Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * net/sched/sch_netem.c	Network emulator
   4 *
   5 *  		Many of the algorithms and ideas for this came from
   6 *		NIST Net which is not copyrighted.
   7 *
   8 * Authors:	Stephen Hemminger <shemminger@osdl.org>
   9 *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
  10 */
  11
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/slab.h>
  15#include <linux/types.h>
  16#include <linux/kernel.h>
  17#include <linux/errno.h>
  18#include <linux/skbuff.h>
  19#include <linux/vmalloc.h>
  20#include <linux/rtnetlink.h>
  21#include <linux/reciprocal_div.h>
  22#include <linux/rbtree.h>
  23
 
  24#include <net/netlink.h>
  25#include <net/pkt_sched.h>
  26#include <net/inet_ecn.h>
  27
  28#define VERSION "1.3"
  29
  30/*	Network Emulation Queuing algorithm.
  31	====================================
  32
  33	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
  34		 Network Emulation Tool
  35		 [2] Luigi Rizzo, DummyNet for FreeBSD
  36
  37	 ----------------------------------------------------------------
  38
  39	 This started out as a simple way to delay outgoing packets to
  40	 test TCP but has grown to include most of the functionality
  41	 of a full blown network emulator like NISTnet. It can delay
  42	 packets and add random jitter (and correlation). The random
  43	 distribution can be loaded from a table as well to provide
  44	 normal, Pareto, or experimental curves. Packet loss,
  45	 duplication, and reordering can also be emulated.
  46
  47	 This qdisc does not do classification that can be handled in
  48	 layering other disciplines.  It does not need to do bandwidth
  49	 control either since that can be handled by using token
  50	 bucket or other rate control.
  51
  52     Correlated Loss Generator models
  53
  54	Added generation of correlated loss according to the
  55	"Gilbert-Elliot" model, a 4-state markov model.
  56
  57	References:
  58	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
  59	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
  60	and intuitive loss model for packet networks and its implementation
  61	in the Netem module in the Linux kernel", available in [1]
  62
  63	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
  64		 Fabio Ludovici <fabio.ludovici at yahoo.it>
  65*/
  66
  67struct disttable {
  68	u32  size;
  69	s16 table[0];
  70};
  71
  72struct netem_sched_data {
  73	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
  74	struct rb_root t_root;
  75
  76	/* a linear queue; reduces rbtree rebalancing when jitter is low */
  77	struct sk_buff	*t_head;
  78	struct sk_buff	*t_tail;
  79
  80	/* optional qdisc for classful handling (NULL at netem init) */
  81	struct Qdisc	*qdisc;
  82
  83	struct qdisc_watchdog watchdog;
  84
  85	s64 latency;
  86	s64 jitter;
  87
  88	u32 loss;
  89	u32 ecn;
  90	u32 limit;
  91	u32 counter;
  92	u32 gap;
  93	u32 duplicate;
  94	u32 reorder;
  95	u32 corrupt;
  96	u64 rate;
  97	s32 packet_overhead;
  98	u32 cell_size;
  99	struct reciprocal_value cell_size_reciprocal;
 100	s32 cell_overhead;
 101
 102	struct crndstate {
 103		u32 last;
 104		u32 rho;
 105	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
 106
 
 
 
 
 
 107	struct disttable *delay_dist;
 108
 109	enum  {
 110		CLG_RANDOM,
 111		CLG_4_STATES,
 112		CLG_GILB_ELL,
 113	} loss_model;
 114
 115	enum {
 116		TX_IN_GAP_PERIOD = 1,
 117		TX_IN_BURST_PERIOD,
 118		LOST_IN_GAP_PERIOD,
 119		LOST_IN_BURST_PERIOD,
 120	} _4_state_model;
 121
 122	enum {
 123		GOOD_STATE = 1,
 124		BAD_STATE,
 125	} GE_state_model;
 126
 127	/* Correlated Loss Generation models */
 128	struct clgstate {
 129		/* state of the Markov chain */
 130		u8 state;
 131
 132		/* 4-states and Gilbert-Elliot models */
 133		u32 a1;	/* p13 for 4-states or p for GE */
 134		u32 a2;	/* p31 for 4-states or r for GE */
 135		u32 a3;	/* p32 for 4-states or h for GE */
 136		u32 a4;	/* p14 for 4-states or 1-k for GE */
 137		u32 a5; /* p23 used only in 4-states */
 138	} clg;
 139
 140	struct tc_netem_slot slot_config;
 141	struct slotstate {
 142		u64 slot_next;
 143		s32 packets_left;
 144		s32 bytes_left;
 145	} slot;
 146
 147	struct disttable *slot_dist;
 148};
 149
 150/* Time stamp put into socket buffer control block
 151 * Only valid when skbs are in our internal t(ime)fifo queue.
 152 *
 153 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
 154 * and skb->next & skb->prev are scratch space for a qdisc,
 155 * we save skb->tstamp value in skb->cb[] before destroying it.
 156 */
 157struct netem_skb_cb {
 158	u64	        time_to_send;
 159};
 160
 161static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
 162{
 163	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
 164	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
 165	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
 166}
 167
 168/* init_crandom - initialize correlated random number generator
 169 * Use entropy source for initial seed.
 170 */
 171static void init_crandom(struct crndstate *state, unsigned long rho)
 172{
 173	state->rho = rho;
 174	state->last = prandom_u32();
 175}
 176
 177/* get_crandom - correlated random number generator
 178 * Next number depends on last value.
 179 * rho is scaled to avoid floating point.
 180 */
 181static u32 get_crandom(struct crndstate *state)
 182{
 183	u64 value, rho;
 184	unsigned long answer;
 
 185
 186	if (!state || state->rho == 0)	/* no correlation */
 187		return prandom_u32();
 188
 189	value = prandom_u32();
 190	rho = (u64)state->rho + 1;
 191	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
 192	state->last = answer;
 193	return answer;
 194}
 195
 196/* loss_4state - 4-state model loss generator
 197 * Generates losses according to the 4-state Markov chain adopted in
 198 * the GI (General and Intuitive) loss model.
 199 */
 200static bool loss_4state(struct netem_sched_data *q)
 201{
 202	struct clgstate *clg = &q->clg;
 203	u32 rnd = prandom_u32();
 204
 205	/*
 206	 * Makes a comparison between rnd and the transition
 207	 * probabilities outgoing from the current state, then decides the
 208	 * next state and if the next packet has to be transmitted or lost.
 209	 * The four states correspond to:
 210	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
 211	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
 212	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period
 213	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
 214	 */
 215	switch (clg->state) {
 216	case TX_IN_GAP_PERIOD:
 217		if (rnd < clg->a4) {
 218			clg->state = LOST_IN_BURST_PERIOD;
 219			return true;
 220		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
 221			clg->state = LOST_IN_GAP_PERIOD;
 222			return true;
 223		} else if (clg->a1 + clg->a4 < rnd) {
 224			clg->state = TX_IN_GAP_PERIOD;
 225		}
 226
 227		break;
 228	case TX_IN_BURST_PERIOD:
 229		if (rnd < clg->a5) {
 230			clg->state = LOST_IN_GAP_PERIOD;
 231			return true;
 232		} else {
 233			clg->state = TX_IN_BURST_PERIOD;
 234		}
 235
 236		break;
 237	case LOST_IN_GAP_PERIOD:
 238		if (rnd < clg->a3)
 239			clg->state = TX_IN_BURST_PERIOD;
 240		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
 241			clg->state = TX_IN_GAP_PERIOD;
 242		} else if (clg->a2 + clg->a3 < rnd) {
 243			clg->state = LOST_IN_GAP_PERIOD;
 244			return true;
 245		}
 246		break;
 247	case LOST_IN_BURST_PERIOD:
 248		clg->state = TX_IN_GAP_PERIOD;
 249		break;
 250	}
 251
 252	return false;
 253}
 254
 255/* loss_gilb_ell - Gilbert-Elliot model loss generator
 256 * Generates losses according to the Gilbert-Elliot loss model or
 257 * its special cases  (Gilbert or Simple Gilbert)
 258 *
 259 * Makes a comparison between random number and the transition
 260 * probabilities outgoing from the current state, then decides the
 261 * next state. A second random number is extracted and the comparison
 262 * with the loss probability of the current state decides if the next
 263 * packet will be transmitted or lost.
 264 */
 265static bool loss_gilb_ell(struct netem_sched_data *q)
 266{
 267	struct clgstate *clg = &q->clg;
 
 268
 269	switch (clg->state) {
 270	case GOOD_STATE:
 271		if (prandom_u32() < clg->a1)
 272			clg->state = BAD_STATE;
 273		if (prandom_u32() < clg->a4)
 274			return true;
 275		break;
 276	case BAD_STATE:
 277		if (prandom_u32() < clg->a2)
 278			clg->state = GOOD_STATE;
 279		if (prandom_u32() > clg->a3)
 280			return true;
 281	}
 282
 283	return false;
 284}
 285
 286static bool loss_event(struct netem_sched_data *q)
 287{
 288	switch (q->loss_model) {
 289	case CLG_RANDOM:
 290		/* Random packet drop 0 => none, ~0 => all */
 291		return q->loss && q->loss >= get_crandom(&q->loss_cor);
 292
 293	case CLG_4_STATES:
 294		/* 4state loss model algorithm (used also for GI model)
 295		* Extracts a value from the markov 4 state loss generator,
 296		* if it is 1 drops a packet and if needed writes the event in
 297		* the kernel logs
 298		*/
 299		return loss_4state(q);
 300
 301	case CLG_GILB_ELL:
 302		/* Gilbert-Elliot loss model algorithm
 303		* Extracts a value from the Gilbert-Elliot loss generator,
 304		* if it is 1 drops a packet and if needed writes the event in
 305		* the kernel logs
 306		*/
 307		return loss_gilb_ell(q);
 308	}
 309
 310	return false;	/* not reached */
 311}
 312
 313
 314/* tabledist - return a pseudo-randomly distributed value with mean mu and
 315 * std deviation sigma.  Uses table lookup to approximate the desired
 316 * distribution, and a uniformly-distributed pseudo-random source.
 317 */
 318static s64 tabledist(s64 mu, s32 sigma,
 319		     struct crndstate *state,
 
