Loading...
1/* SPDX-License-Identifier: MIT */
2#ifndef _INTEL_RINGBUFFER_H_
3#define _INTEL_RINGBUFFER_H_
4
5#include <drm/drm_util.h>
6
7#include <linux/hashtable.h>
8#include <linux/irq_work.h>
9#include <linux/random.h>
10#include <linux/seqlock.h>
11
12#include "i915_pmu.h"
13#include "i915_reg.h"
14#include "i915_request.h"
15#include "i915_selftest.h"
16#include "gt/intel_timeline.h"
17#include "intel_engine_types.h"
18#include "intel_gpu_commands.h"
19#include "intel_workarounds.h"
20
21struct drm_printer;
22
23/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
24 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
25 * to give some inclination as to some of the magic values used in the various
26 * workarounds!
27 */
28#define CACHELINE_BYTES 64
29#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(u32))
30
31/*
32 * The register defines to be used with the following macros need to accept a
33 * base param, e.g:
34 *
35 * REG_FOO(base) _MMIO((base) + <relative offset>)
36 * ENGINE_READ(engine, REG_FOO);
37 *
38 * register arrays are to be defined and accessed as follows:
39 *
40 * REG_BAR(base, i) _MMIO((base) + <relative offset> + (i) * <shift>)
41 * ENGINE_READ_IDX(engine, REG_BAR, i)
42 */
43
44#define __ENGINE_REG_OP(op__, engine__, ...) \
45 intel_uncore_##op__((engine__)->uncore, __VA_ARGS__)
46
47#define __ENGINE_READ_OP(op__, engine__, reg__) \
48 __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base))
49
50#define ENGINE_READ16(...) __ENGINE_READ_OP(read16, __VA_ARGS__)
51#define ENGINE_READ(...) __ENGINE_READ_OP(read, __VA_ARGS__)
52#define ENGINE_READ_FW(...) __ENGINE_READ_OP(read_fw, __VA_ARGS__)
53#define ENGINE_POSTING_READ(...) __ENGINE_READ_OP(posting_read_fw, __VA_ARGS__)
54#define ENGINE_POSTING_READ16(...) __ENGINE_READ_OP(posting_read16, __VA_ARGS__)
55
56#define ENGINE_READ64(engine__, lower_reg__, upper_reg__) \
57 __ENGINE_REG_OP(read64_2x32, (engine__), \
58 lower_reg__((engine__)->mmio_base), \
59 upper_reg__((engine__)->mmio_base))
60
61#define ENGINE_READ_IDX(engine__, reg__, idx__) \
62 __ENGINE_REG_OP(read, (engine__), reg__((engine__)->mmio_base, (idx__)))
63
64#define __ENGINE_WRITE_OP(op__, engine__, reg__, val__) \
65 __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base), (val__))
66
67#define ENGINE_WRITE16(...) __ENGINE_WRITE_OP(write16, __VA_ARGS__)
68#define ENGINE_WRITE(...) __ENGINE_WRITE_OP(write, __VA_ARGS__)
69#define ENGINE_WRITE_FW(...) __ENGINE_WRITE_OP(write_fw, __VA_ARGS__)
70
71#define GEN6_RING_FAULT_REG_READ(engine__) \
72 intel_uncore_read((engine__)->uncore, RING_FAULT_REG(engine__))
73
74#define GEN6_RING_FAULT_REG_POSTING_READ(engine__) \
75 intel_uncore_posting_read((engine__)->uncore, RING_FAULT_REG(engine__))
76
77#define GEN6_RING_FAULT_REG_RMW(engine__, clear__, set__) \
78({ \
79 u32 __val; \
80\
81 __val = intel_uncore_read((engine__)->uncore, \
82 RING_FAULT_REG(engine__)); \
83 __val &= ~(clear__); \
84 __val |= (set__); \
85 intel_uncore_write((engine__)->uncore, RING_FAULT_REG(engine__), \
86 __val); \
87})
88
89/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
90 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
