Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 2010 Matt Turner.
4 * Copyright 2012 Red Hat
5 *
6 * Authors: Matthew Garrett
7 * Matt Turner
8 * Dave Airlie
9 */
10
11#include <linux/delay.h>
12
13#include <drm/drm_crtc_helper.h>
14#include <drm/drm_fourcc.h>
15#include <drm/drm_pci.h>
16#include <drm/drm_plane_helper.h>
17#include <drm/drm_probe_helper.h>
18
19#include "mgag200_drv.h"
20
21#define MGAG200_LUT_SIZE 256
22
23/*
24 * This file contains setup code for the CRTC.
25 */
26
27static void mga_crtc_load_lut(struct drm_crtc *crtc)
28{
29 struct drm_device *dev = crtc->dev;
30 struct mga_device *mdev = dev->dev_private;
31 struct drm_framebuffer *fb = crtc->primary->fb;
32 u16 *r_ptr, *g_ptr, *b_ptr;
33 int i;
34
35 if (!crtc->enabled)
36 return;
37
38 r_ptr = crtc->gamma_store;
39 g_ptr = r_ptr + crtc->gamma_size;
40 b_ptr = g_ptr + crtc->gamma_size;
41
42 WREG8(DAC_INDEX + MGA1064_INDEX, 0);
43
44 if (fb && fb->format->cpp[0] * 8 == 16) {
45 int inc = (fb->format->depth == 15) ? 8 : 4;
46 u8 r, b;
47 for (i = 0; i < MGAG200_LUT_SIZE; i += inc) {
48 if (fb->format->depth == 16) {
49 if (i > (MGAG200_LUT_SIZE >> 1)) {
50 r = b = 0;
51 } else {
52 r = *r_ptr++ >> 8;
53 b = *b_ptr++ >> 8;
54 r_ptr++;
55 b_ptr++;
56 }
57 } else {
58 r = *r_ptr++ >> 8;
59 b = *b_ptr++ >> 8;
60 }
61 /* VGA registers */
62 WREG8(DAC_INDEX + MGA1064_COL_PAL, r);
63 WREG8(DAC_INDEX + MGA1064_COL_PAL, *g_ptr++ >> 8);
64 WREG8(DAC_INDEX + MGA1064_COL_PAL, b);
65 }
66 return;
67 }
68 for (i = 0; i < MGAG200_LUT_SIZE; i++) {
69 /* VGA registers */
70 WREG8(DAC_INDEX + MGA1064_COL_PAL, *r_ptr++ >> 8);
71 WREG8(DAC_INDEX + MGA1064_COL_PAL, *g_ptr++ >> 8);
72 WREG8(DAC_INDEX + MGA1064_COL_PAL, *b_ptr++ >> 8);
73 }
74}
75
76static inline void mga_wait_vsync(struct mga_device *mdev)
77{
78 unsigned long timeout = jiffies + HZ/10;
79 unsigned int status = 0;
80
81 do {
82 status = RREG32(MGAREG_Status);
83 } while ((status & 0x08) && time_before(jiffies, timeout));
84 timeout = jiffies + HZ/10;
85 status = 0;
86 do {
87 status = RREG32(MGAREG_Status);
88 } while (!(status & 0x08) && time_before(jiffies, timeout));
89}
90
91static inline void mga_wait_busy(struct mga_device *mdev)
92{
93 unsigned long timeout = jiffies + HZ;
94 unsigned int status = 0;
95 do {
96 status = RREG8(MGAREG_Status + 2);
97 } while ((status & 0x01) && time_before(jiffies, timeout));
98}
99
100#define P_ARRAY_SIZE 9
101
102static int mga_g200se_set_plls(struct mga_device *mdev, long clock)
103{
104 unsigned int vcomax, vcomin, pllreffreq;
105 unsigned int delta, tmpdelta, permitteddelta;
106 unsigned int testp, testm, testn;
107 unsigned int p, m, n;
108 unsigned int computed;
109 unsigned int pvalues_e4[P_ARRAY_SIZE] = {16, 14, 12, 10, 8, 6, 4, 2, 1};
110 unsigned int fvv;
111 unsigned int i;
112
113 if (mdev->unique_rev_id <= 0x03) {
114
115 m = n = p = 0;
116 vcomax = 320000;
117 vcomin = 160000;
118 pllreffreq = 25000;
119
120 delta = 0xffffffff;
121 permitteddelta = clock * 5 / 1000;
122
123 for (testp = 8; testp > 0; testp /= 2) {
124 if (clock * testp > vcomax)
125 continue;
126 if (clock * testp < vcomin)
127 continue;
128
129 for (testn = 17; testn < 256; testn++) {
130 for (testm = 1; testm < 32; testm++) {
131 computed = (pllreffreq * testn) /
132 (testm * testp);
133 if (computed > clock)
134 tmpdelta = computed - clock;
135 else
136 tmpdelta = clock - computed;
137 if (tmpdelta < delta) {
138 delta = tmpdelta;
139 m = testm - 1;
140 n = testn - 1;
141 p = testp - 1;
142 }
143 }
144 }
145 }
146 } else {
147
148
149 m = n = p = 0;
150 vcomax = 1600000;
151 vcomin = 800000;
152 pllreffreq = 25000;
153
154 if (clock < 25000)
155 clock = 25000;
156
157 clock = clock * 2;
158
159 delta = 0xFFFFFFFF;
160 /* Permited delta is 0.5% as VESA Specification */
161 permitteddelta = clock * 5 / 1000;
162
163 for (i = 0 ; i < P_ARRAY_SIZE ; i++) {
164 testp = pvalues_e4[i];
165
166 if ((clock * testp) > vcomax)
167 continue;
168 if ((clock * testp) < vcomin)
169 continue;
170
171 for (testn = 50; testn <= 256; testn++) {
172 for (testm = 1; testm <= 32; testm++) {
173 computed = (pllreffreq * testn) /
174 (testm * testp);
175 if (computed > clock)
176 tmpdelta = computed - clock;
177 else
178 tmpdelta = clock - computed;
179
180 if (tmpdelta < delta) {
181 delta = tmpdelta;
182 m = testm - 1;
183 n = testn - 1;
184 p = testp - 1;
185 }
186 }
187 }
188 }
189
190 fvv = pllreffreq * (n + 1) / (m + 1);
191 fvv = (fvv - 800000) / 50000;
192
193 if (fvv > 15)
194 fvv = 15;
195
196 p |= (fvv << 4);
197 m |= 0x80;
198
199 clock = clock / 2;
200 }
201
202 if (delta > permitteddelta) {
203 pr_warn("PLL delta too large\n");
204 return 1;
205 }
206
207 WREG_DAC(MGA1064_PIX_PLLC_M, m);
208 WREG_DAC(MGA1064_PIX_PLLC_N, n);
209 WREG_DAC(MGA1064_PIX_PLLC_P, p);
210
211 if (mdev->unique_rev_id >= 0x04) {
212 WREG_DAC(0x1a, 0x09);
213 msleep(20);
214 WREG_DAC(0x1a, 0x01);
215
216 }
217
218 return 0;
219}
220
221static int mga_g200wb_set_plls(struct mga_device *mdev, long clock)
222{
223 unsigned int vcomax, vcomin, pllreffreq;
224 unsigned int delta, tmpdelta;
225 unsigned int testp, testm, testn, testp2;
226 unsigned int p, m, n;
227 unsigned int computed;
228 int i, j, tmpcount, vcount;
229 bool pll_locked = false;
230 u8 tmp;
231
232 m = n = p = 0;
233
234 delta = 0xffffffff;
235
236 if (mdev->type == G200_EW3) {
237
238 vcomax = 800000;
239 vcomin = 400000;
240 pllreffreq = 25000;
241
242 for (testp = 1; testp < 8; testp++) {
243 for (testp2 = 1; testp2 < 8; testp2++) {
244 if (testp < testp2)
245 continue;
246 if ((clock * testp * testp2) > vcomax)
247 continue;
248 if ((clock * testp * testp2) < vcomin)
249 continue;
250 for (testm = 1; testm < 26; testm++) {
251 for (testn = 32; testn < 2048 ; testn++) {
252 computed = (pllreffreq * testn) /
253 (testm * testp * testp2);
254 if (computed > clock)
255 tmpdelta = computed - clock;
256 else
257 tmpdelta = clock - computed;
258 if (tmpdelta < delta) {
259 delta = tmpdelta;
260 m = ((testn & 0x100) >> 1) |
261 (testm);
262 n = (testn & 0xFF);
263 p = ((testn & 0x600) >> 3) |
264 (testp2 << 3) |
265 (testp);
266 }
267 }
268 }
269 }
270 }
271 } else {
272
273 vcomax = 550000;
274 vcomin = 150000;
275 pllreffreq = 48000;
276
277 for (testp = 1; testp < 9; testp++) {
278 if (clock * testp > vcomax)
279 continue;
280 if (clock * testp < vcomin)
281 continue;
282
283 for (testm = 1; testm < 17; testm++) {
284 for (testn = 1; testn < 151; testn++) {
285 computed = (pllreffreq * testn) /
286 (testm * testp);
287 if (computed > clock)
288 tmpdelta = computed - clock;
289 else
290 tmpdelta = clock - computed;
291 if (tmpdelta < delta) {
292 delta = tmpdelta;
293 n = testn - 1;
294 m = (testm - 1) |
295 ((n >> 1) & 0x80);
296 p = testp - 1;
297 }
298 }
299 }
300 }
301 }
302
303 for (i = 0; i <= 32 && pll_locked == false; i++) {
304 if (i > 0) {
305 WREG8(MGAREG_CRTC_INDEX, 0x1e);
306 tmp = RREG8(MGAREG_CRTC_DATA);
307 if (tmp < 0xff)
308 WREG8(MGAREG_CRTC_DATA, tmp+1);
309 }
310
311 /* set pixclkdis to 1 */
312 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
313 tmp = RREG8(DAC_DATA);
314 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
315 WREG8(DAC_DATA, tmp);
316
317 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
318 tmp = RREG8(DAC_DATA);
319 tmp |= MGA1064_REMHEADCTL_CLKDIS;
320 WREG8(DAC_DATA, tmp);
321
322 /* select PLL Set C */
323 tmp = RREG8(MGAREG_MEM_MISC_READ);
324 tmp |= 0x3 << 2;
325 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
326
327 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
328 tmp = RREG8(DAC_DATA);
329 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80;
330 WREG8(DAC_DATA, tmp);
331
332 udelay(500);
333
334 /* reset the PLL */
335 WREG8(DAC_INDEX, MGA1064_VREF_CTL);
336 tmp = RREG8(DAC_DATA);
337 tmp &= ~0x04;
338 WREG8(DAC_DATA, tmp);
339
340 udelay(50);
341
342 /* program pixel pll register */
343 WREG_DAC(MGA1064_WB_PIX_PLLC_N, n);
344 WREG_DAC(MGA1064_WB_PIX_PLLC_M, m);
345 WREG_DAC(MGA1064_WB_PIX_PLLC_P, p);
346
347 udelay(50);
348
349 /* turn pll on */
350 WREG8(DAC_INDEX, MGA1064_VREF_CTL);
351 tmp = RREG8(DAC_DATA);
352 tmp |= 0x04;
353 WREG_DAC(MGA1064_VREF_CTL, tmp);
354
355 udelay(500);
356
357 /* select the pixel pll */
358 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
359 tmp = RREG8(DAC_DATA);
360 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
361 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
362 WREG8(DAC_DATA, tmp);
363
364 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
365 tmp = RREG8(DAC_DATA);
366 tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK;
367 tmp |= MGA1064_REMHEADCTL_CLKSL_PLL;
368 WREG8(DAC_DATA, tmp);
369
370 /* reset dotclock rate bit */
371 WREG8(MGAREG_SEQ_INDEX, 1);
372 tmp = RREG8(MGAREG_SEQ_DATA);
373 tmp &= ~0x8;
374 WREG8(MGAREG_SEQ_DATA, tmp);
375
376 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
377 tmp = RREG8(DAC_DATA);
378 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
