Loading...
Note: File does not exist in v6.8.
1// SPDX-License-Identifier: GPL-2.0
2/* BPF JIT compiler for RV64G
3 *
4 * Copyright(c) 2019 Björn Töpel <bjorn.topel@gmail.com>
5 *
6 */
7
8#include <linux/bpf.h>
9#include <linux/filter.h>
10#include <asm/cacheflush.h>
11
12enum {
13 RV_REG_ZERO = 0, /* The constant value 0 */
14 RV_REG_RA = 1, /* Return address */
15 RV_REG_SP = 2, /* Stack pointer */
16 RV_REG_GP = 3, /* Global pointer */
17 RV_REG_TP = 4, /* Thread pointer */
18 RV_REG_T0 = 5, /* Temporaries */
19 RV_REG_T1 = 6,
20 RV_REG_T2 = 7,
21 RV_REG_FP = 8,
22 RV_REG_S1 = 9, /* Saved registers */
23 RV_REG_A0 = 10, /* Function argument/return values */
24 RV_REG_A1 = 11, /* Function arguments */
25 RV_REG_A2 = 12,
26 RV_REG_A3 = 13,
27 RV_REG_A4 = 14,
28 RV_REG_A5 = 15,
29 RV_REG_A6 = 16,
30 RV_REG_A7 = 17,
31 RV_REG_S2 = 18, /* Saved registers */
32 RV_REG_S3 = 19,
33 RV_REG_S4 = 20,
34 RV_REG_S5 = 21,
35 RV_REG_S6 = 22,
36 RV_REG_S7 = 23,
37 RV_REG_S8 = 24,
38 RV_REG_S9 = 25,
39 RV_REG_S10 = 26,
40 RV_REG_S11 = 27,
41 RV_REG_T3 = 28, /* Temporaries */
42 RV_REG_T4 = 29,
43 RV_REG_T5 = 30,
44 RV_REG_T6 = 31,
45};
46
47#define RV_REG_TCC RV_REG_A6
48#define RV_REG_TCC_SAVED RV_REG_S6 /* Store A6 in S6 if program do calls */
49
50static const int regmap[] = {
51 [BPF_REG_0] = RV_REG_A5,
52 [BPF_REG_1] = RV_REG_A0,
53 [BPF_REG_2] = RV_REG_A1,
54 [BPF_REG_3] = RV_REG_A2,
55 [BPF_REG_4] = RV_REG_A3,
56 [BPF_REG_5] = RV_REG_A4,
57 [BPF_REG_6] = RV_REG_S1,
58 [BPF_REG_7] = RV_REG_S2,
59 [BPF_REG_8] = RV_REG_S3,
60 [BPF_REG_9] = RV_REG_S4,
61 [BPF_REG_FP] = RV_REG_S5,
62 [BPF_REG_AX] = RV_REG_T0,
63};
64
65enum {
66 RV_CTX_F_SEEN_TAIL_CALL = 0,
67 RV_CTX_F_SEEN_CALL = RV_REG_RA,
68 RV_CTX_F_SEEN_S1 = RV_REG_S1,
69 RV_CTX_F_SEEN_S2 = RV_REG_S2,
70 RV_CTX_F_SEEN_S3 = RV_REG_S3,
71 RV_CTX_F_SEEN_S4 = RV_REG_S4,
72 RV_CTX_F_SEEN_S5 = RV_REG_S5,
73 RV_CTX_F_SEEN_S6 = RV_REG_S6,
74};
75
76struct rv_jit_context {
77 struct bpf_prog *prog;
78 u32 *insns; /* RV insns */
79 int ninsns;
80 int epilogue_offset;
81 int *offset; /* BPF to RV */
82 unsigned long flags;
83 int stack_size;
84};
85
86struct rv_jit_data {
87 struct bpf_binary_header *header;
88 u8 *image;
89 struct rv_jit_context ctx;
90};
91
92static u8 bpf_to_rv_reg(int bpf_reg, struct rv_jit_context *ctx)
93{
94 u8 reg = regmap[bpf_reg];
95
96 switch (reg) {
97 case RV_CTX_F_SEEN_S1:
98 case RV_CTX_F_SEEN_S2:
99 case RV_CTX_F_SEEN_S3:
100 case RV_CTX_F_SEEN_S4:
101 case RV_CTX_F_SEEN_S5:
102 case RV_CTX_F_SEEN_S6:
103 __set_bit(reg, &ctx->flags);
104 }
105 return reg;
106};
107
108static bool seen_reg(int reg, struct rv_jit_context *ctx)
109{
110 switch (reg) {
111 case RV_CTX_F_SEEN_CALL:
112 case RV_CTX_F_SEEN_S1:
113 case RV_CTX_F_SEEN_S2:
114 case RV_CTX_F_SEEN_S3:
115 case RV_CTX_F_SEEN_S4:
116 case RV_CTX_F_SEEN_S5:
117 case RV_CTX_F_SEEN_S6:
118 return test_bit(reg, &ctx->flags);
119 }
120 return false;
121}
122
123static void mark_call(struct rv_jit_context *ctx)
124{
125 __set_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
126}
127
128static bool seen_call(struct rv_jit_context *ctx)
129{
130 return test_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
131}
132
133static void mark_tail_call(struct rv_jit_context *ctx)
134{
135 __set_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
136}
137
138static bool seen_tail_call(struct rv_jit_context *ctx)
139{
140 return test_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
141}
142
143static u8 rv_tail_call_reg(struct rv_jit_context *ctx)
144{
145 mark_tail_call(ctx);
146
147 if (seen_call(ctx)) {
148 __set_bit(RV_CTX_F_SEEN_S6, &ctx->flags);
149 return RV_REG_S6;
150 }
151 return RV_REG_A6;
152}
153
154static void emit(const u32 insn, struct rv_jit_context *ctx)
155{
156 if (ctx->insns)
157 ctx->insns[ctx->ninsns] = insn;
158
159 ctx->ninsns++;
160}
161
162static u32 rv_r_insn(u8 funct7, u8 rs2, u8 rs1, u8 funct3, u8 rd, u8 opcode)
163{
164 return (funct7 << 25) | (rs2 << 20) | (rs1 << 15) | (funct3 << 12) |
165 (rd << 7) | opcode;
166}
167
168static u32 rv_i_insn(u16 imm11_0, u8 rs1, u8 funct3, u8 rd, u8 opcode)
169{
170 return (imm11_0 << 20) | (rs1 << 15) | (funct3 << 12) | (rd << 7) |
171 opcode;
172}
173
174static u32 rv_s_insn(u16 imm11_0, u8 rs2, u8 rs1, u8 funct3, u8 opcode)
175{
176 u8 imm11_5 = imm11_0 >> 5, imm4_0 = imm11_0 & 0x1f;
177
178 return (imm11_5 << 25) | (rs2 << 20) | (rs1 << 15) | (funct3 << 12) |
179 (imm4_0 << 7) | opcode;
180}
181
182static u32 rv_sb_insn(u16 imm12_1, u8 rs2, u8 rs1, u8 funct3, u8 opcode)
183{
184 u8 imm12 = ((imm12_1 & 0x800) >> 5) | ((imm12_1 & 0x3f0) >> 4);
185 u8 imm4_1 = ((imm12_1 & 0xf) << 1) | ((imm12_1 & 0x400) >> 10);
186
187 return (imm12 << 25) | (rs2 << 20) | (rs1 << 15) | (funct3 << 12) |
188 (imm4_1 << 7) | opcode;
189}
190
191static u32 rv_u_insn(u32 imm31_12, u8 rd, u8 opcode)
192{
193 return (imm31_12 << 12) | (rd << 7) | opcode;
194}
195
196static u32 rv_uj_insn(u32 imm20_1, u8 rd, u8 opcode)
197{
198 u32 imm;
199
200 imm = (imm20_1 & 0x80000) | ((imm20_1 & 0x3ff) << 9) |
201 ((imm20_1 & 0x400) >> 2) | ((imm20_1 & 0x7f800) >> 11);
202
203 return (imm << 12) | (rd << 7) | opcode;
204}
205
206static u32 rv_amo_insn(u8 funct5, u8 aq, u8 rl, u8 rs2, u8 rs1,
207 u8 funct3, u8 rd, u8 opcode)
208{
209 u8 funct7 = (funct5 << 2) | (aq << 1) | rl;
210
211 return rv_r_insn(funct7, rs2, rs1, funct3, rd, opcode);
212}
213
214static u32 rv_addiw(u8 rd, u8 rs1, u16 imm11_0)
215{
216 return rv_i_insn(imm11_0, rs1, 0, rd, 0x1b);
217}
218
219static u32 rv_addi(u8 rd, u8 rs1, u16 imm11_0)