 320		     const struct disttable *dist)
 321{
 322	s64 x;
 323	long t;
 324	u32 rnd;
 325
 326	if (sigma == 0)
 327		return mu;
 328
 329	rnd = get_crandom(state);
 330
 331	/* default uniform distribution */
 332	if (dist == NULL)
 333		return ((rnd % (2 * sigma)) + mu) - sigma;
 334
 335	t = dist->table[rnd % dist->size];
 336	x = (sigma % NETEM_DIST_SCALE) * t;
 337	if (x >= 0)
 338		x += NETEM_DIST_SCALE/2;
 339	else
 340		x -= NETEM_DIST_SCALE/2;
 341
 342	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
 343}
 344
 345static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
 346{
 347	len += q->packet_overhead;
 348
 349	if (q->cell_size) {
 350		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
 351
 352		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
 353			cells++;
 354		len = cells * (q->cell_size + q->cell_overhead);
 355	}
 356
 357	return div64_u64(len * NSEC_PER_SEC, q->rate);
 358}
 359
 360static void tfifo_reset(struct Qdisc *sch)
 361{
 362	struct netem_sched_data *q = qdisc_priv(sch);
 363	struct rb_node *p = rb_first(&q->t_root);
 364
 365	while (p) {
 366		struct sk_buff *skb = rb_to_skb(p);
 367
 368		p = rb_next(p);
 369		rb_erase(&skb->rbnode, &q->t_root);
 370		rtnl_kfree_skbs(skb, skb);
 371	}
 372
 373	rtnl_kfree_skbs(q->t_head, q->t_tail);
 374	q->t_head = NULL;
 375	q->t_tail = NULL;
 376}
 377
 378static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
 379{
 380	struct netem_sched_data *q = qdisc_priv(sch);
 381	u64 tnext = netem_skb_cb(nskb)->time_to_send;
 382
 383	if (!q->t_tail || tnext >= netem_skb_cb(q->t_tail)->time_to_send) {
 384		if (q->t_tail)
 385			q->t_tail->next = nskb;
 386		else
 387			q->t_head = nskb;
 388		q->t_tail = nskb;
 389	} else {
 390		struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
 391
 392		while (*p) {
 393			struct sk_buff *skb;
 394
 395			parent = *p;
 396			skb = rb_to_skb(parent);
 397			if (tnext >= netem_skb_cb(skb)->time_to_send)
 398				p = &parent->rb_right;
 399			else
 400				p = &parent->rb_left;
 401		}
 402		rb_link_node(&nskb->rbnode, parent, p);
 403		rb_insert_color(&nskb->rbnode, &q->t_root);
 404	}
 405	sch->q.qlen++;
 406}
 407
 408/* netem can't properly corrupt a megapacket (like we get from GSO), so instead
 409 * when we statistically choose to corrupt one, we instead segment it, returning
 410 * the first packet to be corrupted, and re-enqueue the remaining frames
 411 */
 412static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
 413				     struct sk_buff **to_free)
 414{
 415	struct sk_buff *segs;
 416	netdev_features_t features = netif_skb_features(skb);
 417
 418	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
 419
 420	if (IS_ERR_OR_NULL(segs)) {
 421		qdisc_drop(skb, sch, to_free);
 422		return NULL;
 423	}
 424	consume_skb(skb);
 425	return segs;
 426}
 427
 428/*
 429 * Insert one skb into qdisc.
 430 * Note: parent depends on return value to account for queue length.
 431 * 	NET_XMIT_DROP: queue length didn't change.
 432 *      NET_XMIT_SUCCESS: one skb was queued.
 433 */
 434static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 435			 struct sk_buff **to_free)
 436{
 437	struct netem_sched_data *q = qdisc_priv(sch);
 438	/* We don't fill cb now as skb_unshare() may invalidate it */
 439	struct netem_skb_cb *cb;
 440	struct sk_buff *skb2;
 441	struct sk_buff *segs = NULL;
 442	unsigned int prev_len = qdisc_pkt_len(skb);
 443	int count = 1;
 444	int rc = NET_XMIT_SUCCESS;
 445	int rc_drop = NET_XMIT_DROP;
 446
 447	/* Do not fool qdisc_drop_all() */
 448	skb->prev = NULL;
 449
 450	/* Random duplication */
 451	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
 452		++count;
 453
 454	/* Drop packet? */
 455	if (loss_event(q)) {
 456		if (q->ecn && INET_ECN_set_ce(skb))
 457			qdisc_qstats_drop(sch); /* mark packet */
 458		else
 459			--count;
 460	}
 461	if (count == 0) {
 462		qdisc_qstats_drop(sch);
 463		__qdisc_drop(skb, to_free);
 464		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 465	}
 466
 467	/* If a delay is expected, orphan the skb. (orphaning usually takes
 468	 * place at TX completion time, so _before_ the link transit delay)
 469	 */
 470	if (q->latency || q->jitter || q->rate)
 471		skb_orphan_partial(skb);
 472
 473	/*
 474	 * If we need to duplicate packet, then re-insert at top of the
 475	 * qdisc tree, since parent queuer expects that only one
 476	 * skb will be queued.
 477	 */
 478	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
 479		struct Qdisc *rootq = qdisc_root_bh(sch);
 480		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
 481
 482		q->duplicate = 0;
 483		rootq->enqueue(skb2, rootq, to_free);
 484		q->duplicate = dupsave;
 485		rc_drop = NET_XMIT_SUCCESS;
 486	}
 487
 488	/*
 489	 * Randomized packet corruption.
 490	 * Make copy if needed since we are modifying
 491	 * If packet is going to be hardware checksummed, then
 492	 * do it now in software before we mangle it.
 493	 */
 494	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
 495		if (skb_is_gso(skb)) {
 496			skb = netem_segment(skb, sch, to_free);
 497			if (!skb)
 498				return rc_drop;
 499			segs = skb->next;
 500			skb_mark_not_on_list(skb);
 501			qdisc_skb_cb(skb)->pkt_len = skb->len;
 502		}
 503
 504		skb = skb_unshare(skb, GFP_ATOMIC);
 505		if (unlikely(!skb)) {
 506			qdisc_qstats_drop(sch);
 507			goto finish_segs;
 508		}
 509		if (skb->ip_summed == CHECKSUM_PARTIAL &&
 510		    skb_checksum_help(skb)) {
 511			qdisc_drop(skb, sch, to_free);
 512			skb = NULL;
 513			goto finish_segs;
 514		}
 515
 516		skb->data[prandom_u32() % skb_headlen(skb)] ^=
 517			1<<(prandom_u32() % 8);
 518	}
 519
 520	if (unlikely(sch->q.qlen >= sch->limit)) {
 521		/* re-link segs, so that qdisc_drop_all() frees them all */
 522		skb->next = segs;
 523		qdisc_drop_all(skb, sch, to_free);
 524		return rc_drop;
 525	}
 526
 527	qdisc_qstats_backlog_inc(sch, skb);
 528
 529	cb = netem_skb_cb(skb);
 530	if (q->gap == 0 ||		/* not doing reordering */
 531	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
 532	    q->reorder < get_crandom(&q->reorder_cor)) {
 533		u64 now;
 534		s64 delay;
 535
 536		delay = tabledist(q->latency, q->jitter,
 537				  &q->delay_cor, q->delay_dist);
 538
 539		now = ktime_get_ns();
 540
 541		if (q->rate) {
 542			struct netem_skb_cb *last = NULL;
 543
 544			if (sch->q.tail)
 545				last = netem_skb_cb(sch->q.tail);
 546			if (q->t_root.rb_node) {
 547				struct sk_buff *t_skb;
 548				struct netem_skb_cb *t_last;
 549
 550				t_skb = skb_rb_last(&q->t_root);
 551				t_last = netem_skb_cb(t_skb);
 552				if (!last ||
 553				    t_last->time_to_send > last->time_to_send)
 554					last = t_last;
 555			}
 556			if (q->t_tail) {
 557				struct netem_skb_cb *t_last =
 558					netem_skb_cb(q->t_tail);
 559
 560				if (!last ||
 561				    t_last->time_to_send > last->time_to_send)
 562					last = t_last;
 563			}
 564
 565			if (last) {
 566				/*
 567				 * Last packet in queue is reference point (now),
 568				 * calculate this time bonus and subtract
 569				 * from delay.
 570				 */
 571				delay -= last->time_to_send - now;
 572				delay = max_t(s64, 0, delay);
 573				now = last->time_to_send;
 574			}
 575
 576			delay += packet_time_ns(qdisc_pkt_len(skb), q);
 577		}
 578
 579		cb->time_to_send = now + delay;
 580		++q->counter;
 581		tfifo_enqueue(skb, sch);
 582	} else {
 583		/*
 584		 * Do re-ordering by putting one out of N packets at the front
 585		 * of the queue.
 586		 */
 587		cb->time_to_send = ktime_get_ns();
 588		q->counter = 0;
 589
 590		__qdisc_enqueue_head(skb, &sch->q);
 591		sch->qstats.requeues++;
 592	}
 593
 594finish_segs:
 595	if (segs) {
 596		unsigned int len, last_len;
 597		int nb;
 598
 599		len = skb ? skb->len : 0;
 600		nb = skb ? 1 : 0;
 601
 602		while (segs) {
 603			skb2 = segs->next;
 604			skb_mark_not_on_list(segs);
 605			qdisc_skb_cb(segs)->pkt_len = segs->len;
 606			last_len = segs->len;
 607			rc = qdisc_enqueue(segs, sch, to_free);
 608			if (rc != NET_XMIT_SUCCESS) {
 609				if (net_xmit_drop_count(rc))
 610					qdisc_qstats_drop(sch);
 611			} else {
 612				nb++;
 613				len += last_len;
 614			}
 615			segs = skb2;
 616		}
 617		/* Parent qdiscs accounted for 1 skb of size @prev_len */
 618		qdisc_tree_reduce_backlog(sch, -(nb - 1), -(len - prev_len));
 619	} else if (!skb) {
 620		return NET_XMIT_DROP;
 621	}
 622	return NET_XMIT_SUCCESS;
 623}
 624
 625/* Delay the next round with a new future slot with a
 626 * correct number of bytes and packets.
 627 */
 628
 629static void get_slot_next(struct netem_sched_data *q, u64 now)
 630{
 631	s64 next_delay;
 632
 633	if (!q->slot_dist)
 634		next_delay = q->slot_config.min_delay +
 635				(prandom_u32() *
 636				 (q->slot_config.max_delay -
 637				  q->slot_config.min_delay) >> 32);
 638	else
 639		next_delay = tabledist(q->slot_config.dist_delay,
 640				       (s32)(q->slot_config.dist_jitter),
 641				       NULL, q->slot_dist);
 642
 643	q->slot.slot_next = now + next_delay;
 644	q->slot.packets_left = q->slot_config.max_packets;
 645	q->slot.bytes_left = q->slot_config.max_bytes;
 646}
 647
 648static struct sk_buff *netem_peek(struct netem_sched_data *q)
 649{
 650	struct sk_buff *skb = skb_rb_first(&q->t_root);
 651	u64 t1, t2;
 652
 653	if (!skb)
 654		return q->t_head;
 655	if (!q->t_head)
 656		return skb;
 657
 658	t1 = netem_skb_cb(skb)->time_to_send;
 659	t2 = netem_skb_cb(q->t_head)->time_to_send;
 660	if (t1 < t2)
 661		return skb;
 662	return q->t_head;
 663}
 664
 665static void netem_erase_head(struct netem_sched_data *q, struct sk_buff *skb)
 666{
 667	if (skb == q->t_head) {
 668		q->t_head = skb->next;
 669		if (!q->t_head)
 670			q->t_tail = NULL;
 671	} else {
 672		rb_erase(&skb->rbnode, &q->t_root);
 673	}
 674}
 675
 676static struct sk_buff *netem_dequeue(struct Qdisc *sch)
 677{
 678	struct netem_sched_data *q = qdisc_priv(sch);
 679	struct sk_buff *skb;
 680
 681tfifo_dequeue:
 682	skb = __qdisc_dequeue_head(&sch->q);
 683	if (skb) {
 684		qdisc_qstats_backlog_dec(sch, skb);
 685deliver:
 686		qdisc_bstats_update(sch, skb);
 687		return skb;
 688	}
 689	skb = netem_peek(q);
 690	if (skb) {
 691		u64 time_to_send;
 692		u64 now = ktime_get_ns();
 693
 694		/* if more time remaining? */
 695		time_to_send = netem_skb_cb(skb)->time_to_send;
 696		if (q->slot.slot_next && q->slot.slot_next < time_to_send)
 697			get_slot_next(q, now);
 698
 699		if (time_to_send <= now && q->slot.slot_next <= now) {
 700			netem_erase_head(q, skb);
 701			sch->q.qlen--;
 702			qdisc_qstats_backlog_dec(sch, skb);
 703			skb->next = NULL;
 704			skb->prev = NULL;
 705			/* skb->dev shares skb->rbnode area,
 706			 * we need to restore its value.
 707			 */
 708			skb->dev = qdisc_dev(sch);
 709
 710			if (q->slot.slot_next) {
 711				q->slot.packets_left--;
 712				q->slot.bytes_left -= qdisc_pkt_len(skb);
 713				if (q->slot.packets_left <= 0 ||
 714				    q->slot.bytes_left <= 0)
 715					get_slot_next(q, now);
 716			}
 717
 718			if (q->qdisc) {
 719				unsigned int pkt_len = qdisc_pkt_len(skb);
 720				struct sk_buff *to_free = NULL;
 721				int err;
 722
 723				err = qdisc_enqueue(skb, q->qdisc, &to_free);
 724				kfree_skb_list(to_free);
 725				if (err != NET_XMIT_SUCCESS &&
 726				    net_xmit_drop_count(err)) {
 727					qdisc_qstats_drop(sch);
 728					qdisc_tree_reduce_backlog(sch, 1,
 729								  pkt_len);
 730				}
 731				goto tfifo_dequeue;
 732			}
 733			goto deliver;
 734		}
 735
 736		if (q->qdisc) {
 737			skb = q->qdisc->ops->dequeue(q->qdisc);
 738			if (skb)
 739				goto deliver;
 740		}
 741
 742		qdisc_watchdog_schedule_ns(&q->watchdog,
 743					   max(time_to_send,
 744					       q->slot.slot_next));
 745	}
 746
 747	if (q->qdisc) {
 748		skb = q->qdisc->ops->dequeue(q->qdisc);
 749		if (skb)
 750			goto deliver;
 751	}
 752	return NULL;
 753}
 754
 755static void netem_reset(struct Qdisc *sch)
 756{
 757	struct netem_sched_data *q = qdisc_priv(sch);
 758
 759	qdisc_reset_queue(sch);
 760	tfifo_reset(sch);
 761	if (q->qdisc)
 762		qdisc_reset(q->qdisc);
 763	qdisc_watchdog_cancel(&q->watchdog);
 764}
 765
 766static void dist_free(struct disttable *d)
 767{
 768	kvfree(d);
 769}
 770
 771/*
 772 * Distribution data is a variable size payload containing
 773 * signed 16 bit values.
 774 */
 775
 776static int get_dist_table(struct Qdisc *sch, struct disttable **tbl,
 777			  const struct nlattr *attr)
 778{
 779	size_t n = nla_len(attr)/sizeof(__s16);
 780	const __s16 *data = nla_data(attr);
 781	spinlock_t *root_lock;
 782	struct disttable *d;
 783	int i;
 784
 785	if (!n || n > NETEM_DIST_MAX)
 786		return -EINVAL;
 787
 788	d = kvmalloc(sizeof(struct disttable) + n * sizeof(s16), GFP_KERNEL);
 789	if (!d)
 790		return -ENOMEM;
 791
 792	d->size = n;
 793	for (i = 0; i < n; i++)
 794		d->table[i] = data[i];
 795
 796	root_lock = qdisc_root_sleeping_lock(sch);
 797
 798	spin_lock_bh(root_lock);
 799	swap(*tbl, d);
 800	spin_unlock_bh(root_lock);
 801
 802	dist_free(d);
 803	return 0;
 804}
 805
 806static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
 807{
 808	const struct tc_netem_slot *c = nla_data(attr);
 809
 810	q->slot_config = *c;
 811	if (q->slot_config.max_packets == 0)
 812		q->slot_config.max_packets = INT_MAX;
 813	if (q->slot_config.max_bytes == 0)
 814		q->slot_config.max_bytes = INT_MAX;
 