379 WREG8(DAC_DATA, tmp);
380
381 vcount = RREG8(MGAREG_VCOUNT);
382
383 for (j = 0; j < 30 && pll_locked == false; j++) {
384 tmpcount = RREG8(MGAREG_VCOUNT);
385 if (tmpcount < vcount)
386 vcount = 0;
387 if ((tmpcount - vcount) > 2)
388 pll_locked = true;
389 else
390 udelay(5);
391 }
392 }
393 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
394 tmp = RREG8(DAC_DATA);
395 tmp &= ~MGA1064_REMHEADCTL_CLKDIS;
396 WREG_DAC(MGA1064_REMHEADCTL, tmp);
397 return 0;
398}
399
400static int mga_g200ev_set_plls(struct mga_device *mdev, long clock)
401{
402 unsigned int vcomax, vcomin, pllreffreq;
403 unsigned int delta, tmpdelta;
404 unsigned int testp, testm, testn;
405 unsigned int p, m, n;
406 unsigned int computed;
407 u8 tmp;
408
409 m = n = p = 0;
410 vcomax = 550000;
411 vcomin = 150000;
412 pllreffreq = 50000;
413
414 delta = 0xffffffff;
415
416 for (testp = 16; testp > 0; testp--) {
417 if (clock * testp > vcomax)
418 continue;
419 if (clock * testp < vcomin)
420 continue;
421
422 for (testn = 1; testn < 257; testn++) {
423 for (testm = 1; testm < 17; testm++) {
424 computed = (pllreffreq * testn) /
425 (testm * testp);
426 if (computed > clock)
427 tmpdelta = computed - clock;
428 else
429 tmpdelta = clock - computed;
430 if (tmpdelta < delta) {
431 delta = tmpdelta;
432 n = testn - 1;
433 m = testm - 1;
434 p = testp - 1;
435 }
436 }
437 }
438 }
439
440 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
441 tmp = RREG8(DAC_DATA);
442 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
443 WREG8(DAC_DATA, tmp);
444
445 tmp = RREG8(MGAREG_MEM_MISC_READ);
446 tmp |= 0x3 << 2;
447 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
448
449 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
450 tmp = RREG8(DAC_DATA);
451 WREG8(DAC_DATA, tmp & ~0x40);
452
453 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
454 tmp = RREG8(DAC_DATA);
455 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
456 WREG8(DAC_DATA, tmp);
457
458 WREG_DAC(MGA1064_EV_PIX_PLLC_M, m);
459 WREG_DAC(MGA1064_EV_PIX_PLLC_N, n);
460 WREG_DAC(MGA1064_EV_PIX_PLLC_P, p);
461
462 udelay(50);
463
464 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
465 tmp = RREG8(DAC_DATA);
466 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
467 WREG8(DAC_DATA, tmp);
468
469 udelay(500);
470
471 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
472 tmp = RREG8(DAC_DATA);
473 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
474 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
475 WREG8(DAC_DATA, tmp);
476
477 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
478 tmp = RREG8(DAC_DATA);
479 WREG8(DAC_DATA, tmp | 0x40);
480
481 tmp = RREG8(MGAREG_MEM_MISC_READ);
482 tmp |= (0x3 << 2);
483 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
484
485 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
486 tmp = RREG8(DAC_DATA);
487 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
488 WREG8(DAC_DATA, tmp);
489
490 return 0;
491}
492
493static int mga_g200eh_set_plls(struct mga_device *mdev, long clock)
494{
495 unsigned int vcomax, vcomin, pllreffreq;
496 unsigned int delta, tmpdelta;
497 unsigned int testp, testm, testn;
498 unsigned int p, m, n;
499 unsigned int computed;
500 int i, j, tmpcount, vcount;
501 u8 tmp;
502 bool pll_locked = false;
503
504 m = n = p = 0;
505
506 if (mdev->type == G200_EH3) {
507 vcomax = 3000000;
508 vcomin = 1500000;
509 pllreffreq = 25000;
510
511 delta = 0xffffffff;
512
513 testp = 0;
514
515 for (testm = 150; testm >= 6; testm--) {
516 if (clock * testm > vcomax)
517 continue;
518 if (clock * testm < vcomin)
519 continue;
520 for (testn = 120; testn >= 60; testn--) {
521 computed = (pllreffreq * testn) / testm;
522 if (computed > clock)
523 tmpdelta = computed - clock;
524 else
525 tmpdelta = clock - computed;
526 if (tmpdelta < delta) {
527 delta = tmpdelta;
528 n = testn;
529 m = testm;
530 p = testp;
531 }
532 if (delta == 0)
533 break;
534 }
535 if (delta == 0)
536 break;
537 }
538 } else {
539
540 vcomax = 800000;
541 vcomin = 400000;
542 pllreffreq = 33333;
543
544 delta = 0xffffffff;
545
546 for (testp = 16; testp > 0; testp >>= 1) {
547 if (clock * testp > vcomax)
548 continue;
549 if (clock * testp < vcomin)
550 continue;
551
552 for (testm = 1; testm < 33; testm++) {
553 for (testn = 17; testn < 257; testn++) {
554 computed = (pllreffreq * testn) /
555 (testm * testp);
556 if (computed > clock)
557 tmpdelta = computed - clock;
558 else
559 tmpdelta = clock - computed;
560 if (tmpdelta < delta) {
561 delta = tmpdelta;
562 n = testn - 1;
563 m = (testm - 1);
564 p = testp - 1;
565 }
566 if ((clock * testp) >= 600000)
567 p |= 0x80;
568 }
569 }
570 }
571 }
572 for (i = 0; i <= 32 && pll_locked == false; i++) {
573 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
574 tmp = RREG8(DAC_DATA);
575 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
576 WREG8(DAC_DATA, tmp);
577
578 tmp = RREG8(MGAREG_MEM_MISC_READ);
579 tmp |= 0x3 << 2;
580 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
581
582 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
583 tmp = RREG8(DAC_DATA);
584 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
585 WREG8(DAC_DATA, tmp);
586
587 udelay(500);
588
589 WREG_DAC(MGA1064_EH_PIX_PLLC_M, m);
590 WREG_DAC(MGA1064_EH_PIX_PLLC_N, n);
591 WREG_DAC(MGA1064_EH_PIX_PLLC_P, p);
592
593 udelay(500);
594
595 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
596 tmp = RREG8(DAC_DATA);
597 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
598 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
599 WREG8(DAC_DATA, tmp);
600
601 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
602 tmp = RREG8(DAC_DATA);
603 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
604 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
605 WREG8(DAC_DATA, tmp);
606
607 vcount = RREG8(MGAREG_VCOUNT);
608
609 for (j = 0; j < 30 && pll_locked == false; j++) {
610 tmpcount = RREG8(MGAREG_VCOUNT);
611 if (tmpcount < vcount)
612 vcount = 0;
613 if ((tmpcount - vcount) > 2)
614 pll_locked = true;
615 else
616 udelay(5);
617 }
618 }
619
620 return 0;
621}
622
623static int mga_g200er_set_plls(struct mga_device *mdev, long clock)
624{
625 unsigned int vcomax, vcomin, pllreffreq;
626 unsigned int delta, tmpdelta;
627 int testr, testn, testm, testo;
628 unsigned int p, m, n;
629 unsigned int computed, vco;
630 int tmp;
631 const unsigned int m_div_val[] = { 1, 2, 4, 8 };
632
633 m = n = p = 0;
634 vcomax = 1488000;
635 vcomin = 1056000;
636 pllreffreq = 48000;
637
638 delta = 0xffffffff;
639
640 for (testr = 0; testr < 4; testr++) {
641 if (delta == 0)
642 break;
643 for (testn = 5; testn < 129; testn++) {
644 if (delta == 0)
645 break;
646 for (testm = 3; testm >= 0; testm--) {
647 if (delta == 0)
648 break;
649 for (testo = 5; testo < 33; testo++) {
650 vco = pllreffreq * (testn + 1) /
651 (testr + 1);
652 if (vco < vcomin)
653 continue;
654 if (vco > vcomax)
655 continue;
656 computed = vco / (m_div_val[testm] * (testo + 1));
657 if (computed > clock)
658 tmpdelta = computed - clock;
659 else
660 tmpdelta = clock - computed;
661 if (tmpdelta < delta) {
662 delta = tmpdelta;
663 m = testm | (testo << 3);
664 n = testn;
665 p = testr | (testr << 3);
666 }
667 }
668 }
669 }
670 }
671
672 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
673 tmp = RREG8(DAC_DATA);
674 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
675 WREG8(DAC_DATA, tmp);
676
677 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
678 tmp = RREG8(DAC_DATA);
679 tmp |= MGA1064_REMHEADCTL_CLKDIS;
680 WREG8(DAC_DATA, tmp);
681
682 tmp = RREG8(MGAREG_MEM_MISC_READ);
683 tmp |= (0x3<<2) | 0xc0;
684 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
685
686 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
687 tmp = RREG8(DAC_DATA);
688 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
689 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
690 WREG8(DAC_DATA, tmp);
691
692 udelay(500);
693
694 WREG_DAC(MGA1064_ER_PIX_PLLC_N, n);
695 WREG_DAC(MGA1064_ER_PIX_PLLC_M, m);
696 WREG_DAC(MGA1064_ER_PIX_PLLC_P, p);
697
698 udelay(50);
699
700 return 0;
701}
702
703static int mga_crtc_set_plls(struct mga_device *mdev, long clock)
704{
705 switch(mdev->type) {
706 case G200_SE_A:
707 case G200_SE_B:
708 return mga_g200se_set_plls(mdev, clock);
709 break;
710 case G200_WB:
711 case G200_EW3:
712 return mga_g200wb_set_plls(mdev, clock);
713 break;
714 case G200_EV:
715 return mga_g200ev_set_plls(mdev, clock);
716 break;
717 case G200_EH:
718 case G200_EH3:
719 return mga_g200eh_set_plls(mdev, clock);
720 break;
721 case G200_ER:
722 return mga_g200er_set_plls(mdev, clock);
723 break;
724 }
725 return 0;
726}
727
728static void mga_g200wb_prepare(struct drm_crtc *crtc)
729{
730 struct mga_device *mdev = crtc->dev->dev_private;
731 u8 tmp;
732 int iter_max;
733
734 /* 1- The first step is to warn the BMC of an upcoming mode change.