220{
221 return rv_i_insn(imm11_0, rs1, 0, rd, 0x13);
222}
223
224static u32 rv_addw(u8 rd, u8 rs1, u8 rs2)
225{
226 return rv_r_insn(0, rs2, rs1, 0, rd, 0x3b);
227}
228
229static u32 rv_add(u8 rd, u8 rs1, u8 rs2)
230{
231 return rv_r_insn(0, rs2, rs1, 0, rd, 0x33);
232}
233
234static u32 rv_subw(u8 rd, u8 rs1, u8 rs2)
235{
236 return rv_r_insn(0x20, rs2, rs1, 0, rd, 0x3b);
237}
238
239static u32 rv_sub(u8 rd, u8 rs1, u8 rs2)
240{
241 return rv_r_insn(0x20, rs2, rs1, 0, rd, 0x33);
242}
243
244static u32 rv_and(u8 rd, u8 rs1, u8 rs2)
245{
246 return rv_r_insn(0, rs2, rs1, 7, rd, 0x33);
247}
248
249static u32 rv_or(u8 rd, u8 rs1, u8 rs2)
250{
251 return rv_r_insn(0, rs2, rs1, 6, rd, 0x33);
252}
253
254static u32 rv_xor(u8 rd, u8 rs1, u8 rs2)
255{
256 return rv_r_insn(0, rs2, rs1, 4, rd, 0x33);
257}
258
259static u32 rv_mulw(u8 rd, u8 rs1, u8 rs2)
260{
261 return rv_r_insn(1, rs2, rs1, 0, rd, 0x3b);
262}
263
264static u32 rv_mul(u8 rd, u8 rs1, u8 rs2)
265{
266 return rv_r_insn(1, rs2, rs1, 0, rd, 0x33);
267}
268
269static u32 rv_divuw(u8 rd, u8 rs1, u8 rs2)
270{
271 return rv_r_insn(1, rs2, rs1, 5, rd, 0x3b);
272}
273
274static u32 rv_divu(u8 rd, u8 rs1, u8 rs2)
275{
276 return rv_r_insn(1, rs2, rs1, 5, rd, 0x33);
277}
278
279static u32 rv_remuw(u8 rd, u8 rs1, u8 rs2)
280{
281 return rv_r_insn(1, rs2, rs1, 7, rd, 0x3b);
282}
283
284static u32 rv_remu(u8 rd, u8 rs1, u8 rs2)
285{
286 return rv_r_insn(1, rs2, rs1, 7, rd, 0x33);
287}
288
289static u32 rv_sllw(u8 rd, u8 rs1, u8 rs2)
290{
291 return rv_r_insn(0, rs2, rs1, 1, rd, 0x3b);
292}
293
294static u32 rv_sll(u8 rd, u8 rs1, u8 rs2)
295{
296 return rv_r_insn(0, rs2, rs1, 1, rd, 0x33);
297}
298
299static u32 rv_srlw(u8 rd, u8 rs1, u8 rs2)
300{
301 return rv_r_insn(0, rs2, rs1, 5, rd, 0x3b);
302}
303
304static u32 rv_srl(u8 rd, u8 rs1, u8 rs2)
305{
306 return rv_r_insn(0, rs2, rs1, 5, rd, 0x33);
307}
308
309static u32 rv_sraw(u8 rd, u8 rs1, u8 rs2)
310{
311 return rv_r_insn(0x20, rs2, rs1, 5, rd, 0x3b);
312}
313
314static u32 rv_sra(u8 rd, u8 rs1, u8 rs2)
315{
316 return rv_r_insn(0x20, rs2, rs1, 5, rd, 0x33);
317}
318
319static u32 rv_lui(u8 rd, u32 imm31_12)
320{
321 return rv_u_insn(imm31_12, rd, 0x37);
322}
323
324static u32 rv_slli(u8 rd, u8 rs1, u16 imm11_0)
325{
326 return rv_i_insn(imm11_0, rs1, 1, rd, 0x13);
327}
328
329static u32 rv_andi(u8 rd, u8 rs1, u16 imm11_0)
330{
331 return rv_i_insn(imm11_0, rs1, 7, rd, 0x13);
332}
333
334static u32 rv_ori(u8 rd, u8 rs1, u16 imm11_0)
335{
336 return rv_i_insn(imm11_0, rs1, 6, rd, 0x13);
337}
338
339static u32 rv_xori(u8 rd, u8 rs1, u16 imm11_0)
340{
341 return rv_i_insn(imm11_0, rs1, 4, rd, 0x13);
342}
343
344static u32 rv_slliw(u8 rd, u8 rs1, u16 imm11_0)
345{
346 return rv_i_insn(imm11_0, rs1, 1, rd, 0x1b);
347}
348
349static u32 rv_srliw(u8 rd, u8 rs1, u16 imm11_0)
350{
351 return rv_i_insn(imm11_0, rs1, 5, rd, 0x1b);
352}
353
354static u32 rv_srli(u8 rd, u8 rs1, u16 imm11_0)
355{
356 return rv_i_insn(imm11_0, rs1, 5, rd, 0x13);
357}
358
359static u32 rv_sraiw(u8 rd, u8 rs1, u16 imm11_0)
360{
361 return rv_i_insn(0x400 | imm11_0, rs1, 5, rd, 0x1b);
362}
363
364static u32 rv_srai(u8 rd, u8 rs1, u16 imm11_0)
365{
366 return rv_i_insn(0x400 | imm11_0, rs1, 5, rd, 0x13);
367}
368
369static u32 rv_jal(u8 rd, u32 imm20_1)
370{
371 return rv_uj_insn(imm20_1, rd, 0x6f);
372}
373
374static u32 rv_jalr(u8 rd, u8 rs1, u16 imm11_0)
375{
376 return rv_i_insn(imm11_0, rs1, 0, rd, 0x67);
377}
378
379static u32 rv_beq(u8 rs1, u8 rs2, u16 imm12_1)
380{
381 return rv_sb_insn(imm12_1, rs2, rs1, 0, 0x63);
382}
383
384static u32 rv_bltu(u8 rs1, u8 rs2, u16 imm12_1)
385{
386 return rv_sb_insn(imm12_1, rs2, rs1, 6, 0x63);
387}
388
389static u32 rv_bgeu(u8 rs1, u8 rs2, u16 imm12_1)
390{
391 return rv_sb_insn(imm12_1, rs2, rs1, 7, 0x63);
392}
393
394static u32 rv_bne(u8 rs1, u8 rs2, u16 imm12_1)
395{
396 return rv_sb_insn(imm12_1, rs2, rs1, 1, 0x63);
397}
398
399static u32 rv_blt(u8 rs1, u8 rs2, u16 imm12_1)
400{
401 return rv_sb_insn(imm12_1, rs2, rs1, 4, 0x63);
402}
403
404static u32 rv_bge(u8 rs1, u8 rs2, u16 imm12_1)
405{
406 return rv_sb_insn(imm12_1, rs2, rs1, 5, 0x63);
407}
408
409static u32 rv_sb(u8 rs1, u16 imm11_0, u8 rs2)
410{
411 return rv_s_insn(imm11_0, rs2, rs1, 0, 0x23);
412}
413
414static u32 rv_sh(u8 rs1, u16 imm11_0, u8 rs2)
415{
416 return rv_s_insn(imm11_0, rs2, rs1, 1, 0x23);
417}
418
419static u32 rv_sw(u8 rs1, u16 imm11_0, u8 rs2)
420{
421 return rv_s_insn(imm11_0, rs2, rs1, 2, 0x23);
422}
423
424static u32 rv_sd(u8 rs1, u16 imm11_0, u8 rs2)
425{
426 return rv_s_insn(imm11_0, rs2, rs1, 3, 0x23);
427}
428
429static u32 rv_lbu(u8 rd, u16 imm11_0, u8 rs1)
430{
431 return rv_i_insn(imm11_0, rs1, 4, rd, 0x03);
432}
433
434static u32 rv_lhu(u8 rd, u16 imm11_0, u8 rs1)
435{
436 return rv_i_insn(imm11_0, rs1, 5, rd, 0x03);
437}
438
439static u32 rv_lwu(u8 rd, u16 imm11_0, u8 rs1)
440{
441 return rv_i_insn(imm11_0, rs1, 6, rd, 0x03);
442}
443
444static u32 rv_ld(u8 rd, u16 imm11_0, u8 rs1)
445{
446 return rv_i_insn(imm11_0, rs1, 3, rd, 0x03);
447}
448
449static u32 rv_amoadd_w(u8 rd, u8 rs2, u8 rs1, u8 aq, u8 rl)
450{
451 return rv_amo_insn(0, aq, rl, rs2, rs1, 2, rd, 0x2f);
452}
453
454static u32 rv_amoadd_d(u8 rd, u8 rs2, u8 rs1, u8 aq, u8 rl)
455{
456 return rv_amo_insn(0, aq, rl, rs2, rs1, 3, rd, 0x2f);
457}
458
459static bool is_12b_int(s64 val)
460{
461 return -(1 << 11) <= val && val < (1 << 11);
462}
463
464static bool is_13b_int(s64 val)
465{
466 return -(1 << 12) <= val && val < (1 << 12);
467}
468
469static bool is_21b_int(s64 val)
470{
