Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * vsock test utilities
  4 *
  5 * Copyright (C) 2017 Red Hat, Inc.
  6 *
  7 * Author: Stefan Hajnoczi <stefanha@redhat.com>
  8 */
  9
 10#include <errno.h>
 11#include <stdio.h>
 12#include <stdint.h>
 13#include <stdlib.h>
 14#include <string.h>
 15#include <signal.h>
 16#include <unistd.h>
 17#include <assert.h>
 18#include <sys/epoll.h>
 19#include <sys/mman.h>
 20
 21#include "timeout.h"
 22#include "control.h"
 23#include "util.h"
 24
 25/* Install signal handlers */
 26void init_signals(void)
 27{
 28	struct sigaction act = {
 29		.sa_handler = sigalrm,
 30	};
 31
 32	sigaction(SIGALRM, &act, NULL);
 33	signal(SIGPIPE, SIG_IGN);
 34}
 35
 36/* Parse a CID in string representation */
 37unsigned int parse_cid(const char *str)
 38{
 39	char *endptr = NULL;
 40	unsigned long n;
 41
 42	errno = 0;
 43	n = strtoul(str, &endptr, 10);
 44	if (errno || *endptr != '\0') {
 45		fprintf(stderr, "malformed CID \"%s\"\n", str);
 46		exit(EXIT_FAILURE);
 47	}
 48	return n;
 49}
 50
 51/* Wait for the remote to close the connection */
 52void vsock_wait_remote_close(int fd)
 53{
 54	struct epoll_event ev;
 55	int epollfd, nfds;
 56
 57	epollfd = epoll_create1(0);
 58	if (epollfd == -1) {
 59		perror("epoll_create1");
 60		exit(EXIT_FAILURE);
 61	}
 62
 63	ev.events = EPOLLRDHUP | EPOLLHUP;
 64	ev.data.fd = fd;
 65	if (epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &ev) == -1) {
 66		perror("epoll_ctl");
 67		exit(EXIT_FAILURE);
 68	}
 69
 70	nfds = epoll_wait(epollfd, &ev, 1, TIMEOUT * 1000);
 71	if (nfds == -1) {
 72		perror("epoll_wait");
 73		exit(EXIT_FAILURE);
 74	}
 75
 76	if (nfds == 0) {
 77		fprintf(stderr, "epoll_wait timed out\n");
 78		exit(EXIT_FAILURE);
 79	}
 80
 81	assert(nfds == 1);
 82	assert(ev.events & (EPOLLRDHUP | EPOLLHUP));
 83	assert(ev.data.fd == fd);
 84
 85	close(epollfd);
 86}
 87
 88/* Bind to <bind_port>, connect to <cid, port> and return the file descriptor. */
 89int vsock_bind_connect(unsigned int cid, unsigned int port, unsigned int bind_port, int type)
 90{
 91	struct sockaddr_vm sa_client = {
 92		.svm_family = AF_VSOCK,
 93		.svm_cid = VMADDR_CID_ANY,
 94		.svm_port = bind_port,
 95	};
 96	struct sockaddr_vm sa_server = {
 97		.svm_family = AF_VSOCK,
 98		.svm_cid = cid,
 99		.svm_port = port,
100	};
101
102	int client_fd, ret;
103
104	client_fd = socket(AF_VSOCK, type, 0);
105	if (client_fd < 0) {
106		perror("socket");
107		exit(EXIT_FAILURE);
108	}
109
110	if (bind(client_fd, (struct sockaddr *)&sa_client, sizeof(sa_client))) {
111		perror("bind");
112		exit(EXIT_FAILURE);
113	}
114
115	timeout_begin(TIMEOUT);
116	do {
117		ret = connect(client_fd, (struct sockaddr *)&sa_server, sizeof(sa_server));
118		timeout_check("connect");
119	} while (ret < 0 && errno == EINTR);
120	timeout_end();
121
122	if (ret < 0) {
123		perror("connect");
124		exit(EXIT_FAILURE);
125	}
126
127	return client_fd;
128}
129
130/* Connect to <cid, port> and return the file descriptor. */
131static int vsock_connect(unsigned int cid, unsigned int port, int type)
132{
133	union {
134		struct sockaddr sa;
135		struct sockaddr_vm svm;
136	} addr = {
137		.svm = {
138			.svm_family = AF_VSOCK,
139			.svm_port = port,
140			.svm_cid = cid,
141		},
142	};