735 * We are putting the misc<0> to output.*/
736
737 WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL);
738 tmp = RREG8(DAC_DATA);
739 tmp |= 0x10;
740 WREG_DAC(MGA1064_GEN_IO_CTL, tmp);
741
742 /* we are putting a 1 on the misc<0> line */
743 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
744 tmp = RREG8(DAC_DATA);
745 tmp |= 0x10;
746 WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
747
748 /* 2- Second step to mask and further scan request
749 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>)
750 */
751 WREG8(DAC_INDEX, MGA1064_SPAREREG);
752 tmp = RREG8(DAC_DATA);
753 tmp |= 0x80;
754 WREG_DAC(MGA1064_SPAREREG, tmp);
755
756 /* 3a- the third step is to verifu if there is an active scan
757 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>)
758 */
759 iter_max = 300;
760 while (!(tmp & 0x1) && iter_max) {
761 WREG8(DAC_INDEX, MGA1064_SPAREREG);
762 tmp = RREG8(DAC_DATA);
763 udelay(1000);
764 iter_max--;
765 }
766
767 /* 3b- this step occurs only if the remove is actually scanning
768 * we are waiting for the end of the frame which is a 1 on
769 * remvsyncsts (XSPAREREG<1>)
770 */
771 if (iter_max) {
772 iter_max = 300;
773 while ((tmp & 0x2) && iter_max) {
774 WREG8(DAC_INDEX, MGA1064_SPAREREG);
775 tmp = RREG8(DAC_DATA);
776 udelay(1000);
777 iter_max--;
778 }
779 }
780}
781
782static void mga_g200wb_commit(struct drm_crtc *crtc)
783{
784 u8 tmp;
785 struct mga_device *mdev = crtc->dev->dev_private;
786
787 /* 1- The first step is to ensure that the vrsten and hrsten are set */
788 WREG8(MGAREG_CRTCEXT_INDEX, 1);
789 tmp = RREG8(MGAREG_CRTCEXT_DATA);
790 WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88);
791
792 /* 2- second step is to assert the rstlvl2 */
793 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
794 tmp = RREG8(DAC_DATA);
795 tmp |= 0x8;
796 WREG8(DAC_DATA, tmp);
797
798 /* wait 10 us */
799 udelay(10);
800
801 /* 3- deassert rstlvl2 */
802 tmp &= ~0x08;
803 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
804 WREG8(DAC_DATA, tmp);
805
806 /* 4- remove mask of scan request */
807 WREG8(DAC_INDEX, MGA1064_SPAREREG);
808 tmp = RREG8(DAC_DATA);
809 tmp &= ~0x80;
810 WREG8(DAC_DATA, tmp);
811
812 /* 5- put back a 0 on the misc<0> line */
813 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
814 tmp = RREG8(DAC_DATA);
815 tmp &= ~0x10;
816 WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
817}
818
819/*
820 This is how the framebuffer base address is stored in g200 cards:
821 * Assume @offset is the gpu_addr variable of the framebuffer object
822 * Then addr is the number of _pixels_ (not bytes) from the start of
823 VRAM to the first pixel we want to display. (divided by 2 for 32bit
824 framebuffers)
825 * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers
826 addr<20> -> CRTCEXT0<6>
827 addr<19-16> -> CRTCEXT0<3-0>
828 addr<15-8> -> CRTCC<7-0>
829 addr<7-0> -> CRTCD<7-0>
830 CRTCEXT0 has to be programmed last to trigger an update and make the
831 new addr variable take effect.
832 */
833static void mga_set_start_address(struct drm_crtc *crtc, unsigned offset)
834{
835 struct mga_device *mdev = crtc->dev->dev_private;
836 u32 addr;
837 int count;
838 u8 crtcext0;
839
840 while (RREG8(0x1fda) & 0x08);
841 while (!(RREG8(0x1fda) & 0x08));
842
843 count = RREG8(MGAREG_VCOUNT) + 2;
844 while (RREG8(MGAREG_VCOUNT) < count);
845
846 WREG8(MGAREG_CRTCEXT_INDEX, 0);
847 crtcext0 = RREG8(MGAREG_CRTCEXT_DATA);
848 crtcext0 &= 0xB0;
849 addr = offset / 8;
850 /* Can't store addresses any higher than that...
851 but we also don't have more than 16MB of memory, so it should be fine. */
852 WARN_ON(addr > 0x1fffff);
853 crtcext0 |= (!!(addr & (1<<20)))<<6;
854 WREG_CRT(0x0d, (u8)(addr & 0xff));
855 WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff);
856 WREG_ECRT(0x0, ((u8)(addr >> 16) & 0xf) | crtcext0);
857}
858
859static int mga_crtc_do_set_base(struct drm_crtc *crtc,
860 struct drm_framebuffer *fb,
861 int x, int y, int atomic)
862{
863 struct drm_gem_vram_object *gbo;
864 int ret;
865 s64 gpu_addr;
866
867 if (!atomic && fb) {
868 gbo = drm_gem_vram_of_gem(fb->obj[0]);
869 drm_gem_vram_unpin(gbo);
870 }
871
872 gbo = drm_gem_vram_of_gem(crtc->primary->fb->obj[0]);
873
874 ret = drm_gem_vram_pin(gbo, DRM_GEM_VRAM_PL_FLAG_VRAM);
875 if (ret)
876 return ret;
877 gpu_addr = drm_gem_vram_offset(gbo);
878 if (gpu_addr < 0) {
879 ret = (int)gpu_addr;
880 goto err_drm_gem_vram_unpin;
881 }
882
883 mga_set_start_address(crtc, (u32)gpu_addr);
884
885 return 0;
886
887err_drm_gem_vram_unpin:
888 drm_gem_vram_unpin(gbo);
889 return ret;
890}
891
892static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
893 struct drm_framebuffer *old_fb)
894{
895 return mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
896}
897
898static int mga_crtc_mode_set(struct drm_crtc *crtc,
899 struct drm_display_mode *mode,
900 struct drm_display_mode *adjusted_mode,
901 int x, int y, struct drm_framebuffer *old_fb)
902{
903 struct drm_device *dev = crtc->dev;
904 struct mga_device *mdev = dev->dev_private;
905 const struct drm_framebuffer *fb = crtc->primary->fb;
906 int hdisplay, hsyncstart, hsyncend, htotal;
907 int vdisplay, vsyncstart, vsyncend, vtotal;
908 int pitch;
909 int option = 0, option2 = 0;
910 int i;
911 unsigned char misc = 0;
912 unsigned char ext_vga[6];
913 u8 bppshift;
914
915 static unsigned char dacvalue[] = {
916 /* 0x00: */ 0, 0, 0, 0, 0, 0, 0x00, 0,
917 /* 0x08: */ 0, 0, 0, 0, 0, 0, 0, 0,
918 /* 0x10: */ 0, 0, 0, 0, 0, 0, 0, 0,
919 /* 0x18: */ 0x00, 0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20,
920 /* 0x20: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
921 /* 0x28: */ 0x00, 0x00, 0x00, 0x00, 0, 0, 0, 0x40,
922 /* 0x30: */ 0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83,
923 /* 0x38: */ 0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A,
924 /* 0x40: */ 0, 0, 0, 0, 0, 0, 0, 0,
925 /* 0x48: */ 0, 0, 0, 0, 0, 0, 0, 0
926 };
927
928 bppshift = mdev->bpp_shifts[fb->format->cpp[0] - 1];
929
930 switch (mdev->type) {
931 case G200_SE_A:
932 case G200_SE_B:
933 dacvalue[MGA1064_VREF_CTL] = 0x03;
934 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
935 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN |
936 MGA1064_MISC_CTL_VGA8 |
937 MGA1064_MISC_CTL_DAC_RAM_CS;
938 if (mdev->has_sdram)
939 option = 0x40049120;
940 else
941 option = 0x4004d120;
942 option2 = 0x00008000;
943 break;
944 case G200_WB:
945 case G200_EW3:
946 dacvalue[MGA1064_VREF_CTL] = 0x07;
947 option = 0x41049120;
948 option2 = 0x0000b000;
949 break;
950 case G200_EV:
951 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
952 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
953 MGA1064_MISC_CTL_DAC_RAM_CS;
954 option = 0x00000120;
955 option2 = 0x0000b000;
956 break;
957 case G200_EH:
958 case G200_EH3:
959 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
960 MGA1064_MISC_CTL_DAC_RAM_CS;
961 option = 0x00000120;
962 option2 = 0x0000b000;
963 break;
964 case G200_ER:
965 break;
966 }
967
968 switch (fb->format->cpp[0] * 8) {
969 case 8:
970 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits;
971 break;
972 case 16:
973 if (fb->format->depth == 15)
974 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits;
975 else
976 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits;
977 break;
978 case 24:
979 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits;
980 break;
981 case 32:
982 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits;
983 break;
984 }
985
986 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
987 misc |= 0x40;
988 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
989 misc |= 0x80;
990
991
992 for (i = 0; i < sizeof(dacvalue); i++) {
993 if ((i <= 0x17) ||
994 (i == 0x1b) ||
995 (i == 0x1c) ||
996 ((i >= 0x1f) && (i <= 0x29)) ||
997 ((i >= 0x30) && (i <= 0x37)))
998 continue;
999 if (IS_G200_SE(mdev) &&
1000 ((i == 0x2c) || (i == 0x2d) || (i == 0x2e)))
1001 continue;
1002 if ((mdev->type == G200_EV ||
1003 mdev->type == G200_WB ||
1004 mdev->type == G200_EH ||
1005 mdev->type == G200_EW3 ||
1006 mdev->type == G200_EH3) &&
1007 (i >= 0x44) && (i <= 0x4e))
1008 continue;
1009
1010 WREG_DAC(i, dacvalue[i]);
1011 }
1012
1013 if (mdev->type == G200_ER)
1014 WREG_DAC(0x90, 0);
1015
1016 if (option)
1017 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option);
1018 if (option2)
1019 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2);
1020
1021 WREG_SEQ(2, 0xf);
1022 WREG_SEQ(3, 0);
1023 WREG_SEQ(4, 0xe);
1024
1025 pitch = fb->pitches[0] / fb->format->cpp[0];
1026 if (fb->format->cpp[0] * 8 == 24)
1027 pitch = (pitch * 3) >> (4 - bppshift);
1028 else
1029 pitch = pitch >> (4 - bppshift);
1030
1031 hdisplay = mode->hdisplay / 8 - 1;
1032 hsyncstart = mode->hsync_start / 8 - 1;
1033 hsyncend = mode->hsync_end / 8 - 1;
1034 htotal = mode->htotal / 8 - 1;
1035
1036 /* Work around hardware quirk */
1037 if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
1038 htotal++;
1039
1040 vdisplay = mode->vdisplay - 1;
1041 vsyncstart = mode->vsync_start - 1;
1042 vsyncend = mode->vsync_end - 1;
1043 vtotal = mode->vtotal - 2;
1044
1045 WREG_GFX(0, 0);
1046 WREG_GFX(1, 0);
1047 WREG_GFX(2, 0);
1048 WREG_GFX(3, 0);
1049 WREG_GFX(4, 0);
1050 WREG_GFX(5, 0x40);
1051 WREG_GFX(6, 0x5);
1052 WREG_GFX(7, 0xf);
1053 WREG_GFX(8, 0xf);
1054
1055 WREG_CRT(0, htotal - 4);
1056 WREG_CRT(1, hdisplay);
1057 WREG_CRT(2, hdisplay);
1058 WREG_CRT(3, (htotal & 0x1F) | 0x80);
1059 WREG_CRT(4, hsyncstart);
1060 WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