91 */
92enum intel_engine_hangcheck_action {
93 ENGINE_IDLE = 0,
94 ENGINE_WAIT,
95 ENGINE_ACTIVE_SEQNO,
96 ENGINE_ACTIVE_HEAD,
97 ENGINE_ACTIVE_SUBUNITS,
98 ENGINE_WAIT_KICK,
99 ENGINE_DEAD,
100};
101
102static inline const char *
103hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
104{
105 switch (a) {
106 case ENGINE_IDLE:
107 return "idle";
108 case ENGINE_WAIT:
109 return "wait";
110 case ENGINE_ACTIVE_SEQNO:
111 return "active seqno";
112 case ENGINE_ACTIVE_HEAD:
113 return "active head";
114 case ENGINE_ACTIVE_SUBUNITS:
115 return "active subunits";
116 case ENGINE_WAIT_KICK:
117 return "wait kick";
118 case ENGINE_DEAD:
119 return "dead";
120 }
121
122 return "unknown";
123}
124
125static inline unsigned int
126execlists_num_ports(const struct intel_engine_execlists * const execlists)
127{
128 return execlists->port_mask + 1;
129}
130
131static inline struct i915_request *
132execlists_active(const struct intel_engine_execlists *execlists)
133{
134 GEM_BUG_ON(execlists->active - execlists->inflight >
135 execlists_num_ports(execlists));
136 return READ_ONCE(*execlists->active);
137}
138
139static inline void
140execlists_active_lock_bh(struct intel_engine_execlists *execlists)
141{
142 local_bh_disable(); /* prevent local softirq and lock recursion */
143 tasklet_lock(&execlists->tasklet);
144}
145
146static inline void
147execlists_active_unlock_bh(struct intel_engine_execlists *execlists)
148{
149 tasklet_unlock(&execlists->tasklet);
150 local_bh_enable(); /* restore softirq, and kick ksoftirqd! */
151}
152
153struct i915_request *
154execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists);
155
156static inline u32
157intel_read_status_page(const struct intel_engine_cs *engine, int reg)
158{
159 /* Ensure that the compiler doesn't optimize away the load. */
160 return READ_ONCE(engine->status_page.addr[reg]);
161}
162
163static inline void
164intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
165{
166 /* Writing into the status page should be done sparingly. Since
167 * we do when we are uncertain of the device state, we take a bit
168 * of extra paranoia to try and ensure that the HWS takes the value
169 * we give and that it doesn't end up trapped inside the CPU!
170 */
171 if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
172 mb();
173 clflush(&engine->status_page.addr[reg]);
174 engine->status_page.addr[reg] = value;
175 clflush(&engine->status_page.addr[reg]);
176 mb();
177 } else {
178 WRITE_ONCE(engine->status_page.addr[reg], value);
179 }
180}
181
182/*
183 * Reads a dword out of the status page, which is written to from the command
184 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
185 * MI_STORE_DATA_IMM.
186 *
187 * The following dwords have a reserved meaning:
188 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
189 * 0x04: ring 0 head pointer
190 * 0x05: ring 1 head pointer (915-class)
191 * 0x06: ring 2 head pointer (915-class)
192 * 0x10-0x1b: Context status DWords (GM45)
193 * 0x1f: Last written status offset. (GM45)
194 * 0x20-0x2f: Reserved (Gen6+)
195 *
196 * The area from dword 0x30 to 0x3ff is available for driver usage.
