Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * ACPI support for Intel Lynxpoint LPSS.
4 *
5 * Copyright (C) 2013, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/clkdev.h>
12#include <linux/clk-provider.h>
13#include <linux/err.h>
14#include <linux/io.h>
15#include <linux/mutex.h>
16#include <linux/pci.h>
17#include <linux/platform_device.h>
18#include <linux/platform_data/x86/clk-lpss.h>
19#include <linux/platform_data/x86/pmc_atom.h>
20#include <linux/pm_domain.h>
21#include <linux/pm_runtime.h>
22#include <linux/pwm.h>
23#include <linux/suspend.h>
24#include <linux/delay.h>
25
26#include "internal.h"
27
28ACPI_MODULE_NAME("acpi_lpss");
29
30#ifdef CONFIG_X86_INTEL_LPSS
31
32#include <asm/cpu_device_id.h>
33#include <asm/intel-family.h>
34#include <asm/iosf_mbi.h>
35
36#define LPSS_ADDR(desc) ((unsigned long)&desc)
37
38#define LPSS_CLK_SIZE 0x04
39#define LPSS_LTR_SIZE 0x18
40
41/* Offsets relative to LPSS_PRIVATE_OFFSET */
42#define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16))
43#define LPSS_RESETS 0x04
44#define LPSS_RESETS_RESET_FUNC BIT(0)
45#define LPSS_RESETS_RESET_APB BIT(1)
46#define LPSS_GENERAL 0x08
47#define LPSS_GENERAL_LTR_MODE_SW BIT(2)
48#define LPSS_GENERAL_UART_RTS_OVRD BIT(3)
49#define LPSS_SW_LTR 0x10
50#define LPSS_AUTO_LTR 0x14
51#define LPSS_LTR_SNOOP_REQ BIT(15)
52#define LPSS_LTR_SNOOP_MASK 0x0000FFFF
53#define LPSS_LTR_SNOOP_LAT_1US 0x800
54#define LPSS_LTR_SNOOP_LAT_32US 0xC00
55#define LPSS_LTR_SNOOP_LAT_SHIFT 5
56#define LPSS_LTR_SNOOP_LAT_CUTOFF 3000
57#define LPSS_LTR_MAX_VAL 0x3FF
58#define LPSS_TX_INT 0x20
59#define LPSS_TX_INT_MASK BIT(1)
60
61#define LPSS_PRV_REG_COUNT 9
62
63/* LPSS Flags */
64#define LPSS_CLK BIT(0)
65#define LPSS_CLK_GATE BIT(1)
66#define LPSS_CLK_DIVIDER BIT(2)
67#define LPSS_LTR BIT(3)
68#define LPSS_SAVE_CTX BIT(4)
69#define LPSS_NO_D3_DELAY BIT(5)
70
71/* Crystal Cove PMIC shares same ACPI ID between different platforms */
72#define BYT_CRC_HRV 2
73#define CHT_CRC_HRV 3
74
75struct lpss_private_data;
76
77struct lpss_device_desc {
78 unsigned int flags;
79 const char *clk_con_id;
80 unsigned int prv_offset;
81 size_t prv_size_override;
82 struct property_entry *properties;
83 void (*setup)(struct lpss_private_data *pdata);
84 bool resume_from_noirq;
85};
86
87static const struct lpss_device_desc lpss_dma_desc = {
88 .flags = LPSS_CLK,
89};
90
91struct lpss_private_data {
92 struct acpi_device *adev;
93 void __iomem *mmio_base;
94 resource_size_t mmio_size;
95 unsigned int fixed_clk_rate;
96 struct clk *clk;
97 const struct lpss_device_desc *dev_desc;
98 u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
99};
100
101/* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
102static u32 pmc_atom_d3_mask = 0xfe000ffe;
103
104/* LPSS run time quirks */
105static unsigned int lpss_quirks;
106
107/*
108 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
109 *
110 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
111 * it can be powered off automatically whenever the last LPSS device goes down.
112 * In case of no power any access to the DMA controller will hang the system.
113 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
114 * well as on ASuS T100TA transformer.
115 *
116 * This quirk overrides power state of entire LPSS island to keep DMA powered
117 * on whenever we have at least one other device in use.
118 */
119#define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0)
120
121/* UART Component Parameter Register */
122#define LPSS_UART_CPR 0xF4
123#define LPSS_UART_CPR_AFCE BIT(4)
124
125static void lpss_uart_setup(struct lpss_private_data *pdata)
126{
127 unsigned int offset;
128 u32 val;
129
130 offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
131 val = readl(pdata->mmio_base + offset);
132 writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
133
134 val = readl(pdata->mmio_base + LPSS_UART_CPR);
135 if (!(val & LPSS_UART_CPR_AFCE)) {
136 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
137 val = readl(pdata->mmio_base + offset);
138 val |= LPSS_GENERAL_UART_RTS_OVRD;
139 writel(val, pdata->mmio_base + offset);
140 }
141}
142
143static void lpss_deassert_reset(struct lpss_private_data *pdata)
144{
145 unsigned int offset;
146 u32 val;
147
148 offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
149 val = readl(pdata->mmio_base + offset);
150 val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
151 writel(val, pdata->mmio_base + offset);
152}
153
154/*
155 * BYT PWM used for backlight control by the i915 driver on systems without
156 * the Crystal Cove PMIC.
157 */
158static struct pwm_lookup byt_pwm_lookup[] = {
159 PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
160 "pwm_backlight", 0, PWM_POLARITY_NORMAL,
161 "pwm-lpss-platform"),
162};
163
164static void byt_pwm_setup(struct lpss_private_data *pdata)
165{
166 struct acpi_device *adev = pdata->adev;
167
168 /* Only call pwm_add_table for the first PWM controller */
169 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
170 return;
171
172 if (!acpi_dev_present("INT33FD", NULL, BYT_CRC_HRV))
173 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
174}
175
176#define LPSS_I2C_ENABLE 0x6c
177
178static void byt_i2c_setup(struct lpss_private_data *pdata)
179{
180 const char *uid_str = acpi_device_uid(pdata->adev);
181 acpi_handle handle = pdata->adev->handle;
182 unsigned long long shared_host = 0;
183 acpi_status status;
184 long uid = 0;
185
186 /* Expected to always be true, but better safe then sorry */
187 if (uid_str)
188 uid = simple_strtol(uid_str, NULL, 10);
189
190 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
191 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
192 if (ACPI_SUCCESS(status) && shared_host && uid)
193 pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
194
195 lpss_deassert_reset(pdata);
196
197 if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
198 pdata->fixed_clk_rate = 133000000;
199
200 writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
201}
202
203/* BSW PWM used for backlight control by the i915 driver */
204static struct pwm_lookup bsw_pwm_lookup[] = {
205 PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
206 "pwm_backlight", 0, PWM_POLARITY_NORMAL,
207 "pwm-lpss-platform"),
208};
209
210static void bsw_pwm_setup(struct lpss_private_data *pdata)
211{
212 struct acpi_device *adev = pdata->adev;
213
214 /* Only call pwm_add_table for the first PWM controller */
215 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
216 return;
217
218 pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
219}
220
221static const struct lpss_device_desc lpt_dev_desc = {
222 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
223 | LPSS_SAVE_CTX,
224 .prv_offset = 0x800,
225};
226
227static const struct lpss_device_desc lpt_i2c_dev_desc = {
228 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
229 .prv_offset = 0x800,
230};
231
232static struct property_entry uart_properties[] = {
233 PROPERTY_ENTRY_U32("reg-io-width", 4),
234 PROPERTY_ENTRY_U32("reg-shift", 2),
235 PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
236 { },
237};
238
239static const struct lpss_device_desc lpt_uart_dev_desc = {
240 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
241 | LPSS_SAVE_CTX,
242 .clk_con_id = "baudclk",
243 .prv_offset = 0x800,
244 .setup = lpss_uart_setup,
245 .properties = uart_properties,
246};
247
248static const struct lpss_device_desc lpt_sdio_dev_desc = {
249 .flags = LPSS_LTR,
250 .prv_offset = 0x1000,
251 .prv_size_override = 0x1018,
252};
253
254static const struct lpss_device_desc byt_pwm_dev_desc = {
255 .flags = LPSS_SAVE_CTX,
256 .prv_offset = 0x800,
257 .setup = byt_pwm_setup,
258};
259
260static const struct lpss_device_desc bsw_pwm_dev_desc = {
261 .flags = LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
262 .prv_offset = 0x800,
263 .setup = bsw_pwm_setup,
264};
265
266static const struct lpss_device_desc byt_uart_dev_desc = {
267 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
268 .clk_con_id = "baudclk",
269 .prv_offset = 0x800,
270 .setup = lpss_uart_setup,
271 .properties = uart_properties,
272};
273
274static const struct lpss_device_desc bsw_uart_dev_desc = {
275 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
276 | LPSS_NO_D3_DELAY,
277 .clk_con_id = "baudclk",
278 .prv_offset = 0x800,
279 .setup = lpss_uart_setup,
280 .properties = uart_properties,
281};
282
283static const struct lpss_device_desc byt_spi_dev_desc = {
284 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
285 .prv_offset = 0x400,
286};
287
288static const struct lpss_device_desc byt_sdio_dev_desc = {
289 .flags = LPSS_CLK,
290};
291
292static const struct lpss_device_desc byt_i2c_dev_desc = {
293 .flags = LPSS_CLK | LPSS_SAVE_CTX,
294 .prv_offset = 0x800,
295 .setup = byt_i2c_setup,
296 .resume_from_noirq = true,
297};
298
299static const struct lpss_device_desc bsw_i2c_dev_desc = {
300 .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
301 .prv_offset = 0x800,
302 .setup = byt_i2c_setup,
303 .resume_from_noirq = true,
304};
305
306static const struct lpss_device_desc bsw_spi_dev_desc = {
307 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
308 | LPSS_NO_D3_DELAY,
309 .prv_offset = 0x400,
310 .setup = lpss_deassert_reset,
311};
312
313#define ICPU(model) { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, }
314
315static const struct x86_cpu_id lpss_cpu_ids[] = {
316 ICPU(INTEL_FAM6_ATOM_SILVERMONT), /* Valleyview, Bay Trail */
317 ICPU(INTEL_FAM6_ATOM_AIRMONT), /* Braswell, Cherry Trail */
318 {}
319};
320
321#else
322
323#define LPSS_ADDR(desc) (0UL)
324
325#endif /* CONFIG_X86_INTEL_LPSS */
326
327static const struct acpi_device_id acpi_lpss_device_ids[] = {
328 /* Generic LPSS devices */
329 { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
330
331 /* Lynxpoint LPSS devices */