1061 WREG_CRT(6, vtotal & 0xFF);
1062 WREG_CRT(7, ((vtotal & 0x100) >> 8) |
1063 ((vdisplay & 0x100) >> 7) |
1064 ((vsyncstart & 0x100) >> 6) |
1065 ((vdisplay & 0x100) >> 5) |
1066 ((vdisplay & 0x100) >> 4) | /* linecomp */
1067 ((vtotal & 0x200) >> 4)|
1068 ((vdisplay & 0x200) >> 3) |
1069 ((vsyncstart & 0x200) >> 2));
1070 WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
1071 ((vdisplay & 0x200) >> 3));
1072 WREG_CRT(10, 0);
1073 WREG_CRT(11, 0);
1074 WREG_CRT(12, 0);
1075 WREG_CRT(13, 0);
1076 WREG_CRT(14, 0);
1077 WREG_CRT(15, 0);
1078 WREG_CRT(16, vsyncstart & 0xFF);
1079 WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
1080 WREG_CRT(18, vdisplay & 0xFF);
1081 WREG_CRT(19, pitch & 0xFF);
1082 WREG_CRT(20, 0);
1083 WREG_CRT(21, vdisplay & 0xFF);
1084 WREG_CRT(22, (vtotal + 1) & 0xFF);
1085 WREG_CRT(23, 0xc3);
1086 WREG_CRT(24, vdisplay & 0xFF);
1087
1088 ext_vga[0] = 0;
1089 ext_vga[5] = 0;
1090
1091 /* TODO interlace */
1092
1093 ext_vga[0] |= (pitch & 0x300) >> 4;
1094 ext_vga[1] = (((htotal - 4) & 0x100) >> 8) |
1095 ((hdisplay & 0x100) >> 7) |
1096 ((hsyncstart & 0x100) >> 6) |
1097 (htotal & 0x40);
1098 ext_vga[2] = ((vtotal & 0xc00) >> 10) |
1099 ((vdisplay & 0x400) >> 8) |
1100 ((vdisplay & 0xc00) >> 7) |
1101 ((vsyncstart & 0xc00) >> 5) |
1102 ((vdisplay & 0x400) >> 3);
1103 if (fb->format->cpp[0] * 8 == 24)
1104 ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80;
1105 else
1106 ext_vga[3] = ((1 << bppshift) - 1) | 0x80;
1107 ext_vga[4] = 0;
1108 if (mdev->type == G200_WB || mdev->type == G200_EW3)
1109 ext_vga[1] |= 0x88;
1110
1111 /* Set pixel clocks */
1112 misc = 0x2d;
1113 WREG8(MGA_MISC_OUT, misc);
1114
1115 mga_crtc_set_plls(mdev, mode->clock);
1116
1117 for (i = 0; i < 6; i++) {
1118 WREG_ECRT(i, ext_vga[i]);
1119 }
1120
1121 if (mdev->type == G200_ER)
1122 WREG_ECRT(0x24, 0x5);
1123
1124 if (mdev->type == G200_EW3)
1125 WREG_ECRT(0x34, 0x5);
1126
1127 if (mdev->type == G200_EV) {
1128 WREG_ECRT(6, 0);
1129 }
1130
1131 WREG_ECRT(0, ext_vga[0]);
1132 /* Enable mga pixel clock */
1133 misc = 0x2d;
1134
1135 WREG8(MGA_MISC_OUT, misc);
1136
1137 if (adjusted_mode)
1138 memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode));
1139
1140 mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
1141
1142 /* reset tagfifo */
1143 if (mdev->type == G200_ER) {
1144 u32 mem_ctl = RREG32(MGAREG_MEMCTL);
1145 u8 seq1;
1146
1147 /* screen off */
1148 WREG8(MGAREG_SEQ_INDEX, 0x01);
1149 seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20;
1150 WREG8(MGAREG_SEQ_DATA, seq1);
1151
1152 WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000);
1153 udelay(1000);
1154 WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000);
1155
1156 WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20);
1157 }
1158
1159
1160 if (IS_G200_SE(mdev)) {
1161 if (mdev->unique_rev_id >= 0x04) {
1162 WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1163 WREG8(MGAREG_CRTCEXT_DATA, 0);
1164 } else if (mdev->unique_rev_id >= 0x02) {
1165 u8 hi_pri_lvl;
1166 u32 bpp;
1167 u32 mb;
1168
1169 if (fb->format->cpp[0] * 8 > 16)
1170 bpp = 32;
1171 else if (fb->format->cpp[0] * 8 > 8)
1172 bpp = 16;
1173 else
1174 bpp = 8;
1175
1176 mb = (mode->clock * bpp) / 1000;
1177 if (mb > 3100)
1178 hi_pri_lvl = 0;
1179 else if (mb > 2600)
1180 hi_pri_lvl = 1;
1181 else if (mb > 1900)
1182 hi_pri_lvl = 2;
1183 else if (mb > 1160)
1184 hi_pri_lvl = 3;
1185 else if (mb > 440)
1186 hi_pri_lvl = 4;
1187 else
1188 hi_pri_lvl = 5;
1189
1190 WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1191 WREG8(MGAREG_CRTCEXT_DATA, hi_pri_lvl);
1192 } else {
1193 WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1194 if (mdev->unique_rev_id >= 0x01)
1195 WREG8(MGAREG_CRTCEXT_DATA, 0x03);
1196 else
1197 WREG8(MGAREG_CRTCEXT_DATA, 0x04);
1198 }
1199 }
1200 return 0;
1201}
1202
1203#if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */
1204static int mga_suspend(struct drm_crtc *crtc)
1205{
1206 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1207 struct drm_device *dev = crtc->dev;
1208 struct mga_device *mdev = dev->dev_private;
1209 struct pci_dev *pdev = dev->pdev;
1210 int option;
1211
1212 if (mdev->suspended)
1213 return 0;
1214
1215 WREG_SEQ(1, 0x20);
1216 WREG_ECRT(1, 0x30);
1217 /* Disable the pixel clock */
1218 WREG_DAC(0x1a, 0x05);
1219 /* Power down the DAC */
1220 WREG_DAC(0x1e, 0x18);
1221 /* Power down the pixel PLL */
1222 WREG_DAC(0x1a, 0x0d);
1223
1224 /* Disable PLLs and clocks */
1225 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1226 option &= ~(0x1F8024);
1227 pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1228 pci_set_power_state(pdev, PCI_D3hot);
1229 pci_disable_device(pdev);
1230
1231 mdev->suspended = true;
1232
1233 return 0;
1234}
1235
1236static int mga_resume(struct drm_crtc *crtc)
1237{
1238 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1239 struct drm_device *dev = crtc->dev;
1240 struct mga_device *mdev = dev->dev_private;
1241 struct pci_dev *pdev = dev->pdev;
1242 int option;
1243
1244 if (!mdev->suspended)
1245 return 0;
1246
1247 pci_set_power_state(pdev, PCI_D0);
1248 pci_enable_device(pdev);
1249
1250 /* Disable sysclk */
1251 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1252 option &= ~(0x4);
1253 pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1254
1255 mdev->suspended = false;
1256
1257 return 0;
1258}
1259
1260#endif
1261
1262static void mga_crtc_dpms(struct drm_crtc *crtc, int mode)
1263{
1264 struct drm_device *dev = crtc->dev;
1265 struct mga_device *mdev = dev->dev_private;
1266 u8 seq1 = 0, crtcext1 = 0;
1267
1268 switch (mode) {
1269 case DRM_MODE_DPMS_ON:
1270 seq1 = 0;
1271 crtcext1 = 0;
1272 mga_crtc_load_lut(crtc);
1273 break;
1274 case DRM_MODE_DPMS_STANDBY:
1275 seq1 = 0x20;
1276 crtcext1 = 0x10;
1277 break;
1278 case DRM_MODE_DPMS_SUSPEND:
1279 seq1 = 0x20;
1280 crtcext1 = 0x20;
1281 break;
1282 case DRM_MODE_DPMS_OFF:
1283 seq1 = 0x20;
1284 crtcext1 = 0x30;
1285 break;
1286 }
1287
1288#if 0
1289 if (mode == DRM_MODE_DPMS_OFF) {
1290 mga_suspend(crtc);
1291 }
1292#endif
1293 WREG8(MGAREG_SEQ_INDEX, 0x01);
1294 seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20;
1295 mga_wait_vsync(mdev);
1296 mga_wait_busy(mdev);
1297 WREG8(MGAREG_SEQ_DATA, seq1);
1298 msleep(20);
1299 WREG8(MGAREG_CRTCEXT_INDEX, 0x01);
1300 crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30;
1301 WREG8(MGAREG_CRTCEXT_DATA, crtcext1);
1302
1303#if 0
1304 if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) {
1305 mga_resume(crtc);
1306 drm_helper_resume_force_mode(dev);
1307 }
1308#endif
1309}
1310
1311/*
1312 * This is called before a mode is programmed. A typical use might be to
1313 * enable DPMS during the programming to avoid seeing intermediate stages,
1314 * but that's not relevant to us
1315 */
1316static void mga_crtc_prepare(struct drm_crtc *crtc)
1317{
1318 struct drm_device *dev = crtc->dev;
1319 struct mga_device *mdev = dev->dev_private;
1320 u8 tmp;
1321
1322 /* mga_resume(crtc);*/
1323
1324 WREG8(MGAREG_CRTC_INDEX, 0x11);
1325 tmp = RREG8(MGAREG_CRTC_DATA);
1326 WREG_CRT(0x11, tmp | 0x80);
1327
1328 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1329 WREG_SEQ(0, 1);
1330 msleep(50);
1331 WREG_SEQ(1, 0x20);
1332 msleep(20);
1333 } else {
1334 WREG8(MGAREG_SEQ_INDEX, 0x1);
1335 tmp = RREG8(MGAREG_SEQ_DATA);
1336
1337 /* start sync reset */
1338 WREG_SEQ(0, 1);
1339 WREG_SEQ(1, tmp | 0x20);
1340 }
1341
1342 if (mdev->type == G200_WB || mdev->type == G200_EW3)
1343 mga_g200wb_prepare(crtc);
1344
1345 WREG_CRT(17, 0);
1346}
1347
1348/*
1349 * This is called after a mode is programmed. It should reverse anything done
1350 * by the prepare function
1351 */
1352static void mga_crtc_commit(struct drm_crtc *crtc)
1353{
1354 struct drm_device *dev = crtc->dev;
1355 struct mga_device *mdev = dev->dev_private;
1356 const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1357 u8 tmp;
1358
1359 if (mdev->type == G200_WB || mdev->type == G200_EW3)
1360 mga_g200wb_commit(crtc);
1361
1362 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1363 msleep(50);
1364 WREG_SEQ(1, 0x0);
1365 msleep(20);
1366 WREG_SEQ(0, 0x3);
1367 } else {
1368 WREG8(MGAREG_SEQ_INDEX, 0x1);
1369 tmp = RREG8(MGAREG_SEQ_DATA);
1370
1371 tmp &= ~0x20;
1372 WREG_SEQ(0x1, tmp);
1373 WREG_SEQ(0, 3);
1374 }
1375 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1376}
1377
1378/*
1379 * The core can pass us a set of gamma values to program. We actually only
1380 * use this for 8-bit mode so can't perform smooth fades on deeper modes,
1381 * but it's a requirement that we provide the function
1382 */
1383static int mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1384 u16 *blue, uint32_t size,
1385 struct drm_modeset_acquire_ctx *ctx)
1386{
1387 mga_crtc_load_lut(crtc);
1388
1389 return 0;
1390}
1391
1392/* Simple cleanup function */
1393static void mga_crtc_destroy(struct drm_crtc *crtc)
1394{
1395 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1396
1397 drm_crtc_cleanup(crtc);
1398 kfree(mga_crtc);
1399}
1400
1401static void mga_crtc_disable(struct drm_crtc *crtc)
1402{
1403 DRM_DEBUG_KMS("\n");
1404 mga_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
1405 if (crtc->primary->fb) {
1406 struct drm_framebuffer *fb = crtc->primary->fb;
1407 struct drm_gem_vram_object *gbo =
1408 drm_gem_vram_of_gem(fb->obj[0]);
1409 drm_gem_vram_unpin(gbo);
1410 }
1411 crtc->primary->fb = NULL;
1412}
1413
1414/* These provide the minimum set of functions required to handle a CRTC */
1415static const struct drm_crtc_funcs mga_crtc_funcs = {
