164		 */
1165		last_output = resized_width - 1;
1166		if (closest && ((last_output * resize_coeff_h) % 8192))
1167			last_output++;
1168		in_width = round_up(
1169			(DIV_ROUND_UP(last_output * resize_coeff_h, 8192) + 1)
1170			<< ctx->downsize_coeff_h, 8);
1171
1172		for (row = 0; row < ctx->in.num_rows; row++) {
1173			tile_idx = row * ctx->in.num_cols + col;
1174			in_tile = &ctx->in.tile[tile_idx];
1175			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1176
1177			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1178				out_tile->height = resized_width;
1179			else
1180				out_tile->width = resized_width;
1181
1182			in_tile->width = in_width;
1183		}
1184
1185		ctx->resize_coeffs_h[col] = resize_coeff_h;
1186	}
1187
1188	for (row = 0; row < ctx->in.num_rows; row++) {
1189		bool closest = (row < ctx->in.num_rows - 1) &&
1190			       !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1191		u32 resized_height;
1192		u32 resize_coeff_v;
1193		u32 in_height;
1194
1195		tile_idx = row * ctx->in.num_cols;
1196		in_tile = &ctx->in.tile[tile_idx];
1197		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1198
1199		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1200			resized_height = out_tile->width;
1201		else
1202			resized_height = out_tile->height;
1203
1204		resize_coeff_v = calc_resize_coeff(in_tile->height,
1205						   ctx->downsize_coeff_v,
1206						   resized_height, closest);
1207
1208		dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1209			__func__, row, resize_coeff_v);
1210
1211		/*
1212		 * With the vertical scaling factor known, round up resized
1213		 * height (output width or height) to IDMAC limitations.
1214		 */
1215		resized_height = round_up(resized_height, 2);
1216
1217		/*
1218		 * Calculate input width from the last accessed input pixel
1219		 * given resized height and scaling coefficients. Align to
1220		 * IDMAC restrictions.
1221		 */
1222		last_output = resized_height - 1;
1223		if (closest && ((last_output * resize_coeff_v) % 8192))
1224			last_output++;
1225		in_height = round_up(
1226			(DIV_ROUND_UP(last_output * resize_coeff_v, 8192) + 1)
1227			<< ctx->downsize_coeff_v, 2);
1228
1229		for (col = 0; col < ctx->in.num_cols; col++) {
1230			tile_idx = row * ctx->in.num_cols + col;
1231			in_tile = &ctx->in.tile[tile_idx];
1232			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1233
1234			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1235				out_tile->width = resized_height;
1236			else
1237				out_tile->height = resized_height;
1238
1239			in_tile->height = in_height;
1240		}
1241
1242		ctx->resize_coeffs_v[row] = resize_coeff_v;
1243	}
1244}
1245
1246/*
1247 * return the number of runs in given queue (pending_q or done_q)
1248 * for this context. hold irqlock when calling.
1249 */
1250static int get_run_count(struct ipu_image_convert_ctx *ctx,
1251			 struct list_head *q)
1252{
1253	struct ipu_image_convert_run *run;
1254	int count = 0;
1255
1256	lockdep_assert_held(&ctx->chan->irqlock);
1257
1258	list_for_each_entry(run, q, list) {
1259		if (run->ctx == ctx)
1260			count++;
1261	}
1262
1263	return count;
1264}
1265
1266static void convert_stop(struct ipu_image_convert_run *run)
1267{
1268	struct ipu_image_convert_ctx *ctx = run->ctx;
1269	struct ipu_image_convert_chan *chan = ctx->chan;
1270	struct ipu_image_convert_priv *priv = chan->priv;
1271
1272	dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1273		__func__, chan->ic_task, ctx, run);
1274
1275	/* disable IC tasks and the channels */
1276	ipu_ic_task_disable(chan->ic);
1277	ipu_idmac_disable_channel(chan->in_chan);
1278	ipu_idmac_disable_channel(chan->out_chan);
1279
1280	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1281		ipu_idmac_disable_channel(chan->rotation_in_chan);
1282		ipu_idmac_disable_channel(chan->rotation_out_chan);
1283		ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1284	}
1285
1286	ipu_ic_disable(chan->ic);
1287}
1288
1289static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1290			       struct ipuv3_channel *channel,
1291			       struct ipu_image_convert_image *image,
1292			       enum ipu_rotate_mode rot_mode,
1293			       bool rot_swap_width_height,
1294			       unsigned int tile)
1295{
1296	struct ipu_image_convert_chan *chan = ctx->chan;
1297	unsigned int burst_size;
1298	u32 width, height, stride;
1299	dma_addr_t addr0, addr1 = 0;
1300	struct ipu_image tile_image;
1301	unsigned int tile_idx[2];
1302
1303	if (image->type == IMAGE_CONVERT_OUT) {
1304		tile_idx[0] = ctx->out_tile_map[tile];
1305		tile_idx[1] = ctx->out_tile_map[1];
1306	} else {
1307		tile_idx[0] = tile;
1308		tile_idx[1] = 1;
1309	}
1310
1311	if (rot_swap_width_height) {
1312		width = image->tile[tile_idx[0]].height;
1313		height = image->tile[tile_idx[0]].width;
1314		stride = image->tile[tile_idx[0]].rot_stride;
1315		addr0 = ctx->rot_intermediate[0].phys;
1316		if (ctx->double_buffering)
1317			addr1 = ctx->rot_intermediate[1].phys;
1318	} else {
1319		width = image->tile[tile_idx[0]].width;
1320		height = image->tile[tile_idx[0]].height;
1321		stride = image->stride;
1322		addr0 = image->base.phys0 +
1323			image->tile[tile_idx[0]].offset;
1324		if (ctx->double_buffering)
1325			addr1 = image->base.phys0 +
1326				image->tile[tile_idx[1]].offset;
1327	}
1328
1329	ipu_cpmem_zero(channel);
1330
1331	memset(&tile_image, 0, sizeof(tile_image));
1332	tile_image.pix.width = tile_image.rect.width = width;
1333	tile_image.pix.height = tile_image.rect.height = height;
1334	tile_image.pix.bytesperline = stride;
1335	tile_image.pix.pixelformat =  image->fmt->fourcc;
1336	tile_image.phys0 = addr0;
1337	tile_image.phys1 = addr1;
1338	if (image->fmt->planar && !rot_swap_width_height) {
1339		tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1340		tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1341	}
1342
1343	ipu_cpmem_set_image(channel, &tile_image);
1344
1345	if (rot_mode)
1346		ipu_cpmem_set_rotation(channel, rot_mode);
1347
1348	/*
1349	 * Skip writing U and V components to odd rows in the output
1350	 * channels for planar 4:2:0.