143	int ret;
144	int fd;
145
146	control_expectln("LISTENING");
147
148	fd = socket(AF_VSOCK, type, 0);
149	if (fd < 0) {
150		perror("socket");
151		exit(EXIT_FAILURE);
152	}
153
154	timeout_begin(TIMEOUT);
155	do {
156		ret = connect(fd, &addr.sa, sizeof(addr.svm));
157		timeout_check("connect");
158	} while (ret < 0 && errno == EINTR);
159	timeout_end();
160
161	if (ret < 0) {
162		int old_errno = errno;
163
164		close(fd);
165		fd = -1;
166		errno = old_errno;
167	}
168	return fd;
169}
170
171int vsock_stream_connect(unsigned int cid, unsigned int port)
172{
173	return vsock_connect(cid, port, SOCK_STREAM);
174}
175
176int vsock_seqpacket_connect(unsigned int cid, unsigned int port)
177{
178	return vsock_connect(cid, port, SOCK_SEQPACKET);
179}
180
181/* Listen on <cid, port> and return the file descriptor. */
182static int vsock_listen(unsigned int cid, unsigned int port, int type)
183{
184	union {
185		struct sockaddr sa;
186		struct sockaddr_vm svm;
187	} addr = {
188		.svm = {
189			.svm_family = AF_VSOCK,
190			.svm_port = port,
191			.svm_cid = cid,
192		},
193	};
194	int fd;
195
196	fd = socket(AF_VSOCK, type, 0);
197	if (fd < 0) {
198		perror("socket");
199		exit(EXIT_FAILURE);
200	}
201
202	if (bind(fd, &addr.sa, sizeof(addr.svm)) < 0) {
203		perror("bind");
204		exit(EXIT_FAILURE);
205	}
206
207	if (listen(fd, 1) < 0) {
208		perror("listen");
209		exit(EXIT_FAILURE);
210	}
211
212	return fd;
213}
214
215/* Listen on <cid, port> and return the first incoming connection.  The remote
216 * address is stored to clientaddrp.  clientaddrp may be NULL.
217 */
218static int vsock_accept(unsigned int cid, unsigned int port,
219			struct sockaddr_vm *clientaddrp, int type)
220{
221	union {
222		struct sockaddr sa;
223		struct sockaddr_vm svm;
224	} clientaddr;
225	socklen_t clientaddr_len = sizeof(clientaddr.svm);
226	int fd, client_fd, old_errno;
227
228	fd = vsock_listen(cid, port, type);
229
230	control_writeln("LISTENING");
231
232	timeout_begin(TIMEOUT);
233	do {
234		client_fd = accept(fd, &clientaddr.sa, &clientaddr_len);
235		timeout_check("accept");
236	} while (client_fd < 0 && errno == EINTR);
237	timeout_end();
238
239	old_errno = errno;
240	close(fd);
241	errno = old_errno;
242
243	if (client_fd < 0)
244		return client_fd;
245
246	if (clientaddr_len != sizeof(clientaddr.svm)) {
247		fprintf(stderr, "unexpected addrlen from accept(2), %zu\n",
248			(size_t)clientaddr_len);
249		exit(EXIT_FAILURE);
250	}
251	if (clientaddr.sa.sa_family != AF_VSOCK) {
252		fprintf(stderr, "expected AF_VSOCK from accept(2), got %d\n",
253			clientaddr.sa.sa_family);
254		exit(EXIT_FAILURE);
255	}
256
257	if (clientaddrp)
258		*clientaddrp = clientaddr.svm;
259	return client_fd;
260}
261
262int vsock_stream_accept(unsigned int cid, unsigned int port,
263			struct sockaddr_vm *clientaddrp)
264{
265	return vsock_accept(cid, port, clientaddrp, SOCK_STREAM);
266}
267
268int vsock_stream_listen(unsigned int cid, unsigned int port)
269{
270	return vsock_listen(cid, port, SOCK_STREAM);
271}
272
273int vsock_seqpacket_accept(unsigned int cid, unsigned int port,
274			   struct sockaddr_vm *clientaddrp)
275{
276	return vsock_accept(cid, port, clientaddrp, SOCK_SEQPACKET);
277}
278
279/* Transmit bytes from a buffer and check the return value.