 
 
 
 815	q->slot.packets_left = q->slot_config.max_packets;
 816	q->slot.bytes_left = q->slot_config.max_bytes;
 817	if (q->slot_config.min_delay | q->slot_config.max_delay |
 818	    q->slot_config.dist_jitter)
 819		q->slot.slot_next = ktime_get_ns();
 820	else
 821		q->slot.slot_next = 0;
 822}
 823
 824static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
 825{
 826	const struct tc_netem_corr *c = nla_data(attr);
 827
 828	init_crandom(&q->delay_cor, c->delay_corr);
 829	init_crandom(&q->loss_cor, c->loss_corr);
 830	init_crandom(&q->dup_cor, c->dup_corr);
 831}
 832
 833static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
 834{
 835	const struct tc_netem_reorder *r = nla_data(attr);
 836
 837	q->reorder = r->probability;
 838	init_crandom(&q->reorder_cor, r->correlation);
 839}
 840
 841static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
 842{
 843	const struct tc_netem_corrupt *r = nla_data(attr);
 844
 845	q->corrupt = r->probability;
 846	init_crandom(&q->corrupt_cor, r->correlation);
 847}
 848
 849static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
 850{
 851	const struct tc_netem_rate *r = nla_data(attr);
 852
 853	q->rate = r->rate;
 854	q->packet_overhead = r->packet_overhead;
 855	q->cell_size = r->cell_size;
 856	q->cell_overhead = r->cell_overhead;
 857	if (q->cell_size)
 858		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
 859	else
 860		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
 861}
 862
 863static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
 864{
 865	const struct nlattr *la;
 866	int rem;
 867
 868	nla_for_each_nested(la, attr, rem) {
 869		u16 type = nla_type(la);
 870
 871		switch (type) {
 872		case NETEM_LOSS_GI: {
 873			const struct tc_netem_gimodel *gi = nla_data(la);
 874
 875			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
 876				pr_info("netem: incorrect gi model size\n");
 877				return -EINVAL;
 878			}
 879
 880			q->loss_model = CLG_4_STATES;
 881
 882			q->clg.state = TX_IN_GAP_PERIOD;
 883			q->clg.a1 = gi->p13;
 884			q->clg.a2 = gi->p31;
 885			q->clg.a3 = gi->p32;
 886			q->clg.a4 = gi->p14;
 887			q->clg.a5 = gi->p23;
 888			break;
 889		}
 890
 891		case NETEM_LOSS_GE: {
 892			const struct tc_netem_gemodel *ge = nla_data(la);
 893
 894			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
 895				pr_info("netem: incorrect ge model size\n");
 896				return -EINVAL;
 897			}
 898
 899			q->loss_model = CLG_GILB_ELL;
 900			q->clg.state = GOOD_STATE;
 901			q->clg.a1 = ge->p;
 902			q->clg.a2 = ge->r;
 903			q->clg.a3 = ge->h;
 904			q->clg.a4 = ge->k1;
 905			break;
 906		}
 907
 908		default:
 909			pr_info("netem: unknown loss type %u\n", type);
 910			return -EINVAL;
 911		}
 912	}
 913
 914	return 0;
 915}
 916
 917static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
 918	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
 919	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
 920	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
 921	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
 922	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
 923	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
 924	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
 925	[TCA_NETEM_LATENCY64]	= { .type = NLA_S64 },
 926	[TCA_NETEM_JITTER64]	= { .type = NLA_S64 },
 927	[TCA_NETEM_SLOT]	= { .len = sizeof(struct tc_netem_slot) },
 
 928};
 929
 930static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
 931		      const struct nla_policy *policy, int len)
 932{
 933	int nested_len = nla_len(nla) - NLA_ALIGN(len);
 934
 935	if (nested_len < 0) {
 936		pr_info("netem: invalid attributes len %d\n", nested_len);
 937		return -EINVAL;
 938	}
 939
 940	if (nested_len >= nla_attr_size(0))
 941		return nla_parse_deprecated(tb, maxtype,
 942					    nla_data(nla) + NLA_ALIGN(len),
 943					    nested_len, policy, NULL);
 944
 945	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
 946	return 0;
 947}
 948
 949/* Parse netlink message to set options */
 950static int netem_change(struct Qdisc *sch, struct nlattr *opt,
 951			struct netlink_ext_ack *extack)
 952{
 953	struct netem_sched_data *q = qdisc_priv(sch);
 954	struct nlattr *tb[TCA_NETEM_MAX + 1];
 
 
 955	struct tc_netem_qopt *qopt;
 956	struct clgstate old_clg;
 957	int old_loss_model = CLG_RANDOM;
 958	int ret;
 959
 960	if (opt == NULL)
 961		return -EINVAL;
 962
 963	qopt = nla_data(opt);
 964	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
 965	if (ret < 0)
 966		return ret;
 967
 
 
 
 
 
 
 
 
 
 
 
 
 
 968	/* backup q->clg and q->loss_model */
 969	old_clg = q->clg;
 970	old_loss_model = q->loss_model;
 971
 972	if (tb[TCA_NETEM_LOSS]) {
 973		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
 974		if (ret) {
 975			q->loss_model = old_loss_model;
 976			return ret;
 