471 return -(1L << 20) <= val && val < (1L << 20);
472}
473
474static bool is_32b_int(s64 val)
475{
476 return -(1L << 31) <= val && val < (1L << 31);
477}
478
479static int is_12b_check(int off, int insn)
480{
481 if (!is_12b_int(off)) {
482 pr_err("bpf-jit: insn=%d offset=%d not supported yet!\n",
483 insn, (int)off);
484 return -1;
485 }
486 return 0;
487}
488
489static int is_13b_check(int off, int insn)
490{
491 if (!is_13b_int(off)) {
492 pr_err("bpf-jit: insn=%d offset=%d not supported yet!\n",
493 insn, (int)off);
494 return -1;
495 }
496 return 0;
497}
498
499static int is_21b_check(int off, int insn)
500{
501 if (!is_21b_int(off)) {
502 pr_err("bpf-jit: insn=%d offset=%d not supported yet!\n",
503 insn, (int)off);
504 return -1;
505 }
506 return 0;
507}
508
509static void emit_imm(u8 rd, s64 val, struct rv_jit_context *ctx)
510{
511 /* Note that the immediate from the add is sign-extended,
512 * which means that we need to compensate this by adding 2^12,
513 * when the 12th bit is set. A simpler way of doing this, and
514 * getting rid of the check, is to just add 2**11 before the
515 * shift. The "Loading a 32-Bit constant" example from the
516 * "Computer Organization and Design, RISC-V edition" book by
517 * Patterson/Hennessy highlights this fact.
518 *
519 * This also means that we need to process LSB to MSB.
520 */
521 s64 upper = (val + (1 << 11)) >> 12, lower = val & 0xfff;
522 int shift;
523
524 if (is_32b_int(val)) {
525 if (upper)
526 emit(rv_lui(rd, upper), ctx);
527
528 if (!upper) {
529 emit(rv_addi(rd, RV_REG_ZERO, lower), ctx);
530 return;
531 }
532
533 emit(rv_addiw(rd, rd, lower), ctx);
534 return;
535 }
536
537 shift = __ffs(upper);
538 upper >>= shift;
539 shift += 12;
540
541 emit_imm(rd, upper, ctx);
542
543 emit(rv_slli(rd, rd, shift), ctx);
544 if (lower)
545 emit(rv_addi(rd, rd, lower), ctx);
546}
547
548static int rv_offset(int bpf_to, int bpf_from, struct rv_jit_context *ctx)
549{
550 int from = ctx->offset[bpf_from] - 1, to = ctx->offset[bpf_to];
551
552 return (to - from) << 2;
553}
554
555static int epilogue_offset(struct rv_jit_context *ctx)
556{
557 int to = ctx->epilogue_offset, from = ctx->ninsns;
558
559 return (to - from) << 2;
560}
561
562static void __build_epilogue(u8 reg, struct rv_jit_context *ctx)
563{
564 int stack_adjust = ctx->stack_size, store_offset = stack_adjust - 8;
565
566 if (seen_reg(RV_REG_RA, ctx)) {
567 emit(rv_ld(RV_REG_RA, store_offset, RV_REG_SP), ctx);
568 store_offset -= 8;
569 }
570 emit(rv_ld(RV_REG_FP, store_offset, RV_REG_SP), ctx);
571 store_offset -= 8;
572 if (seen_reg(RV_REG_S1, ctx)) {
573 emit(rv_ld(RV_REG_S1, store_offset, RV_REG_SP), ctx);
574 store_offset -= 8;
575 }
576 if (seen_reg(RV_REG_S2, ctx)) {
577 emit(rv_ld(RV_REG_S2, store_offset, RV_REG_SP), ctx);
578 store_offset -= 8;
579 }
580 if (seen_reg(RV_REG_S3, ctx)) {
581 emit(rv_ld(RV_REG_S3, store_offset, RV_REG_SP), ctx);
582 store_offset -= 8;
583 }
584 if (seen_reg(RV_REG_S4, ctx)) {
585 emit(rv_ld(RV_REG_S4, store_offset, RV_REG_SP), ctx);
586 store_offset -= 8;
587 }
588 if (seen_reg(RV_REG_S5, ctx)) {
589 emit(rv_ld(RV_REG_S5, store_offset, RV_REG_SP), ctx);
590 store_offset -= 8;
591 }
592 if (seen_reg(RV_REG_S6, ctx)) {
593 emit(rv_ld(RV_REG_S6, store_offset, RV_REG_SP), ctx);
594 store_offset -= 8;
595 }
596
597 emit(rv_addi(RV_REG_SP, RV_REG_SP, stack_adjust), ctx);
598 /* Set return value. */
599 emit(rv_addi(RV_REG_A0, RV_REG_A5, 0), ctx);
600 emit(rv_jalr(RV_REG_ZERO, reg, 0), ctx);
601}
602
603static void emit_zext_32(u8 reg, struct rv_jit_context *ctx)
604{
605 emit(rv_slli(reg, reg, 32), ctx);
606 emit(rv_srli(reg, reg, 32), ctx);
607}
608
609static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx)
610{
611 int tc_ninsn, off, start_insn = ctx->ninsns;
612 u8 tcc = rv_tail_call_reg(ctx);
613
614 /* a0: &ctx
615 * a1: &array
616 * a2: index
617 *
618 * if (index >= array->map.max_entries)
619 * goto out;
620 */
621 tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] :
622 ctx->offset[0];
623 emit_zext_32(RV_REG_A2, ctx);
624
625 off = offsetof(struct bpf_array, map.max_entries);
626 if (is_12b_check(off, insn))
627 return -1;
628 emit(rv_lwu(RV_REG_T1, off, RV_REG_A1), ctx);
629 off = (tc_ninsn - (ctx->ninsns - start_insn)) << 2;
630 if (is_13b_check(off, insn))
631 return -1;
632 emit(rv_bgeu(RV_REG_A2, RV_REG_T1, off >> 1), ctx);
633
634 /* if (--TCC < 0)
635 * goto out;
636 */
637 emit(rv_addi(RV_REG_T1, tcc, -1), ctx);
638 off = (tc_ninsn - (ctx->ninsns - start_insn)) << 2;
639 if (is_13b_check(off, insn))
640 return -1;
641 emit(rv_blt(RV_REG_T1, RV_REG_ZERO, off >> 1), ctx);
642
643 /* prog = array->ptrs[index];
644 * if (!prog)
645 * goto out;
646 */
647 emit(rv_slli(RV_REG_T2, RV_REG_A2, 3), ctx);
648 emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_A1), ctx);
649 off = offsetof(struct bpf_array, ptrs);
650 if (is_12b_check(off, insn))
651 return -1;
652 emit(rv_ld(RV_REG_T2, off, RV_REG_T2), ctx);
653 off = (tc_ninsn - (ctx->ninsns - start_insn)) << 2;
654 if (is_13b_check(off, insn))
655 return -1;
656 emit(rv_beq(RV_REG_T2, RV_REG_ZERO, off >> 1), ctx);
657
658 /* goto *(prog->bpf_func + 4); */
659 off = offsetof(struct bpf_prog, bpf_func);
660 if (is_12b_check(off, insn))
661 return -1;
662 emit(rv_ld(RV_REG_T3, off, RV_REG_T2), ctx);
663 emit(rv_addi(RV_REG_T3, RV_REG_T3, 4), ctx);
664 emit(rv_addi(RV_REG_TCC, RV_REG_T1, 0), ctx);
665 __build_epilogue(RV_REG_T3, ctx);
666 return 0;
667}
668
669static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn,
670 struct rv_jit_context *ctx)
