Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright 2002 Andi Kleen, SuSE Labs.
   4 * Thanks to Ben LaHaise for precious feedback.
   5 */
   6#include <linux/highmem.h>
   7#include <linux/memblock.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/interrupt.h>
  11#include <linux/seq_file.h>
  12#include <linux/proc_fs.h>
  13#include <linux/debugfs.h>
  14#include <linux/pfn.h>
  15#include <linux/percpu.h>
  16#include <linux/gfp.h>
  17#include <linux/pci.h>
  18#include <linux/vmalloc.h>
  19#include <linux/libnvdimm.h>
  20#include <linux/vmstat.h>
  21#include <linux/kernel.h>
  22#include <linux/cc_platform.h>
  23#include <linux/set_memory.h>
  24#include <linux/memregion.h>
  25
  26#include <asm/e820/api.h>
  27#include <asm/processor.h>
  28#include <asm/tlbflush.h>
  29#include <asm/sections.h>
  30#include <asm/setup.h>
  31#include <linux/uaccess.h>
  32#include <asm/pgalloc.h>
  33#include <asm/proto.h>
  34#include <asm/memtype.h>
  35#include <asm/hyperv-tlfs.h>
  36#include <asm/mshyperv.h>
  37
  38#include "../mm_internal.h"
  39
  40/*
  41 * The current flushing context - we pass it instead of 5 arguments:
  42 */
  43struct cpa_data {
  44	unsigned long	*vaddr;
  45	pgd_t		*pgd;
  46	pgprot_t	mask_set;
  47	pgprot_t	mask_clr;
  48	unsigned long	numpages;
  49	unsigned long	curpage;
  50	unsigned long	pfn;
  51	unsigned int	flags;
  52	unsigned int	force_split		: 1,
  53			force_static_prot	: 1,
  54			force_flush_all		: 1;
  55	struct page	**pages;
  56};
  57
  58enum cpa_warn {
  59	CPA_CONFLICT,
  60	CPA_PROTECT,
  61	CPA_DETECT,
  62};
  63
  64static const int cpa_warn_level = CPA_PROTECT;
  65
  66/*
  67 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
  68 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
  69 * entries change the page attribute in parallel to some other cpu
  70 * splitting a large page entry along with changing the attribute.
  71 */
  72static DEFINE_SPINLOCK(cpa_lock);
  73
  74#define CPA_FLUSHTLB 1
  75#define CPA_ARRAY 2
  76#define CPA_PAGES_ARRAY 4
  77#define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
  78
  79static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
  80{
  81	return __pgprot(cachemode2protval(pcm));
  82}
  83
  84#ifdef CONFIG_PROC_FS
  85static unsigned long direct_pages_count[PG_LEVEL_NUM];
  86
  87void update_page_count(int level, unsigned long pages)
  88{
  89	/* Protect against CPA */
  90	spin_lock(&pgd_lock);
  91	direct_pages_count[level] += pages;
  92	spin_unlock(&pgd_lock);
  93}
  94
  95static void split_page_count(int level)
  96{
  97	if (direct_pages_count[level] == 0)
  98		return;
  99
 100	direct_pages_count[level]--;
 101	if (system_state == SYSTEM_RUNNING) {
 102		if (level == PG_LEVEL_2M)
 103			count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
 104		else if (level == PG_LEVEL_1G)
 105			count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
 106	}
 107	direct_pages_count[level - 1] += PTRS_PER_PTE;
 108}
 109
 110void arch_report_meminfo(struct seq_file *m)
 111{
 112	seq_printf(m, "DirectMap4k:    %8lu kB\n",
 113			direct_pages_count[PG_LEVEL_4K] << 2);
 114#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 115	seq_printf(m, "DirectMap2M:    %8lu kB\n",
 116			direct_pages_count[PG_LEVEL_2M] << 11);
 117#else
 118	seq_printf(m, "DirectMap4M:    %8lu kB\n",
 119			direct_pages_count[PG_LEVEL_2M] << 12);
 120#endif
 121	if (direct_gbpages)
 122		seq_printf(m, "DirectMap1G:    %8lu kB\n",
 123			direct_pages_count[PG_LEVEL_1G] << 20);
 124}
 125#else
 126static inline void split_page_count(int level) { }
 127#endif
 128
 129#ifdef CONFIG_X86_CPA_STATISTICS
 130
 131static unsigned long cpa_1g_checked;
 132static unsigned long cpa_1g_sameprot;
 133static unsigned long cpa_1g_preserved;
 134static unsigned long cpa_2m_checked;
 135static unsigned long cpa_2m_sameprot;
 136static unsigned long cpa_2m_preserved;
 137static unsigned long cpa_4k_install;
 138
 139static inline void cpa_inc_1g_checked(void)
 140{
 141	cpa_1g_checked++;
 142}
 143
 144static inline void cpa_inc_2m_checked(void)
 145{
 146	cpa_2m_checked++;
 147}
 148
 149static inline void cpa_inc_4k_install(void)
 150{
 151	data_race(cpa_4k_install++);
 152}
 153
 154static inline void cpa_inc_lp_sameprot(int level)
 155{
 156	if (level == PG_LEVEL_1G)
 157		cpa_1g_sameprot++;
 158	else
 159		cpa_2m_sameprot++;
 160}
 161
 162static inline void cpa_inc_lp_preserved(int level)
 163{
 164	if (level == PG_LEVEL_1G)
 165		cpa_1g_preserved++;
 166	else
 167		cpa_2m_preserved++;
 168}
 169
 170static int cpastats_show(struct seq_file *m, void *p)
 171{
 172	seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
 173	seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
 174	seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
 175	seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
 176	seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
 177	seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
 178	seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
 179	return 0;
 180}
 181
 182static int cpastats_open(struct inode *inode, struct file *file)
 183{
 184	return single_open(file, cpastats_show, NULL);
 185}
 186
 187static const struct file_operations cpastats_fops = {
 188	.open		= cpastats_open,
 189	.read		= seq_read,
 190	.llseek		= seq_lseek,
 191	.release	= single_release,
 192};
 193
 194static int __init cpa_stats_init(void)
 195{
 196	debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
 197			    &cpastats_fops);
 198	return 0;
 199}
 200late_initcall(cpa_stats_init);
 201#else
 202static inline void cpa_inc_1g_checked(void) { }
 203static inline void cpa_inc_2m_checked(void) { }
 204static inline void cpa_inc_4k_install(void) { }
 205static inline void cpa_inc_lp_sameprot(int level) { }
 206static inline void cpa_inc_lp_preserved(int level) { }
 207#endif
 208
 209
 210static inline int
 211within(unsigned long addr, unsigned long start, unsigned long end)
 212{
 213	return addr >= start && addr < end;
 214}
 215
 216static inline int
 217within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
 218{
 219	return addr >= start && addr <= end;
 220}
 221
 222#ifdef CONFIG_X86_64
 223
 224/*
 225 * The kernel image is mapped into two places in the virtual address space
 226 * (addresses without KASLR, of course):
 227 *
 228 * 1. The kernel direct map (0xffff880000000000)
 229 * 2. The "high kernel map" (0xffffffff81000000)
 230 *
 231 * We actually execute out of #2. If we get the address of a kernel symbol, it
 232 * points to #2, but almost all physical-to-virtual translations point to #1.
 233 *
 234 * This is so that we can have both a directmap of all physical memory *and*
 235 * take full advantage of the limited (s32) immediate addressing range (2G)
 236 * of x86_64.
 237 *
 238 * See Documentation/arch/x86/x86_64/mm.rst for more detail.
 239 */
 240
 241static inline unsigned long highmap_start_pfn(void)
 242{
 243	return __pa_symbol(_text) >> PAGE_SHIFT;
 244}
 245
 246static inline unsigned long highmap_end_pfn(void)
 247{
 248	/* Do not reference physical address outside the kernel. */
 249	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
 250}
 251
 252static bool __cpa_pfn_in_highmap(unsigned long pfn)
 253{
 254	/*
 255	 * Kernel text has an alias mapping at a high address, known
 256	 * here as "highmap".
 257	 */
 258	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
 259}
 260
 261#else
 262
 263static bool __cpa_pfn_in_highmap(unsigned long pfn)
 264{
 265	/* There is no highmap on 32-bit */
 266	return false;
 267}
 268
 269#endif
 270
 271/*
 272 * See set_mce_nospec().
 273 *
 274 * Machine check recovery code needs to change cache mode of poisoned pages to
 275 * UC to avoid speculative access logging another error. But passing the
 276 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
 277 * speculative access. So we cheat and flip the top bit of the address. This
 278 * works fine for the code that updates the page tables. But at the end of the
 279 * process we need to flush the TLB and cache and the non-canonical address
 280 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
 281 *
 282 * But in the common case we already have a canonical address. This code
 283 * will fix the top bit if needed and is a no-op otherwise.