 977		}
 978	} else {
 979		q->loss_model = CLG_RANDOM;
 980	}
 981
 982	if (tb[TCA_NETEM_DELAY_DIST]) {
 983		ret = get_dist_table(sch, &q->delay_dist,
 984				     tb[TCA_NETEM_DELAY_DIST]);
 985		if (ret)
 986			goto get_table_failure;
 987	}
 988
 989	if (tb[TCA_NETEM_SLOT_DIST]) {
 990		ret = get_dist_table(sch, &q->slot_dist,
 991				     tb[TCA_NETEM_SLOT_DIST]);
 992		if (ret)
 993			goto get_table_failure;
 994	}
 995
 996	sch->limit = qopt->limit;
 997
 998	q->latency = PSCHED_TICKS2NS(qopt->latency);
 999	q->jitter = PSCHED_TICKS2NS(qopt->jitter);
1000	q->limit = qopt->limit;
1001	q->gap = qopt->gap;
1002	q->counter = 0;
1003	q->loss = qopt->loss;
1004	q->duplicate = qopt->duplicate;
1005
1006	/* for compatibility with earlier versions.
1007	 * if gap is set, need to assume 100% probability
1008	 */
1009	if (q->gap)
1010		q->reorder = ~0;
1011
1012	if (tb[TCA_NETEM_CORR])
1013		get_correlation(q, tb[TCA_NETEM_CORR]);
1014
1015	if (tb[TCA_NETEM_REORDER])
1016		get_reorder(q, tb[TCA_NETEM_REORDER]);
1017
1018	if (tb[TCA_NETEM_CORRUPT])
1019		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
1020
1021	if (tb[TCA_NETEM_RATE])
1022		get_rate(q, tb[TCA_NETEM_RATE]);
1023
1024	if (tb[TCA_NETEM_RATE64])
1025		q->rate = max_t(u64, q->rate,
1026				nla_get_u64(tb[TCA_NETEM_RATE64]));
1027
1028	if (tb[TCA_NETEM_LATENCY64])
1029		q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
1030
1031	if (tb[TCA_NETEM_JITTER64])
1032		q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
1033
1034	if (tb[TCA_NETEM_ECN])
1035		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
1036
1037	if (tb[TCA_NETEM_SLOT])
1038		get_slot(q, tb[TCA_NETEM_SLOT]);
1039
1040	return ret;
 
1041
1042get_table_failure:
1043	/* recover clg and loss_model, in case of
1044	 * q->clg and q->loss_model were modified
1045	 * in get_loss_clg()
1046	 */
1047	q->clg = old_clg;
1048	q->loss_model = old_loss_model;
 
 
 
 
 
1049	return ret;
1050}
1051
1052static int netem_init(struct Qdisc *sch, struct nlattr *opt,
1053		      struct netlink_ext_ack *extack)
1054{
1055	struct netem_sched_data *q = qdisc_priv(sch);
1056	int ret;
1057
1058	qdisc_watchdog_init(&q->watchdog, sch);
1059
1060	if (!opt)
1061		return -EINVAL;
1062
1063	q->loss_model = CLG_RANDOM;
1064	ret = netem_change(sch, opt, extack);
1065	if (ret)
1066		pr_info("netem: change failed\n");
1067	return ret;
1068}
1069
1070static void netem_destroy(struct Qdisc *sch)
1071{
1072	struct netem_sched_data *q = qdisc_priv(sch);
1073
1074	qdisc_watchdog_cancel(&q->watchdog);
1075	if (q->qdisc)
1076		qdisc_put(q->qdisc);
1077	dist_free(q->delay_dist);
1078	dist_free(q->slot_dist);
1079}
1080
1081static int dump_loss_model(const struct netem_sched_data *q,
1082			   struct sk_buff *skb)
1083{
1084	struct nlattr *nest;
1085
1086	nest = nla_nest_start_noflag(skb, TCA_NETEM_LOSS);
1087	if (nest == NULL)
1088		goto nla_put_failure;
1089
1090	switch (q->loss_model) {
1091	case CLG_RANDOM:
1092		/* legacy loss model */
1093		nla_nest_cancel(skb, nest);
1094		return 0;	/* no data */
1095
1096	case CLG_4_STATES: {
1097		struct tc_netem_gimodel gi = {
1098			.p13 = q->clg.a1,
1099			.p31 = q->clg.a2,
1100			.p32 = q->clg.a3,
1101			.p14 = q->clg.a4,
1102			.p23 = q->clg.a5,
1103		};
1104
1105		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
1106			goto nla_put_failure;
1107		break;
1108	}
1109	case CLG_GILB_ELL: {
1110		struct tc_netem_gemodel ge = {
1111			.p = q->clg.a1,
1112			.r = q->clg.a2,
1113			.h = q->clg.a3,
1114			.k1 = q->clg.a4,
1115		};
1116
1117		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
1118			goto nla_put_failure;
1119		break;
1120	}
1121	}
1122
1123	nla_nest_end(skb, nest);
1124	return 0;
1125
1126nla_put_failure:
1127	nla_nest_cancel(skb, nest);
1128	return -1;
1129}
1130
1131static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1132{
1133	const struct netem_sched_data *q = qdisc_priv(sch);
1134	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1135	struct tc_netem_qopt qopt;
1136	struct tc_netem_corr cor;
1137	struct tc_netem_reorder reorder;
1138	struct tc_netem_corrupt corrupt;
1139	struct tc_netem_rate rate;
1140	struct tc_netem_slot slot;
1141
1142	qopt.latency = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->latency),
1143			     UINT_MAX);
1144	qopt.jitter = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->jitter),
1145			    UINT_MAX);
1146	qopt.limit = q->limit;
1147	qopt.loss = q->loss;
1148	qopt.gap = q->gap;
1149	qopt.duplicate = q->duplicate;
1150	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1151		goto nla_put_failure;
1152
1153	if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
1154		goto nla_put_failure;
1155
1156	if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
1157		goto nla_put_failure;
1158
1159	cor.delay_corr = q->delay_cor.rho;
1160	cor.loss_corr = q->loss_cor.rho;
1161	cor.dup_corr = q->dup_cor.rho;
1162	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1163		goto nla_put_failure;
1164
1165	reorder.probability = q->reorder;
1166	reorder.correlation = q->reorder_cor.rho;
1167	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1168		goto nla_put_failure;
1169
1170	corrupt.probability = q->corrupt;
1171	corrupt.correlation = q->corrupt_cor.rho;
1172	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1173		goto nla_put_failure;
1174
1175	if (q->rate >= (1ULL << 32)) {
1176		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1177				      TCA_NETEM_PAD))
1178			goto nla_put_failure;
1179		rate.rate = ~0U;
1180	} else {
1181		rate.rate = q->rate;
1182	}
1183	rate.packet_overhead = q->packet_overhead;
1184	rate.cell_size = q->cell_size;
1185	rate.cell_overhead = q->cell_overhead;
1186	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1187		goto nla_put_failure;
1188
1189	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1190		goto nla_put_failure;
1191
1192	if (dump_loss_model(q, skb) != 0)
1193		goto nla_put_failure;
1194
1195	if (q->slot_config.min_delay | q->slot_config.max_delay |
1196	    q->slot_config.dist_jitter) {
1197		slot = q->slot_config;
1198		if (slot.max_packets == INT_MAX)
1199			slot.max_packets = 0;
1200		if (slot.max_bytes == INT_MAX)
1201			slot.max_bytes = 0;
1202		if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
1203			goto nla_put_failure;
1204	}
1205
 
 
 