1416 .cursor_set = mga_crtc_cursor_set,
1417 .cursor_move = mga_crtc_cursor_move,
1418 .gamma_set = mga_crtc_gamma_set,
1419 .set_config = drm_crtc_helper_set_config,
1420 .destroy = mga_crtc_destroy,
1421};
1422
1423static const struct drm_crtc_helper_funcs mga_helper_funcs = {
1424 .disable = mga_crtc_disable,
1425 .dpms = mga_crtc_dpms,
1426 .mode_set = mga_crtc_mode_set,
1427 .mode_set_base = mga_crtc_mode_set_base,
1428 .prepare = mga_crtc_prepare,
1429 .commit = mga_crtc_commit,
1430};
1431
1432/* CRTC setup */
1433static void mga_crtc_init(struct mga_device *mdev)
1434{
1435 struct mga_crtc *mga_crtc;
1436
1437 mga_crtc = kzalloc(sizeof(struct mga_crtc) +
1438 (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)),
1439 GFP_KERNEL);
1440
1441 if (mga_crtc == NULL)
1442 return;
1443
1444 drm_crtc_init(mdev->dev, &mga_crtc->base, &mga_crtc_funcs);
1445
1446 drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE);
1447 mdev->mode_info.crtc = mga_crtc;
1448
1449 drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs);
1450}
1451
1452/*
1453 * The encoder comes after the CRTC in the output pipeline, but before
1454 * the connector. It's responsible for ensuring that the digital
1455 * stream is appropriately converted into the output format. Setup is
1456 * very simple in this case - all we have to do is inform qemu of the
1457 * colour depth in order to ensure that it displays appropriately
1458 */
1459
1460/*
1461 * These functions are analagous to those in the CRTC code, but are intended
1462 * to handle any encoder-specific limitations
1463 */
1464static void mga_encoder_mode_set(struct drm_encoder *encoder,
1465 struct drm_display_mode *mode,
1466 struct drm_display_mode *adjusted_mode)
1467{
1468
1469}
1470
1471static void mga_encoder_dpms(struct drm_encoder *encoder, int state)
1472{
1473 return;
1474}
1475
1476static void mga_encoder_prepare(struct drm_encoder *encoder)
1477{
1478}
1479
1480static void mga_encoder_commit(struct drm_encoder *encoder)
1481{
1482}
1483
1484static void mga_encoder_destroy(struct drm_encoder *encoder)
1485{
1486 struct mga_encoder *mga_encoder = to_mga_encoder(encoder);
1487 drm_encoder_cleanup(encoder);
1488 kfree(mga_encoder);
1489}
1490
1491static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = {
1492 .dpms = mga_encoder_dpms,
1493 .mode_set = mga_encoder_mode_set,
1494 .prepare = mga_encoder_prepare,
1495 .commit = mga_encoder_commit,
1496};
1497
1498static const struct drm_encoder_funcs mga_encoder_encoder_funcs = {
1499 .destroy = mga_encoder_destroy,
1500};
1501
1502static struct drm_encoder *mga_encoder_init(struct drm_device *dev)
1503{
1504 struct drm_encoder *encoder;
1505 struct mga_encoder *mga_encoder;
1506
1507 mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL);
1508 if (!mga_encoder)
1509 return NULL;
1510
1511 encoder = &mga_encoder->base;
1512 encoder->possible_crtcs = 0x1;
1513
1514 drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs,
1515 DRM_MODE_ENCODER_DAC, NULL);
1516 drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs);
1517
1518 return encoder;
1519}
1520
1521
1522static int mga_vga_get_modes(struct drm_connector *connector)
1523{
1524 struct mga_connector *mga_connector = to_mga_connector(connector);
1525 struct edid *edid;
1526 int ret = 0;
1527
1528 edid = drm_get_edid(connector, &mga_connector->i2c->adapter);
1529 if (edid) {
1530 drm_connector_update_edid_property(connector, edid);
1531 ret = drm_add_edid_modes(connector, edid);
1532 kfree(edid);
1533 }
1534 return ret;
1535}
1536
1537static uint32_t mga_vga_calculate_mode_bandwidth(struct drm_display_mode *mode,
1538 int bits_per_pixel)
1539{
1540 uint32_t total_area, divisor;
1541 uint64_t active_area, pixels_per_second, bandwidth;
1542 uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8;
1543
1544 divisor = 1024;
1545
1546 if (!mode->htotal || !mode->vtotal || !mode->clock)
1547 return 0;
1548
1549 active_area = mode->hdisplay * mode->vdisplay;
1550 total_area = mode->htotal * mode->vtotal;
1551
1552 pixels_per_second = active_area * mode->clock * 1000;
1553 do_div(pixels_per_second, total_area);
1554
1555 bandwidth = pixels_per_second * bytes_per_pixel * 100;
1556 do_div(bandwidth, divisor);
1557
1558 return (uint32_t)(bandwidth);
1559}
1560
1561#define MODE_BANDWIDTH MODE_BAD
1562
1563static enum drm_mode_status mga_vga_mode_valid(struct drm_connector *connector,
1564 struct drm_display_mode *mode)
1565{
1566 struct drm_device *dev = connector->dev;
1567 struct mga_device *mdev = (struct mga_device*)dev->dev_private;
1568 int bpp = 32;
1569
1570 if (IS_G200_SE(mdev)) {
1571 if (mdev->unique_rev_id == 0x01) {
1572 if (mode->hdisplay > 1600)
1573 return MODE_VIRTUAL_X;
1574 if (mode->vdisplay > 1200)
1575 return MODE_VIRTUAL_Y;
1576 if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1577 > (24400 * 1024))
1578 return MODE_BANDWIDTH;
1579 } else if (mdev->unique_rev_id == 0x02) {
1580 if (mode->hdisplay > 1920)
1581 return MODE_VIRTUAL_X;
1582 if (mode->vdisplay > 1200)
1583 return MODE_VIRTUAL_Y;
1584 if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1585 > (30100 * 1024))
1586 return MODE_BANDWIDTH;
1587 } else {
1588 if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1589 > (55000 * 1024))
1590 return MODE_BANDWIDTH;
1591 }
1592 } else if (mdev->type == G200_WB) {
1593 if (mode->hdisplay > 1280)
1594 return MODE_VIRTUAL_X;
1595 if (mode->vdisplay > 1024)
1596 return MODE_VIRTUAL_Y;
1597 if (mga_vga_calculate_mode_bandwidth(mode, bpp) >
1598 (31877 * 1024))
1599 return MODE_BANDWIDTH;
1600 } else if (mdev->type == G200_EV &&
1601 (mga_vga_calculate_mode_bandwidth(mode, bpp)
1602 > (32700 * 1024))) {
1603 return MODE_BANDWIDTH;
1604 } else if (mdev->type == G200_EH &&
1605 (mga_vga_calculate_mode_bandwidth(mode, bpp)
1606 > (37500 * 1024))) {
1607 return MODE_BANDWIDTH;
1608 } else if (mdev->type == G200_ER &&
1609 (mga_vga_calculate_mode_bandwidth(mode,
1610 bpp) > (55000 * 1024))) {
1611 return MODE_BANDWIDTH;
1612 }
1613
1614 if ((mode->hdisplay % 8) != 0 || (mode->hsync_start % 8) != 0 ||
1615 (mode->hsync_end % 8) != 0 || (mode->htotal % 8) != 0) {
1616 return MODE_H_ILLEGAL;
1617 }
1618
1619 if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
1620 mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
1621 mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
1622 mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
1623 return MODE_BAD;
1624 }
1625
1626 /* Validate the mode input by the user */
1627 if (connector->cmdline_mode.specified) {
1628 if (connector->cmdline_mode.bpp_specified)
1629 bpp = connector->cmdline_mode.bpp;
1630 }
1631
1632 if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->mc.vram_size) {
1633 if (connector->cmdline_mode.specified)
1634 connector->cmdline_mode.specified = false;
1635 return MODE_BAD;
1636 }
1637
1638 return MODE_OK;
1639}
1640
1641static struct drm_encoder *mga_connector_best_encoder(struct drm_connector
1642 *connector)
1643{
1644 int enc_id = connector->encoder_ids[0];
1645 /* pick the encoder ids */
1646 if (enc_id)
1647 return drm_encoder_find(connector->dev, NULL, enc_id);
1648 return NULL;
1649}
1650
1651static void mga_connector_destroy(struct drm_connector *connector)
1652{
1653 struct mga_connector *mga_connector = to_mga_connector(connector);
1654 mgag200_i2c_destroy(mga_connector->i2c);
1655 drm_connector_cleanup(connector);
1656 kfree(connector);
1657}
1658
1659static const struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = {
1660 .get_modes = mga_vga_get_modes,
1661 .mode_valid = mga_vga_mode_valid,
1662 .best_encoder = mga_connector_best_encoder,
1663};
1664
1665static const struct drm_connector_funcs mga_vga_connector_funcs = {
1666 .dpms = drm_helper_connector_dpms,
1667 .fill_modes = drm_helper_probe_single_connector_modes,
1668 .destroy = mga_connector_destroy,
1669};
1670
1671static struct drm_connector *mga_vga_init(struct drm_device *dev)
1672{
1673 struct drm_connector *connector;
1674 struct mga_connector *mga_connector;
1675
1676 mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL);
1677 if (!mga_connector)
1678 return NULL;
1679
1680 connector = &mga_connector->base;
1681 mga_connector->i2c = mgag200_i2c_create(dev);
1682 if (!mga_connector->i2c)
1683 DRM_ERROR("failed to add ddc bus\n");
1684
1685 drm_connector_init_with_ddc(dev, connector,
1686 &mga_vga_connector_funcs,
1687 DRM_MODE_CONNECTOR_VGA,
1688 &mga_connector->i2c->adapter);
1689
1690 drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs);
1691
1692 drm_connector_register(connector);
1693
1694 return connector;
1695}
1696
1697
1698int mgag200_modeset_init(struct mga_device *mdev)
1699{
1700 struct drm_encoder *encoder;
1701 struct drm_connector *connector;
1702
1703 mdev->mode_info.mode_config_initialized = true;
1704
1705 mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
1706 mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
1707
1708 mdev->dev->mode_config.fb_base = mdev->mc.vram_base;
1709
1710 mga_crtc_init(mdev);
1711
1712 encoder = mga_encoder_init(mdev->dev);
1713 if (!encoder) {
1714 DRM_ERROR("mga_encoder_init failed\n");
1715 return -1;
1716 }
1717
1718 connector = mga_vga_init(mdev->dev);
1719 if (!connector) {
1720 DRM_ERROR("mga_vga_init failed\n");
1721 return -1;
1722 }
1723
1724 drm_connector_attach_encoder(connector, encoder);
1725
1726 return 0;
1727}
1728
1729void mgag200_modeset_fini(struct mga_device *mdev)
1730{
1731
1732}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 2010 Matt Turner.