280 *
281 * expected_ret:
282 *  <0 Negative errno (for testing errors)
283 *   0 End-of-file
284 *  >0 Success (bytes successfully written)
285 */
286void send_buf(int fd, const void *buf, size_t len, int flags,
287	      ssize_t expected_ret)
288{
289	ssize_t nwritten = 0;
290	ssize_t ret;
291
292	timeout_begin(TIMEOUT);
293	do {
294		ret = send(fd, buf + nwritten, len - nwritten, flags);
295		timeout_check("send");
296
297		if (ret == 0 || (ret < 0 && errno != EINTR))
298			break;
299
300		nwritten += ret;
301	} while (nwritten < len);
302	timeout_end();
303
304	if (expected_ret < 0) {
305		if (ret != -1) {
306			fprintf(stderr, "bogus send(2) return value %zd (expected %zd)\n",
307				ret, expected_ret);
308			exit(EXIT_FAILURE);
309		}
310		if (errno != -expected_ret) {
311			perror("send");
312			exit(EXIT_FAILURE);
313		}
314		return;
315	}
316
317	if (ret < 0) {
318		perror("send");
319		exit(EXIT_FAILURE);
320	}
321
322	if (nwritten != expected_ret) {
323		if (ret == 0)
324			fprintf(stderr, "unexpected EOF while sending bytes\n");
325
326		fprintf(stderr, "bogus send(2) bytes written %zd (expected %zd)\n",
327			nwritten, expected_ret);
328		exit(EXIT_FAILURE);
329	}
330}
331
332/* Receive bytes in a buffer and check the return value.
333 *
334 * expected_ret:
335 *  <0 Negative errno (for testing errors)
336 *   0 End-of-file
337 *  >0 Success (bytes successfully read)
338 */
339void recv_buf(int fd, void *buf, size_t len, int flags, ssize_t expected_ret)
340{
341	ssize_t nread = 0;
342	ssize_t ret;
343
344	timeout_begin(TIMEOUT);
345	do {
346		ret = recv(fd, buf + nread, len - nread, flags);
347		timeout_check("recv");
348
349		if (ret == 0 || (ret < 0 && errno != EINTR))
350			break;
351
352		nread += ret;
353	} while (nread < len);
354	timeout_end();
355
356	if (expected_ret < 0) {
357		if (ret != -1) {
358			fprintf(stderr, "bogus recv(2) return value %zd (expected %zd)\n",
359				ret, expected_ret);
360			exit(EXIT_FAILURE);
361		}
362		if (errno != -expected_ret) {
363			perror("recv");
364			exit(EXIT_FAILURE);
365		}
366		return;
367	}
368
369	if (ret < 0) {
370		perror("recv");
371		exit(EXIT_FAILURE);
372	}
373
374	if (nread != expected_ret) {
375		if (ret == 0)
376			fprintf(stderr, "unexpected EOF while receiving bytes\n");
377
378		fprintf(stderr, "bogus recv(2) bytes read %zd (expected %zd)\n",
379			nread, expected_ret);
380		exit(EXIT_FAILURE);
381	}
382}
383
384/* Transmit one byte and check the return value.