332 { "INT33C0", LPSS_ADDR(lpt_dev_desc) },
333 { "INT33C1", LPSS_ADDR(lpt_dev_desc) },
334 { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
335 { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
336 { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
337 { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
338 { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
339 { "INT33C7", },
340
341 /* BayTrail LPSS devices */
342 { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
343 { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
344 { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
345 { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
346 { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
347 { "INT33B2", },
348 { "INT33FC", },
349
350 /* Braswell LPSS devices */
351 { "80862286", LPSS_ADDR(lpss_dma_desc) },
352 { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
353 { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
354 { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
355 { "808622C0", LPSS_ADDR(lpss_dma_desc) },
356 { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
357
358 /* Broadwell LPSS devices */
359 { "INT3430", LPSS_ADDR(lpt_dev_desc) },
360 { "INT3431", LPSS_ADDR(lpt_dev_desc) },
361 { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
362 { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
363 { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
364 { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
365 { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
366 { "INT3437", },
367
368 /* Wildcat Point LPSS devices */
369 { "INT3438", LPSS_ADDR(lpt_dev_desc) },
370
371 { }
372};
373
374#ifdef CONFIG_X86_INTEL_LPSS
375
376static int is_memory(struct acpi_resource *res, void *not_used)
377{
378 struct resource r;
379 return !acpi_dev_resource_memory(res, &r);
380}
381
382/* LPSS main clock device. */
383static struct platform_device *lpss_clk_dev;
384
385static inline void lpt_register_clock_device(void)
386{
387 lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
388}
389
390static int register_device_clock(struct acpi_device *adev,
391 struct lpss_private_data *pdata)
392{
393 const struct lpss_device_desc *dev_desc = pdata->dev_desc;
394 const char *devname = dev_name(&adev->dev);
395 struct clk *clk;
396 struct lpss_clk_data *clk_data;
397 const char *parent, *clk_name;
398 void __iomem *prv_base;
399
400 if (!lpss_clk_dev)
401 lpt_register_clock_device();
402
403 clk_data = platform_get_drvdata(lpss_clk_dev);
404 if (!clk_data)
405 return -ENODEV;
406 clk = clk_data->clk;
407
408 if (!pdata->mmio_base
409 || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
410 return -ENODATA;
411
412 parent = clk_data->name;
413 prv_base = pdata->mmio_base + dev_desc->prv_offset;
414
415 if (pdata->fixed_clk_rate) {
416 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
417 pdata->fixed_clk_rate);
418 goto out;
419 }
420
421 if (dev_desc->flags & LPSS_CLK_GATE) {
422 clk = clk_register_gate(NULL, devname, parent, 0,
423 prv_base, 0, 0, NULL);
424 parent = devname;
425 }
426
427 if (dev_desc->flags & LPSS_CLK_DIVIDER) {
428 /* Prevent division by zero */
429 if (!readl(prv_base))
430 writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
431
432 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
433 if (!clk_name)
434 return -ENOMEM;
435 clk = clk_register_fractional_divider(NULL, clk_name, parent,
436 0, prv_base,
437 1, 15, 16, 15, 0, NULL);
438 parent = clk_name;
439
440 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
441 if (!clk_name) {
442 kfree(parent);
443 return -ENOMEM;
444 }
445 clk = clk_register_gate(NULL, clk_name, parent,
446 CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
447 prv_base, 31, 0, NULL);
448 kfree(parent);
449 kfree(clk_name);
450 }
451out:
452 if (IS_ERR(clk))
453 return PTR_ERR(clk);
454
455 pdata->clk = clk;
456 clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
457 return 0;
458}
459
460struct lpss_device_links {
461 const char *supplier_hid;
462 const char *supplier_uid;
463 const char *consumer_hid;
464 const char *consumer_uid;
465 u32 flags;
466};
467
468/*
469 * The _DEP method is used to identify dependencies but instead of creating
470 * device links for every handle in _DEP, only links in the following list are
471 * created. That is necessary because, in the general case, _DEP can refer to
472 * devices that might not have drivers, or that are on different buses, or where
473 * the supplier is not enumerated until after the consumer is probed.
474 */
475static const struct lpss_device_links lpss_device_links[] = {
476 {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
477 {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
478 {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
479};
480
481static bool hid_uid_match(struct acpi_device *adev,
482 const char *hid2, const char *uid2)
483{
484 const char *hid1 = acpi_device_hid(adev);
485 const char *uid1 = acpi_device_uid(adev);
486
487 if (strcmp(hid1, hid2))
488 return false;
489
490 if (!uid2)
491 return true;
492
493 return uid1 && !strcmp(uid1, uid2);
494}
495
496static bool acpi_lpss_is_supplier(struct acpi_device *adev,
497 const struct lpss_device_links *link)
498{
499 return hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
500}
501
502static bool acpi_lpss_is_consumer(struct acpi_device *adev,
503 const struct lpss_device_links *link)
504{
505 return hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
506}
507
508struct hid_uid {
509 const char *hid;
510 const char *uid;
511};
512
513static int match_hid_uid(struct device *dev, const void *data)
514{
515 struct acpi_device *adev = ACPI_COMPANION(dev);
516 const struct hid_uid *id = data;
517
518 if (!adev)
519 return 0;
520
521 return hid_uid_match(adev, id->hid, id->uid);
522}
523
524static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
525{
526 struct device *dev;
527
528 struct hid_uid data = {
529 .hid = hid,
530 .uid = uid,
531 };
532
533 dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
534 if (dev)
535 return dev;
536
537 return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
538}
539
540static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
541{
542 struct acpi_handle_list dep_devices;
543 acpi_status status;
544 int i;
545
546 if (!acpi_has_method(adev->handle, "_DEP"))
547 return false;
548
549 status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
550 &dep_devices);
551 if (ACPI_FAILURE(status)) {
552 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
553 return false;
554 }
555
556 for (i = 0; i < dep_devices.count; i++) {
557 if (dep_devices.handles[i] == handle)
558 return true;
559 }
560
561 return false;
562}
563
564static void acpi_lpss_link_consumer(struct device *dev1,
565 const struct lpss_device_links *link)
566{
567 struct device *dev2;
568
569 dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
570 if (!dev2)
571 return;
572
573 if (acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
574 device_link_add(dev2, dev1, link->flags);
575
576 put_device(dev2);
577}
578
579static void acpi_lpss_link_supplier(struct device *dev1,
580 const struct lpss_device_links *link)
581{
582 struct device *dev2;
583
584 dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
585 if (!dev2)
586 return;
587
588 if (acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
589 device_link_add(dev1, dev2, link->flags);
590
591 put_device(dev2);
592}
593
594static void acpi_lpss_create_device_links(struct acpi_device *adev,
595 struct platform_device *pdev)
596{
597 int i;
598
599 for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
600 const struct lpss_device_links *link = &lpss_device_links[i];
601
602 if (acpi_lpss_is_supplier(adev, link))
603 acpi_lpss_link_consumer(&pdev->dev, link);
604
605 if (acpi_lpss_is_consumer(adev, link))
606 acpi_lpss_link_supplier(&pdev->dev, link);
607 }
608}
609
610static int acpi_lpss_create_device(struct acpi_device *adev,
611 const struct acpi_device_id *id)
612{
613 const struct lpss_device_desc *dev_desc;
614 struct lpss_private_data *pdata;
615 struct resource_entry *rentry;
616 struct list_head resource_list;
617 struct platform_device *pdev;
618 int ret;
619
620 dev_desc = (const struct lpss_device_desc *)id->driver_data;
621 if (!dev_desc) {
622 pdev = acpi_create_platform_device(adev, NULL);
623 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
624 }
625 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
626 if (!pdata)
627 return -ENOMEM;
628
629 INIT_LIST_HEAD(&resource_list);
630 ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
631 if (ret < 0)
632 goto err_out;
633
634 list_for_each_entry(rentry, &resource_list, node)
635 if (resource_type(rentry->res) == IORESOURCE_MEM) {
636 if (dev_desc->prv_size_override)
637 pdata->mmio_size = dev_desc->prv_size_override;
638 else
639 pdata->mmio_size = resource_size(rentry->res);
640 pdata->mmio_base = ioremap(rentry->res->start,
641 pdata->mmio_size);
642 break;
643 }
644
645 acpi_dev_free_resource_list(&resource_list);
646
647 if (!pdata->mmio_base) {
648 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
649 adev->pnp.type.platform_id = 0;
650 /* Skip the device, but continue the namespace scan. */
651 ret = 0;
652 goto err_out;
653 }
654
655 pdata->adev = adev;
656 pdata->dev_desc = dev_desc;
657
658 if (dev_desc->setup)
659 dev_desc->setup(pdata);
660
661 if (dev_desc->flags & LPSS_CLK) {
662 ret = register_device_clock(adev, pdata);
663 if (ret) {
664 /* Skip the device, but continue the namespace scan. */
665 ret = 0;
666 goto err_out;
667 }
668 }
669
670 /*
671 * This works around a known issue in ACPI tables where LPSS devices
672 * have _PS0 and _PS3 without _PSC (and no power resources), so
673 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
674 */
675 acpi_device_fix_up_power(adev);