4 * Copyright 2012 Red Hat
5 *
6 * Authors: Matthew Garrett
7 * Matt Turner
8 * Dave Airlie
9 */
10
11#include <linux/delay.h>
12#include <linux/iosys-map.h>
13
14#include <drm/drm_atomic.h>
15#include <drm/drm_atomic_helper.h>
16#include <drm/drm_damage_helper.h>
17#include <drm/drm_format_helper.h>
18#include <drm/drm_fourcc.h>
19#include <drm/drm_framebuffer.h>
20#include <drm/drm_gem_atomic_helper.h>
21#include <drm/drm_gem_framebuffer_helper.h>
22#include <drm/drm_print.h>
23#include <drm/drm_probe_helper.h>
24
25#include "mgag200_drv.h"
26
27/*
28 * This file contains setup code for the CRTC.
29 */
30
31void mgag200_crtc_set_gamma_linear(struct mga_device *mdev,
32 const struct drm_format_info *format)
33{
34 int i;
35
36 WREG8(DAC_INDEX + MGA1064_INDEX, 0);
37
38 switch (format->format) {
39 case DRM_FORMAT_RGB565:
40 /* Use better interpolation, to take 32 values from 0 to 255 */
41 for (i = 0; i < MGAG200_LUT_SIZE / 8; i++) {
42 WREG8(DAC_INDEX + MGA1064_COL_PAL, i * 8 + i / 4);
43 WREG8(DAC_INDEX + MGA1064_COL_PAL, i * 4 + i / 16);
44 WREG8(DAC_INDEX + MGA1064_COL_PAL, i * 8 + i / 4);
45 }
46 /* Green has one more bit, so add padding with 0 for red and blue. */
47 for (i = MGAG200_LUT_SIZE / 8; i < MGAG200_LUT_SIZE / 4; i++) {
48 WREG8(DAC_INDEX + MGA1064_COL_PAL, 0);
49 WREG8(DAC_INDEX + MGA1064_COL_PAL, i * 4 + i / 16);
50 WREG8(DAC_INDEX + MGA1064_COL_PAL, 0);
51 }
52 break;
53 case DRM_FORMAT_RGB888:
54 case DRM_FORMAT_XRGB8888:
55 for (i = 0; i < MGAG200_LUT_SIZE; i++) {
56 WREG8(DAC_INDEX + MGA1064_COL_PAL, i);
57 WREG8(DAC_INDEX + MGA1064_COL_PAL, i);
58 WREG8(DAC_INDEX + MGA1064_COL_PAL, i);
59 }
60 break;
61 default:
62 drm_warn_once(&mdev->base, "Unsupported format %p4cc for gamma correction\n",
63 &format->format);
64 break;
65 }
66}
67
68void mgag200_crtc_set_gamma(struct mga_device *mdev,
69 const struct drm_format_info *format,
70 struct drm_color_lut *lut)
71{
72 int i;
73
74 WREG8(DAC_INDEX + MGA1064_INDEX, 0);
75
76 switch (format->format) {
77 case DRM_FORMAT_RGB565:
78 /* Use better interpolation, to take 32 values from lut[0] to lut[255] */
79 for (i = 0; i < MGAG200_LUT_SIZE / 8; i++) {
80 WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i * 8 + i / 4].red >> 8);
81 WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i * 4 + i / 16].green >> 8);
82 WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i * 8 + i / 4].blue >> 8);
83 }
84 /* Green has one more bit, so add padding with 0 for red and blue. */
85 for (i = MGAG200_LUT_SIZE / 8; i < MGAG200_LUT_SIZE / 4; i++) {
86 WREG8(DAC_INDEX + MGA1064_COL_PAL, 0);
87 WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i * 4 + i / 16].green >> 8);
88 WREG8(DAC_INDEX + MGA1064_COL_PAL, 0);
89 }
90 break;
91 case DRM_FORMAT_RGB888:
92 case DRM_FORMAT_XRGB8888:
93 for (i = 0; i < MGAG200_LUT_SIZE; i++) {
94 WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i].red >> 8);
95 WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i].green >> 8);
96 WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i].blue >> 8);
97 }
98 break;
99 default:
100 drm_warn_once(&mdev->base, "Unsupported format %p4cc for gamma correction\n",
101 &format->format);
102 break;
103 }
104}
105
106static inline void mga_wait_vsync(struct mga_device *mdev)
107{
108 unsigned long timeout = jiffies + HZ/10;
109 unsigned int status = 0;
110
111 do {
112 status = RREG32(MGAREG_Status);
113 } while ((status & 0x08) && time_before(jiffies, timeout));
114 timeout = jiffies + HZ/10;
115 status = 0;
116 do {
117 status = RREG32(MGAREG_Status);
118 } while (!(status & 0x08) && time_before(jiffies, timeout));
119}
120
121static inline void mga_wait_busy(struct mga_device *mdev)
122{
123 unsigned long timeout = jiffies + HZ;
124 unsigned int status = 0;
125 do {
126 status = RREG8(MGAREG_Status + 2);
127 } while ((status & 0x01) && time_before(jiffies, timeout));
128}
129
130/*
131 * This is how the framebuffer base address is stored in g200 cards:
132 * * Assume @offset is the gpu_addr variable of the framebuffer object
133 * * Then addr is the number of _pixels_ (not bytes) from the start of
134 * VRAM to the first pixel we want to display. (divided by 2 for 32bit
135 * framebuffers)
136 * * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers
137 * addr<20> -> CRTCEXT0<6>
138 * addr<19-16> -> CRTCEXT0<3-0>
139 * addr<15-8> -> CRTCC<7-0>
140 * addr<7-0> -> CRTCD<7-0>
141 *
142 * CRTCEXT0 has to be programmed last to trigger an update and make the
143 * new addr variable take effect.
144 */
145static void mgag200_set_startadd(struct mga_device *mdev,
146 unsigned long offset)
147{
148 struct drm_device *dev = &mdev->base;
149 u32 startadd;
150 u8 crtcc, crtcd, crtcext0;
151
152 startadd = offset / 8;
153
154 if (startadd > 0)
155 drm_WARN_ON_ONCE(dev, mdev->info->bug_no_startadd);
156
157 /*
158 * Can't store addresses any higher than that, but we also
159 * don't have more than 16 MiB of memory, so it should be fine.
160 */
161 drm_WARN_ON(dev, startadd > 0x1fffff);
162
163 RREG_ECRT(0x00, crtcext0);
164
165 crtcc = (startadd >> 8) & 0xff;
166 crtcd = startadd & 0xff;
167 crtcext0 &= 0xb0;
168 crtcext0 |= ((startadd >> 14) & BIT(6)) |
169 ((startadd >> 16) & 0x0f);
170
171 WREG_CRT(0x0c, crtcc);
172 WREG_CRT(0x0d, crtcd);
173 WREG_ECRT(0x00, crtcext0);
174}
175
176void mgag200_init_registers(struct mga_device *mdev)
177{
178 u8 crtc11, misc;
179
180 WREG_SEQ(2, 0x0f);
181 WREG_SEQ(3, 0x00);
182 WREG_SEQ(4, 0x0e);
183
184 WREG_CRT(10, 0);
185 WREG_CRT(11, 0);
186 WREG_CRT(12, 0);
187 WREG_CRT(13, 0);
188 WREG_CRT(14, 0);
189 WREG_CRT(15, 0);
190
191 RREG_CRT(0x11, crtc11);
192 crtc11 &= ~(MGAREG_CRTC11_CRTCPROTECT |
193 MGAREG_CRTC11_VINTEN |
194 MGAREG_CRTC11_VINTCLR);
195 WREG_CRT(0x11, crtc11);
196
197 misc = RREG8(MGA_MISC_IN);
198 misc |= MGAREG_MISC_IOADSEL;
199 WREG8(MGA_MISC_OUT, misc);
200}
201
202void mgag200_set_mode_regs(struct mga_device *mdev, const struct drm_display_mode *mode)
203{
204 const struct mgag200_device_info *info = mdev->info;
205 unsigned int hdisplay, hsyncstart, hsyncend, htotal;
206 unsigned int vdisplay, vsyncstart, vsyncend, vtotal;
207 u8 misc, crtcext1, crtcext2, crtcext5;
208
209 hdisplay = mode->hdisplay / 8 - 1;
210 hsyncstart = mode->hsync_start / 8 - 1;
211 hsyncend = mode->hsync_end / 8 - 1;
212 htotal = mode->htotal / 8 - 1;
213
214 /* Work around hardware quirk */
215 if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
216 htotal++;
217
218 vdisplay = mode->vdisplay - 1;
219 vsyncstart = mode->vsync_start - 1;
220 vsyncend = mode->vsync_end - 1;
221 vtotal = mode->vtotal - 2;
222
223 misc = RREG8(MGA_MISC_IN);
224
225 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
226 misc |= MGAREG_MISC_HSYNCPOL;
227 else
228 misc &= ~MGAREG_MISC_HSYNCPOL;
229
230 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
231 misc |= MGAREG_MISC_VSYNCPOL;
232 else
233 misc &= ~MGAREG_MISC_VSYNCPOL;
234
235 crtcext1 = (((htotal - 4) & 0x100) >> 8) |
236 ((hdisplay & 0x100) >> 7) |
237 ((hsyncstart & 0x100) >> 6) |
238 (htotal & 0x40);
239 if (info->has_vidrst)
240 crtcext1 |= MGAREG_CRTCEXT1_VRSTEN |
241 MGAREG_CRTCEXT1_HRSTEN;
242
243 crtcext2 = ((vtotal & 0xc00) >> 10) |
244 ((vdisplay & 0x400) >> 8) |
245 ((vdisplay & 0xc00) >> 7) |
246 ((vsyncstart & 0xc00) >> 5) |
247 ((vdisplay & 0x400) >> 3);
248 crtcext5 = 0x00;
249
250 WREG_CRT(0, htotal - 4);
251 WREG_CRT(1, hdisplay);
252 WREG_CRT(2, hdisplay);
253 WREG_CRT(3, (htotal & 0x1F) | 0x80);
254 WREG_CRT(4, hsyncstart);
255 WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
256 WREG_CRT(6, vtotal & 0xFF);
257 WREG_CRT(7, ((vtotal & 0x100) >> 8) |
258 ((vdisplay & 0x100) >> 7) |
259 ((vsyncstart & 0x100) >> 6) |
260 ((vdisplay & 0x100) >> 5) |
261 ((vdisplay & 0x100) >> 4) | /* linecomp */
262 ((vtotal & 0x200) >> 4) |
263 ((vdisplay & 0x200) >> 3) |
264 ((vsyncstart & 0x200) >> 2));
265 WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
266 ((vdisplay & 0x200) >> 3));
267 WREG_CRT(16, vsyncstart & 0xFF);
268 WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
269 WREG_CRT(18, vdisplay & 0xFF);
270 WREG_CRT(20, 0);
271 WREG_CRT(21, vdisplay & 0xFF);
272 WREG_CRT(22, (vtotal + 1) & 0xFF);
273 WREG_CRT(23, 0xc3);
274 WREG_CRT(24, vdisplay & 0xFF);
275
276 WREG_ECRT(0x01, crtcext1);
277 WREG_ECRT(0x02, crtcext2);
278 WREG_ECRT(0x05, crtcext5);
279
280 WREG8(MGA_MISC_OUT, misc);
281}
282
283static u8 mgag200_get_bpp_shift(const struct drm_format_info *format)
284{
285 static const u8 bpp_shift[] = {0, 1, 0, 2};
286
287 return bpp_shift[format->cpp[0] - 1];
288}
289
290/*
291 * Calculates the HW offset value from the framebuffer's pitch. The
292 * offset is a multiple of the pixel size and depends on the display
293 * format.