1351	 */
1352	if ((channel == chan->out_chan ||
1353	     channel == chan->rotation_out_chan) &&
1354	    image->fmt->planar && image->fmt->uv_height_dec == 2)
1355		ipu_cpmem_skip_odd_chroma_rows(channel);
1356
1357	if (channel == chan->rotation_in_chan ||
1358	    channel == chan->rotation_out_chan) {
1359		burst_size = 8;
1360		ipu_cpmem_set_block_mode(channel);
1361	} else
1362		burst_size = (width % 16) ? 8 : 16;
1363
1364	ipu_cpmem_set_burstsize(channel, burst_size);
1365
1366	ipu_ic_task_idma_init(chan->ic, channel, width, height,
1367			      burst_size, rot_mode);
1368
1369	/*
1370	 * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1371	 * only do this when there is no PRG present.
1372	 */
1373	if (!channel->ipu->prg_priv)
1374		ipu_cpmem_set_axi_id(channel, 1);
1375
1376	ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1377}
1378
1379static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1380{
1381	struct ipu_image_convert_ctx *ctx = run->ctx;
1382	struct ipu_image_convert_chan *chan = ctx->chan;
1383	struct ipu_image_convert_priv *priv = chan->priv;
1384	struct ipu_image_convert_image *s_image = &ctx->in;
1385	struct ipu_image_convert_image *d_image = &ctx->out;
1386	unsigned int dst_tile = ctx->out_tile_map[tile];
1387	unsigned int dest_width, dest_height;
1388	unsigned int col, row;
1389	u32 rsc;
1390	int ret;
1391
1392	dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1393		__func__, chan->ic_task, ctx, run, tile, dst_tile);
1394
1395	/* clear EOF irq mask */
1396	ctx->eof_mask = 0;
1397
1398	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1399		/* swap width/height for resizer */
1400		dest_width = d_image->tile[dst_tile].height;
1401		dest_height = d_image->tile[dst_tile].width;
1402	} else {
1403		dest_width = d_image->tile[dst_tile].width;
1404		dest_height = d_image->tile[dst_tile].height;
1405	}
1406
1407	row = tile / s_image->num_cols;
1408	col = tile % s_image->num_cols;
1409
1410	rsc =  (ctx->downsize_coeff_v << 30) |
1411	       (ctx->resize_coeffs_v[row] << 16) |
1412	       (ctx->downsize_coeff_h << 14) |
1413	       (ctx->resize_coeffs_h[col]);
1414
1415	dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1416		__func__, s_image->tile[tile].width,
1417		s_image->tile[tile].height, dest_width, dest_height, rsc);
1418
1419	/* setup the IC resizer and CSC */
1420	ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc,
1421				   s_image->tile[tile].width,
1422				   s_image->tile[tile].height,
1423				   dest_width,
1424				   dest_height,
1425				   rsc);
1426	if (ret) {
1427		dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1428		return ret;
1429	}
1430
1431	/* init the source MEM-->IC PP IDMAC channel */
1432	init_idmac_channel(ctx, chan->in_chan, s_image,
1433			   IPU_ROTATE_NONE, false, tile);
1434
1435	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1436		/* init the IC PP-->MEM IDMAC channel */
1437		init_idmac_channel(ctx, chan->out_chan, d_image,
1438				   IPU_ROTATE_NONE, true, tile);
1439
1440		/* init the MEM-->IC PP ROT IDMAC channel */
1441		init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1442				   ctx->rot_mode, true, tile);
1443
1444		/* init the destination IC PP ROT-->MEM IDMAC channel */
1445		init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1446				   IPU_ROTATE_NONE, false, tile);
1447
1448		/* now link IC PP-->MEM to MEM-->IC PP ROT */
1449		ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1450	} else {
1451		/* init the destination IC PP-->MEM IDMAC channel */
1452		init_idmac_channel(ctx, chan->out_chan, d_image,
1453				   ctx->rot_mode, false, tile);
1454	}
1455
1456	/* enable the IC */
1457	ipu_ic_enable(chan->ic);
1458
1459	/* set buffers ready */
1460	ipu_idmac_select_buffer(chan->in_chan, 0);
1461	ipu_idmac_select_buffer(chan->out_chan, 0);
1462	if (ipu_rot_mode_is_irt(ctx->rot_mode))
1463		ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1464	if (ctx->double_buffering) {
1465		ipu_idmac_select_buffer(chan->in_chan, 1);
1466		ipu_idmac_select_buffer(chan->out_chan, 1);
1467		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1468			ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1469	}
1470
1471	/* enable the channels! */
1472	ipu_idmac_enable_channel(chan->in_chan);
1473	ipu_idmac_enable_channel(chan->out_chan);
1474	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1475		ipu_idmac_enable_channel(chan->rotation_in_chan);
1476		ipu_idmac_enable_channel(chan->rotation_out_chan);
1477	}
1478
1479	ipu_ic_task_enable(chan->ic);
1480
1481	ipu_cpmem_dump(chan->in_chan);
1482	ipu_cpmem_dump(chan->out_chan);
1483	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1484		ipu_cpmem_dump(chan->rotation_in_chan);
1485		ipu_cpmem_dump(chan->rotation_out_chan);
1486	}
1487
1488	ipu_dump(priv->ipu);
1489
1490	return 0;
1491}
1492
1493/* hold irqlock when calling */
1494static int do_run(struct ipu_image_convert_run *run)
1495{
1496	struct ipu_image_convert_ctx *ctx = run->ctx;