676
677 adev->driver_data = pdata;
678 pdev = acpi_create_platform_device(adev, dev_desc->properties);
679 if (!IS_ERR_OR_NULL(pdev)) {
680 acpi_lpss_create_device_links(adev, pdev);
681 return 1;
682 }
683
684 ret = PTR_ERR(pdev);
685 adev->driver_data = NULL;
686
687 err_out:
688 kfree(pdata);
689 return ret;
690}
691
692static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
693{
694 return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
695}
696
697static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
698 unsigned int reg)
699{
700 writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
701}
702
703static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
704{
705 struct acpi_device *adev;
706 struct lpss_private_data *pdata;
707 unsigned long flags;
708 int ret;
709
710 ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
711 if (WARN_ON(ret))
712 return ret;
713
714 spin_lock_irqsave(&dev->power.lock, flags);
715 if (pm_runtime_suspended(dev)) {
716 ret = -EAGAIN;
717 goto out;
718 }
719 pdata = acpi_driver_data(adev);
720 if (WARN_ON(!pdata || !pdata->mmio_base)) {
721 ret = -ENODEV;
722 goto out;
723 }
724 *val = __lpss_reg_read(pdata, reg);
725
726 out:
727 spin_unlock_irqrestore(&dev->power.lock, flags);
728 return ret;
729}
730
731static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
732 char *buf)
733{
734 u32 ltr_value = 0;
735 unsigned int reg;
736 int ret;
737
738 reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
739 ret = lpss_reg_read(dev, reg, <r_value);
740 if (ret)
741 return ret;
742
743 return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
744}
745
746static ssize_t lpss_ltr_mode_show(struct device *dev,
747 struct device_attribute *attr, char *buf)
748{
749 u32 ltr_mode = 0;
750 char *outstr;
751 int ret;
752
753 ret = lpss_reg_read(dev, LPSS_GENERAL, <r_mode);
754 if (ret)
755 return ret;
756
757 outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
758 return sprintf(buf, "%s\n", outstr);
759}
760
761static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
762static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
763static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
764
765static struct attribute *lpss_attrs[] = {
766 &dev_attr_auto_ltr.attr,
767 &dev_attr_sw_ltr.attr,
768 &dev_attr_ltr_mode.attr,
769 NULL,
770};
771
772static const struct attribute_group lpss_attr_group = {
773 .attrs = lpss_attrs,
774 .name = "lpss_ltr",
775};
776
777static void acpi_lpss_set_ltr(struct device *dev, s32 val)
778{
779 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
780 u32 ltr_mode, ltr_val;
781
782 ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
783 if (val < 0) {
784 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
785 ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
786 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
787 }
788 return;
789 }
790 ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
791 if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
792 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
793 val = LPSS_LTR_MAX_VAL;
794 } else if (val > LPSS_LTR_MAX_VAL) {
795 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
796 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
797 } else {
798 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
799 }
800 ltr_val |= val;
801 __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
802 if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
803 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
804 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
805 }
806}
807
808#ifdef CONFIG_PM
809/**
810 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
811 * @dev: LPSS device
812 * @pdata: pointer to the private data of the LPSS device
813 *
814 * Most LPSS devices have private registers which may loose their context when
815 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
816 * prv_reg_ctx array.
817 */
818static void acpi_lpss_save_ctx(struct device *dev,
819 struct lpss_private_data *pdata)
820{
821 unsigned int i;
822
823 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
824 unsigned long offset = i * sizeof(u32);
825
826 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
827 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
828 pdata->prv_reg_ctx[i], offset);
829 }
830}
831
832/**
833 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
834 * @dev: LPSS device
835 * @pdata: pointer to the private data of the LPSS device
836 *
837 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
838 */
839static void acpi_lpss_restore_ctx(struct device *dev,
840 struct lpss_private_data *pdata)
841{
842 unsigned int i;
843
844 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
845 unsigned long offset = i * sizeof(u32);
846
847 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
848 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
849 pdata->prv_reg_ctx[i], offset);
850 }
851}
852
853static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
854{
855 /*
856 * The following delay is needed or the subsequent write operations may
857 * fail. The LPSS devices are actually PCI devices and the PCI spec
858 * expects 10ms delay before the device can be accessed after D3 to D0
859 * transition. However some platforms like BSW does not need this delay.
860 */
861 unsigned int delay = 10; /* default 10ms delay */
862
863 if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
864 delay = 0;
865
866 msleep(delay);
867}
868
869static int acpi_lpss_activate(struct device *dev)
870{
871 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
872 int ret;
873
874 ret = acpi_dev_resume(dev);
875 if (ret)
876 return ret;
877
878 acpi_lpss_d3_to_d0_delay(pdata);
879
880 /*
881 * This is called only on ->probe() stage where a device is either in
882 * known state defined by BIOS or most likely powered off. Due to this
883 * we have to deassert reset line to be sure that ->probe() will
884 * recognize the device.
885 */
886 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
887 lpss_deassert_reset(pdata);
888
889 return 0;
890}
891
892static void acpi_lpss_dismiss(struct device *dev)
893{
894 acpi_dev_suspend(dev, false);
895}
896
897/* IOSF SB for LPSS island */
898#define LPSS_IOSF_UNIT_LPIOEP 0xA0
899#define LPSS_IOSF_UNIT_LPIO1 0xAB
900#define LPSS_IOSF_UNIT_LPIO2 0xAC
901
902#define LPSS_IOSF_PMCSR 0x84
903#define LPSS_PMCSR_D0 0
904#define LPSS_PMCSR_D3hot 3
905#define LPSS_PMCSR_Dx_MASK GENMASK(1, 0)
906
907#define LPSS_IOSF_GPIODEF0 0x154
908#define LPSS_GPIODEF0_DMA1_D3 BIT(2)
909#define LPSS_GPIODEF0_DMA2_D3 BIT(3)
910#define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2)
911#define LPSS_GPIODEF0_DMA_LLP BIT(13)
912
913static DEFINE_MUTEX(lpss_iosf_mutex);
914static bool lpss_iosf_d3_entered = true;
915
916static void lpss_iosf_enter_d3_state(void)
917{
918 u32 value1 = 0;
919 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
920 u32 value2 = LPSS_PMCSR_D3hot;
921 u32 mask2 = LPSS_PMCSR_Dx_MASK;
922 /*
923 * PMC provides an information about actual status of the LPSS devices.
924 * Here we read the values related to LPSS power island, i.e. LPSS
925 * devices, excluding both LPSS DMA controllers, along with SCC domain.
926 */
927 u32 func_dis, d3_sts_0, pmc_status;
928 int ret;
929
930 ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
931 if (ret)
932 return;
933
934 mutex_lock(&lpss_iosf_mutex);
935
936 ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
937 if (ret)
938 goto exit;
939
940 /*
941 * Get the status of entire LPSS power island per device basis.
942 * Shutdown both LPSS DMA controllers if and only if all other devices
943 * are already in D3hot.
944 */
945 pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
946 if (pmc_status)
947 goto exit;
948
949 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
950 LPSS_IOSF_PMCSR, value2, mask2);
951
952 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
953 LPSS_IOSF_PMCSR, value2, mask2);
954
955 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
956 LPSS_IOSF_GPIODEF0, value1, mask1);
957
958 lpss_iosf_d3_entered = true;
959
960exit:
961 mutex_unlock(&lpss_iosf_mutex);
962}
963
964static void lpss_iosf_exit_d3_state(void)
965{
966 u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
967 LPSS_GPIODEF0_DMA_LLP;
968 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
969 u32 value2 = LPSS_PMCSR_D0;
970 u32 mask2 = LPSS_PMCSR_Dx_MASK;
971
972 mutex_lock(&lpss_iosf_mutex);
973
974 if (!lpss_iosf_d3_entered)
975 goto exit;
976
977 lpss_iosf_d3_entered = false;
978
979 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
980 LPSS_IOSF_GPIODEF0, value1, mask1);
981
982 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
983 LPSS_IOSF_PMCSR, value2, mask2);
984
985 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
986 LPSS_IOSF_PMCSR, value2, mask2);
987
988exit:
989 mutex_unlock(&lpss_iosf_mutex);
990}
991
992static int acpi_lpss_suspend(struct device *dev, bool wakeup)
993{
994 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
995 int ret;
996
997 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
998 acpi_lpss_save_ctx(dev, pdata);
999
1000 ret = acpi_dev_suspend(dev, wakeup);
1001
1002 /*
1003 * This call must be last in the sequence, otherwise PMC will return
1004 * wrong status for devices being about to be powered off. See
1005 * lpss_iosf_enter_d3_state() for further information.
1006 */
1007 if (acpi_target_system_state() == ACPI_STATE_S0 &&
1008 lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1009 lpss_iosf_enter_d3_state();
1010
1011 return ret;
1012}
1013
1014static int acpi_lpss_resume(struct device *dev)
1015{
1016 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1017 int ret;
1018
1019 /*
1020 * This call is kept first to be in symmetry with
1021 * acpi_lpss_runtime_suspend() one.