671{
672 u8 code = insn->code;
673
674 switch (code) {
675 case BPF_JMP | BPF_JA:
676 case BPF_JMP | BPF_CALL:
677 case BPF_JMP | BPF_EXIT:
678 case BPF_JMP | BPF_TAIL_CALL:
679 break;
680 default:
681 *rd = bpf_to_rv_reg(insn->dst_reg, ctx);
682 }
683
684 if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) ||
685 code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) ||
686 code & BPF_LDX || code & BPF_STX)
687 *rs = bpf_to_rv_reg(insn->src_reg, ctx);
688}
689
690static int rv_offset_check(int *rvoff, s16 off, int insn,
691 struct rv_jit_context *ctx)
692{
693 *rvoff = rv_offset(insn + off, insn, ctx);
694 return is_13b_check(*rvoff, insn);
695}
696
697static void emit_zext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx)
698{
699 emit(rv_addi(RV_REG_T2, *rd, 0), ctx);
700 emit_zext_32(RV_REG_T2, ctx);
701 emit(rv_addi(RV_REG_T1, *rs, 0), ctx);
702 emit_zext_32(RV_REG_T1, ctx);
703 *rd = RV_REG_T2;
704 *rs = RV_REG_T1;
705}
706
707static void emit_sext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx)
708{
709 emit(rv_addiw(RV_REG_T2, *rd, 0), ctx);
710 emit(rv_addiw(RV_REG_T1, *rs, 0), ctx);
711 *rd = RV_REG_T2;
712 *rs = RV_REG_T1;
713}
714
715static void emit_zext_32_rd_t1(u8 *rd, struct rv_jit_context *ctx)
716{
717 emit(rv_addi(RV_REG_T2, *rd, 0), ctx);
718 emit_zext_32(RV_REG_T2, ctx);
719 emit_zext_32(RV_REG_T1, ctx);
720 *rd = RV_REG_T2;
721}
722
723static void emit_sext_32_rd(u8 *rd, struct rv_jit_context *ctx)
724{
725 emit(rv_addiw(RV_REG_T2, *rd, 0), ctx);
726 *rd = RV_REG_T2;
727}
728
729static int emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx,
730 bool extra_pass)
731{
732 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
733 BPF_CLASS(insn->code) == BPF_JMP;
734 struct bpf_prog_aux *aux = ctx->prog->aux;
735 int rvoff, i = insn - ctx->prog->insnsi;
736 u8 rd = -1, rs = -1, code = insn->code;
737 s16 off = insn->off;
738 s32 imm = insn->imm;
739
740 init_regs(&rd, &rs, insn, ctx);
741
742 switch (code) {
743 /* dst = src */
744 case BPF_ALU | BPF_MOV | BPF_X:
745 case BPF_ALU64 | BPF_MOV | BPF_X:
746 if (imm == 1) {
747 /* Special mov32 for zext */
748 emit_zext_32(rd, ctx);
749 break;
750 }
751 emit(is64 ? rv_addi(rd, rs, 0) : rv_addiw(rd, rs, 0), ctx);
752 if (!is64 && !aux->verifier_zext)
753 emit_zext_32(rd, ctx);
754 break;
755
756 /* dst = dst OP src */
757 case BPF_ALU | BPF_ADD | BPF_X:
758 case BPF_ALU64 | BPF_ADD | BPF_X:
759 emit(is64 ? rv_add(rd, rd, rs) : rv_addw(rd, rd, rs), ctx);
760 if (!is64 && !aux->verifier_zext)
761 emit_zext_32(rd, ctx);
762 break;
763 case BPF_ALU | BPF_SUB | BPF_X:
764 case BPF_ALU64 | BPF_SUB | BPF_X:
765 emit(is64 ? rv_sub(rd, rd, rs) : rv_subw(rd, rd, rs), ctx);
766 if (!is64 && !aux->verifier_zext)
767 emit_zext_32(rd, ctx);
768 break;
769 case BPF_ALU | BPF_AND | BPF_X:
770 case BPF_ALU64 | BPF_AND | BPF_X:
771 emit(rv_and(rd, rd, rs), ctx);
772 if (!is64 && !aux->verifier_zext)
773 emit_zext_32(rd, ctx);
774 break;
775 case BPF_ALU | BPF_OR | BPF_X:
776 case BPF_ALU64 | BPF_OR | BPF_X:
777 emit(rv_or(rd, rd, rs), ctx);
778 if (!is64 && !aux->verifier_zext)
779 emit_zext_32(rd, ctx);
780 break;
781 case BPF_ALU | BPF_XOR | BPF_X:
782 case BPF_ALU64 | BPF_XOR | BPF_X:
783 emit(rv_xor(rd, rd, rs), ctx);
784 if (!is64 && !aux->verifier_zext)
785 emit_zext_32(rd, ctx);
786 break;
787 case BPF_ALU | BPF_MUL | BPF_X:
788 case BPF_ALU64 | BPF_MUL | BPF_X:
789 emit(is64 ? rv_mul(rd, rd, rs) : rv_mulw(rd, rd, rs), ctx);
790 if (!is64 && !aux->verifier_zext)
791 emit_zext_32(rd, ctx);
792 break;
793 case BPF_ALU | BPF_DIV | BPF_X:
794 case BPF_ALU64 | BPF_DIV | BPF_X:
795 emit(is64 ? rv_divu(rd, rd, rs) : rv_divuw(rd, rd, rs), ctx);
796 if (!is64 && !aux->verifier_zext)
797 emit_zext_32(rd, ctx);
798 break;
799 case BPF_ALU | BPF_MOD | BPF_X:
800 case BPF_ALU64 | BPF_MOD | BPF_X:
801 emit(is64 ? rv_remu(rd, rd, rs) : rv_remuw(rd, rd, rs), ctx);
802 if (!is64 && !aux->verifier_zext)
803 emit_zext_32(rd, ctx);
804 break;
805 case BPF_ALU | BPF_LSH | BPF_X:
806 case BPF_ALU64 | BPF_LSH | BPF_X:
807 emit(is64 ? rv_sll(rd, rd, rs) : rv_sllw(rd, rd, rs), ctx);
808 if (!is64)
809 emit_zext_32(rd, ctx);
810 break;
811 case BPF_ALU | BPF_RSH | BPF_X:
812 case BPF_ALU64 | BPF_RSH | BPF_X:
813 emit(is64 ? rv_srl(rd, rd, rs) : rv_srlw(rd, rd, rs), ctx);
814 if (!is64 && !aux->verifier_zext)
815 emit_zext_32(rd, ctx);
816 break;
817 case BPF_ALU | BPF_ARSH | BPF_X:
818 case BPF_ALU64 | BPF_ARSH | BPF_X:
819 emit(is64 ? rv_sra(rd, rd, rs) : rv_sraw(rd, rd, rs), ctx);
820 if (!is64 && !aux->verifier_zext)
821 emit_zext_32(rd, ctx);
822 break;
823
824 /* dst = -dst */
825 case BPF_ALU | BPF_NEG:
826 case BPF_ALU64 | BPF_NEG:
827 emit(is64 ? rv_sub(rd, RV_REG_ZERO, rd) :
828 rv_subw(rd, RV_REG_ZERO, rd), ctx);
829 if (!is64 && !aux->verifier_zext)
830 emit_zext_32(rd, ctx);
831 break;
832
833 /* dst = BSWAP##imm(dst) */
834 case BPF_ALU | BPF_END | BPF_FROM_LE:
835 {
836 int shift = 64 - imm;
837
838 emit(rv_slli(rd, rd, shift), ctx);
839 emit(rv_srli(rd, rd, shift), ctx);
840 break;
841 }
842 case BPF_ALU | BPF_END | BPF_FROM_BE:
843 emit(rv_addi(RV_REG_T2, RV_REG_ZERO, 0), ctx);
844
845 emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
846 emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
847 emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx);
848 emit(rv_srli(rd, rd, 8), ctx);
849 if (imm == 16)
850 goto out_be;
851
852 emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
853 emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