 284 */
 285static inline unsigned long fix_addr(unsigned long addr)
 286{
 287#ifdef CONFIG_X86_64
 288	return (long)(addr << 1) >> 1;
 289#else
 290	return addr;
 291#endif
 292}
 293
 294static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
 295{
 296	if (cpa->flags & CPA_PAGES_ARRAY) {
 297		struct page *page = cpa->pages[idx];
 298
 299		if (unlikely(PageHighMem(page)))
 300			return 0;
 301
 302		return (unsigned long)page_address(page);
 303	}
 304
 305	if (cpa->flags & CPA_ARRAY)
 306		return cpa->vaddr[idx];
 307
 308	return *cpa->vaddr + idx * PAGE_SIZE;
 309}
 310
 311/*
 312 * Flushing functions
 313 */
 314
 315static void clflush_cache_range_opt(void *vaddr, unsigned int size)
 316{
 317	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
 318	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
 319	void *vend = vaddr + size;
 320
 321	if (p >= vend)
 322		return;
 323
 324	for (; p < vend; p += clflush_size)
 325		clflushopt(p);
 326}
 327
 328/**
 329 * clflush_cache_range - flush a cache range with clflush
 330 * @vaddr:	virtual start address
 331 * @size:	number of bytes to flush
 332 *
 333 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
 334 * SFENCE to avoid ordering issues.
 335 */
 336void clflush_cache_range(void *vaddr, unsigned int size)
 337{
 338	mb();
 339	clflush_cache_range_opt(vaddr, size);
 340	mb();
 341}
 342EXPORT_SYMBOL_GPL(clflush_cache_range);
 343
 344#ifdef CONFIG_ARCH_HAS_PMEM_API
 345void arch_invalidate_pmem(void *addr, size_t size)
 346{
 347	clflush_cache_range(addr, size);
 348}
 349EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
 350#endif
 351
 352#ifdef CONFIG_ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION
 353bool cpu_cache_has_invalidate_memregion(void)
 354{
 355	return !cpu_feature_enabled(X86_FEATURE_HYPERVISOR);
 356}
 357EXPORT_SYMBOL_NS_GPL(cpu_cache_has_invalidate_memregion, DEVMEM);
 358
 359int cpu_cache_invalidate_memregion(int res_desc)
 360{
 361	if (WARN_ON_ONCE(!cpu_cache_has_invalidate_memregion()))
 362		return -ENXIO;
 363	wbinvd_on_all_cpus();
 364	return 0;
 365}
 366EXPORT_SYMBOL_NS_GPL(cpu_cache_invalidate_memregion, DEVMEM);
 367#endif
 368
 369static void __cpa_flush_all(void *arg)
 370{
 371	unsigned long cache = (unsigned long)arg;
 372
 373	/*
 374	 * Flush all to work around Errata in early athlons regarding
 375	 * large page flushing.
 376	 */
 377	__flush_tlb_all();
 378
 379	if (cache && boot_cpu_data.x86 >= 4)
 380		wbinvd();
 381}
 382
 383static void cpa_flush_all(unsigned long cache)
 384{
 385	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 386
 387	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
 388}
 389
 390static void __cpa_flush_tlb(void *data)
 391{
 392	struct cpa_data *cpa = data;
 393	unsigned int i;
 394
 395	for (i = 0; i < cpa->numpages; i++)
 396		flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
 397}
 398
 399static void cpa_flush(struct cpa_data *data, int cache)
 400{
 401	struct cpa_data *cpa = data;
 402	unsigned int i;
 403
 404	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 405
 406	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
 407		cpa_flush_all(cache);
 408		return;
 409	}
 410
 411	if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
 412		flush_tlb_all();
 413	else
 414		on_each_cpu(__cpa_flush_tlb, cpa, 1);
 415
 416	if (!cache)
 417		return;
 418
 419	mb();
 420	for (i = 0; i < cpa->numpages; i++) {
 421		unsigned long addr = __cpa_addr(cpa, i);
 422		unsigned int level;
 423
 424		pte_t *pte = lookup_address(addr, &level);
 425
 426		/*
 427		 * Only flush present addresses:
 428		 */
 429		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 430			clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
 431	}
 432	mb();
 433}
 434
 435static bool overlaps(unsigned long r1_start, unsigned long r1_end,
 436		     unsigned long r2_start, unsigned long r2_end)
 437{
 438	return (r1_start <= r2_end && r1_end >= r2_start) ||
 439		(r2_start <= r1_end && r2_end >= r1_start);
 440}
 441
 442#ifdef CONFIG_PCI_BIOS
 443/*
 444 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
 445 * based config access (CONFIG_PCI_GOBIOS) support.
 446 */
 447#define BIOS_PFN	PFN_DOWN(BIOS_BEGIN)
 448#define BIOS_PFN_END	PFN_DOWN(BIOS_END - 1)
 449
 450static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 451{
 452	if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
 453		return _PAGE_NX;
 454	return 0;
 455}
 456#else
 457static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 458{
 459	return 0;
 460}
 461#endif
 462
 463/*
 464 * The .rodata section needs to be read-only. Using the pfn catches all
 465 * aliases.  This also includes __ro_after_init, so do not enforce until
 466 * kernel_set_to_readonly is true.
 467 */
 468static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
 469{
 470	unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
 471
 472	/*
 473	 * Note: __end_rodata is at page aligned and not inclusive, so
 474	 * subtract 1 to get the last enforced PFN in the rodata area.
 475	 */
 476	epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
 477
 478	if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
 479		return _PAGE_RW;
 480	return 0;
 481}
 482
 483/*
 484 * Protect kernel text against becoming non executable by forbidding
 485 * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
 486 * out of which the kernel actually executes.  Do not protect the low
 487 * mapping.
 488 *
 489 * This does not cover __inittext since that is gone after boot.
 490 */
 491static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
 492{
 493	unsigned long t_end = (unsigned long)_etext - 1;
 494	unsigned long t_start = (unsigned long)_text;
 495
 496	if (overlaps(start, end, t_start, t_end))
 497		return _PAGE_NX;
 498	return 0;
 499}
 500
 501#if defined(CONFIG_X86_64)
 502/*
 503 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
 504 * kernel text mappings for the large page aligned text, rodata sections
 505 * will be always read-only. For the kernel identity mappings covering the
 506 * holes caused by this alignment can be anything that user asks.
 507 *
 508 * This will preserve the large page mappings for kernel text/data at no
 509 * extra cost.
 510 */
 511static pgprotval_t protect_kernel_text_ro(unsigned long start,
 512					  unsigned long end)
 513{
 514	unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
 515	unsigned long t_start = (unsigned long)_text;
 516	unsigned int level;
 517
 518	if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
 519		return 0;
 520	/*
 521	 * Don't enforce the !RW mapping for the kernel text mapping, if
 522	 * the current mapping is already using small page mapping.  No
 523	 * need to work hard to preserve large page mappings in this case.
 524	 *
 525	 * This also fixes the Linux Xen paravirt guest boot failure caused
 526	 * by unexpected read-only mappings for kernel identity
 527	 * mappings. In this paravirt guest case, the kernel text mapping
 528	 * and the kernel identity mapping share the same page-table pages,
 529	 * so the protections for kernel text and identity mappings have to
 530	 * be the same.
 531	 */
 532	if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
 533		return _PAGE_RW;
 534	return 0;
 535}
 536#else
 537static pgprotval_t protect_kernel_text_ro(unsigned long start,
 538					  unsigned long end)
 539{
 540	return 0;
 541}
 542#endif
 543
 544static inline bool conflicts(pgprot_t prot, pgprotval_t val)
 545{
 546	return (pgprot_val(prot) & ~val) != pgprot_val(prot);
 547}
 548
 549static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
 550				  unsigned long start, unsigned long end,
 551				  unsigned long pfn, const char *txt)
 552{
 553	static const char *lvltxt[] = {
 554		[CPA_CONFLICT]	= "conflict",
 555		[CPA_PROTECT]	= "protect",
 556		[CPA_DETECT]	= "detect",
 557	};
 558
 559	if (warnlvl > cpa_warn_level || !conflicts(prot, val))
 560		return;
 561
 562	pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
 563		lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
 564		(unsigned long long)val);
 565}
 566
 567/*
 568 * Certain areas of memory on x86 require very specific protection flags,
 569 * for example the BIOS area or kernel text. Callers don't always get this
 570 * right (again, ioremap() on BIOS memory is not uncommon) so this function
 571 * checks and fixes these known static required protection bits.
 572 */
 573static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
 574					  unsigned long pfn, unsigned long npg,
 575					  unsigned long lpsize, int warnlvl)
 576{
 577	pgprotval_t forbidden, res;
 578	unsigned long end;
 579
 580	/*
 581	 * There is no point in checking RW/NX conflicts when the requested
 582	 * mapping is setting the page !PRESENT.
 583	 */
 584	if (!(pgprot_val(prot) & _PAGE_PRESENT))
 585		return prot;
 586
 587	/* Operate on the virtual address */
 588	end = start + npg * PAGE_SIZE - 1;
 589
 590	res = protect_kernel_text(start, end);
 591	check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
 592	forbidden = res;
 593
 594	/*
 595	 * Special case to preserve a large page. If the change spawns the
 596	 * full large page mapping then there is no point to split it
 597	 * up. Happens with ftrace and is going to be removed once ftrace
 598	 * switched to text_poke().
 599	 */
 600	if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
 601		res = protect_kernel_text_ro(start, end);
 602		check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
 603		forbidden |= res;
 604	}
 605
 606	/* Check the PFN directly */
 607	res = protect_pci_bios(pfn, pfn + npg - 1);
 608	check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
 609	forbidden |= res;
 610
 611	res = protect_rodata(pfn, pfn + npg - 1);
 612	check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
 613	forbidden |= res;
 614
 615	return __pgprot(pgprot_val(prot) & ~forbidden);
 616}
 617
 618/*
 619 * Validate strict W^X semantics.