1022 */
1023 if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1024 lpss_iosf_exit_d3_state();
1025
1026 ret = acpi_dev_resume(dev);
1027 if (ret)
1028 return ret;
1029
1030 acpi_lpss_d3_to_d0_delay(pdata);
1031
1032 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1033 acpi_lpss_restore_ctx(dev, pdata);
1034
1035 return 0;
1036}
1037
1038#ifdef CONFIG_PM_SLEEP
1039static int acpi_lpss_do_suspend_late(struct device *dev)
1040{
1041 int ret;
1042
1043 if (dev_pm_smart_suspend_and_suspended(dev))
1044 return 0;
1045
1046 ret = pm_generic_suspend_late(dev);
1047 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1048}
1049
1050static int acpi_lpss_suspend_late(struct device *dev)
1051{
1052 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1053
1054 if (pdata->dev_desc->resume_from_noirq)
1055 return 0;
1056
1057 return acpi_lpss_do_suspend_late(dev);
1058}
1059
1060static int acpi_lpss_suspend_noirq(struct device *dev)
1061{
1062 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1063 int ret;
1064
1065 if (pdata->dev_desc->resume_from_noirq) {
1066 /*
1067 * The driver's ->suspend_late callback will be invoked by
1068 * acpi_lpss_do_suspend_late(), with the assumption that the
1069 * driver really wanted to run that code in ->suspend_noirq, but
1070 * it could not run after acpi_dev_suspend() and the driver
1071 * expected the latter to be called in the "late" phase.
1072 */
1073 ret = acpi_lpss_do_suspend_late(dev);
1074 if (ret)
1075 return ret;
1076 }
1077
1078 return acpi_subsys_suspend_noirq(dev);
1079}
1080
1081static int acpi_lpss_do_resume_early(struct device *dev)
1082{
1083 int ret = acpi_lpss_resume(dev);
1084
1085 return ret ? ret : pm_generic_resume_early(dev);
1086}
1087
1088static int acpi_lpss_resume_early(struct device *dev)
1089{
1090 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1091
1092 if (pdata->dev_desc->resume_from_noirq)
1093 return 0;
1094
1095 return acpi_lpss_do_resume_early(dev);
1096}
1097
1098static int acpi_lpss_resume_noirq(struct device *dev)
1099{
1100 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1101 int ret;
1102
1103 /* Follow acpi_subsys_resume_noirq(). */
1104 if (dev_pm_may_skip_resume(dev))
1105 return 0;
1106
1107 if (dev_pm_smart_suspend_and_suspended(dev))
1108 pm_runtime_set_active(dev);
1109
1110 ret = pm_generic_resume_noirq(dev);
1111 if (ret)
1112 return ret;
1113
1114 if (!pdata->dev_desc->resume_from_noirq)
1115 return 0;
1116
1117 /*
1118 * The driver's ->resume_early callback will be invoked by
1119 * acpi_lpss_do_resume_early(), with the assumption that the driver
1120 * really wanted to run that code in ->resume_noirq, but it could not
1121 * run before acpi_dev_resume() and the driver expected the latter to be
1122 * called in the "early" phase.
1123 */
1124 return acpi_lpss_do_resume_early(dev);
1125}
1126
1127static int acpi_lpss_do_restore_early(struct device *dev)
1128{
1129 int ret = acpi_lpss_resume(dev);
1130
1131 return ret ? ret : pm_generic_restore_early(dev);
1132}
1133
1134static int acpi_lpss_restore_early(struct device *dev)
1135{
1136 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1137
1138 if (pdata->dev_desc->resume_from_noirq)
1139 return 0;
1140
1141 return acpi_lpss_do_restore_early(dev);
1142}
1143
1144static int acpi_lpss_restore_noirq(struct device *dev)
1145{
1146 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1147 int ret;
1148
1149 ret = pm_generic_restore_noirq(dev);
1150 if (ret)
1151 return ret;
1152
1153 if (!pdata->dev_desc->resume_from_noirq)
1154 return 0;
1155
1156 /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1157 return acpi_lpss_do_restore_early(dev);
1158}
1159
1160static int acpi_lpss_do_poweroff_late(struct device *dev)
1161{
1162 int ret = pm_generic_poweroff_late(dev);
1163
1164 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1165}
1166
1167static int acpi_lpss_poweroff_late(struct device *dev)
1168{
1169 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1170
1171 if (dev_pm_smart_suspend_and_suspended(dev))
1172 return 0;
1173
1174 if (pdata->dev_desc->resume_from_noirq)
1175 return 0;
1176
1177 return acpi_lpss_do_poweroff_late(dev);
1178}
1179
1180static int acpi_lpss_poweroff_noirq(struct device *dev)
1181{
1182 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1183
1184 if (dev_pm_smart_suspend_and_suspended(dev))
1185 return 0;
1186
1187 if (pdata->dev_desc->resume_from_noirq) {
1188 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1189 int ret = acpi_lpss_do_poweroff_late(dev);
1190 if (ret)
1191 return ret;
1192 }
1193
1194 return pm_generic_poweroff_noirq(dev);
1195}
1196#endif /* CONFIG_PM_SLEEP */
1197
1198static int acpi_lpss_runtime_suspend(struct device *dev)
1199{
1200 int ret = pm_generic_runtime_suspend(dev);
1201
1202 return ret ? ret : acpi_lpss_suspend(dev, true);
1203}
1204
1205static int acpi_lpss_runtime_resume(struct device *dev)
1206{
1207 int ret = acpi_lpss_resume(dev);
1208
1209 return ret ? ret : pm_generic_runtime_resume(dev);
1210}
1211#endif /* CONFIG_PM */
1212
1213static struct dev_pm_domain acpi_lpss_pm_domain = {
1214#ifdef CONFIG_PM
1215 .activate = acpi_lpss_activate,
1216 .dismiss = acpi_lpss_dismiss,
1217#endif
1218 .ops = {
1219#ifdef CONFIG_PM
1220#ifdef CONFIG_PM_SLEEP
1221 .prepare = acpi_subsys_prepare,
1222 .complete = acpi_subsys_complete,
1223 .suspend = acpi_subsys_suspend,
1224 .suspend_late = acpi_lpss_suspend_late,
1225 .suspend_noirq = acpi_lpss_suspend_noirq,
1226 .resume_noirq = acpi_lpss_resume_noirq,
1227 .resume_early = acpi_lpss_resume_early,
1228 .freeze = acpi_subsys_freeze,
1229 .poweroff = acpi_subsys_poweroff,
1230 .poweroff_late = acpi_lpss_poweroff_late,
1231 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1232 .restore_noirq = acpi_lpss_restore_noirq,
1233 .restore_early = acpi_lpss_restore_early,
1234#endif
1235 .runtime_suspend = acpi_lpss_runtime_suspend,
1236 .runtime_resume = acpi_lpss_runtime_resume,
1237#endif
1238 },
1239};
1240
1241static int acpi_lpss_platform_notify(struct notifier_block *nb,
1242 unsigned long action, void *data)
1243{
1244 struct platform_device *pdev = to_platform_device(data);
1245 struct lpss_private_data *pdata;
1246 struct acpi_device *adev;
1247 const struct acpi_device_id *id;
1248
1249 id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1250 if (!id || !id->driver_data)
1251 return 0;
1252
1253 if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1254 return 0;
1255
1256 pdata = acpi_driver_data(adev);
1257 if (!pdata)
1258 return 0;
1259
1260 if (pdata->mmio_base &&
1261 pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1262 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1263 return 0;
1264 }
1265
1266 switch (action) {
1267 case BUS_NOTIFY_BIND_DRIVER:
1268 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1269 break;
1270 case BUS_NOTIFY_DRIVER_NOT_BOUND:
1271 case BUS_NOTIFY_UNBOUND_DRIVER:
1272 dev_pm_domain_set(&pdev->dev, NULL);
1273 break;
1274 case BUS_NOTIFY_ADD_DEVICE:
1275 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1276 if (pdata->dev_desc->flags & LPSS_LTR)
1277 return sysfs_create_group(&pdev->dev.kobj,
1278 &lpss_attr_group);
1279 break;
1280 case BUS_NOTIFY_DEL_DEVICE:
1281 if (pdata->dev_desc->flags & LPSS_LTR)
1282 sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1283 dev_pm_domain_set(&pdev->dev, NULL);
1284 break;
1285 default:
1286 break;
1287 }
1288
1289 return 0;
1290}
1291
1292static struct notifier_block acpi_lpss_nb = {
1293 .notifier_call = acpi_lpss_platform_notify,
1294};
1295
1296static void acpi_lpss_bind(struct device *dev)
1297{
1298 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1299
1300 if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1301 return;
1302
1303 if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1304 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1305 else
1306 dev_err(dev, "MMIO size insufficient to access LTR\n");
1307}
1308
1309static void acpi_lpss_unbind(struct device *dev)
1310{
1311 dev->power.set_latency_tolerance = NULL;
1312}
1313
1314static struct acpi_scan_handler lpss_handler = {
1315 .ids = acpi_lpss_device_ids,
1316 .attach = acpi_lpss_create_device,
1317 .bind = acpi_lpss_bind,
1318 .unbind = acpi_lpss_unbind,
1319};
1320
1321void __init acpi_lpss_init(void)
1322{
1323 const struct x86_cpu_id *id;
1324 int ret;
1325
1326 ret = lpt_clk_init();
1327 if (ret)
1328 return;
1329
1330 id = x86_match_cpu(lpss_cpu_ids);
1331 if (id)
1332 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1333
1334 bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1335 acpi_scan_add_handler(&lpss_handler);
1336}
1337
1338#else
1339
1340static struct acpi_scan_handler lpss_handler = {
1341 .ids = acpi_lpss_device_ids,
1342};
1343
1344void __init acpi_lpss_init(void)
1345{
1346 acpi_scan_add_handler(&lpss_handler);
1347}
1348
1349#endif /* CONFIG_X86_INTEL_LPSS */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * ACPI support for Intel Lynxpoint LPSS.