1497	struct ipu_image_convert_chan *chan = ctx->chan;
1498
1499	lockdep_assert_held(&chan->irqlock);
1500
1501	ctx->in.base.phys0 = run->in_phys;
1502	ctx->out.base.phys0 = run->out_phys;
1503
1504	ctx->cur_buf_num = 0;
1505	ctx->next_tile = 1;
1506
1507	/* remove run from pending_q and set as current */
1508	list_del(&run->list);
1509	chan->current_run = run;
1510
1511	return convert_start(run, 0);
1512}
1513
1514/* hold irqlock when calling */
1515static void run_next(struct ipu_image_convert_chan *chan)
1516{
1517	struct ipu_image_convert_priv *priv = chan->priv;
1518	struct ipu_image_convert_run *run, *tmp;
1519	int ret;
1520
1521	lockdep_assert_held(&chan->irqlock);
1522
1523	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1524		/* skip contexts that are aborting */
1525		if (run->ctx->aborting) {
1526			dev_dbg(priv->ipu->dev,
1527				"%s: task %u: skipping aborting ctx %p run %p\n",
1528				__func__, chan->ic_task, run->ctx, run);
1529			continue;
1530		}
1531
1532		ret = do_run(run);
1533		if (!ret)
1534			break;
1535
1536		/*
1537		 * something went wrong with start, add the run
1538		 * to done q and continue to the next run in the
1539		 * pending q.
1540		 */
1541		run->status = ret;
1542		list_add_tail(&run->list, &chan->done_q);
1543		chan->current_run = NULL;
1544	}
1545}
1546
1547static void empty_done_q(struct ipu_image_convert_chan *chan)
1548{
1549	struct ipu_image_convert_priv *priv = chan->priv;
1550	struct ipu_image_convert_run *run;
1551	unsigned long flags;
1552
1553	spin_lock_irqsave(&chan->irqlock, flags);
1554
1555	while (!list_empty(&chan->done_q)) {
1556		run = list_entry(chan->done_q.next,
1557				 struct ipu_image_convert_run,
1558				 list);
1559
1560		list_del(&run->list);
1561
1562		dev_dbg(priv->ipu->dev,
1563			"%s: task %u: completing ctx %p run %p with %d\n",
1564			__func__, chan->ic_task, run->ctx, run, run->status);
1565
1566		/* call the completion callback and free the run */
1567		spin_unlock_irqrestore(&chan->irqlock, flags);
1568		run->ctx->complete(run, run->ctx->complete_context);
1569		spin_lock_irqsave(&chan->irqlock, flags);
1570	}
1571
1572	spin_unlock_irqrestore(&chan->irqlock, flags);
1573}
1574
1575/*
1576 * the bottom half thread clears out the done_q, calling the
1577 * completion handler for each.
1578 */
1579static irqreturn_t do_bh(int irq, void *dev_id)
1580{
1581	struct ipu_image_convert_chan *chan = dev_id;
1582	struct ipu_image_convert_priv *priv = chan->priv;
1583	struct ipu_image_convert_ctx *ctx;
1584	unsigned long flags;
1585
1586	dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1587		chan->ic_task);
1588
1589	empty_done_q(chan);
1590
1591	spin_lock_irqsave(&chan->irqlock, flags);
1592
1593	/*
1594	 * the done_q is cleared out, signal any contexts
1595	 * that are aborting that abort can complete.
1596	 */
1597	list_for_each_entry(ctx, &chan->ctx_list, list) {
1598		if (ctx->aborting) {
1599			dev_dbg(priv->ipu->dev,
1600				"%s: task %u: signaling abort for ctx %p\n",
1601				__func__, chan->ic_task, ctx);
1602			complete_all(&ctx->aborted);
1603		}
1604	}
1605
1606	spin_unlock_irqrestore(&chan->irqlock, flags);
1607
1608	dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1609		chan->ic_task);
1610
1611	return IRQ_HANDLED;
1612}
1613
1614static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1615{
1616	unsigned int cur_tile = ctx->next_tile - 1;
1617	unsigned int next_tile = ctx->next_tile;
1618
1619	if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1620	    ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1621	    ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1622	    ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1623	    ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1624	    ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1625	    ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1626	    ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1627		return true;
1628
1629	return false;
1630}
1631
1632/* hold irqlock when calling */
1633static irqreturn_t do_tile_complete(struct ipu_image_convert_run *run)
1634{
1635	struct ipu_image_convert_ctx *ctx = run->ctx;
1636	struct ipu_image_convert_chan *chan = ctx->chan;
1637	struct ipu_image_tile *src_tile, *dst_tile;
1638	struct ipu_image_convert_image *s_image = &ctx->in;
1639	struct ipu_image_convert_image *d_image = &ctx->out;
1640	struct ipuv3_channel *outch;
1641	unsigned int dst_idx;
1642
1643	lockdep_assert_held(&chan->irqlock);
1644
1645	outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1646		chan->rotation_out_chan : chan->out_chan;
1647
1648	/*
1649	 * It is difficult to stop the channel DMA before the channels
1650	 * enter the paused state. Without double-buffering the channels
1651	 * are always in a paused state when the EOF irq occurs, so it
1652	 * is safe to stop the channels now. For double-buffering we
1653	 * just ignore the abort until the operation completes, when it
1654	 * is safe to shut down.
