Loading...
1/*
2 * Copyright © 2014 Broadcom
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include <linux/module.h>
25#include <linux/platform_device.h>
26#include <linux/pm_runtime.h>
27#include <linux/device.h>
28#include <linux/io.h>
29#include <linux/sched/signal.h>
30#include <linux/dma-fence-array.h>
31
32#include <drm/drm_syncobj.h>
33
34#include "uapi/drm/vc4_drm.h"
35#include "vc4_drv.h"
36#include "vc4_regs.h"
37#include "vc4_trace.h"
38
39static void
40vc4_queue_hangcheck(struct drm_device *dev)
41{
42 struct vc4_dev *vc4 = to_vc4_dev(dev);
43
44 mod_timer(&vc4->hangcheck.timer,
45 round_jiffies_up(jiffies + msecs_to_jiffies(100)));
46}
47
48struct vc4_hang_state {
49 struct drm_vc4_get_hang_state user_state;
50
51 u32 bo_count;
52 struct drm_gem_object **bo;
53};
54
55static void
56vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state)
57{
58 unsigned int i;
59
60 for (i = 0; i < state->user_state.bo_count; i++)
61 drm_gem_object_put_unlocked(state->bo[i]);
62
63 kfree(state);
64}
65
66int
67vc4_get_hang_state_ioctl(struct drm_device *dev, void *data,
68 struct drm_file *file_priv)
69{
70 struct drm_vc4_get_hang_state *get_state = data;
71 struct drm_vc4_get_hang_state_bo *bo_state;
72 struct vc4_hang_state *kernel_state;
73 struct drm_vc4_get_hang_state *state;
74 struct vc4_dev *vc4 = to_vc4_dev(dev);
75 unsigned long irqflags;
76 u32 i;
77 int ret = 0;
78
79 if (!vc4->v3d) {
80 DRM_DEBUG("VC4_GET_HANG_STATE with no VC4 V3D probed\n");
81 return -ENODEV;
82 }
83
84 spin_lock_irqsave(&vc4->job_lock, irqflags);
85 kernel_state = vc4->hang_state;
86 if (!kernel_state) {
87 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
88 return -ENOENT;
89 }
90 state = &kernel_state->user_state;
91
92 /* If the user's array isn't big enough, just return the
93 * required array size.
94 */
95 if (get_state->bo_count < state->bo_count) {
96 get_state->bo_count = state->bo_count;
97 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
98 return 0;
99 }
100
101 vc4->hang_state = NULL;
102 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
103
104 /* Save the user's BO pointer, so we don't stomp it with the memcpy. */
105 state->bo = get_state->bo;
106 memcpy(get_state, state, sizeof(*state));
107
108 bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL);
109 if (!bo_state) {
110 ret = -ENOMEM;
111 goto err_free;
112 }
113
114 for (i = 0; i < state->bo_count; i++) {
115 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]);
116 u32 handle;
117
118 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i],
119 &handle);
120
121 if (ret) {
122 state->bo_count = i;
123 goto err_delete_handle;
124 }
125 bo_state[i].handle = handle;
126 bo_state[i].paddr = vc4_bo->base.paddr;
127 bo_state[i].size = vc4_bo->base.base.size;
128 }
129
130 if (copy_to_user(u64_to_user_ptr(get_state->bo),
131 bo_state,
132 state->bo_count * sizeof(*bo_state)))
133 ret = -EFAULT;
134
135err_delete_handle:
136 if (ret) {
137 for (i = 0; i < state->bo_count; i++)
138 drm_gem_handle_delete(file_priv, bo_state[i].handle);
139 }
140
141err_free:
142 vc4_free_hang_state(dev, kernel_state);
143 kfree(bo_state);
144
145 return ret;
146}
147
148static void
149vc4_save_hang_state(struct drm_device *dev)
150{
151 struct vc4_dev *vc4 = to_vc4_dev(dev);
152 struct drm_vc4_get_hang_state *state;
153 struct vc4_hang_state *kernel_state;
154 struct vc4_exec_info *exec[2];
155 struct vc4_bo *bo;
156 unsigned long irqflags;
157 unsigned int i, j, k, unref_list_count;
158
159 kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL);
160 if (!kernel_state)
161 return;
162
163 state = &kernel_state->user_state;
164
165 spin_lock_irqsave(&vc4->job_lock, irqflags);
166 exec[0] = vc4_first_bin_job(vc4);
167 exec[1] = vc4_first_render_job(vc4);
168 if (!exec[0] && !exec[1]) {
169 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
170 return;
171 }
172
173 /* Get the bos from both binner and renderer into hang state. */
174 state->bo_count = 0;
175 for (i = 0; i < 2; i++) {
176 if (!exec[i])
177 continue;
178
179 unref_list_count = 0;
180 list_for_each_entry(bo, &exec[i]->unref_list, unref_head)
181 unref_list_count++;
182 state->bo_count += exec[i]->bo_count + unref_list_count;
183 }
184
185 kernel_state->bo = kcalloc(state->bo_count,
186 sizeof(*kernel_state->bo), GFP_ATOMIC);
187
188 if (!kernel_state->bo) {
189 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
190 return;
191 }
192
193 k = 0;
194 for (i = 0; i < 2; i++) {
195 if (!exec[i])
196 continue;
197
198 for (j = 0; j < exec[i]->bo_count; j++) {
199 bo = to_vc4_bo(&exec[i]->bo[j]->base);
200
201 /* Retain BOs just in case they were marked purgeable.
202 * This prevents the BO from being purged before
203 * someone had a chance to dump the hang state.
204 */
205 WARN_ON(!refcount_read(&bo->usecnt));
206 refcount_inc(&bo->usecnt);
207 drm_gem_object_get(&exec[i]->bo[j]->base);
208 kernel_state->bo[k++] = &exec[i]->bo[j]->base;
209 }
210
211 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) {
212 /* No need to retain BOs coming from the ->unref_list
213 * because they are naturally unpurgeable.
214 */
215 drm_gem_object_get(&bo->base.base);
216 kernel_state->bo[k++] = &bo->base.base;
217 }
218 }
219
220 WARN_ON_ONCE(k != state->bo_count);
221
222 if (exec[0])
223 state->start_bin = exec[0]->ct0ca;
224 if (exec[1])
225 state->start_render = exec[1]->ct1ca;
226
227 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
228
229 state->ct0ca = V3D_READ(V3D_CTNCA(0));
230 state->ct0ea = V3D_READ(V3D_CTNEA(0));
231
232 state->ct1ca = V3D_READ(V3D_CTNCA(1));
233 state->ct1ea = V3D_READ(V3D_CTNEA(1));
234
235 state->ct0cs = V3D_READ(V3D_CTNCS(0));
236 state->ct1cs = V3D_READ(V3D_CTNCS(1));
237
238 state->ct0ra0 = V3D_READ(V3D_CT00RA0);
239 state->ct1ra0 = V3D_READ(V3D_CT01RA0);
240
241 state->bpca = V3D_READ(V3D_BPCA);
242 state->bpcs = V3D_READ(V3D_BPCS);
243 state->bpoa = V3D_READ(V3D_BPOA);
244 state->bpos = V3D_READ(V3D_BPOS);
245
246 state->vpmbase = V3D_READ(V3D_VPMBASE);
247
248 state->dbge = V3D_READ(V3D_DBGE);
249 state->fdbgo = V3D_READ(V3D_FDBGO);
250 state->fdbgb = V3D_READ(V3D_FDBGB);
251 state->fdbgr = V3D_READ(V3D_FDBGR);
252 state->fdbgs = V3D_READ(V3D_FDBGS);
253 state->errstat = V3D_READ(V3D_ERRSTAT);
254
255 /* We need to turn purgeable BOs into unpurgeable ones so that
256 * userspace has a chance to dump the hang state before the kernel
257 * decides to purge those BOs.
258 * Note that BO consistency at dump time cannot be guaranteed. For
259 * example, if the owner of these BOs decides to re-use them or mark
260 * them purgeable again there's nothing we can do to prevent it.
261 */
262 for (i = 0; i < kernel_state->user_state.bo_count; i++) {
263 struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]);
264
265 if (bo->madv == __VC4_MADV_NOTSUPP)
266 continue;
267
268 mutex_lock(&bo->madv_lock);
269 if (!WARN_ON(bo->madv == __VC4_MADV_PURGED))
270 bo->madv = VC4_MADV_WILLNEED;
271 refcount_dec(&bo->usecnt);
272 mutex_unlock(&bo->madv_lock);
273 }
274
275 spin_lock_irqsave(&vc4->job_lock, irqflags);
276 if (vc4->hang_state) {
277 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
278 vc4_free_hang_state(dev, kernel_state);
279 } else {
280 vc4->hang_state = kernel_state;
281 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
282 }
283}
284
285static void
286vc4_reset(struct drm_device *dev)
287{
288 struct vc4_dev *vc4 = to_vc4_dev(dev);
289
290 DRM_INFO("Resetting GPU.\n");
291
292 mutex_lock(&vc4->power_lock);
293 if (vc4->power_refcount) {
294 /* Power the device off and back on the by dropping the
295 * reference on runtime PM.
296 */
297 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev);
298 pm_runtime_get_sync(&vc4->v3d->pdev->dev);
299 }
300 mutex_unlock(&vc4->power_lock);
301
302 vc4_irq_reset(dev);
303
304 /* Rearm the hangcheck -- another job might have been waiting
305 * for our hung one to get kicked off, and vc4_irq_reset()
306 * would have started it.
307 */
308 vc4_queue_hangcheck(dev);
309}
310
311static void
312vc4_reset_work(struct work_struct *work)
313{
314 struct vc4_dev *vc4 =
315 container_of(work, struct vc4_dev, hangcheck.reset_work);
316
317 vc4_save_hang_state(vc4->dev);
318
319 vc4_reset(vc4->dev);
320}
321
322static void
323vc4_hangcheck_elapsed(struct timer_list *t)
324{
325 struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer);
326 struct drm_device *dev = vc4->dev;
327 uint32_t ct0ca, ct1ca;
328 unsigned long irqflags;
329 struct vc4_exec_info *bin_exec, *render_exec;
330
331 spin_lock_irqsave(&vc4->job_lock, irqflags);
332
333 bin_exec = vc4_first_bin_job(vc4);
334 render_exec = vc4_first_render_job(vc4);
335
336 /* If idle, we can stop watching for hangs. */
337 if (!bin_exec && !render_exec) {
338 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
339 return;
340 }
341
342 ct0ca = V3D_READ(V3D_CTNCA(0));
343 ct1ca = V3D_READ(V3D_CTNCA(1));
344
345 /* If we've made any progress in execution, rearm the timer
346 * and wait.