4 *
5 * Copyright (C) 2013, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/clkdev.h>
12#include <linux/clk-provider.h>
13#include <linux/dmi.h>
14#include <linux/err.h>
15#include <linux/io.h>
16#include <linux/mutex.h>
17#include <linux/pci.h>
18#include <linux/platform_device.h>
19#include <linux/platform_data/x86/clk-lpss.h>
20#include <linux/platform_data/x86/pmc_atom.h>
21#include <linux/pm_domain.h>
22#include <linux/pm_runtime.h>
23#include <linux/pwm.h>
24#include <linux/pxa2xx_ssp.h>
25#include <linux/suspend.h>
26#include <linux/delay.h>
27
28#include "internal.h"
29
30#ifdef CONFIG_X86_INTEL_LPSS
31
32#include <asm/cpu_device_id.h>
33#include <asm/intel-family.h>
34#include <asm/iosf_mbi.h>
35
36#define LPSS_ADDR(desc) ((unsigned long)&desc)
37
38#define LPSS_CLK_SIZE 0x04
39#define LPSS_LTR_SIZE 0x18
40
41/* Offsets relative to LPSS_PRIVATE_OFFSET */
42#define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16))
43#define LPSS_RESETS 0x04
44#define LPSS_RESETS_RESET_FUNC BIT(0)
45#define LPSS_RESETS_RESET_APB BIT(1)
46#define LPSS_GENERAL 0x08
47#define LPSS_GENERAL_LTR_MODE_SW BIT(2)
48#define LPSS_GENERAL_UART_RTS_OVRD BIT(3)
49#define LPSS_SW_LTR 0x10
50#define LPSS_AUTO_LTR 0x14
51#define LPSS_LTR_SNOOP_REQ BIT(15)
52#define LPSS_LTR_SNOOP_MASK 0x0000FFFF
53#define LPSS_LTR_SNOOP_LAT_1US 0x800
54#define LPSS_LTR_SNOOP_LAT_32US 0xC00
55#define LPSS_LTR_SNOOP_LAT_SHIFT 5
56#define LPSS_LTR_SNOOP_LAT_CUTOFF 3000
57#define LPSS_LTR_MAX_VAL 0x3FF
58#define LPSS_TX_INT 0x20
59#define LPSS_TX_INT_MASK BIT(1)
60
61#define LPSS_PRV_REG_COUNT 9
62
63/* LPSS Flags */
64#define LPSS_CLK BIT(0)
65#define LPSS_CLK_GATE BIT(1)
66#define LPSS_CLK_DIVIDER BIT(2)
67#define LPSS_LTR BIT(3)
68#define LPSS_SAVE_CTX BIT(4)
69/*
70 * For some devices the DSDT AML code for another device turns off the device
71 * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
72 * as ctx register values.
73 * Luckily these devices always use the same ctx register values, so we can
74 * work around this by saving the ctx registers once on activation.
75 */
76#define LPSS_SAVE_CTX_ONCE BIT(5)
77#define LPSS_NO_D3_DELAY BIT(6)
78
79struct lpss_private_data;
80
81struct lpss_device_desc {
82 unsigned int flags;
83 const char *clk_con_id;
84 unsigned int prv_offset;
85 size_t prv_size_override;
86 const struct property_entry *properties;
87 void (*setup)(struct lpss_private_data *pdata);
88 bool resume_from_noirq;
89};
90
91static const struct lpss_device_desc lpss_dma_desc = {
92 .flags = LPSS_CLK,
93};
94
95struct lpss_private_data {
96 struct acpi_device *adev;
97 void __iomem *mmio_base;
98 resource_size_t mmio_size;
99 unsigned int fixed_clk_rate;
100 struct clk *clk;
101 const struct lpss_device_desc *dev_desc;
102 u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
103};
104
105/* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
106static u32 pmc_atom_d3_mask = 0xfe000ffe;
107
108/* LPSS run time quirks */
109static unsigned int lpss_quirks;
110
111/*
112 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
113 *
114 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
115 * it can be powered off automatically whenever the last LPSS device goes down.
116 * In case of no power any access to the DMA controller will hang the system.
117 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
118 * well as on ASuS T100TA transformer.
119 *
120 * This quirk overrides power state of entire LPSS island to keep DMA powered
121 * on whenever we have at least one other device in use.
122 */
123#define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0)
124
125/* UART Component Parameter Register */
126#define LPSS_UART_CPR 0xF4
127#define LPSS_UART_CPR_AFCE BIT(4)
128
129static void lpss_uart_setup(struct lpss_private_data *pdata)
130{
131 unsigned int offset;
132 u32 val;
133
134 offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
135 val = readl(pdata->mmio_base + offset);
136 writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
137
138 val = readl(pdata->mmio_base + LPSS_UART_CPR);
139 if (!(val & LPSS_UART_CPR_AFCE)) {
140 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
141 val = readl(pdata->mmio_base + offset);
142 val |= LPSS_GENERAL_UART_RTS_OVRD;
143 writel(val, pdata->mmio_base + offset);
144 }
145}
146
147static void lpss_deassert_reset(struct lpss_private_data *pdata)
148{
149 unsigned int offset;
150 u32 val;
151
152 offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
153 val = readl(pdata->mmio_base + offset);
154 val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
155 writel(val, pdata->mmio_base + offset);
156}
157
158/*
159 * BYT PWM used for backlight control by the i915 driver on systems without
160 * the Crystal Cove PMIC.
161 */
162static struct pwm_lookup byt_pwm_lookup[] = {
163 PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
164 "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
165 "pwm-lpss-platform"),
166};
167
168static void byt_pwm_setup(struct lpss_private_data *pdata)
169{
170 /* Only call pwm_add_table for the first PWM controller */
171 if (acpi_dev_uid_match(pdata->adev, 1))
172 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
173}
174
175#define LPSS_I2C_ENABLE 0x6c
176
177static void byt_i2c_setup(struct lpss_private_data *pdata)
178{
179 acpi_handle handle = pdata->adev->handle;
180 unsigned long long shared_host = 0;
181 acpi_status status;
182 u64 uid;
183
184 /* Expected to always be successfull, but better safe then sorry */
185 if (!acpi_dev_uid_to_integer(pdata->adev, &uid) && uid) {
186 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
187 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
188 if (ACPI_SUCCESS(status) && shared_host)
189 pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
190 }
191
192 lpss_deassert_reset(pdata);
193
194 if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
195 pdata->fixed_clk_rate = 133000000;
196
197 writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
198}
199
200/*
201 * BSW PWM1 is used for backlight control by the i915 driver
202 * BSW PWM2 is used for backlight control for fixed (etched into the glass)
203 * touch controls on some models. These touch-controls have specialized
204 * drivers which know they need the "pwm_soc_lpss_2" con-id.
205 */
206static struct pwm_lookup bsw_pwm_lookup[] = {
207 PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
208 "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
209 "pwm-lpss-platform"),
210 PWM_LOOKUP_WITH_MODULE("80862289:00", 0, NULL,
211 "pwm_soc_lpss_2", 0, PWM_POLARITY_NORMAL,
212 "pwm-lpss-platform"),
213};
214
215static void bsw_pwm_setup(struct lpss_private_data *pdata)
216{
217 /* Only call pwm_add_table for the first PWM controller */
218 if (acpi_dev_uid_match(pdata->adev, 1))
219 pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
220}
221
222static const struct property_entry lpt_spi_properties[] = {
223 PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_LPT_SSP),
224 { }
225};
226
227static const struct lpss_device_desc lpt_spi_dev_desc = {
228 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
229 | LPSS_SAVE_CTX,
230 .prv_offset = 0x800,
231 .properties = lpt_spi_properties,
232};
233
234static const struct lpss_device_desc lpt_i2c_dev_desc = {
235 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
236 .prv_offset = 0x800,
237};
238
239static struct property_entry uart_properties[] = {
240 PROPERTY_ENTRY_U32("reg-io-width", 4),
241 PROPERTY_ENTRY_U32("reg-shift", 2),
242 PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
243 { },
244};
245
246static const struct lpss_device_desc lpt_uart_dev_desc = {
247 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
248 | LPSS_SAVE_CTX,
249 .clk_con_id = "baudclk",
250 .prv_offset = 0x800,
251 .setup = lpss_uart_setup,
252 .properties = uart_properties,
253};
254
255static const struct lpss_device_desc lpt_sdio_dev_desc = {
256 .flags = LPSS_LTR,
257 .prv_offset = 0x1000,
258 .prv_size_override = 0x1018,
259};
260
261static const struct lpss_device_desc byt_pwm_dev_desc = {
262 .flags = LPSS_SAVE_CTX,
263 .prv_offset = 0x800,
264 .setup = byt_pwm_setup,
265};
266
267static const struct lpss_device_desc bsw_pwm_dev_desc = {
268 .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
269 .prv_offset = 0x800,
270 .setup = bsw_pwm_setup,
271 .resume_from_noirq = true,
272};
273
274static const struct lpss_device_desc bsw_pwm2_dev_desc = {
275 .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
276 .prv_offset = 0x800,
277 .resume_from_noirq = true,
278};
279
280static const struct lpss_device_desc byt_uart_dev_desc = {
281 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
282 .clk_con_id = "baudclk",
283 .prv_offset = 0x800,
284 .setup = lpss_uart_setup,
285 .properties = uart_properties,
286};
287
288static const struct lpss_device_desc bsw_uart_dev_desc = {
289 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
290 | LPSS_NO_D3_DELAY,
291 .clk_con_id = "baudclk",
292 .prv_offset = 0x800,
293 .setup = lpss_uart_setup,
294 .properties = uart_properties,
295};
296
297static const struct property_entry byt_spi_properties[] = {
298 PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BYT_SSP),
299 { }
300};
301
302static const struct lpss_device_desc byt_spi_dev_desc = {
303 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
304 .prv_offset = 0x400,
305 .properties = byt_spi_properties,
306};
307
308static const struct lpss_device_desc byt_sdio_dev_desc = {
309 .flags = LPSS_CLK,
310};
311
312static const struct lpss_device_desc byt_i2c_dev_desc = {
313 .flags = LPSS_CLK | LPSS_SAVE_CTX,
314 .prv_offset = 0x800,
315 .setup = byt_i2c_setup,
316 .resume_from_noirq = true,
317};
318
319static const struct lpss_device_desc bsw_i2c_dev_desc = {
320 .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
321 .prv_offset = 0x800,
322 .setup = byt_i2c_setup,
323 .resume_from_noirq = true,
324};
325
326static const struct property_entry bsw_spi_properties[] = {
327 PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BSW_SSP),
328 { }
329};
330
331static const struct lpss_device_desc bsw_spi_dev_desc = {