197 */
198#define I915_GEM_HWS_PREEMPT 0x32
199#define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT * sizeof(u32))
200#define I915_GEM_HWS_SEQNO 0x40
201#define I915_GEM_HWS_SEQNO_ADDR (I915_GEM_HWS_SEQNO * sizeof(u32))
202#define I915_GEM_HWS_SCRATCH 0x80
203#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH * sizeof(u32))
204
205#define I915_HWS_CSB_BUF0_INDEX 0x10
206#define I915_HWS_CSB_WRITE_INDEX 0x1f
207#define CNL_HWS_CSB_WRITE_INDEX 0x2f
208
209struct intel_ring *
210intel_engine_create_ring(struct intel_engine_cs *engine, int size);
211int intel_ring_pin(struct intel_ring *ring);
212void intel_ring_reset(struct intel_ring *ring, u32 tail);
213unsigned int intel_ring_update_space(struct intel_ring *ring);
214void intel_ring_unpin(struct intel_ring *ring);
215void intel_ring_free(struct kref *ref);
216
217static inline struct intel_ring *intel_ring_get(struct intel_ring *ring)
218{
219 kref_get(&ring->ref);
220 return ring;
221}
222
223static inline void intel_ring_put(struct intel_ring *ring)
224{
225 kref_put(&ring->ref, intel_ring_free);
226}
227
228void intel_engine_stop(struct intel_engine_cs *engine);
229void intel_engine_cleanup(struct intel_engine_cs *engine);
230
231int __must_check intel_ring_cacheline_align(struct i915_request *rq);
232
233u32 __must_check *intel_ring_begin(struct i915_request *rq, unsigned int n);
234
235static inline void intel_ring_advance(struct i915_request *rq, u32 *cs)
236{
237 /* Dummy function.
238 *
239 * This serves as a placeholder in the code so that the reader
240 * can compare against the preceding intel_ring_begin() and
241 * check that the number of dwords emitted matches the space
242 * reserved for the command packet (i.e. the value passed to
243 * intel_ring_begin()).
244 */
245 GEM_BUG_ON((rq->ring->vaddr + rq->ring->emit) != cs);
246}
247
248static inline u32 intel_ring_wrap(const struct intel_ring *ring, u32 pos)
249{
250 return pos & (ring->size - 1);
251}
252
253static inline bool
254intel_ring_offset_valid(const struct intel_ring *ring,
255 unsigned int pos)
256{
257 if (pos & -ring->size) /* must be strictly within the ring */
258 return false;
259
260 if (!IS_ALIGNED(pos, 8)) /* must be qword aligned */
261 return false;
262
263 return true;
264}
265
266static inline u32 intel_ring_offset(const struct i915_request *rq, void *addr)
267{
268 /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
269 u32 offset = addr - rq->ring->vaddr;
270 GEM_BUG_ON(offset > rq->ring->size);
271 return intel_ring_wrap(rq->ring, offset);
272}
273
274static inline void
275assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
276{
277 GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
278
279 /*
280 * "Ring Buffer Use"
281 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6
282 * Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
283 * Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
284 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
285 * same cacheline, the Head Pointer must not be greater than the Tail
286 * Pointer."
287 *
288 * We use ring->head as the last known location of the actual RING_HEAD,
289 * it may have advanced but in the worst case it is equally the same
290 * as ring->head and so we should never program RING_TAIL to advance
291 * into the same cacheline as ring->head.
292 */
293#define cacheline(a) round_down(a, CACHELINE_BYTES)
294 GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
295 tail < ring->head);
296#undef cacheline
297}
298
299static inline unsigned int
300intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
301{
302 /* Whilst writes to the tail are strictly order, there is no
303 * serialisation between readers and the writers. The tail may be
304 * read by i915_request_retire() just as it is being updated
305 * by execlists, as although the breadcrumb is complete, the context
306 * switch hasn't been seen.
307 */
308 assert_ring_tail_valid(ring, tail);
309 ring->tail = tail;
310 return tail;
311}
312
313static inline unsigned int
314__intel_ring_space(unsigned int head, unsigned int tail, unsigned int size)
315{
316 /*
317 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
318 * same cacheline, the Head Pointer must not be greater than the Tail
319 * Pointer."