294 */
295static u32 mgag200_calculate_offset(struct mga_device *mdev,
296 const struct drm_framebuffer *fb)
297{
298 u32 offset = fb->pitches[0] / fb->format->cpp[0];
299 u8 bppshift = mgag200_get_bpp_shift(fb->format);
300
301 if (fb->format->cpp[0] * 8 == 24)
302 offset = (offset * 3) >> (4 - bppshift);
303 else
304 offset = offset >> (4 - bppshift);
305
306 return offset;
307}
308
309static void mgag200_set_offset(struct mga_device *mdev,
310 const struct drm_framebuffer *fb)
311{
312 u8 crtc13, crtcext0;
313 u32 offset = mgag200_calculate_offset(mdev, fb);
314
315 RREG_ECRT(0, crtcext0);
316
317 crtc13 = offset & 0xff;
318
319 crtcext0 &= ~MGAREG_CRTCEXT0_OFFSET_MASK;
320 crtcext0 |= (offset >> 4) & MGAREG_CRTCEXT0_OFFSET_MASK;
321
322 WREG_CRT(0x13, crtc13);
323 WREG_ECRT(0x00, crtcext0);
324}
325
326void mgag200_set_format_regs(struct mga_device *mdev, const struct drm_format_info *format)
327{
328 struct drm_device *dev = &mdev->base;
329 unsigned int bpp, bppshift, scale;
330 u8 crtcext3, xmulctrl;
331
332 bpp = format->cpp[0] * 8;
333
334 bppshift = mgag200_get_bpp_shift(format);
335 switch (bpp) {
336 case 24:
337 scale = ((1 << bppshift) * 3) - 1;
338 break;
339 default:
340 scale = (1 << bppshift) - 1;
341 break;
342 }
343
344 RREG_ECRT(3, crtcext3);
345
346 switch (bpp) {
347 case 8:
348 xmulctrl = MGA1064_MUL_CTL_8bits;
349 break;
350 case 16:
351 if (format->depth == 15)
352 xmulctrl = MGA1064_MUL_CTL_15bits;
353 else
354 xmulctrl = MGA1064_MUL_CTL_16bits;
355 break;
356 case 24:
357 xmulctrl = MGA1064_MUL_CTL_24bits;
358 break;
359 case 32:
360 xmulctrl = MGA1064_MUL_CTL_32_24bits;
361 break;
362 default:
363 /* BUG: We should have caught this problem already. */
364 drm_WARN_ON(dev, "invalid format depth\n");
365 return;
366 }
367
368 crtcext3 &= ~GENMASK(2, 0);
369 crtcext3 |= scale;
370
371 WREG_DAC(MGA1064_MUL_CTL, xmulctrl);
372
373 WREG_GFX(0, 0x00);
374 WREG_GFX(1, 0x00);
375 WREG_GFX(2, 0x00);
376 WREG_GFX(3, 0x00);
377 WREG_GFX(4, 0x00);
378 WREG_GFX(5, 0x40);
379 /* GCTL6 should be 0x05, but we configure memmapsl to 0xb8000 (text mode),
380 * so that it doesn't hang when running kexec/kdump on G200_SE rev42.
381 */
382 WREG_GFX(6, 0x0d);
383 WREG_GFX(7, 0x0f);
384 WREG_GFX(8, 0x0f);
385
386 WREG_ECRT(3, crtcext3);
387}
388
389void mgag200_enable_display(struct mga_device *mdev)
390{
391 u8 seq0, crtcext1;
392
393 RREG_SEQ(0x00, seq0);
394 seq0 |= MGAREG_SEQ0_SYNCRST |
395 MGAREG_SEQ0_ASYNCRST;
396 WREG_SEQ(0x00, seq0);
397
398 /*
399 * TODO: replace busy waiting with vblank IRQ; put
400 * msleep(50) before changing SCROFF
401 */
402 mga_wait_vsync(mdev);
403 mga_wait_busy(mdev);
404
405 RREG_ECRT(0x01, crtcext1);
406 crtcext1 &= ~MGAREG_CRTCEXT1_VSYNCOFF;
407 crtcext1 &= ~MGAREG_CRTCEXT1_HSYNCOFF;
408 WREG_ECRT(0x01, crtcext1);
409}
410
411static void mgag200_disable_display(struct mga_device *mdev)
412{
413 u8 seq0, crtcext1;
414
415 RREG_SEQ(0x00, seq0);
416 seq0 &= ~MGAREG_SEQ0_SYNCRST;
417 WREG_SEQ(0x00, seq0);
418
419 /*
420 * TODO: replace busy waiting with vblank IRQ; put
421 * msleep(50) before changing SCROFF
422 */
423 mga_wait_vsync(mdev);
424 mga_wait_busy(mdev);
425
426 RREG_ECRT(0x01, crtcext1);
427 crtcext1 |= MGAREG_CRTCEXT1_VSYNCOFF |
428 MGAREG_CRTCEXT1_HSYNCOFF;
429 WREG_ECRT(0x01, crtcext1);
430}
431
432static void mgag200_handle_damage(struct mga_device *mdev, const struct iosys_map *vmap,
433 struct drm_framebuffer *fb, struct drm_rect *clip)
434{
435 struct iosys_map dst = IOSYS_MAP_INIT_VADDR_IOMEM(mdev->vram);
436
437 iosys_map_incr(&dst, drm_fb_clip_offset(fb->pitches[0], fb->format, clip));
438 drm_fb_memcpy(&dst, fb->pitches, vmap, fb, clip);
439}
440
441/*
442 * Primary plane
443 */
444
445const uint32_t mgag200_primary_plane_formats[] = {
446 DRM_FORMAT_XRGB8888,
447 DRM_FORMAT_RGB565,
448 DRM_FORMAT_RGB888,
449};
450
451const size_t mgag200_primary_plane_formats_size = ARRAY_SIZE(mgag200_primary_plane_formats);
452
453const uint64_t mgag200_primary_plane_fmtmods[] = {
454 DRM_FORMAT_MOD_LINEAR,
455 DRM_FORMAT_MOD_INVALID
456};
457
458int mgag200_primary_plane_helper_atomic_check(struct drm_plane *plane,
459 struct drm_atomic_state *new_state)
460{
461 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(new_state, plane);
462 struct drm_framebuffer *new_fb = new_plane_state->fb;
463 struct drm_framebuffer *fb = NULL;
464 struct drm_crtc *new_crtc = new_plane_state->crtc;
465 struct drm_crtc_state *new_crtc_state = NULL;
466 struct mgag200_crtc_state *new_mgag200_crtc_state;
467 int ret;
468
469 if (new_crtc)
470 new_crtc_state = drm_atomic_get_new_crtc_state(new_state, new_crtc);
471
472 ret = drm_atomic_helper_check_plane_state(new_plane_state, new_crtc_state,
473 DRM_PLANE_NO_SCALING,
474 DRM_PLANE_NO_SCALING,
475 false, true);
476 if (ret)
477 return ret;
478 else if (!new_plane_state->visible)
479 return 0;
480
481 if (plane->state)
482 fb = plane->state->fb;
483
484 if (!fb || (fb->format != new_fb->format))
485 new_crtc_state->mode_changed = true; /* update PLL settings */
486
487 new_mgag200_crtc_state = to_mgag200_crtc_state(new_crtc_state);
488 new_mgag200_crtc_state->format = new_fb->format;
489
490 return 0;
491}
492
493void mgag200_primary_plane_helper_atomic_update(struct drm_plane *plane,
494 struct drm_atomic_state *old_state)
495{
496 struct drm_device *dev = plane->dev;
497 struct mga_device *mdev = to_mga_device(dev);
498 struct drm_plane_state *plane_state = plane->state;
499 struct drm_plane_state *old_plane_state = drm_atomic_get_old_plane_state(old_state, plane);
500 struct drm_shadow_plane_state *shadow_plane_state = to_drm_shadow_plane_state(plane_state);
501 struct drm_framebuffer *fb = plane_state->fb;
502 struct drm_atomic_helper_damage_iter iter;
503 struct drm_rect damage;
504
505 drm_atomic_helper_damage_iter_init(&iter, old_plane_state, plane_state);
506 drm_atomic_for_each_plane_damage(&iter, &damage) {
507 mgag200_handle_damage(mdev, shadow_plane_state->data, fb, &damage);
508 }
509
510 /* Always scanout image at VRAM offset 0 */
511 mgag200_set_startadd(mdev, (u32)0);
512 mgag200_set_offset(mdev, fb);
513}
514
515void mgag200_primary_plane_helper_atomic_enable(struct drm_plane *plane,
516 struct drm_atomic_state *state)
517{
518 struct drm_device *dev = plane->dev;
519 struct mga_device *mdev = to_mga_device(dev);
520 u8 seq1;
521
522 RREG_SEQ(0x01, seq1);
523 seq1 &= ~MGAREG_SEQ1_SCROFF;
524 WREG_SEQ(0x01, seq1);
525 msleep(20);
526}
527
528void mgag200_primary_plane_helper_atomic_disable(struct drm_plane *plane,
529 struct drm_atomic_state *old_state)
530{
531 struct drm_device *dev = plane->dev;
532 struct mga_device *mdev = to_mga_device(dev);
533 u8 seq1;
534
535 RREG_SEQ(0x01, seq1);
536 seq1 |= MGAREG_SEQ1_SCROFF;
537 WREG_SEQ(0x01, seq1);
538 msleep(20);
539}
540
541/*
542 * CRTC
543 */
544
545enum drm_mode_status mgag200_crtc_helper_mode_valid(struct drm_crtc *crtc,
546 const struct drm_display_mode *mode)
547{
548 struct mga_device *mdev = to_mga_device(crtc->dev);
549 const struct mgag200_device_info *info = mdev->info;
550
551 /*
552 * Some devices have additional limits on the size of the
553 * display mode.