 620 */
 621static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start,
 622				  unsigned long pfn, unsigned long npg)
 623{
 624	unsigned long end;
 625
 626	/*
 627	 * 32-bit has some unfixable W+X issues, like EFI code
 628	 * and writeable data being in the same page.  Disable
 629	 * detection and enforcement there.
 630	 */
 631	if (IS_ENABLED(CONFIG_X86_32))
 632		return new;
 633
 634	/* Only verify when NX is supported: */
 635	if (!(__supported_pte_mask & _PAGE_NX))
 636		return new;
 637
 638	if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX)))
 639		return new;
 640
 641	if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW)
 642		return new;
 643
 644	end = start + npg * PAGE_SIZE - 1;
 645	WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n",
 646		  (unsigned long long)pgprot_val(old),
 647		  (unsigned long long)pgprot_val(new),
 648		  start, end, pfn);
 649
 650	/*
 651	 * For now, allow all permission change attempts by returning the
 652	 * attempted permissions.  This can 'return old' to actively
 653	 * refuse the permission change at a later time.
 654	 */
 655	return new;
 656}
 657
 658/*
 659 * Lookup the page table entry for a virtual address in a specific pgd.
 660 * Return a pointer to the entry and the level of the mapping.
 661 */
 662pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
 663			     unsigned int *level)
 664{
 665	p4d_t *p4d;
 666	pud_t *pud;
 667	pmd_t *pmd;
 668
 669	*level = PG_LEVEL_NONE;
 670
 671	if (pgd_none(*pgd))
 672		return NULL;
 673
 674	p4d = p4d_offset(pgd, address);
 675	if (p4d_none(*p4d))
 676		return NULL;
 677
 678	*level = PG_LEVEL_512G;
 679	if (p4d_large(*p4d) || !p4d_present(*p4d))
 680		return (pte_t *)p4d;
 681
 682	pud = pud_offset(p4d, address);
 683	if (pud_none(*pud))
 684		return NULL;
 685
 686	*level = PG_LEVEL_1G;
 687	if (pud_large(*pud) || !pud_present(*pud))
 688		return (pte_t *)pud;
 689
 690	pmd = pmd_offset(pud, address);
 691	if (pmd_none(*pmd))
 692		return NULL;
 693
 694	*level = PG_LEVEL_2M;
 695	if (pmd_large(*pmd) || !pmd_present(*pmd))
 696		return (pte_t *)pmd;
 697
 698	*level = PG_LEVEL_4K;
 699
 700	return pte_offset_kernel(pmd, address);
 701}
 702
 703/*
 704 * Lookup the page table entry for a virtual address. Return a pointer
 705 * to the entry and the level of the mapping.
 706 *
 707 * Note: We return pud and pmd either when the entry is marked large
 708 * or when the present bit is not set. Otherwise we would return a
 709 * pointer to a nonexisting mapping.
 710 */
 711pte_t *lookup_address(unsigned long address, unsigned int *level)
 712{
 713	return lookup_address_in_pgd(pgd_offset_k(address), address, level);
 714}
 715EXPORT_SYMBOL_GPL(lookup_address);
 716
 717static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
 718				  unsigned int *level)
 719{
 720	if (cpa->pgd)
 721		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
 722					       address, level);
 723
 724	return lookup_address(address, level);
 725}
 726
 727/*
 728 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
 729 * or NULL if not present.
 730 */
 731pmd_t *lookup_pmd_address(unsigned long address)
 732{
 733	pgd_t *pgd;
 734	p4d_t *p4d;
 735	pud_t *pud;
 736
 737	pgd = pgd_offset_k(address);
 738	if (pgd_none(*pgd))
 739		return NULL;
 740
 741	p4d = p4d_offset(pgd, address);
 742	if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
 743		return NULL;
 744
 745	pud = pud_offset(p4d, address);
 746	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
 747		return NULL;
 748
 749	return pmd_offset(pud, address);
 750}
 751
 752/*
 753 * This is necessary because __pa() does not work on some
 754 * kinds of memory, like vmalloc() or the alloc_remap()
 755 * areas on 32-bit NUMA systems.  The percpu areas can
 756 * end up in this kind of memory, for instance.
 757 *
 758 * Note that as long as the PTEs are well-formed with correct PFNs, this
 759 * works without checking the PRESENT bit in the leaf PTE.  This is unlike
 760 * the similar vmalloc_to_page() and derivatives.  Callers may depend on
 761 * this behavior.
 762 *
 763 * This could be optimized, but it is only used in paths that are not perf
 764 * sensitive, and keeping it unoptimized should increase the testing coverage
 765 * for the more obscure platforms.
 766 */
 767phys_addr_t slow_virt_to_phys(void *__virt_addr)
 768{
 769	unsigned long virt_addr = (unsigned long)__virt_addr;
 770	phys_addr_t phys_addr;
 771	unsigned long offset;
 772	enum pg_level level;
 773	pte_t *pte;
 774
 775	pte = lookup_address(virt_addr, &level);
 776	BUG_ON(!pte);
 777
 778	/*
 779	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
 780	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
 781	 * make 32-PAE kernel work correctly.
 782	 */
 783	switch (level) {
 784	case PG_LEVEL_1G:
 785		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
 786		offset = virt_addr & ~PUD_MASK;
 787		break;
 788	case PG_LEVEL_2M:
 789		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
 790		offset = virt_addr & ~PMD_MASK;
 791		break;
 792	default:
 793		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
 794		offset = virt_addr & ~PAGE_MASK;
 795	}
 796
 797	return (phys_addr_t)(phys_addr | offset);
 798}
 799EXPORT_SYMBOL_GPL(slow_virt_to_phys);
 800
 801/*
 802 * Set the new pmd in all the pgds we know about:
 803 */
 804static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
 805{
 806	/* change init_mm */
 807	set_pte_atomic(kpte, pte);
 808#ifdef CONFIG_X86_32
 809	if (!SHARED_KERNEL_PMD) {
 810		struct page *page;
 811
 812		list_for_each_entry(page, &pgd_list, lru) {
 813			pgd_t *pgd;
 814			p4d_t *p4d;
 815			pud_t *pud;
 816			pmd_t *pmd;
 817
 818			pgd = (pgd_t *)page_address(page) + pgd_index(address);
 819			p4d = p4d_offset(pgd, address);
 820			pud = pud_offset(p4d, address);
 821			pmd = pmd_offset(pud, address);
 822			set_pte_atomic((pte_t *)pmd, pte);
 823		}
 824	}
 825#endif
 826}
 827
 828static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
 829{
 830	/*
 831	 * _PAGE_GLOBAL means "global page" for present PTEs.
 832	 * But, it is also used to indicate _PAGE_PROTNONE
 833	 * for non-present PTEs.
 834	 *
 835	 * This ensures that a _PAGE_GLOBAL PTE going from
 836	 * present to non-present is not confused as
 837	 * _PAGE_PROTNONE.
 838	 */
 839	if (!(pgprot_val(prot) & _PAGE_PRESENT))
 840		pgprot_val(prot) &= ~_PAGE_GLOBAL;
 841
 842	return prot;
 843}
 844
 845static int __should_split_large_page(pte_t *kpte, unsigned long address,
 846				     struct cpa_data *cpa)
 847{
 848	unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
 849	pgprot_t old_prot, new_prot, req_prot, chk_prot;
 850	pte_t new_pte, *tmp;
 851	enum pg_level level;
 852
 853	/*
 854	 * Check for races, another CPU might have split this page
 855	 * up already:
 856	 */
 857	tmp = _lookup_address_cpa(cpa, address, &level);
 858	if (tmp != kpte)
 859		return 1;
 860
 861	switch (level) {
 862	case PG_LEVEL_2M:
 863		old_prot = pmd_pgprot(*(pmd_t *)kpte);
 864		old_pfn = pmd_pfn(*(pmd_t *)kpte);
 865		cpa_inc_2m_checked();
 866		break;
 867	case PG_LEVEL_1G:
 868		old_prot = pud_pgprot(*(pud_t *)kpte);
 869		old_pfn = pud_pfn(*(pud_t *)kpte);
 870		cpa_inc_1g_checked();
 871		break;
 872	default:
 873		return -EINVAL;
 874	}
 875
 876	psize = page_level_size(level);
 877	pmask = page_level_mask(level);
 878
 879	/*
 880	 * Calculate the number of pages, which fit into this large
 881	 * page starting at address:
 882	 */
 883	lpaddr = (address + psize) & pmask;
 884	numpages = (lpaddr - address) >> PAGE_SHIFT;
 885	if (numpages < cpa->numpages)
 886		cpa->numpages = numpages;
 887
 888	/*
 889	 * We are safe now. Check whether the new pgprot is the same:
 890	 * Convert protection attributes to 4k-format, as cpa->mask* are set
 891	 * up accordingly.
 892	 */
 893
 894	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
 895	req_prot = pgprot_large_2_4k(old_prot);
 896
 897	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
 898	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
 899
 900	/*
 901	 * req_prot is in format of 4k pages. It must be converted to large
 902	 * page format: the caching mode includes the PAT bit located at
 903	 * different bit positions in the two formats.