1655	 */
1656	if (ctx->aborting && !ctx->double_buffering) {
1657		convert_stop(run);
1658		run->status = -EIO;
1659		goto done;
1660	}
1661
1662	if (ctx->next_tile == ctx->num_tiles) {
1663		/*
1664		 * the conversion is complete
1665		 */
1666		convert_stop(run);
1667		run->status = 0;
1668		goto done;
1669	}
1670
1671	/*
1672	 * not done, place the next tile buffers.
1673	 */
1674	if (!ctx->double_buffering) {
1675		if (ic_settings_changed(ctx)) {
1676			convert_stop(run);
1677			convert_start(run, ctx->next_tile);
1678		} else {
1679			src_tile = &s_image->tile[ctx->next_tile];
1680			dst_idx = ctx->out_tile_map[ctx->next_tile];
1681			dst_tile = &d_image->tile[dst_idx];
1682
1683			ipu_cpmem_set_buffer(chan->in_chan, 0,
1684					     s_image->base.phys0 +
1685					     src_tile->offset);
1686			ipu_cpmem_set_buffer(outch, 0,
1687					     d_image->base.phys0 +
1688					     dst_tile->offset);
1689			if (s_image->fmt->planar)
1690				ipu_cpmem_set_uv_offset(chan->in_chan,
1691							src_tile->u_off,
1692							src_tile->v_off);
1693			if (d_image->fmt->planar)
1694				ipu_cpmem_set_uv_offset(outch,
1695							dst_tile->u_off,
1696							dst_tile->v_off);
1697
1698			ipu_idmac_select_buffer(chan->in_chan, 0);
1699			ipu_idmac_select_buffer(outch, 0);
1700		}
1701	} else if (ctx->next_tile < ctx->num_tiles - 1) {
1702
1703		src_tile = &s_image->tile[ctx->next_tile + 1];
1704		dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1705		dst_tile = &d_image->tile[dst_idx];
1706
1707		ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1708				     s_image->base.phys0 + src_tile->offset);
1709		ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1710				     d_image->base.phys0 + dst_tile->offset);
1711
1712		ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1713		ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1714
1715		ctx->cur_buf_num ^= 1;
1716	}
1717
1718	ctx->eof_mask = 0; /* clear EOF irq mask for next tile */
1719	ctx->next_tile++;
1720	return IRQ_HANDLED;
1721done:
1722	list_add_tail(&run->list, &chan->done_q);
1723	chan->current_run = NULL;
1724	run_next(chan);
1725	return IRQ_WAKE_THREAD;
1726}
1727
1728static irqreturn_t eof_irq(int irq, void *data)
1729{
1730	struct ipu_image_convert_chan *chan = data;
1731	struct ipu_image_convert_priv *priv = chan->priv;
1732	struct ipu_image_convert_ctx *ctx;
1733	struct ipu_image_convert_run *run;
1734	irqreturn_t ret = IRQ_HANDLED;
1735	bool tile_complete = false;
1736	unsigned long flags;
 
1737
1738	spin_lock_irqsave(&chan->irqlock, flags);
1739
1740	/* get current run and its context */
1741	run = chan->current_run;
1742	if (!run) {
1743		ret = IRQ_NONE;
1744		goto out;
1745	}
1746
1747	ctx = run->ctx;
1748
1749	if (irq == chan->in_eof_irq) {
1750		ctx->eof_mask |= EOF_IRQ_IN;
1751	} else if (irq == chan->out_eof_irq) {
1752		ctx->eof_mask |= EOF_IRQ_OUT;
1753	} else if (irq == chan->rot_in_eof_irq ||
1754		   irq == chan->rot_out_eof_irq) {
1755		if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1756			/* this was NOT a rotation op, shouldn't happen */
1757			dev_err(priv->ipu->dev,
1758				"Unexpected rotation interrupt\n");
1759			goto out;
1760		}
1761		ctx->eof_mask |= (irq == chan->rot_in_eof_irq) ?
1762			EOF_IRQ_ROT_IN : EOF_IRQ_ROT_OUT;
1763	} else {
1764		dev_err(priv->ipu->dev, "Received unknown irq %d\n", irq);
 
 
 
 
 
 
 
 
 
 
1765		ret = IRQ_NONE;
1766		goto out;
1767	}
1768
1769	if (ipu_rot_mode_is_irt(ctx->rot_mode))
1770		tile_complete =	(ctx->eof_mask == EOF_IRQ_ROT_COMPLETE);
1771	else
1772		tile_complete = (ctx->eof_mask == EOF_IRQ_COMPLETE);
 
 
 
 
1773
1774	if (tile_complete)
1775		ret = do_tile_complete(run);
1776out:
1777	spin_unlock_irqrestore(&chan->irqlock, flags);
1778	return ret;
1779}
1780
1781/*
1782 * try to force the completion of runs for this ctx. Called when
1783 * abort wait times out in ipu_image_convert_abort().