332 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
333 | LPSS_NO_D3_DELAY,
334 .prv_offset = 0x400,
335 .setup = lpss_deassert_reset,
336 .properties = bsw_spi_properties,
337};
338
339static const struct x86_cpu_id lpss_cpu_ids[] = {
340 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, NULL),
341 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, NULL),
342 {}
343};
344
345#else
346
347#define LPSS_ADDR(desc) (0UL)
348
349#endif /* CONFIG_X86_INTEL_LPSS */
350
351static const struct acpi_device_id acpi_lpss_device_ids[] = {
352 /* Generic LPSS devices */
353 { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
354
355 /* Lynxpoint LPSS devices */
356 { "INT33C0", LPSS_ADDR(lpt_spi_dev_desc) },
357 { "INT33C1", LPSS_ADDR(lpt_spi_dev_desc) },
358 { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
359 { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
360 { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
361 { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
362 { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
363
364 /* BayTrail LPSS devices */
365 { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
366 { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
367 { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
368 { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
369 { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
370
371 /* Braswell LPSS devices */
372 { "80862286", LPSS_ADDR(lpss_dma_desc) },
373 { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
374 { "80862289", LPSS_ADDR(bsw_pwm2_dev_desc) },
375 { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
376 { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
377 { "808622C0", LPSS_ADDR(lpss_dma_desc) },
378 { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
379
380 /* Broadwell LPSS devices */
381 { "INT3430", LPSS_ADDR(lpt_spi_dev_desc) },
382 { "INT3431", LPSS_ADDR(lpt_spi_dev_desc) },
383 { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
384 { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
385 { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
386 { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
387 { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
388
389 /* Wildcat Point LPSS devices */
390 { "INT3438", LPSS_ADDR(lpt_spi_dev_desc) },
391
392 { }
393};
394
395#ifdef CONFIG_X86_INTEL_LPSS
396
397/* LPSS main clock device. */
398static struct platform_device *lpss_clk_dev;
399
400static inline void lpt_register_clock_device(void)
401{
402 lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
403 PLATFORM_DEVID_NONE,
404 NULL, 0);
405}
406
407static int register_device_clock(struct acpi_device *adev,
408 struct lpss_private_data *pdata)
409{
410 const struct lpss_device_desc *dev_desc = pdata->dev_desc;
411 const char *devname = dev_name(&adev->dev);
412 struct clk *clk;
413 struct lpss_clk_data *clk_data;
414 const char *parent, *clk_name;
415 void __iomem *prv_base;
416
417 if (!lpss_clk_dev)
418 lpt_register_clock_device();
419
420 if (IS_ERR(lpss_clk_dev))
421 return PTR_ERR(lpss_clk_dev);
422
423 clk_data = platform_get_drvdata(lpss_clk_dev);
424 if (!clk_data)
425 return -ENODEV;
426 clk = clk_data->clk;
427
428 if (!pdata->mmio_base
429 || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
430 return -ENODATA;
431
432 parent = clk_data->name;
433 prv_base = pdata->mmio_base + dev_desc->prv_offset;
434
435 if (pdata->fixed_clk_rate) {
436 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
437 pdata->fixed_clk_rate);
438 goto out;
439 }
440
441 if (dev_desc->flags & LPSS_CLK_GATE) {
442 clk = clk_register_gate(NULL, devname, parent, 0,
443 prv_base, 0, 0, NULL);
444 parent = devname;
445 }
446
447 if (dev_desc->flags & LPSS_CLK_DIVIDER) {
448 /* Prevent division by zero */
449 if (!readl(prv_base))
450 writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
451
452 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
453 if (!clk_name)
454 return -ENOMEM;
455 clk = clk_register_fractional_divider(NULL, clk_name, parent,
456 0, prv_base, 1, 15, 16, 15,
457 CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
458 NULL);
459 parent = clk_name;
460
461 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
462 if (!clk_name) {
463 kfree(parent);
464 return -ENOMEM;
465 }
466 clk = clk_register_gate(NULL, clk_name, parent,
467 CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
468 prv_base, 31, 0, NULL);
469 kfree(parent);
470 kfree(clk_name);
471 }
472out:
473 if (IS_ERR(clk))
474 return PTR_ERR(clk);
475
476 pdata->clk = clk;
477 clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
478 return 0;
479}
480
481struct lpss_device_links {
482 const char *supplier_hid;
483 const char *supplier_uid;
484 const char *consumer_hid;
485 const char *consumer_uid;
486 u32 flags;
487 const struct dmi_system_id *dep_missing_ids;
488};
489
490/* Please keep this list sorted alphabetically by vendor and model */
491static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
492 {
493 .matches = {
494 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
495 DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
496 },
497 },
498 {}
499};
500
501/*
502 * The _DEP method is used to identify dependencies but instead of creating
503 * device links for every handle in _DEP, only links in the following list are
504 * created. That is necessary because, in the general case, _DEP can refer to
505 * devices that might not have drivers, or that are on different buses, or where
506 * the supplier is not enumerated until after the consumer is probed.
507 */
508static const struct lpss_device_links lpss_device_links[] = {
509 /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
510 {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
511 /* CHT iGPU depends on PMIC I2C controller */
512 {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
513 /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
514 {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
515 i2c1_dep_missing_dmi_ids},
516 /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
517 {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
518 /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
519 {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
520};
521
522static bool acpi_lpss_is_supplier(struct acpi_device *adev,
523 const struct lpss_device_links *link)
524{
525 return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
526}
527
528static bool acpi_lpss_is_consumer(struct acpi_device *adev,
529 const struct lpss_device_links *link)
530{
531 return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
532}
533
534struct hid_uid {
535 const char *hid;
536 const char *uid;
537};
538
539static int match_hid_uid(struct device *dev, const void *data)
540{
541 struct acpi_device *adev = ACPI_COMPANION(dev);
542 const struct hid_uid *id = data;
543
544 if (!adev)
545 return 0;
546
547 return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
548}
549
550static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
551{
552 struct device *dev;
553
554 struct hid_uid data = {
555 .hid = hid,
556 .uid = uid,
557 };
558
559 dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
560 if (dev)
561 return dev;
562
563 return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
564}
565
566static void acpi_lpss_link_consumer(struct device *dev1,
567 const struct lpss_device_links *link)
568{
569 struct device *dev2;
570
571 dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
572 if (!dev2)
573 return;
574
575 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
576 || acpi_device_dep(ACPI_HANDLE(dev2), ACPI_HANDLE(dev1)))
577 device_link_add(dev2, dev1, link->flags);
578
579 put_device(dev2);
580}
581
582static void acpi_lpss_link_supplier(struct device *dev1,
583 const struct lpss_device_links *link)
584{
585 struct device *dev2;
586
587 dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
588 if (!dev2)
589 return;
590
591 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
592 || acpi_device_dep(ACPI_HANDLE(dev1), ACPI_HANDLE(dev2)))
593 device_link_add(dev1, dev2, link->flags);
594
595 put_device(dev2);
596}
597
598static void acpi_lpss_create_device_links(struct acpi_device *adev,
599 struct platform_device *pdev)
600{
601 int i;
602
603 for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
604 const struct lpss_device_links *link = &lpss_device_links[i];
605
606 if (acpi_lpss_is_supplier(adev, link))
607 acpi_lpss_link_consumer(&pdev->dev, link);
608
609 if (acpi_lpss_is_consumer(adev, link))
610 acpi_lpss_link_supplier(&pdev->dev, link);
611 }
612}
613
614static int acpi_lpss_create_device(struct acpi_device *adev,
615 const struct acpi_device_id *id)
616{
617 const struct lpss_device_desc *dev_desc;
618 struct lpss_private_data *pdata;
619 struct resource_entry *rentry;
620 struct list_head resource_list;
621 struct platform_device *pdev;
622 int ret;
623
624 dev_desc = (const struct lpss_device_desc *)id->driver_data;
625 if (!dev_desc)
626 return -EINVAL;
627
628 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
629 if (!pdata)
630 return -ENOMEM;
631
632 INIT_LIST_HEAD(&resource_list);
633 ret = acpi_dev_get_memory_resources(adev, &resource_list);
634 if (ret < 0)
635 goto err_out;
636
637 rentry = list_first_entry_or_null(&resource_list, struct resource_entry, node);
638 if (rentry) {
639 if (dev_desc->prv_size_override)
640 pdata->mmio_size = dev_desc->prv_size_override;
641 else
642 pdata->mmio_size = resource_size(rentry->res);
643 pdata->mmio_base = ioremap(rentry->res->start, pdata->mmio_size);
644 }
645
646 acpi_dev_free_resource_list(&resource_list);
647
648 if (!pdata->mmio_base) {
649 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
650 adev->pnp.type.platform_id = 0;
651 goto out_free;
652 }
653
654 pdata->adev = adev;
655 pdata->dev_desc = dev_desc;
656
657 if (dev_desc->setup)
658 dev_desc->setup(pdata);
659
660 if (dev_desc->flags & LPSS_CLK) {
661 ret = register_device_clock(adev, pdata);
662 if (ret)
663 goto out_free;
664 }
665
666 /*
667 * This works around a known issue in ACPI tables where LPSS devices
668 * have _PS0 and _PS3 without _PSC (and no power resources), so