 904	 */
 905	req_prot = pgprot_4k_2_large(req_prot);
 906	req_prot = pgprot_clear_protnone_bits(req_prot);
 907	if (pgprot_val(req_prot) & _PAGE_PRESENT)
 908		pgprot_val(req_prot) |= _PAGE_PSE;
 909
 910	/*
 911	 * old_pfn points to the large page base pfn. So we need to add the
 912	 * offset of the virtual address:
 913	 */
 914	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
 915	cpa->pfn = pfn;
 916
 917	/*
 918	 * Calculate the large page base address and the number of 4K pages
 919	 * in the large page
 920	 */
 921	lpaddr = address & pmask;
 922	numpages = psize >> PAGE_SHIFT;
 923
 924	/*
 925	 * Sanity check that the existing mapping is correct versus the static
 926	 * protections. static_protections() guards against !PRESENT, so no
 927	 * extra conditional required here.
 928	 */
 929	chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
 930				      psize, CPA_CONFLICT);
 931
 932	if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
 933		/*
 934		 * Split the large page and tell the split code to
 935		 * enforce static protections.
 936		 */
 937		cpa->force_static_prot = 1;
 938		return 1;
 939	}
 940
 941	/*
 942	 * Optimization: If the requested pgprot is the same as the current
 943	 * pgprot, then the large page can be preserved and no updates are
 944	 * required independent of alignment and length of the requested
 945	 * range. The above already established that the current pgprot is
 946	 * correct, which in consequence makes the requested pgprot correct
 947	 * as well if it is the same. The static protection scan below will
 948	 * not come to a different conclusion.
 949	 */
 950	if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
 951		cpa_inc_lp_sameprot(level);
 952		return 0;
 953	}
 954
 955	/*
 956	 * If the requested range does not cover the full page, split it up
 957	 */
 958	if (address != lpaddr || cpa->numpages != numpages)
 959		return 1;
 960
 961	/*
 962	 * Check whether the requested pgprot is conflicting with a static
 963	 * protection requirement in the large page.
 964	 */
 965	new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
 966				      psize, CPA_DETECT);
 967
 968	new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages);
 969
 970	/*
 971	 * If there is a conflict, split the large page.
 972	 *
 973	 * There used to be a 4k wise evaluation trying really hard to
 974	 * preserve the large pages, but experimentation has shown, that this
 975	 * does not help at all. There might be corner cases which would
 976	 * preserve one large page occasionally, but it's really not worth the
 977	 * extra code and cycles for the common case.
 978	 */
 979	if (pgprot_val(req_prot) != pgprot_val(new_prot))
 980		return 1;
 981
 982	/* All checks passed. Update the large page mapping. */
 983	new_pte = pfn_pte(old_pfn, new_prot);
 984	__set_pmd_pte(kpte, address, new_pte);
 985	cpa->flags |= CPA_FLUSHTLB;
 986	cpa_inc_lp_preserved(level);
 987	return 0;
 988}
 989
 990static int should_split_large_page(pte_t *kpte, unsigned long address,
 991				   struct cpa_data *cpa)
 992{
 993	int do_split;
 994
 995	if (cpa->force_split)
 996		return 1;
 997
 998	spin_lock(&pgd_lock);
 999	do_split = __should_split_large_page(kpte, address, cpa);
1000	spin_unlock(&pgd_lock);
1001
1002	return do_split;
1003}
1004
1005static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
1006			  pgprot_t ref_prot, unsigned long address,
1007			  unsigned long size)
1008{
1009	unsigned int npg = PFN_DOWN(size);
1010	pgprot_t prot;
1011
1012	/*
1013	 * If should_split_large_page() discovered an inconsistent mapping,
1014	 * remove the invalid protection in the split mapping.
1015	 */
1016	if (!cpa->force_static_prot)
1017		goto set;
1018
1019	/* Hand in lpsize = 0 to enforce the protection mechanism */
1020	prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
1021
1022	if (pgprot_val(prot) == pgprot_val(ref_prot))
1023		goto set;
1024
1025	/*
1026	 * If this is splitting a PMD, fix it up. PUD splits cannot be
1027	 * fixed trivially as that would require to rescan the newly
1028	 * installed PMD mappings after returning from split_large_page()
1029	 * so an eventual further split can allocate the necessary PTE
1030	 * pages. Warn for now and revisit it in case this actually
1031	 * happens.
1032	 */
1033	if (size == PAGE_SIZE)
1034		ref_prot = prot;
1035	else
1036		pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
1037set:
1038	set_pte(pte, pfn_pte(pfn, ref_prot));
1039}
1040
1041static int
1042__split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
1043		   struct page *base)
1044{
1045	unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
1046	pte_t *pbase = (pte_t *)page_address(base);
1047	unsigned int i, level;
1048	pgprot_t ref_prot;
1049	pte_t *tmp;
1050
1051	spin_lock(&pgd_lock);
1052	/*
1053	 * Check for races, another CPU might have split this page
1054	 * up for us already:
1055	 */
1056	tmp = _lookup_address_cpa(cpa, address, &level);
1057	if (tmp != kpte) {
1058		spin_unlock(&pgd_lock);
1059		return 1;
1060	}
1061
1062	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
1063
1064	switch (level) {
1065	case PG_LEVEL_2M:
1066		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
1067		/*
1068		 * Clear PSE (aka _PAGE_PAT) and move
1069		 * PAT bit to correct position.
1070		 */
1071		ref_prot = pgprot_large_2_4k(ref_prot);
1072		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
1073		lpaddr = address & PMD_MASK;
1074		lpinc = PAGE_SIZE;
1075		break;
1076
1077	case PG_LEVEL_1G:
1078		ref_prot = pud_pgprot(*(pud_t *)kpte);
1079		ref_pfn = pud_pfn(*(pud_t *)kpte);
1080		pfninc = PMD_SIZE >> PAGE_SHIFT;
1081		lpaddr = address & PUD_MASK;
1082		lpinc = PMD_SIZE;
1083		/*
1084		 * Clear the PSE flags if the PRESENT flag is not set
1085		 * otherwise pmd_present/pmd_huge will return true
1086		 * even on a non present pmd.
1087		 */
1088		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1089			pgprot_val(ref_prot) &= ~_PAGE_PSE;
1090		break;
1091
1092	default:
1093		spin_unlock(&pgd_lock);
1094		return 1;
1095	}
1096
1097	ref_prot = pgprot_clear_protnone_bits(ref_prot);
1098
1099	/*
1100	 * Get the target pfn from the original entry:
1101	 */
1102	pfn = ref_pfn;
1103	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1104		split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1105
1106	if (virt_addr_valid(address)) {
1107		unsigned long pfn = PFN_DOWN(__pa(address));
1108
1109		if (pfn_range_is_mapped(pfn, pfn + 1))
1110			split_page_count(level);
1111	}
1112
1113	/*
1114	 * Install the new, split up pagetable.
1115	 *
1116	 * We use the standard kernel pagetable protections for the new
1117	 * pagetable protections, the actual ptes set above control the
1118	 * primary protection behavior:
1119	 */
1120	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1121
1122	/*
1123	 * Do a global flush tlb after splitting the large page
1124	 * and before we do the actual change page attribute in the PTE.
1125	 *
1126	 * Without this, we violate the TLB application note, that says:
1127	 * "The TLBs may contain both ordinary and large-page
1128	 *  translations for a 4-KByte range of linear addresses. This
1129	 *  may occur if software modifies the paging structures so that
1130	 *  the page size used for the address range changes. If the two
1131	 *  translations differ with respect to page frame or attributes
1132	 *  (e.g., permissions), processor behavior is undefined and may
1133	 *  be implementation-specific."
1134	 *
1135	 * We do this global tlb flush inside the cpa_lock, so that we
1136	 * don't allow any other cpu, with stale tlb entries change the
1137	 * page attribute in parallel, that also falls into the
1138	 * just split large page entry.
1139	 */
1140	flush_tlb_all();
1141	spin_unlock(&pgd_lock);
1142
1143	return 0;
1144}
1145
1146static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1147			    unsigned long address)
1148{
1149	struct page *base;
1150
1151	if (!debug_pagealloc_enabled())
1152		spin_unlock(&cpa_lock);
1153	base = alloc_pages(GFP_KERNEL, 0);
1154	if (!debug_pagealloc_enabled())
1155		spin_lock(&cpa_lock);
1156	if (!base)
1157		return -ENOMEM;
1158
1159	if (__split_large_page(cpa, kpte, address, base))
1160		__free_page(base);
1161
1162	return 0;
1163}
1164
1165static bool try_to_free_pte_page(pte_t *pte)
1166{
1167	int i;
1168
1169	for (i = 0; i < PTRS_PER_PTE; i++)
1170		if (!pte_none(pte[i]))
1171			return false;
1172
1173	free_page((unsigned long)pte);
1174	return true;
1175}
1176
1177static bool try_to_free_pmd_page(pmd_t *pmd)
1178{
1179	int i;
1180
1181	for (i = 0; i < PTRS_PER_PMD; i++)
1182		if (!pmd_none(pmd[i]))
1183			return false;
1184
1185	free_page((unsigned long)pmd);
1186	return true;
1187}
1188
1189static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1190{
1191	pte_t *pte = pte_offset_kernel(pmd, start);
1192
1193	while (start < end) {
1194		set_pte(pte, __pte(0));
1195
1196		start += PAGE_SIZE;
1197		pte++;
1198	}
1199
1200	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1201		pmd_clear(pmd);
1202		return true;
1203	}
1204	return false;
1205}
1206
1207static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1208			      unsigned long start, unsigned long end)
1209{
1210	if (unmap_pte_range(pmd, start, end))
1211		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1212			pud_clear(pud);
1213}
1214
1215static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1216{
1217	pmd_t *pmd = pmd_offset(pud, start);
1218
1219	/*
1220	 * Not on a 2MB page boundary?