320 */
321 GEM_BUG_ON(!is_power_of_2(size));
322 return (head - tail - CACHELINE_BYTES) & (size - 1);
323}
324
325int intel_engines_init_mmio(struct drm_i915_private *i915);
326int intel_engines_setup(struct drm_i915_private *i915);
327int intel_engines_init(struct drm_i915_private *i915);
328void intel_engines_cleanup(struct drm_i915_private *i915);
329
330int intel_engine_init_common(struct intel_engine_cs *engine);
331void intel_engine_cleanup_common(struct intel_engine_cs *engine);
332
333int intel_ring_submission_setup(struct intel_engine_cs *engine);
334int intel_ring_submission_init(struct intel_engine_cs *engine);
335
336int intel_engine_stop_cs(struct intel_engine_cs *engine);
337void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine);
338
339void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask);
340
341u64 intel_engine_get_active_head(const struct intel_engine_cs *engine);
342u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine);
343
344void intel_engine_get_instdone(struct intel_engine_cs *engine,
345 struct intel_instdone *instdone);
346
347void intel_engine_init_execlists(struct intel_engine_cs *engine);
348
349void intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
350void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
351
352void intel_engine_signal_breadcrumbs(struct intel_engine_cs *engine);
353void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
354
355static inline void
356intel_engine_queue_breadcrumbs(struct intel_engine_cs *engine)
357{
358 irq_work_queue(&engine->breadcrumbs.irq_work);
359}
360
361void intel_engine_breadcrumbs_irq(struct intel_engine_cs *engine);
362
363void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
364void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
365
366void intel_engine_print_breadcrumbs(struct intel_engine_cs *engine,
367 struct drm_printer *p);
368
369static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
370{
371 memset(batch, 0, 6 * sizeof(u32));
372
373 batch[0] = GFX_OP_PIPE_CONTROL(6);
374 batch[1] = flags;
375 batch[2] = offset;
376
377 return batch + 6;
378}
379
380static inline u32 *
381gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset, u32 flags)
382{
383 /* We're using qword write, offset should be aligned to 8 bytes. */
384 GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
385
386 /* w/a for post sync ops following a GPGPU operation we
387 * need a prior CS_STALL, which is emitted by the flush
388 * following the batch.
389 */
390 *cs++ = GFX_OP_PIPE_CONTROL(6);
391 *cs++ = flags | PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_GLOBAL_GTT_IVB;
392 *cs++ = gtt_offset;
393 *cs++ = 0;
394 *cs++ = value;
395 /* We're thrashing one dword of HWS. */
396 *cs++ = 0;
397
398 return cs;
399}
400
401static inline u32 *
402gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset, u32 flags)
403{
404 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
405 GEM_BUG_ON(gtt_offset & (1 << 5));
406 /* Offset should be aligned to 8 bytes for both (QW/DW) write types */
407 GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
408
409 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW | flags;
410 *cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT;
411 *cs++ = 0;
412 *cs++ = value;
413
414 return cs;
415}
416
417static inline void __intel_engine_reset(struct intel_engine_cs *engine,
418 bool stalled)
419{
420 if (engine->reset.reset)
421 engine->reset.reset(engine, stalled);
422 engine->serial++; /* contexts lost */
423}
424
425bool intel_engine_is_idle(struct intel_engine_cs *engine);
426bool intel_engines_are_idle(struct intel_gt *gt);
427
428void intel_engines_reset_default_submission(struct intel_gt *gt);
429
430bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
431
432__printf(3, 4)
433void intel_engine_dump(struct intel_engine_cs *engine,
434 struct drm_printer *m,
435 const char *header, ...);
436
437static inline void intel_engine_context_in(struct intel_engine_cs *engine)
438{
439 unsigned long flags;
440
441 if (READ_ONCE(engine->stats.enabled) == 0)
442 return;
443
444 write_seqlock_irqsave(&engine->stats.lock, flags);
445
446 if (engine->stats.enabled > 0) {
447 if (engine->stats.active++ == 0)
448 engine->stats.start = ktime_get();
449 GEM_BUG_ON(engine->stats.active == 0);
450 }
451
452 write_sequnlock_irqrestore(&engine->stats.lock, flags);
453}
454
455static inline void intel_engine_context_out(struct intel_engine_cs *engine)
456{
457 unsigned long flags;
458
459 if (READ_ONCE(engine->stats.enabled) == 0)
460 return;
461
462 write_seqlock_irqsave(&engine->stats.lock, flags);
463
464 if (engine->stats.enabled > 0) {
465 ktime_t last;
466
467 if (engine->stats.active && --engine->stats.active == 0) {
468 /*
469 * Decrement the active context count and in case GPU
470 * is now idle add up to the running total.