 
1206	return nla_nest_end(skb, nla);
1207
1208nla_put_failure:
1209	nlmsg_trim(skb, nla);
1210	return -1;
1211}
1212
1213static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1214			  struct sk_buff *skb, struct tcmsg *tcm)
1215{
1216	struct netem_sched_data *q = qdisc_priv(sch);
1217
1218	if (cl != 1 || !q->qdisc) 	/* only one class */
1219		return -ENOENT;
1220
1221	tcm->tcm_handle |= TC_H_MIN(1);
1222	tcm->tcm_info = q->qdisc->handle;
1223
1224	return 0;
1225}
1226
1227static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1228		     struct Qdisc **old, struct netlink_ext_ack *extack)
1229{
1230	struct netem_sched_data *q = qdisc_priv(sch);
1231
1232	*old = qdisc_replace(sch, new, &q->qdisc);
1233	return 0;
1234}
1235
1236static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1237{
1238	struct netem_sched_data *q = qdisc_priv(sch);
1239	return q->qdisc;
1240}
1241
1242static unsigned long netem_find(struct Qdisc *sch, u32 classid)
1243{
1244	return 1;
1245}
1246
1247static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1248{
1249	if (!walker->stop) {
1250		if (walker->count >= walker->skip)
1251			if (walker->fn(sch, 1, walker) < 0) {
1252				walker->stop = 1;
1253				return;
1254			}
1255		walker->count++;
1256	}
1257}
1258
1259static const struct Qdisc_class_ops netem_class_ops = {
1260	.graft		=	netem_graft,
1261	.leaf		=	netem_leaf,
1262	.find		=	netem_find,
1263	.walk		=	netem_walk,
1264	.dump		=	netem_dump_class,
1265};
1266
1267static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1268	.id		=	"netem",
1269	.cl_ops		=	&netem_class_ops,
1270	.priv_size	=	sizeof(struct netem_sched_data),
1271	.enqueue	=	netem_enqueue,
1272	.dequeue	=	netem_dequeue,
1273	.peek		=	qdisc_peek_dequeued,
1274	.init		=	netem_init,
1275	.reset		=	netem_reset,
1276	.destroy	=	netem_destroy,
1277	.change		=	netem_change,
1278	.dump		=	netem_dump,
1279	.owner		=	THIS_MODULE,
1280};
1281
1282
1283static int __init netem_module_init(void)
1284{
1285	pr_info("netem: version " VERSION "\n");
1286	return register_qdisc(&netem_qdisc_ops);
1287}
1288static void __exit netem_module_exit(void)
1289{
1290	unregister_qdisc(&netem_qdisc_ops);
1291}
1292module_init(netem_module_init)
1293module_exit(netem_module_exit)
1294MODULE_LICENSE("GPL");
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * net/sched/sch_netem.c	Network emulator
   4 *
   5 *  		Many of the algorithms and ideas for this came from
   6 *		NIST Net which is not copyrighted.
   7 *
   8 * Authors:	Stephen Hemminger <shemminger@osdl.org>
   9 *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
  10 */
  11
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/slab.h>
  15#include <linux/types.h>
  16#include <linux/kernel.h>
  17#include <linux/errno.h>
  18#include <linux/skbuff.h>
  19#include <linux/vmalloc.h>
  20#include <linux/rtnetlink.h>
  21#include <linux/reciprocal_div.h>
  22#include <linux/rbtree.h>
  23
  24#include <net/gso.h>
  25#include <net/netlink.h>
  26#include <net/pkt_sched.h>
  27#include <net/inet_ecn.h>
  28
  29#define VERSION "1.3"
  30
  31/*	Network Emulation Queuing algorithm.
  32	====================================
  33
  34	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
  35		 Network Emulation Tool
  36		 [2] Luigi Rizzo, DummyNet for FreeBSD
  37
  38	 ----------------------------------------------------------------
  39
  40	 This started out as a simple way to delay outgoing packets to
  41	 test TCP but has grown to include most of the functionality
  42	 of a full blown network emulator like NISTnet. It can delay
  43	 packets and add random jitter (and correlation). The random
  44	 distribution can be loaded from a table as well to provide
  45	 normal, Pareto, or experimental curves. Packet loss,
  46	 duplication, and reordering can also be emulated.
  47
  48	 This qdisc does not do classification that can be handled in
  49	 layering other disciplines.  It does not need to do bandwidth
  50	 control either since that can be handled by using token
  51	 bucket or other rate control.
  52
  53     Correlated Loss Generator models
  54
  55	Added generation of correlated loss according to the
  56	"Gilbert-Elliot" model, a 4-state markov model.
  57
  58	References:
  59	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
  60	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
  61	and intuitive loss model for packet networks and its implementation
  62	in the Netem module in the Linux kernel", available in [1]
  63
  64	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
  65		 Fabio Ludovici <fabio.ludovici at yahoo.it>
  66*/
  67
  68struct disttable {
  69	u32  size;
  70	s16 table[] __counted_by(size);
  71};
  72
  73struct netem_sched_data {
  74	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
  75	struct rb_root t_root;
  76
  77	/* a linear queue; reduces rbtree rebalancing when jitter is low */
  78	struct sk_buff	*t_head;
  79	struct sk_buff	*t_tail;
  80
  81	/* optional qdisc for classful handling (NULL at netem init) */
  82	struct Qdisc	*qdisc;
  83
  84	struct qdisc_watchdog watchdog;
  85
  86	s64 latency;
  87	s64 jitter;
  88
  89	u32 loss;
  90	u32 ecn;
  91	u32 limit;
  92	u32 counter;
  93	u32 gap;
  94	u32 duplicate;
  95	u32 reorder;
  96	u32 corrupt;
  97	u64 rate;
  98	s32 packet_overhead;
  99	u32 cell_size;
 100	struct reciprocal_value cell_size_reciprocal;
 101	s32 cell_overhead;
 102
 103	struct crndstate {
 104		u32 last;
 105		u32 rho;
 106	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
 107
 108	struct prng  {
 109		u64 seed;
 110		struct rnd_state prng_state;
 111	} prng;
 112
 113	struct disttable *delay_dist;
 114
 115	enum  {
 116		CLG_RANDOM,
 117		CLG_4_STATES,
 118		CLG_GILB_ELL,
 119	} loss_model;
 120
 121	enum {
 122		TX_IN_GAP_PERIOD = 1,
 123		TX_IN_BURST_PERIOD,
 124		LOST_IN_GAP_PERIOD,
 125		LOST_IN_BURST_PERIOD,
 126	} _4_state_model;
 127
 128	enum {
 129		GOOD_STATE = 1,
 130		BAD_STATE,
 131	} GE_state_model;
 132
 133	/* Correlated Loss Generation models */
 134	struct clgstate {
 135		/* state of the Markov chain */
 136		u8 state;
 137
 138		/* 4-states and Gilbert-Elliot models */
 139		u32 a1;	/* p13 for 4-states or p for GE */
 140		u32 a2;	/* p31 for 4-states or r for GE */
 141		u32 a3;	/* p32 for 4-states or h for GE */
 142		u32 a4;	/* p14 for 4-states or 1-k for GE */
 143		u32 a5; /* p23 used only in 4-states */
 144	} clg;
 145
 146	struct tc_netem_slot slot_config;
 147	struct slotstate {
 148		u64 slot_next;
 149		s32 packets_left;
 150		s32 bytes_left;
 151	} slot;
 152
 153	struct disttable *slot_dist;
 154};
 155
 156/* Time stamp put into socket buffer control block
 157 * Only valid when skbs are in our internal t(ime)fifo queue.
 158 *
 159 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
 160 * and skb->next & skb->prev are scratch space for a qdisc,
 161 * we save skb->tstamp value in skb->cb[] before destroying it.
 162 */
 163struct netem_skb_cb {
 164	u64	        time_to_send;
 165};
 166
 167static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
 168{
 169	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
 170	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
 171	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
 172}
 173
 174/* init_crandom - initialize correlated random number generator
 175 * Use entropy source for initial seed.
 176 */
 177static void init_crandom(struct crndstate *state, unsigned long rho)
 178{
 179	state->rho = rho;
 180	state->last = get_random_u32();
 181}
 182
 183/* get_crandom - correlated random number generator
 184 * Next number depends on last value.
 185 * rho is scaled to avoid floating point.
 186 */
 187static u32 get_crandom(struct crndstate *state, struct prng *p)
 188{
 189	u64 value, rho;
 190	unsigned long answer;
 191	struct rnd_state *s = &p->prng_state;
 192
 193	if (!state || state->rho == 0)	/* no correlation */
 194		return prandom_u32_state(s);
 195
 196	value = prandom_u32_state(s);
 197	rho = (u64)state->rho + 1;
 198	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
 199	state->last = answer;
 200	return answer;
 201}
 202
 203/* loss_4state - 4-state model loss generator
 204 * Generates losses according to the 4-state Markov chain adopted in
 205 * the GI (General and Intuitive) loss model.
 206 */
 207static bool loss_4state(struct netem_sched_data *q)
 208{
 209	struct clgstate *clg = &q->clg;
 210	u32 rnd = prandom_u32_state(&q->prng.prng_state);
 211
 212	/*
 213	 * Makes a comparison between rnd and the transition
 214	 * probabilities outgoing from the current state, then decides the
 215	 * next state and if the next packet has to be transmitted or lost.
 216	 * The four states correspond to:
 217	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
 218	 *   LOST_IN_GAP_PERIOD => isolated losses within a gap period
 219	 *   LOST_IN_BURST_PERIOD => lost packets within a burst period
 220	 *   TX_IN_BURST_PERIOD => successfully transmitted packets within a burst period
 221	 */
 222	switch (clg->state) {
 223	case TX_IN_GAP_PERIOD:
 224		if (rnd < clg->a4) {
 225			clg->state = LOST_IN_GAP_PERIOD;
 226			return true;
 227		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
 228			clg->state = LOST_IN_BURST_PERIOD;
 229			return true;
 230		} else if (clg->a1 + clg->a4 < rnd) {
 231			clg->state = TX_IN_GAP_PERIOD;
 232		}
 233
 234		break;
 235	case TX_IN_BURST_PERIOD:
 236		if (rnd < clg->a5) {
 237			clg->state = LOST_IN_BURST_PERIOD;
 238			return true;
 239		} else {
 240			clg->state = TX_IN_BURST_PERIOD;
 241		}
 242
 243		break;
 244	case LOST_IN_BURST_PERIOD:
 245		if (rnd < clg->a3)
 246			clg->state = TX_IN_BURST_PERIOD;
 247		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
 248			clg->state = TX_IN_GAP_PERIOD;
 249		} else if (clg->a2 + clg->a3 < rnd) {
 250			clg->state = LOST_IN_BURST_PERIOD;
 251			return true;
 252		}
 253		break;
 254	case LOST_IN_GAP_PERIOD:
 255		clg->state = TX_IN_GAP_PERIOD;
 256		break;
 257	}
 258
 259	return false;
 260}
 261
 262/* loss_gilb_ell - Gilbert-Elliot model loss generator
 263 * Generates losses according to the Gilbert-Elliot loss model or
 264 * its special cases  (Gilbert or Simple Gilbert)
 265 *
 266 * Makes a comparison between random number and the transition
 267 * probabilities outgoing from the current state, then decides the
 268 * next state. A second random number is extracted and the comparison
 269 * with the loss probability of the current state decides if the next
 270 * packet will be transmitted or lost.
 271 */
 272static bool loss_gilb_ell(struct netem_sched_data *q)
 273{
 274	struct clgstate *clg = &q->clg;
 275	struct rnd_state *s = &q->prng.prng_state;
 276
 277	switch (clg->state) {
 278	case GOOD_STATE:
 279		if (prandom_u32_state(s) < clg->a1)
 280			clg->state = BAD_STATE;
 281		if (prandom_u32_state(s) < clg->a4)
 282			return true;
 283		break;
 284	case BAD_STATE:
 285		if (prandom_u32_state(s) < clg->a2)
 286			clg->state = GOOD_STATE;
 287		if (prandom_u32_state(s) > clg->a3)
 288			return true;
 289	}
 290
 291	return false;
 292}
 293
 294static bool loss_event(struct netem_sched_data *q)
 295{
 296	switch (q->loss_model) {
 297	case CLG_RANDOM:
 298		/* Random packet drop 0 => none, ~0 => all */
 299		return q->loss && q->loss >= get_crandom(&q->loss_cor, &q->prng);
 300
 301	case CLG_4_STATES:
 302		/* 4state loss model algorithm (used also for GI model)
 303		* Extracts a value from the markov 4 state loss generator,
 304		* if it is 1 drops a packet and if needed writes the event in
 305		* the kernel logs
 306		*/
 307		return loss_4state(q);
 308
 309	case CLG_GILB_ELL:
 310		/* Gilbert-Elliot loss model algorithm
 311		* Extracts a value from the Gilbert-Elliot loss generator,
 312		* if it is 1 drops a packet and if needed writes the event in
 313		* the kernel logs
 314		*/
 315		return loss_gilb_ell(q);
 316	}
 317
 318	return false;	/* not reached */
 319}
 320
 321
 322/* tabledist - return a pseudo-randomly distributed value with mean mu and
 323 * std deviation sigma.  Uses table lookup to approximate the desired
 324 * distribution, and a uniformly-distributed pseudo-random source.
 325 */
 326static s64 tabledist(s64 mu, s32 sigma,
 327		     struct crndstate *state,
 328		     struct prng *prng,
 329		     const struct disttable *dist)
 330{
 331	s64 x;
 332	long t;
 333	u32 rnd;
 334