1784 */
1785static void force_abort(struct ipu_image_convert_ctx *ctx)
1786{
1787	struct ipu_image_convert_chan *chan = ctx->chan;
1788	struct ipu_image_convert_run *run;
1789	unsigned long flags;
1790
1791	spin_lock_irqsave(&chan->irqlock, flags);
1792
1793	run = chan->current_run;
1794	if (run && run->ctx == ctx) {
1795		convert_stop(run);
1796		run->status = -EIO;
1797		list_add_tail(&run->list, &chan->done_q);
1798		chan->current_run = NULL;
1799		run_next(chan);
1800	}
1801
1802	spin_unlock_irqrestore(&chan->irqlock, flags);
1803
1804	empty_done_q(chan);
1805}
1806
1807static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1808{
1809	if (chan->in_eof_irq >= 0)
1810		free_irq(chan->in_eof_irq, chan);
1811	if (chan->rot_in_eof_irq >= 0)
1812		free_irq(chan->rot_in_eof_irq, chan);
1813	if (chan->out_eof_irq >= 0)
1814		free_irq(chan->out_eof_irq, chan);
1815	if (chan->rot_out_eof_irq >= 0)
1816		free_irq(chan->rot_out_eof_irq, chan);
1817
1818	if (!IS_ERR_OR_NULL(chan->in_chan))
1819		ipu_idmac_put(chan->in_chan);
1820	if (!IS_ERR_OR_NULL(chan->out_chan))
1821		ipu_idmac_put(chan->out_chan);
1822	if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1823		ipu_idmac_put(chan->rotation_in_chan);
1824	if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1825		ipu_idmac_put(chan->rotation_out_chan);
1826	if (!IS_ERR_OR_NULL(chan->ic))
1827		ipu_ic_put(chan->ic);
1828
1829	chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1830		chan->rotation_out_chan = NULL;
1831	chan->in_eof_irq = -1;
1832	chan->rot_in_eof_irq = -1;
1833	chan->out_eof_irq = -1;
1834	chan->rot_out_eof_irq = -1;
1835}
1836
1837static int get_eof_irq(struct ipu_image_convert_chan *chan,
1838		       struct ipuv3_channel *channel)
1839{
1840	struct ipu_image_convert_priv *priv = chan->priv;
1841	int ret, irq;
1842
1843	irq = ipu_idmac_channel_irq(priv->ipu, channel, IPU_IRQ_EOF);
1844
1845	ret = request_threaded_irq(irq, eof_irq, do_bh, 0, "ipu-ic", chan);
1846	if (ret < 0) {
1847		dev_err(priv->ipu->dev, "could not acquire irq %d\n", irq);
1848		return ret;
1849	}
1850
1851	return irq;
1852}
1853
1854static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1855{
1856	const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1857	struct ipu_image_convert_priv *priv = chan->priv;
1858	int ret;
1859
1860	/* get IC */
1861	chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1862	if (IS_ERR(chan->ic)) {
1863		dev_err(priv->ipu->dev, "could not acquire IC\n");
1864		ret = PTR_ERR(chan->ic);
1865		goto err;
1866	}
1867
1868	/* get IDMAC channels */
1869	chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1870	chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1871	if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1872		dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1873		ret = -EBUSY;
1874		goto err;
1875	}
1876
1877	chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1878	chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1879	if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1880		dev_err(priv->ipu->dev,
1881			"could not acquire idmac rotation channels\n");
1882		ret = -EBUSY;
1883		goto err;
1884	}
1885
1886	/* acquire the EOF interrupts */
1887	ret = get_eof_irq(chan, chan->in_chan);
1888	if (ret < 0) {
1889		chan->in_eof_irq = -1;
1890		goto err;
1891	}
1892	chan->in_eof_irq = ret;
1893
1894	ret = get_eof_irq(chan, chan->rotation_in_chan);
 
1895	if (ret < 0) {
1896		chan->rot_in_eof_irq = -1;
 
 
1897		goto err;
1898	}
1899	chan->rot_in_eof_irq = ret;
1900
1901	ret = get_eof_irq(chan, chan->out_chan);
1902	if (ret < 0) {
1903		chan->out_eof_irq = -1;
1904		goto err;
1905	}
1906	chan->out_eof_irq = ret;
1907
1908	ret = get_eof_irq(chan, chan->rotation_out_chan);
 
1909	if (ret < 0) {
 
 
1910		chan->rot_out_eof_irq = -1;
1911		goto err;
1912	}
1913	chan->rot_out_eof_irq = ret;
1914
1915	return 0;
1916err:
1917	release_ipu_resources(chan);
1918	return ret;
1919}
1920
1921static int fill_image(struct ipu_image_convert_ctx *ctx,
1922		      struct ipu_image_convert_image *ic_image,
1923		      struct ipu_image *image,
1924		      enum ipu_image_convert_type type)
1925{
1926	struct ipu_image_convert_priv *priv = ctx->chan->priv;
1927
1928	ic_image->base = *image;
1929	ic_image->type = type;
1930
1931	ic_image->fmt = get_format(image->pix.pixelformat);
1932	if (!ic_image->fmt) {
1933		dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1934			type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1935		return -EINVAL;
1936	}
1937
1938	if (ic_image->fmt->planar)
1939		ic_image->stride = ic_image->base.pix.width;
1940	else
1941		ic_image->stride  = ic_image->base.pix.bytesperline;
1942
1943	return 0;
1944}
1945
1946/* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1947static unsigned int clamp_align(unsigned int x, unsigned int min,
1948				unsigned int max, unsigned int align)
1949{
1950	/* Bits that must be zero to be aligned */
1951	unsigned int mask = ~((1 << align) - 1);
1952
1953	/* Clamp to aligned min and max */
1954	x = clamp(x, (min + ~mask) & mask, max & mask);
1955
1956	/* Round to nearest aligned value */
1957	if (align)
1958		x = (x + (1 << (align - 1))) & mask;
1959
1960	return x;
1961}
1962
1963/* Adjusts input/output images to IPU restrictions */
1964void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1965			      enum ipu_rotate_mode rot_mode)
1966{
1967	const struct ipu_image_pixfmt *infmt, *outfmt;
1968	u32 w_align_out, h_align_out;
1969	u32 w_align_in, h_align_in;
1970
1971	infmt = get_format(in->pix.pixelformat);
1972	outfmt = get_format(out->pix.pixelformat);
1973
1974	/* set some default pixel formats if needed */
1975	if (!infmt) {
1976		in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1977		infmt = get_format(V4L2_PIX_FMT_RGB24);
1978	}
1979	if (!outfmt) {
1980		out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1981		outfmt = get_format(V4L2_PIX_FMT_RGB24);
1982	}
1983
1984	/* image converter does not handle fields */
1985	in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1986
1987	/* resizer cannot downsize more than 4:1 */
1988	if (ipu_rot_mode_is_irt(rot_mode)) {
1989		out->pix.height = max_t(__u32, out->pix.height,
1990					in->pix.width / 4);
1991		out->pix.width = max_t(__u32, out->pix.width,
1992				       in->pix.height / 4);
1993	} else {
1994		out->pix.width = max_t(__u32, out->pix.width,
1995				       in->pix.width / 4);
1996		out->pix.height = max_t(__u32, out->pix.height,
1997					in->pix.height / 4);
1998	}
1999
2000	/* align input width/height */
2001	w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt,
2002					    rot_mode));
2003	h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt,
2004					     rot_mode));
2005	in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W,
2006				    w_align_in);
2007	in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H,
2008				     h_align_in);
2009
2010	/* align output width/height */
2011	w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt,
2012					     rot_mode));
2013	h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt,
2014					      rot_mode));
2015	out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W,
2016				     w_align_out);
2017	out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H,
2018				      h_align_out);
2019
2020	/* set input/output strides and image sizes */
2021	in->pix.bytesperline = infmt->planar ?