669 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
670 */
671 acpi_device_fix_up_power(adev);
672
673 adev->driver_data = pdata;
674 pdev = acpi_create_platform_device(adev, dev_desc->properties);
675 if (IS_ERR_OR_NULL(pdev)) {
676 adev->driver_data = NULL;
677 ret = PTR_ERR(pdev);
678 goto err_out;
679 }
680
681 acpi_lpss_create_device_links(adev, pdev);
682 return 1;
683
684out_free:
685 /* Skip the device, but continue the namespace scan */
686 ret = 0;
687err_out:
688 kfree(pdata);
689 return ret;
690}
691
692static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
693{
694 return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
695}
696
697static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
698 unsigned int reg)
699{
700 writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
701}
702
703static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
704{
705 struct acpi_device *adev = ACPI_COMPANION(dev);
706 struct lpss_private_data *pdata;
707 unsigned long flags;
708 int ret;
709
710 if (WARN_ON(!adev))
711 return -ENODEV;
712
713 spin_lock_irqsave(&dev->power.lock, flags);
714 if (pm_runtime_suspended(dev)) {
715 ret = -EAGAIN;
716 goto out;
717 }
718 pdata = acpi_driver_data(adev);
719 if (WARN_ON(!pdata || !pdata->mmio_base)) {
720 ret = -ENODEV;
721 goto out;
722 }
723 *val = __lpss_reg_read(pdata, reg);
724 ret = 0;
725
726 out:
727 spin_unlock_irqrestore(&dev->power.lock, flags);
728 return ret;
729}
730
731static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
732 char *buf)
733{
734 u32 ltr_value = 0;
735 unsigned int reg;
736 int ret;
737
738 reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
739 ret = lpss_reg_read(dev, reg, <r_value);
740 if (ret)
741 return ret;
742
743 return sysfs_emit(buf, "%08x\n", ltr_value);
744}
745
746static ssize_t lpss_ltr_mode_show(struct device *dev,
747 struct device_attribute *attr, char *buf)
748{
749 u32 ltr_mode = 0;
750 char *outstr;
751 int ret;
752
753 ret = lpss_reg_read(dev, LPSS_GENERAL, <r_mode);
754 if (ret)
755 return ret;
756
757 outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
758 return sprintf(buf, "%s\n", outstr);
759}
760
761static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
762static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
763static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
764
765static struct attribute *lpss_attrs[] = {
766 &dev_attr_auto_ltr.attr,
767 &dev_attr_sw_ltr.attr,
768 &dev_attr_ltr_mode.attr,
769 NULL,
770};
771
772static const struct attribute_group lpss_attr_group = {
773 .attrs = lpss_attrs,
774 .name = "lpss_ltr",
775};
776
777static void acpi_lpss_set_ltr(struct device *dev, s32 val)
778{
779 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
780 u32 ltr_mode, ltr_val;
781
782 ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
783 if (val < 0) {
784 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
785 ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
786 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
787 }
788 return;
789 }
790 ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
791 if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
792 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
793 val = LPSS_LTR_MAX_VAL;
794 } else if (val > LPSS_LTR_MAX_VAL) {
795 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
796 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
797 } else {
798 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
799 }
800 ltr_val |= val;
801 __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
802 if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
803 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
804 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
805 }
806}
807
808#ifdef CONFIG_PM
809/**
810 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
811 * @dev: LPSS device
812 * @pdata: pointer to the private data of the LPSS device
813 *
814 * Most LPSS devices have private registers which may loose their context when
815 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
816 * prv_reg_ctx array.
817 */
818static void acpi_lpss_save_ctx(struct device *dev,
819 struct lpss_private_data *pdata)
820{
821 unsigned int i;
822
823 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
824 unsigned long offset = i * sizeof(u32);
825
826 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
827 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
828 pdata->prv_reg_ctx[i], offset);
829 }
830}
831
832/**
833 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
834 * @dev: LPSS device
835 * @pdata: pointer to the private data of the LPSS device
836 *
837 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
838 */
839static void acpi_lpss_restore_ctx(struct device *dev,
840 struct lpss_private_data *pdata)
841{
842 unsigned int i;
843
844 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
845 unsigned long offset = i * sizeof(u32);
846
847 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
848 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
849 pdata->prv_reg_ctx[i], offset);
850 }
851}
852
853static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
854{
855 /*
856 * The following delay is needed or the subsequent write operations may
857 * fail. The LPSS devices are actually PCI devices and the PCI spec
858 * expects 10ms delay before the device can be accessed after D3 to D0
859 * transition. However some platforms like BSW does not need this delay.
860 */
861 unsigned int delay = 10; /* default 10ms delay */
862
863 if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
864 delay = 0;
865
866 msleep(delay);
867}
868
869static int acpi_lpss_activate(struct device *dev)
870{
871 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
872 int ret;
873
874 ret = acpi_dev_resume(dev);
875 if (ret)
876 return ret;
877
878 acpi_lpss_d3_to_d0_delay(pdata);
879
880 /*
881 * This is called only on ->probe() stage where a device is either in
882 * known state defined by BIOS or most likely powered off. Due to this
883 * we have to deassert reset line to be sure that ->probe() will
884 * recognize the device.
885 */
886 if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
887 lpss_deassert_reset(pdata);
888
889#ifdef CONFIG_PM
890 if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
891 acpi_lpss_save_ctx(dev, pdata);
892#endif
893
894 return 0;
895}
896
897static void acpi_lpss_dismiss(struct device *dev)
898{
899 acpi_dev_suspend(dev, false);
900}
901
902/* IOSF SB for LPSS island */
903#define LPSS_IOSF_UNIT_LPIOEP 0xA0
904#define LPSS_IOSF_UNIT_LPIO1 0xAB
905#define LPSS_IOSF_UNIT_LPIO2 0xAC
906
907#define LPSS_IOSF_PMCSR 0x84
908#define LPSS_PMCSR_D0 0
909#define LPSS_PMCSR_D3hot 3
910#define LPSS_PMCSR_Dx_MASK GENMASK(1, 0)
911
912#define LPSS_IOSF_GPIODEF0 0x154
913#define LPSS_GPIODEF0_DMA1_D3 BIT(2)
914#define LPSS_GPIODEF0_DMA2_D3 BIT(3)
915#define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2)
916#define LPSS_GPIODEF0_DMA_LLP BIT(13)
917
918static DEFINE_MUTEX(lpss_iosf_mutex);
919static bool lpss_iosf_d3_entered = true;
920
921static void lpss_iosf_enter_d3_state(void)
922{
923 u32 value1 = 0;
924 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
925 u32 value2 = LPSS_PMCSR_D3hot;
926 u32 mask2 = LPSS_PMCSR_Dx_MASK;
927 /*
928 * PMC provides an information about actual status of the LPSS devices.
929 * Here we read the values related to LPSS power island, i.e. LPSS
930 * devices, excluding both LPSS DMA controllers, along with SCC domain.
931 */
932 u32 func_dis, d3_sts_0, pmc_status;
933 int ret;
934
935 ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
936 if (ret)
937 return;
938
939 mutex_lock(&lpss_iosf_mutex);
940
941 ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
942 if (ret)
943 goto exit;
944
945 /*
946 * Get the status of entire LPSS power island per device basis.
947 * Shutdown both LPSS DMA controllers if and only if all other devices
948 * are already in D3hot.
949 */
950 pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
951 if (pmc_status)
952 goto exit;
953
954 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
955 LPSS_IOSF_PMCSR, value2, mask2);
956
957 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
958 LPSS_IOSF_PMCSR, value2, mask2);
959
960 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
961 LPSS_IOSF_GPIODEF0, value1, mask1);
962
963 lpss_iosf_d3_entered = true;
964
965exit:
966 mutex_unlock(&lpss_iosf_mutex);
967}
968
969static void lpss_iosf_exit_d3_state(void)
970{
971 u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
972 LPSS_GPIODEF0_DMA_LLP;
973 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
974 u32 value2 = LPSS_PMCSR_D0;
975 u32 mask2 = LPSS_PMCSR_Dx_MASK;
976
977 mutex_lock(&lpss_iosf_mutex);
978
979 if (!lpss_iosf_d3_entered)
980 goto exit;
981
982 lpss_iosf_d3_entered = false;
983
984 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
985 LPSS_IOSF_GPIODEF0, value1, mask1);
986
987 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
988 LPSS_IOSF_PMCSR, value2, mask2);
989
990 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
991 LPSS_IOSF_PMCSR, value2, mask2);
992
993exit:
994 mutex_unlock(&lpss_iosf_mutex);
995}
996
997static int acpi_lpss_suspend(struct device *dev, bool wakeup)
998{
999 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1000 int ret;
1001
1002 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1003 acpi_lpss_save_ctx(dev, pdata);
1004
1005 ret = acpi_dev_suspend(dev, wakeup);
1006
1007 /*
1008 * This call must be last in the sequence, otherwise PMC will return
1009 * wrong status for devices being about to be powered off. See
1010 * lpss_iosf_enter_d3_state() for further information.
1011 */
1012 if (acpi_target_system_state() == ACPI_STATE_S0 &&
1013 lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1014 lpss_iosf_enter_d3_state();
1015
1016 return ret;
1017}
1018
1019static int acpi_lpss_resume(struct device *dev)
1020{
1021 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1022 int ret;
1023
1024 /*
1025 * This call is kept first to be in symmetry with
1026 * acpi_lpss_runtime_suspend() one.