 335	if (sigma == 0)
 336		return mu;
 337
 338	rnd = get_crandom(state, prng);
 339
 340	/* default uniform distribution */
 341	if (dist == NULL)
 342		return ((rnd % (2 * (u32)sigma)) + mu) - sigma;
 343
 344	t = dist->table[rnd % dist->size];
 345	x = (sigma % NETEM_DIST_SCALE) * t;
 346	if (x >= 0)
 347		x += NETEM_DIST_SCALE/2;
 348	else
 349		x -= NETEM_DIST_SCALE/2;
 350
 351	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
 352}
 353
 354static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
 355{
 356	len += q->packet_overhead;
 357
 358	if (q->cell_size) {
 359		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
 360
 361		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
 362			cells++;
 363		len = cells * (q->cell_size + q->cell_overhead);
 364	}
 365
 366	return div64_u64(len * NSEC_PER_SEC, q->rate);
 367}
 368
 369static void tfifo_reset(struct Qdisc *sch)
 370{
 371	struct netem_sched_data *q = qdisc_priv(sch);
 372	struct rb_node *p = rb_first(&q->t_root);
 373
 374	while (p) {
 375		struct sk_buff *skb = rb_to_skb(p);
 376
 377		p = rb_next(p);
 378		rb_erase(&skb->rbnode, &q->t_root);
 379		rtnl_kfree_skbs(skb, skb);
 380	}
 381
 382	rtnl_kfree_skbs(q->t_head, q->t_tail);
 383	q->t_head = NULL;
 384	q->t_tail = NULL;
 385}
 386
 387static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
 388{
 389	struct netem_sched_data *q = qdisc_priv(sch);
 390	u64 tnext = netem_skb_cb(nskb)->time_to_send;
 391
 392	if (!q->t_tail || tnext >= netem_skb_cb(q->t_tail)->time_to_send) {
 393		if (q->t_tail)
 394			q->t_tail->next = nskb;
 395		else
 396			q->t_head = nskb;
 397		q->t_tail = nskb;
 398	} else {
 399		struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
 400
 401		while (*p) {
 402			struct sk_buff *skb;
 403
 404			parent = *p;
 405			skb = rb_to_skb(parent);
 406			if (tnext >= netem_skb_cb(skb)->time_to_send)
 407				p = &parent->rb_right;
 408			else
 409				p = &parent->rb_left;
 410		}
 411		rb_link_node(&nskb->rbnode, parent, p);
 412		rb_insert_color(&nskb->rbnode, &q->t_root);
 413	}
 414	sch->q.qlen++;
 415}
 416
 417/* netem can't properly corrupt a megapacket (like we get from GSO), so instead
 418 * when we statistically choose to corrupt one, we instead segment it, returning
 419 * the first packet to be corrupted, and re-enqueue the remaining frames
 420 */
 421static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
 422				     struct sk_buff **to_free)
 423{
 424	struct sk_buff *segs;
 425	netdev_features_t features = netif_skb_features(skb);
 426
 427	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
 428
 429	if (IS_ERR_OR_NULL(segs)) {
 430		qdisc_drop(skb, sch, to_free);
 431		return NULL;
 432	}
 433	consume_skb(skb);
 434	return segs;
 435}
 436
 437/*
 438 * Insert one skb into qdisc.
 439 * Note: parent depends on return value to account for queue length.
 440 * 	NET_XMIT_DROP: queue length didn't change.
 441 *      NET_XMIT_SUCCESS: one skb was queued.
 442 */
 443static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 444			 struct sk_buff **to_free)
 445{
 446	struct netem_sched_data *q = qdisc_priv(sch);
 447	/* We don't fill cb now as skb_unshare() may invalidate it */
 448	struct netem_skb_cb *cb;
 449	struct sk_buff *skb2;
 450	struct sk_buff *segs = NULL;
 451	unsigned int prev_len = qdisc_pkt_len(skb);
 452	int count = 1;
 453	int rc = NET_XMIT_SUCCESS;
 454	int rc_drop = NET_XMIT_DROP;
 455
 456	/* Do not fool qdisc_drop_all() */
 457	skb->prev = NULL;
 458
 459	/* Random duplication */
 460	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor, &q->prng))
 461		++count;
 462
 463	/* Drop packet? */
 464	if (loss_event(q)) {
 465		if (q->ecn && INET_ECN_set_ce(skb))
 466			qdisc_qstats_drop(sch); /* mark packet */
 467		else
 468			--count;
 469	}
 470	if (count == 0) {
 471		qdisc_qstats_drop(sch);
 472		__qdisc_drop(skb, to_free);
 473		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 474	}
 475
 476	/* If a delay is expected, orphan the skb. (orphaning usually takes
 477	 * place at TX completion time, so _before_ the link transit delay)
 478	 */
 479	if (q->latency || q->jitter || q->rate)
 480		skb_orphan_partial(skb);
 481
 482	/*
 483	 * If we need to duplicate packet, then re-insert at top of the
 484	 * qdisc tree, since parent queuer expects that only one
 485	 * skb will be queued.
 486	 */
 487	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
 488		struct Qdisc *rootq = qdisc_root_bh(sch);
 489		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
 490
 491		q->duplicate = 0;
 492		rootq->enqueue(skb2, rootq, to_free);
 493		q->duplicate = dupsave;
 494		rc_drop = NET_XMIT_SUCCESS;
 495	}
 496
 497	/*
 498	 * Randomized packet corruption.
 499	 * Make copy if needed since we are modifying
 500	 * If packet is going to be hardware checksummed, then
 501	 * do it now in software before we mangle it.
 502	 */
 503	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor, &q->prng)) {
 504		if (skb_is_gso(skb)) {
 505			skb = netem_segment(skb, sch, to_free);
 506			if (!skb)
 507				return rc_drop;
 508			segs = skb->next;
 509			skb_mark_not_on_list(skb);
 510			qdisc_skb_cb(skb)->pkt_len = skb->len;
 511		}
 512
 513		skb = skb_unshare(skb, GFP_ATOMIC);
 514		if (unlikely(!skb)) {
 515			qdisc_qstats_drop(sch);
 516			goto finish_segs;
 517		}
 518		if (skb->ip_summed == CHECKSUM_PARTIAL &&
 519		    skb_checksum_help(skb)) {
 520			qdisc_drop(skb, sch, to_free);
 521			skb = NULL;
 522			goto finish_segs;
 523		}
 524
 525		skb->data[get_random_u32_below(skb_headlen(skb))] ^=
 526			1<<get_random_u32_below(8);
 527	}
 528
 529	if (unlikely(sch->q.qlen >= sch->limit)) {
 530		/* re-link segs, so that qdisc_drop_all() frees them all */
 531		skb->next = segs;
 532		qdisc_drop_all(skb, sch, to_free);
 533		return rc_drop;
 534	}
 535
 536	qdisc_qstats_backlog_inc(sch, skb);
 537
 538	cb = netem_skb_cb(skb);
 539	if (q->gap == 0 ||		/* not doing reordering */
 540	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
 541	    q->reorder < get_crandom(&q->reorder_cor, &q->prng)) {
 542		u64 now;
 543		s64 delay;
 544
 545		delay = tabledist(q->latency, q->jitter,
 546				  &q->delay_cor, &q->prng, q->delay_dist);
 547
 548		now = ktime_get_ns();
 549
 550		if (q->rate) {
 551			struct netem_skb_cb *last = NULL;
 552
 553			if (sch->q.tail)
 554				last = netem_skb_cb(sch->q.tail);
 555			if (q->t_root.rb_node) {
 556				struct sk_buff *t_skb;
 557				struct netem_skb_cb *t_last;
 558
 559				t_skb = skb_rb_last(&q->t_root);
 560				t_last = netem_skb_cb(t_skb);
 561				if (!last ||
 562				    t_last->time_to_send > last->time_to_send)
 563					last = t_last;
 564			}
 565			if (q->t_tail) {
 566				struct netem_skb_cb *t_last =
 567					netem_skb_cb(q->t_tail);
 568
 569				if (!last ||
 570				    t_last->time_to_send > last->time_to_send)
 571					last = t_last;
 572			}
 573
 574			if (last) {
 575				/*
 576				 * Last packet in queue is reference point (now),
 577				 * calculate this time bonus and subtract
 578				 * from delay.
 579				 */
 580				delay -= last->time_to_send - now;
 581				delay = max_t(s64, 0, delay);
 582				now = last->time_to_send;
 583			}
 584
 585			delay += packet_time_ns(qdisc_pkt_len(skb), q);
 586		}
 587
 588		cb->time_to_send = now + delay;
 589		++q->counter;
 590		tfifo_enqueue(skb, sch);
 591	} else {
 592		/*
 593		 * Do re-ordering by putting one out of N packets at the front
 594		 * of the queue.
 595		 */
 596		cb->time_to_send = ktime_get_ns();
 597		q->counter = 0;
 598
 599		__qdisc_enqueue_head(skb, &sch->q);
 600		sch->qstats.requeues++;
 601	}
 602
 603finish_segs:
 604	if (segs) {
 605		unsigned int len, last_len;
 606		int nb;
 607
 608		len = skb ? skb->len : 0;
 609		nb = skb ? 1 : 0;
 610
 611		while (segs) {
 612			skb2 = segs->next;
 613			skb_mark_not_on_list(segs);
 614			qdisc_skb_cb(segs)->pkt_len = segs->len;
 615			last_len = segs->len;
 616			rc = qdisc_enqueue(segs, sch, to_free);
 617			if (rc != NET_XMIT_SUCCESS) {
 618				if (net_xmit_drop_count(rc))
 619					qdisc_qstats_drop(sch);
 620			} else {
 621				nb++;
 622				len += last_len;
 623			}
 624			segs = skb2;
 625		}
 626		/* Parent qdiscs accounted for 1 skb of size @prev_len */
 627		qdisc_tree_reduce_backlog(sch, -(nb - 1), -(len - prev_len));
 628	} else if (!skb) {
 629		return NET_XMIT_DROP;
 630	}
 631	return NET_XMIT_SUCCESS;
 632}
 633
 634/* Delay the next round with a new future slot with a
 635 * correct number of bytes and packets.
 636 */
 637
 638static void get_slot_next(struct netem_sched_data *q, u64 now)
 639{
 640	s64 next_delay;
 641
 642	if (!q->slot_dist)
 643		next_delay = q->slot_config.min_delay +
 644				(get_random_u32() *
 645				 (q->slot_config.max_delay -
 646				  q->slot_config.min_delay) >> 32);
 647	else
 648		next_delay = tabledist(q->slot_config.dist_delay,
 649				       (s32)(q->slot_config.dist_jitter),
 650				       NULL, &q->prng, q->slot_dist);
 651
 652	q->slot.slot_next = now + next_delay;
 653	q->slot.packets_left = q->slot_config.max_packets;
 654	q->slot.bytes_left = q->slot_config.max_bytes;
 655}
 656
 657static struct sk_buff *netem_peek(struct netem_sched_data *q)
 658{
 659	struct sk_buff *skb = skb_rb_first(&q->t_root);
 660	u64 t1, t2;
 661
 662	if (!skb)
 663		return q->t_head;
 664	if (!q->t_head)
 665		return skb;
 666
 667	t1 = netem_skb_cb(skb)->time_to_send;
 668	t2 = netem_skb_cb(q->t_head)->time_to_send;
 669	if (t1 < t2)
 670		return skb;
 671	return q->t_head;
 672}
 673
 674static void netem_erase_head(struct netem_sched_data *q, struct sk_buff *skb)
 675{
 676	if (skb == q->t_head) {
 677		q->t_head = skb->next;
 678		if (!q->t_head)
 679			q->t_tail = NULL;
 680	} else {
 681		rb_erase(&skb->rbnode, &q->t_root);
 682	}
 683}
 684
 685static struct sk_buff *netem_dequeue(struct Qdisc *sch)
 686{
 687	struct netem_sched_data *q = qdisc_priv(sch);
 688	struct sk_buff *skb;
 689
 690tfifo_dequeue:
 691	skb = __qdisc_dequeue_head(&sch->q);
 692	if (skb) {
 693		qdisc_qstats_backlog_dec(sch, skb);
 694deliver:
 695		qdisc_bstats_update(sch, skb);
 696		return skb;
 697	}
 698	skb = netem_peek(q);
 699	if (skb) {
 700		u64 time_to_send;
 701		u64 now = ktime_get_ns();
 702
 703		/* if more time remaining? */
 704		time_to_send = netem_skb_cb(skb)->time_to_send;
 705		if (q->slot.slot_next && q->slot.slot_next < time_to_send)
 706			get_slot_next(q, now);
 707
 708		if (time_to_send <= now && q->slot.slot_next <= now) {
 709			netem_erase_head(q, skb);
 710			sch->q.qlen--;
 711			qdisc_qstats_backlog_dec(sch, skb);
 712			skb->next = NULL;
 713			skb->prev = NULL;
 714			/* skb->dev shares skb->rbnode area,
 715			 * we need to restore its value.
 716			 */
 717			skb->dev = qdisc_dev(sch);
 718
 719			if (q->slot.slot_next) {
 720				q->slot.packets_left--;
 721				q->slot.bytes_left -= qdisc_pkt_len(skb);
 722				if (q->slot.packets_left <= 0 ||
 723				    q->slot.bytes_left <= 0)
 724					get_slot_next(q, now);
 725			}
 726
 727			if (q->qdisc) {
 728				unsigned int pkt_len = qdisc_pkt_len(skb);
 729				struct sk_buff *to_free = NULL;
 730				int err;
 731
 732				err = qdisc_enqueue(skb, q->qdisc, &to_free);
 733				kfree_skb_list(to_free);
 734				if (err != NET_XMIT_SUCCESS &&
 735				    net_xmit_drop_count(err)) {
 736					qdisc_qstats_drop(sch);
 737					qdisc_tree_reduce_backlog(sch, 1,
 738								  pkt_len);
 739				}
 740				goto tfifo_dequeue;
 741			}
 742			goto deliver;
 743		}
 744
 745		if (q->qdisc) {
 746			skb = q->qdisc->ops->dequeue(q->qdisc);
 747			if (skb)
 748				goto deliver;
 749		}
 750
 751		qdisc_watchdog_schedule_ns(&q->watchdog,
 752					   max(time_to_send,
 753					       q->slot.slot_next));
 754	}
 755
 756	if (q->qdisc) {
 757		skb = q->qdisc->ops->dequeue(q->qdisc);
 758		if (skb)
 759			goto deliver;
 760	}
 761	return NULL;
 762}
 763
 764static void netem_reset(struct Qdisc *sch)
 765{
 766	struct netem_sched_data *q = qdisc_priv(sch);
 767
 768	qdisc_reset_queue(sch);
 769	tfifo_reset(sch);
 770	if (q->qdisc)
 771		qdisc_reset(q->qdisc);
 772	qdisc_watchdog_cancel(&q->watchdog);
 773}
 774
 775static void dist_free(struct disttable *d)
 776{
 777	kvfree(d);
 778}
 779
 780/*
 781 * Distribution data is a variable size payload containing
 782 * signed 16 bit values.
 783 */
 784
 785static int get_dist_table(struct disttable **tbl, const struct nlattr *attr)
 