2022		clamp_align(in->pix.width, 2 << w_align_in, MAX_W,
2023			    w_align_in) :
2024		clamp_align((in->pix.width * infmt->bpp) >> 3,
2025			    ((2 << w_align_in) * infmt->bpp) >> 3,
2026			    (MAX_W * infmt->bpp) >> 3,
2027			    w_align_in);
2028	in->pix.sizeimage = infmt->planar ?
2029		(in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
2030		in->pix.height * in->pix.bytesperline;
2031	out->pix.bytesperline = outfmt->planar ? out->pix.width :
2032		(out->pix.width * outfmt->bpp) >> 3;
2033	out->pix.sizeimage = outfmt->planar ?
2034		(out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
2035		out->pix.height * out->pix.bytesperline;
2036}
2037EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
2038
2039/*
2040 * this is used by ipu_image_convert_prepare() to verify set input and
2041 * output images are valid before starting the conversion. Clients can
2042 * also call it before calling ipu_image_convert_prepare().
2043 */
2044int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
2045			     enum ipu_rotate_mode rot_mode)
2046{
2047	struct ipu_image testin, testout;
2048
2049	testin = *in;
2050	testout = *out;
2051
2052	ipu_image_convert_adjust(&testin, &testout, rot_mode);
2053
2054	if (testin.pix.width != in->pix.width ||
2055	    testin.pix.height != in->pix.height ||
2056	    testout.pix.width != out->pix.width ||
2057	    testout.pix.height != out->pix.height)
2058		return -EINVAL;
2059
2060	return 0;
2061}
2062EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
2063
2064/*
2065 * Call ipu_image_convert_prepare() to prepare for the conversion of
2066 * given images and rotation mode. Returns a new conversion context.
2067 */
2068struct ipu_image_convert_ctx *
2069ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2070			  struct ipu_image *in, struct ipu_image *out,
2071			  enum ipu_rotate_mode rot_mode,
2072			  ipu_image_convert_cb_t complete,
2073			  void *complete_context)
2074{
2075	struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
2076	struct ipu_image_convert_image *s_image, *d_image;
2077	struct ipu_image_convert_chan *chan;
2078	struct ipu_image_convert_ctx *ctx;
2079	unsigned long flags;
2080	unsigned int i;
2081	bool get_res;
2082	int ret;
2083
2084	if (!in || !out || !complete ||
2085	    (ic_task != IC_TASK_VIEWFINDER &&
2086	     ic_task != IC_TASK_POST_PROCESSOR))
2087		return ERR_PTR(-EINVAL);
2088
2089	/* verify the in/out images before continuing */
2090	ret = ipu_image_convert_verify(in, out, rot_mode);
2091	if (ret) {
2092		dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
2093			__func__);
2094		return ERR_PTR(ret);
2095	}
2096
2097	chan = &priv->chan[ic_task];
2098
2099	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2100	if (!ctx)
2101		return ERR_PTR(-ENOMEM);
2102
2103	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
2104		chan->ic_task, ctx);
2105
2106	ctx->chan = chan;
2107	init_completion(&ctx->aborted);
2108
2109	ctx->rot_mode = rot_mode;
2110
2111	/* Sets ctx->in.num_rows/cols as well */
2112	ret = calc_image_resize_coefficients(ctx, in, out);
2113	if (ret)
2114		goto out_free;
2115
2116	s_image = &ctx->in;
2117	d_image = &ctx->out;
2118
2119	/* set tiling and rotation */
2120	if (ipu_rot_mode_is_irt(rot_mode)) {
2121		d_image->num_rows = s_image->num_cols;
2122		d_image->num_cols = s_image->num_rows;
2123	} else {
2124		d_image->num_rows = s_image->num_rows;
2125		d_image->num_cols = s_image->num_cols;
2126	}
2127
2128	ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2129
2130	ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2131	if (ret)
2132		goto out_free;
2133	ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2134	if (ret)
2135		goto out_free;
2136
2137	calc_out_tile_map(ctx);
2138
2139	find_seams(ctx, s_image, d_image);
2140
2141	ret = calc_tile_dimensions(ctx, s_image);
2142	if (ret)
2143		goto out_free;
2144
2145	ret = calc_tile_offsets(ctx, s_image);
2146	if (ret)
2147		goto out_free;
2148
2149	calc_tile_dimensions(ctx, d_image);
2150	ret = calc_tile_offsets(ctx, d_image);
2151	if (ret)
2152		goto out_free;
2153
2154	calc_tile_resize_coefficients(ctx);
2155
2156	ret = ipu_ic_calc_csc(&ctx->csc,
2157			s_image->base.pix.ycbcr_enc,
2158			s_image->base.pix.quantization,
2159			ipu_pixelformat_to_colorspace(s_image->fmt->fourcc),
2160			d_image->base.pix.ycbcr_enc,
2161			d_image->base.pix.quantization,
2162			ipu_pixelformat_to_colorspace(d_image->fmt->fourcc));
2163	if (ret)
2164		goto out_free;
2165
2166	dump_format(ctx, s_image);
2167	dump_format(ctx, d_image);
2168
2169	ctx->complete = complete;
2170	ctx->complete_context = complete_context;
2171
2172	/*
2173	 * Can we use double-buffering for this operation? If there is
2174	 * only one tile (the whole image can be converted in a single
2175	 * operation) there's no point in using double-buffering. Also,
2176	 * the IPU's IDMAC channels allow only a single U and V plane
2177	 * offset shared between both buffers, but these offsets change
2178	 * for every tile, and therefore would have to be updated for
2179	 * each buffer which is not possible. So double-buffering is
2180	 * impossible when either the source or destination images are
2181	 * a planar format (YUV420, YUV422P, etc.). Further, differently
2182	 * sized tiles or different resizing coefficients per tile
2183	 * prevent double-buffering as well.