471 */
472 last = ktime_sub(ktime_get(), engine->stats.start);
473
474 engine->stats.total = ktime_add(engine->stats.total,
475 last);
476 } else if (engine->stats.active == 0) {
477 /*
478 * After turning on engine stats, context out might be
479 * the first event in which case we account from the
480 * time stats gathering was turned on.
481 */
482 last = ktime_sub(ktime_get(), engine->stats.enabled_at);
483
484 engine->stats.total = ktime_add(engine->stats.total,
485 last);
486 }
487 }
488
489 write_sequnlock_irqrestore(&engine->stats.lock, flags);
490}
491
492int intel_enable_engine_stats(struct intel_engine_cs *engine);
493void intel_disable_engine_stats(struct intel_engine_cs *engine);
494
495ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine);
496
497struct i915_request *
498intel_engine_find_active_request(struct intel_engine_cs *engine);
499
500u32 intel_engine_context_size(struct drm_i915_private *i915, u8 class);
501
502#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
503
504static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
505{
506 if (!execlists->preempt_hang.inject_hang)
507 return false;
508
509 complete(&execlists->preempt_hang.completion);
510 return true;
511}
512
513#else
514
515static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
516{
517 return false;
518}
519
520#endif
521
522void intel_engine_init_active(struct intel_engine_cs *engine,
523 unsigned int subclass);
524#define ENGINE_PHYSICAL 0
525#define ENGINE_MOCK 1
526#define ENGINE_VIRTUAL 2
527
528#endif /* _INTEL_RINGBUFFER_H_ */
1/* SPDX-License-Identifier: MIT */
2#ifndef _INTEL_RINGBUFFER_H_
3#define _INTEL_RINGBUFFER_H_
4
5#include <asm/cacheflush.h>
6#include <drm/drm_util.h>
7#include <drm/drm_cache.h>
8
9#include <linux/hashtable.h>
10#include <linux/irq_work.h>
11#include <linux/random.h>
12#include <linux/seqlock.h>
13
14#include "i915_pmu.h"
15#include "i915_request.h"
16#include "i915_selftest.h"
17#include "intel_engine_types.h"
18#include "intel_gt_types.h"
19#include "intel_timeline.h"
20#include "intel_workarounds.h"
21
22struct drm_printer;
23struct intel_context;
24struct intel_gt;
25struct lock_class_key;
26
27/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
28 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
29 * to give some inclination as to some of the magic values used in the various
30 * workarounds!