347 */
348 if ((bin_exec && ct0ca != bin_exec->last_ct0ca) ||
349 (render_exec && ct1ca != render_exec->last_ct1ca)) {
350 if (bin_exec)
351 bin_exec->last_ct0ca = ct0ca;
352 if (render_exec)
353 render_exec->last_ct1ca = ct1ca;
354 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
355 vc4_queue_hangcheck(dev);
356 return;
357 }
358
359 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
360
361 /* We've gone too long with no progress, reset. This has to
362 * be done from a work struct, since resetting can sleep and
363 * this timer hook isn't allowed to.
364 */
365 schedule_work(&vc4->hangcheck.reset_work);
366}
367
368static void
369submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end)
370{
371 struct vc4_dev *vc4 = to_vc4_dev(dev);
372
373 /* Set the current and end address of the control list.
374 * Writing the end register is what starts the job.
375 */
376 V3D_WRITE(V3D_CTNCA(thread), start);
377 V3D_WRITE(V3D_CTNEA(thread), end);
378}
379
380int
381vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns,
382 bool interruptible)
383{
384 struct vc4_dev *vc4 = to_vc4_dev(dev);
385 int ret = 0;
386 unsigned long timeout_expire;
387 DEFINE_WAIT(wait);
388
389 if (vc4->finished_seqno >= seqno)
390 return 0;
391
392 if (timeout_ns == 0)
393 return -ETIME;
394
395 timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns);
396
397 trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns);
398 for (;;) {
399 prepare_to_wait(&vc4->job_wait_queue, &wait,
400 interruptible ? TASK_INTERRUPTIBLE :
401 TASK_UNINTERRUPTIBLE);
402
403 if (interruptible && signal_pending(current)) {
404 ret = -ERESTARTSYS;
405 break;
406 }
407
408 if (vc4->finished_seqno >= seqno)
409 break;
410
411 if (timeout_ns != ~0ull) {
412 if (time_after_eq(jiffies, timeout_expire)) {
413 ret = -ETIME;
414 break;
415 }
416 schedule_timeout(timeout_expire - jiffies);
417 } else {
418 schedule();
419 }
420 }
421
422 finish_wait(&vc4->job_wait_queue, &wait);
423 trace_vc4_wait_for_seqno_end(dev, seqno);
424
425 return ret;
426}
427
428static void
429vc4_flush_caches(struct drm_device *dev)
430{
431 struct vc4_dev *vc4 = to_vc4_dev(dev);
432
433 /* Flush the GPU L2 caches. These caches sit on top of system
434 * L3 (the 128kb or so shared with the CPU), and are
435 * non-allocating in the L3.
436 */
437 V3D_WRITE(V3D_L2CACTL,
438 V3D_L2CACTL_L2CCLR);
439
440 V3D_WRITE(V3D_SLCACTL,
441 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
442 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) |
443 VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) |
444 VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC));
445}
446
447static void
448vc4_flush_texture_caches(struct drm_device *dev)
449{
450 struct vc4_dev *vc4 = to_vc4_dev(dev);
451
452 V3D_WRITE(V3D_L2CACTL,
453 V3D_L2CACTL_L2CCLR);
454
455 V3D_WRITE(V3D_SLCACTL,
456 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
457 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC));
458}
459
460/* Sets the registers for the next job to be actually be executed in
461 * the hardware.
462 *
463 * The job_lock should be held during this.
464 */
465void
466vc4_submit_next_bin_job(struct drm_device *dev)
467{
468 struct vc4_dev *vc4 = to_vc4_dev(dev);
469 struct vc4_exec_info *exec;
470
471again:
472 exec = vc4_first_bin_job(vc4);
473 if (!exec)
474 return;
475
476 vc4_flush_caches(dev);
477
478 /* Only start the perfmon if it was not already started by a previous
479 * job.
480 */
481 if (exec->perfmon && vc4->active_perfmon != exec->perfmon)
482 vc4_perfmon_start(vc4, exec->perfmon);
483
484 /* Either put the job in the binner if it uses the binner, or
485 * immediately move it to the to-be-rendered queue.
486 */
487 if (exec->ct0ca != exec->ct0ea) {
488 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea);
489 } else {
490 struct vc4_exec_info *next;
491
492 vc4_move_job_to_render(dev, exec);
493 next = vc4_first_bin_job(vc4);
494
495 /* We can't start the next bin job if the previous job had a
496 * different perfmon instance attached to it. The same goes
497 * if one of them had a perfmon attached to it and the other
498 * one doesn't.
499 */
500 if (next && next->perfmon == exec->perfmon)
501 goto again;
502 }
503}
504
505void
506vc4_submit_next_render_job(struct drm_device *dev)
507{
508 struct vc4_dev *vc4 = to_vc4_dev(dev);
509 struct vc4_exec_info *exec = vc4_first_render_job(vc4);
510
511 if (!exec)
512 return;
513
514 /* A previous RCL may have written to one of our textures, and
515 * our full cache flush at bin time may have occurred before
516 * that RCL completed. Flush the texture cache now, but not
517 * the instructions or uniforms (since we don't write those
518 * from an RCL).
519 */
520 vc4_flush_texture_caches(dev);
521
522 submit_cl(dev, 1, exec->ct1ca, exec->ct1ea);
523}
524
525void
526vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec)
527{
528 struct vc4_dev *vc4 = to_vc4_dev(dev);
529 bool was_empty = list_empty(&vc4->render_job_list);
530
531 list_move_tail(&exec->head, &vc4->render_job_list);
532 if (was_empty)
533 vc4_submit_next_render_job(dev);
534}
535
536static void
537vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno)
538{
539 struct vc4_bo *bo;
540 unsigned i;
541
542 for (i = 0; i < exec->bo_count; i++) {
543 bo = to_vc4_bo(&exec->bo[i]->base);
544 bo->seqno = seqno;
545
546 dma_resv_add_shared_fence(bo->base.base.resv, exec->fence);
547 }
548
549 list_for_each_entry(bo, &exec->unref_list, unref_head) {
550 bo->seqno = seqno;
551 }
552
553 for (i = 0; i < exec->rcl_write_bo_count; i++) {
554 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base);
555 bo->write_seqno = seqno;
556
557 dma_resv_add_excl_fence(bo->base.base.resv, exec->fence);
558 }
559}
560
561static void
562vc4_unlock_bo_reservations(struct drm_device *dev,
563 struct vc4_exec_info *exec,
564 struct ww_acquire_ctx *acquire_ctx)
565{
566 int i;
567
568 for (i = 0; i < exec->bo_count; i++) {
569 struct drm_gem_object *bo = &exec->bo[i]->base;
570
571 ww_mutex_unlock(&bo->resv->lock);
572 }
573
574 ww_acquire_fini(acquire_ctx);
575}
576
577/* Takes the reservation lock on all the BOs being referenced, so that
578 * at queue submit time we can update the reservations.
579 *
580 * We don't lock the RCL the tile alloc/state BOs, or overflow memory
581 * (all of which are on exec->unref_list). They're entirely private
582 * to vc4, so we don't attach dma-buf fences to them.
583 */
584static int
585vc4_lock_bo_reservations(struct drm_device *dev,
586 struct vc4_exec_info *exec,
587 struct ww_acquire_ctx *acquire_ctx)
588{
589 int contended_lock = -1;
590 int i, ret;
591 struct drm_gem_object *bo;
592
593 ww_acquire_init(acquire_ctx, &reservation_ww_class);
594
595retry:
596 if (contended_lock != -1) {
597 bo = &exec->bo[contended_lock]->base;
598 ret = ww_mutex_lock_slow_interruptible(&bo->resv->lock,
599 acquire_ctx);
600 if (ret) {
601 ww_acquire_done(acquire_ctx);
602 return ret;
603 }
604 }
605
606 for (i = 0; i < exec->bo_count; i++) {
607 if (i == contended_lock)
608 continue;
609
610 bo = &exec->bo[i]->base;
611
612 ret = ww_mutex_lock_interruptible(&bo->resv->lock, acquire_ctx);
613 if (ret) {
614 int j;
615
616 for (j = 0; j < i; j++) {
617 bo = &exec->bo[j]->base;
618 ww_mutex_unlock(&bo->resv->lock);
619 }
620
621 if (contended_lock != -1 && contended_lock >= i) {
622 bo = &exec->bo[contended_lock]->base;
623
624 ww_mutex_unlock(&bo->resv->lock);
625 }
626
627 if (ret == -EDEADLK) {
628 contended_lock = i;
629 goto retry;
630 }
631
632 ww_acquire_done(acquire_ctx);
633 return ret;
634 }
635 }
636
637 ww_acquire_done(acquire_ctx);
638
639 /* Reserve space for our shared (read-only) fence references,
640 * before we commit the CL to the hardware.
641 */
642 for (i = 0; i < exec->bo_count; i++) {
643 bo = &exec->bo[i]->base;
644
645 ret = dma_resv_reserve_shared(bo->resv, 1);
646 if (ret) {
647 vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
648 return ret;
649 }
650 }
651
652 return 0;
653}
654
655/* Queues a struct vc4_exec_info for execution. If no job is
656 * currently executing, then submits it.
657 *
658 * Unlike most GPUs, our hardware only handles one command list at a
659 * time. To queue multiple jobs at once, we'd need to edit the
660 * previous command list to have a jump to the new one at the end, and
661 * then bump the end address. That's a change for a later date,
662 * though.
663 */
664static int
665vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec,
666 struct ww_acquire_ctx *acquire_ctx,
667 struct drm_syncobj *out_sync)
668{
669 struct vc4_dev *vc4 = to_vc4_dev(dev);
670 struct vc4_exec_info *renderjob;
671 uint64_t seqno;
672 unsigned long irqflags;
673 struct vc4_fence *fence;
674
675 fence = kzalloc(sizeof(*fence), GFP_KERNEL);
676 if (!fence)
677 return -ENOMEM;
678 fence->dev = dev;
679
680 spin_lock_irqsave(&vc4->job_lock, irqflags);
681
682 seqno = ++vc4->emit_seqno;
683 exec->seqno = seqno;
684
685 dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock,
686 vc4->dma_fence_context, exec->seqno);
687 fence->seqno = exec->seqno;
688 exec->fence = &fence->base;
689
690 if (out_sync)
691 drm_syncobj_replace_fence(out_sync, exec->fence);
692
693 vc4_update_bo_seqnos(exec, seqno);
694
695 vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
696
697 list_add_tail(&exec->head, &vc4->bin_job_list);
698
699 /* If no bin job was executing and if the render job (if any) has the
700 * same perfmon as our job attached to it (or if both jobs don't have
701 * perfmon activated), then kick ours off. Otherwise, it'll get
702 * started when the previous job's flush/render done interrupt occurs.
703 */
704 renderjob = vc4_first_render_job(vc4);
705 if (vc4_first_bin_job(vc4) == exec &&
706 (!renderjob || renderjob->perfmon == exec->perfmon)) {
707 vc4_submit_next_bin_job(dev);
708 vc4_queue_hangcheck(dev);
709 }
710
711 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
712
713 return 0;
714}
715
716/**
717 * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects
718 * referenced by the job.