385 *
386 * expected_ret:
387 *  <0 Negative errno (for testing errors)
388 *   0 End-of-file
389 *   1 Success
390 */
391void send_byte(int fd, int expected_ret, int flags)
392{
393	const uint8_t byte = 'A';
394
395	send_buf(fd, &byte, sizeof(byte), flags, expected_ret);
396}
397
398/* Receive one byte and check the return value.
399 *
400 * expected_ret:
401 *  <0 Negative errno (for testing errors)
402 *   0 End-of-file
403 *   1 Success
404 */
405void recv_byte(int fd, int expected_ret, int flags)
406{
407	uint8_t byte;
408
409	recv_buf(fd, &byte, sizeof(byte), flags, expected_ret);
410
411	if (byte != 'A') {
412		fprintf(stderr, "unexpected byte read %c\n", byte);
413		exit(EXIT_FAILURE);
414	}
415}
416
417/* Run test cases.  The program terminates if a failure occurs. */
418void run_tests(const struct test_case *test_cases,
419	       const struct test_opts *opts)
420{
421	int i;
422
423	for (i = 0; test_cases[i].name; i++) {
424		void (*run)(const struct test_opts *opts);
425		char *line;
426
427		printf("%d - %s...", i, test_cases[i].name);
428		fflush(stdout);
429
430		/* Full barrier before executing the next test.  This
431		 * ensures that client and server are executing the
432		 * same test case.  In particular, it means whoever is
433		 * faster will not see the peer still executing the
434		 * last test.  This is important because port numbers
435		 * can be used by multiple test cases.
436		 */
437		if (test_cases[i].skip)
438			control_writeln("SKIP");
439		else
440			control_writeln("NEXT");
441
442		line = control_readln();
443		if (control_cmpln(line, "SKIP", false) || test_cases[i].skip) {
444
445			printf("skipped\n");
446
447			free(line);
448			continue;
449		}
450
451		control_cmpln(line, "NEXT", true);
452		free(line);
453
454		if (opts->mode == TEST_MODE_CLIENT)
455			run = test_cases[i].run_client;
456		else
457			run = test_cases[i].run_server;
458
459		if (run)
460			run(opts);
461
462		printf("ok\n");
463	}
464}
465
466void list_tests(const struct test_case *test_cases)
467{
468	int i;
469
470	printf("ID\tTest name\n");
471
472	for (i = 0; test_cases[i].name; i++)
473		printf("%d\t%s\n", i, test_cases[i].name);
474
475	exit(EXIT_FAILURE);
476}
477
478void skip_test(struct test_case *test_cases, size_t test_cases_len,
479	       const char *test_id_str)
480{
481	unsigned long test_id;
482	char *endptr = NULL;
483
484	errno = 0;
485	test_id = strtoul(test_id_str, &endptr, 10);
486	if (errno || *endptr != '\0') {
487		fprintf(stderr, "malformed test ID \"%s\"\n", test_id_str);
488		exit(EXIT_FAILURE);
489	}
490
491	if (test_id >= test_cases_len) {
492		fprintf(stderr, "test ID (%lu) larger than the max allowed (%lu)\n",
493			test_id, test_cases_len - 1);
494		exit(EXIT_FAILURE);
495	}
496
497	test_cases[test_id].skip = true;
498}
499
500unsigned long hash_djb2(const void *data, size_t len)
501{
502	unsigned long hash = 5381;
503	int i = 0;
504
505	while (i < len) {
506		hash = ((hash << 5) + hash) + ((unsigned char *)data)[i];
507		i++;
508	}
509
510	return hash;
511}
512
513size_t iovec_bytes(const struct iovec *iov, size_t iovnum)
514{
515	size_t bytes;
516	int i;
517
518	for (bytes = 0, i = 0; i < iovnum; i++)
519		bytes += iov[i].iov_len;
520
521	return bytes;
522}
523
524unsigned long iovec_hash_djb2(const struct iovec *iov, size_t iovnum)
525{
526	unsigned long hash;
527	size_t iov_bytes;
528	size_t offs;
529	void *tmp;
530	int i;
531
532	iov_bytes = iovec_bytes(iov, iovnum);
533
534	tmp = malloc(iov_bytes);
535	if (!tmp) {
536		perror("malloc");
537		exit(EXIT_FAILURE);
538	}
539
540	for (offs = 0, i = 0; i < iovnum; i++) {
541		memcpy(tmp + offs, iov[i].iov_base, iov[i].iov_len);
542		offs += iov[i].iov_len;
543	}
544
545	hash = hash_djb2(tmp, iov_bytes);
546	free(tmp);
547
548	return hash;
549}
550
551/* Allocates and returns new 'struct iovec *' according pattern
552 * in the 'test_iovec'. For each element in the 'test_iovec' it
553 * allocates new element in the resulting 'iovec'. 'iov_len'
554 * of the new element is copied from 'test_iovec'. 'iov_base' is
555 * allocated depending on the 'iov_base' of 'test_iovec':
556 *
557 * 'iov_base' == NULL -> valid buf: mmap('iov_len').