31 */
32#define CACHELINE_BYTES 64
33#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(u32))
34
35#define ENGINE_TRACE(e, fmt, ...) do { \
36 const struct intel_engine_cs *e__ __maybe_unused = (e); \
37 GEM_TRACE("%s %s: " fmt, \
38 dev_name(e__->i915->drm.dev), e__->name, \
39 ##__VA_ARGS__); \
40} while (0)
41
42/*
43 * The register defines to be used with the following macros need to accept a
44 * base param, e.g:
45 *
46 * REG_FOO(base) _MMIO((base) + <relative offset>)
47 * ENGINE_READ(engine, REG_FOO);
48 *
49 * register arrays are to be defined and accessed as follows:
50 *
51 * REG_BAR(base, i) _MMIO((base) + <relative offset> + (i) * <shift>)
52 * ENGINE_READ_IDX(engine, REG_BAR, i)
53 */
54
55#define __ENGINE_REG_OP(op__, engine__, ...) \
56 intel_uncore_##op__((engine__)->uncore, __VA_ARGS__)
57
58#define __ENGINE_READ_OP(op__, engine__, reg__) \
59 __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base))
60
61#define ENGINE_READ16(...) __ENGINE_READ_OP(read16, __VA_ARGS__)
62#define ENGINE_READ(...) __ENGINE_READ_OP(read, __VA_ARGS__)
63#define ENGINE_READ_FW(...) __ENGINE_READ_OP(read_fw, __VA_ARGS__)
64#define ENGINE_POSTING_READ(...) __ENGINE_READ_OP(posting_read_fw, __VA_ARGS__)
65#define ENGINE_POSTING_READ16(...) __ENGINE_READ_OP(posting_read16, __VA_ARGS__)
66
67#define ENGINE_READ64(engine__, lower_reg__, upper_reg__) \
68 __ENGINE_REG_OP(read64_2x32, (engine__), \
69 lower_reg__((engine__)->mmio_base), \
70 upper_reg__((engine__)->mmio_base))
71
72#define ENGINE_READ_IDX(engine__, reg__, idx__) \
73 __ENGINE_REG_OP(read, (engine__), reg__((engine__)->mmio_base, (idx__)))
74
75#define __ENGINE_WRITE_OP(op__, engine__, reg__, val__) \
76 __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base), (val__))
77
78#define ENGINE_WRITE16(...) __ENGINE_WRITE_OP(write16, __VA_ARGS__)
79#define ENGINE_WRITE(...) __ENGINE_WRITE_OP(write, __VA_ARGS__)
80#define ENGINE_WRITE_FW(...) __ENGINE_WRITE_OP(write_fw, __VA_ARGS__)
81
82#define GEN6_RING_FAULT_REG_READ(engine__) \
83 intel_uncore_read((engine__)->uncore, RING_FAULT_REG(engine__))
84
85#define GEN6_RING_FAULT_REG_POSTING_READ(engine__) \
86 intel_uncore_posting_read((engine__)->uncore, RING_FAULT_REG(engine__))
87
88#define GEN6_RING_FAULT_REG_RMW(engine__, clear__, set__) \
89({ \
90 u32 __val; \
91\
92 __val = intel_uncore_read((engine__)->uncore, \
93 RING_FAULT_REG(engine__)); \
94 __val &= ~(clear__); \
95 __val |= (set__); \
96 intel_uncore_write((engine__)->uncore, RING_FAULT_REG(engine__), \
97 __val); \
98})
99
100/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
101 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
102 */
103
104static inline unsigned int
105execlists_num_ports(const struct intel_engine_execlists * const execlists)
106{
107 return execlists->port_mask + 1;
108}
109
110static inline struct i915_request *
111execlists_active(const struct intel_engine_execlists *execlists)
112{
113 struct i915_request * const *cur, * const *old, *active;
114
115 cur = READ_ONCE(execlists->active);
116 smp_rmb(); /* pairs with overwrite protection in process_csb() */
117 do {
118 old = cur;
119
120 active = READ_ONCE(*cur);
121 cur = READ_ONCE(execlists->active);
122
123 smp_rmb(); /* and complete the seqlock retry */
124 } while (unlikely(cur != old));
125
126 return active;
127}
128
129struct i915_request *
130execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists);
131
132static inline u32
133intel_read_status_page(const struct intel_engine_cs *engine, int reg)
134{
135 /* Ensure that the compiler doesn't optimize away the load. */
136 return READ_ONCE(engine->status_page.addr[reg]);
137}
138
139static inline void
140intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
141{
142 /* Writing into the status page should be done sparingly. Since
143 * we do when we are uncertain of the device state, we take a bit
144 * of extra paranoia to try and ensure that the HWS takes the value
145 * we give and that it doesn't end up trapped inside the CPU!
146 */
147 drm_clflush_virt_range(&engine->status_page.addr[reg], sizeof(value));
148 WRITE_ONCE(engine->status_page.addr[reg], value);
149 drm_clflush_virt_range(&engine->status_page.addr[reg], sizeof(value));
150}
151
152/*
153 * Reads a dword out of the status page, which is written to from the command
154 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
155 * MI_STORE_DATA_IMM.