1221	 */
1222	if (start & (PMD_SIZE - 1)) {
1223		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1224		unsigned long pre_end = min_t(unsigned long, end, next_page);
1225
1226		__unmap_pmd_range(pud, pmd, start, pre_end);
1227
1228		start = pre_end;
1229		pmd++;
1230	}
1231
1232	/*
1233	 * Try to unmap in 2M chunks.
1234	 */
1235	while (end - start >= PMD_SIZE) {
1236		if (pmd_large(*pmd))
1237			pmd_clear(pmd);
1238		else
1239			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1240
1241		start += PMD_SIZE;
1242		pmd++;
1243	}
1244
1245	/*
1246	 * 4K leftovers?
1247	 */
1248	if (start < end)
1249		return __unmap_pmd_range(pud, pmd, start, end);
1250
1251	/*
1252	 * Try again to free the PMD page if haven't succeeded above.
1253	 */
1254	if (!pud_none(*pud))
1255		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1256			pud_clear(pud);
1257}
1258
1259static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1260{
1261	pud_t *pud = pud_offset(p4d, start);
1262
1263	/*
1264	 * Not on a GB page boundary?
1265	 */
1266	if (start & (PUD_SIZE - 1)) {
1267		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1268		unsigned long pre_end	= min_t(unsigned long, end, next_page);
1269
1270		unmap_pmd_range(pud, start, pre_end);
1271
1272		start = pre_end;
1273		pud++;
1274	}
1275
1276	/*
1277	 * Try to unmap in 1G chunks?
1278	 */
1279	while (end - start >= PUD_SIZE) {
1280
1281		if (pud_large(*pud))
1282			pud_clear(pud);
1283		else
1284			unmap_pmd_range(pud, start, start + PUD_SIZE);
1285
1286		start += PUD_SIZE;
1287		pud++;
1288	}
1289
1290	/*
1291	 * 2M leftovers?
1292	 */
1293	if (start < end)
1294		unmap_pmd_range(pud, start, end);
1295
1296	/*
1297	 * No need to try to free the PUD page because we'll free it in
1298	 * populate_pgd's error path
1299	 */
1300}
1301
1302static int alloc_pte_page(pmd_t *pmd)
1303{
1304	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1305	if (!pte)
1306		return -1;
1307
1308	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1309	return 0;
1310}
1311
1312static int alloc_pmd_page(pud_t *pud)
1313{
1314	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1315	if (!pmd)
1316		return -1;
1317
1318	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1319	return 0;
1320}
1321
1322static void populate_pte(struct cpa_data *cpa,
1323			 unsigned long start, unsigned long end,
1324			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1325{
1326	pte_t *pte;
1327
1328	pte = pte_offset_kernel(pmd, start);
1329
1330	pgprot = pgprot_clear_protnone_bits(pgprot);
1331
1332	while (num_pages-- && start < end) {
1333		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1334
1335		start	 += PAGE_SIZE;
1336		cpa->pfn++;
1337		pte++;
1338	}
1339}
1340
1341static long populate_pmd(struct cpa_data *cpa,
1342			 unsigned long start, unsigned long end,
1343			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1344{
1345	long cur_pages = 0;
1346	pmd_t *pmd;
1347	pgprot_t pmd_pgprot;
1348
1349	/*
1350	 * Not on a 2M boundary?
1351	 */
1352	if (start & (PMD_SIZE - 1)) {
1353		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1354		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1355
1356		pre_end   = min_t(unsigned long, pre_end, next_page);
1357		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1358		cur_pages = min_t(unsigned int, num_pages, cur_pages);
1359
1360		/*
1361		 * Need a PTE page?
1362		 */
1363		pmd = pmd_offset(pud, start);
1364		if (pmd_none(*pmd))
1365			if (alloc_pte_page(pmd))
1366				return -1;
1367
1368		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1369
1370		start = pre_end;
1371	}
1372
1373	/*
1374	 * We mapped them all?
1375	 */
1376	if (num_pages == cur_pages)
1377		return cur_pages;
1378
1379	pmd_pgprot = pgprot_4k_2_large(pgprot);
1380
1381	while (end - start >= PMD_SIZE) {
1382
1383		/*
1384		 * We cannot use a 1G page so allocate a PMD page if needed.
1385		 */
1386		if (pud_none(*pud))
1387			if (alloc_pmd_page(pud))
1388				return -1;
1389
1390		pmd = pmd_offset(pud, start);
1391
1392		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1393					canon_pgprot(pmd_pgprot))));
1394
1395		start	  += PMD_SIZE;
1396		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1397		cur_pages += PMD_SIZE >> PAGE_SHIFT;
1398	}
1399
1400	/*
1401	 * Map trailing 4K pages.
1402	 */
1403	if (start < end) {
1404		pmd = pmd_offset(pud, start);
1405		if (pmd_none(*pmd))
1406			if (alloc_pte_page(pmd))
1407				return -1;
1408
1409		populate_pte(cpa, start, end, num_pages - cur_pages,
1410			     pmd, pgprot);
1411	}
1412	return num_pages;
1413}
1414
1415static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1416			pgprot_t pgprot)
1417{
1418	pud_t *pud;
1419	unsigned long end;
1420	long cur_pages = 0;
1421	pgprot_t pud_pgprot;
1422
1423	end = start + (cpa->numpages << PAGE_SHIFT);
1424
1425	/*
1426	 * Not on a Gb page boundary? => map everything up to it with
1427	 * smaller pages.
1428	 */
1429	if (start & (PUD_SIZE - 1)) {
1430		unsigned long pre_end;
1431		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1432
1433		pre_end   = min_t(unsigned long, end, next_page);
1434		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1435		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1436
1437		pud = pud_offset(p4d, start);
1438
1439		/*
1440		 * Need a PMD page?
1441		 */
1442		if (pud_none(*pud))
1443			if (alloc_pmd_page(pud))
1444				return -1;
1445
1446		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1447					 pud, pgprot);
1448		if (cur_pages < 0)
1449			return cur_pages;
1450
1451		start = pre_end;
1452	}
1453
1454	/* We mapped them all? */
1455	if (cpa->numpages == cur_pages)
1456		return cur_pages;
1457
1458	pud = pud_offset(p4d, start);
1459	pud_pgprot = pgprot_4k_2_large(pgprot);
1460
1461	/*
1462	 * Map everything starting from the Gb boundary, possibly with 1G pages
1463	 */
1464	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1465		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1466				   canon_pgprot(pud_pgprot))));
1467
1468		start	  += PUD_SIZE;
1469		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1470		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1471		pud++;
1472	}
1473
1474	/* Map trailing leftover */
1475	if (start < end) {
1476		long tmp;
1477
1478		pud = pud_offset(p4d, start);
1479		if (pud_none(*pud))
1480			if (alloc_pmd_page(pud))
1481				return -1;
1482
1483		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1484				   pud, pgprot);
1485		if (tmp < 0)
1486			return cur_pages;
1487
1488		cur_pages += tmp;
1489	}
1490	return cur_pages;
1491}
1492
1493/*
1494 * Restrictions for kernel page table do not necessarily apply when mapping in
1495 * an alternate PGD.
1496 */
1497static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1498{
1499	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1500	pud_t *pud = NULL;	/* shut up gcc */
1501	p4d_t *p4d;
1502	pgd_t *pgd_entry;
1503	long ret;
1504
1505	pgd_entry = cpa->pgd + pgd_index(addr);
1506
1507	if (pgd_none(*pgd_entry)) {
1508		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1509		if (!p4d)
1510			return -1;
1511
1512		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1513	}
1514
1515	/*
1516	 * Allocate a PUD page and hand it down for mapping.
1517	 */
1518	p4d = p4d_offset(pgd_entry, addr);
1519	if (p4d_none(*p4d)) {
1520		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1521		if (!pud)
1522			return -1;
1523
1524		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1525	}
1526
1527	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1528	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1529
1530	ret = populate_pud(cpa, addr, p4d, pgprot);
1531	if (ret < 0) {
1532		/*
1533		 * Leave the PUD page in place in case some other CPU or thread
1534		 * already found it, but remove any useless entries we just
1535		 * added to it.
1536		 */
1537		unmap_pud_range(p4d, addr,
1538				addr + (cpa->numpages << PAGE_SHIFT));
1539		return ret;
1540	}
1541
1542	cpa->numpages = ret;
1543	return 0;
1544}
1545
1546static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1547			       int primary)
1548{
1549	if (cpa->pgd) {
1550		/*
1551		 * Right now, we only execute this code path when mapping
1552		 * the EFI virtual memory map regions, no other users
1553		 * provide a ->pgd value. This may change in the future.
1554		 */
1555		return populate_pgd(cpa, vaddr);
1556	}
1557
1558	/*
1559	 * Ignore all non primary paths.
1560	 */
1561	if (!primary) {
1562		cpa->numpages = 1;
1563		return 0;
1564	}
1565
1566	/*
1567	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1568	 * to have holes.