 786{
 787	size_t n = nla_len(attr)/sizeof(__s16);
 788	const __s16 *data = nla_data(attr);
 
 789	struct disttable *d;
 790	int i;
 791
 792	if (!n || n > NETEM_DIST_MAX)
 793		return -EINVAL;
 794
 795	d = kvmalloc(struct_size(d, table, n), GFP_KERNEL);
 796	if (!d)
 797		return -ENOMEM;
 798
 799	d->size = n;
 800	for (i = 0; i < n; i++)
 801		d->table[i] = data[i];
 802
 803	*tbl = d;
 
 
 
 
 
 
 804	return 0;
 805}
 806
 807static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
 808{
 809	const struct tc_netem_slot *c = nla_data(attr);
 810
 811	q->slot_config = *c;
 812	if (q->slot_config.max_packets == 0)
 813		q->slot_config.max_packets = INT_MAX;
 814	if (q->slot_config.max_bytes == 0)
 815		q->slot_config.max_bytes = INT_MAX;
 816
 817	/* capping dist_jitter to the range acceptable by tabledist() */
 818	q->slot_config.dist_jitter = min_t(__s64, INT_MAX, abs(q->slot_config.dist_jitter));
 819
 820	q->slot.packets_left = q->slot_config.max_packets;
 821	q->slot.bytes_left = q->slot_config.max_bytes;
 822	if (q->slot_config.min_delay | q->slot_config.max_delay |
 823	    q->slot_config.dist_jitter)
 824		q->slot.slot_next = ktime_get_ns();
 825	else
 826		q->slot.slot_next = 0;
 827}
 828
 829static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
 830{
 831	const struct tc_netem_corr *c = nla_data(attr);
 832
 833	init_crandom(&q->delay_cor, c->delay_corr);
 834	init_crandom(&q->loss_cor, c->loss_corr);
 835	init_crandom(&q->dup_cor, c->dup_corr);
 836}
 837
 838static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
 839{
 840	const struct tc_netem_reorder *r = nla_data(attr);
 841
 842	q->reorder = r->probability;
 843	init_crandom(&q->reorder_cor, r->correlation);
 844}
 845
 846static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
 847{
 848	const struct tc_netem_corrupt *r = nla_data(attr);
 849
 850	q->corrupt = r->probability;
 851	init_crandom(&q->corrupt_cor, r->correlation);
 852}
 853
 854static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
 855{
 856	const struct tc_netem_rate *r = nla_data(attr);
 857
 858	q->rate = r->rate;
 859	q->packet_overhead = r->packet_overhead;
 860	q->cell_size = r->cell_size;
 861	q->cell_overhead = r->cell_overhead;
 862	if (q->cell_size)
 863		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
 864	else
 865		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
 866}
 867
 868static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
 869{
 870	const struct nlattr *la;
 871	int rem;
 872
 873	nla_for_each_nested(la, attr, rem) {
 874		u16 type = nla_type(la);
 875
 876		switch (type) {
 877		case NETEM_LOSS_GI: {
 878			const struct tc_netem_gimodel *gi = nla_data(la);
 879
 880			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
 881				pr_info("netem: incorrect gi model size\n");
 882				return -EINVAL;
 883			}
 884
 885			q->loss_model = CLG_4_STATES;
 886
 887			q->clg.state = TX_IN_GAP_PERIOD;
 888			q->clg.a1 = gi->p13;
 889			q->clg.a2 = gi->p31;
 890			q->clg.a3 = gi->p32;
 891			q->clg.a4 = gi->p14;
 892			q->clg.a5 = gi->p23;
 893			break;
 894		}
 895
 896		case NETEM_LOSS_GE: {
 897			const struct tc_netem_gemodel *ge = nla_data(la);
 898
 899			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
 900				pr_info("netem: incorrect ge model size\n");
 901				return -EINVAL;
 902			}
 903
 904			q->loss_model = CLG_GILB_ELL;
 905			q->clg.state = GOOD_STATE;
 906			q->clg.a1 = ge->p;
 907			q->clg.a2 = ge->r;
 908			q->clg.a3 = ge->h;
 909			q->clg.a4 = ge->k1;
 910			break;
 911		}
 912
 913		default:
 914			pr_info("netem: unknown loss type %u\n", type);
 915			return -EINVAL;
 916		}
 917	}
 918
 919	return 0;
 920}
 921
 922static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
 923	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
 924	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
 925	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
 926	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
 927	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
 928	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
 929	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
 930	[TCA_NETEM_LATENCY64]	= { .type = NLA_S64 },
 931	[TCA_NETEM_JITTER64]	= { .type = NLA_S64 },
 932	[TCA_NETEM_SLOT]	= { .len = sizeof(struct tc_netem_slot) },
 933	[TCA_NETEM_PRNG_SEED]	= { .type = NLA_U64 },
 934};
 935
 936static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
 937		      const struct nla_policy *policy, int len)
 938{
 939	int nested_len = nla_len(nla) - NLA_ALIGN(len);
 940
 941	if (nested_len < 0) {
 942		pr_info("netem: invalid attributes len %d\n", nested_len);
 943		return -EINVAL;
 944	}
 945
 946	if (nested_len >= nla_attr_size(0))
 947		return nla_parse_deprecated(tb, maxtype,
 948					    nla_data(nla) + NLA_ALIGN(len),
 949					    nested_len, policy, NULL);
 950
 951	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
 952	return 0;
 953}
 954
 955/* Parse netlink message to set options */
 956static int netem_change(struct Qdisc *sch, struct nlattr *opt,
 957			struct netlink_ext_ack *extack)
 958{
 959	struct netem_sched_data *q = qdisc_priv(sch);
 960	struct nlattr *tb[TCA_NETEM_MAX + 1];
 961	struct disttable *delay_dist = NULL;
 962	struct disttable *slot_dist = NULL;
 963	struct tc_netem_qopt *qopt;
 964	struct clgstate old_clg;
 965	int old_loss_model = CLG_RANDOM;
 966	int ret;
 967
 
 
 
 968	qopt = nla_data(opt);
 969	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
 970	if (ret < 0)
 971		return ret;
 972
 973	if (tb[TCA_NETEM_DELAY_DIST]) {
 974		ret = get_dist_table(&delay_dist, tb[TCA_NETEM_DELAY_DIST]);
 975		if (ret)
 976			goto table_free;
 977	}
 978
 979	if (tb[TCA_NETEM_SLOT_DIST]) {
 980		ret = get_dist_table(&slot_dist, tb[TCA_NETEM_SLOT_DIST]);
 981		if (ret)
 982			goto table_free;
 983	}
 984
 985	sch_tree_lock(sch);
 986	/* backup q->clg and q->loss_model */
 987	old_clg = q->clg;
 988	old_loss_model = q->loss_model;
 989
 990	if (tb[TCA_NETEM_LOSS]) {
 991		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
 992		if (ret) {
 993			q->loss_model = old_loss_model;
 994			q->clg = old_clg;
 995			goto unlock;
 996		}
 997	} else {
 998		q->loss_model = CLG_RANDOM;
 999	}
1000
1001	if (delay_dist)
1002		swap(q->delay_dist, delay_dist);
1003	if (slot_dist)
1004		swap(q->slot_dist, slot_dist);
 