719 * @dev: DRM device
720 * @file_priv: DRM file for this fd
721 * @exec: V3D job being set up
722 *
723 * The command validator needs to reference BOs by their index within
724 * the submitted job's BO list. This does the validation of the job's
725 * BO list and reference counting for the lifetime of the job.
726 */
727static int
728vc4_cl_lookup_bos(struct drm_device *dev,
729 struct drm_file *file_priv,
730 struct vc4_exec_info *exec)
731{
732 struct drm_vc4_submit_cl *args = exec->args;
733 uint32_t *handles;
734 int ret = 0;
735 int i;
736
737 exec->bo_count = args->bo_handle_count;
738
739 if (!exec->bo_count) {
740 /* See comment on bo_index for why we have to check
741 * this.
742 */
743 DRM_DEBUG("Rendering requires BOs to validate\n");
744 return -EINVAL;
745 }
746
747 exec->bo = kvmalloc_array(exec->bo_count,
748 sizeof(struct drm_gem_cma_object *),
749 GFP_KERNEL | __GFP_ZERO);
750 if (!exec->bo) {
751 DRM_ERROR("Failed to allocate validated BO pointers\n");
752 return -ENOMEM;
753 }
754
755 handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL);
756 if (!handles) {
757 ret = -ENOMEM;
758 DRM_ERROR("Failed to allocate incoming GEM handles\n");
759 goto fail;
760 }
761
762 if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles),
763 exec->bo_count * sizeof(uint32_t))) {
764 ret = -EFAULT;
765 DRM_ERROR("Failed to copy in GEM handles\n");
766 goto fail;
767 }
768
769 spin_lock(&file_priv->table_lock);
770 for (i = 0; i < exec->bo_count; i++) {
771 struct drm_gem_object *bo = idr_find(&file_priv->object_idr,
772 handles[i]);
773 if (!bo) {
774 DRM_DEBUG("Failed to look up GEM BO %d: %d\n",
775 i, handles[i]);
776 ret = -EINVAL;
777 break;
778 }
779
780 drm_gem_object_get(bo);
781 exec->bo[i] = (struct drm_gem_cma_object *)bo;
782 }
783 spin_unlock(&file_priv->table_lock);
784
785 if (ret)
786 goto fail_put_bo;
787
788 for (i = 0; i < exec->bo_count; i++) {
789 ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base));
790 if (ret)
791 goto fail_dec_usecnt;
792 }
793
794 kvfree(handles);
795 return 0;
796
797fail_dec_usecnt:
798 /* Decrease usecnt on acquired objects.
799 * We cannot rely on vc4_complete_exec() to release resources here,
800 * because vc4_complete_exec() has no information about which BO has
801 * had its ->usecnt incremented.
802 * To make things easier we just free everything explicitly and set
803 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release'
804 * step.
805 */
806 for (i-- ; i >= 0; i--)
807 vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base));
808
809fail_put_bo:
810 /* Release any reference to acquired objects. */
811 for (i = 0; i < exec->bo_count && exec->bo[i]; i++)
812 drm_gem_object_put_unlocked(&exec->bo[i]->base);
813
814fail:
815 kvfree(handles);
816 kvfree(exec->bo);
817 exec->bo = NULL;
818 return ret;
819}
820
821static int
822vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec)
823{
824 struct drm_vc4_submit_cl *args = exec->args;
825 struct vc4_dev *vc4 = to_vc4_dev(dev);
826 void *temp = NULL;
827 void *bin;
828 int ret = 0;
829 uint32_t bin_offset = 0;
830 uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size,
831 16);
832 uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size;
833 uint32_t exec_size = uniforms_offset + args->uniforms_size;
834 uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) *
835 args->shader_rec_count);
836 struct vc4_bo *bo;
837
838 if (shader_rec_offset < args->bin_cl_size ||
839 uniforms_offset < shader_rec_offset ||
840 exec_size < uniforms_offset ||
841 args->shader_rec_count >= (UINT_MAX /
842 sizeof(struct vc4_shader_state)) ||
843 temp_size < exec_size) {
844 DRM_DEBUG("overflow in exec arguments\n");
845 ret = -EINVAL;
846 goto fail;
847 }
848
849 /* Allocate space where we'll store the copied in user command lists
850 * and shader records.
851 *
852 * We don't just copy directly into the BOs because we need to
853 * read the contents back for validation, and I think the
854 * bo->vaddr is uncached access.
855 */
856 temp = kvmalloc_array(temp_size, 1, GFP_KERNEL);
857 if (!temp) {
858 DRM_ERROR("Failed to allocate storage for copying "
859 "in bin/render CLs.\n");
860 ret = -ENOMEM;
861 goto fail;
862 }
863 bin = temp + bin_offset;
864 exec->shader_rec_u = temp + shader_rec_offset;
865 exec->uniforms_u = temp + uniforms_offset;
866 exec->shader_state = temp + exec_size;
867 exec->shader_state_size = args->shader_rec_count;
868
869 if (copy_from_user(bin,
870 u64_to_user_ptr(args->bin_cl),
871 args->bin_cl_size)) {
872 ret = -EFAULT;
873 goto fail;
874 }
875
876 if (copy_from_user(exec->shader_rec_u,
877 u64_to_user_ptr(args->shader_rec),
878 args->shader_rec_size)) {
879 ret = -EFAULT;
880 goto fail;
881 }
882
883 if (copy_from_user(exec->uniforms_u,
884 u64_to_user_ptr(args->uniforms),
885 args->uniforms_size)) {
886 ret = -EFAULT;
887 goto fail;
888 }
889
890 bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL);
891 if (IS_ERR(bo)) {
892 DRM_ERROR("Couldn't allocate BO for binning\n");
893 ret = PTR_ERR(bo);
894 goto fail;
895 }
896 exec->exec_bo = &bo->base;
897
898 list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head,
899 &exec->unref_list);
900
901 exec->ct0ca = exec->exec_bo->paddr + bin_offset;
902
903 exec->bin_u = bin;
904
905 exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset;
906 exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset;
907 exec->shader_rec_size = args->shader_rec_size;
908
909 exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset;
910 exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset;
911 exec->uniforms_size = args->uniforms_size;
912
913 ret = vc4_validate_bin_cl(dev,
914 exec->exec_bo->vaddr + bin_offset,
915 bin,
916 exec);
917 if (ret)
918 goto fail;
919
920 ret = vc4_validate_shader_recs(dev, exec);
921 if (ret)
922 goto fail;
923
924 if (exec->found_tile_binning_mode_config_packet) {
925 ret = vc4_v3d_bin_bo_get(vc4, &exec->bin_bo_used);
926 if (ret)
927 goto fail;
928 }
929
930 /* Block waiting on any previous rendering into the CS's VBO,
931 * IB, or textures, so that pixels are actually written by the
932 * time we try to read them.
933 */
934 ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true);
935
936fail:
937 kvfree(temp);
938 return ret;
939}
940
941static void
942vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec)
943{
944 struct vc4_dev *vc4 = to_vc4_dev(dev);
945 unsigned long irqflags;
946 unsigned i;
947
948 /* If we got force-completed because of GPU reset rather than
949 * through our IRQ handler, signal the fence now.
950 */
951 if (exec->fence) {
952 dma_fence_signal(exec->fence);
953 dma_fence_put(exec->fence);
954 }
955
956 if (exec->bo) {
957 for (i = 0; i < exec->bo_count; i++) {
958 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
959
960 vc4_bo_dec_usecnt(bo);
961 drm_gem_object_put_unlocked(&exec->bo[i]->base);
962 }
963 kvfree(exec->bo);
964 }
965
966 while (!list_empty(&exec->unref_list)) {
967 struct vc4_bo *bo = list_first_entry(&exec->unref_list,
968 struct vc4_bo, unref_head);
969 list_del(&bo->unref_head);
970 drm_gem_object_put_unlocked(&bo->base.base);
971 }
972
973 /* Free up the allocation of any bin slots we used. */
974 spin_lock_irqsave(&vc4->job_lock, irqflags);
975 vc4->bin_alloc_used &= ~exec->bin_slots;
976 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
977
978 /* Release the reference on the binner BO if needed. */
979 if (exec->bin_bo_used)
980 vc4_v3d_bin_bo_put(vc4);
981
982 /* Release the reference we had on the perf monitor. */
983 vc4_perfmon_put(exec->perfmon);
984
985 vc4_v3d_pm_put(vc4);
986
987 kfree(exec);
988}
989
990void
991vc4_job_handle_completed(struct vc4_dev *vc4)
992{
993 unsigned long irqflags;
994 struct vc4_seqno_cb *cb, *cb_temp;
995
996 spin_lock_irqsave(&vc4->job_lock, irqflags);
997 while (!list_empty(&vc4->job_done_list)) {
998 struct vc4_exec_info *exec =
999 list_first_entry(&vc4->job_done_list,
1000 struct vc4_exec_info, head);
1001 list_del(&exec->head);
1002
1003 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1004 vc4_complete_exec(vc4->dev, exec);
1005 spin_lock_irqsave(&vc4->job_lock, irqflags);
1006 }
1007
1008 list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) {
1009 if (cb->seqno <= vc4->finished_seqno) {
1010 list_del_init(&cb->work.entry);
1011 schedule_work(&cb->work);
1012 }
1013 }
1014
1015 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1016}
1017
1018static void vc4_seqno_cb_work(struct work_struct *work)
1019{
1020 struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work);
1021
1022 cb->func(cb);
1023}
1024
1025int vc4_queue_seqno_cb(struct drm_device *dev,
1026 struct vc4_seqno_cb *cb, uint64_t seqno,
1027 void (*func)(struct vc4_seqno_cb *cb))
1028{
1029 struct vc4_dev *vc4 = to_vc4_dev(dev);
1030 int ret = 0;
1031 unsigned long irqflags;
1032
1033 cb->func = func;
1034 INIT_WORK(&cb->work, vc4_seqno_cb_work);
1035
1036 spin_lock_irqsave(&vc4->job_lock, irqflags);
1037 if (seqno > vc4->finished_seqno) {
1038 cb->seqno = seqno;
1039 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list);
1040 } else {
1041 schedule_work(&cb->work);
1042 }
1043 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1044
1045 return ret;
1046}
1047
1048/* Scheduled when any job has been completed, this walks the list of
1049 * jobs that had completed and unrefs their BOs and frees their exec
1050 * structs.