554 */
555 if (mode->hdisplay > info->max_hdisplay)
556 return MODE_VIRTUAL_X;
557 if (mode->vdisplay > info->max_vdisplay)
558 return MODE_VIRTUAL_Y;
559
560 if ((mode->hdisplay % 8) != 0 || (mode->hsync_start % 8) != 0 ||
561 (mode->hsync_end % 8) != 0 || (mode->htotal % 8) != 0) {
562 return MODE_H_ILLEGAL;
563 }
564
565 if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
566 mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
567 mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
568 mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
569 return MODE_BAD;
570 }
571
572 return MODE_OK;
573}
574
575int mgag200_crtc_helper_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *new_state)
576{
577 struct drm_device *dev = crtc->dev;
578 struct mga_device *mdev = to_mga_device(dev);
579 const struct mgag200_device_funcs *funcs = mdev->funcs;
580 struct drm_crtc_state *new_crtc_state = drm_atomic_get_new_crtc_state(new_state, crtc);
581 struct drm_property_blob *new_gamma_lut = new_crtc_state->gamma_lut;
582 int ret;
583
584 if (!new_crtc_state->enable)
585 return 0;
586
587 ret = drm_atomic_helper_check_crtc_primary_plane(new_crtc_state);
588 if (ret)
589 return ret;
590
591 if (new_crtc_state->mode_changed) {
592 if (funcs->pixpllc_atomic_check) {
593 ret = funcs->pixpllc_atomic_check(crtc, new_state);
594 if (ret)
595 return ret;
596 }
597 }
598
599 if (new_crtc_state->color_mgmt_changed && new_gamma_lut) {
600 if (new_gamma_lut->length != MGAG200_LUT_SIZE * sizeof(struct drm_color_lut)) {
601 drm_dbg(dev, "Wrong size for gamma_lut %zu\n", new_gamma_lut->length);
602 return -EINVAL;
603 }
604 }
605
606 return 0;
607}
608
609void mgag200_crtc_helper_atomic_flush(struct drm_crtc *crtc, struct drm_atomic_state *old_state)
610{
611 struct drm_crtc_state *crtc_state = crtc->state;
612 struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
613 struct drm_device *dev = crtc->dev;
614 struct mga_device *mdev = to_mga_device(dev);
615
616 if (crtc_state->enable && crtc_state->color_mgmt_changed) {
617 const struct drm_format_info *format = mgag200_crtc_state->format;
618
619 if (crtc_state->gamma_lut)
620 mgag200_crtc_set_gamma(mdev, format, crtc_state->gamma_lut->data);
621 else
622 mgag200_crtc_set_gamma_linear(mdev, format);
623 }
624}
625
626void mgag200_crtc_helper_atomic_enable(struct drm_crtc *crtc, struct drm_atomic_state *old_state)
627{
628 struct drm_device *dev = crtc->dev;
629 struct mga_device *mdev = to_mga_device(dev);
630 const struct mgag200_device_funcs *funcs = mdev->funcs;
631 struct drm_crtc_state *crtc_state = crtc->state;
632 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
633 struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
634 const struct drm_format_info *format = mgag200_crtc_state->format;
635
636 if (funcs->disable_vidrst)
637 funcs->disable_vidrst(mdev);
638
639 mgag200_set_format_regs(mdev, format);
640 mgag200_set_mode_regs(mdev, adjusted_mode);
641
642 if (funcs->pixpllc_atomic_update)
643 funcs->pixpllc_atomic_update(crtc, old_state);
644
645 if (crtc_state->gamma_lut)
646 mgag200_crtc_set_gamma(mdev, format, crtc_state->gamma_lut->data);
647 else
648 mgag200_crtc_set_gamma_linear(mdev, format);
649
650 mgag200_enable_display(mdev);
651
652 if (funcs->enable_vidrst)
653 funcs->enable_vidrst(mdev);
654}
655
656void mgag200_crtc_helper_atomic_disable(struct drm_crtc *crtc, struct drm_atomic_state *old_state)
657{
658 struct mga_device *mdev = to_mga_device(crtc->dev);
659 const struct mgag200_device_funcs *funcs = mdev->funcs;
660
661 if (funcs->disable_vidrst)
662 funcs->disable_vidrst(mdev);
663
664 mgag200_disable_display(mdev);
665
666 if (funcs->enable_vidrst)
667 funcs->enable_vidrst(mdev);
668}
669
670void mgag200_crtc_reset(struct drm_crtc *crtc)
671{
672 struct mgag200_crtc_state *mgag200_crtc_state;
673
674 if (crtc->state)
675 crtc->funcs->atomic_destroy_state(crtc, crtc->state);
676
677 mgag200_crtc_state = kzalloc(sizeof(*mgag200_crtc_state), GFP_KERNEL);
678 if (mgag200_crtc_state)
679 __drm_atomic_helper_crtc_reset(crtc, &mgag200_crtc_state->base);
680 else
681 __drm_atomic_helper_crtc_reset(crtc, NULL);
682}
683
684struct drm_crtc_state *mgag200_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
685{
686 struct drm_crtc_state *crtc_state = crtc->state;
687 struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
688 struct mgag200_crtc_state *new_mgag200_crtc_state;
689
690 if (!crtc_state)
691 return NULL;
692
693 new_mgag200_crtc_state = kzalloc(sizeof(*new_mgag200_crtc_state), GFP_KERNEL);
694 if (!new_mgag200_crtc_state)
695 return NULL;
696 __drm_atomic_helper_crtc_duplicate_state(crtc, &new_mgag200_crtc_state->base);
697
698 new_mgag200_crtc_state->format = mgag200_crtc_state->format;
699 memcpy(&new_mgag200_crtc_state->pixpllc, &mgag200_crtc_state->pixpllc,
700 sizeof(new_mgag200_crtc_state->pixpllc));
701
702 return &new_mgag200_crtc_state->base;
703}
704
705void mgag200_crtc_atomic_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *crtc_state)
706{
707 struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
708
709 __drm_atomic_helper_crtc_destroy_state(&mgag200_crtc_state->base);
710 kfree(mgag200_crtc_state);
711}
712
713/*
714 * Connector
715 */
716
717int mgag200_vga_connector_helper_get_modes(struct drm_connector *connector)
718{
719 struct mga_device *mdev = to_mga_device(connector->dev);
720 int ret;
721
722 /*
723 * Protect access to I/O registers from concurrent modesetting
724 * by acquiring the I/O-register lock.
725 */
726 mutex_lock(&mdev->rmmio_lock);
727 ret = drm_connector_helper_get_modes_from_ddc(connector);
728 mutex_unlock(&mdev->rmmio_lock);
729
730 return ret;
731}
732
733/*
734 * Mode config
735 */
736
737static void mgag200_mode_config_helper_atomic_commit_tail(struct drm_atomic_state *state)
738{
739 struct mga_device *mdev = to_mga_device(state->dev);
740
741 /*
742 * Concurrent operations could possibly trigger a call to
743 * drm_connector_helper_funcs.get_modes by trying to read the
744 * display modes. Protect access to I/O registers by acquiring
745 * the I/O-register lock.
746 */
747 mutex_lock(&mdev->rmmio_lock);
748 drm_atomic_helper_commit_tail(state);
749 mutex_unlock(&mdev->rmmio_lock);
750}
751
752static const struct drm_mode_config_helper_funcs mgag200_mode_config_helper_funcs = {
753 .atomic_commit_tail = mgag200_mode_config_helper_atomic_commit_tail,
754};
755
756/* Calculates a mode's required memory bandwidth (in KiB/sec). */
757static uint32_t mgag200_calculate_mode_bandwidth(const struct drm_display_mode *mode,
758 unsigned int bits_per_pixel)
759{
760 uint32_t total_area, divisor;
761 uint64_t active_area, pixels_per_second, bandwidth;
762 uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8;
763
764 divisor = 1024;
765
766 if (!mode->htotal || !mode->vtotal || !mode->clock)
767 return 0;
768
769 active_area = mode->hdisplay * mode->vdisplay;
770 total_area = mode->htotal * mode->vtotal;
771
772 pixels_per_second = active_area * mode->clock * 1000;
773 do_div(pixels_per_second, total_area);
774
775 bandwidth = pixels_per_second * bytes_per_pixel * 100;
776 do_div(bandwidth, divisor);
777
778 return (uint32_t)bandwidth;
779}
780
781static enum drm_mode_status mgag200_mode_config_mode_valid(struct drm_device *dev,
782 const struct drm_display_mode *mode)
783{
784 static const unsigned int max_bpp = 4; // DRM_FORMAT_XRGB8888
785 struct mga_device *mdev = to_mga_device(dev);
786 unsigned long fbsize, fbpages, max_fbpages;
787 const struct mgag200_device_info *info = mdev->info;
788
789 max_fbpages = mdev->vram_available >> PAGE_SHIFT;
790
791 fbsize = mode->hdisplay * mode->vdisplay * max_bpp;
792 fbpages = DIV_ROUND_UP(fbsize, PAGE_SIZE);
793
794 if (fbpages > max_fbpages)
795 return MODE_MEM;
796
797 /*
798 * Test the mode's required memory bandwidth if the device
799 * specifies a maximum. Not all devices do though.
800 */
801 if (info->max_mem_bandwidth) {
802 uint32_t mode_bandwidth = mgag200_calculate_mode_bandwidth(mode, max_bpp * 8);
803
804 if (mode_bandwidth > (info->max_mem_bandwidth * 1024))
805 return MODE_BAD;
806 }
807
808 return MODE_OK;
809}
810
811static const struct drm_mode_config_funcs mgag200_mode_config_funcs = {
812 .fb_create = drm_gem_fb_create_with_dirty,
813 .mode_valid = mgag200_mode_config_mode_valid,
814 .atomic_check = drm_atomic_helper_check,
815 .atomic_commit = drm_atomic_helper_commit,
816};
817
818int mgag200_mode_config_init(struct mga_device *mdev, resource_size_t vram_available)
819{
820 struct drm_device *dev = &mdev->base;
821 int ret;
822
823 mdev->vram_available = vram_available;
824
825 ret = drmm_mode_config_init(dev);
826 if (ret) {
827 drm_err(dev, "drmm_mode_config_init() failed: %d\n", ret);
828 return ret;
829 }
830
831 dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
832 dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
833 dev->mode_config.preferred_depth = 24;
834 dev->mode_config.funcs = &mgag200_mode_config_funcs;
835 dev->mode_config.helper_private = &mgag200_mode_config_helper_funcs;
836
837 return 0;
838}