1569	 * Also set numpages to '1' indicating that we processed cpa req for
1570	 * one virtual address page and its pfn. TBD: numpages can be set based
1571	 * on the initial value and the level returned by lookup_address().
1572	 */
1573	if (within(vaddr, PAGE_OFFSET,
1574		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1575		cpa->numpages = 1;
1576		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1577		return 0;
1578
1579	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1580		/* Faults in the highmap are OK, so do not warn: */
1581		return -EFAULT;
1582	} else {
1583		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1584			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1585			*cpa->vaddr);
1586
1587		return -EFAULT;
1588	}
1589}
1590
1591static int __change_page_attr(struct cpa_data *cpa, int primary)
1592{
1593	unsigned long address;
1594	int do_split, err;
1595	unsigned int level;
1596	pte_t *kpte, old_pte;
1597
1598	address = __cpa_addr(cpa, cpa->curpage);
1599repeat:
1600	kpte = _lookup_address_cpa(cpa, address, &level);
1601	if (!kpte)
1602		return __cpa_process_fault(cpa, address, primary);
1603
1604	old_pte = *kpte;
1605	if (pte_none(old_pte))
1606		return __cpa_process_fault(cpa, address, primary);
1607
1608	if (level == PG_LEVEL_4K) {
1609		pte_t new_pte;
1610		pgprot_t old_prot = pte_pgprot(old_pte);
1611		pgprot_t new_prot = pte_pgprot(old_pte);
1612		unsigned long pfn = pte_pfn(old_pte);
1613
1614		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1615		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1616
1617		cpa_inc_4k_install();
1618		/* Hand in lpsize = 0 to enforce the protection mechanism */
1619		new_prot = static_protections(new_prot, address, pfn, 1, 0,
1620					      CPA_PROTECT);
1621
1622		new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1);
1623
1624		new_prot = pgprot_clear_protnone_bits(new_prot);
1625
1626		/*
1627		 * We need to keep the pfn from the existing PTE,
1628		 * after all we're only going to change its attributes
1629		 * not the memory it points to
1630		 */
1631		new_pte = pfn_pte(pfn, new_prot);
1632		cpa->pfn = pfn;
1633		/*
1634		 * Do we really change anything ?
1635		 */
1636		if (pte_val(old_pte) != pte_val(new_pte)) {
1637			set_pte_atomic(kpte, new_pte);
1638			cpa->flags |= CPA_FLUSHTLB;
1639		}
1640		cpa->numpages = 1;
1641		return 0;
1642	}
1643
1644	/*
1645	 * Check, whether we can keep the large page intact
1646	 * and just change the pte:
1647	 */
1648	do_split = should_split_large_page(kpte, address, cpa);
1649	/*
1650	 * When the range fits into the existing large page,
1651	 * return. cp->numpages and cpa->tlbflush have been updated in
1652	 * try_large_page:
1653	 */
1654	if (do_split <= 0)
1655		return do_split;
1656
1657	/*
1658	 * We have to split the large page:
1659	 */
1660	err = split_large_page(cpa, kpte, address);
1661	if (!err)
1662		goto repeat;
1663
1664	return err;
1665}
1666
1667static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary);
1668
1669/*
1670 * Check the directmap and "high kernel map" 'aliases'.
1671 */
1672static int cpa_process_alias(struct cpa_data *cpa)
1673{
1674	struct cpa_data alias_cpa;
1675	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1676	unsigned long vaddr;
1677	int ret;
1678
1679	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1680		return 0;
1681
1682	/*
1683	 * No need to redo, when the primary call touched the direct
1684	 * mapping already:
1685	 */
1686	vaddr = __cpa_addr(cpa, cpa->curpage);
1687	if (!(within(vaddr, PAGE_OFFSET,
1688		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1689
1690		alias_cpa = *cpa;
1691		alias_cpa.vaddr = &laddr;
1692		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1693		alias_cpa.curpage = 0;
1694
1695		/* Directmap always has NX set, do not modify. */
1696		if (__supported_pte_mask & _PAGE_NX) {
1697			alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1698			alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1699		}
1700
1701		cpa->force_flush_all = 1;
1702
1703		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1704		if (ret)
1705			return ret;
1706	}
1707
1708#ifdef CONFIG_X86_64
1709	/*
1710	 * If the primary call didn't touch the high mapping already
1711	 * and the physical address is inside the kernel map, we need
1712	 * to touch the high mapped kernel as well:
1713	 */
1714	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1715	    __cpa_pfn_in_highmap(cpa->pfn)) {
1716		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1717					       __START_KERNEL_map - phys_base;
1718		alias_cpa = *cpa;
1719		alias_cpa.vaddr = &temp_cpa_vaddr;
1720		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1721		alias_cpa.curpage = 0;
1722
1723		/*
1724		 * [_text, _brk_end) also covers data, do not modify NX except
1725		 * in cases where the highmap is the primary target.
1726		 */
1727		if (__supported_pte_mask & _PAGE_NX) {
1728			alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1729			alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1730		}
1731
1732		cpa->force_flush_all = 1;
1733		/*
1734		 * The high mapping range is imprecise, so ignore the
1735		 * return value.
1736		 */
1737		__change_page_attr_set_clr(&alias_cpa, 0);
1738	}
1739#endif
1740
1741	return 0;
1742}
1743
1744static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary)
1745{
1746	unsigned long numpages = cpa->numpages;
1747	unsigned long rempages = numpages;
1748	int ret = 0;
1749
1750	/*
1751	 * No changes, easy!
1752	 */
1753	if (!(pgprot_val(cpa->mask_set) | pgprot_val(cpa->mask_clr)) &&
1754	    !cpa->force_split)
1755		return ret;
1756
1757	while (rempages) {
1758		/*
1759		 * Store the remaining nr of pages for the large page
1760		 * preservation check.
1761		 */
1762		cpa->numpages = rempages;
1763		/* for array changes, we can't use large page */
1764		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1765			cpa->numpages = 1;
1766
1767		if (!debug_pagealloc_enabled())
1768			spin_lock(&cpa_lock);
1769		ret = __change_page_attr(cpa, primary);
1770		if (!debug_pagealloc_enabled())
1771			spin_unlock(&cpa_lock);
1772		if (ret)
1773			goto out;
1774
1775		if (primary && !(cpa->flags & CPA_NO_CHECK_ALIAS)) {
1776			ret = cpa_process_alias(cpa);
1777			if (ret)
1778				goto out;
1779		}
1780
1781		/*
1782		 * Adjust the number of pages with the result of the
1783		 * CPA operation. Either a large page has been
1784		 * preserved or a single page update happened.
1785		 */
1786		BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1787		rempages -= cpa->numpages;
1788		cpa->curpage += cpa->numpages;
1789	}
1790
1791out:
1792	/* Restore the original numpages */
1793	cpa->numpages = numpages;
1794	return ret;
1795}
1796
1797static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1798				    pgprot_t mask_set, pgprot_t mask_clr,
1799				    int force_split, int in_flag,
1800				    struct page **pages)
1801{
1802	struct cpa_data cpa;
1803	int ret, cache;
1804
1805	memset(&cpa, 0, sizeof(cpa));
1806
1807	/*
1808	 * Check, if we are requested to set a not supported
1809	 * feature.  Clearing non-supported features is OK.
1810	 */
1811	mask_set = canon_pgprot(mask_set);
1812
1813	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1814		return 0;
1815
1816	/* Ensure we are PAGE_SIZE aligned */
1817	if (in_flag & CPA_ARRAY) {
1818		int i;
1819		for (i = 0; i < numpages; i++) {
1820			if (addr[i] & ~PAGE_MASK) {
1821				addr[i] &= PAGE_MASK;
1822				WARN_ON_ONCE(1);
1823			}
1824		}
1825	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1826		/*
1827		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1828		 * No need to check in that case
1829		 */
1830		if (*addr & ~PAGE_MASK) {
1831			*addr &= PAGE_MASK;
1832			/*
1833			 * People should not be passing in unaligned addresses:
1834			 */
1835			WARN_ON_ONCE(1);
1836		}
1837	}
1838
1839	/* Must avoid aliasing mappings in the highmem code */
1840	kmap_flush_unused();
1841
1842	vm_unmap_aliases();
1843
1844	cpa.vaddr = addr;
1845	cpa.pages = pages;
1846	cpa.numpages = numpages;
1847	cpa.mask_set = mask_set;
1848	cpa.mask_clr = mask_clr;
1849	cpa.flags = in_flag;
1850	cpa.curpage = 0;
1851	cpa.force_split = force_split;
1852
1853	ret = __change_page_attr_set_clr(&cpa, 1);
1854
1855	/*
1856	 * Check whether we really changed something:
1857	 */
1858	if (!(cpa.flags & CPA_FLUSHTLB))
1859		goto out;
1860
1861	/*
1862	 * No need to flush, when we did not set any of the caching
1863	 * attributes:
1864	 */
1865	cache = !!pgprot2cachemode(mask_set);
1866
1867	/*
1868	 * On error; flush everything to be sure.