1051 */
1052static void
1053vc4_job_done_work(struct work_struct *work)
1054{
1055 struct vc4_dev *vc4 =
1056 container_of(work, struct vc4_dev, job_done_work);
1057
1058 vc4_job_handle_completed(vc4);
1059}
1060
1061static int
1062vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev,
1063 uint64_t seqno,
1064 uint64_t *timeout_ns)
1065{
1066 unsigned long start = jiffies;
1067 int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true);
1068
1069 if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) {
1070 uint64_t delta = jiffies_to_nsecs(jiffies - start);
1071
1072 if (*timeout_ns >= delta)
1073 *timeout_ns -= delta;
1074 }
1075
1076 return ret;
1077}
1078
1079int
1080vc4_wait_seqno_ioctl(struct drm_device *dev, void *data,
1081 struct drm_file *file_priv)
1082{
1083 struct drm_vc4_wait_seqno *args = data;
1084
1085 return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno,
1086 &args->timeout_ns);
1087}
1088
1089int
1090vc4_wait_bo_ioctl(struct drm_device *dev, void *data,
1091 struct drm_file *file_priv)
1092{
1093 int ret;
1094 struct drm_vc4_wait_bo *args = data;
1095 struct drm_gem_object *gem_obj;
1096 struct vc4_bo *bo;
1097
1098 if (args->pad != 0)
1099 return -EINVAL;
1100
1101 gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1102 if (!gem_obj) {
1103 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1104 return -EINVAL;
1105 }
1106 bo = to_vc4_bo(gem_obj);
1107
1108 ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno,
1109 &args->timeout_ns);
1110
1111 drm_gem_object_put_unlocked(gem_obj);
1112 return ret;
1113}
1114
1115/**
1116 * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4.
1117 * @dev: DRM device
1118 * @data: ioctl argument
1119 * @file_priv: DRM file for this fd
1120 *
1121 * This is the main entrypoint for userspace to submit a 3D frame to
1122 * the GPU. Userspace provides the binner command list (if
1123 * applicable), and the kernel sets up the render command list to draw
1124 * to the framebuffer described in the ioctl, using the command lists
1125 * that the 3D engine's binner will produce.
1126 */
1127int
1128vc4_submit_cl_ioctl(struct drm_device *dev, void *data,
1129 struct drm_file *file_priv)
1130{
1131 struct vc4_dev *vc4 = to_vc4_dev(dev);
1132 struct vc4_file *vc4file = file_priv->driver_priv;
1133 struct drm_vc4_submit_cl *args = data;
1134 struct drm_syncobj *out_sync = NULL;
1135 struct vc4_exec_info *exec;
1136 struct ww_acquire_ctx acquire_ctx;
1137 struct dma_fence *in_fence;
1138 int ret = 0;
1139
1140 if (!vc4->v3d) {
1141 DRM_DEBUG("VC4_SUBMIT_CL with no VC4 V3D probed\n");
1142 return -ENODEV;
1143 }
1144
1145 if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR |
1146 VC4_SUBMIT_CL_FIXED_RCL_ORDER |
1147 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X |
1148 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) {
1149 DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags);
1150 return -EINVAL;
1151 }
1152
1153 if (args->pad2 != 0) {
1154 DRM_DEBUG("Invalid pad: 0x%08x\n", args->pad2);
1155 return -EINVAL;
1156 }
1157
1158 exec = kcalloc(1, sizeof(*exec), GFP_KERNEL);
1159 if (!exec) {
1160 DRM_ERROR("malloc failure on exec struct\n");
1161 return -ENOMEM;
1162 }
1163
1164 ret = vc4_v3d_pm_get(vc4);
1165 if (ret) {
1166 kfree(exec);
1167 return ret;
1168 }
1169
1170 exec->args = args;
1171 INIT_LIST_HEAD(&exec->unref_list);
1172
1173 ret = vc4_cl_lookup_bos(dev, file_priv, exec);
1174 if (ret)
1175 goto fail;
1176
1177 if (args->perfmonid) {
1178 exec->perfmon = vc4_perfmon_find(vc4file,
1179 args->perfmonid);
1180 if (!exec->perfmon) {
1181 ret = -ENOENT;
1182 goto fail;
1183 }
1184 }
1185
1186 if (args->in_sync) {
1187 ret = drm_syncobj_find_fence(file_priv, args->in_sync,
1188 0, 0, &in_fence);
1189 if (ret)
1190 goto fail;
1191
1192 /* When the fence (or fence array) is exclusively from our
1193 * context we can skip the wait since jobs are executed in
1194 * order of their submission through this ioctl and this can
1195 * only have fences from a prior job.
1196 */
1197 if (!dma_fence_match_context(in_fence,
1198 vc4->dma_fence_context)) {
1199 ret = dma_fence_wait(in_fence, true);
1200 if (ret) {
1201 dma_fence_put(in_fence);
1202 goto fail;
1203 }
1204 }
1205
1206 dma_fence_put(in_fence);
1207 }
1208
1209 if (exec->args->bin_cl_size != 0) {
1210 ret = vc4_get_bcl(dev, exec);
1211 if (ret)
1212 goto fail;
1213 } else {
1214 exec->ct0ca = 0;
1215 exec->ct0ea = 0;
1216 }
1217
1218 ret = vc4_get_rcl(dev, exec);
1219 if (ret)
1220 goto fail;
1221
1222 ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx);
1223 if (ret)
1224 goto fail;
1225
1226 if (args->out_sync) {
1227 out_sync = drm_syncobj_find(file_priv, args->out_sync);
1228 if (!out_sync) {
1229 ret = -EINVAL;
1230 goto fail;
1231 }
1232
1233 /* We replace the fence in out_sync in vc4_queue_submit since
1234 * the render job could execute immediately after that call.
1235 * If it finishes before our ioctl processing resumes the
1236 * render job fence could already have been freed.
1237 */
1238 }
1239
1240 /* Clear this out of the struct we'll be putting in the queue,
1241 * since it's part of our stack.
1242 */
1243 exec->args = NULL;
1244
1245 ret = vc4_queue_submit(dev, exec, &acquire_ctx, out_sync);
1246
1247 /* The syncobj isn't part of the exec data and we need to free our
1248 * reference even if job submission failed.
1249 */
1250 if (out_sync)
1251 drm_syncobj_put(out_sync);
1252
1253 if (ret)
1254 goto fail;
1255
1256 /* Return the seqno for our job. */
1257 args->seqno = vc4->emit_seqno;
1258
1259 return 0;
1260
1261fail:
1262 vc4_complete_exec(vc4->dev, exec);
1263
1264 return ret;
1265}
1266
1267void
1268vc4_gem_init(struct drm_device *dev)
1269{
1270 struct vc4_dev *vc4 = to_vc4_dev(dev);
1271
1272 vc4->dma_fence_context = dma_fence_context_alloc(1);
1273
1274 INIT_LIST_HEAD(&vc4->bin_job_list);
1275 INIT_LIST_HEAD(&vc4->render_job_list);
1276 INIT_LIST_HEAD(&vc4->job_done_list);
1277 INIT_LIST_HEAD(&vc4->seqno_cb_list);
1278 spin_lock_init(&vc4->job_lock);
1279
1280 INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work);
1281 timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0);
1282
1283 INIT_WORK(&vc4->job_done_work, vc4_job_done_work);
1284
1285 mutex_init(&vc4->power_lock);
1286
1287 INIT_LIST_HEAD(&vc4->purgeable.list);
1288 mutex_init(&vc4->purgeable.lock);
1289}
1290
1291void
1292vc4_gem_destroy(struct drm_device *dev)
1293{
1294 struct vc4_dev *vc4 = to_vc4_dev(dev);
1295
1296 /* Waiting for exec to finish would need to be done before
1297 * unregistering V3D.
1298 */
1299 WARN_ON(vc4->emit_seqno != vc4->finished_seqno);
1300
1301 /* V3D should already have disabled its interrupt and cleared
1302 * the overflow allocation registers. Now free the object.
1303 */
1304 if (vc4->bin_bo) {
1305 drm_gem_object_put_unlocked(&vc4->bin_bo->base.base);
1306 vc4->bin_bo = NULL;
1307 }
1308
1309 if (vc4->hang_state)
1310 vc4_free_hang_state(dev, vc4->hang_state);
1311}
1312
1313int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data,
1314 struct drm_file *file_priv)
1315{
1316 struct drm_vc4_gem_madvise *args = data;
1317 struct drm_gem_object *gem_obj;
1318 struct vc4_bo *bo;
1319 int ret;
1320
1321 switch (args->madv) {
1322 case VC4_MADV_DONTNEED:
1323 case VC4_MADV_WILLNEED:
1324 break;
1325 default:
1326 return -EINVAL;
1327 }
1328
1329 if (args->pad != 0)
1330 return -EINVAL;
1331
1332 gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1333 if (!gem_obj) {
1334 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1335 return -ENOENT;
1336 }
1337
1338 bo = to_vc4_bo(gem_obj);
1339
1340 /* Only BOs exposed to userspace can be purged. */
1341 if (bo->madv == __VC4_MADV_NOTSUPP) {
1342 DRM_DEBUG("madvise not supported on this BO\n");
1343 ret = -EINVAL;
1344 goto out_put_gem;
1345 }
1346
1347 /* Not sure it's safe to purge imported BOs. Let's just assume it's
1348 * not until proven otherwise.
1349 */
1350 if (gem_obj->import_attach) {
1351 DRM_DEBUG("madvise not supported on imported BOs\n");
1352 ret = -EINVAL;
1353 goto out_put_gem;
1354 }
1355
1356 mutex_lock(&bo->madv_lock);
1357
1358 if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED &&
1359 !refcount_read(&bo->usecnt)) {
1360 /* If the BO is about to be marked as purgeable, is not used
1361 * and is not already purgeable or purged, add it to the
1362 * purgeable list.
1363 */
1364 vc4_bo_add_to_purgeable_pool(bo);
1365 } else if (args->madv == VC4_MADV_WILLNEED &&
1366 bo->madv == VC4_MADV_DONTNEED &&
1367 !refcount_read(&bo->usecnt)) {
1368 /* The BO has not been purged yet, just remove it from
1369 * the purgeable list.