2184	 */
2185	ctx->double_buffering = (ctx->num_tiles > 1 &&
2186				 !s_image->fmt->planar &&
2187				 !d_image->fmt->planar);
2188	for (i = 1; i < ctx->num_tiles; i++) {
2189		if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
2190		    ctx->in.tile[i].height != ctx->in.tile[0].height ||
2191		    ctx->out.tile[i].width != ctx->out.tile[0].width ||
2192		    ctx->out.tile[i].height != ctx->out.tile[0].height) {
2193			ctx->double_buffering = false;
2194			break;
2195		}
2196	}
2197	for (i = 1; i < ctx->in.num_cols; i++) {
2198		if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
2199			ctx->double_buffering = false;
2200			break;
2201		}
2202	}
2203	for (i = 1; i < ctx->in.num_rows; i++) {
2204		if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
2205			ctx->double_buffering = false;
2206			break;
2207		}
2208	}
2209
2210	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2211		unsigned long intermediate_size = d_image->tile[0].size;
2212
2213		for (i = 1; i < ctx->num_tiles; i++) {
2214			if (d_image->tile[i].size > intermediate_size)
2215				intermediate_size = d_image->tile[i].size;
2216		}
2217
2218		ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2219				    intermediate_size);
2220		if (ret)
2221			goto out_free;
2222		if (ctx->double_buffering) {
2223			ret = alloc_dma_buf(priv,
2224					    &ctx->rot_intermediate[1],
2225					    intermediate_size);
2226			if (ret)
2227				goto out_free_dmabuf0;
2228		}
2229	}
2230
2231	spin_lock_irqsave(&chan->irqlock, flags);
2232
2233	get_res = list_empty(&chan->ctx_list);
2234
2235	list_add_tail(&ctx->list, &chan->ctx_list);
2236
2237	spin_unlock_irqrestore(&chan->irqlock, flags);
2238
2239	if (get_res) {
2240		ret = get_ipu_resources(chan);
2241		if (ret)
2242			goto out_free_dmabuf1;
2243	}
2244
2245	return ctx;
2246
2247out_free_dmabuf1:
2248	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2249	spin_lock_irqsave(&chan->irqlock, flags);
2250	list_del(&ctx->list);
2251	spin_unlock_irqrestore(&chan->irqlock, flags);
2252out_free_dmabuf0:
2253	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2254out_free:
2255	kfree(ctx);
2256	return ERR_PTR(ret);
2257}
2258EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2259
2260/*
2261 * Carry out a single image conversion run. Only the physaddr's of the input
2262 * and output image buffers are needed. The conversion context must have
2263 * been created previously with ipu_image_convert_prepare().