1869	 */
1870	if (ret) {
1871		cpa_flush_all(cache);
1872		goto out;
1873	}
1874
1875	cpa_flush(&cpa, cache);
1876out:
1877	return ret;
1878}
1879
1880static inline int change_page_attr_set(unsigned long *addr, int numpages,
1881				       pgprot_t mask, int array)
1882{
1883	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1884		(array ? CPA_ARRAY : 0), NULL);
1885}
1886
1887static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1888					 pgprot_t mask, int array)
1889{
1890	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1891		(array ? CPA_ARRAY : 0), NULL);
1892}
1893
1894static inline int cpa_set_pages_array(struct page **pages, int numpages,
1895				       pgprot_t mask)
1896{
1897	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1898		CPA_PAGES_ARRAY, pages);
1899}
1900
1901static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1902					 pgprot_t mask)
1903{
1904	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1905		CPA_PAGES_ARRAY, pages);
1906}
1907
1908/*
1909 * __set_memory_prot is an internal helper for callers that have been passed
1910 * a pgprot_t value from upper layers and a reservation has already been taken.
1911 * If you want to set the pgprot to a specific page protocol, use the
1912 * set_memory_xx() functions.
1913 */
1914int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1915{
1916	return change_page_attr_set_clr(&addr, numpages, prot,
1917					__pgprot(~pgprot_val(prot)), 0, 0,
1918					NULL);
1919}
1920
1921int _set_memory_uc(unsigned long addr, int numpages)
1922{
1923	/*
1924	 * for now UC MINUS. see comments in ioremap()
1925	 * If you really need strong UC use ioremap_uc(), but note
1926	 * that you cannot override IO areas with set_memory_*() as
1927	 * these helpers cannot work with IO memory.
1928	 */
1929	return change_page_attr_set(&addr, numpages,
1930				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1931				    0);
1932}
1933
1934int set_memory_uc(unsigned long addr, int numpages)
1935{
1936	int ret;
1937
1938	/*
1939	 * for now UC MINUS. see comments in ioremap()
1940	 */
1941	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1942			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1943	if (ret)
1944		goto out_err;
1945
1946	ret = _set_memory_uc(addr, numpages);
1947	if (ret)
1948		goto out_free;
1949
1950	return 0;
1951
1952out_free:
1953	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1954out_err:
1955	return ret;
1956}
1957EXPORT_SYMBOL(set_memory_uc);
1958
1959int _set_memory_wc(unsigned long addr, int numpages)
1960{
1961	int ret;
1962
1963	ret = change_page_attr_set(&addr, numpages,
1964				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1965				   0);
1966	if (!ret) {
1967		ret = change_page_attr_set_clr(&addr, numpages,
1968					       cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1969					       __pgprot(_PAGE_CACHE_MASK),
1970					       0, 0, NULL);
1971	}
1972	return ret;
1973}
1974
1975int set_memory_wc(unsigned long addr, int numpages)
1976{
1977	int ret;
1978
1979	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1980		_PAGE_CACHE_MODE_WC, NULL);
1981	if (ret)
1982		return ret;
1983
1984	ret = _set_memory_wc(addr, numpages);
1985	if (ret)
1986		memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1987
1988	return ret;
1989}
1990EXPORT_SYMBOL(set_memory_wc);
1991
1992int _set_memory_wt(unsigned long addr, int numpages)
1993{
1994	return change_page_attr_set(&addr, numpages,
1995				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1996}
1997
1998int _set_memory_wb(unsigned long addr, int numpages)
1999{
2000	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2001	return change_page_attr_clear(&addr, numpages,
2002				      __pgprot(_PAGE_CACHE_MASK), 0);
2003}
2004
2005int set_memory_wb(unsigned long addr, int numpages)
2006{
2007	int ret;
2008
2009	ret = _set_memory_wb(addr, numpages);
2010	if (ret)
2011		return ret;
2012
2013	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2014	return 0;
2015}
2016EXPORT_SYMBOL(set_memory_wb);
2017
2018/* Prevent speculative access to a page by marking it not-present */
2019#ifdef CONFIG_X86_64
2020int set_mce_nospec(unsigned long pfn)
2021{
2022	unsigned long decoy_addr;
2023	int rc;
2024
2025	/* SGX pages are not in the 1:1 map */
2026	if (arch_is_platform_page(pfn << PAGE_SHIFT))
2027		return 0;
2028	/*
2029	 * We would like to just call:
2030	 *      set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1);
2031	 * but doing that would radically increase the odds of a
2032	 * speculative access to the poison page because we'd have
2033	 * the virtual address of the kernel 1:1 mapping sitting
2034	 * around in registers.
2035	 * Instead we get tricky.  We create a non-canonical address
2036	 * that looks just like the one we want, but has bit 63 flipped.
2037	 * This relies on set_memory_XX() properly sanitizing any __pa()
2038	 * results with __PHYSICAL_MASK or PTE_PFN_MASK.
2039	 */
2040	decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63));
2041
2042	rc = set_memory_np(decoy_addr, 1);
2043	if (rc)
2044		pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
2045	return rc;
2046}
2047
2048/* Restore full speculative operation to the pfn. */
2049int clear_mce_nospec(unsigned long pfn)
2050{
2051	unsigned long addr = (unsigned long) pfn_to_kaddr(pfn);
2052
2053	return set_memory_p(addr, 1);
2054}
2055EXPORT_SYMBOL_GPL(clear_mce_nospec);
2056#endif /* CONFIG_X86_64 */
2057
2058int set_memory_x(unsigned long addr, int numpages)
2059{
2060	if (!(__supported_pte_mask & _PAGE_NX))
2061		return 0;
2062
2063	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
2064}
2065
2066int set_memory_nx(unsigned long addr, int numpages)
2067{
2068	if (!(__supported_pte_mask & _PAGE_NX))
2069		return 0;
2070
2071	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
2072}
2073
2074int set_memory_ro(unsigned long addr, int numpages)
2075{
2076	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW | _PAGE_DIRTY), 0);
2077}
2078
2079int set_memory_rox(unsigned long addr, int numpages)
2080{
2081	pgprot_t clr = __pgprot(_PAGE_RW | _PAGE_DIRTY);
2082
2083	if (__supported_pte_mask & _PAGE_NX)
2084		clr.pgprot |= _PAGE_NX;
2085
2086	return change_page_attr_clear(&addr, numpages, clr, 0);
2087}
2088
2089int set_memory_rw(unsigned long addr, int numpages)
2090{
2091	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
2092}
2093
2094int set_memory_np(unsigned long addr, int numpages)
2095{
2096	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2097}
2098
2099int set_memory_np_noalias(unsigned long addr, int numpages)
2100{
2101	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2102					__pgprot(_PAGE_PRESENT), 0,
2103					CPA_NO_CHECK_ALIAS, NULL);
2104}
2105
2106int set_memory_p(unsigned long addr, int numpages)
2107{
2108	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2109}
2110
2111int set_memory_4k(unsigned long addr, int numpages)
2112{
2113	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2114					__pgprot(0), 1, 0, NULL);
2115}
2116
2117int set_memory_nonglobal(unsigned long addr, int numpages)
2118{
2119	return change_page_attr_clear(&addr, numpages,
2120				      __pgprot(_PAGE_GLOBAL), 0);
2121}
2122
2123int set_memory_global(unsigned long addr, int numpages)
2124{
2125	return change_page_attr_set(&addr, numpages,
2126				    __pgprot(_PAGE_GLOBAL), 0);
2127}
2128
2129/*
2130 * __set_memory_enc_pgtable() is used for the hypervisors that get
2131 * informed about "encryption" status via page tables.
2132 */
2133static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc)
2134{
2135	pgprot_t empty = __pgprot(0);
2136	struct cpa_data cpa;
2137	int ret;
2138
2139	/* Should not be working on unaligned addresses */
2140	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2141		addr &= PAGE_MASK;
2142
2143	memset(&cpa, 0, sizeof(cpa));
2144	cpa.vaddr = &addr;
2145	cpa.numpages = numpages;
2146	cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty);
2147	cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty);
2148	cpa.pgd = init_mm.pgd;
2149
2150	/* Must avoid aliasing mappings in the highmem code */
2151	kmap_flush_unused();
2152	vm_unmap_aliases();
2153
2154	/* Flush the caches as needed before changing the encryption attribute. */
2155	if (x86_platform.guest.enc_tlb_flush_required(enc))
2156		cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required());
2157
2158	/* Notify hypervisor that we are about to set/clr encryption attribute. */
2159	if (!x86_platform.guest.enc_status_change_prepare(addr, numpages, enc))
2160		return -EIO;
2161
2162	ret = __change_page_attr_set_clr(&cpa, 1);
2163
2164	/*
2165	 * After changing the encryption attribute, we need to flush TLBs again
2166	 * in case any speculative TLB caching occurred (but no need to flush
2167	 * caches again).  We could just use cpa_flush_all(), but in case TLB
2168	 * flushing gets optimized in the cpa_flush() path use the same logic
2169	 * as above.