1370 */
1371 vc4_bo_remove_from_purgeable_pool(bo);
1372 }
1373
1374 /* Save the purged state. */
1375 args->retained = bo->madv != __VC4_MADV_PURGED;
1376
1377 /* Update internal madv state only if the bo was not purged. */
1378 if (bo->madv != __VC4_MADV_PURGED)
1379 bo->madv = args->madv;
1380
1381 mutex_unlock(&bo->madv_lock);
1382
1383 ret = 0;
1384
1385out_put_gem:
1386 drm_gem_object_put_unlocked(gem_obj);
1387
1388 return ret;
1389}
1/*
2 * Copyright © 2014 Broadcom
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include <linux/module.h>
25#include <linux/platform_device.h>
26#include <linux/pm_runtime.h>
27#include <linux/device.h>
28#include <linux/io.h>
29#include <linux/sched/signal.h>
30#include <linux/dma-fence-array.h>
31
32#include <drm/drm_syncobj.h>
33
34#include "uapi/drm/vc4_drm.h"
35#include "vc4_drv.h"
36#include "vc4_regs.h"
37#include "vc4_trace.h"
38
39static void
40vc4_queue_hangcheck(struct drm_device *dev)
41{
42 struct vc4_dev *vc4 = to_vc4_dev(dev);
43
44 mod_timer(&vc4->hangcheck.timer,
45 round_jiffies_up(jiffies + msecs_to_jiffies(100)));
46}
47
48struct vc4_hang_state {
49 struct drm_vc4_get_hang_state user_state;
50
51 u32 bo_count;
52 struct drm_gem_object **bo;
53};
54
55static void
56vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state)
57{
58 unsigned int i;
59
60 for (i = 0; i < state->user_state.bo_count; i++)
61 drm_gem_object_put(state->bo[i]);
62
63 kfree(state);
64}
65
66int
67vc4_get_hang_state_ioctl(struct drm_device *dev, void *data,
68 struct drm_file *file_priv)
69{
70 struct drm_vc4_get_hang_state *get_state = data;
71 struct drm_vc4_get_hang_state_bo *bo_state;
72 struct vc4_hang_state *kernel_state;
73 struct drm_vc4_get_hang_state *state;
74 struct vc4_dev *vc4 = to_vc4_dev(dev);
75 unsigned long irqflags;
76 u32 i;
77 int ret = 0;
78
79 if (WARN_ON_ONCE(vc4->is_vc5))
80 return -ENODEV;
81
82 if (!vc4->v3d) {
83 DRM_DEBUG("VC4_GET_HANG_STATE with no VC4 V3D probed\n");
84 return -ENODEV;
85 }
86
87 spin_lock_irqsave(&vc4->job_lock, irqflags);
88 kernel_state = vc4->hang_state;
89 if (!kernel_state) {
90 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
91 return -ENOENT;
92 }
93 state = &kernel_state->user_state;
94
95 /* If the user's array isn't big enough, just return the
96 * required array size.
97 */
98 if (get_state->bo_count < state->bo_count) {
99 get_state->bo_count = state->bo_count;
100 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
101 return 0;
102 }
103
104 vc4->hang_state = NULL;
105 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
106
107 /* Save the user's BO pointer, so we don't stomp it with the memcpy. */
108 state->bo = get_state->bo;
109 memcpy(get_state, state, sizeof(*state));
110
111 bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL);
112 if (!bo_state) {
113 ret = -ENOMEM;
114 goto err_free;
115 }
116
117 for (i = 0; i < state->bo_count; i++) {
118 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]);
119 u32 handle;
120
121 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i],
122 &handle);
123
124 if (ret) {
125 state->bo_count = i;
126 goto err_delete_handle;
127 }
128 bo_state[i].handle = handle;
129 bo_state[i].paddr = vc4_bo->base.dma_addr;
130 bo_state[i].size = vc4_bo->base.base.size;
131 }
132
133 if (copy_to_user(u64_to_user_ptr(get_state->bo),
134 bo_state,
135 state->bo_count * sizeof(*bo_state)))
136 ret = -EFAULT;
137
138err_delete_handle:
139 if (ret) {
140 for (i = 0; i < state->bo_count; i++)
141 drm_gem_handle_delete(file_priv, bo_state[i].handle);
142 }
143
144err_free:
145 vc4_free_hang_state(dev, kernel_state);
146 kfree(bo_state);
147
148 return ret;
149}
150
151static void
152vc4_save_hang_state(struct drm_device *dev)
153{
154 struct vc4_dev *vc4 = to_vc4_dev(dev);
155 struct drm_vc4_get_hang_state *state;
156 struct vc4_hang_state *kernel_state;
157 struct vc4_exec_info *exec[2];
158 struct vc4_bo *bo;
159 unsigned long irqflags;
160 unsigned int i, j, k, unref_list_count;
161
162 kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL);
163 if (!kernel_state)
164 return;
165
166 state = &kernel_state->user_state;
167
168 spin_lock_irqsave(&vc4->job_lock, irqflags);
169 exec[0] = vc4_first_bin_job(vc4);
170 exec[1] = vc4_first_render_job(vc4);
171 if (!exec[0] && !exec[1]) {
172 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
173 return;
174 }
175
176 /* Get the bos from both binner and renderer into hang state. */
177 state->bo_count = 0;
178 for (i = 0; i < 2; i++) {
179 if (!exec[i])
180 continue;
181
182 unref_list_count = 0;
183 list_for_each_entry(bo, &exec[i]->unref_list, unref_head)
184 unref_list_count++;
185 state->bo_count += exec[i]->bo_count + unref_list_count;
186 }
187
188 kernel_state->bo = kcalloc(state->bo_count,
189 sizeof(*kernel_state->bo), GFP_ATOMIC);
190
191 if (!kernel_state->bo) {
192 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
193 return;
194 }
195
196 k = 0;
197 for (i = 0; i < 2; i++) {
198 if (!exec[i])
199 continue;
200
201 for (j = 0; j < exec[i]->bo_count; j++) {
202 bo = to_vc4_bo(exec[i]->bo[j]);
203
204 /* Retain BOs just in case they were marked purgeable.
205 * This prevents the BO from being purged before
206 * someone had a chance to dump the hang state.
207 */
208 WARN_ON(!refcount_read(&bo->usecnt));
209 refcount_inc(&bo->usecnt);
210 drm_gem_object_get(exec[i]->bo[j]);
211 kernel_state->bo[k++] = exec[i]->bo[j];
212 }
213
214 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) {
215 /* No need to retain BOs coming from the ->unref_list
216 * because they are naturally unpurgeable.
217 */
218 drm_gem_object_get(&bo->base.base);
219 kernel_state->bo[k++] = &bo->base.base;
220 }
221 }
222
223 WARN_ON_ONCE(k != state->bo_count);
224
225 if (exec[0])
226 state->start_bin = exec[0]->ct0ca;
227 if (exec[1])
228 state->start_render = exec[1]->ct1ca;
229
230 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
231
232 state->ct0ca = V3D_READ(V3D_CTNCA(0));
233 state->ct0ea = V3D_READ(V3D_CTNEA(0));
234
235 state->ct1ca = V3D_READ(V3D_CTNCA(1));
236 state->ct1ea = V3D_READ(V3D_CTNEA(1));
237
238 state->ct0cs = V3D_READ(V3D_CTNCS(0));
239 state->ct1cs = V3D_READ(V3D_CTNCS(1));
240
241 state->ct0ra0 = V3D_READ(V3D_CT00RA0);
242 state->ct1ra0 = V3D_READ(V3D_CT01RA0);
243
244 state->bpca = V3D_READ(V3D_BPCA);
245 state->bpcs = V3D_READ(V3D_BPCS);
246 state->bpoa = V3D_READ(V3D_BPOA);
247 state->bpos = V3D_READ(V3D_BPOS);
248
249 state->vpmbase = V3D_READ(V3D_VPMBASE);
250
251 state->dbge = V3D_READ(V3D_DBGE);
252 state->fdbgo = V3D_READ(V3D_FDBGO);
253 state->fdbgb = V3D_READ(V3D_FDBGB);
254 state->fdbgr = V3D_READ(V3D_FDBGR);
255 state->fdbgs = V3D_READ(V3D_FDBGS);
256 state->errstat = V3D_READ(V3D_ERRSTAT);
257
258 /* We need to turn purgeable BOs into unpurgeable ones so that
259 * userspace has a chance to dump the hang state before the kernel
260 * decides to purge those BOs.
261 * Note that BO consistency at dump time cannot be guaranteed. For
262 * example, if the owner of these BOs decides to re-use them or mark
263 * them purgeable again there's nothing we can do to prevent it.
264 */
265 for (i = 0; i < kernel_state->user_state.bo_count; i++) {
266 struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]);
267
268 if (bo->madv == __VC4_MADV_NOTSUPP)
269 continue;
270
271 mutex_lock(&bo->madv_lock);
272 if (!WARN_ON(bo->madv == __VC4_MADV_PURGED))
273 bo->madv = VC4_MADV_WILLNEED;
274 refcount_dec(&bo->usecnt);
275 mutex_unlock(&bo->madv_lock);
276 }
277
278 spin_lock_irqsave(&vc4->job_lock, irqflags);
279 if (vc4->hang_state) {
280 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
281 vc4_free_hang_state(dev, kernel_state);
282 } else {
283 vc4->hang_state = kernel_state;
284 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
285 }
286}
287
288static void
289vc4_reset(struct drm_device *dev)
290{
291 struct vc4_dev *vc4 = to_vc4_dev(dev);
292
293 DRM_INFO("Resetting GPU.\n");
294
295 mutex_lock(&vc4->power_lock);
296 if (vc4->power_refcount) {
297 /* Power the device off and back on the by dropping the
298 * reference on runtime PM.
299 */
300 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev);
301 pm_runtime_get_sync(&vc4->v3d->pdev->dev);
302 }
303 mutex_unlock(&vc4->power_lock);
304
305 vc4_irq_reset(dev);
306
307 /* Rearm the hangcheck -- another job might have been waiting
308 * for our hung one to get kicked off, and vc4_irq_reset()
309 * would have started it.
310 */
311 vc4_queue_hangcheck(dev);
312}
313
314static void
315vc4_reset_work(struct work_struct *work)
316{
317 struct vc4_dev *vc4 =
318 container_of(work, struct vc4_dev, hangcheck.reset_work);
319
320 vc4_save_hang_state(&vc4->base);
321
322 vc4_reset(&vc4->base);
323}
324
325static void
326vc4_hangcheck_elapsed(struct timer_list *t)
327{
328 struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer);
329 struct drm_device *dev = &vc4->base;
330 uint32_t ct0ca, ct1ca;
331 unsigned long irqflags;
332 struct vc4_exec_info *bin_exec, *render_exec;
333
334 spin_lock_irqsave(&vc4->job_lock, irqflags);
335
336 bin_exec = vc4_first_bin_job(vc4);
337 render_exec = vc4_first_render_job(vc4);
338
339 /* If idle, we can stop watching for hangs. */
340 if (!bin_exec && !render_exec) {
341 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
342 return;
343 }
344
345 ct0ca = V3D_READ(V3D_CTNCA(0));
346 ct1ca = V3D_READ(V3D_CTNCA(1));
347
348 /* If we've made any progress in execution, rearm the timer
349 * and wait.
350 */
351 if ((bin_exec && ct0ca != bin_exec->last_ct0ca) ||
352 (render_exec && ct1ca != render_exec->last_ct1ca)) {
353 if (bin_exec)
354 bin_exec->last_ct0ca = ct0ca;
355 if (render_exec)
356 render_exec->last_ct1ca = ct1ca;
357 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
358 vc4_queue_hangcheck(dev);
359 return;
360 }
361
362 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
363
364 /* We've gone too long with no progress, reset. This has to
365 * be done from a work struct, since resetting can sleep and
366 * this timer hook isn't allowed to.