854 emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx);
855 emit(rv_srli(rd, rd, 8), ctx);
856
857 emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
858 emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
859 emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx);
860 emit(rv_srli(rd, rd, 8), ctx);
861 if (imm == 32)
862 goto out_be;
863
864 emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
865 emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
866 emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx);
867 emit(rv_srli(rd, rd, 8), ctx);
868
869 emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
870 emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
871 emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx);
872 emit(rv_srli(rd, rd, 8), ctx);
873
874 emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
875 emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
876 emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx);
877 emit(rv_srli(rd, rd, 8), ctx);
878
879 emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
880 emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
881 emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx);
882 emit(rv_srli(rd, rd, 8), ctx);
883out_be:
884 emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
885 emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
886
887 emit(rv_addi(rd, RV_REG_T2, 0), ctx);
888 break;
889
890 /* dst = imm */
891 case BPF_ALU | BPF_MOV | BPF_K:
892 case BPF_ALU64 | BPF_MOV | BPF_K:
893 emit_imm(rd, imm, ctx);
894 if (!is64 && !aux->verifier_zext)
895 emit_zext_32(rd, ctx);
896 break;
897
898 /* dst = dst OP imm */
899 case BPF_ALU | BPF_ADD | BPF_K:
900 case BPF_ALU64 | BPF_ADD | BPF_K:
901 if (is_12b_int(imm)) {
902 emit(is64 ? rv_addi(rd, rd, imm) :
903 rv_addiw(rd, rd, imm), ctx);
904 } else {
905 emit_imm(RV_REG_T1, imm, ctx);
906 emit(is64 ? rv_add(rd, rd, RV_REG_T1) :
907 rv_addw(rd, rd, RV_REG_T1), ctx);
908 }
909 if (!is64 && !aux->verifier_zext)
910 emit_zext_32(rd, ctx);
911 break;
912 case BPF_ALU | BPF_SUB | BPF_K:
913 case BPF_ALU64 | BPF_SUB | BPF_K:
914 if (is_12b_int(-imm)) {
915 emit(is64 ? rv_addi(rd, rd, -imm) :
916 rv_addiw(rd, rd, -imm), ctx);
917 } else {
918 emit_imm(RV_REG_T1, imm, ctx);
919 emit(is64 ? rv_sub(rd, rd, RV_REG_T1) :
920 rv_subw(rd, rd, RV_REG_T1), ctx);
921 }
922 if (!is64 && !aux->verifier_zext)
923 emit_zext_32(rd, ctx);
924 break;
925 case BPF_ALU | BPF_AND | BPF_K:
926 case BPF_ALU64 | BPF_AND | BPF_K:
927 if (is_12b_int(imm)) {
928 emit(rv_andi(rd, rd, imm), ctx);
929 } else {
930 emit_imm(RV_REG_T1, imm, ctx);
931 emit(rv_and(rd, rd, RV_REG_T1), ctx);
932 }
933 if (!is64 && !aux->verifier_zext)
934 emit_zext_32(rd, ctx);
935 break;
936 case BPF_ALU | BPF_OR | BPF_K:
937 case BPF_ALU64 | BPF_OR | BPF_K:
938 if (is_12b_int(imm)) {
939 emit(rv_ori(rd, rd, imm), ctx);
940 } else {
941 emit_imm(RV_REG_T1, imm, ctx);
942 emit(rv_or(rd, rd, RV_REG_T1), ctx);
943 }
944 if (!is64 && !aux->verifier_zext)
945 emit_zext_32(rd, ctx);
946 break;
947 case BPF_ALU | BPF_XOR | BPF_K:
948 case BPF_ALU64 | BPF_XOR | BPF_K:
949 if (is_12b_int(imm)) {
950 emit(rv_xori(rd, rd, imm), ctx);
951 } else {
952 emit_imm(RV_REG_T1, imm, ctx);
953 emit(rv_xor(rd, rd, RV_REG_T1), ctx);
954 }
955 if (!is64 && !aux->verifier_zext)
956 emit_zext_32(rd, ctx);
957 break;
958 case BPF_ALU | BPF_MUL | BPF_K:
959 case BPF_ALU64 | BPF_MUL | BPF_K:
960 emit_imm(RV_REG_T1, imm, ctx);
961 emit(is64 ? rv_mul(rd, rd, RV_REG_T1) :
962 rv_mulw(rd, rd, RV_REG_T1), ctx);
963 if (!is64 && !aux->verifier_zext)
964 emit_zext_32(rd, ctx);
965 break;
966 case BPF_ALU | BPF_DIV | BPF_K:
967 case BPF_ALU64 | BPF_DIV | BPF_K:
968 emit_imm(RV_REG_T1, imm, ctx);
969 emit(is64 ? rv_divu(rd, rd, RV_REG_T1) :
970 rv_divuw(rd, rd, RV_REG_T1), ctx);
971 if (!is64 && !aux->verifier_zext)
972 emit_zext_32(rd, ctx);
973 break;
974 case BPF_ALU | BPF_MOD | BPF_K:
975 case BPF_ALU64 | BPF_MOD | BPF_K:
976 emit_imm(RV_REG_T1, imm, ctx);
977 emit(is64 ? rv_remu(rd, rd, RV_REG_T1) :
978 rv_remuw(rd, rd, RV_REG_T1), ctx);
979 if (!is64 && !aux->verifier_zext)
980 emit_zext_32(rd, ctx);
981 break;
982 case BPF_ALU | BPF_LSH | BPF_K:
983 case BPF_ALU64 | BPF_LSH | BPF_K:
984 emit(is64 ? rv_slli(rd, rd, imm) : rv_slliw(rd, rd, imm), ctx);
985 if (!is64)
986 emit_zext_32(rd, ctx);
987 break;
988 case BPF_ALU | BPF_RSH | BPF_K:
989 case BPF_ALU64 | BPF_RSH | BPF_K:
990 emit(is64 ? rv_srli(rd, rd, imm) : rv_srliw(rd, rd, imm), ctx);
991 if (!is64)
992 emit_zext_32(rd, ctx);
993 break;
994 case BPF_ALU | BPF_ARSH | BPF_K:
995 case BPF_ALU64 | BPF_ARSH | BPF_K:
996 emit(is64 ? rv_srai(rd, rd, imm) : rv_sraiw(rd, rd, imm), ctx);
997 if (!is64)
998 emit_zext_32(rd, ctx);
999 break;
1000
1001 /* JUMP off */
1002 case BPF_JMP | BPF_JA:
1003 rvoff = rv_offset(i + off, i, ctx);
1004 if (!is_21b_int(rvoff)) {
1005 pr_err("bpf-jit: insn=%d offset=%d not supported yet!\n",
1006 i, rvoff);
1007 return -1;
1008 }
1009
1010 emit(rv_jal(RV_REG_ZERO, rvoff >> 1), ctx);
1011 break;
1012
1013 /* IF (dst COND src) JUMP off */
1014 case BPF_JMP | BPF_JEQ | BPF_X:
1015 case BPF_JMP32 | BPF_JEQ | BPF_X:
1016 if (rv_offset_check(&rvoff, off, i, ctx))
1017 return -1;
1018 if (!is64)
1019 emit_zext_32_rd_rs(&rd, &rs, ctx);
1020 emit(rv_beq(rd, rs, rvoff >> 1), ctx);
1021 break;
1022 case BPF_JMP | BPF_JGT | BPF_X:
1023 case BPF_JMP32 | BPF_JGT | BPF_X:
1024 if (rv_offset_check(&rvoff, off, i, ctx))
1025 return -1;
1026 if (!is64)
1027 emit_zext_32_rd_rs(&rd, &rs, ctx);
1028 emit(rv_bltu(rs, rd, rvoff >> 1), ctx);