558 *
559 * 'iov_base' == MAP_FAILED -> invalid buf:
560 *               mmap('iov_len'), then munmap('iov_len').
561 *               'iov_base' still contains result of
562 *               mmap().
563 *
564 * 'iov_base' == number -> unaligned valid buf:
565 *               mmap('iov_len') + number.
566 *
567 * 'iovnum' is number of elements in 'test_iovec'.
568 *
569 * Returns new 'iovec' or calls 'exit()' on error.
570 */
571struct iovec *alloc_test_iovec(const struct iovec *test_iovec, int iovnum)
572{
573	struct iovec *iovec;
574	int i;
575
576	iovec = malloc(sizeof(*iovec) * iovnum);
577	if (!iovec) {
578		perror("malloc");
579		exit(EXIT_FAILURE);
580	}
581
582	for (i = 0; i < iovnum; i++) {
583		iovec[i].iov_len = test_iovec[i].iov_len;
584
585		iovec[i].iov_base = mmap(NULL, iovec[i].iov_len,
586					 PROT_READ | PROT_WRITE,
587					 MAP_PRIVATE | MAP_ANONYMOUS | MAP_POPULATE,
588					 -1, 0);
589		if (iovec[i].iov_base == MAP_FAILED) {
590			perror("mmap");
591			exit(EXIT_FAILURE);
592		}
593
594		if (test_iovec[i].iov_base != MAP_FAILED)
595			iovec[i].iov_base += (uintptr_t)test_iovec[i].iov_base;
596	}
597
598	/* Unmap "invalid" elements. */
599	for (i = 0; i < iovnum; i++) {
600		if (test_iovec[i].iov_base == MAP_FAILED) {
601			if (munmap(iovec[i].iov_base, iovec[i].iov_len)) {
602				perror("munmap");
603				exit(EXIT_FAILURE);
604			}
605		}
606	}
607
608	for (i = 0; i < iovnum; i++) {
609		int j;
610
611		if (test_iovec[i].iov_base == MAP_FAILED)
612			continue;
613
614		for (j = 0; j < iovec[i].iov_len; j++)
615			((uint8_t *)iovec[i].iov_base)[j] = rand() & 0xff;
616	}
617
618	return iovec;
619}
620
621/* Frees 'iovec *', previously allocated by 'alloc_test_iovec()'.
622 * On error calls 'exit()'.
623 */
624void free_test_iovec(const struct iovec *test_iovec,
625		     struct iovec *iovec, int iovnum)
626{
627	int i;
628
629	for (i = 0; i < iovnum; i++) {
630		if (test_iovec[i].iov_base != MAP_FAILED) {
631			if (test_iovec[i].iov_base)
632				iovec[i].iov_base -= (uintptr_t)test_iovec[i].iov_base;
633
634			if (munmap(iovec[i].iov_base, iovec[i].iov_len)) {
635				perror("munmap");
636				exit(EXIT_FAILURE);
637			}
638		}
639	}
640
641	free(iovec);
642}