367 */
368 schedule_work(&vc4->hangcheck.reset_work);
369}
370
371static void
372submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end)
373{
374 struct vc4_dev *vc4 = to_vc4_dev(dev);
375
376 /* Set the current and end address of the control list.
377 * Writing the end register is what starts the job.
378 */
379 V3D_WRITE(V3D_CTNCA(thread), start);
380 V3D_WRITE(V3D_CTNEA(thread), end);
381}
382
383int
384vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns,
385 bool interruptible)
386{
387 struct vc4_dev *vc4 = to_vc4_dev(dev);
388 int ret = 0;
389 unsigned long timeout_expire;
390 DEFINE_WAIT(wait);
391
392 if (WARN_ON_ONCE(vc4->is_vc5))
393 return -ENODEV;
394
395 if (vc4->finished_seqno >= seqno)
396 return 0;
397
398 if (timeout_ns == 0)
399 return -ETIME;
400
401 timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns);
402
403 trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns);
404 for (;;) {
405 prepare_to_wait(&vc4->job_wait_queue, &wait,
406 interruptible ? TASK_INTERRUPTIBLE :
407 TASK_UNINTERRUPTIBLE);
408
409 if (interruptible && signal_pending(current)) {
410 ret = -ERESTARTSYS;
411 break;
412 }
413
414 if (vc4->finished_seqno >= seqno)
415 break;
416
417 if (timeout_ns != ~0ull) {
418 if (time_after_eq(jiffies, timeout_expire)) {
419 ret = -ETIME;
420 break;
421 }
422 schedule_timeout(timeout_expire - jiffies);
423 } else {
424 schedule();
425 }
426 }
427
428 finish_wait(&vc4->job_wait_queue, &wait);
429 trace_vc4_wait_for_seqno_end(dev, seqno);
430
431 return ret;
432}
433
434static void
435vc4_flush_caches(struct drm_device *dev)
436{
437 struct vc4_dev *vc4 = to_vc4_dev(dev);
438
439 /* Flush the GPU L2 caches. These caches sit on top of system
440 * L3 (the 128kb or so shared with the CPU), and are
441 * non-allocating in the L3.
442 */
443 V3D_WRITE(V3D_L2CACTL,
444 V3D_L2CACTL_L2CCLR);
445
446 V3D_WRITE(V3D_SLCACTL,
447 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
448 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) |
449 VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) |
450 VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC));
451}
452
453static void
454vc4_flush_texture_caches(struct drm_device *dev)
455{
456 struct vc4_dev *vc4 = to_vc4_dev(dev);
457
458 V3D_WRITE(V3D_L2CACTL,
459 V3D_L2CACTL_L2CCLR);
460
461 V3D_WRITE(V3D_SLCACTL,
462 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
463 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC));
464}
465
466/* Sets the registers for the next job to be actually be executed in
467 * the hardware.
468 *
469 * The job_lock should be held during this.
470 */
471void
472vc4_submit_next_bin_job(struct drm_device *dev)
473{
474 struct vc4_dev *vc4 = to_vc4_dev(dev);
475 struct vc4_exec_info *exec;
476
477 if (WARN_ON_ONCE(vc4->is_vc5))
478 return;
479
480again:
481 exec = vc4_first_bin_job(vc4);
482 if (!exec)
483 return;
484
485 vc4_flush_caches(dev);
486
487 /* Only start the perfmon if it was not already started by a previous
488 * job.
489 */
490 if (exec->perfmon && vc4->active_perfmon != exec->perfmon)
491 vc4_perfmon_start(vc4, exec->perfmon);
492
493 /* Either put the job in the binner if it uses the binner, or
494 * immediately move it to the to-be-rendered queue.
495 */
496 if (exec->ct0ca != exec->ct0ea) {
497 trace_vc4_submit_cl(dev, false, exec->seqno, exec->ct0ca,
498 exec->ct0ea);
499 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea);
500 } else {
501 struct vc4_exec_info *next;
502
503 vc4_move_job_to_render(dev, exec);
504 next = vc4_first_bin_job(vc4);
505
506 /* We can't start the next bin job if the previous job had a
507 * different perfmon instance attached to it. The same goes
508 * if one of them had a perfmon attached to it and the other
509 * one doesn't.
510 */
511 if (next && next->perfmon == exec->perfmon)
512 goto again;
513 }
514}
515
516void
517vc4_submit_next_render_job(struct drm_device *dev)
518{
519 struct vc4_dev *vc4 = to_vc4_dev(dev);
520 struct vc4_exec_info *exec = vc4_first_render_job(vc4);
521
522 if (!exec)
523 return;
524
525 if (WARN_ON_ONCE(vc4->is_vc5))
526 return;
527
528 /* A previous RCL may have written to one of our textures, and
529 * our full cache flush at bin time may have occurred before
530 * that RCL completed. Flush the texture cache now, but not
531 * the instructions or uniforms (since we don't write those
532 * from an RCL).
533 */
534 vc4_flush_texture_caches(dev);
535
536 trace_vc4_submit_cl(dev, true, exec->seqno, exec->ct1ca, exec->ct1ea);
537 submit_cl(dev, 1, exec->ct1ca, exec->ct1ea);
538}
539
540void
541vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec)
542{
543 struct vc4_dev *vc4 = to_vc4_dev(dev);
544 bool was_empty = list_empty(&vc4->render_job_list);
545
546 if (WARN_ON_ONCE(vc4->is_vc5))
547 return;
548
549 list_move_tail(&exec->head, &vc4->render_job_list);
550 if (was_empty)
551 vc4_submit_next_render_job(dev);
552}
553
554static void
555vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno)
556{
557 struct vc4_bo *bo;
558 unsigned i;
559
560 for (i = 0; i < exec->bo_count; i++) {
561 bo = to_vc4_bo(exec->bo[i]);
562 bo->seqno = seqno;
563
564 dma_resv_add_fence(bo->base.base.resv, exec->fence,
565 DMA_RESV_USAGE_READ);
566 }
567
568 list_for_each_entry(bo, &exec->unref_list, unref_head) {
569 bo->seqno = seqno;
570 }
571
572 for (i = 0; i < exec->rcl_write_bo_count; i++) {
573 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base);
574 bo->write_seqno = seqno;
575
576 dma_resv_add_fence(bo->base.base.resv, exec->fence,
577 DMA_RESV_USAGE_WRITE);
578 }
579}
580
581static void
582vc4_unlock_bo_reservations(struct drm_device *dev,
583 struct vc4_exec_info *exec,
584 struct ww_acquire_ctx *acquire_ctx)
585{
586 int i;
587
588 for (i = 0; i < exec->bo_count; i++)
589 dma_resv_unlock(exec->bo[i]->resv);
590
591 ww_acquire_fini(acquire_ctx);
592}
593
594/* Takes the reservation lock on all the BOs being referenced, so that
595 * at queue submit time we can update the reservations.
596 *
597 * We don't lock the RCL the tile alloc/state BOs, or overflow memory
598 * (all of which are on exec->unref_list). They're entirely private
599 * to vc4, so we don't attach dma-buf fences to them.
600 */
601static int
602vc4_lock_bo_reservations(struct drm_device *dev,
603 struct vc4_exec_info *exec,
604 struct ww_acquire_ctx *acquire_ctx)
605{
606 int contended_lock = -1;
607 int i, ret;
608 struct drm_gem_object *bo;
609
610 ww_acquire_init(acquire_ctx, &reservation_ww_class);
611
612retry:
613 if (contended_lock != -1) {
614 bo = exec->bo[contended_lock];
615 ret = dma_resv_lock_slow_interruptible(bo->resv, acquire_ctx);
616 if (ret) {
617 ww_acquire_done(acquire_ctx);
618 return ret;
619 }
620 }
621
622 for (i = 0; i < exec->bo_count; i++) {
623 if (i == contended_lock)
624 continue;
625
626 bo = exec->bo[i];
627
628 ret = dma_resv_lock_interruptible(bo->resv, acquire_ctx);
629 if (ret) {
630 int j;
631
632 for (j = 0; j < i; j++) {
633 bo = exec->bo[j];
634 dma_resv_unlock(bo->resv);
635 }
636
637 if (contended_lock != -1 && contended_lock >= i) {
638 bo = exec->bo[contended_lock];
639
640 dma_resv_unlock(bo->resv);
641 }
642
643 if (ret == -EDEADLK) {
644 contended_lock = i;
645 goto retry;
646 }
647
648 ww_acquire_done(acquire_ctx);
649 return ret;
650 }
651 }
652
653 ww_acquire_done(acquire_ctx);
654
655 /* Reserve space for our shared (read-only) fence references,
656 * before we commit the CL to the hardware.
657 */
658 for (i = 0; i < exec->bo_count; i++) {
659 bo = exec->bo[i];
660
661 ret = dma_resv_reserve_fences(bo->resv, 1);
662 if (ret) {
663 vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
664 return ret;
665 }
666 }
667
668 return 0;
669}
670
671/* Queues a struct vc4_exec_info for execution. If no job is
672 * currently executing, then submits it.
673 *
674 * Unlike most GPUs, our hardware only handles one command list at a
675 * time. To queue multiple jobs at once, we'd need to edit the
676 * previous command list to have a jump to the new one at the end, and
677 * then bump the end address. That's a change for a later date,
678 * though.
679 */
680static int
681vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec,
682 struct ww_acquire_ctx *acquire_ctx,
683 struct drm_syncobj *out_sync)
684{
685 struct vc4_dev *vc4 = to_vc4_dev(dev);
686 struct vc4_exec_info *renderjob;
687 uint64_t seqno;
688 unsigned long irqflags;
689 struct vc4_fence *fence;
690
691 fence = kzalloc(sizeof(*fence), GFP_KERNEL);
692 if (!fence)
693 return -ENOMEM;
694 fence->dev = dev;
695
696 spin_lock_irqsave(&vc4->job_lock, irqflags);
697
698 seqno = ++vc4->emit_seqno;
699 exec->seqno = seqno;
700
701 dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock,
702 vc4->dma_fence_context, exec->seqno);
703 fence->seqno = exec->seqno;
704 exec->fence = &fence->base;
705
706 if (out_sync)
707 drm_syncobj_replace_fence(out_sync, exec->fence);
708
709 vc4_update_bo_seqnos(exec, seqno);
710
711 vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
712
713 list_add_tail(&exec->head, &vc4->bin_job_list);
714
715 /* If no bin job was executing and if the render job (if any) has the
716 * same perfmon as our job attached to it (or if both jobs don't have
717 * perfmon activated), then kick ours off. Otherwise, it'll get
718 * started when the previous job's flush/render done interrupt occurs.
719 */
720 renderjob = vc4_first_render_job(vc4);
721 if (vc4_first_bin_job(vc4) == exec &&
722 (!renderjob || renderjob->perfmon == exec->perfmon)) {
723 vc4_submit_next_bin_job(dev);
724 vc4_queue_hangcheck(dev);
725 }
726
727 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
728
729 return 0;
730}
731
732/**
733 * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects
734 * referenced by the job.