1029 break;
1030 case BPF_JMP | BPF_JLT | BPF_X:
1031 case BPF_JMP32 | BPF_JLT | BPF_X:
1032 if (rv_offset_check(&rvoff, off, i, ctx))
1033 return -1;
1034 if (!is64)
1035 emit_zext_32_rd_rs(&rd, &rs, ctx);
1036 emit(rv_bltu(rd, rs, rvoff >> 1), ctx);
1037 break;
1038 case BPF_JMP | BPF_JGE | BPF_X:
1039 case BPF_JMP32 | BPF_JGE | BPF_X:
1040 if (rv_offset_check(&rvoff, off, i, ctx))
1041 return -1;
1042 if (!is64)
1043 emit_zext_32_rd_rs(&rd, &rs, ctx);
1044 emit(rv_bgeu(rd, rs, rvoff >> 1), ctx);
1045 break;
1046 case BPF_JMP | BPF_JLE | BPF_X:
1047 case BPF_JMP32 | BPF_JLE | BPF_X:
1048 if (rv_offset_check(&rvoff, off, i, ctx))
1049 return -1;
1050 if (!is64)
1051 emit_zext_32_rd_rs(&rd, &rs, ctx);
1052 emit(rv_bgeu(rs, rd, rvoff >> 1), ctx);
1053 break;
1054 case BPF_JMP | BPF_JNE | BPF_X:
1055 case BPF_JMP32 | BPF_JNE | BPF_X:
1056 if (rv_offset_check(&rvoff, off, i, ctx))
1057 return -1;
1058 if (!is64)
1059 emit_zext_32_rd_rs(&rd, &rs, ctx);
1060 emit(rv_bne(rd, rs, rvoff >> 1), ctx);
1061 break;
1062 case BPF_JMP | BPF_JSGT | BPF_X:
1063 case BPF_JMP32 | BPF_JSGT | BPF_X:
1064 if (rv_offset_check(&rvoff, off, i, ctx))
1065 return -1;
1066 if (!is64)
1067 emit_sext_32_rd_rs(&rd, &rs, ctx);
1068 emit(rv_blt(rs, rd, rvoff >> 1), ctx);
1069 break;
1070 case BPF_JMP | BPF_JSLT | BPF_X:
1071 case BPF_JMP32 | BPF_JSLT | BPF_X:
1072 if (rv_offset_check(&rvoff, off, i, ctx))
1073 return -1;
1074 if (!is64)
1075 emit_sext_32_rd_rs(&rd, &rs, ctx);
1076 emit(rv_blt(rd, rs, rvoff >> 1), ctx);
1077 break;
1078 case BPF_JMP | BPF_JSGE | BPF_X:
1079 case BPF_JMP32 | BPF_JSGE | BPF_X:
1080 if (rv_offset_check(&rvoff, off, i, ctx))
1081 return -1;
1082 if (!is64)
1083 emit_sext_32_rd_rs(&rd, &rs, ctx);
1084 emit(rv_bge(rd, rs, rvoff >> 1), ctx);
1085 break;
1086 case BPF_JMP | BPF_JSLE | BPF_X:
1087 case BPF_JMP32 | BPF_JSLE | BPF_X:
1088 if (rv_offset_check(&rvoff, off, i, ctx))
1089 return -1;
1090 if (!is64)
1091 emit_sext_32_rd_rs(&rd, &rs, ctx);
1092 emit(rv_bge(rs, rd, rvoff >> 1), ctx);
1093 break;
1094 case BPF_JMP | BPF_JSET | BPF_X:
1095 case BPF_JMP32 | BPF_JSET | BPF_X:
1096 if (rv_offset_check(&rvoff, off, i, ctx))
1097 return -1;
1098 if (!is64)
1099 emit_zext_32_rd_rs(&rd, &rs, ctx);
1100 emit(rv_and(RV_REG_T1, rd, rs), ctx);
1101 emit(rv_bne(RV_REG_T1, RV_REG_ZERO, rvoff >> 1), ctx);
1102 break;
1103
1104 /* IF (dst COND imm) JUMP off */
1105 case BPF_JMP | BPF_JEQ | BPF_K:
1106 case BPF_JMP32 | BPF_JEQ | BPF_K:
1107 if (rv_offset_check(&rvoff, off, i, ctx))
1108 return -1;
1109 emit_imm(RV_REG_T1, imm, ctx);
1110 if (!is64)
1111 emit_zext_32_rd_t1(&rd, ctx);
1112 emit(rv_beq(rd, RV_REG_T1, rvoff >> 1), ctx);
1113 break;
1114 case BPF_JMP | BPF_JGT | BPF_K:
1115 case BPF_JMP32 | BPF_JGT | BPF_K:
1116 if (rv_offset_check(&rvoff, off, i, ctx))
1117 return -1;
1118 emit_imm(RV_REG_T1, imm, ctx);
1119 if (!is64)
1120 emit_zext_32_rd_t1(&rd, ctx);
1121 emit(rv_bltu(RV_REG_T1, rd, rvoff >> 1), ctx);
1122 break;
1123 case BPF_JMP | BPF_JLT | BPF_K:
1124 case BPF_JMP32 | BPF_JLT | BPF_K:
1125 if (rv_offset_check(&rvoff, off, i, ctx))
1126 return -1;
1127 emit_imm(RV_REG_T1, imm, ctx);
1128 if (!is64)
1129 emit_zext_32_rd_t1(&rd, ctx);
1130 emit(rv_bltu(rd, RV_REG_T1, rvoff >> 1), ctx);
1131 break;
1132 case BPF_JMP | BPF_JGE | BPF_K:
1133 case BPF_JMP32 | BPF_JGE | BPF_K:
1134 if (rv_offset_check(&rvoff, off, i, ctx))
1135 return -1;
1136 emit_imm(RV_REG_T1, imm, ctx);
1137 if (!is64)
1138 emit_zext_32_rd_t1(&rd, ctx);
1139 emit(rv_bgeu(rd, RV_REG_T1, rvoff >> 1), ctx);
1140 break;
1141 case BPF_JMP | BPF_JLE | BPF_K:
1142 case BPF_JMP32 | BPF_JLE | BPF_K:
1143 if (rv_offset_check(&rvoff, off, i, ctx))
1144 return -1;
1145 emit_imm(RV_REG_T1, imm, ctx);
1146 if (!is64)
1147 emit_zext_32_rd_t1(&rd, ctx);
1148 emit(rv_bgeu(RV_REG_T1, rd, rvoff >> 1), ctx);
1149 break;
1150 case BPF_JMP | BPF_JNE | BPF_K:
1151 case BPF_JMP32 | BPF_JNE | BPF_K:
1152 if (rv_offset_check(&rvoff, off, i, ctx))
1153 return -1;
1154 emit_imm(RV_REG_T1, imm, ctx);
1155 if (!is64)
1156 emit_zext_32_rd_t1(&rd, ctx);
1157 emit(rv_bne(rd, RV_REG_T1, rvoff >> 1), ctx);
1158 break;
1159 case BPF_JMP | BPF_JSGT | BPF_K:
1160 case BPF_JMP32 | BPF_JSGT | BPF_K:
1161 if (rv_offset_check(&rvoff, off, i, ctx))
1162 return -1;
1163 emit_imm(RV_REG_T1, imm, ctx);
1164 if (!is64)
1165 emit_sext_32_rd(&rd, ctx);
1166 emit(rv_blt(RV_REG_T1, rd, rvoff >> 1), ctx);
1167 break;
1168 case BPF_JMP | BPF_JSLT | BPF_K:
1169 case BPF_JMP32 | BPF_JSLT | BPF_K:
1170 if (rv_offset_check(&rvoff, off, i, ctx))
1171 return -1;
1172 emit_imm(RV_REG_T1, imm, ctx);
1173 if (!is64)
1174 emit_sext_32_rd(&rd, ctx);
1175 emit(rv_blt(rd, RV_REG_T1, rvoff >> 1), ctx);
1176 break;
1177 case BPF_JMP | BPF_JSGE | BPF_K:
1178 case BPF_JMP32 | BPF_JSGE | BPF_K:
1179 if (rv_offset_check(&rvoff, off, i, ctx))
1180 return -1;
1181 emit_imm(RV_REG_T1, imm, ctx);
1182 if (!is64)
1183 emit_sext_32_rd(&rd, ctx);
1184 emit(rv_bge(rd, RV_REG_T1, rvoff >> 1), ctx);
1185 break;
1186 case BPF_JMP | BPF_JSLE | BPF_K:
1187 case BPF_JMP32 | BPF_JSLE | BPF_K:
1188 if (rv_offset_check(&rvoff, off, i, ctx))
1189 return -1;
1190 emit_imm(RV_REG_T1, imm, ctx);
1191 if (!is64)
1192 emit_sext_32_rd(&rd, ctx);
1193 emit(rv_bge(RV_REG_T1, rd, rvoff >> 1), ctx);
1194 break;
1195 case BPF_JMP | BPF_JSET | BPF_K:
1196 case BPF_JMP32 | BPF_JSET | BPF_K:
1197 if (rv_offset_check(&rvoff, off, i, ctx))
1198 return -1;
1199 emit_imm(RV_REG_T1, imm, ctx);
1200 if (!is64)
1201 emit_zext_32_rd_t1(&rd, ctx);
1202 emit(rv_and(RV_REG_T1, rd, RV_REG_T1), ctx);