156 *
157 * The following dwords have a reserved meaning:
158 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
159 * 0x04: ring 0 head pointer
160 * 0x05: ring 1 head pointer (915-class)
161 * 0x06: ring 2 head pointer (915-class)
162 * 0x10-0x1b: Context status DWords (GM45)
163 * 0x1f: Last written status offset. (GM45)
164 * 0x20-0x2f: Reserved (Gen6+)
165 *
166 * The area from dword 0x30 to 0x3ff is available for driver usage.
167 */
168#define I915_GEM_HWS_PREEMPT 0x32
169#define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT * sizeof(u32))
170#define I915_GEM_HWS_SEQNO 0x40
171#define I915_GEM_HWS_SEQNO_ADDR (I915_GEM_HWS_SEQNO * sizeof(u32))
172#define I915_GEM_HWS_MIGRATE (0x42 * sizeof(u32))
173#define I915_GEM_HWS_GGTT_BIND 0x46
174#define I915_GEM_HWS_GGTT_BIND_ADDR (I915_GEM_HWS_GGTT_BIND * sizeof(u32))
175#define I915_GEM_HWS_PXP 0x60
176#define I915_GEM_HWS_PXP_ADDR (I915_GEM_HWS_PXP * sizeof(u32))
177#define I915_GEM_HWS_GSC 0x62
178#define I915_GEM_HWS_GSC_ADDR (I915_GEM_HWS_GSC * sizeof(u32))
179#define I915_GEM_HWS_SCRATCH 0x80
180
181#define I915_HWS_CSB_BUF0_INDEX 0x10
182#define I915_HWS_CSB_WRITE_INDEX 0x1f
183#define ICL_HWS_CSB_WRITE_INDEX 0x2f
184#define INTEL_HWS_CSB_WRITE_INDEX(__i915) \
185 (GRAPHICS_VER(__i915) >= 11 ? ICL_HWS_CSB_WRITE_INDEX : I915_HWS_CSB_WRITE_INDEX)
186
187void intel_engine_stop(struct intel_engine_cs *engine);
188void intel_engine_cleanup(struct intel_engine_cs *engine);
189
190int intel_engines_init_mmio(struct intel_gt *gt);
191int intel_engines_init(struct intel_gt *gt);
192
193void intel_engine_free_request_pool(struct intel_engine_cs *engine);
194
195void intel_engines_release(struct intel_gt *gt);
196void intel_engines_free(struct intel_gt *gt);
197
198int intel_engine_init_common(struct intel_engine_cs *engine);
199void intel_engine_cleanup_common(struct intel_engine_cs *engine);
200
201int intel_engine_resume(struct intel_engine_cs *engine);
202
203int intel_ring_submission_setup(struct intel_engine_cs *engine);
204
205int intel_engine_stop_cs(struct intel_engine_cs *engine);
206void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine);
207
208void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine);
209
210void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask);
211
212u64 intel_engine_get_active_head(const struct intel_engine_cs *engine);
213u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine);
214
215void intel_engine_get_instdone(const struct intel_engine_cs *engine,
216 struct intel_instdone *instdone);
217
218void intel_engine_init_execlists(struct intel_engine_cs *engine);
219
220bool intel_engine_irq_enable(struct intel_engine_cs *engine);
221void intel_engine_irq_disable(struct intel_engine_cs *engine);
222
223static inline void __intel_engine_reset(struct intel_engine_cs *engine,
224 bool stalled)
225{
226 if (engine->reset.rewind)
227 engine->reset.rewind(engine, stalled);
228 engine->serial++; /* contexts lost */
229}
230
231bool intel_engines_are_idle(struct intel_gt *gt);
232bool intel_engine_is_idle(struct intel_engine_cs *engine);
233
234void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync);
235static inline void intel_engine_flush_submission(struct intel_engine_cs *engine)
236{
237 __intel_engine_flush_submission(engine, true);
238}
239
240void intel_engines_reset_default_submission(struct intel_gt *gt);
241
242bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
243
244__printf(3, 4)
245void intel_engine_dump(struct intel_engine_cs *engine,
246 struct drm_printer *m,
247 const char *header, ...);