2170	 */
2171	cpa_flush(&cpa, 0);
2172
2173	/* Notify hypervisor that we have successfully set/clr encryption attribute. */
2174	if (!ret) {
2175		if (!x86_platform.guest.enc_status_change_finish(addr, numpages, enc))
2176			ret = -EIO;
2177	}
2178
2179	return ret;
2180}
2181
2182static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2183{
2184	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
2185		return __set_memory_enc_pgtable(addr, numpages, enc);
2186
2187	return 0;
2188}
2189
2190int set_memory_encrypted(unsigned long addr, int numpages)
2191{
2192	return __set_memory_enc_dec(addr, numpages, true);
2193}
2194EXPORT_SYMBOL_GPL(set_memory_encrypted);
2195
2196int set_memory_decrypted(unsigned long addr, int numpages)
2197{
2198	return __set_memory_enc_dec(addr, numpages, false);
2199}
2200EXPORT_SYMBOL_GPL(set_memory_decrypted);
2201
2202int set_pages_uc(struct page *page, int numpages)
2203{
2204	unsigned long addr = (unsigned long)page_address(page);
2205
2206	return set_memory_uc(addr, numpages);
2207}
2208EXPORT_SYMBOL(set_pages_uc);
2209
2210static int _set_pages_array(struct page **pages, int numpages,
2211		enum page_cache_mode new_type)
2212{
2213	unsigned long start;
2214	unsigned long end;
2215	enum page_cache_mode set_type;
2216	int i;
2217	int free_idx;
2218	int ret;
2219
2220	for (i = 0; i < numpages; i++) {
2221		if (PageHighMem(pages[i]))
2222			continue;
2223		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2224		end = start + PAGE_SIZE;
2225		if (memtype_reserve(start, end, new_type, NULL))
2226			goto err_out;
2227	}
2228
2229	/* If WC, set to UC- first and then WC */
2230	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2231				_PAGE_CACHE_MODE_UC_MINUS : new_type;
2232
2233	ret = cpa_set_pages_array(pages, numpages,
2234				  cachemode2pgprot(set_type));
2235	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2236		ret = change_page_attr_set_clr(NULL, numpages,
2237					       cachemode2pgprot(
2238						_PAGE_CACHE_MODE_WC),
2239					       __pgprot(_PAGE_CACHE_MASK),
2240					       0, CPA_PAGES_ARRAY, pages);
2241	if (ret)
2242		goto err_out;
2243	return 0; /* Success */
2244err_out:
2245	free_idx = i;
2246	for (i = 0; i < free_idx; i++) {
2247		if (PageHighMem(pages[i]))
2248			continue;
2249		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2250		end = start + PAGE_SIZE;
2251		memtype_free(start, end);
2252	}
2253	return -EINVAL;
2254}
2255
2256int set_pages_array_uc(struct page **pages, int numpages)
2257{
2258	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2259}
2260EXPORT_SYMBOL(set_pages_array_uc);
2261
2262int set_pages_array_wc(struct page **pages, int numpages)
2263{
2264	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2265}
2266EXPORT_SYMBOL(set_pages_array_wc);
2267
2268int set_pages_wb(struct page *page, int numpages)
2269{
2270	unsigned long addr = (unsigned long)page_address(page);
2271
2272	return set_memory_wb(addr, numpages);
2273}
2274EXPORT_SYMBOL(set_pages_wb);
2275
2276int set_pages_array_wb(struct page **pages, int numpages)
2277{
2278	int retval;
2279	unsigned long start;
2280	unsigned long end;
2281	int i;
2282
2283	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2284	retval = cpa_clear_pages_array(pages, numpages,
2285			__pgprot(_PAGE_CACHE_MASK));
2286	if (retval)
2287		return retval;
2288
2289	for (i = 0; i < numpages; i++) {
2290		if (PageHighMem(pages[i]))
2291			continue;
2292		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2293		end = start + PAGE_SIZE;
2294		memtype_free(start, end);
2295	}
2296
2297	return 0;
2298}
2299EXPORT_SYMBOL(set_pages_array_wb);
2300
2301int set_pages_ro(struct page *page, int numpages)
2302{
2303	unsigned long addr = (unsigned long)page_address(page);
2304
2305	return set_memory_ro(addr, numpages);
2306}
2307
2308int set_pages_rw(struct page *page, int numpages)
2309{
2310	unsigned long addr = (unsigned long)page_address(page);
2311
2312	return set_memory_rw(addr, numpages);
2313}
2314
2315static int __set_pages_p(struct page *page, int numpages)
2316{
2317	unsigned long tempaddr = (unsigned long) page_address(page);
2318	struct cpa_data cpa = { .vaddr = &tempaddr,
2319				.pgd = NULL,
2320				.numpages = numpages,
2321				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2322				.mask_clr = __pgprot(0),
2323				.flags = CPA_NO_CHECK_ALIAS };
2324
2325	/*
2326	 * No alias checking needed for setting present flag. otherwise,
2327	 * we may need to break large pages for 64-bit kernel text
2328	 * mappings (this adds to complexity if we want to do this from
2329	 * atomic context especially). Let's keep it simple!
2330	 */
2331	return __change_page_attr_set_clr(&cpa, 1);
2332}
2333
2334static int __set_pages_np(struct page *page, int numpages)
2335{
2336	unsigned long tempaddr = (unsigned long) page_address(page);
2337	struct cpa_data cpa = { .vaddr = &tempaddr,
2338				.pgd = NULL,
2339				.numpages = numpages,
2340				.mask_set = __pgprot(0),
2341				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2342				.flags = CPA_NO_CHECK_ALIAS };
2343
2344	/*
2345	 * No alias checking needed for setting not present flag. otherwise,
2346	 * we may need to break large pages for 64-bit kernel text
2347	 * mappings (this adds to complexity if we want to do this from
2348	 * atomic context especially). Let's keep it simple!
2349	 */
2350	return __change_page_attr_set_clr(&cpa, 1);
2351}
2352
2353int set_direct_map_invalid_noflush(struct page *page)
2354{
2355	return __set_pages_np(page, 1);
2356}
2357
2358int set_direct_map_default_noflush(struct page *page)
2359{
2360	return __set_pages_p(page, 1);
2361}
2362
2363#ifdef CONFIG_DEBUG_PAGEALLOC
2364void __kernel_map_pages(struct page *page, int numpages, int enable)
2365{
2366	if (PageHighMem(page))
2367		return;
2368	if (!enable) {
2369		debug_check_no_locks_freed(page_address(page),
2370					   numpages * PAGE_SIZE);
2371	}
2372
2373	/*
2374	 * The return value is ignored as the calls cannot fail.
2375	 * Large pages for identity mappings are not used at boot time
2376	 * and hence no memory allocations during large page split.
2377	 */
2378	if (enable)
2379		__set_pages_p(page, numpages);
2380	else
2381		__set_pages_np(page, numpages);
2382
2383	/*
2384	 * We should perform an IPI and flush all tlbs,
2385	 * but that can deadlock->flush only current cpu.
2386	 * Preemption needs to be disabled around __flush_tlb_all() due to
2387	 * CR3 reload in __native_flush_tlb().
2388	 */
2389	preempt_disable();
2390	__flush_tlb_all();
2391	preempt_enable();
2392
2393	arch_flush_lazy_mmu_mode();
2394}
2395#endif /* CONFIG_DEBUG_PAGEALLOC */
2396
2397bool kernel_page_present(struct page *page)
2398{
2399	unsigned int level;
2400	pte_t *pte;
2401
2402	if (PageHighMem(page))
2403		return false;
2404
2405	pte = lookup_address((unsigned long)page_address(page), &level);
2406	return (pte_val(*pte) & _PAGE_PRESENT);
2407}
2408
2409int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2410				   unsigned numpages, unsigned long page_flags)
2411{
2412	int retval = -EINVAL;
2413
2414	struct cpa_data cpa = {
2415		.vaddr = &address,
2416		.pfn = pfn,
2417		.pgd = pgd,
2418		.numpages = numpages,
2419		.mask_set = __pgprot(0),
2420		.mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2421		.flags = CPA_NO_CHECK_ALIAS,
2422	};
2423
2424	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2425
2426	if (!(__supported_pte_mask & _PAGE_NX))
2427		goto out;
2428
2429	if (!(page_flags & _PAGE_ENC))
2430		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2431
2432	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2433
2434	retval = __change_page_attr_set_clr(&cpa, 1);
2435	__flush_tlb_all();
2436
2437out:
2438	return retval;
2439}
2440
2441/*
2442 * __flush_tlb_all() flushes mappings only on current CPU and hence this
2443 * function shouldn't be used in an SMP environment. Presently, it's used only
2444 * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2445 */
2446int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2447				     unsigned long numpages)
2448{
2449	int retval;
2450
2451	/*
2452	 * The typical sequence for unmapping is to find a pte through
2453	 * lookup_address_in_pgd() (ideally, it should never return NULL because
2454	 * the address is already mapped) and change its protections. As pfn is
2455	 * the *target* of a mapping, it's not useful while unmapping.
2456	 */
2457	struct cpa_data cpa = {
2458		.vaddr		= &address,
2459		.pfn		= 0,
2460		.pgd		= pgd,
2461		.numpages	= numpages,
2462		.mask_set	= __pgprot(0),
2463		.mask_clr	= __pgprot(_PAGE_PRESENT | _PAGE_RW),
2464		.flags		= CPA_NO_CHECK_ALIAS,
2465	};
2466
2467	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2468
2469	retval = __change_page_attr_set_clr(&cpa, 1);
2470	__flush_tlb_all();
2471
2472	return retval;
2473}
2474
2475/*
2476 * The testcases use internal knowledge of the implementation that shouldn't
2477 * be exposed to the rest of the kernel. Include these directly here.
2478 */
2479#ifdef CONFIG_CPA_DEBUG
2480#include "cpa-test.c"
2481#endif