735 * @dev: DRM device
736 * @file_priv: DRM file for this fd
737 * @exec: V3D job being set up
738 *
739 * The command validator needs to reference BOs by their index within
740 * the submitted job's BO list. This does the validation of the job's
741 * BO list and reference counting for the lifetime of the job.
742 */
743static int
744vc4_cl_lookup_bos(struct drm_device *dev,
745 struct drm_file *file_priv,
746 struct vc4_exec_info *exec)
747{
748 struct drm_vc4_submit_cl *args = exec->args;
749 int ret = 0;
750 int i;
751
752 exec->bo_count = args->bo_handle_count;
753
754 if (!exec->bo_count) {
755 /* See comment on bo_index for why we have to check
756 * this.
757 */
758 DRM_DEBUG("Rendering requires BOs to validate\n");
759 return -EINVAL;
760 }
761
762 ret = drm_gem_objects_lookup(file_priv, u64_to_user_ptr(args->bo_handles),
763 exec->bo_count, &exec->bo);
764
765 if (ret)
766 goto fail_put_bo;
767
768 for (i = 0; i < exec->bo_count; i++) {
769 ret = vc4_bo_inc_usecnt(to_vc4_bo(exec->bo[i]));
770 if (ret)
771 goto fail_dec_usecnt;
772 }
773
774 return 0;
775
776fail_dec_usecnt:
777 /* Decrease usecnt on acquired objects.
778 * We cannot rely on vc4_complete_exec() to release resources here,
779 * because vc4_complete_exec() has no information about which BO has
780 * had its ->usecnt incremented.
781 * To make things easier we just free everything explicitly and set
782 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release'
783 * step.
784 */
785 for (i-- ; i >= 0; i--)
786 vc4_bo_dec_usecnt(to_vc4_bo(exec->bo[i]));
787
788fail_put_bo:
789 /* Release any reference to acquired objects. */
790 for (i = 0; i < exec->bo_count && exec->bo[i]; i++)
791 drm_gem_object_put(exec->bo[i]);
792
793 kvfree(exec->bo);
794 exec->bo = NULL;
795 return ret;
796}
797
798static int
799vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec)
800{
801 struct drm_vc4_submit_cl *args = exec->args;
802 struct vc4_dev *vc4 = to_vc4_dev(dev);
803 void *temp = NULL;
804 void *bin;
805 int ret = 0;
806 uint32_t bin_offset = 0;
807 uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size,
808 16);
809 uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size;
810 uint32_t exec_size = uniforms_offset + args->uniforms_size;
811 uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) *
812 args->shader_rec_count);
813 struct vc4_bo *bo;
814
815 if (shader_rec_offset < args->bin_cl_size ||
816 uniforms_offset < shader_rec_offset ||
817 exec_size < uniforms_offset ||
818 args->shader_rec_count >= (UINT_MAX /
819 sizeof(struct vc4_shader_state)) ||
820 temp_size < exec_size) {
821 DRM_DEBUG("overflow in exec arguments\n");
822 ret = -EINVAL;
823 goto fail;
824 }
825
826 /* Allocate space where we'll store the copied in user command lists
827 * and shader records.
828 *
829 * We don't just copy directly into the BOs because we need to
830 * read the contents back for validation, and I think the
831 * bo->vaddr is uncached access.
832 */
833 temp = kvmalloc_array(temp_size, 1, GFP_KERNEL);
834 if (!temp) {
835 DRM_ERROR("Failed to allocate storage for copying "
836 "in bin/render CLs.\n");
837 ret = -ENOMEM;
838 goto fail;
839 }
840 bin = temp + bin_offset;
841 exec->shader_rec_u = temp + shader_rec_offset;
842 exec->uniforms_u = temp + uniforms_offset;
843 exec->shader_state = temp + exec_size;
844 exec->shader_state_size = args->shader_rec_count;
845
846 if (copy_from_user(bin,
847 u64_to_user_ptr(args->bin_cl),
848 args->bin_cl_size)) {
849 ret = -EFAULT;
850 goto fail;
851 }
852
853 if (copy_from_user(exec->shader_rec_u,
854 u64_to_user_ptr(args->shader_rec),
855 args->shader_rec_size)) {
856 ret = -EFAULT;
857 goto fail;
858 }
859
860 if (copy_from_user(exec->uniforms_u,
861 u64_to_user_ptr(args->uniforms),
862 args->uniforms_size)) {
863 ret = -EFAULT;
864 goto fail;
865 }
866
867 bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL);
868 if (IS_ERR(bo)) {
869 DRM_ERROR("Couldn't allocate BO for binning\n");
870 ret = PTR_ERR(bo);
871 goto fail;
872 }
873 exec->exec_bo = &bo->base;
874
875 list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head,
876 &exec->unref_list);
877
878 exec->ct0ca = exec->exec_bo->dma_addr + bin_offset;
879
880 exec->bin_u = bin;
881
882 exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset;
883 exec->shader_rec_p = exec->exec_bo->dma_addr + shader_rec_offset;
884 exec->shader_rec_size = args->shader_rec_size;
885
886 exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset;
887 exec->uniforms_p = exec->exec_bo->dma_addr + uniforms_offset;
888 exec->uniforms_size = args->uniforms_size;
889
890 ret = vc4_validate_bin_cl(dev,
891 exec->exec_bo->vaddr + bin_offset,
892 bin,
893 exec);
894 if (ret)
895 goto fail;
896
897 ret = vc4_validate_shader_recs(dev, exec);
898 if (ret)
899 goto fail;
900
901 if (exec->found_tile_binning_mode_config_packet) {
902 ret = vc4_v3d_bin_bo_get(vc4, &exec->bin_bo_used);
903 if (ret)
904 goto fail;
905 }
906
907 /* Block waiting on any previous rendering into the CS's VBO,
908 * IB, or textures, so that pixels are actually written by the
909 * time we try to read them.
910 */
911 ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true);
912
913fail:
914 kvfree(temp);
915 return ret;
916}
917
918static void
919vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec)
920{
921 struct vc4_dev *vc4 = to_vc4_dev(dev);
922 unsigned long irqflags;
923 unsigned i;
924
925 /* If we got force-completed because of GPU reset rather than
926 * through our IRQ handler, signal the fence now.
927 */
928 if (exec->fence) {
929 dma_fence_signal(exec->fence);
930 dma_fence_put(exec->fence);
931 }
932
933 if (exec->bo) {
934 for (i = 0; i < exec->bo_count; i++) {
935 struct vc4_bo *bo = to_vc4_bo(exec->bo[i]);
936
937 vc4_bo_dec_usecnt(bo);
938 drm_gem_object_put(exec->bo[i]);
939 }
940 kvfree(exec->bo);
941 }
942
943 while (!list_empty(&exec->unref_list)) {
944 struct vc4_bo *bo = list_first_entry(&exec->unref_list,
945 struct vc4_bo, unref_head);
946 list_del(&bo->unref_head);
947 drm_gem_object_put(&bo->base.base);
948 }
949
950 /* Free up the allocation of any bin slots we used. */
951 spin_lock_irqsave(&vc4->job_lock, irqflags);
952 vc4->bin_alloc_used &= ~exec->bin_slots;
953 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
954
955 /* Release the reference on the binner BO if needed. */
956 if (exec->bin_bo_used)
957 vc4_v3d_bin_bo_put(vc4);
958
959 /* Release the reference we had on the perf monitor. */
960 vc4_perfmon_put(exec->perfmon);
961
962 vc4_v3d_pm_put(vc4);
963
964 kfree(exec);
965}
966
967void
968vc4_job_handle_completed(struct vc4_dev *vc4)
969{
970 unsigned long irqflags;
971 struct vc4_seqno_cb *cb, *cb_temp;
972
973 if (WARN_ON_ONCE(vc4->is_vc5))
974 return;
975
976 spin_lock_irqsave(&vc4->job_lock, irqflags);
977 while (!list_empty(&vc4->job_done_list)) {
978 struct vc4_exec_info *exec =
979 list_first_entry(&vc4->job_done_list,
980 struct vc4_exec_info, head);
981 list_del(&exec->head);
982
983 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
984 vc4_complete_exec(&vc4->base, exec);
985 spin_lock_irqsave(&vc4->job_lock, irqflags);
986 }
987
988 list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) {
989 if (cb->seqno <= vc4->finished_seqno) {
990 list_del_init(&cb->work.entry);
991 schedule_work(&cb->work);
992 }
993 }
994
995 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
996}
997
998static void vc4_seqno_cb_work(struct work_struct *work)
999{
1000 struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work);
1001
1002 cb->func(cb);
1003}
1004
1005int vc4_queue_seqno_cb(struct drm_device *dev,
1006 struct vc4_seqno_cb *cb, uint64_t seqno,
1007 void (*func)(struct vc4_seqno_cb *cb))
1008{
1009 struct vc4_dev *vc4 = to_vc4_dev(dev);
1010 unsigned long irqflags;
1011
1012 if (WARN_ON_ONCE(vc4->is_vc5))
1013 return -ENODEV;
1014
1015 cb->func = func;
1016 INIT_WORK(&cb->work, vc4_seqno_cb_work);
1017
1018 spin_lock_irqsave(&vc4->job_lock, irqflags);
1019 if (seqno > vc4->finished_seqno) {
1020 cb->seqno = seqno;
1021 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list);
1022 } else {
1023 schedule_work(&cb->work);
1024 }
1025 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1026
1027 return 0;
1028}
1029
1030/* Scheduled when any job has been completed, this walks the list of
1031 * jobs that had completed and unrefs their BOs and frees their exec
1032 * structs.
1033 */
1034static void
1035vc4_job_done_work(struct work_struct *work)
1036{
1037 struct vc4_dev *vc4 =
1038 container_of(work, struct vc4_dev, job_done_work);
1039
1040 vc4_job_handle_completed(vc4);
1041}
1042
1043static int
1044vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev,
1045 uint64_t seqno,
1046 uint64_t *timeout_ns)
1047{
1048 unsigned long start = jiffies;
1049 int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true);
1050
1051 if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) {
1052 uint64_t delta = jiffies_to_nsecs(jiffies - start);
1053
1054 if (*timeout_ns >= delta)
1055 *timeout_ns -= delta;
1056 }
1057
1058 return ret;
1059}
1060
1061int
1062vc4_wait_seqno_ioctl(struct drm_device *dev, void *data,
1063 struct drm_file *file_priv)
1064{
1065 struct vc4_dev *vc4 = to_vc4_dev(dev);
1066 struct drm_vc4_wait_seqno *args = data;
1067
1068 if (WARN_ON_ONCE(vc4->is_vc5))
1069 return -ENODEV;
1070
1071 return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno,
1072 &args->timeout_ns);
1073}
1074
1075int
1076vc4_wait_bo_ioctl(struct drm_device *dev, void *data,
1077 struct drm_file *file_priv)
1078{
1079 struct vc4_dev *vc4 = to_vc4_dev(dev);
1080 int ret;
1081 struct drm_vc4_wait_bo *args = data;
1082 struct drm_gem_object *gem_obj;
1083 struct vc4_bo *bo;
1084
1085 if (WARN_ON_ONCE(vc4->is_vc5))
1086 return -ENODEV;
1087
1088 if (args->pad != 0)
1089 return -EINVAL;
1090
1091 gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1092 if (!gem_obj) {
1093 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1094 return -EINVAL;
1095 }
1096 bo = to_vc4_bo(gem_obj);
1097
1098 ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno,
1099 &args->timeout_ns);
1100
1101 drm_gem_object_put(gem_obj);
1102 return ret;
1103}
1104
1105/**
1106 * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4.