2264 */
2265int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2266{
2267	struct ipu_image_convert_chan *chan;
2268	struct ipu_image_convert_priv *priv;
2269	struct ipu_image_convert_ctx *ctx;
2270	unsigned long flags;
2271	int ret = 0;
2272
2273	if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2274		return -EINVAL;
2275
2276	ctx = run->ctx;
2277	chan = ctx->chan;
2278	priv = chan->priv;
2279
2280	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2281		chan->ic_task, ctx, run);
2282
2283	INIT_LIST_HEAD(&run->list);
2284
2285	spin_lock_irqsave(&chan->irqlock, flags);
2286
2287	if (ctx->aborting) {
2288		ret = -EIO;
2289		goto unlock;
2290	}
2291
2292	list_add_tail(&run->list, &chan->pending_q);
2293
2294	if (!chan->current_run) {
2295		ret = do_run(run);
2296		if (ret)
2297			chan->current_run = NULL;
2298	}
2299unlock:
2300	spin_unlock_irqrestore(&chan->irqlock, flags);
2301	return ret;
2302}
2303EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2304
2305/* Abort any active or pending conversions for this context */
2306static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2307{
2308	struct ipu_image_convert_chan *chan = ctx->chan;
2309	struct ipu_image_convert_priv *priv = chan->priv;
2310	struct ipu_image_convert_run *run, *active_run, *tmp;
2311	unsigned long flags;
2312	int run_count, ret;
2313
2314	spin_lock_irqsave(&chan->irqlock, flags);
2315
2316	/* move all remaining pending runs in this context to done_q */
2317	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2318		if (run->ctx != ctx)
2319			continue;
2320		run->status = -EIO;
2321		list_move_tail(&run->list, &chan->done_q);
2322	}
2323
2324	run_count = get_run_count(ctx, &chan->done_q);
2325	active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2326		chan->current_run : NULL;
2327
2328	if (active_run)
2329		reinit_completion(&ctx->aborted);
2330
2331	ctx->aborting = true;
2332
2333	spin_unlock_irqrestore(&chan->irqlock, flags);
2334
2335	if (!run_count && !active_run) {
2336		dev_dbg(priv->ipu->dev,
2337			"%s: task %u: no abort needed for ctx %p\n",
2338			__func__, chan->ic_task, ctx);
2339		return;
2340	}
2341
2342	if (!active_run) {
2343		empty_done_q(chan);
2344		return;
2345	}
2346
2347	dev_dbg(priv->ipu->dev,
2348		"%s: task %u: wait for completion: %d runs\n",
2349		__func__, chan->ic_task, run_count);
2350
2351	ret = wait_for_completion_timeout(&ctx->aborted,
2352					  msecs_to_jiffies(10000));
2353	if (ret == 0) {
2354		dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2355		force_abort(ctx);
2356	}
2357}
2358
2359void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2360{
2361	__ipu_image_convert_abort(ctx);
2362	ctx->aborting = false;
2363}
2364EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2365
2366/* Unprepare image conversion context */
2367void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2368{
2369	struct ipu_image_convert_chan *chan = ctx->chan;
2370	struct ipu_image_convert_priv *priv = chan->priv;
2371	unsigned long flags;
2372	bool put_res;
2373
2374	/* make sure no runs are hanging around */
2375	__ipu_image_convert_abort(ctx);
2376
2377	dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2378		chan->ic_task, ctx);
2379
2380	spin_lock_irqsave(&chan->irqlock, flags);
2381
2382	list_del(&ctx->list);
2383
2384	put_res = list_empty(&chan->ctx_list);
2385
2386	spin_unlock_irqrestore(&chan->irqlock, flags);
2387
2388	if (put_res)
2389		release_ipu_resources(chan);
2390
2391	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2392	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2393
2394	kfree(ctx);
2395}
2396EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2397
2398/*
2399 * "Canned" asynchronous single image conversion. Allocates and returns
2400 * a new conversion run.  On successful return the caller must free the
2401 * run and call ipu_image_convert_unprepare() after conversion completes.
2402 */
2403struct ipu_image_convert_run *
2404ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2405		  struct ipu_image *in, struct ipu_image *out,
2406		  enum ipu_rotate_mode rot_mode,
2407		  ipu_image_convert_cb_t complete,
2408		  void *complete_context)
2409{
2410	struct ipu_image_convert_ctx *ctx;
2411	struct ipu_image_convert_run *run;
2412	int ret;
2413
2414	ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2415					complete, complete_context);
2416	if (IS_ERR(ctx))
2417		return ERR_CAST(ctx);
2418
2419	run = kzalloc(sizeof(*run), GFP_KERNEL);
2420	if (!run) {
2421		ipu_image_convert_unprepare(ctx);
2422		return ERR_PTR(-ENOMEM);
2423	}
2424
2425	run->ctx = ctx;
2426	run->in_phys = in->phys0;
2427	run->out_phys = out->phys0;
2428
2429	ret = ipu_image_convert_queue(run);
2430	if (ret) {
2431		ipu_image_convert_unprepare(ctx);
2432		kfree(run);
2433		return ERR_PTR(ret);
2434	}
2435
2436	return run;
2437}
2438EXPORT_SYMBOL_GPL(ipu_image_convert);
2439
2440/* "Canned" synchronous single image conversion */
2441static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2442					void *data)
2443{
2444	struct completion *comp = data;
2445
2446	complete(comp);
2447}
2448
2449int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2450			   struct ipu_image *in, struct ipu_image *out,
2451			   enum ipu_rotate_mode rot_mode)
2452{
2453	struct ipu_image_convert_run *run;
2454	struct completion comp;
2455	int ret;
2456
2457	init_completion(&comp);
2458
2459	run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2460				image_convert_sync_complete, &comp);
2461	if (IS_ERR(run))
2462		return PTR_ERR(run);
2463
2464	ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2465	ret = (ret == 0) ? -ETIMEDOUT : 0;
2466
2467	ipu_image_convert_unprepare(run->ctx);
2468	kfree(run);
2469
2470	return ret;
2471}
2472EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2473
2474int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2475{
2476	struct ipu_image_convert_priv *priv;
2477	int i;
2478
2479	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2480	if (!priv)
2481		return -ENOMEM;
2482
2483	ipu->image_convert_priv = priv;
2484	priv->ipu = ipu;
2485
2486	for (i = 0; i < IC_NUM_TASKS; i++) {
2487		struct ipu_image_convert_chan *chan = &priv->chan[i];
2488
2489		chan->ic_task = i;
2490		chan->priv = priv;
2491		chan->dma_ch = &image_convert_dma_chan[i];
2492		chan->in_eof_irq = -1;
2493		chan->rot_in_eof_irq = -1;
2494		chan->out_eof_irq = -1;
2495		chan->rot_out_eof_irq = -1;
2496
2497		spin_lock_init(&chan->irqlock);
2498		INIT_LIST_HEAD(&chan->ctx_list);
2499		INIT_LIST_HEAD(&chan->pending_q);
2500		INIT_LIST_HEAD(&chan->done_q);
2501	}
2502
2503	return 0;
2504}
2505
2506void ipu_image_convert_exit(struct ipu_soc *ipu)
2507{
2508}