1203 emit(rv_bne(RV_REG_T1, RV_REG_ZERO, rvoff >> 1), ctx);
1204 break;
1205
1206 /* function call */
1207 case BPF_JMP | BPF_CALL:
1208 {
1209 bool fixed;
1210 int i, ret;
1211 u64 addr;
1212
1213 mark_call(ctx);
1214 ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, &addr,
1215 &fixed);
1216 if (ret < 0)
1217 return ret;
1218 if (fixed) {
1219 emit_imm(RV_REG_T1, addr, ctx);
1220 } else {
1221 i = ctx->ninsns;
1222 emit_imm(RV_REG_T1, addr, ctx);
1223 for (i = ctx->ninsns - i; i < 8; i++) {
1224 /* nop */
1225 emit(rv_addi(RV_REG_ZERO, RV_REG_ZERO, 0),
1226 ctx);
1227 }
1228 }
1229 emit(rv_jalr(RV_REG_RA, RV_REG_T1, 0), ctx);
1230 rd = bpf_to_rv_reg(BPF_REG_0, ctx);
1231 emit(rv_addi(rd, RV_REG_A0, 0), ctx);
1232 break;
1233 }
1234 /* tail call */
1235 case BPF_JMP | BPF_TAIL_CALL:
1236 if (emit_bpf_tail_call(i, ctx))
1237 return -1;
1238 break;
1239
1240 /* function return */
1241 case BPF_JMP | BPF_EXIT:
1242 if (i == ctx->prog->len - 1)
1243 break;
1244
1245 rvoff = epilogue_offset(ctx);
1246 if (is_21b_check(rvoff, i))
1247 return -1;
1248 emit(rv_jal(RV_REG_ZERO, rvoff >> 1), ctx);
1249 break;
1250
1251 /* dst = imm64 */
1252 case BPF_LD | BPF_IMM | BPF_DW:
1253 {
1254 struct bpf_insn insn1 = insn[1];
1255 u64 imm64;
1256
1257 imm64 = (u64)insn1.imm << 32 | (u32)imm;
1258 emit_imm(rd, imm64, ctx);
1259 return 1;
1260 }
1261
1262 /* LDX: dst = *(size *)(src + off) */
1263 case BPF_LDX | BPF_MEM | BPF_B:
1264 if (is_12b_int(off)) {
1265 emit(rv_lbu(rd, off, rs), ctx);
1266 break;
1267 }
1268
1269 emit_imm(RV_REG_T1, off, ctx);
1270 emit(rv_add(RV_REG_T1, RV_REG_T1, rs), ctx);
1271 emit(rv_lbu(rd, 0, RV_REG_T1), ctx);
1272 if (insn_is_zext(&insn[1]))
1273 return 1;
1274 break;
1275 case BPF_LDX | BPF_MEM | BPF_H:
1276 if (is_12b_int(off)) {
1277 emit(rv_lhu(rd, off, rs), ctx);
1278 break;
1279 }
1280
1281 emit_imm(RV_REG_T1, off, ctx);
1282 emit(rv_add(RV_REG_T1, RV_REG_T1, rs), ctx);
1283 emit(rv_lhu(rd, 0, RV_REG_T1), ctx);
1284 if (insn_is_zext(&insn[1]))
1285 return 1;
1286 break;
1287 case BPF_LDX | BPF_MEM | BPF_W:
1288 if (is_12b_int(off)) {
1289 emit(rv_lwu(rd, off, rs), ctx);
1290 break;
1291 }
1292
1293 emit_imm(RV_REG_T1, off, ctx);
1294 emit(rv_add(RV_REG_T1, RV_REG_T1, rs), ctx);
1295 emit(rv_lwu(rd, 0, RV_REG_T1), ctx);
1296 if (insn_is_zext(&insn[1]))
1297 return 1;
1298 break;
1299 case BPF_LDX | BPF_MEM | BPF_DW:
1300 if (is_12b_int(off)) {
1301 emit(rv_ld(rd, off, rs), ctx);
1302 break;
1303 }
1304
1305 emit_imm(RV_REG_T1, off, ctx);
1306 emit(rv_add(RV_REG_T1, RV_REG_T1, rs), ctx);
1307 emit(rv_ld(rd, 0, RV_REG_T1), ctx);
1308 break;
1309
1310 /* ST: *(size *)(dst + off) = imm */
1311 case BPF_ST | BPF_MEM | BPF_B:
1312 emit_imm(RV_REG_T1, imm, ctx);
1313 if (is_12b_int(off)) {
1314 emit(rv_sb(rd, off, RV_REG_T1), ctx);
1315 break;
1316 }
1317
1318 emit_imm(RV_REG_T2, off, ctx);
1319 emit(rv_add(RV_REG_T2, RV_REG_T2, rd), ctx);
1320 emit(rv_sb(RV_REG_T2, 0, RV_REG_T1), ctx);
1321 break;
1322
1323 case BPF_ST | BPF_MEM | BPF_H:
1324 emit_imm(RV_REG_T1, imm, ctx);
1325 if (is_12b_int(off)) {
1326 emit(rv_sh(rd, off, RV_REG_T1), ctx);
1327 break;
1328 }
1329
1330 emit_imm(RV_REG_T2, off, ctx);
1331 emit(rv_add(RV_REG_T2, RV_REG_T2, rd), ctx);
1332 emit(rv_sh(RV_REG_T2, 0, RV_REG_T1), ctx);
1333 break;
1334 case BPF_ST | BPF_MEM | BPF_W:
1335 emit_imm(RV_REG_T1, imm, ctx);
1336 if (is_12b_int(off)) {
1337 emit(rv_sw(rd, off, RV_REG_T1), ctx);
1338 break;
1339 }
1340
1341 emit_imm(RV_REG_T2, off, ctx);
1342 emit(rv_add(RV_REG_T2, RV_REG_T2, rd), ctx);
1343 emit(rv_sw(RV_REG_T2, 0, RV_REG_T1), ctx);
1344 break;
1345 case BPF_ST | BPF_MEM | BPF_DW:
1346 emit_imm(RV_REG_T1, imm, ctx);
1347 if (is_12b_int(off)) {
1348 emit(rv_sd(rd, off, RV_REG_T1), ctx);
1349 break;
1350 }
1351
1352 emit_imm(RV_REG_T2, off, ctx);
1353 emit(rv_add(RV_REG_T2, RV_REG_T2, rd), ctx);
1354 emit(rv_sd(RV_REG_T2, 0, RV_REG_T1), ctx);
1355 break;
1356
1357 /* STX: *(size *)(dst + off) = src */
1358 case BPF_STX | BPF_MEM | BPF_B:
1359 if (is_12b_int(off)) {
1360 emit(rv_sb(rd, off, rs), ctx);
1361 break;
1362 }
1363
1364 emit_imm(RV_REG_T1, off, ctx);
1365 emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx);
1366 emit(rv_sb(RV_REG_T1, 0, rs), ctx);
1367 break;
1368 case BPF_STX | BPF_MEM | BPF_H:
1369 if (is_12b_int(off)) {
1370 emit(rv_sh(rd, off, rs), ctx);
1371 break;
1372 }
1373
1374 emit_imm(RV_REG_T1, off, ctx);
1375 emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx);
1376 emit(rv_sh(RV_REG_T1, 0, rs), ctx);
1377 break;
1378 case BPF_STX | BPF_MEM | BPF_W:
1379 if (is_12b_int(off)) {
1380 emit(rv_sw(rd, off, rs), ctx);
1381 break;
1382 }
1383
1384 emit_imm(RV_REG_T1, off, ctx);
1385 emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx);
1386 emit(rv_sw(RV_REG_T1, 0, rs), ctx);
1387 break;
1388 case BPF_STX | BPF_MEM | BPF_DW:
1389 if (is_12b_int(off)) {
1390 emit(rv_sd(rd, off, rs), ctx);
1391 break;
1392 }
1393
1394 emit_imm(RV_REG_T1, off, ctx);
1395 emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx);
1396 emit(rv_sd(RV_REG_T1, 0, rs), ctx);
1397 break;
1398 /* STX XADD: lock *(u32 *)(dst + off) += src */
1399 case BPF_STX | BPF_XADD | BPF_W:
1400 /* STX XADD: lock *(u64 *)(dst + off) += src */
1401 case BPF_STX | BPF_XADD | BPF_DW:
1402 if (off) {
1403 if (is_12b_int(off)) {
1404 emit(rv_addi(RV_REG_T1, rd, off), ctx);
1405 } else {
1406 emit_imm(RV_REG_T1, off, ctx);
1407 emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx);
1408 }
1409
1410 rd = RV_REG_T1;
1411 }
1412
1413 emit(BPF_SIZE(code) == BPF_W ?