 
 
 
 
 
 
 
 
 
1005	sch->limit = qopt->limit;
1006
1007	q->latency = PSCHED_TICKS2NS(qopt->latency);
1008	q->jitter = PSCHED_TICKS2NS(qopt->jitter);
1009	q->limit = qopt->limit;
1010	q->gap = qopt->gap;
1011	q->counter = 0;
1012	q->loss = qopt->loss;
1013	q->duplicate = qopt->duplicate;
1014
1015	/* for compatibility with earlier versions.
1016	 * if gap is set, need to assume 100% probability
1017	 */
1018	if (q->gap)
1019		q->reorder = ~0;
1020
1021	if (tb[TCA_NETEM_CORR])
1022		get_correlation(q, tb[TCA_NETEM_CORR]);
1023
1024	if (tb[TCA_NETEM_REORDER])
1025		get_reorder(q, tb[TCA_NETEM_REORDER]);
1026
1027	if (tb[TCA_NETEM_CORRUPT])
1028		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
1029
1030	if (tb[TCA_NETEM_RATE])
1031		get_rate(q, tb[TCA_NETEM_RATE]);
1032
1033	if (tb[TCA_NETEM_RATE64])
1034		q->rate = max_t(u64, q->rate,
1035				nla_get_u64(tb[TCA_NETEM_RATE64]));
1036
1037	if (tb[TCA_NETEM_LATENCY64])
1038		q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
1039
1040	if (tb[TCA_NETEM_JITTER64])
1041		q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
1042
1043	if (tb[TCA_NETEM_ECN])
1044		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
1045
1046	if (tb[TCA_NETEM_SLOT])
1047		get_slot(q, tb[TCA_NETEM_SLOT]);
1048
1049	/* capping jitter to the range acceptable by tabledist() */
1050	q->jitter = min_t(s64, abs(q->jitter), INT_MAX);
1051
1052	if (tb[TCA_NETEM_PRNG_SEED])
1053		q->prng.seed = nla_get_u64(tb[TCA_NETEM_PRNG_SEED]);
1054	else
1055		q->prng.seed = get_random_u64();
1056	prandom_seed_state(&q->prng.prng_state, q->prng.seed);
1057
1058unlock:
1059	sch_tree_unlock(sch);
1060
1061table_free:
1062	dist_free(delay_dist);
1063	dist_free(slot_dist);
1064	return ret;
1065}
1066
1067static int netem_init(struct Qdisc *sch, struct nlattr *opt,
1068		      struct netlink_ext_ack *extack)
1069{
1070	struct netem_sched_data *q = qdisc_priv(sch);
1071	int ret;
1072
1073	qdisc_watchdog_init(&q->watchdog, sch);
1074
1075	if (!opt)
1076		return -EINVAL;
1077
1078	q->loss_model = CLG_RANDOM;
1079	ret = netem_change(sch, opt, extack);
1080	if (ret)
1081		pr_info("netem: change failed\n");
1082	return ret;
1083}
1084
1085static void netem_destroy(struct Qdisc *sch)
1086{
1087	struct netem_sched_data *q = qdisc_priv(sch);
1088
1089	qdisc_watchdog_cancel(&q->watchdog);
1090	if (q->qdisc)
1091		qdisc_put(q->qdisc);
1092	dist_free(q->delay_dist);
1093	dist_free(q->slot_dist);
1094}
1095
1096static int dump_loss_model(const struct netem_sched_data *q,
1097			   struct sk_buff *skb)
1098{
1099	struct nlattr *nest;
1100
1101	nest = nla_nest_start_noflag(skb, TCA_NETEM_LOSS);
1102	if (nest == NULL)
1103		goto nla_put_failure;
1104
1105	switch (q->loss_model) {
1106	case CLG_RANDOM:
1107		/* legacy loss model */
1108		nla_nest_cancel(skb, nest);
1109		return 0;	/* no data */
1110
1111	case CLG_4_STATES: {
1112		struct tc_netem_gimodel gi = {
1113			.p13 = q->clg.a1,
1114			.p31 = q->clg.a2,
1115			.p32 = q->clg.a3,
1116			.p14 = q->clg.a4,
1117			.p23 = q->clg.a5,
1118		};
1119
1120		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
1121			goto nla_put_failure;
1122		break;
1123	}
1124	case CLG_GILB_ELL: {
1125		struct tc_netem_gemodel ge = {
1126			.p = q->clg.a1,
1127			.r = q->clg.a2,
1128			.h = q->clg.a3,
1129			.k1 = q->clg.a4,
1130		};
1131
1132		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
1133			goto nla_put_failure;
1134		break;
1135	}
1136	}
1137
1138	nla_nest_end(skb, nest);
1139	return 0;
1140
1141nla_put_failure:
1142	nla_nest_cancel(skb, nest);
1143	return -1;
1144}
1145
1146static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1147{
1148	const struct netem_sched_data *q = qdisc_priv(sch);
1149	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1150	struct tc_netem_qopt qopt;
1151	struct tc_netem_corr cor;
1152	struct tc_netem_reorder reorder;
1153	struct tc_netem_corrupt corrupt;
1154	struct tc_netem_rate rate;
1155	struct tc_netem_slot slot;
1156
1157	qopt.latency = min_t(psched_time_t, PSCHED_NS2TICKS(q->latency),
1158			     UINT_MAX);
1159	qopt.jitter = min_t(psched_time_t, PSCHED_NS2TICKS(q->jitter),
1160			    UINT_MAX);
1161	qopt.limit = q->limit;
1162	qopt.loss = q->loss;
1163	qopt.gap = q->gap;
1164	qopt.duplicate = q->duplicate;
1165	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1166		goto nla_put_failure;
1167
1168	if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
1169		goto nla_put_failure;
1170
1171	if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
1172		goto nla_put_failure;
1173
1174	cor.delay_corr = q->delay_cor.rho;
1175	cor.loss_corr = q->loss_cor.rho;
1176	cor.dup_corr = q->dup_cor.rho;
1177	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1178		goto nla_put_failure;
1179
1180	reorder.probability = q->reorder;
1181	reorder.correlation = q->reorder_cor.rho;
1182	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1183		goto nla_put_failure;
1184
1185	corrupt.probability = q->corrupt;
1186	corrupt.correlation = q->corrupt_cor.rho;
1187	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1188		goto nla_put_failure;
1189
1190	if (q->rate >= (1ULL << 32)) {
1191		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1192				      TCA_NETEM_PAD))
1193			goto nla_put_failure;
1194		rate.rate = ~0U;
1195	} else {
1196		rate.rate = q->rate;
1197	}
1198	rate.packet_overhead = q->packet_overhead;
1199	rate.cell_size = q->cell_size;
1200	rate.cell_overhead = q->cell_overhead;
1201	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1202		goto nla_put_failure;
1203
1204	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1205		goto nla_put_failure;
1206
1207	if (dump_loss_model(q, skb) != 0)
1208		goto nla_put_failure;
1209
1210	if (q->slot_config.min_delay | q->slot_config.max_delay |
1211	    q->slot_config.dist_jitter) {
1212		slot = q->slot_config;
1213		if (slot.max_packets == INT_MAX)
1214			slot.max_packets = 0;
1215		if (slot.max_bytes == INT_MAX)
1216			slot.max_bytes = 0;
1217		if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
1218			goto nla_put_failure;
1219	}
1220
1221	if (nla_put_u64_64bit(skb, TCA_NETEM_PRNG_SEED, q->prng.seed,
1222			      TCA_NETEM_PAD))
1223		goto nla_put_failure;
1224
1225	return nla_nest_end(skb, nla);
1226
1227nla_put_failure:
1228	nlmsg_trim(skb, nla);
1229	return -1;
1230}
1231
1232static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1233			  struct sk_buff *skb, struct tcmsg *tcm)
1234{
1235	struct netem_sched_data *q = qdisc_priv(sch);
1236
1237	if (cl != 1 || !q->qdisc) 	/* only one class */
1238		return -ENOENT;
1239
1240	tcm->tcm_handle |= TC_H_MIN(1);
1241	tcm->tcm_info = q->qdisc->handle;
1242
1243	return 0;
1244}
1245
1246static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1247		     struct Qdisc **old, struct netlink_ext_ack *extack)
1248{
1249	struct netem_sched_data *q = qdisc_priv(sch);
1250
1251	*old = qdisc_replace(sch, new, &q->qdisc);
1252	return 0;
1253}
1254
1255static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1256{
1257	struct netem_sched_data *q = qdisc_priv(sch);
1258	return q->qdisc;
1259}
1260
1261static unsigned long netem_find(struct Qdisc *sch, u32 classid)
1262{
1263	return 1;
1264}
1265
1266static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1267{
1268	if (!walker->stop) {
1269		if (!tc_qdisc_stats_dump(sch, 1, walker))
1270			return;
 
 
 
 
1271	}
1272}
1273
1274static const struct Qdisc_class_ops netem_class_ops = {
1275	.graft		=	netem_graft,
1276	.leaf		=	netem_leaf,
1277	.find		=	netem_find,
1278	.walk		=	netem_walk,
1279	.dump		=	netem_dump_class,
1280};
1281
1282static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1283	.id		=	"netem",
1284	.cl_ops		=	&netem_class_ops,
1285	.priv_size	=	sizeof(struct netem_sched_data),
1286	.enqueue	=	netem_enqueue,
1287	.dequeue	=	netem_dequeue,
1288	.peek		=	qdisc_peek_dequeued,
1289	.init		=	netem_init,
1290	.reset		=	netem_reset,
1291	.destroy	=	netem_destroy,
1292	.change		=	netem_change,
1293	.dump		=	netem_dump,
1294	.owner		=	THIS_MODULE,
1295};
1296
1297
1298static int __init netem_module_init(void)
1299{
1300	pr_info("netem: version " VERSION "\n");
1301	return register_qdisc(&netem_qdisc_ops);
1302}
1303static void __exit netem_module_exit(void)
1304{
1305	unregister_qdisc(&netem_qdisc_ops);
1306}
1307module_init(netem_module_init)
1308module_exit(netem_module_exit)
1309MODULE_LICENSE("GPL");
1310MODULE_DESCRIPTION("Network characteristics emulator qdisc");