1027 */
1028 if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1029 lpss_iosf_exit_d3_state();
1030
1031 ret = acpi_dev_resume(dev);
1032 if (ret)
1033 return ret;
1034
1035 acpi_lpss_d3_to_d0_delay(pdata);
1036
1037 if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1038 acpi_lpss_restore_ctx(dev, pdata);
1039
1040 return 0;
1041}
1042
1043#ifdef CONFIG_PM_SLEEP
1044static int acpi_lpss_do_suspend_late(struct device *dev)
1045{
1046 int ret;
1047
1048 if (dev_pm_skip_suspend(dev))
1049 return 0;
1050
1051 ret = pm_generic_suspend_late(dev);
1052 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1053}
1054
1055static int acpi_lpss_suspend_late(struct device *dev)
1056{
1057 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1058
1059 if (pdata->dev_desc->resume_from_noirq)
1060 return 0;
1061
1062 return acpi_lpss_do_suspend_late(dev);
1063}
1064
1065static int acpi_lpss_suspend_noirq(struct device *dev)
1066{
1067 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1068 int ret;
1069
1070 if (pdata->dev_desc->resume_from_noirq) {
1071 /*
1072 * The driver's ->suspend_late callback will be invoked by
1073 * acpi_lpss_do_suspend_late(), with the assumption that the
1074 * driver really wanted to run that code in ->suspend_noirq, but
1075 * it could not run after acpi_dev_suspend() and the driver
1076 * expected the latter to be called in the "late" phase.
1077 */
1078 ret = acpi_lpss_do_suspend_late(dev);
1079 if (ret)
1080 return ret;
1081 }
1082
1083 return acpi_subsys_suspend_noirq(dev);
1084}
1085
1086static int acpi_lpss_do_resume_early(struct device *dev)
1087{
1088 int ret = acpi_lpss_resume(dev);
1089
1090 return ret ? ret : pm_generic_resume_early(dev);
1091}
1092
1093static int acpi_lpss_resume_early(struct device *dev)
1094{
1095 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1096
1097 if (pdata->dev_desc->resume_from_noirq)
1098 return 0;
1099
1100 if (dev_pm_skip_resume(dev))
1101 return 0;
1102
1103 return acpi_lpss_do_resume_early(dev);
1104}
1105
1106static int acpi_lpss_resume_noirq(struct device *dev)
1107{
1108 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1109 int ret;
1110
1111 /* Follow acpi_subsys_resume_noirq(). */
1112 if (dev_pm_skip_resume(dev))
1113 return 0;
1114
1115 ret = pm_generic_resume_noirq(dev);
1116 if (ret)
1117 return ret;
1118
1119 if (!pdata->dev_desc->resume_from_noirq)
1120 return 0;
1121
1122 /*
1123 * The driver's ->resume_early callback will be invoked by
1124 * acpi_lpss_do_resume_early(), with the assumption that the driver
1125 * really wanted to run that code in ->resume_noirq, but it could not
1126 * run before acpi_dev_resume() and the driver expected the latter to be
1127 * called in the "early" phase.
1128 */
1129 return acpi_lpss_do_resume_early(dev);
1130}
1131
1132static int acpi_lpss_do_restore_early(struct device *dev)
1133{
1134 int ret = acpi_lpss_resume(dev);
1135
1136 return ret ? ret : pm_generic_restore_early(dev);
1137}
1138
1139static int acpi_lpss_restore_early(struct device *dev)
1140{
1141 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1142
1143 if (pdata->dev_desc->resume_from_noirq)
1144 return 0;
1145
1146 return acpi_lpss_do_restore_early(dev);
1147}
1148
1149static int acpi_lpss_restore_noirq(struct device *dev)
1150{
1151 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1152 int ret;
1153
1154 ret = pm_generic_restore_noirq(dev);
1155 if (ret)
1156 return ret;
1157
1158 if (!pdata->dev_desc->resume_from_noirq)
1159 return 0;
1160
1161 /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1162 return acpi_lpss_do_restore_early(dev);
1163}
1164
1165static int acpi_lpss_do_poweroff_late(struct device *dev)
1166{
1167 int ret = pm_generic_poweroff_late(dev);
1168
1169 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1170}
1171
1172static int acpi_lpss_poweroff_late(struct device *dev)
1173{
1174 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1175
1176 if (dev_pm_skip_suspend(dev))
1177 return 0;
1178
1179 if (pdata->dev_desc->resume_from_noirq)
1180 return 0;
1181
1182 return acpi_lpss_do_poweroff_late(dev);
1183}
1184
1185static int acpi_lpss_poweroff_noirq(struct device *dev)
1186{
1187 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1188
1189 if (dev_pm_skip_suspend(dev))
1190 return 0;
1191
1192 if (pdata->dev_desc->resume_from_noirq) {
1193 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1194 int ret = acpi_lpss_do_poweroff_late(dev);
1195
1196 if (ret)
1197 return ret;
1198 }
1199
1200 return pm_generic_poweroff_noirq(dev);
1201}
1202#endif /* CONFIG_PM_SLEEP */
1203
1204static int acpi_lpss_runtime_suspend(struct device *dev)
1205{
1206 int ret = pm_generic_runtime_suspend(dev);
1207
1208 return ret ? ret : acpi_lpss_suspend(dev, true);
1209}
1210
1211static int acpi_lpss_runtime_resume(struct device *dev)
1212{
1213 int ret = acpi_lpss_resume(dev);
1214
1215 return ret ? ret : pm_generic_runtime_resume(dev);
1216}
1217#endif /* CONFIG_PM */
1218
1219static struct dev_pm_domain acpi_lpss_pm_domain = {
1220#ifdef CONFIG_PM
1221 .activate = acpi_lpss_activate,
1222 .dismiss = acpi_lpss_dismiss,
1223#endif
1224 .ops = {
1225#ifdef CONFIG_PM
1226#ifdef CONFIG_PM_SLEEP
1227 .prepare = acpi_subsys_prepare,
1228 .complete = acpi_subsys_complete,
1229 .suspend = acpi_subsys_suspend,
1230 .suspend_late = acpi_lpss_suspend_late,
1231 .suspend_noirq = acpi_lpss_suspend_noirq,
1232 .resume_noirq = acpi_lpss_resume_noirq,
1233 .resume_early = acpi_lpss_resume_early,
1234 .freeze = acpi_subsys_freeze,
1235 .poweroff = acpi_subsys_poweroff,
1236 .poweroff_late = acpi_lpss_poweroff_late,
1237 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1238 .restore_noirq = acpi_lpss_restore_noirq,
1239 .restore_early = acpi_lpss_restore_early,
1240#endif
1241 .runtime_suspend = acpi_lpss_runtime_suspend,
1242 .runtime_resume = acpi_lpss_runtime_resume,
1243#endif
1244 },
1245};
1246
1247static int acpi_lpss_platform_notify(struct notifier_block *nb,
1248 unsigned long action, void *data)
1249{
1250 struct platform_device *pdev = to_platform_device(data);
1251 struct lpss_private_data *pdata;
1252 struct acpi_device *adev;
1253 const struct acpi_device_id *id;
1254
1255 id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1256 if (!id || !id->driver_data)
1257 return 0;
1258
1259 adev = ACPI_COMPANION(&pdev->dev);
1260 if (!adev)
1261 return 0;
1262
1263 pdata = acpi_driver_data(adev);
1264 if (!pdata)
1265 return 0;
1266
1267 if (pdata->mmio_base &&
1268 pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1269 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1270 return 0;
1271 }
1272
1273 switch (action) {
1274 case BUS_NOTIFY_BIND_DRIVER:
1275 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1276 break;
1277 case BUS_NOTIFY_DRIVER_NOT_BOUND:
1278 case BUS_NOTIFY_UNBOUND_DRIVER:
1279 dev_pm_domain_set(&pdev->dev, NULL);
1280 break;
1281 case BUS_NOTIFY_ADD_DEVICE:
1282 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1283 if (pdata->dev_desc->flags & LPSS_LTR)
1284 return sysfs_create_group(&pdev->dev.kobj,
1285 &lpss_attr_group);
1286 break;
1287 case BUS_NOTIFY_DEL_DEVICE:
1288 if (pdata->dev_desc->flags & LPSS_LTR)
1289 sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1290 dev_pm_domain_set(&pdev->dev, NULL);
1291 break;
1292 default:
1293 break;
1294 }
1295
1296 return 0;
1297}
1298
1299static struct notifier_block acpi_lpss_nb = {
1300 .notifier_call = acpi_lpss_platform_notify,
1301};
1302
1303static void acpi_lpss_bind(struct device *dev)
1304{
1305 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1306
1307 if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1308 return;
1309
1310 if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1311 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1312 else
1313 dev_err(dev, "MMIO size insufficient to access LTR\n");
1314}
1315
1316static void acpi_lpss_unbind(struct device *dev)
1317{
1318 dev->power.set_latency_tolerance = NULL;
1319}
1320
1321static struct acpi_scan_handler lpss_handler = {
1322 .ids = acpi_lpss_device_ids,
1323 .attach = acpi_lpss_create_device,
1324 .bind = acpi_lpss_bind,
1325 .unbind = acpi_lpss_unbind,
1326};
1327
1328void __init acpi_lpss_init(void)
1329{
1330 const struct x86_cpu_id *id;
1331 int ret;
1332
1333 ret = lpss_atom_clk_init();
1334 if (ret)
1335 return;
1336
1337 id = x86_match_cpu(lpss_cpu_ids);
1338 if (id)
1339 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1340
1341 bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1342 acpi_scan_add_handler(&lpss_handler);
1343}
1344
1345#else
1346
1347static struct acpi_scan_handler lpss_handler = {
1348 .ids = acpi_lpss_device_ids,
1349};
1350
1351void __init acpi_lpss_init(void)
1352{
1353 acpi_scan_add_handler(&lpss_handler);
1354}
1355
1356#endif /* CONFIG_X86_INTEL_LPSS */