1414 rv_amoadd_w(RV_REG_ZERO, rs, rd, 0, 0) :
1415 rv_amoadd_d(RV_REG_ZERO, rs, rd, 0, 0), ctx);
1416 break;
1417 default:
1418 pr_err("bpf-jit: unknown opcode %02x\n", code);
1419 return -EINVAL;
1420 }
1421
1422 return 0;
1423}
1424
1425static void build_prologue(struct rv_jit_context *ctx)
1426{
1427 int stack_adjust = 0, store_offset, bpf_stack_adjust;
1428
1429 if (seen_reg(RV_REG_RA, ctx))
1430 stack_adjust += 8;
1431 stack_adjust += 8; /* RV_REG_FP */
1432 if (seen_reg(RV_REG_S1, ctx))
1433 stack_adjust += 8;
1434 if (seen_reg(RV_REG_S2, ctx))
1435 stack_adjust += 8;
1436 if (seen_reg(RV_REG_S3, ctx))
1437 stack_adjust += 8;
1438 if (seen_reg(RV_REG_S4, ctx))
1439 stack_adjust += 8;
1440 if (seen_reg(RV_REG_S5, ctx))
1441 stack_adjust += 8;
1442 if (seen_reg(RV_REG_S6, ctx))
1443 stack_adjust += 8;
1444
1445 stack_adjust = round_up(stack_adjust, 16);
1446 bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, 16);
1447 stack_adjust += bpf_stack_adjust;
1448
1449 store_offset = stack_adjust - 8;
1450
1451 /* First instruction is always setting the tail-call-counter
1452 * (TCC) register. This instruction is skipped for tail calls.
1453 */
1454 emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx);
1455
1456 emit(rv_addi(RV_REG_SP, RV_REG_SP, -stack_adjust), ctx);
1457
1458 if (seen_reg(RV_REG_RA, ctx)) {
1459 emit(rv_sd(RV_REG_SP, store_offset, RV_REG_RA), ctx);
1460 store_offset -= 8;
1461 }
1462 emit(rv_sd(RV_REG_SP, store_offset, RV_REG_FP), ctx);
1463 store_offset -= 8;
1464 if (seen_reg(RV_REG_S1, ctx)) {
1465 emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S1), ctx);
1466 store_offset -= 8;
1467 }
1468 if (seen_reg(RV_REG_S2, ctx)) {
1469 emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S2), ctx);
1470 store_offset -= 8;
1471 }
1472 if (seen_reg(RV_REG_S3, ctx)) {
1473 emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S3), ctx);
1474 store_offset -= 8;
1475 }
1476 if (seen_reg(RV_REG_S4, ctx)) {
1477 emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S4), ctx);
1478 store_offset -= 8;
1479 }
1480 if (seen_reg(RV_REG_S5, ctx)) {
1481 emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S5), ctx);
1482 store_offset -= 8;
1483 }
1484 if (seen_reg(RV_REG_S6, ctx)) {
1485 emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S6), ctx);
1486 store_offset -= 8;
1487 }
1488
1489 emit(rv_addi(RV_REG_FP, RV_REG_SP, stack_adjust), ctx);
1490
1491 if (bpf_stack_adjust)
1492 emit(rv_addi(RV_REG_S5, RV_REG_SP, bpf_stack_adjust), ctx);
1493
1494 /* Program contains calls and tail calls, so RV_REG_TCC need
1495 * to be saved across calls.
1496 */
1497 if (seen_tail_call(ctx) && seen_call(ctx))
1498 emit(rv_addi(RV_REG_TCC_SAVED, RV_REG_TCC, 0), ctx);
1499
1500 ctx->stack_size = stack_adjust;
1501}
1502
1503static void build_epilogue(struct rv_jit_context *ctx)
1504{
1505 __build_epilogue(RV_REG_RA, ctx);
1506}
1507
1508static int build_body(struct rv_jit_context *ctx, bool extra_pass)
1509{
1510 const struct bpf_prog *prog = ctx->prog;
1511 int i;
1512
1513 for (i = 0; i < prog->len; i++) {
1514 const struct bpf_insn *insn = &prog->insnsi[i];
1515 int ret;
1516
1517 ret = emit_insn(insn, ctx, extra_pass);
1518 if (ret > 0) {
1519 i++;
1520 if (ctx->insns == NULL)
1521 ctx->offset[i] = ctx->ninsns;
1522 continue;
1523 }
1524 if (ctx->insns == NULL)
1525 ctx->offset[i] = ctx->ninsns;
1526 if (ret)
1527 return ret;
1528 }
1529 return 0;
1530}
1531
1532static void bpf_fill_ill_insns(void *area, unsigned int size)
1533{
1534 memset(area, 0, size);
1535}
1536
1537static void bpf_flush_icache(void *start, void *end)
1538{
1539 flush_icache_range((unsigned long)start, (unsigned long)end);
1540}
1541
1542bool bpf_jit_needs_zext(void)
1543{
1544 return true;
1545}
1546
1547struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1548{
1549 bool tmp_blinded = false, extra_pass = false;
1550 struct bpf_prog *tmp, *orig_prog = prog;
1551 struct rv_jit_data *jit_data;
1552 struct rv_jit_context *ctx;
1553 unsigned int image_size;
1554
1555 if (!prog->jit_requested)
1556 return orig_prog;
1557
1558 tmp = bpf_jit_blind_constants(prog);
1559 if (IS_ERR(tmp))
1560 return orig_prog;
1561 if (tmp != prog) {
1562 tmp_blinded = true;
1563 prog = tmp;
1564 }
1565
1566 jit_data = prog->aux->jit_data;
1567 if (!jit_data) {
1568 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1569 if (!jit_data) {
1570 prog = orig_prog;
1571 goto out;
1572 }
1573 prog->aux->jit_data = jit_data;
1574 }
1575
1576 ctx = &jit_data->ctx;
1577
1578 if (ctx->offset) {
1579 extra_pass = true;
1580 image_size = sizeof(u32) * ctx->ninsns;
1581 goto skip_init_ctx;
1582 }
1583
1584 ctx->prog = prog;
1585 ctx->offset = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
1586 if (!ctx->offset) {
1587 prog = orig_prog;
1588 goto out_offset;
1589 }
1590
1591 /* First pass generates the ctx->offset, but does not emit an image. */
1592 if (build_body(ctx, extra_pass)) {
1593 prog = orig_prog;
1594 goto out_offset;
1595 }
1596 build_prologue(ctx);
1597 ctx->epilogue_offset = ctx->ninsns;
1598 build_epilogue(ctx);
1599
1600 /* Allocate image, now that we know the size. */
1601 image_size = sizeof(u32) * ctx->ninsns;
1602 jit_data->header = bpf_jit_binary_alloc(image_size, &jit_data->image,
1603 sizeof(u32),
1604 bpf_fill_ill_insns);
1605 if (!jit_data->header) {
1606 prog = orig_prog;
1607 goto out_offset;
1608 }
1609
1610 /* Second, real pass, that acutally emits the image. */
1611 ctx->insns = (u32 *)jit_data->image;
1612skip_init_ctx:
1613 ctx->ninsns = 0;
1614
1615 build_prologue(ctx);
1616 if (build_body(ctx, extra_pass)) {
1617 bpf_jit_binary_free(jit_data->header);
1618 prog = orig_prog;
1619 goto out_offset;
1620 }
1621 build_epilogue(ctx);
1622
1623 if (bpf_jit_enable > 1)
1624 bpf_jit_dump(prog->len, image_size, 2, ctx->insns);
1625
1626 prog->bpf_func = (void *)ctx->insns;
1627 prog->jited = 1;
1628 prog->jited_len = image_size;
1629
1630 bpf_flush_icache(jit_data->header, ctx->insns + ctx->ninsns);
1631
1632 if (!prog->is_func || extra_pass) {
1633out_offset:
1634 kfree(ctx->offset);
1635 kfree(jit_data);
1636 prog->aux->jit_data = NULL;
1637 }
1638out:
1639 if (tmp_blinded)
1640 bpf_jit_prog_release_other(prog, prog == orig_prog ?
1641 tmp : orig_prog);
1642 return prog;
1643}