248void intel_engine_dump_active_requests(struct list_head *requests,
249 struct i915_request *hung_rq,
250 struct drm_printer *m);
251
252ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine,
253 ktime_t *now);
254
255void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
256 struct intel_context **ce, struct i915_request **rq);
257
258u32 intel_engine_context_size(struct intel_gt *gt, u8 class);
259struct intel_context *
260intel_engine_create_pinned_context(struct intel_engine_cs *engine,
261 struct i915_address_space *vm,
262 unsigned int ring_size,
263 unsigned int hwsp,
264 struct lock_class_key *key,
265 const char *name);
266
267void intel_engine_destroy_pinned_context(struct intel_context *ce);
268
269void xehp_enable_ccs_engines(struct intel_engine_cs *engine);
270
271#define ENGINE_PHYSICAL 0
272#define ENGINE_MOCK 1
273#define ENGINE_VIRTUAL 2
274
275static inline bool intel_engine_uses_guc(const struct intel_engine_cs *engine)
276{
277 return engine->gt->submission_method >= INTEL_SUBMISSION_GUC;
278}
279
280static inline bool
281intel_engine_has_preempt_reset(const struct intel_engine_cs *engine)
282{
283 if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
284 return false;
285
286 return intel_engine_has_preemption(engine);
287}
288
289#define FORCE_VIRTUAL BIT(0)
290struct intel_context *
291intel_engine_create_virtual(struct intel_engine_cs **siblings,
292 unsigned int count, unsigned long flags);
293
294static inline struct intel_context *
295intel_engine_create_parallel(struct intel_engine_cs **engines,
296 unsigned int num_engines,
297 unsigned int width)
298{
299 GEM_BUG_ON(!engines[0]->cops->create_parallel);
300 return engines[0]->cops->create_parallel(engines, num_engines, width);
301}
302
303static inline bool
304intel_virtual_engine_has_heartbeat(const struct intel_engine_cs *engine)
305{
306 /*
307 * For non-GuC submission we expect the back-end to look at the
308 * heartbeat status of the actual physical engine that the work
309 * has been (or is being) scheduled on, so we should only reach
310 * here with GuC submission enabled.
311 */
312 GEM_BUG_ON(!intel_engine_uses_guc(engine));
313
314 return intel_guc_virtual_engine_has_heartbeat(engine);
315}
316
317static inline bool
318intel_engine_has_heartbeat(const struct intel_engine_cs *engine)
319{
320 if (!CONFIG_DRM_I915_HEARTBEAT_INTERVAL)
321 return false;
322
323 if (intel_engine_is_virtual(engine))
324 return intel_virtual_engine_has_heartbeat(engine);
325 else
326 return READ_ONCE(engine->props.heartbeat_interval_ms);
327}
328
329static inline struct intel_engine_cs *
330intel_engine_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
331{
332 GEM_BUG_ON(!intel_engine_is_virtual(engine));
333 return engine->cops->get_sibling(engine, sibling);
334}
335
336static inline void
337intel_engine_set_hung_context(struct intel_engine_cs *engine,
338 struct intel_context *ce)
339{
340 engine->hung_ce = ce;
341}
342
343static inline void
344intel_engine_clear_hung_context(struct intel_engine_cs *engine)
345{
346 intel_engine_set_hung_context(engine, NULL);
347}
348
349static inline struct intel_context *
350intel_engine_get_hung_context(struct intel_engine_cs *engine)
351{
352 return engine->hung_ce;
353}
354
355u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value);
356u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value);
357u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value);
358u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value);
359u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value);
360
361#endif /* _INTEL_RINGBUFFER_H_ */