1107 * @dev: DRM device
1108 * @data: ioctl argument
1109 * @file_priv: DRM file for this fd
1110 *
1111 * This is the main entrypoint for userspace to submit a 3D frame to
1112 * the GPU. Userspace provides the binner command list (if
1113 * applicable), and the kernel sets up the render command list to draw
1114 * to the framebuffer described in the ioctl, using the command lists
1115 * that the 3D engine's binner will produce.
1116 */
1117int
1118vc4_submit_cl_ioctl(struct drm_device *dev, void *data,
1119 struct drm_file *file_priv)
1120{
1121 struct vc4_dev *vc4 = to_vc4_dev(dev);
1122 struct vc4_file *vc4file = file_priv->driver_priv;
1123 struct drm_vc4_submit_cl *args = data;
1124 struct drm_syncobj *out_sync = NULL;
1125 struct vc4_exec_info *exec;
1126 struct ww_acquire_ctx acquire_ctx;
1127 struct dma_fence *in_fence;
1128 int ret = 0;
1129
1130 trace_vc4_submit_cl_ioctl(dev, args->bin_cl_size,
1131 args->shader_rec_size,
1132 args->bo_handle_count);
1133
1134 if (WARN_ON_ONCE(vc4->is_vc5))
1135 return -ENODEV;
1136
1137 if (!vc4->v3d) {
1138 DRM_DEBUG("VC4_SUBMIT_CL with no VC4 V3D probed\n");
1139 return -ENODEV;
1140 }
1141
1142 if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR |
1143 VC4_SUBMIT_CL_FIXED_RCL_ORDER |
1144 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X |
1145 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) {
1146 DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags);
1147 return -EINVAL;
1148 }
1149
1150 if (args->pad2 != 0) {
1151 DRM_DEBUG("Invalid pad: 0x%08x\n", args->pad2);
1152 return -EINVAL;
1153 }
1154
1155 exec = kcalloc(1, sizeof(*exec), GFP_KERNEL);
1156 if (!exec) {
1157 DRM_ERROR("malloc failure on exec struct\n");
1158 return -ENOMEM;
1159 }
1160 exec->dev = vc4;
1161
1162 ret = vc4_v3d_pm_get(vc4);
1163 if (ret) {
1164 kfree(exec);
1165 return ret;
1166 }
1167
1168 exec->args = args;
1169 INIT_LIST_HEAD(&exec->unref_list);
1170
1171 ret = vc4_cl_lookup_bos(dev, file_priv, exec);
1172 if (ret)
1173 goto fail;
1174
1175 if (args->perfmonid) {
1176 exec->perfmon = vc4_perfmon_find(vc4file,
1177 args->perfmonid);
1178 if (!exec->perfmon) {
1179 ret = -ENOENT;
1180 goto fail;
1181 }
1182 }
1183
1184 if (args->in_sync) {
1185 ret = drm_syncobj_find_fence(file_priv, args->in_sync,
1186 0, 0, &in_fence);
1187 if (ret)
1188 goto fail;
1189
1190 /* When the fence (or fence array) is exclusively from our
1191 * context we can skip the wait since jobs are executed in
1192 * order of their submission through this ioctl and this can
1193 * only have fences from a prior job.
1194 */
1195 if (!dma_fence_match_context(in_fence,
1196 vc4->dma_fence_context)) {
1197 ret = dma_fence_wait(in_fence, true);
1198 if (ret) {
1199 dma_fence_put(in_fence);
1200 goto fail;
1201 }
1202 }
1203
1204 dma_fence_put(in_fence);
1205 }
1206
1207 if (exec->args->bin_cl_size != 0) {
1208 ret = vc4_get_bcl(dev, exec);
1209 if (ret)
1210 goto fail;
1211 } else {
1212 exec->ct0ca = 0;
1213 exec->ct0ea = 0;
1214 }
1215
1216 ret = vc4_get_rcl(dev, exec);
1217 if (ret)
1218 goto fail;
1219
1220 ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx);
1221 if (ret)
1222 goto fail;
1223
1224 if (args->out_sync) {
1225 out_sync = drm_syncobj_find(file_priv, args->out_sync);
1226 if (!out_sync) {
1227 ret = -EINVAL;
1228 goto fail;
1229 }
1230
1231 /* We replace the fence in out_sync in vc4_queue_submit since
1232 * the render job could execute immediately after that call.
1233 * If it finishes before our ioctl processing resumes the
1234 * render job fence could already have been freed.
1235 */
1236 }
1237
1238 /* Clear this out of the struct we'll be putting in the queue,
1239 * since it's part of our stack.
1240 */
1241 exec->args = NULL;
1242
1243 ret = vc4_queue_submit(dev, exec, &acquire_ctx, out_sync);
1244
1245 /* The syncobj isn't part of the exec data and we need to free our
1246 * reference even if job submission failed.
1247 */
1248 if (out_sync)
1249 drm_syncobj_put(out_sync);
1250
1251 if (ret)
1252 goto fail;
1253
1254 /* Return the seqno for our job. */
1255 args->seqno = vc4->emit_seqno;
1256
1257 return 0;
1258
1259fail:
1260 vc4_complete_exec(&vc4->base, exec);
1261
1262 return ret;
1263}
1264
1265static void vc4_gem_destroy(struct drm_device *dev, void *unused);
1266int vc4_gem_init(struct drm_device *dev)
1267{
1268 struct vc4_dev *vc4 = to_vc4_dev(dev);
1269 int ret;
1270
1271 if (WARN_ON_ONCE(vc4->is_vc5))
1272 return -ENODEV;
1273
1274 vc4->dma_fence_context = dma_fence_context_alloc(1);
1275
1276 INIT_LIST_HEAD(&vc4->bin_job_list);
1277 INIT_LIST_HEAD(&vc4->render_job_list);
1278 INIT_LIST_HEAD(&vc4->job_done_list);
1279 INIT_LIST_HEAD(&vc4->seqno_cb_list);
1280 spin_lock_init(&vc4->job_lock);
1281
1282 INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work);
1283 timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0);
1284
1285 INIT_WORK(&vc4->job_done_work, vc4_job_done_work);
1286
1287 ret = drmm_mutex_init(dev, &vc4->power_lock);
1288 if (ret)
1289 return ret;
1290
1291 INIT_LIST_HEAD(&vc4->purgeable.list);
1292
1293 ret = drmm_mutex_init(dev, &vc4->purgeable.lock);
1294 if (ret)
1295 return ret;
1296
1297 return drmm_add_action_or_reset(dev, vc4_gem_destroy, NULL);
1298}
1299
1300static void vc4_gem_destroy(struct drm_device *dev, void *unused)
1301{
1302 struct vc4_dev *vc4 = to_vc4_dev(dev);
1303
1304 /* Waiting for exec to finish would need to be done before
1305 * unregistering V3D.
1306 */
1307 WARN_ON(vc4->emit_seqno != vc4->finished_seqno);
1308
1309 /* V3D should already have disabled its interrupt and cleared
1310 * the overflow allocation registers. Now free the object.
1311 */
1312 if (vc4->bin_bo) {
1313 drm_gem_object_put(&vc4->bin_bo->base.base);
1314 vc4->bin_bo = NULL;
1315 }
1316
1317 if (vc4->hang_state)
1318 vc4_free_hang_state(dev, vc4->hang_state);
1319}
1320
1321int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data,
1322 struct drm_file *file_priv)
1323{
1324 struct vc4_dev *vc4 = to_vc4_dev(dev);
1325 struct drm_vc4_gem_madvise *args = data;
1326 struct drm_gem_object *gem_obj;
1327 struct vc4_bo *bo;
1328 int ret;
1329
1330 if (WARN_ON_ONCE(vc4->is_vc5))
1331 return -ENODEV;
1332
1333 switch (args->madv) {
1334 case VC4_MADV_DONTNEED:
1335 case VC4_MADV_WILLNEED:
1336 break;
1337 default:
1338 return -EINVAL;
1339 }
1340
1341 if (args->pad != 0)
1342 return -EINVAL;
1343
1344 gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1345 if (!gem_obj) {
1346 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1347 return -ENOENT;
1348 }
1349
1350 bo = to_vc4_bo(gem_obj);
1351
1352 /* Only BOs exposed to userspace can be purged. */
1353 if (bo->madv == __VC4_MADV_NOTSUPP) {
1354 DRM_DEBUG("madvise not supported on this BO\n");
1355 ret = -EINVAL;
1356 goto out_put_gem;
1357 }
1358
1359 /* Not sure it's safe to purge imported BOs. Let's just assume it's
1360 * not until proven otherwise.
1361 */
1362 if (gem_obj->import_attach) {
1363 DRM_DEBUG("madvise not supported on imported BOs\n");
1364 ret = -EINVAL;
1365 goto out_put_gem;
1366 }
1367
1368 mutex_lock(&bo->madv_lock);
1369
1370 if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED &&
1371 !refcount_read(&bo->usecnt)) {
1372 /* If the BO is about to be marked as purgeable, is not used
1373 * and is not already purgeable or purged, add it to the
1374 * purgeable list.
1375 */
1376 vc4_bo_add_to_purgeable_pool(bo);
1377 } else if (args->madv == VC4_MADV_WILLNEED &&
1378 bo->madv == VC4_MADV_DONTNEED &&
1379 !refcount_read(&bo->usecnt)) {
1380 /* The BO has not been purged yet, just remove it from
1381 * the purgeable list.
1382 */
1383 vc4_bo_remove_from_purgeable_pool(bo);
1384 }
1385
1386 /* Save the purged state. */
1387 args->retained = bo->madv != __VC4_MADV_PURGED;
1388
1389 /* Update internal madv state only if the bo was not purged. */
1390 if (bo->madv != __VC4_MADV_PURGED)
1391 bo->madv = args->madv;
1392
1393 mutex_unlock(&bo->madv_lock);
1394
1395 ret = 0;
1396
1397out_put_gem:
1398 drm_gem_object_put(gem_obj);
1399
1400 return ret;
1401}